
Abstract Document Systems
– instantiated for patient medical records

Master Thesis by

Allan Lindqvist
Brian Christensen

The Department of Computer Science and Engineering
Institute of Informatics and Mathematical Modelling

The Technical University of Denmark
August 2003 – April 2004

IMM-THESIS-2004-23

Copyright c© 2004 by Allan Lindqvist and Brian Christensen

Abstract

Developing a piece of software for a customer introduces a series of challenges
for both developer and customer. One of the key things to be aware of is the
language barrier that exist between the two groups – they do not speak the
same language. This poses a serious problem to the correctness of the final sys-
tem as it is likely that misunderstandings lead to a system different from what
was intended and needed by the customer. Consequently, this problem exists
when developing electronic document management systems. This domain will
command extreme attention in the near future as most administration tends
to go from paper to electronic documents – powerful and easy-to-use software
will be in demand. This Master Thesis addresses the development of an elec-
tronic document system platform providing versioning, structuring, document
abstraction, and distribution. The development will follow a methodology with
emphasis on the domain analysis ultimately leading to a platform supporting
an intuitive scripting language originating from the paper document domain
easy understandable by both customer and developer, while hiding technical
but necessary aspects. The usability of the platform is tested by instantiating
it in a domain with a long tradition of paper management – a hospital.

Keywords: Electronic document management systems, distributed systems,

security, domain analysis, document domain, methodological software develop-

ment, databases, XML, hospital domain, electronic medical records, graphical

user interface design

Resumé

N̊ar der udvikles software til en kunde introduceres en række udfordringer for
b̊ade udvikler og kunde. En af væsentligste ting, man skal være opmærksom
p̊a, er den sproglige barriere, som eksisterer mellem de to grupper – de taler
ikke det samme sprog. Det medfører vanskeligheder med hensyn til korrekthe-
den af det endelige system, da det er sandsynligt, at misforst̊aelser kan føre
til et system, som er forskelligt fra hvad der var behov for og ønsket af kun-
den. Heraf følger, at problemet ogs̊a eksisterer, n̊ar der udvikles elektroniske
dokumenth̊andteringssystemer. Dette domæne vil kræve særlig opmærksomhed
i den nærmeste fremtid fordi meget administration har tendens til at bevæge sig
fra papir til digitale dokumenter – stærke og let-anvendeligt softwareløsninger
vil blive efterspurgt. Denne afhandling omhandler udviklingen af en elektronisk
dokumentsh̊andteringsystem-platform, som tilbyder versionering, strukturering,
dokument abstraktion og distribution. Udviklingen vil følge en metodologi med
vægt p̊a domæne analyse, som i sidste ende fører til en platform, der understøtter
et intuitivt scripting sprog med oprindelse i papirdokument-domænet, som let
kan forst̊as af b̊ade kunde og udvikler, alt imens de nødvendige tekniske detaljer
gemmes væk. Anvendeligheden af platformen testes ved at instantiere den i et
domæne med en lang tradition for papirh̊andtering – et hospital.

Nøgleord: Elektroniske dokumenth̊andteringssystemer, distribuerede syste-

mer, sikkerhed, domæne analyse, dokumentdomæne, metodologisk software ud-

vikling, databaser, XML, hospitaldomæne, elektroniske patientjournaler, grafisk

brugergrænseflade-design

One should not increase, beyond what is necessary, the number of
entities required to explain anything

Occam’s Razor

Contents

Preface xvii

Objectives . xvii
Organization and Prerequisites of the Material xvii

Acknowledgments xix

I INTRODUCTION 1

1 Generally 3

1.1 Thesis . 5
1.2 Preparations and Literature . 6
1.3 Delimitation . 7
1.4 Contributions . 7
1.5 A Note Before Reading . 8

2 Technologies 9

2.1 Hardware Platform . 9
2.1.1 Stationary Platform . 9
2.1.2 Mobile Platform . 10

2.2 Operating System and Language 11
2.3 Storage . 12

2.3.1 Data Encapsulation Using XML 12
2.3.2 Relational Database . 12
2.3.3 XML Enabled Database 13
2.3.4 XML Native Database 13

2.4 Security . 14
2.4.1 Encryption Principles and Protocols 14
2.4.2 Digital Certificates . 16
2.4.3 Security Roles . 16

II DOCUMENT SYSTEM 17

3 Introduction 19

3.1 A Brief History of Document Management 19
3.2 EDMS Today . 20
3.3 Our Approach . 21

ix

x CONTENTS

4 Domain Development 22

4.1 Synopsis . 22
4.2 Stakeholders . 22
4.3 Interviews . 23
4.4 Intrinsics . 23
4.5 Business Processes . 24
4.6 Supporting Technologies . 26
4.7 Management and Organization 26
4.8 Rules and Regulations . 26
4.9 Human Behavior . 27
4.10 A Systematic Narrative . 28
4.11 Formalization . 31
4.12 Glossary . 32

5 Requirements Development 34

5.1 Stakeholders . 34
5.2 Business Process Re-Engineering 35

5.2.1 Supporting Technologies 37
5.2.2 Management and Organization 37
5.2.3 Rules and Regulations 37
5.2.4 Human Behavior . 38

5.3 Domain Requirements . 39
5.3.1 Projection . 39
5.3.2 Determinism . 40
5.3.3 Instantiation . 40
5.3.4 Extension . 40
5.3.5 Fitting . 42

5.4 Interface Requirements . 42
5.5 Machine Requirements . 44
5.6 Formalization . 44
5.7 Glossary . 46

6 Design 49

6.1 Basic Architecture . 49
6.2 Object Oriented Design . 52
6.3 Database Design . 55
6.4 Contents Management . 57
6.5 Distributed System Architecture 57

6.5.1 Data Distribution Between Servers 58
6.5.2 Secure Communication Layer 60

6.6 User Interface Design . 61

7 Design Considerations 62

7.1 Client/Server vs. Web-based . 62
7.2 How to Adopt the Domain Model 63
7.3 Modular Structure vs. Specific Technologies 64
7.4 Database Design . 64
7.5 Contents Management . 65
7.6 Data Distribution Between Servers 65

CONTENTS xi

8 Implementation 66

8.1 Technologies . 66

8.1.1 Platform and Development Language 66

8.1.2 Database and Interfacing 67

8.1.3 Networking and Security 67

8.1.4 Data Exchange Format 67

8.1.5 Contents Management 68

8.1.6 Interaction Between Different Document Systems 68

8.2 Examples . 68

8.2.1 Commands . 68

8.2.2 Contents Management 69

9 Prototype Evaluation 71

9.1 Business Process Building Blocks 71

9.2 Unexpected Advantages . 73

9.3 Debug Client . 73

10 Conclusion 75

III MEDICAL RECORD SYSTEM 77

11 Introduction 79

11.1 Brief History of Danish EMR . 79

11.2 Current Status of Development 80

11.3 Our Approach . 81

12 Domain Development 82

12.1 Synopsis . 82

12.2 Stakeholders . 82

12.2.1 Global Administration 82

12.2.2 Local Administration . 83

12.2.3 Person . 83

12.2.4 Third Party . 84

12.3 Stakeholder Subset . 84

12.4 Interviews . 85

12.5 Intrinsics . 85

12.5.1 Contents of Medical Record Documents 85

12.5.2 The Structure of Medical Records 86

12.6 Business Processes . 87

12.7 Supporting Technologies . 89

12.8 Management and Organization 90

12.9 Rules and Regulations . 90

12.10 Human Behavior . 91

12.11 A Systematic Narrative . 92

12.12 Glossary . 93

xii CONTENTS

13 Requirements Development 95

13.1 Stakeholders . 95
13.2 Business Process Re-Engineering 95

13.2.1 Supporting Technologies 98
13.2.2 Management and Organization 98
13.2.3 Rules and Regulations 98
13.2.4 Human Behavior . 98

13.3 Domain Requirements . 98
13.3.1 Projection . 99
13.3.2 Determinism . 99
13.3.3 Instantiation . 99
13.3.4 Extension . 100
13.3.5 Fitting . 102

13.4 Interface Requirements . 102
13.5 Machine Requirements . 103
13.6 Glossary . 103

14 Prototype Evaluation 104

14.1 The First Generation EMR System 104
14.2 Migrating to Second Generation 105

15 Conclusion 107

IV SUMMARY 109

16 Future Work 111

16.1 Scientifically . 111
16.2 Technologically . 112

17 Our Experiences 113

18 Conclusion 114

V APPENDIX 117

A Original Problem 119

B Encryption Principles 120

B.1 AsymmetricEncryption.rsl . 120
B.2 SymmetricEncryption.rsl . 121

C DocSys – Draft Domain Specification 122

C.1 docsysoriginal.rsl . 122

D DocSys – Domain Specification 128

D.1 docsystypes.rsl . 128
D.2 docsysbasics.rsl . 129
D.3 pdocsystypes.rsl . 133
D.4 pdocsysbasics.rsl . 133

CONTENTS xiii

D.5 pdocsyswf.rsl . 135
D.6 pdocsyscmds.rsl . 136

E DocSys – Requirements Specification 145

E.1 edocsystypes.rsl . 145
E.2 edocsysbasics.rsl . 147
E.3 edocsyswf.rsl . 152
E.4 edocsyscmds.rsl . 153

F DocSys – Secure Protocol Architecture 167

F.1 securesession.rsl . 167

G DocSys – Communication Architecture 172

G.1 client.rsl . 172
G.2 clientadminlogic.rsl . 172
G.3 clientbusinesslogic.rsl . 173
G.4 clientconnection.rsl . 173
G.5 clientforeignlogic.rsl . 174
G.6 comlayer.rsl . 174
G.7 commands.rsl . 175
G.8 connection.rsl . 175
G.9 data.rsl . 176
G.10 dblayer.rsl . 176
G.11 place.rsl . 177
G.12 server.rsl . 177
G.13 serveradminlogic.rsl . 178
G.14 serverbusinesslogic.rsl . 178
G.15 serverconnection.rsl . 179
G.16 serverforeignlogic.rsl . 180
G.17 servermirrorlogic.rsl . 180
G.18 system.rsl . 181
G.19 mdblayer.rsl . 182
G.20 mirror.rsl . 182
G.21 mirroradminlogic.rsl . 183
G.22 mirrorconnection.rsl . 183
G.23 mirrorforeignlogic.rsl . 184
G.24 mirrorlogic.rsl . 185

H DocSys – Implementation 186

H.1 DSCommands.h . 186
H.2 contents example.xsd . 189

I DocSys – Specification Relationship Example 192

I.1 Domain Specification . 192
I.2 Requirements Specification . 193
I.3 Implementation Specification . 193

J EMR – Template Specification 195

J.1 mrcontents.rsl . 195
J.2 mrnote.rsl . 196

xiv CONTENTS

K EMR – GUI Design 199

L EMR – Business Logic 203

M Article 215

N Business Plan 220

Bibliography 225

List of Figures

4.1 Domain Entities Structure . 29

5.1 Electronic Document Management System 41

5.2 Merging of Documents in The EDMS 43

6.1 Basic System Architecture . 50

6.2 Basic Architectural Model and Information Flow 51

6.3 Command Object Composition 52

6.4 Document Object Composition 53

6.5 Dossier Object Ccomposition . 53

6.6 Index Object Composition . 54

6.7 Person Object Composition . 54

6.8 Miscellaneous Objects Composition 55

6.9 Database Structure . 56

6.10 Information Flow: Distribution – Information Push 59

6.11 Information Flow: Distribution – Information Pull 60

6.12 Communication Layer . 60

8.1 Communication Layer Message Format 67

8.2 Communication Layer Packet Format 67

8.3 Information Request and Response Using XML Documents . . . 68

8.4 Example Layout of a Contents Type Specified in XML Schema . 70

9.1 Business Process Expressed in Document Commands 72

9.2 Re-Engineered Business Process 73

9.3 Debug Client – Overview . 74

9.4 Debug Client – Document . 74

12.1 Note Page of a Medical Record 86

12.2 Hospital Management Hierarchy 90

13.1 Medical Record and Directory Structure 96

13.2 Note Page of a Medical Record With Data 100

14.1 Department Medical Journal Cart 106

14.2 Admission Note in a Medical Record 106

J.1 Note Page of a Medical Record With Data 196

xv

xvi LIST OF FIGURES

K.1 Department tab layout . 199
K.2 Person Tab Layout . 200
K.3 Patient Tab Layout . 200
K.4 Medical Record Category Layout 201
K.5 Medical Record Note Display Layout 201
K.6 Search Dialog . 202

Preface

The enclosed report concludes the M.Sc. Thesis by Allan Lindqvist and Brian
Christensen carried out at the Institute of Informatics and Mathematical Mod-
elling at The Technical University of Denmark. Professor Dines Bjørner has
supervised the project spanning from August 2003 to April 2004.

Objectives

It is the main objective of this report to document the work we have carried
out during our Master Thesis project. Two intertwined software development
projects have been completed. They will be described along with the motivation
and considerations preceding them as well as the conclusions drawn.

A secondary objective involves how to document a software development
project from preliminary domain analysis to a running implementation. We
intend to present our work – the design and implementation of an electronic
document management system instantiated for patient medical records – with
a special emphasis on domain analysis and requirements specification. Our
ambition is to provide a by-the-book example of software development when
following the principles outlined by Professor Bjørner’s book ’The SE Book’.
Consequently, we have adopted the terminology and structuring of these prin-
ciples and made use of the RAISE specification language. This means that
the reader must possess some basic understanding of these concepts to fully
appreciate parts of the technical aspects of the report.

Organization and Prerequisites of the Material

The report is divided into a number of parts each consisting of a series of chapters
relating to the same topic. Parts I-III start with introductory chapters while
parts II-IV end with conclusions. The introductions and conclusions are non-
technical and are intended for any reader who wants to get a quick general idea
of what has been attempted and accomplished during the course of the Master
Thesis.

I. Introduction holds a general presentation of the entire project as well as
a study of technologies of interest to the project, such as security issues
and possible development platforms. The ’Technologies’ chapter assumes
that the reader is familiar with the concept of distributed systems and, to
some degree, the RAISE specification language.

xvii

II. Document System presents a full scale software development of an elec-
tronic document management system. Traditional development phases are
represented, which include domain and requirements engineering, design,
and implementation. To fully understand the development process the
reader must be familiar with domain descriptions and requirement pre-
scriptions, the RAISE specification language, object-oriented design, and
UML.

III. Medical Record System describes a software development of an elec-
tronic medical record system. The development process is based on the
terminology and principles of the electronic document management sys-
tem – it is an instantiation of it. To understand this process the reader
must be familiar with the structuring of domain descriptions and require-
ment prescriptions, the terminology presented in part II, and to a lesser
degree the RAISE specification language.

IV. Summary presents a summary of the entire scope of the Master Thesis as
well as other spin-off projects, such as business plans and articles regarding
the concept.

V. Appendix contains all documents deemed unfit for the main report, in-
cluding complete specifications, selected source code and other detailed
information. To understand the majority of the appendices one must be
familiar with the RAISE specification language.

Allan Lindqvist, Brian Christensen
Kgs. Lyngby, 19th April 2004 Kgs. Lyngby, 19th April 2004

xviii

Acknowledgments

During the process of creating this Master Thesis there has been contact with
several people from different places. The willingness of these people allowed us
to base the thesis on real-life information and take the prototype development
further. Because of this, the authors would like to thank the following persons
and companies.

Healthcare Industry Leader Nordic Hans Erik Henriksen of IBM was the
first to provide a vision of the future healthcare IT systems. He introduced the
IBM view of healthcare, IBM products for the domain and general insight and
opinions on the future to come. Indirectly, this acquaintance combined with
the nature of our Master Thesis and the approval by IBM Vice President Kim
Østrup got us a ticket to IBMs Student Recognition Event in their development
center in Hursley, England.

CEO Jørgen Jørgensen from Rigshospitalet (RH) lead the way for a meeting
with selected people from the Danish hospital RH such as the Managing Director
of the Heart Center Henrik Eriksen and IT Director Bjarne Kohl. This gave us
a contact to a leading user of health IT. As a direct result of this meeting, IT
Architect Kasper Weibel Nielsen-Refs, also from RH, was assigned to us. He
gave us a good understanding of the problems and successes of RHs ’roll-out’ of
IT. He also provided an essential contact to Amager Hospital (AH) due to his
later involvement with this hospital.

At AH IT Project Consultant Sue Mattoon gave an exclusive session in the
use and principles of their note module of an electronic medical record prototype.
Furthermore, IT project consultant Jørgen Mikkelsen gave an exclusive presen-
tation of the more technical aspects of the prototype. Finally M.D. Thomas D.
Clausen provided invaluable insight into the hospital domain, which included
an exclusive interview and access to anonymous genuine paper medical records.

Microsoft’s PR Manager Sara Helweg-Larsen provided essential contacts
with regards to hardware. She connected us with Hewlett Packard’s PR Man-
ager Henrik Kirkeskov who facilitated a loan of a state-of-the-art HP Tablet PC
through out the duration of the project. Furthermore, she put us in contact
with Product Manager Windows & Windows-Mobile Nis Bank Lorenzen, also
from Microsoft, who gave us an introduction to the world of tablet PCs. He
approved the loan of yet another HP Tablet PC in his possession.

Associate Professor Robin Sharp from The Technical University of Denmark
has been helpful with regards to the security elements employed. Hospital staff
members Camilla Christensen, Merete Lelund, Mette Andersen and M.D. Nina
Keldsen have given fundamental contributions to the development of the hos-
pital domain. Finally, Rikke Bahr Stidsen and Rikke Hartung have aided with
proof-reading.

xix

Part I

INTRODUCTION

1

Chapter 1

Generally

Large scale computer systems become increasingly more integrated into our
everyday lives. It is primarily at work the systems appear but, considering
the current pace of development of computer technology, it is not unlikely that
software systems will eventually serve in every aspect of our daily routines. As
the systems increase in complexity so do the requirements from the customers
to the developers – implicitly leading to an increase in software development
size and complexity.

The two parties involved in a software project can be simplified to developers
and customers, each experts in what they do. The developers are experts in
technologies and programming and can combine these two notions to produce
functional computer systems. The customers are implicitly experts in their field
of work – they are domain specialists.

If there are only skilled people on both sides – developers vs. customers –
why do some of the development projects result in systems that do not live up
to the expectations of the customers?

The problem lies in the ’interfacing’ between the two sides, they cannot
communicate properly and even worse they misunderstand each other – they
do not speak the same language. This ultimately results in ambiguous and
imprecise requirement specifications, which lead to system functionality differing
from what was intended and needed. As we see it, there are a number of issues
that contribute to this customer/developer gap, the main thing being the parties
confronting each other with terms and concepts which are unfamiliar to the
other:

1. Creating a computer system calls for certain computer oriented aspects,
such as security and data distribution that must be dealt with. Although
the customer cannot be expected to understand these issues, decisions on
how to address them must necessarily be integrated in the requirements
specification and consequently in the dialog between the customer and
developer.

2. If the developer does not have sufficient insight in the application do-
main and the terms associated with it he might not fully understand the
requirements and business processes being prescribed by the customer.

3

4 CHAPTER 1. GENERALLY

3. To structure the requirements and make them ready for design and im-
plementation, a specification language, using a graphical or mathematical
notation, is applied which is too abstract and technical for the customer
to fully comprehend.

Naturally, it is desirable to somehow reduce the gap between customer and
developer and thereby reduce the cost and increase the quality of the produced
software systems. In the software development industry several measures are
being taken in an attempt to minimize the language barrier:

Customer becomes developer Some software systems can be customized
using intuitive graphical user interfaces and simple scripting languages.
This makes it possible for the customer to tailor the system to fit his spe-
cific needs essentially making him a developer of the system without losing
his domain expertise. This principle is a trade-off between making the sys-
tems flexible versus enabling them for easy customer modification. As the
flexibility of a system increases so does the complexity of customization,
eventually making it too difficult for the customer to manage on his own.

Developer becomes customer This is achieved through extensive domain
analysis before requirements specification commences. It is the responsi-
bility of the developer to acquire an extensive knowledge of the application
domain by spending a considerable amount of time on domain modelling
through interviews and ethnography. The domain development will, if
executed properly, produce a terminology and a narrative that both the
customers and the developers can understand and relate to during the
discussion of requirements. For the developers the domain analysis might
lead to a formalized model that can be used for further system design and
reference when in doubt.

Combination This approach introduces a third party in the software devel-
opment process. A system framework is delivered which supports the
fundamentals of a general domain, such as ERP or content management.
The framework contains the building blocks for piecing together a specific
instantiation of the domain but it is the responsibility of the third party –
solution centers or specially trained customers – to find the right constel-
lation of building blocks which match the customer needs. This concept is
used by Microsoft Business Solutions, SAP, and many others. It allows for
very flexible standardized frameworks for third party developers to cus-
tomize into domain specific solutions through dialog with the customer.
The third party developers can be considered part framework developer
experts, part domain specialists, as they continuously gain knowledge of
specialized domains within the general domain, implicitly minimizing the
language barrier – they speak the language of both developer and cus-
tomer.

With these general observations of software development in mind and the ambi-
tion to reduce the developer/customer gap as much as possible, we have decided
to focus on the domain of document management. Developing electronic doc-
ument management systems (EDMS) is, in our opinion, an interesting area
that will command extreme attention in the near future as most administration
tends to move from paper to electronic documents. At the moment there are

1.1. THESIS 5

plans to fully digitize several areas of public administration including all Danish
hospitals.

The market already encompasses many manufacturers of turn-key software
solutions following the principle of ’Developer becomes customer’ as well as
several off-the-shelf products geared towards the ’Customer becomes developer’
principle. We intend to bridge these principles using the ’Combination’ approach
by developing a document oriented framework, capable of honoring all basic
requirements associated with document management. We will, in particular,
focus on the process of moving from a paper oriented working environment to
a digitized one.

Minimizing the language barrier between customer and developer will be at-
tempted by letting the EDMS framework ’speak’ the language of the customer
without limiting the developer in utilizing the benefits of digitalization. We will
try to accomplish this by analyzing and modelling the actual world domain of
paper document management and projecting this model and the associated ter-
minology to the digital domain. The mechanisms of computer oriented aspects,
such as cryptography, will be hidden beneath the terminology and presented as
a term or concept recognizable in the paper document domain.

The main assumption is that all fundamentals of paper document manage-
ment have a digital equivalent and vice versa. In the spirit of Occam’s Razor,
sticking to these fundamentals should result in a limited number of domain ori-
ented entities, which can be used by the customer and developer as a common
basis when discussing what the system is supposed to do.

The usability of the proposed framework will be evaluated by instantiating
the framework as an electronic medical record system in the Danish hospital
domain. The decision to focus on hospitals is based on the preliminary problem
formulation found in appendix A page 119 which has evolved and matured into
the more fundamental problem of document management in general. A hospital
is a relevant domain to study as it has a long history centered around paper
document management and because a nationwide digitalization of the domain is
underway. Special emphasis will be placed on how to ensure a smooth transition
from paper to the world of computers. We will attempt to minimize frustrations
in the transition phase by initially imitating existing business processes of the
hospital domain – letting business process re-engineering be a step which can
be performed later by reconfiguring the EDMS framework.

1.1 Thesis

The proposed strategy for developing the EDMS framework leads to the main
thesis,

Adopting the terminology and business processes of the paper doc-
ument management domain results in an EDMS development plat-
form, which minimizes the language barrier between the domain spe-
cialists and the developers,

which has evolved from the original problem formulation (appendix A page
119) focusing only on the hospital domain. To complete a study of the thesis
several aspects must be examined, and they can be summed up in the following
conjectural points:

6 CHAPTER 1. GENERALLY

1. It is possible to create a model of the paper document management do-
main.

2. It is possible to computerize and extend the model where the digital equiv-
alences are identified and used.

3. It is possible to design and create a distributed document system based
on the computerized model by combining it with current technologies.

4. It is possible to digitize any specific document domain by tailoring the
distributed document system.

5. Using the distributed document system it is feasible and sometimes prefer-
able to initially adopt existing business processes surrounding documents
when digitizing a domain.

6. A methodological formal approach results in an effective software devel-
opment process.

Points 1-3 and some of point 4 will be examined during part II of the report
when the EDMS platform is being designed and implemented. Points 4-5 will be
examined in detail during part III where we will attempt to instantiate a sub-
module of an electronic medical record system on top of the EDMS development
platform. Point 6 refers to the methods used whenever a domain analysis and
requirements specification is developed and is, as such, not an integral part of
the main thesis, but rather an interesting observation which can be made in
parallel.

1.2 Preparations and Literature

Before commencing the practical work of designing and implementing the EDMS
development platform and the electronic medical records system on top of it,
some initial research have been carried out to put things into perspective.

In the context of document management we have considered the history
of documents and document management up until digitalization began. We
have conducted several interviews with software companies, such as IBM and
Microsoft, and we have have examined a few of the current EDMS products,
including the market leader Documentum [2] and one of the minor but very pop-
ular ones, Concurrent Versions System [5]. This study has provided an insight
in the functionality currently provided by such systems as well as the terminol-
ogy they introduce. Furthermore, we have carried out preliminary studies of the
current technologies and standards used for storing and exchanging electronic
documents, such as ODA (Open Document Architecture) [1, 26, 18, 9, 10] and
XML [28, 7]. An overview of this study is presented as an introduction to part
II of the report which deals with the EDMS development.

In the context of distributed systems we have examined the principles of
distributed programming [4, 30] and the technologies associated with the ar-
chitecture of such systems. This includes database storage [14], security and
communication [33, 32, 3], operating systems and GUI design [27, 21]. The
study of these technologies is presented as a technology walk-through in chap-
ter 2 page 9.

1.3. DELIMITATION 7

In the context of electronic medical records we have conducted several in-
terviews with both doctors, nurses, and IT staff members at hospitals who
represent the customers of such systems. We have also had sessions with em-
ployees at IBM who represent the developers of such systems. We have studied
the current business processes of hospitals [17, 37, 29, 11, 35] and the plans
for future business processes after digitalization [36, 13, 34, 25, 12, 22, 19]. An
overview of this study is presented as an introduction to part III of the report
which deals with the EMR development.

1.3 Delimitation

This being a project of limited time and resources we have been forced to limit
the scope of the topics discussed. Some aspects are discarded due to their tedious
nature, others because they were deemed less vital or too time consuming. This
has resulted in the following restrictions:

• The paper document management domain analysis is based solely on the
authors’ experiences with documents.

• The presentation of the object-oriented design of the document system is
limited to showing overall principles and considerations.

• Document distribution between EDMSs is designed but not yet imple-
mented.

• The domain analysis of medical records, including business processes and
document types, focuses on one specific area within the domain.

• The development of the medical record note module prototype is simplified
to support only this specific area of the domain.

• The requirements engineering, design and implementation of a G-EPJ
compatible client is discussed but not realized.

• The main focus of the prototyping is on proof-of-concept not optimization.

1.4 Contributions

Based on our findings and the work we have carried out we believe that this
Master Thesis contributes both technologically and scientifically. Technologi-
cally by

• methodologically developing an EDMS framework prototype that incor-
porates a series of current technologies within the field of databases, XML,
and cryptography (part II, chapters 6-9),

• showing an instantiation of the framework by creating a medical record
note system, implicitly suggesting how to apply the technologies using
tablet PCs and smart cards (part III, chapters 12-14),

• developing a mapping layer that on top of a relational database imitates
an XML enabled database (part II, chapter 8),

8 CHAPTER 1. GENERALLY

• developing a common interface for establishing secure network transac-
tions (part II, chapter 6).

Scientifically by

• defining a new concept of documents (part II, chapter 4),

• modelling the domain of paper documents (part II, chapter 4),

• suggesting a new design approach for future electronic document manage-
ment systems (part II, chapter 9),

• showing an example of the use of a full scale methodological software
development (part II, chapters 4-8),

• showing the relationship between specification, design and implementation
(appendix I page 192).

1.5 A Note Before Reading

The EDMS framework development documented in this report uses the princi-
ples and terminology of ’The SE Book’ [6], the RAISE specification language
(RSL) [16], and to a lesser extend the principles of [31]. It begins with a pre-
sentation of a domain model that initially provides an overview, i.e. a modified
truth, of the complete domain. This overview is then gradually extended re-
sulting in the complete model. This means that some elements of the domain
analysis might seem incomplete or unmotivated at first, but they will make
sense later once the entire model has been established. We believe this ap-
proach allows for a more reader friendly introduction to the domain, which, in
our opinion, is the most essential part of the Master Thesis.

We knowingly use anthropomorphism – attributing human personality to
anything impersonal or irrational, say a computer program – though this, in its
strict sense, is incorrect: A program does nothing. But it may prescribe that
certain actions are affected by machine – when a machine interprets (”executes”)
the program text (Glossary anthropomorphism / anthropomorphic from [6]).

Instead of compensating for the fact that developers, customers, etc., may be
be of either male or female gender we have decided, for the sake of consistency,
to refer to persons as always being of the male gender.

Chapter 2

Technologies

At some point when designing and implementing any distributed system it has
to be decided which technologies it is to be based on. All distributed systems
share a common base of fundamental requirements in order for them to function:

1. Hardware Platform – Hardware platforms for both the client and server
application are required.

2. Operating System and Language – An operating system running on
this hardware is needed as well as a programming language for implement-
ing client and server applications for the operating system.

3. Storage – A database is required for storing server information, and a
data format is required for encapsulating information when transporting
information outside the database.

4. Security is required for making the distributed system trusted and safe.

Within these four areas, several technologies can be used to realize the require-
ments of the distributed system. Which specific technology to choose depends
on the given situation. This chapter introduces the four aspects and evaluates
different technologies that might be useful once the prototyping of the document
system commences.

2.1 Hardware Platform

A typical distributed system consists of one or more server applications residing
on stationary hardware platforms combined with one or more client applica-
tions running on stationary- or mobile hardware platforms. The communica-
tion between servers and client calls for some kind of network, wired or wireless,
depending on client types.

2.1.1 Stationary Platform

There are many manufacturers of desktop computers and servers. In general,
they all provide the same functionality so the choice of technology boils down
to selecting a manufacturer.

9

10 CHAPTER 2. TECHNOLOGIES

2.1.2 Mobile Platform

If mobile clients are required there are several technologies which can be used.
They all share the common requirement that wireless networking should be
established as wired networking would limit the mobility of the clients severely.
The most commonly used protocols for wireless networking are:

• Bluetooth, which is a wireless communication protocol for short dis-
tances. It was originally developed for electronic devices to be used for
data exchange when held next to each other. The standard range for
wireless Bluetooth communication is 10 meters.

• Wifi-compliant wireless networking also known as the 802.11b standard.
Today this is the most commonly used wireless networking technology. It
uses a combination of access points to create a wireless network grid of
any preferable size, that clients with built in antennas can access. The
standard range for Wifi-compliant wireless clients is typically in the range
of 35-100 meters.

Mobile hardware is constituted roughly by three different technologies which all
offer distinct advantages and disadvantages:

• Laptops – This is essentially a complete personal computer made small
enough to carry around relatively easy. It has a built-in monitor, which
can be of a reasonable size, as well as a keyboard and usually some sort
of touch pad or trackball to emulate mouse movement. It is physically
the largest of the three, but also the easiest to interact with because of its
keyboard.

• Tablet PCs – This is also a complete personal computer. It consists of
a monitor the size of a pad of paper and possibly a docking station with
keyboard. The Tablet PC itself has no keyboard for entering information
– instead a pen is used on the touch screen monitor. This pen emulates
mouse movement and a picture of a keyboard can be shown on the screen
and typed on by clicking the pen on the picture. Handwriting can, to
some degree, be recognized automatically as well. The Tablet PC excels
in having a large enough touch sensitive screen to show an entire client
application while still being more portable than the laptop. It suffers, how-
ever, from the lack of keyboard which makes human-machine interaction
less efficient, if large amounts of data has to be entered.

• PDAs – This is the smallest of the mobile clients. It consists of a small
touch screen and pen similar to the Tablet PC, and can only show concen-
trated information. It cannot be considered a complete personal computer
like the other two in terms of speed and hardware interfaces, but it is cer-
tainly the most portable as it fits in a jacket’s pocket.

2.2. OPERATING SYSTEM AND LANGUAGE 11

2.2 Operating System and Language

An operating system (OS) is required for running the client and server software
applications on the hardware platforms. The OS does not necessarily have to be
identical for the two – there are some OSs which server software might benefit
from while others are more suited for clients. Selecting the appropriate OS is
at the present time more a matter of ’religion’ rather than functionality. The
discussion of which is the ’better’ OS has been an ongoing debate for years and
the following summary is to be considered the subjective opinion of the authors.
Furthermore, the focus is on the most obvious choices of OSs at the moment.

• Microsoft Windows – Presently the most widely used OS for personal
computers. There are compatible versions which are suited for server and
client applications, respectively. Furthermore, compatible special versions
of Windows are available on all three types of mobile hardware platforms.

• Linux – The dominating ’open source’ OS, and as of this writing, it
is becoming increasingly popular due the fact that it is free to use both
privately and commercially. It has proven stable and well-suited for server
applications. It is not as user friendly as Microsoft Windows, which is the
main reason why Windows is still the preferred client OS.

• Web browser – While not exactly an OS, browsers are increasingly be-
coming the target platform for client software applications. Either the
client applications are embedded within the browser using virtual ma-
chine technology, such as Sun Java applets, or the clients are based on the
language of web browsers, HTML. The advantage is that most of todays
users are familiar with the Internet, and are therefore comfortable working
with web pages. Furthermore, it is a relatively future proof platform since
it remains basically the same.

Once an OS has been selected a programming language has to be utilized to im-
plement the client and server software applications. Today there is a tendency
to use not only a programming language, but an entire development frame-
work as a basis for new applications. Alternatives to the frameworks are basic
programming language, such as C++ or Sun Java. These languages provide by
themselves enough functionality and libraries to create server applications and
graphical user interfaces for clients, but require a lot more standard program-
ming such as network communication and database abstraction layers.

At the moment, two application frameworks, .NET and J2EE, are becoming
increasingly popular when developing distributed systems. The frameworks will
not be addressed any further nor compared. It should be emphasized, though,
that they provide a basis for developing applications targeted at web browsers
for the clients. All other aspects of distributed systems, such as security and
database access are hidden within the core of the framework. These frameworks
are, in other words, well suited when one wants to focus exclusively on the
business logic and client application of the distributed system.

12 CHAPTER 2. TECHNOLOGIES

2.3 Storage

The heart of the system is the database in which all information is stored. Scala-
bility is essential as is the ability to perform data mining efficiently. Choosing the
correct type of database boils down to the requirements of the internal database
model. There are several solutions each suited for different applications.

2.3.1 Data Encapsulation Using XML

No matter which type of database is used for storage in the distributed system
some form of data encapsulation is required when transporting information out-
side the database. Presently, it is considered best practice to encapsulate data
using XML technology [7, 28] when transporting it between systems and clients
and servers. Extensible Markup Language (XML) is a specialization of Standard
Generalized Markup Language (SGML) [8], and has become the technology of
choice these days for describing data.

Quoting the W3 consortium ”. . . the XML syntax uses matching start and
end tags, such as <name> and </name>, to mark up information. A piece
of information marked by the presence of tags is called an element; elements
may be further enriched by attaching name-value pairs called attributes. Its
simple syntax is easy to process by machine, and has the attraction of remaining
understandable to humans.”

It is, of course, an alternative to design a unique data encapsulation format
to be used exclusively by the distributed system. This, however, could introduce
compatibility problems when interfacing to other systems as they would have
to accommodate this non-standard type of data representation.

2.3.2 Relational Database

The relational database model (e.g. SQL-databases [14]) is the most widely used
database technology. It has shown itself to be scalable and fast – satisfying the
needs of the majority of developers in need of database storage. The immediate
disadvantage is that the database has to be predefined, i.e. the developer has to
know the structures of the data provided to the database in advance. A model
of the fundamentals of the relational model is shown in the following:

1
������ relationalDB =

2
�����

3 ��	�

4 FieldName, RowName, TableName,

5 Data, Status, database_query,

6 Command = database_query

7

8 ��	�

9 Row = FieldName→m Data,

10 Table = RowName→m Row,

11 DB = TableName→m Table

12

13
������

14 db : DB := [...tables...] /* Preinitialized database tables */

15

16
����

17 put_data : Data × Command→ ����� db Status,

18 get_data : Command→ ���� db Data × Status

19

���

2.3. STORAGE 13

2.3.3 XML Enabled Database

XML enabled databases are essentially a relational database with an added
XML mapping layer used for interfacing to the database. XML documents may
be inserted into the database through the mapping layer which separates the
XML documents into a structure fitting the tables in the underlying relational
database. This mapping from XML document to database fields may result in
loss of information depending on the type of mapping, e.g. if the mapping of
the data is not complete the surplus of unmapped data is lost. The outcome
is that data extraction through the mapping layer, which results in an XML
document, might not match the exact XML document originally inserted.

Database manipulation can be carried out using XML queries, such as XPath,
and also using a relational database query language, such as SQL, thereby by-
passing the XML mapping layer and accessing the relational database directly.
A model of the XML enabled database is illustrated in the following:

1
������ XMLenabledDB =

2
�����

3 ��	�

4 FieldName, RowName, TableName,

5 Data,XML_doc, Status,

6 Command == XML_query_language | database_query

7

8 ��	�

9 Row = FieldName→m Data,

10 Table = RowName→m Row,

11 DB = TableName→m Table

12

13
������

14 db : DB := [...tables...] /* Preinitialized database tables */

15

16
����

17 put_data : XML_doc × Command→ ����� db Status,

18 put_data : Data × Command→ ����� db Status,

19

20 get_data : Command→ ���� db XML_doc × Status,

21 get_data : Command→ ���� db Data × Status

22

���

2.3.4 XML Native Database

The XML native database is the pure XML database and does not depend on
an underlying relational model. Its fundamental unit is an XML document,
like the fundamental unit of the relational database is a row in a table. The
XML native database preserves the structure of XML documents inserted into
it and returns them exactly as they were inserted. In contrast to the relational
database, nothing needs to be known about the structure of an XML document
before it is inserted. Database modification and extraction is performed using
an XML query language, such as XPath. The basic functionality of the XML
native database is shown in the following:

1
������ XMLnativeDB =

2
�����

3 ��	�

4 Name,

5 XML_doc, Status,

6 XML_query_language,

14 CHAPTER 2. TECHNOLOGIES

7 Command = XML_query_language

8

9 ��	�

10 DB = Name→m XML_doc-set

11

12
������

13 db : DB

14

15
����

16 put_data : XML_doc × Command→ ����� db Status,

17 get_data : Command→ ���� db XML_doc × Status

18

���

2.4 Security

As described by [3] there are some things to consider in order to make a system
secure:

1. Hardware and software on the specific computer should be capable of
preserving the secrecy and integrity of data. This includes data exchanges
between two tiers in the system.

2. It is essential to be able to determine who is issuing a command, i.e.
authentication is vital in order to prevent unauthorized execution of com-
mands.

3. It is important to be able to determine whether the authenticated person
has permission in the system to perform the requested command.

These considerations require different security measures, which will be discussed
in the following.

2.4.1 Encryption Principles and Protocols

Authentication and confidentiality across networks is realized through different
encryption schemes ensuring secure transactions without introducing too much
overhead. A protocol for data exchange utilizing these schemes ensures that
neither authentication nor confidentiality is compromised.

Asymmetric

The public/private key principle (asymmetric encryption) facilitates confiden-
tiality and authentication. A detailed model of the asymmetric encryption prin-
ciple can be found in appendix B.1 page 120 – the fundamentals are outlined in
the following.

A key pair consists of a private and public key. One of these cannot be de-
rived from the other. In other words, there exists no function which can ’hack’
and deduce the counterpart of a given key:

1
�����

2 ∀ (publickey,privatekey):KeyPair •

3 ∼(∃ f:HackKey • f(publickey) = privatekey ∨ f(privatekey) = publickey),

2.4. SECURITY 15

If two key pairs have identical public keys or identical private keys then the key
pairs are the identical:

1
�����

2 ∀ (publickey1,privatekey1):KeyPair,

3 (publickey2,privatekey2):KeyPair •

4 publickey1 = publickey2⇒ privatekey1 = privatekey2 ∧
5 privatekey1 = privatekey2⇒ publickey1 = publickey2,

There exists no functions which can decrypt public key encrypted data without
using the corresponding private key:

1
�����

2 ∀ (publickey,privatekey):KeyPair, data:Data •

3 ∼(∃ f:HackData • f(Encrypt(data,publickey)) = data),

The encrypt function provides both encryption and decryption. All data en-
crypted with a public key can only be decrypted with the corresponding private
key:

1
�����

2 ∀ (publickey,privatekey):KeyPair, data:Data •

3 Encrypt(Encrypt(data,publickey),privatekey) = data,

It is possible to sign data with a private key – the public key, being inverse, can
decrypt the sign and implicitly verify sender.

1
�����

2 ∀ (publickey,privatekey):KeyPair, data:Data •

3 VerifySign(Sign(data,privatekey),publickey)

Symmetric

The conventional or symmetric encryption algorithm excels by being much faster
than asymmetric encryption, as it is computationally much simpler to perform.
This explains the often seen combination of the two, utilizing the strengths in
each system – initially authentication and encryption is done asymmetrically,
and once trust is achieved between the tiers the much faster symmetric encryp-
tion can be used instead. A model of the symmetric encryption principle can be
found in appendix B.2 page 121 – the fundamentals are outlined in the following.

As suggested by the name, only one key is used in the symmetric encryption
scheme. The encrypt and decrypt functions are different from each other, but
they rely on the same secret key to encrypt and decrypt data:

1
�����

2 ∀ secretkey:Key, data:Data •

3 Decrypt(Encrypt(data,secretkey),secretkey) = data,

As with asymmetric encryption there are no functions which do not incorporate
the secret key that can decrypt the encrypted data:

1
�����

2 ∀ secretkey:Key, data:Data •

3 ∼ (∃ f:HackData • f(Encrypt(data,secretkey)) = data)

16 CHAPTER 2. TECHNOLOGIES

Protocol for Secure Communication

Based on existing protocols described in [32] and [30] and with the two encryp-
tion schemes in mind, a protocol for establishing a secure connection can be de-
rived. The full protocol is available in appendix F.1 page 167, and it illustrates
the basic principles which take place underneath many security functionalities
used in modern distributed systems.

2.4.2 Digital Certificates

Current security technologies based on the encryption principles mentioned ear-
lier make use of standardized digitally signed key pair containers commonly
referred to as ’digital certificates’. These digital certificates are signed and is-
sued by a centralized trusted key distribution center (KDC), such as VeriSign.
They can also be revoked by the KDCs if this is deemed necessary. Most mod-
ern operating systems will by default trust certain commonly used KDCs and
all certificates issued by them.

A digital certificate contains both a public and private key. The public
key can be forwarded to other parties inside a certificate container signed by
the KDC. This means that you can broadcast your public key to everyone and
because the public key will be signed by the generally trusted KDC they can
verify that the public key is indeed yours.

Once other parties possess your public key they can use it to encrypt and
send messages to you, which you will be the only one capable of decrypting
(using your private key in the certificate). In the same way, you are able to sign
any message with your private key, and other parties will be able to verify the
signature using your public key.

A smart card (credit card sized memory store) could serve as a container
for the digital certificate. This utilization could ease the computer interaction
regarding system login – using a smart card reader connected to the computer
and a entering a memorized password the system could authenticate the user
and establish a secure connection using the digital certificate.

2.4.3 Security Roles

The roles required in a distributed system vary greatly and can therefore not
be determined before instantiation of an actual system. The essential thing
to consider, is the possibility of being able to employ security roles in a fine-
grained manner in order to accommodate as many diverse roles as possible. The
principle of the digital certificates is able to honor the requirements dictated by
[3] with regards to group security within a system. As an alternative, one could
consider building the authorization functionality into the core system allowing
for perhaps more flexible roles.

Part II

DOCUMENT SYSTEM

17

Chapter 3

Introduction

This part presents requirements, design, and implementation strategies of an
abstract electronic document management system (EDMS). It takes the reader
through a detailed software development with all its facets ending up with a
prototype of a domain oriented EDMS.

3.1 A Brief History of Document Management

The very first document management technologies were probably the paper clip,
the staple, the folder, and the filing cabinet. Before the PC revolution of the
early 1980’s these were the most commonly used technologies when grouping,
categorizing, and archiving paper documents. Consequently, most document
oriented business processes were centered around the functionality provided by
these.

When the PCs were introduced in the 1980’s along came the possibility of
managing documents electronically. Initially, in a decentralized way by author-
ing documents on the individual PCs, storing them on floppy discs, and archiv-
ing the discs along with paper documents in filing cabinets. The introduction
of LAN shifted the storage of documents towards centralized file servers and in
step with the price drop of mass storage the limit of the number of documents
that could be stored vanished.

These new technologies were a significant breakthrough for document man-
agement – people soon learned to store their information on the server. However,
the compilation of information on the centralized servers remained unchecked
resulting in an ever increasing bulk of information. This development eventu-
ally caused problems, as there was no method for controlling the documents
once they were created – after a while it became impossible to tell what was
important and what was not. The PC revolution had decreased the document
production time, but in the process introduced new problems – the amount of
unchecked and unstructured data made reuse of information very difficult due
to the lack of efficient methods for finding specific documents.

As networking technology evolved the Internet emerged along with Email
technology. This began to change the way people worked with documents.
The concept of information sharing was broadened and informal communication
using Emails became increasingly popular. While this was another improvement

19

20 CHAPTER 3. INTRODUCTION

in the ability to have faster information exchange it also resulted in a step further
into document chaos. It became obvious that document systems capable of
efficiently structuring and retrieving information were needed.

3.2 EDMS Today

The problems related to information overload have spawned several EDMSs.
They are often tailored to a specific customer segment, but not to the individ-
ual customer – the customer adapts, not the system. The common denominator
of the systems is their attempt to manage and structure documents as well as
enabling the users to quickly retrieve information hidden within these docu-
ments.

Concurrent Versions System [5] can be considered one of the early EDMSs.
Though being old and limited it holds the basic notions present in practically
every EDMS today – the key feature being versioning of a single document.
This enables the user to track the changes (versions) of a given document,
always having every version available by the touch of a button. This notion
has proven vital in large EDMSs, where a given document might be altered by
several independent persons.

The format of the digitally stored documents has been, and probably al-
ways will be, a major issue. Structured information in an EDMS has to be of
some predefined format, which is of minor significance until it has to be ex-
changed with a third party ’outside’ the EDMS. Document exchange between
two parties requires that the receiver is able to access the information and view
it as intended. One of the first attempts to overcome this hurdle was ODA
[1, 26, 18, 9, 10]. It is an ISO standard that attempts to define every document
requirement possible with regards to structure and layout, whereby a common
exchangeable format is obtained. It is, however, not very well-supported to-
day. Instead XML [7, 28], descendant from SGML [8], attempts to fulfill the
demanding role of uniting information exchange under one banner. Though the
principles behind the technology date back several decades the technology is
considered fairly new and use of it is not fully standardized with regards to the
current EDMSs. The exchange problem is instead partly ’solved’ by using ap-
plication specific document formats such as Word, Excel, or Adobe PDF. This
guarantees that information is shown as intended and that it is exchangeable
provided that the correct software applications are present in both ends. Meta-
data containing information about the version, author, etc. usually surrounds
this exchangeable format when stored in the EDMS.

The EDMSs today have evolved from simple versioning systems to complex
yet flexible contents management systems. The systems incorporate project
management and work flow support wrapped in streamlined user-friendly graph-
ical user interfaces. The market leader Documentum [2] goes further in an
attempt to close the gap between customer and developer by introducing a
user-friendly interface that is supposed to enable the customer to customize the
system on his own. Leaving the system tailoring to the customers is a fast
growing tendency but it requires extremely intuitive programs and experienced
customers. It also limits the degree of possible customization since too many
options would complicate the process.

3.3. OUR APPROACH 21

3.3 Our Approach

We intend to develop an EDMS prototype from scratch that provides the ba-
sic document management features, such as versioning and structuring. The
EDMS will be implemented on top of a generic distributed system architecture
providing security, storage, and information distribution.

Business processes and contents of documents will be kept abstract hopefully
resulting in a generic EDMS development platform, which can be tailored to a
specific document domain in a subsequent development process. In other words,
the platform will in itself not be a functioning document management system
but a common basis for specific document systems to be built on.

The motivation for our approach is the ambition to minimize the language
barrier between developers and customers. This will be attempted by inte-
grating an intuitive terminology into the platform, which is to be used by the
customer when expressing specific domain requirements and the developer when
implementing the requirements on top of the EDMS platform. As previously
indicated, paper document oriented business processes were and still are cen-
tered around the physical document management technologies available before
the PC revolution. In our opinion, the terminology associated with these tech-
nologies (such as grouping documents in folders) is still the most intuitive way
of expressing document management.

Based on this assumption we intend to analyze and model the domain of pa-
per oriented document management. The terminology, structure, and business
processes of this model will be transferred to the digital domain by finding the
digital equivalences of the different elements in the model. An example of such
an equivalence is that mailing documents in sealed envelopes corresponds to
encrypted information transactions in the digital domain. Some elements may
be extended to utilize the power of the digital domain.
Using this approach we expect to find that:

• any paper oriented document operation has a digital equivalent,

• by adopting the unaltered paper document domain a terminology and
structure familiar to non-developers will be integrated in the EDMS,

• by keeping document contents and business processes abstract an EDMS
platform is designed, which can be tailored to a specific document oriented
domain.

Chapter 4

Domain Development

General observations of the actual world of paper document management will
be presented initially and will serve as an introduction to the establishment of
a domain model – both as a systematic narrative and as a formal specification.
This work uses [20], a draft model derived in a former course, which is available
in appendix C.1 page 122, as an inspiration. Section 4.12 page 32 holds a glos-
sary which describes specific terms and concepts introduced during the domain
development.

4.1 Synopsis

A model of the domain of generalized paper document management describing
the entities, structures, and behaviors of actual world paper document manage-
ment is created. This includes defining terms like places with locations, persons,
directories, documents, and dossiers as well as manipulation and structuring of
documents. The notion ’domain’ will refer to the domain of generalized paper
document management.

A complete formal specification of the domain has been created and can be
found in appendix D page 128. This chapter provides a textual description of
the general observations and ideas which led to the model as well as a tran-
sition towards the specification through a systematic narrative. For complete
understanding of the entire model and the mechanisms behind it the reader is
encouraged to study the full specification in the appendix.

4.2 Stakeholders

Stakeholders are generalized to

Global Administration is the administration of the domain. It keeps track
of and uniquely tags all places and individuals in the domain.

Local Administration is the administration of a particular place. It takes
care of infrastructure maintenance in the place, such as directory struc-
tures, location management and document access privileges.

22

4.3. INTERVIEWS 23

Person is an individual capable of manipulating documents and dossiers –
reading, shredding, archiving, editing, etc.

Third Party is an individual who causes a person to create or manipulate a
document or is somehow affected by the fact that documents are manip-
ulated. He does not interact directly with the documents himself.

4.3 Interviews

The authors of this Master Thesis have classified themselves as representatives
of all of the domain stakeholders, and the exhaustive phase of stakeholder inter-
views when determining domain description units has therefore been conducted
internally. Consequently, the following model is based on the domain as seen
by the authors.

4.4 Intrinsics

The domain consists of places (company buildings or houses – a physical well-
defined area within the domain) in which there are:

• persons (employees, residents, thieves, unauthorized personnel etc.)

• physical locations (meeting rooms, desks, drawers, bath rooms etc.)

• a single structured directory (a filing cabinet, an archive etc.). It is possible
to have a directory physically distributed within a place, e.g. cabinets
on different floors/in different departments, however, these cabinets are
considered part of a single large directory of the place.

The domain holds uniquely identified paper documents. Printed on documents
is an inseparable combination of layout and information providing an overall
meaning. Throughout this domain analysis this will be referred to as document
contents.

In addition to documents, the domain also holds uniquely identified dossiers
for grouping documents and other dossiers together. Stapling documents to-
gether or placing them in a folder is abstracted to placing documents in dossiers.
Dossiers within dossiers represents sub-groupings within a larger grouping, e.g.
guide cards within a folder.

A document or dossier can be placed in a directory or it can be left in a
location at a given place. From there it can be picked up and managed by a
person present. If the document is confidential it can be placed inside a locked
directory drawer (an index in the directory) locking it with one or several keys.
It can then only be unlocked and retrieved by persons who have copies of these
particular keys.

Persons are the ones managing documents and dossiers and they can perform
a number of commands on those in their possession. These commands include,
among others, creating, copying, modifying, shredding, and signing documents.
One rule is, that documents and dossiers can only be in the possession of one
person, location, or directory in the domain at a time. Therefore, commands
(manipulations) cannot be performed on a document or dossier at the same time

24 CHAPTER 4. DOMAIN DEVELOPMENT

by two different people. When two people are to work on the same document
either a copy is made for one or both of them or they place the document in a
location, such as a desk, and take turns in acquiring and reading/manipulating
it. A summary formalization of the domain entities and their structures is
presented in the following (the domain entity structure is classified as ’system’).

1 ��	�

2 Document, DocumentID,

3 Dossier, DossierID,

4 Keys,

5 Persons,

6 Locations,

7 Directory,

8 Index,

9 DirContents

10

11 ��	�

12 Directory == mk_dir(DirContents × (Index→m Directory)),

13

14 Place = Directory × Persons × Locations × Keys,

15 Places = Place-set,

16

17 M: Command→ System→ System,

18

19 System ′ = Places × DocumentID-set × DossierID-set,

20 System = {| w:System ′ • wf_system(w) |}

21

22
����

23 obs_Documents : Person→ Document-set,

24 obs_Documents : Dossier→ Document-set,

25 obs_Documents : Location→ Document-set,

26 obs_Documents : DirContents→ Document-set,

27 obs_Dossiers : Person→ Dossier-set,

28 obs_Dossiers : Dossier→ Dossier-set,

29 obs_Dossiers : Location→ Dossier-set,

30 obs_Dossiers : DirContents→ Dossier-set,

31 obs_Keys : DirContents→ Keys

32 obs_Keys : Person→ Keys

4.5 Business Processes

Business processes are conducted by the persons and administrators when they
are manipulating the entities of the domain. The processes are elaborated below:

Global Administration introduces persons into the domain by supplying new-
borns with a unique id, e.g. a social security number. This administration
also allows for the registration, construction and destruction of new places,
i.e. they issue and suspend building permits whereby they introduce to
and remove places from the domain.

1 PersonBorn: System × Place × Person × PersonID→ System,

2 PersonDeceased: System × Person→ System,

3 IssuePlacePermit: System × PlaceID→ System,

4 SuspensePlacePermit: System × PlaceID→ System,

Local Administration is the administration of a single place. They take care
of creating and destroying locations, key distribution to persons and di-

4.5. BUSINESS PROCESSES 25

rectory maintenance (setting up locks, creating and deleting directory in-
dexes).

1 MakeKey: System × Place→ System,

2 DestroyKey: System × Place × Key→ System

3 CopyKey: System × Place × Person × Key→ System

4 RemoveKey: System × Place × Person × Key→ System

5 CreateDirIndex: System × Place × Index∗ → System

6 DeleteDirIndex: System × Place × Index∗ → System

7 BuildLocation: System × Place × Location→ System

8 DestroyLocation: System × Place × Location→ System

Person is the document and dossier manipulator. He possesses documents
and dossiers which he use in order to accomplish his tasks. He can move
between places, but he can only be at one place at a time.

• When a person needs a certain document . . .

– . . . with known whereabouts, he moves to the document and
acquires it after which he possesses it preventing other persons
from accessing and performing manipulation on it.

– . . . with unknown whereabouts he needs to actively search for
it at (plausible) locations and inquire other persons for possible
whereabouts. Still it is not guaranteed that he will find it and if
not it is considered lost to him.

– . . . with directory membership, i.e. it is supposed to be in a
certain index in the directory, he moves to the directory to do
a search in the index. The document is either present or miss-
ing. The latter implies that another person took the document
or that it has been wrongfully archived potentially rendering it
impossible to find.

– . . . from a dossier in his possession, he opens and searches for
the particular document inside the dossier.

• When a person edits a document he ends up with a new document
(a version). This document physically replaces the original docu-
ment and contains the information of the original combined with the
changes he just made. The original seizes to exist.

• Archiving documents in a locked directory, requires that the person is
in possession of the correct keys (issued by the local administration)
and then use them to access the directory. He will then need to keep
the keys for later retrieval of the documents.

The variety of manipulations a person is able to perform on the docu-
ments and dossiers are listed in the following. These commands are fully
described in the complete specification of the domain, which can be found
in appendix D page 128.

1 Command = CreateDoc | CreateDos | Copy | Edit | Shred

2 | DisposeOfDos | GetDocFromDos | PutDocInDos

3 | GetDosFromDos | PutDosInDos | GetDocFromDir

4 | PutDocInDir | GetDosFromDir | PutDosInDir

5 | GetDocFromLoc | GetDosFromLoc | PutDocInLoc

6 | PutDosInLoc | SignDocument | ResetMembership

7 | SendDoc | SendDos

26 CHAPTER 4. DOMAIN DEVELOPMENT

4.6 Supporting Technologies

The technologies typically available in a document environment constitute

• A scribbling pad, which is the most common and intuitive way of generat-
ing documents – it is nearly always available, but the documents produced
are often lost, mistakenly thrown away, or difficult to read and understand.

• A combination of computers and printers is the most widely used way of
generating documents in companies. Document products are often tem-
plates with information about author, date and place.

• A typewriter is less commonly used these days, but still a possible way of
producing documents.

• A photocopying machine is a common way of creating a document copy.

• A shredder facilitates a way of destroying documents.

• A waste paper bin is another way of getting rid of, usually, less sensitive
documents and dossiers. A waste paper bin can be considered a location
which is emptied regularly. Once it is emptied the contents of it is lost.

4.7 Management and Organization

The organization layout of the domain can be of either hierarchical or flat struc-
ture. The primary concern in either case is the way a person or administrator
is allowed to manipulate domain entities:

Local administration is the only one allowed to perform the local adminis-
trative actions described in section 4.5.

Persons are able to access a given collection of documents and dossiers depend-
ing on their position within a given company as well as specific company
policy.

Example: In a company the boss is the only person with the author-
ity to sign documents, his secretary creates and edits the documents,
and the intern is only allowed to copy documents for the secretary.
All three of them are persons in the specific place, but each of them
have different roles/restrictions when dealing with documents.

4.8 Rules and Regulations

These rules vary with the type of place. Common denominators are listed.

• Paper documents, being physical entities, can be manipulated in any way
if a given person can access it. It is therefore often required that access
to a given company (place) is restricted (id cards, keys, codes etc.). How-
ever, these security restrictions can be circumvented. Circumvention is
considered intrusion and may be considered disastrous in some places.

4.9. HUMAN BEHAVIOR 27

• In the daily work it may be required that certain documents are confiden-
tial. This could imply that the document in question is locked away and
accessible to only a select few.

• Some documents require proper signatures to obtain validity.

• Obsolete documents are often archived for at least five years before they
are shredded.

• Some places may require a certain degree of registration (e.g. quality man-
agement) whenever a person has somehow handled a specific document.
Registration forms (other documents) should then be filled out with date,
person name, etc. when he has manipulated the document.

All these rules and regulations are supposed to be upheld by the persons and
local administration of the place.

4.9 Human Behavior

Generalizing human behavior certain common patterns can be deducted.

• There are persons with a good sense of document structuring. This group
excels in ordering and maintaining their documents by checking correct
placement as well as utilizing dossiers and indexes for easy access and
overview of the complete document structure. They rarely lose track of a
document.

• There are persons with a poor sense of document structuring. Documents
may be lost by the person because they are left at unknown locations.
Wrongful destruction and directory index misplacement of documents is
also a possibility as well as forgetting to shred sensitive documents.

• There can be unauthorized individuals – thieves, industry spies, terrorists,
fired personnel – present as intruders within the place seeking classified
information or wanting to destroy hard-to-replace documents.

• A person tends to leave documents for a time interval at a given location,
perhaps his desk. During this time the documents are available to all
persons who can physically access his desk. They can view and acquire
the documents even though they might contain sensitive information or
be indispensable. If a document is taken from, say a desk, it is now
potentially lost to the original owner who left it there.

• A person can lose one or more of his keys which might require replacement
of the lock of a directory. This implies that all persons with keys to this
particular lock must acquire new keys.

• It can occur that the documents of two or more dossiers are mistakenly
mixed together. It is not guaranteed that the person responsible is able to
correctly sort the documents into their corresponding dossiers and even if
it is possible it might be a time consuming process.

• Creating documents in handwriting can cause misunderstandings if the
contents is misinterpreted or unreadable by other persons.

28 CHAPTER 4. DOMAIN DEVELOPMENT

• Signature forgery can occur.

• Organization roles/restrictions can in some cases be difficult to enforce,
since possessing a document implicitly enables the owner to perform all
commands on the document even though certain of them may not be
allowed for that person.

4.10 A Systematic Narrative

The following list of statements express the previous descriptive outline in a
systematic and unambiguous way defining the explicit domain model. Figure 4.1
tries to graphically clarify the entity structure described in the intrinsics section.
All references below point to the formalized domain specification in appendix D
page 128 and are of the structure <page>.<line> [− <line>][+ <line>]. Words
that are emphasized can be found in the glossary page 32.

1. The global adm. can (133.23 - 26)

(a) introduce persons to the domain by registering them with an id.

(b) remove persons from the domain by removing their registered id.

(c) introduce places to the domain by registering them with an id.

(d) remove places from the domain by removing their registered id.

2. The local adm. can (133.28 - 35)

(a) make a new key (and corresponding lock).

(b) destroy a key (and corresponding lock).

(c) copy a key from the key repository of the local adm. and hand it over
to a person.

(d) remove a key from a person.

(e) create a directory index.

(f) delete a directory index.

(g) lock a directory index.

(h) register (and build) a location within the place.

(i) unregister (and destroy) a location within the place.

3. A document is an abstract entity which can contain any type of informa-
tion – contents (128.32 + 39).

4. From a document one can observe its: unique identifier, time of creation,
document type, creator, place of origin, signatures, directory membership,
ancestor and contents (128.36 - 44).

5. A document is either of type master, copy or version (128.6).

6. A dossier is a container holding zero or more documents and zero or more
dossiers.

4.10. A SYSTEMATIC NARRATIVE 29

Document Dossier

Document Dossier

Location Person

System

Directory

Place

Document Dossier

Document Dossier

Document Id Dossier Id

Index

Key

Figure 4.1: Domain Entities Structure

7. From a dossier one can observe its unique identifier, a description, and
the documents and dossiers inside (129.46 - 49).

8. A directory is a hierarchy of named indexes (128.25).

9. A locked directory index requires that the person wanting to access it
possesses the needed keys (141.334 + 349 + 367 + 382).

10. A location is a container holding zero or more documents and zero or more
dossiers.

11. From a location one can observe the documents and dossiers in it (129.57
- 58).

12. A place consists of (133.14)

- a single directory,

- zero or more persons,

- zero or more locations,

- zero or more keys.

13. The domain consists of (133.6)

(a) a number of places,

(b) a collection of ids which uniquely identify all documents in the do-
main,

(c) a collection of ids which uniquely identify all dossiers in the domain.

14. A person is a container holding – or possessing – zero or more documents,
zero or more dossiers, and zero or more keys.

15. From a person one can observe his unique id, keys, signature, documents
and dossiers in his possession (129.51 - 55).

16. A person can (all commands involving an existing document and/or dossier
assert that it/they are in his possession)

(a) create a document, after which it is in his possession (138.165).

30 CHAPTER 4. DOMAIN DEVELOPMENT

(b) create a dossier, after which it is in his possession (139.189).

(c) copy a document, after which the copy is in his possession (139.206).

(d) edit a document (139.235).

(e) put documents or dossiers in a directory index, provided he has access
to the particular directory index (141.344 + 377).

(f) get documents or dossiers from a directory index provided he has
access to the particular directory index (141.328 + 361).

(g) get documents from a location (142.394).

(h) get dossiers from a location (142.428).

(i) put documents in a location (142.413).

(j) put dossiers in a location (143.447).

(k) delete the membership of any document in his possession (144.512).

(l) sign any document in his possession using his signature (143.462).

(m) send any document or dossiers in his possession to another person in
a specified place (143.474 + 493).

(n) shred any document in his possession (140.268).

(o) dispose of any dossier in his possession (140.258).

17. A newly created and unedited document is of type master and has no
default membership to any directory (138.173 + 177 + 178).

18. When a document is placed in a directory index for the first time, possibly
via a dossier, it is ’stamped’ with the destination directory index (mem-
bership). If a membership is already stamped on the document nothing
happens (134.57).

19. An edited document becomes a version, if not already, and loses any sig-
natures present on the original document, but maintains directory mem-
bership information (140.243 + 246 - 248).

20. A document being edited seizes to exist and is replaced by the new version
of the document (140.253).

21. When copying a document the new document is of type copy and does
not have a membership. From a copy one can observe the document id
of its ancestor, which is the original document from which it seems to be
copied. (139.215 + 219).

22. The ancestor of a document can only be a master or a version of an
original master. If a copy is made of a copy then it will inherit the ancestor
of the document from which it was copied. This means that a copy of a
copy of a master has same ancestor (139.221 - 225).

23. Documents and dossiers are sent in sealed envelopes between persons.
This correspondence is considered secure, i.e. no one else can spy on the
information while it is inside the envelope and being delivered (143.474 +

493).

4.11. FORMALIZATION 31

4.11 Formalization

A complete formal specification of the domain model is available in appendix D
page 128. The specification is divided into a series of RSL-schemes, an inheri-
tance structure, each isolating a certain aspect of the complete specification:

• DocSysTypes.rsl (appendix D.1 page 128) – defines the basic types as
well as generic observer functions of the domain model.

• DocSysBasics.rsl (appendix D.2 page 129) – introduces operator over-
loading of different types in order to facilitate an easy manipulation of the
model entities. The file also contains helper functions.

• pDocSysTypes.rsl (appendix D.3 page 133) – represents the specific do-
main types and specific domain observer functions.

• pDocSysBasics.rsl (appendix D.4 page 133) – specifies domain helper
functions.

• pDocSysWF.rsl (appendix D.5 page 135) – contains the well formed crite-
ria of the model. These include that a document / person can only be in
one place at a time. Consult the specification for further understanding
of these criteria.

• pDocSysCmds.rsl (appendix D.6 page 136) – describes the commands
available to the persons.

The system definition (the domain entities structure), complying with assump-
tions 8, 12 and 13 and ensuring well-formedness, dictates that,

1 System ′ = Places × DocumentID-set × DossierID-set

2 System = {| w:System ′ • wf_system(w) |}

3 Place = Directory × Persons × Locations × Keys

4 Directory == mk_dir(DirContents × (Index→m Directory))

5 Persons = PersonID→m Person

6 Locations = LocationID→m Location

7 Keys = Key-set

The ’Edit’ command, that complies with assumption 16(d), 19 and 20, will be
presented in detail in the following:

1 M: Command→ System→ System

2 M(cmd)(places, docids, dosids)≡
3

���� cmd ��

4 mk_Edit(person, plid, time, document, (te,fe))→
5

��� (dir,pers,locs,keys) = places(plid) ��
6 assert(person ∈ ��� pers ∧
7 document ∈ obs_Documents(person));

It asserts that the person doing the editing is in fact physically present in that
place and that he is holding the document in question.

8

��� doc:Document •

9 obs_ID(doc) = obs_ID(document) ∧
10 obs_Time(doc) = time ∧
11 obs_Contents(doc) = te(obs_Contents(document)) ∧
12 obs_Type(doc) = version ∧
13 obs_Creator(doc) = obs_ID(person) ∧
14 obs_PlaceID(doc) = plid ∧

32 CHAPTER 4. DOMAIN DEVELOPMENT

15 obs_Signatures(doc) = {} ∧
16 obs_DirMembership(doc) = obs_DirMembership(document) ∧
17 obs_PlaceMembership(doc) = obs_PlaceMembership(document) ∧
18 obs_Ancestor(doc) = obs_Ancestor(document)

When editing a document a new document is created with almost the same
attributes – contents is new and signatures are no longer valid and are therefore
cleared.

19
��

20 (places † [plid 7→
21 (dir, pers † [obs_ID(person) 7→
22 (person \ {document}) ∪ {doc}],
23 locs, keys)], docids, dosids)

24

���

25

���

26

���

Finally the system is updated by removing the original document and inserting
the revised document from and to the person.

4.12 Glossary

Ancestor This describes the identification of the document from which a given
document seems to be copied.

Command can be one of the following: CreateDoc, CreateDos, Copy, Edit,
Shred, DisposeOfDos, GetDocFromDos, PutDocInDos, GetDosFromDos,
PutDosInDos, GetDocFromDir, PutDocInDir, GetDosFromDir, PutDosInDir,
ExportDoc, SignDocument, ResetMembership, ReturnDoc, ReturnDos,
SendDos or SendDos. In other words, it is the possible manipulation that
can be done on a document or dossier via the model.

Copy Document Type choice – describes that the document is a copy that has
not yet been edited.

Directory A directory is a hierarchy of named indexes. The hierarchy structure
is maintained by the local adm., i.e. they create and delete the indexes.

Document Represents a generic document with undefined contents. The at-
tributes unique identifier, time of creation, document type, creator, place of
origin, signatures, directory membership, ancestor and contents are always
available for observation.

Document Type The document type is always equivalent with one of the
following three notions: master, copy or version.

Dossier A dossier is a container of other dossiers and documents, i.e. it is a
way of structuring documents. It represents a folder, paper clip or other
means of grouping documents.

Envelope The envelope is a reasonably secure way of sending confidential doc-
uments, i.e. a transport container that prevents persons from spying on
the contents.

4.12. GLOSSARY 33

Global Adm. Stakeholder who introduces and removes persons and places to
and from the model.

Index The smallest unit in a directory which contains zero or more documents,
dossiers and other indexes. Local adm. can equip an index with zero or
more locks preventing access for persons without proper keys.

Local Adm. Stakeholder who introduces and removes locations to and from a
place. He also manages key distribution and directory structure.

Location A location represents a well-defined physical area (excluding direc-
tory and persons) that can contain zero or more documents and dossiers.

Key Keys provide access to a locked directory index provided that it is the
correct key(s), i.e. different keys open different locks. Keys are distributed
and revoked by the local adm.. The local adm. has at all times every key
to every lock at the place, i.e copies are made of the master key which is
always available to the local adm.

Master Document Type choice – indicates that the document is an original
document that has not yet been edited – all newly created documents are
masters.

Membership The membership of a document indicates if there is a particular
directory index at a particular place in which the document belongs.

Person A stakeholder who also is a container of documents and dossiers. He
is the manipulator of documents and dossiers in the domain.

Place A well-defined physical area that contains one directory, one or more
locations, zero or more persons and zero or more keys.

Signature Represents the legally binding signature associated to a given per-
son.

Version Document Type choice – indicates that the document has been edited
into the current state.

Chapter 5

Requirements Development

Based on the previously derived domain model the requirements of a domain
oriented electronic document management system (EDMS) will be described.
As mentioned in the introduction it is intended to digitize the domain with
an absolute minimum of business process re-engineering. In fact, it will be
attempted to project the entire domain model to the digital domain and only
make modifications when it is possible to utilize the digitalization to prevent un-
wanted human behavior and non-determinism. The terminology of the domain
(such as documents, persons, directory, etc.) will be re-used when prescrib-
ing the requirements. However, these entities will now refer to digital entities
corresponding to the physical objects of the domain.

A complete formal specification of the requirements of the EDMS has been
created and can be found in appendix D.1 page 128. This chapter is a structured
textual supplement to the specification, which primarily describes the transition
from domain to requirements. Section 5.7 page 46 holds a glossary, which de-
scribes specific terms and concepts of the requirements being prescribed. For
further details about the mechanisms behind the EDMS, the reader is encour-
aged to consult the full specification in the appendix.

5.1 Stakeholders

The stakeholders of the EDMS constitute

Administrators maintain settings for users (creation, deletion, keys, etc.) and
the directory structures (the local administration in the domain).

Users are the ones manipulating documents and dossiers using the EDMS. All
users shall be associated with a unique person in the system reflecting their
state (possessed documents, dossiers and keys) – this person is controlled
by the user, who through him decides how the system is manipulated. The
user shall be able to associate himself with this ’virtual’ person securely
through client software and using a login and password (the persons in
the domain).

Maintenance maintains the entire hardware infrastructure, which includes
servers, network grid, client computers etc.

34

5.2. BUSINESS PROCESS RE-ENGINEERING 35

Third Party is an individual who causes users to create or manipulate docu-
ments or is somehow affected by the fact that documents are manipulated.
He does not interact directly with the documents himself.

Foreign system is a computer system of unknown configuration. It either
wants to retrieve information from the EDMS or the latter seeks informa-
tion in the foreign system.

5.2 Business Process Re-Engineering

Entering the digital domain poses some interesting possibilities which were not
available in the paper document domain – all information can now be centralized
in a server.

• The centralization of information minimizes the need of having to remem-
ber things such as document placement and directory keys. However, it
also results in dependency on the server, i.e. if the server is down it cuts
off access to all documents.

• Users do not need to be present within company buildings to access doc-
uments in the system. This means that users can access the company
directory at home or from abroad as long as a network connection to the
system is available.

• It is feasible to perform encryption when sending data in order to prevent
outsiders from accessing classified information. It is now up to the system
to establish secure transmissions between persons and not the responsibil-
ity of the sender (in the domain the sender would normally use a sealed
envelope and a courier).

• If a document or dossier has a membership then it can be returned to
it at any time, even if the membership points to a dossier currently in
the possession of another person. This is possible because dossiers and
directories are now digital concepts as opposed to physical entities in the
domain.

• When a document or dossier is removed from where it has membership a
reference (ghost) can automatically be left behind indicating that it has
been removed. This ghost can also contain information about the person
who is currently in possession of the document or dossier.

• Documents and dossiers can be read and browsed, even if they are not
in your possession, as long as you own the keys required for retrieving
them from the container (index or dossier) where they have membership.
Modifying, however, still requires ownership of the document or dossier as
this is generally a good way to prevent conflicts.

• Documents are no longer physically replaced during editing. This means
that different versions of the same document can co-exist making it possi-
ble to extract a version history from a document. A collection of versions,
including the master or copy document from which they were created, will
be referred to as a document group and documents within the same group

36 CHAPTER 5. REQUIREMENTS DEVELOPMENT

will always be kept together. Examples of document groups are shown
later in figure 5.2 page 43.

• As opposed to the paper domain it is now possible to describe how docu-
ment contents C is generated on the basis of dynamic data D (the infor-
mation entered by the user) with the aid of a template transfer function
f(x) that dictates layout as well as defining the meaning of the dynamic
information by associating it with static labels. The relationship can be
expressed by

f(D) → C ∧ f−1(C) → D

To easily define any kind of document contents C the following formalized
structure can be used. It describes how a template can be defined and
how it relates to contents C and data D:

1
������ contents =

2
�����

3 ��	�

4 layout, text, binary, ref,

5

6 txt_label = layout × text,

7 bin_label = layout × binary,

8 txt_input = layout × ref,

9 bin_input = layout × ref,

10

11 C = group × D,

12 D = (ref→m text) × (ref→m binary),

13

14 group == mk_grp(label∗ × input∗ × group∗),

15 label == mk_ltxt(txt_label) | mk_lbin(bin_label),

16 input == mk_itxt(txt_input) | mk_ibin(bin_input)

17

18
������ template : group

19

20
����

21 f : D → ���� template C,

22 f−1 : C →D
23

24
����� ∀ d : D • f−1(f(d)) = d

25

���

The transfer function contains detailed information about the entire doc-
ument layout and how and where dynamic data shall be placed on top of
the template. The template associates layout to the dynamic data through
references (line 12). This interpretation of contents provides the possibil-
ity of exchanging templates on the fly and in the process redesign the way
dynamic data appears and in which context. The main focus of the tem-
plate derivation is to separate the entities D and f(x) in order to be able
to store the information in a computer as well as displaying it correctly
again when retrieved. The transfer function can be integrated in a GUI
or as a transformation of contents one step before presentation in a GUI.
Creating contents specifications are kept out of the requirements at this
level and left for further specification when the system is instantiated for
a specific domain.

The domain-to-business re-engineering operations that are required are pre-
sented in the following.

5.2. BUSINESS PROCESS RE-ENGINEERING 37

5.2.1 Supporting Technologies

It is now required that every document created, intended for the system, is of
digital format. This eliminates the use of scribbling pads and typewriters:

• Computers (desktop, laptop, pocket, palm, cellular etc.) should be the
only way of creating documents intended to be part of the system. It
is also required that the computer is equipped with specialized software,
which must be used in order to guarantee the consistency of the EDMS.

• Printers should still be available if hard copies (exports) are required –
event logging and ID tagging of the export is to be carried out.

• Photocopying machines should still facilitate a possible way of duplicating
exports, but they should implement a strict level of security, i.e. log
the copy event and possibly prevent the copy command if the correct
permissions are not possessed by the person doing the copying.

• The shredder is still a way to eradicate physical documents (exports). The
machine should possibly be able to log the shredded document ID and log
it as erased from the physical realm.

• A centralized server is required. Tight security has to surround it, this
being the place where all documents now reside.

Once documents are exported out of the system (to paper) the system cannot
be held responsible for securing them – this is left to the exporter, who is
held responsible for the whereabouts of his exports until they are registered as
shredded.

5.2.2 Management and Organization

Upholding the access privileges is now left to the system. It is possible to
introduce single command permissions (using keys) preventing a person from
performing certain commands he is not cleared for, such as printing and di-
rectory access. Ultimately the access permissions are left to the system and
not the person thereby improving enforcement of management and organization
guidelines.

5.2.3 Rules and Regulations

Desirable common denominators of this topic can be re-engineered as follows:

• Places are no longer physical, but virtual, so you can potentially access
a place from anywhere in the world via your computer. This calls for a
strict network protocol for data exchange for guaranteeing authentication
of a given person and maintaining security integrity.

• Archives of documents do not require the physical space of an entire base-
ment anymore, but can be kept on a single server or on one or more
CD-ROMs, DAT tapes or other backup media.

• Backups can be made of all documents and kept on backup media outside
the company. In case of fire, theft, etc., the documents can be restored
from such a backup thereby minimizing loss of information.

38 CHAPTER 5. REQUIREMENTS DEVELOPMENT

• Signatures can be made digital – a bit different in handling – but still just
as legally binding.

5.2.4 Human Behavior

The migrated system can prevent several undesirable human behaviors of the
domain

• With the physical realm gone the user has to change the normal way
of managing documents. It is no longer possible to physically spread out
documents on a desk or take them with you in the hallway. If such behavior
is required the relevant documents must be exported to the paper based
domain using a printer.

• It is no longer possible to leave documents in the open. A document is
always on a person or in a directory implicitly protecting documents better
and preventing unauthorized access.

• The user can not lose a document, meaning that he can always locate a
document from its id, or do a contents dependent search for it.

• The system can help with directory and dossier membership, preventing
that documents originating from different dossiers are mixed by accident.

• The user can not lose a directory index key.

• Handwriting is potentially eliminated in the system effectively removing
the risk of misinterpretation of document contents.

• The user cannot physically shred a document or permanently dispose of
a dossier. Instead deletion can be simulated electronically by transferring
the document or dossier to a recycle bin where they can be restored by an
administrator. This can prevent accidental deletion of information.

• The system can prevent wrongful archiving, if the document in question
already has a membership to a different dossier or directory index.

• Persons have to use a special software and comply with the restrictions
this encompasses. This means education of users who are inexperienced
with IT.

• The digital signatures can be cryptographically associated with the con-
tents of the signed document in such a way that tampering of the contents
will void the signature rendering forgery impossible.

• Automatic event logging of a document is feasible facilitating a detailed
event history reflecting the whereabouts of and commands performed on
a given document. This could serve as a way of discouraging persons
from accessing documents they should not be reading even if they do have
access to them. On the other hand, it could also be considered as too
much surveillance, which is why it should be kept optional.

5.3. DOMAIN REQUIREMENTS 39

5.3 Domain Requirements

Performing the domain-to-requirements operation yields well-defined catego-
rized requirements prescriptions, hence the following five sections constitute the
complete set of domain requirements.

5.3.1 Projection

The system is limited to the basic functionality of managing documents and
maintaining the access privileges to them and the commands. The system main-
tenance and the notion of the global administration is disregarded. The close
relationship to the domain is reflected in the number of domain assumptions
(A) adopted without modification – please refer to section 4.10 page 28. All
references below point to the formal specification in appendix D page 128 and
are of the structure <page>.<line> [− <line>][+ <line>]. Words that are em-
phasized can be found in the glossary (page 46).

1. A.2 (local adm. = administrator) – extended later.
2. A.3
3. A.4
4. A.5
5. A.6
6. A.7
7. A.8
8. A.9
9. A.12 – extended later.

10. A.13 – extended later.
11. A.14
12. A.15
13. A.16abcdefklm (assuming the user has permission) – extended later.
14. A.17
15. A.19
16. A.21

The following assumptions are projected away:

• A.1 (global adm. is not a part of the system)

• A.10 (locations are no longer document containers)

• A.11 (. . . and you can therefore not observe anything from them)

• A.16ghij (. . . or perform any commands relating to them)

• A.18 (is re-engineered to having a more elaborate membership function)

• A.20 (is re-engineered to not lose version information)

• A.22 (is re-engineered to reflect the actual ancestor)

• A.23 (is re-engineered to always support secure information exchange)

40 CHAPTER 5. REQUIREMENTS DEVELOPMENT

5.3.2 Determinism

Some non-determinism of the domain can be eliminated:

17. It shall not be possible to send a document / dossier to a non-existing
person at a given place (163.580 + 610).

18. It shall not be possible to violate a membership, i.e. perform wrongful
archiving in index or dossier placement (ex. 160.386 - 388).

5.3.3 Instantiation

Since the EDMS model is a generalization certain domain specific elements, such
as document contents and user interface requirements, shall remain underspec-
ified. Filling in these blanks will be referred to as instantiating the document
system for a specific domain. The amount of work required to fill in these blanks
and achieve the desired functionality is an indicator of the strength of the EDMS
and the model it is based on.

Instantiating the document system shall require the following domain specific
extensions to the existing model:

• definitions of the documents and their contents. This involves creating
contents templates representing the different kinds of documents of the
target domain. Besides being an extremely easy way of adopting existing
business processes it helps in determining the dynamic data of documents,
which is the only information needed to be stored.

• definition of the stakeholders and their business processes, which dictates
the system business logic. This includes describing the supporting tech-
nologies, management and organization, rules and regulations, and human
behavior, which influence the business processes thereby affecting the busi-
ness logic.

• a user interface that complies with the contents definitions and business
logic.

To ensure a reasonable degree of flexibility it shall be possible to instantiate more
than one domain on top of the same document system base. This is desirable
when two domains share some of their information but require different user
interfaces and/or business logics, e.g. different departments within the same
company. Such domains shall be referred to as sub-domains within the same
domain.

5.3.4 Extension

There are several extensions possible, feasible and desirable when taking the
domain into the computer as illustrated in the former re-engineering section.

19. Each user shall have an unambiguous connection to a person in the system.
20. To every person a password shall be associated that allows only for the

user with matching id and password to access the specific virtual person
in the system.

21. Provided that a person owns the required keys, he shall also be able to

5.3. DOMAIN REQUIREMENTS 41

(a) merge a document (165.721).

(b) remove any document in his possession to the recycle bin (159.336).

(c) remove any empty dossier in his possession to the recycle bin (159.355)..

(d) export a document to a physical location (162.528).

(e) set permissions on a document (164.659).

(f) set permissions on a dossier (164.682).

(g) return any document or dossier to its membership container (dossier
or index), even if this (dossier) container is currently in the posses-
sion of another person (165.695 and 165.709).

22. Provided that he knows the id and owns the required keys, a user shall
be able to read but not modify any document or dossier even if it is not
in the possession of his virtual person.

23. Administrators shall be able to

(a) restore documents from the recycle bin (147.112).

(b) manipulate the system without being bound to regular rules (147.114).

24. The system shall be extended with a collection of ids which uniquely
identify all exports in the system (145.6).

25. Each place shall be extended with a single recycle bin (145.15).

Export

Location

Document Dossier

Document Dossier

Person

System

Directory

Place

Document Dossier

Document Id Dossier Id

Index

Copy Id

Recycle Bin

Physical realm

Keys

Figure 5.1: Electronic Document Management System

26. It shall be possible to locate a document / dossier from its id (165.748 +

751).
27. Every document shall be a member of a document group (145.35).
28. It shall be possible to see a document history of a given document (165.754).
29. Membership is extended to reflect dossiers as well (145.24 + 29).
30. If a document or dossier is removed – not deleted – from where it has

membership a ghost of it shall be left behind.
31. If the membership of a document or dossier is deleted then the ghost at

the membership shall be deleted as well.
32. If a document or dossier with a membership is sent from one person to an-

other then the ghost at the membership container shall reflect this change
of owner.

42 CHAPTER 5. REQUIREMENTS DEVELOPMENT

33. A user shall not be allowed to perform a command which is locked with
a key his virtual person does not possess (152.319 + e.g. 157.262).

34. All commands are performed on document groups, with the following ex-
ceptions

(a) ’CopyDoc’ and ’Export’ can be performed on single documents in a
document group.

(b) ’Sign’ and ’Edit’ can be performed on only the newest document in
a document group, i.e the latest version (158.301 + 162.561).

This implies, that get/put commands shall move the entire document
group, and that a document group shall never be divided.

35. An event history shall be available for every document – this implies that
every command performed on a document is logged together with rele-
vant information regarding the command. This feature shall be an option
(145.23).

36. All document editions shall be preserved, i.e. a new version document is
created for every edit (159.327).

37. A foreign system shall be able to request from and provide information to
the system via predefined queries and data formats.

38. It shall be possible to ’merge’ document A from group GA with document
B from document group GB into document C provided that (consult figure
5.2 for a graphical interpretation):

• document A is a copy or a version of a copy.

• B is the newest version in group GB (165.725).

• the ancestor Banc of the copy in group GA is a document in group
GB (165.724).

• the involved documents obey (can be discretized to being parts of
involved documents) (165.726)

Assert(B == A ∨ B == Banc)

39. When merging document A with document B all documents contained in
group GA are removed (165.724). This is shown in figure 5.2(d).

40. It shall be possible from an export to observe a unique export identifier
and the id of the document which was exported (162.539).

5.3.5 Fitting

The generalized document system needs fitting but, as stated earlier, it is left
to the specific instantiation to fit the system if needed. This requirements
document seeks to prescribe a fundamental and general EDMS.

5.4 Interface Requirements

41. A user shall be able to log on the system via id and password matching
his system profile after which he associates himself with his unique virtual
person in the system.

5.4. INTERFACE REQUIREMENTS 43

Master

Version

Copy Version

Version

Copy

Version

Version

Version

Merge

Document A

Document B

Group B

Group A

Document Banc

(a) Document A is to be merged with doc-
ument B. It possible because A is a version
of a copy and B is the newest version.

Master

Version

Copy Version

Version

Copy

Version

Version

Version Document A

Document B

Group B

Group A

Document Banc

(b) It is verified that the ancestor of the
copy in group A is contained in group B.

Master

Version

Copy Version

Version

Copy

Version

Version

Version Document A

Document B

VersionDocument C

Group B

Group A

Document Banc

(c) The documents are merged into C pro-
vided that the merge condition is obeyed.

Master

Version

Copy Version

Version

Copy

Version

Version

Version Document A

Document B

VersionDocument C

Group B

Document Banc

(d) Group A is removed.

Figure 5.2: Merging of Documents in The EDMS

42. A user shall via client software be able to

- perform all valid commands through his virtual person.

- view system states, i.e.

– show information in their relevant context, such as descriptions
and contents.

– see a table of contents (TOC) of relevant data sets, such as doc-
uments and dossiers in a dossier.

- enter information into the system.

- browse the directory.

- browse documents in his possessions.

- locate a document from its id.

- generate a document history from its id.

44 CHAPTER 5. REQUIREMENTS DEVELOPMENT

43. An administrator shall via administration software be able to

- create and edit user profiles, user permissions and directory indexes.

- restore documents from the recycle bin.

- manipulate the system via direct access.

5.5 Machine Requirements

44. A network shall be available.
45. A proper dimensioned server is required for decent operations – dependent

on number of users.
46. The server room shall have tight security.
47. The server shall have an extensive automated backup feature.
48. A number of computer devices – PDAs, Tablet PCs, laptops, desktops –

shall be available for the client software in order for the users to access
the system.

49. Printers shall be available if print-outs are required.
50. Shredders shall be equipped with special scanners in order to log shredded

exports.
51. Photocopy machines shall be equipped with means of identifying persons

and possibly prevent and / or log the event.
52. All data exchanges shall be encrypted.
53. Using cryptography the tiers in the system shall authenticate each other

and establish a tunneled communication session.
54. The foreign system data exchange shall be based on existing standards

(such as XML).
55. The system shall be scalable with regards to clients, data size and distri-

bution of directory.
56. All data shall be stored in one or more databases.
57. Signing documents shall adhere a respected digital signature protocol

guaranteeing integrity.

5.6 Formalization

A complete formal specification of the domain model is available in appendix D.
The specification is divided into a series of rsl-schemes, an inheritance structure,
each isolating a certain aspect of the complete specification:

• DocSysTypes.rsl (appendix D.1 page 128) – defines the basic types as
well as generic observer functions on types for a document system. This
specification is also the basis of the domain, hence the basic structure is
similar as desired.

• DocSysBasics.rsl (appendix D.2 page 129) – holds overloading of differ-
ent types in order to facilitate an easy manipulation of the system entities.
The file also contains helper functions. This specification is also the basis
of the domain, hence the basic structure is similar as desired.

• eDocSysTypes.rsl (appendix E.1 page 145) – represents the specific types
and specific observer functions introduced when the domain was digitized.

5.6. FORMALIZATION 45

• eDocSysBasics.rsl (appendix E.2 page 147) – specifies requirements spe-
cific helper and overloading functions.

• eDocSysWF.rsl (appendix E.3 page 152) – contains the well formed cri-
teria for the system at hand. These include that a document / person
can only be in one place at a time. Consult the specification for further
understanding of the criteria.

• eDocSysCmds.rsl (appendix E.4 page 153) – manifests the commands
available to the system user.

The system definition, complying with requirement 6, 9, 10, 25, and 26 and
ensuring well-formedness, dictates that,

1 System ′ = Places × DocumentID-set × DossierID-set × ExportID-set

2 System = {| w:System ′ • wf_system(w) |}

3 Place = Directory × Persons × Locations × RecycleBin × Keys

4 Directory == mk_dir(DirContents × (Index→m Directory))

5 Persons = PersonID→m Person

6 Locations = LocationID→m Location

7 RecycleBin = Document-set

8 Keys = Key-set

The ’Edit’ command available complies with requirement 13(A.16d), 16, 19, 29,
35(b) and 37:

1 M: Command→ System→ System

2 M(cmd)(places, docids, dosids, copyids)≡
3

���� cmd ��

4 mk_Edit(person, plid, time, document, (te,fe))→
5

��� (dir,pers,locs,bin,keys) = places(plid) ��
6

��� docs = obs_Group(document,docids) ��

7 assert(hasPermission(person,document,Edit) ∧
8 person ∈ ��� pers ∧
9 mostRecentVersion(document,docs) ∧

10 docs ⊂ obs_Documents(person));

It is asserted that the person attempting the editing: Has the permission to
perform this command on this document, is in fact a member of that place (has
a profile), that the edit is performed on the newest version in the document
group, and that he has the document in question.

11

��� docid:DocumentID • docid /∈ docids ��

12

��� doc:Document •

13 obs_ID(doc) = docid ∧
14 obs_Time(doc) = time ∧
15 obs_Contents(doc) = te(obs_Contents(document)) ∧
16 obs_Type(doc) = version ∧
17 obs_Creator(doc) = obs_ID(person) ∧
18 obs_PlaceID(doc) = plid ∧
19 obs_Ancestor(doc) = mk_did(obs_ID(document)) ∧
20 obs_Signatures(doc) = {} ∧
21 obs_DirMembership(doc) = obs_DirMembership(document) ∧
22 obs_DossierMembership(doc) = obs_DossierMembership(document) ∧
23 obs_CommandLocks(doc) = obs_CommandLocks(document) ∧
24 obs_Events(doc) = obs_Events(document)

25
��

When editing a document a new ’document’ is created with almost the same
attributes – contents is new and signatures are no longer valid and are therefore
cleared.

46 CHAPTER 5. REQUIREMENTS DEVELOPMENT

26

��� evt:Event •

27 evt_type(evt) = Edit ∧
28 evt_executedby(evt) = obs_ID(person) ∧
29 evt_time(evt) = time ∧
30 evt_place(evt) = plid

31
��

The edit event is logged.

32 (places † [plid 7→
33 (dir, pers † [obs_ID(person) 7→
34 ((person \ {document}) ∪
35 {addEvent(document,evt)}) ∪
36 {addEvent(doc,evt)}],
37 locs,bin,keys)], docids ∪ {docid}, dosids, copyids)

38

��� ��� ��� ��� ���,

The system is updated with the new document by inserting the revised docu-
ment in the person.

5.7 Glossary

Administrators maintain user profiles, user permissions and directory struc-
ture. They are the electronic version of the domain’s Local Administra-
tion.

Ancestor This describes the identification of the document from where a given
document is copied.

Command can be one of the following: CreateDoc, CreateDos, Copy, Edit,
RemoveDoc, RemoveDos, GetDocFromDos, PutDocInDos, GetDosFrom-
Dos, PutDosInDos, GetDocFromDir, PutDocInDir, GetDosFromDir, Put-
DosInDir, ExportDoc, SignDocument, ResetDocMembership, ResetDos-
Membership, ReturnDoc, ReturnDos, SendDoc, SendDos, SetDocPermis-
sion, SetDosPermission or Merge. In other words, it is the possible ma-
nipulation that can be done on a document or dossier via the system.

Copy Document Type choice – describes that the document is a copy that has
not yet been edited.

Directory A directory is a hierarchy of named indexes. The hierarchy structure
is maintained by administrators, i.e. they create and delete the indexes.

Document Represents a generic electronic document with an undefined con-
tents. The attributes unique identifier, time of creation, document type,
creator, place of origin, signatures, membership, ancestor, and contents
are always available for observation.

Document Group is a collection of documents. They are combined so that all
versions of a given copy or master are grouped together with the latter,
i.e. no document can exist outside a document group, which always has a
cardinality of one or more – the one being a master or copy and the rest
versions this.

Document History is a chronological history of the document group with rel-
evant information such as creator and time.

5.7. GLOSSARY 47

Document Type The document type is always equivalent with one of the
following three notions: master, copy or version.

Dossier A dossier is a container of other dossiers and documents, i.e. it is a
way of structuring documents.

Event History is a chronological history of performed commands on a given
document with relevant information such as time and performer.

Export is a physical manifestation of the digital document. It is manifested
on paper via printer or other kinds of media when performing the ’export’
command. The command is logged, but confidentiality of the export is
supposed to be upheld by the the user performing the export.

Foreign system is a computer system of unknown configuration. It either
wants to retrieve information from the document system or the latter
seeks information in the foreign system.

Ghost A reference to a document or dossier placed in the container where the
document or dossier has membership. It also contains the id of the person
who is currently in possession of the object.

Index The smallest stationary unit in a directory. It contains zero or more
documents, dossiers, and other indexes. An administrator can equip an
index with zero or more locks preventing access for persons without proper
keys.

Location describes a well-defined physical entity – the only place where exports
can be sent.

Key Keys provide access to locked directory indexes providing that it is the
correct key(s), i.e. different keys open different locks. They can also be
used to lock commands on a given document. Keys are distributed and
suspended by administrators who possess every key to every lock at that
place.

Master Document Type choice – describes that the document is a master that
has not yet been edited – all newly created documents are masters.

Membership The membership reflects if there is a particular directory index
or dossier at a particular place in which the document or dossier belongs.

Permissions The ability to perform any command on a document can be
locked with a key. A permission equals the ability to perform a cer-
tain command on a certain document, i.e. the virtual person of the user
possesses the required key.

Person is a virtual alter ego of the user existing only in the computer sys-
tem. It reflects the commands performed by the user and describes which
documents and dossiers are currently owned by the particular user.

Place is a virtual concept that combines one directory, one or more locations,
zero or more persons, a recycle bin and zero or more keys.

Recycle Bin is where documents and dossiers go when removed.

48 CHAPTER 5. REQUIREMENTS DEVELOPMENT

Signature Represents the legally binding signature of a given user.

User is the one manipulating documents and dossiers using the EDMS. He
performs the manipulation by associating himself with his unique virtual
person within the system who possesses his documents and performs doc-
ument commands.

Version Document Type choice – Describes that the master or copy document
is edited.

Chapter 6

Design

Based on the requirement prescriptions derived in the former chapter and the
discussion of technologies during the introduction, a distributed system archi-
tecture is designed. The aim of this particular design is to create a flexible
future-proof architecture.

To achieve flexibility the architecture should not rely on technology instanti-
ations from specific vendors. Rather the design should abstract, through generic
interfaces, the distributed system technologies to a level where only the overall
principles of the technologies are used. This will result in generic database,
communication, and data encapsulation interfaces, which can be made specific
during implementation.

The design will be presented in its final form starting with the fundamental
principles of the domain model, then moving towards an object oriented design
and database structure, and finishing off with information distribution principles
and user interface design considerations. The design decisions, which had to be
made during this phase, are listed and substantiated in the subsequent chapter
and will not be elaborated during the presentation of this final design.

6.1 Basic Architecture

The architecture is intended to be a client/server configuration. The clients
offer a graphical user interface (GUI), which enables the users to manipulate
the document system. The GUI establishes a link to the server, which contains
the entire EDMS, i.e. the client holds no data at all, but is merely a visualization
of the server information (shown in figure 6.1). As the figure suggests the user
establishes a link to the server – the place – via the client. This link is bound
to the user-associated profile in the system – the virtual person. The client
then illustrates the state of the virtual person and offers the commands that
can be performed. The place structure adheres the requirements, of course,
but as hinted by figure 6.1, the documents, dossiers, and keys data remain
stationary within the place (at the same position in the server database, for
instance). When document containers (persons, dossiers, locations, recycle bin,
and directory) possess a document, dossier, or key it means they own a reference
to it – the actual data remains stationary and is not moved around within the
place. This minimizes data transfers.

49

50 CHAPTER 6. DESIGN

Documents

Dossiers

Keys

Persons Recycle Bin

Directory

Users Clients / GUIs

Place

Server

Locations

System

Figure 6.1: Basic System Architecture

The following RSL specification is a more detailed model of the entire archi-
tecture – an outline. It incorporates the possibility of having multiple places
connected (distribution) via a centralized server (mirror). It also introduces the
individual system components.

1
������ Outline =

2
�����

3
����

4 System() ≡ Client[1..a]
5 ‖ (Server de (Server[1..b] ‖ Mirror)),

6

7 Client() ≡ ClientConnection,

8 ClientConnection() ≡ ClientBusinessLogic

9 de ClientAdminLogic

10 de ClientForeignLogic,

11

12 Server() ≡ ‖ ServerConnection[1..d],
13 ServerConnection() ≡ ServerBusinessLogic

14 de ServerAdminLogic

15 de ServerForeignLogic

16 de ServerMirrorLogic,

17

18 Mirror() ≡ ‖ MirrorConnection[1..e],
19 MirrorConnection() ≡ MirrorAdminLogic

20 de MirrorForeignLogic

21 de MirrorPlaceLogic,

22

���

6.1. BASIC ARCHITECTURE 51

The principles combined with information flow are illustrated in figure 6.2. The
system encompasses:

• one or more servers handling a number of connections each capable of
containing one of four different kinds of logic layers, e.g. a logic specifically
designed to handle administrative commands. Each of these four layers
contain the logics of a Place and a set of Commands, which were outlined
during the requirements development. Furthermore, the layers contain
replaceable facilities for database communication (DBLayer) and network
communication (ComLayer), both of which will be elaborated later.

• an optional mirror that serves as a centralized unit in a distributed server
environment. It relays connections from server to server (i.e. place to
place). The subject of distribution is addressed later in this chapter.

• zero or more clients of three different types

1. business clients which are used during normal document operations
such as manipulation of documents and dossiers. They access the
ServerBusinessLogic of the local server, which, if the system is
configured to being distributed, accesses the mirror. More on that
subject later.

2. administration clients which access the ServerAdminLogic of the
local server allowing the administrator to perform special commands.

3. foreign clients which are of unknown configuration. This category
represents all third-party software (e.g. middleware), which might re-
quire access to some of the data in the system. Because of this they
access the server or mirror with special privileges in the ServerFor-

eignLogic.

Server

ServerConnection

ServerBusinessLogic

ServerAdminLogic

ServerForeignLogic

ServerMirrorLogic

Client

ClientConnection

ClientBusinessLogic

System

Client

ClientConnection

ClientAdminLogic

Client

ClientConnection

ClientForeignLogic

Mirror

MirrorConnection

MirrorAdminLogic

MirrorForeignLogic

MirrorPlaceLogic

Network Infrastructure

Figure 6.2: Basic Architectural Model and Information Flow

52 CHAPTER 6. DESIGN

6.2 Object Oriented Design

The design is taken to the next level by outlining the architecture in UML class
diagrams. This structure is the product of visualizing the system needs based
upon the requirements and the above mentioned basic architecture – in this case
the focus will be limited to the place logic. Figure 6.3 depicts the objects aggre-
gation required in order to realize the object commands, that holds all commands
available to the user in the system. The place object is essentially considered to
be a database wrapper used by the commands to manipulate the system state in
accordance with the domain terminology. The objects aggregated by the place
represent the individual entities of a place, such as persons, keys, etc., and
are intended to be wrapper classes to their specific part of the database struc-
ture, i.e. the classes offer a direct access to all documents, dossiers, persons,
keys, locations, keys, recycle bin and directory from where tables of contents
(TOCs) can be generated among other things. Database access is achieved via
the abstract interface class DBLayer that is available to all classes at all times.
Manipulating a single entity or data object such as a person or a document is

Dossiers

+TOC() : Set

Documents

+Contain() : bool

Keys

Directory

Commands

Place

RecycleBin

PersonsLocations

1

1 1

1

11

1

1

1 1
1

1

1

1

1

1

Figure 6.3: Command Object Composition

facilitated through the classes in figure 6.4-6.8. The layout is a direct inter-
pretation of the domain entities and their relationships. Select attributes and
methods are displayed in the diagrams to provide a general idea of what the
full class diagrams would look like. As mentioned in the introduction we will
not present the full object oriented design – although it has been carried out in
rough sketches. Instead a few of the main class diagrams will be presented to
illustrate the overall object oriented design.

6.2. OBJECT ORIENTED DESIGN 53

PersonID

ContentsPlaceID

Ancestor

Document DocumentID

Membership

Time

DocumentTypeSignatur

1

1

1

0..*

1

1

1 1

1

1

1

1..2

1

1

1

1

KeyID

1

0..*

1

1

Object

1
1

DocDescription

A personID for the creator
and possibly an id for the
current owner of the document

Figure 6.4: Document Object Composition

+Contains(in key : KeyID) : bool

Dossier

DossierDescription DossierID

1

1..*

Object

1

1

Membership

1

1

DocumentID

1

0..*

These IDs are references to
dossiers and documents
contained in the particular dossier.
The mandatory dossier ID is the ID
of the particular dossier.

KeyID

1

0..*

Figure 6.5: Dossier Object Ccomposition

54 CHAPTER 6. DESIGN

IndexID

+GetTOC() : Set

-Description : string

Index

Object

1

1..*

DossierID

1

0..*

DocumentID

1

0..*

KeyID

1

0..*

These IDs are references to
dossiers, documents and indices
contained in the particular index.
The mandatory index ID is the ID
of the particular index.

Figure 6.6: Index Object Composition

+Add(in dosid : DossierID)

-Name : string
-Password : string

Person

PersonID

Object

DocumentID DossierID KeyID

1

0..*

1

0..*

1

1

1

0..*

These IDs are references to
dossiers and documents
owned by the particular person.

Figure 6.7: Person Object Composition

6.3. DATABASE DESIGN 55

LocationID

Location

1

1

Key

KeyID

1

1

Ancestor

DocumentID

1

1

Membership

IndexID DossierID

1

1

1

1{XOR}

Object Object

+Reset()
+Next() : Object
+Add(in obj : Object)
+HasMore() : bool

Set

Object

1

0..*

Table of contents (TOC)
container for any data entity.

Figure 6.8: Miscellaneous Objects Composition

6.3 Database Design

As previously hinted, all system generated data is stored in a database, e.g.
RDBMS, memory or files. The structure of this data can be derived from the
object oriented design and the requirements, which is shown in figure 6.9. The
figure depicts a number of containers that holds zero or more data structures
– each structure contains the fields described in the particular container. The
figure suggest names for the containers and their fields that refers to the require-
ment prescriptions. The fields can be deducted by analyzing the attributes of
the objects in the OO design above. The emphasized fields represent a unique
identification (primary key) for the particular data structure. The arrows con-
stitute an entity relationship, i.e. how the containers relate to each other. It
is now inherent that the system calls for a predetermined number of ways to
access the database. Adopting the example methods described in the OO design
results in the following signatures for the selected database functions:

1
������

2 db : Database

3

4
����

5 -- Does a specific key exist ?

6 KeysContain : KeyID→ ���� db ����

7

8 -- Retrieve a list of _all document groups

9 DocumentsGetTOC: ����→ ���� db Document∗,

10

11 -- Does a specific dossier contain another specific dossier ?

12 DossierContains: DossierID × DossierID→ ���� db ����

13

14 -- Retrieve a TOC of a directory index

15 IndexGetTOC: IndexID→ ���� db Document-set × Dossier-set × Index-set

16

17 -- Add a dossier to a person

18 PersonAdd: PersonID × DossierID→ ����� db ����

5
6

C
H

A
P

T
E

R
6
.

D
E

S
IG

N

doss_in_index
IndexID
DossierID

docs_in_index
IndexID
GroupID

directory_indices
IndexID
Description

persons
PersonID
Name
Password
CryptKey

docs_in_person
PersonID
GroupID

doss_in_person
PersonID
DossierID

keys_in_person
PersonID
KeyID

keys
KeyID
Description

keys_in_doc_cmd
GroupID
Cmd
KeyID

documents
GroupID
EditionID
Time
Creator

cont_example1
GroupID
EditionID
_field1
_field2
...

document_groups
GroupID
Type
NewestEditionID
AncGroupID
AncEditionID
MemIndexID
MemDossierID
Contenttype
Description

sigs_on_document
GroupID
EditionID
PersonID
Time
SignedCRC

locations
LocationID
Description

keys_in_dos_cmd
DossierID
Cmd
KeyID

docs_in_dossier
DossierID
GroupID

doss_in_dossier
DossierID
InnerDossierID

dossiers
DossierID
Description
MemIndexID
MemDossierID

recycle_bin_doc
GroupID

IndexID
InnerIndexID

idxs_in_index

keys_in_index
IndexID
KeyID

doc_events
GroupID
EntryNo
Event
EditionID
ExecutedBy
Time
OptionalInfo1
OptionalInfo2

ghosts_doss_in_doss

DossierID
GhostDossierID
OwnerID

ghosts_docs_in_doss

DossierID
GroupID
OwnerID

ghosts_docs_in_idx

IndexID
GroupID
OwnerID

ghosts_doss_in_Idx

IndexID
DossierID
OwnerID

recycle_bin_dos
DossierID

contents
ContID
VerID
Description
Structure

F
ig

u
re

6
.9

:
D

a
ta

b
a
se

S
tru

ctu
re

6.4. CONTENTS MANAGEMENT 57

6.4 Contents Management

The contents of a document has been handled as an abstract single entity in the
domain model. This has to change in order to store it digitally in an efficient
manner. When using digitized contents one might want to perform certain
actions based on a specific part of the contents. If it is treated as a single entity
by the system these actions become exceedingly difficult – if not impossible –
to implement. The solution calls for contents to be split up into sub-categories
stored individually.

This means that document contents has to be defined in detail for each
type of required document. At a later date one might want to modify these
definitions, e.g. subdivide parts of the contents even further. To allow for
easy contents definitions and modifications it has been attempted to make the
contents management system as flexible as possible by allowing the user to add
new contents types on the fly.

This is accomplished by introducing a centralized structure specification for
each type of contents as well as version control of these specifications. Each
document is to be tagged with information about which type and version of
contents they make use of. The corresponding contents specification is then used
for storing and retrieving the different parts of information from the database
and then putting them together to form the overall contents. This results in
flexible contents management due to the fact that

• there is no need for a system core updating when introducing new docu-
ment types,

• a specialized administrators tool can aid in the creation of contents type
definitions by providing a graphical user interface which also manages the
allocation of space in a database for the new contents type,

• versioning the contents specifications introduces the possibility of modi-
fying existing types of contents, e.g. if a part of the contents has to be
discretized further.

A concrete example of this rather abstract type of contents management is
shown in the subsequent implementation chapter, where XML schema is used
as a contents structure specification language in conjunction with a customized
XML mapping layer on top of a relational database.

6.5 Distributed System Architecture

Meeting the demands of being able to connect to the system from a client ap-
plication and exchange documents across different places calls for a distributed
architecture at the core of the system. The design detailed at the moment can
be considered a traditional 3-tier client-server architecture consisting of a client,
a business logic server (the place), and a database for storing information. This
is now expanded to a distributed n-tier architecture, and the data exchange and
security aspects of this design will be described in the following.

58 CHAPTER 6. DESIGN

6.5.1 Data Distribution Between Servers

Documents, dossiers, and directory indexes are shared between places using
what will be referred to as the ’mirror’ concept. This scheme allows for local
references to remote places instead of references always pointing to documents,
dossiers, and keys stored locally. In other words, a dossier at place A might
contain a reference to a document stored at place B, indicating that the dossier
contains a remote document. This means that although some document or
dossier physically exists at a given place there might not be a reference to it
at that place because it has been assigned to a container at some other place.
Potentially, it allows for a person to possess documents, dossiers, and keys
originating and stored at other places.
Four situations exist where communication needs to go through the mirror . . .

1. . . . when a command is to be performed on a document or dossier and
some of the involved elements (document, dossier, keys, index) are stored
at a remote place (information push).

2. . . . when a table of contents of a locally stored dossier, index or person
is being created and some of the elements in the table are stored at a
remote place, then the descriptions of the elements are requested through
the mirror (information pull).

3. . . . when a table of contents of a remotely stored dossier, index or person
is to be created then the place requests a table of contents from the mirror
which forwards it to the place where the container is stored. If parts of the
table contains remote references in relation to that place then the principle
of item 2 is used (information pull).

4. . . . requesting a table of contents of the root of the directory is a special
case as this requires the mirror to ask all places for a table of contents,
like item 3, of their directory root (information pull).

Distributed Flow of ’Push’ Information

Figure 6.10 illustrates the ’push’ information flow from the client to its local
place and, if necessary, from there to other places through the mirror. The
individual steps on the figure are numbered and explained in the following.

1. A client sends a message to the server it is connected to locally, e.g. a
request that a command is to be carried out on a specific document or
dossier.

2. If all involved elements of the command (document, dossier, index, etc.)
are stored locally then the command is processed here and the information
flow ends. Otherwise the local place forwards the message to the mirror.

3. The message is processed by the mirror which involves:

(a) checking that the relevant document or dossier is possessed by the
person or is available at a specified directory index from which he is
requesting it.

6.5. DISTRIBUTED SYSTEM ARCHITECTURE 59

Mirror

MirrorConnection

MirrorPlaceLogic

Server

ServerConnection

ServerBusinessLogic

Distributed System

Local Network infrastructure

Global Network infrastructure

Client

ClientConnection

ClientBusinessLogic

ServerConnection

ServerMirrorLogic

Server

ServerConnection

ServerBusinessLogic

ServerConnection

ServerMirrorLogic

1.

2.
3.

Figure 6.10: Information Flow: Distribution – Information Push

(b) checking that the person possesses the required keys for the com-
mand.

(c) updating the involved places to reflect that the command has been
executed.

The mirror itself does not contain any information, instead whenever it needs to
carry out (a), (b), and (c) it collects the necessary information from the places
involved in the operation. When it has decided that the given person is allowed
to perform the command it updates the involved places through their mirror
logic to which it is connected. This mirror logic allows for direct modification
of the state of the place.

Distributed Flow of ’Pull’ Information

Figure 6.11 illustrates the ’pull’ information flow from the collaborating places
to a client connected locally to one of them, e.g. when a table of contents is
being put together for a specific directory index which contains documents or
dossiers spread across remote places.

1. A client requests a table of contents of some container (his person, a
dossier, or a directory index).

2. The local place checks if the container is stored locally, if so the table
of contents is generated locally and if it contains remote elements their
descriptions are requested from the mirror. If the container is stored
remotely the local place asks the mirror for a table of contents of the
container.

3. If the mirror is asked for a description of an element it retrieves the de-
scription from the place where the element is stored and returns it. If the
mirror is asked for a complete table of contents of a container it redirects
the request to the place where the container is stored.

60 CHAPTER 6. DESIGN

Mirror

MirrorConnection

MirrorPlaceLogic

Server

ServerConnection

ServerBusinessLogic

Distributed System

Local Network infrastructure

Global Network infrastructure

Client

ClientConnection

ClientBusinessLogic

ServerConnection

ServerMirrorLogic

Server

ServerConnection

ServerBusinessLogic

ServerConnection

ServerMirrorLogic

3.

2.1.

4.

Figure 6.11: Information Flow: Distribution – Information Pull

4. If a remote place is asked by the mirror for a table of contents and this
table contains elements remote to this place, the remote place asks the
mirror for descriptions of these.

A detailed RSL specification of the information flow in this distributed system
architecture can be found in appendixes G.1-G.24 starting page 172.

6.5.2 Secure Communication Layer

Communication between tiers is managed by the communication layer which is
an abstraction of secure data exchange across some, yet to be specified, line of
communication. This layer provides basic client server communication function-
ality as well as methods needed for authentication and secure tunneling between
two parties. The cryptographic principles required for authentication and tun-
neling have been introduced earlier during the technology studies and they are
elaborated in appendices B.1 and B.2 page 120. The communication layer is

Communication Layer

Connection

Private Key

Other Party Public Key

Session Key

Figure 6.12: Communication Layer

6.6. USER INTERFACE DESIGN 61

intended to be used by both the client, the places, and the mirror. Its structure
is outlined in figure 6.12 and the methods made available by each component
of the structure are described in the following (they are highlighted):

Communication Layer: This provides the basic functionality required to estab-
lish a Connection between two parties. One party can choose to accept

incoming connection attempts while the other party tries to connect to
it. The outcome of this is a Connection.

Connection: This represents an established line of communication between
two parties. Through this they are able to send and receive information.
Furthermore, they can authenticate each other and establish a secure
tunnel using cryptography.

Keys: Three different encryption keys are handled by a connection. What
they have in common is that they can be either symmetrical or asym-
metrical and they are all able to encrypt or decrypt a given text. The
Private Key is used for authenticating yourself to the party at the other
end of the connection. The Other Party Public Key is used for authen-
ticating the party on the other end of a connection. Furthermore, the
Private Key and Other Party Public Key provide means to sign data
and verify signatures, respectively. A Session Key is created when a
secure tunnel is to be used for the connection.

The protocol of how the methods are used when two parties are connecting,
authenticating, and establishing a secure tunnel between each other is specified
in detail in appendix F.1 page 167.

6.6 User Interface Design

The user interface to the system is heavily dependent on the business logic and
document contents of the specific domain in which it is instantiated. Therefore,
development of the user interface is not feasible at this stage. Instead, this is
left as one of the main focus areas when developing a domain specific system on
top of the platform provided by the EDMS.

Chapter 7

Design Considerations

During the design phase several decisions had to be made, such as choice of
architecture and how to adopt and where to insert the domain model in the
greater picture. This chapter presents the central design choices along with
their alternatives.

7.1 Client/Server vs. Web-based

The primary design choice, effecting the rest of the core architecture, is the
decision to create a client/server solution as opposed to a web based solution.
These days web based clients are commonly regarded as the most future proof
and easily maintained system solutions. Updates are centralized and automat-
ically distributed to clients, and the Internet and web browser technologies are
here to stay, ensuring that the clients will be compatible with future web enabled
operating systems.

One of the problems with web clients, at the moment, is that they place
restrictions on the design of user interfaces and interaction with the hardware
of the machine they are running on. If a user interface is based on the graphical
elements provided by standard HTML you are forced to present information
using static tables, buttons and text. If one wants to create a convincing dig-
itized replica of a document, like the Microsoft Word editor, a more dynamic
environment is required where user interactions have a direct effect on the way
information is presented.

It is possible to develop a dynamic graphical user interface using existing web
technologies, however, these solutions involve embedding applications within the
web browser (e.g. Applets, ActiveX, Flash), which – except for the advantages
of easy update distributions – do not differ much from an actual client/server
solution. They normally also suffer from severe security limitations with regards
to hardware interaction with the client machine. Based on these considerations
a client/server architecture has been decided upon, as we believe that this will
increase the possibility of designing a usable domain oriented GUI.

62

7.2. HOW TO ADOPT THE DOMAIN MODEL 63

7.2 How to Adopt the Domain Model

When designing an EDMS based on the domain model one has to consider
carefully how to adopt the terminology and structure of the model in the most
fitting manner. The document system has to be a well-defined entity: Where
does it begin and what is constituted by it?

• The entire model could be adopted as a single document system. This
means that the document system would be divided into places being able
to cross communicate. These places could correspond to different depart-
ments within the same company, or different companies cooperating using
the same instance of the document system.

• Another way would be to consider each place as an independent document
system and let the design describe the document system as a single place.
Communication between persons within this place would correspond to
internal transactions in the document system, while cross communication
between places would correspond to transactions from and to external
document systems.

The problem with the first approach is that one limits the model to describe
only the internal mechanisms of the document system. Nothing is known about
the world surrounding the document system and how one should interface to it.

In contrast, the second approach which considers each place as an isolated
EDMS has the advantage of having a well-defined context of the EDMS repre-
sented by the rest of the model. This makes it easier to consider when and how
interactions between document systems should take place and how to centralize
control of these transactions.

Based on these considerations, the second approach was decided upon. Hav-
ing the system placed within a well-defined context aided in the design of the
’mirror’ concept presented in the design.

The next decision is how to adopt the Place model in a modern client/server
architecture. One possibility would be to let clients correspond to persons and
let the server be the directory. This would mean that commands such as ’Get-
DocFromDir’ would physically move a document from the server to the client.
Modifications to documents would be carried out locally on the client machine
and then handed back to the directory on the server when performing a ’Put-
DocInDir’ command.

Another possibility, which is the one applied in the final design, is to im-
plement the place model completely on the server side and then let users bind
themselves to virtual persons through the client software. Using this approach
all documents are kept on the server and manipulation of documents are car-
ried out on the server side when a user requests that the person he is bound
to performs a certain task. This naturally results in absolute dependency on
the server since no work can be done without being connected to it. This de-
pendency aside, by keeping persons as a container on the server several design
issues, when dealing with distributed systems, are solved in a simple yet very
effective manner. These issues include:

Roaming profiles Whenever the user accesses his person he possesses the
same documents and dossiers regardless of which client machine he is
accessing the system from.

64 CHAPTER 7. DESIGN CONSIDERATIONS

Minimizing data loss If the connection between the client and the server
should suddenly be interrupted then the chance of data loss is minimal
since no important data resides on the client machine.

Thin clients Since all actual management of documents takes place on the
server the clients are simple visualizations of information requested from
the server and all user interaction is redirected to the server for processing.
This means that changes in business logic can be maintained centralized,
like when using a web based solution.

Semaphore protection Because it is required that the virtual person pos-
sesses a document in order to modify it, it is guaranteed that race condi-
tions – simultaneous modification of the same document – will not occur.

7.3 Modular Structure vs. Specific Technologies

When expressing a system design one has the option of choosing a modular
architecture based on replaceable components as opposed to a design optimized
for specific irreplaceable technologies. It all boils down to a question of perfor-
mance vs. future proof solutions. If specific technologies are dictated then it is
possible in the design to optimize the data flow and utilize specific performance
techniques of the chosen technologies. However, in doing so you limit the op-
tions of replacing, for instance, the database if better types of databases should
surface in the future.

Based on the opinion that future proof solutions outweigh optimized solu-
tions here and now, a less optimized modular design has been chosen. Technolo-
gies such as the database, cryptography, network protocols, and data exchange
formats have been made replaceable components in the design. For instance, in-
stead of basing the secure network communication design on the SOAP protocol
– which is a well-established standard for secure web transactions provided by
W3C – network communication has been abstracted to a more academic level
consisting of generalized interfaces to the cryptographic functions required for
(among others) establishing a SOAP-compatible communication protocol.

7.4 Database Design

In the spirit of modular design, the database structure outlined in the design
attempts to isolate different domain model entities (like documents and dossiers)
in separate database tables. Another approach could have been to let different
types of entities be represented in the same table but distinguished by a type
column. This results in fewer but wider database tables which leads to fewer
database table joins. This might increase performance when doing database
lookups, but on the other hand, it makes attribute extensions of existing entities
more of a nuisance since it eventually becomes difficult to manage increasingly
wider tables.

As a contrast the modular database design consisting of more tables is easily
maintainable and allows for basically unlimited extensions, for instance to the
types of document contents without cluttering the overall structure. Ultimately,
this is the main reason for the choice of a modular database structure.

7.5. CONTENTS MANAGEMENT 65

7.5 Contents Management

The contents management of the document system has been designed to be as
flexible and future proof as possible. This requires a dynamic database structure
as opposed to a more traditional static set of tables and fields. The dynamic
structure is realized at the price of performance since some degree of contents
processing and analysis has to be carried out when interacting with the database.
If performance is a priority several other design choices might have been more
relevant:

• Contents can be handled as a single value placed in a field in the database.
This approach does not allow discretized data mining of contents, and con-
sequently limits the possibilities of basing business processes on contents
input in the business logic.

• Contents can be analyzed and divided into elements of information. A
database structure consisting of hard coded tables and fields can then be
created to match the types of contents required.

Both of these alternatives may offer better performance but at the same time
they limit the possibilities of future expansions. We chose to opt for the future
proof dynamic contents management model, which explains the design decision
presented in the previous chapter.

7.6 Data Distribution Between Servers

For data exchange between two or more distributed systems the design dictates
the use of a ’mirror’ server. Instead of using message relaying by a third server
one might have designed a direct system to system communication service. How-
ever, the advantages of introducing a third party between the systems allows
for an easier centralized administration of the list of systems who are to coop-
erate. Furthermore, the individual EDMS only has to worry about establishing
and maintaining one secure external connection. These advantages aside, the
differences between the message relaying solution and the direct server to server
solution are minimal.

Chapter 8

Implementation

A prototype of the EDMS, based on the requirements and design specifications,
is implemented using current available technologies. How this is accomplished
will briefly be described in the next sections – some parts of the implementation
code will be shown to illustrate how it relates to the domain, the requirements,
and the design.

8.1 Technologies

In the following sections the specific technologies involved in the implementation
will be listed. As mentioned in the previous chapter, the design does not dictate
the use of specific technologies when implementing it. Since this implementation
is considered a proof-of-concept optimizations are not a priority. Therefore,
technologies have been selected based on their accessibility and the amount of
work required to use them for the implementation.

8.1.1 Platform and Development Language

Microsoft Windows, running on x86 compatible hardware, has been selected as
the target platform for both the clients and server. This is due to the fact that
Microsoft Windows is the most widely used operating system at the moment and
also the one most familiar to the authors. MFC (Microsoft Foundation Classes)
[27] in conjunction with C++ is used as the development language. This results
in non-portable code but allows for native graphical user interface (GUI) design
in the operating system.

Instead of implementing the architecture from scratch one might have used
a distributed system framework such as Microsoft .NET or J2EE from Sun Mi-
crosystems. However, the document system is considered an alternative to these
frameworks so from a prototyping point of view it would seem unsuitable to base
it on one of these existing solutions. Furthermore, the development methods
dictated by these frameworks are, in some aspects, in contrast to the ones dic-
tated by the document system design (e.g. they primarily focus on web based
solutions).

66

8.1. TECHNOLOGIES 67

8.1.2 Database and Interfacing

The selected database is the open source MySQL database, which is based
on the relational model described earlier during chapter 2.3.2. The database
runs on its own server and is accessed remotely through the MySQL ODBC
driver for Windows. The database layer derived implementation uses the MFC
technologies CDatabase and CRecordset in conjunction with SQL to access the
tables in the database through the ODBC driver.

8.1.3 Networking and Security

Networking is realized using TCP/IP socket programming in a derivation of the
communication layer. A standardized encryption toolkit, Microsoft CAPICOM,
is utilized for implementing security technology. RSA public key and 3DES
secret key encryption facilities – required for authentication and tunneling –
are provided by CAPICOM through the use of digital certificates. A simple

ENCODING TYPE DATA

Figure 8.1: Communication Layer Message Format

message format is implemented in the communication layer consisting of three
fields shown in figure 8.1. These messages are split, as indicated by figure
8.2, into three network packets when sent over the network using TCP/IP and
assembled when received. In short, ENCODING indicates whether the next

LENGTH ENCODING LENGTH TYPE LENGTH DATA

4 bytes n bytes 4 bytes n bytes 4 bytes n bytes

Packet 1 Packet 2 Packet 3

Figure 8.2: Communication Layer Packet Format

two fields are encrypted or unencrypted. TYPE indicates the nature of the
message, whether it is a request for authentication, tunneling or data. DATA

is an encrypted nonce for authentication, an encrypted session key for tunneling,
or some other data.

8.1.4 Data Exchange Format

XML schemas with (mostly) optional elements are used to generate XML docu-
ments, which contain the information to be sent between network tiers. The free
XML library MSXML4 by Microsoft is used for schema validation and XML doc-
ument generating/manipulation. Information requests are represented by XML
documents with empty elements. These elements are populated and the XML
document is returned as an answer to the request (shown in figure 8.3). This

68 CHAPTER 8. IMPLEMENTATION

ensures that only the requested information is sent as a response thereby mini-
mizing the bandwidth usage. When extending the schemas with new elements

<documentinformation>
<documentid>1000</documentid>
<creator></creator>
<time></time>
<contents></contents>
</documentinformation>

Information request (from client)

<documentinformation>
<documentid>1000</documentid>
<creator>John Smith</creator>
<time>21. july 2003</time>
<contents>
This is the contents of a document written by
John Smith on 21. july 2003. Here some kind of
contents is written.
</contents>
</documentinformation>

Information response (from server)

Figure 8.3: Information Request and Response Using XML Documents

(if the system is extended to provide new types of information) backwards com-
patibility can be ensured by keeping the new elements optional. Furthermore,
the use of this format allows for relatively easy two-way interaction with foreign
systems such as middleware.

8.1.5 Contents Management

XML is chosen as the language for contents specification due to the already
extensive use of it in the implementation. It became evident that XML would
fulfill all the contents requirements of the design while being wrapped in a
standardized package. XML schemas are used as a contents structure specifi-
cation language and an XML mapping layer has been implemented on top of
the MySQL database for discrete storage of the document contents represented
by XML documents. This means that a pseudo XML-enabled database (as de-
scribed in chapter 2.3.3 page 13) has been created in order to provide dynamic
handling of document contents.

8.1.6 Interaction Between Different Document Systems

The concept of the ’mirror’ message relay server, used for interaction between
systems, has not been implemented in the prototype. How to implement it at a
later date has been considered and the current prototype has been implemented
with this future extension in mind.

8.2 Examples

To illustrate how the requirements and design are realized in the implementation
certain parts of the implementation source code and principles will be shown in
this section in order to emphasize the close relationship that exist.

8.2.1 Commands

Since the ’Edit’ command, in particular, has been elaborated in the domain-
and requirements document it seems appropriate to show how this part of the
implementation relates to the original specifications:

8.2. EXAMPLES 69

1 DSDocumentID DSCommands::Edit(DSPersonID& perid, DSTime& time,

2 DSDocumentID& docid, DSContents& cont)

3 {

4 DSEvent event;

5 DSPerson per = DSPerson(m_pDatabase,perid);

6 DSDocument doc = DSDocument(m_pDatabase, docid);

7 DSDocument edt = DSDocument(m_pDatabase);

The needed objects are instantiated and bound to data in the database. It is
implicitly checked that the objects exist otherwise an error is thrown (applies
to the objects instantiated with an id).

8 Assert(per.Contains(docid),ERR_PER_DOES_NOT_CONTAIN_DOC);

9 Assert(per.Contains(doc.GetKeys(DSEdit)),ERR_PER_DOES_NOT_CONTAIN_CMD_KEY);

10 Assert((doc.m_strNewestEditionId == docid.GetEditionID()),ERR_CANNOT_EDIT_OLD_VERSION);

11 Assert((doc.m_strContentsType == cont.m_strContentsType &&

12 doc.m_strContentsVersion == cont.m_strContentsVersion),

13 ERR_CONT_TYPE_OR_VERSION_MISMATCH);

It is then asserted that: The document is owned by the user trying to perform
the edit, the person has permission to perform the edit on the document, the
document to be edited is the newest edition, and the contents type and version
match the document group contents type and version.

14 edt.m_id = doc.NextEditionID();

15 edt.m_creator = perid;

16 edt.m_type = doc.m_type;

17 edt.m_time = time;

18 edt.m_ancestor = doc.m_ancestor;

19 edt.m_strContentsType = doc.m_strContentsType;

20 edt.m_strContentsVersion = doc.m_strContentsVersion;

21 edt.m_strDesc = doc.m_strDesc;

22 edt.m_membership = doc.m_membership;

23 edt.Flush();

24 edt.SetContents(cont);

The new document edition is created and its attributes are set according to the
data provided.

25 event.m_executedBy = perid;

26 event.m_time = time;

27 event.m_id = edt.m_id;

28 event.strCmd = DSEdit;

29 doc.Add(event);

30
������ edt.m_id;

31 }

An event is set up and logged to reflect the command performed. Finally the
ID of the new document edition is returned to the caller. The context of the
edit command is available in appendix H.1 page 186.

8.2.2 Contents Management

Figure 8.4 displays the graphical interpretation of a contents specification found
in appendix H.2 page 189. As indicated by the figure, expressing a contents type
is reduced to creating and connecting boxes as well as dictating the structure
origin of data by adding attributes (@) to appropriate nodes. The data origin
is described by the parent nodes, i.e. they hold attributes describing the data
table name while the name of the children nodes describe the field name in the
particular table. The database layer can process an XML schema and return
the contents as an XML document.

7
0

C
H

A
P

T
E

R
8
.

IM
P

L
E

M
E

N
T
A
T

IO
N

contents

� � � �� �

personinfo

� � � �� �

version_01

� �� 	
 � � � � � � �� 	
 � � � � � � � � � � �

name

��
 � � � � � � � � � � �
address

��
 � � � � � � � �� � � � � �

version_02

� �� 	
 � � � � � � �� 	
 � � � � � � � � � � �

name
� �� 	
 � � � � � � �� 	
 � � � � � � � � � � �

firstname

��
 � � � � � � � �

lastname

��
 � � � � � � �

address

��
 � � � � � � � �� � � � � �

invoice

F
ig

u
re

8
.4

:
E

x
a
m

p
le

L
ay

o
u
t

o
f
a

C
o
n
ten

ts
T

y
p
e

S
p
ecifi

ed
in

X
M

L
S
ch

em
a

Chapter 9

Prototype Evaluation

Having completed the development steps from domain analysis to implemen-
tation it is now possible to analyze the overall result of the domain oriented
approach.

9.1 Business Process Building Blocks

The domain analysis of paper document management has resulted in an ontology
and a set of commands that can be used to manipulate documents and dossiers
within the domain. We believe that these commands fully cover all the basic
types of document and dossier manipulations. Consequently, they constitute the
fundamental building blocks of paper document oriented business processes.

Example: A meeting between executives takes place in a company
where the secretary of one of the executives takes notes. After the
meeting the secretary creates a clean copy of the notes, gives the
clean copy to her boss for approval and signature. The boss reads
the clean copy, signs it, and returns it to the secretary. She hands
the signed clean copy over to her intern with instructions to create
and deliver a copy to each participant at the meeting and then return
the original to her. After this has been done she archives the clean
copy in a folder, which is then placed in the company archive.

This business process involves three persons and when they act out the busi-
ness process using the document management terminology the required building
blocks become evident:

Susan the Secretary: I create a document containing my notes
during the meeting. Later I edit my notes into a clean copy which I
send to my boss.

Bob the Boss: I receive a clean copy from my secretary which I
read and sign. Then I send it back to my secretary for distribution
to the other meeting participants.

Susan the Secretary: After receiving the signed clean copy from
my boss I send it to my intern for distribution to the other meeting
participants.

71

72 CHAPTER 9. PROTOTYPE EVALUATION

Ian the Intern: After receiving the signed clean copy from Susan,
I make a copy for each participant at the meeting. Then I send one
copy to each of them. Finally, I send the original signed clean copy
back to Susan.

Susan the Secretary: After the clean copy is returned to me by
my intern, I archive it. First by putting it in a dossier, then by
putting the dossier in our directory.

Based on this role playing the building blocks can be isolated from the surround-
ing narrative after which only the document flow and business process building
blocks remain (shown in figure 9.1). This demonstrates that a fairly common pa-

Susan

1. CreateDoc
2. Edit

Bob

4. Sign

Susan Ian

7. Copy
8. Send (the copy)

10. PutDocInDos
11. PutDocInDir

Susan

3. Send 5. Send 6. Send 9. Send

Participants

Figure 9.1: Business Process Expressed in Document Commands

per based business process can be expressed in a concise understandable manner
using the fundamental building blocks derived in the domain analysis. Because
the digital equivalence of each building block has been implemented, the busi-
ness process can be digitized and kept unaltered in the EDMS.

Once the business processes have been digitized certain advantages of using
EDMS become apparent. This may lead to a wish for further business process
re-engineering after an instantiated system has been running for a while. In
the digital document domain certain tasks – that would take up considerable
amounts of time in the paper document domain – can be carried out in seconds
by the click of a button.

When studying the previously shown business process it is reasonable to
assume that the intern was involved only because the secretary did not have
the time to do the copying and distribution herself. Digitally, this task can now
be accomplished instantaneously, which effectively eliminates the need for the
intern. Based on this digital advantage, it is possible to re-engineer the business
process into a different constellation of document commands, illustrated in figure
9.2. The new business process features less cross communication and fewer
persons making it overall more efficient than the original.

9.2. UNEXPECTED ADVANTAGES 73

Susan

1. CreateDoc
2. Edit

Bob

4. Sign

Susan

7. Copy
9. PutDocInDos
10. PutDosInDir

3. Send 5. Send

Participants

8. Send (copy)

Figure 9.2: Re-Engineered Business Process

9.2 Unexpected Advantages

By choosing to imitate the actual world domain in the EDMS certain advantages
have surfaced which were not anticipated when the work began. Most were
minor benefits except the ones which appeared in the wake of modelling persons
as server side containers of documents. This decision indirectly addressed two
major concurrency issues of shared information systems [4].

When several persons are able to access centralized information asynchro-
nously, the situation where they attempt to modify the same information at the
same time is likely to occur. This scenario is effectively prevented by the restric-
tion that a document or dossier must be in the possession of the person who
wishes to modify it. This restriction indirectly acts as a semaphore protection of
documents and dossiers, which prevents conflicting simultaneous modifications
from occurring.

Another positive consequence of introducing the server side person container
is that it allows for introduction of roaming profiles. That is, the server keeps
track of what is in your possession regardless of where you are accessing the sys-
tem from. This also prevents loss of data if the client machine is stolen/broken
as nothing important with regards to the EDMS resides on it.

9.3 Debug Client

In order to ease debugging of the software system a client was programmed
exposing all commands and all entities in the system. Screenshots of the software
is available in figure 9.3 and 9.3.

74 CHAPTER 9. PROTOTYPE EVALUATION

Figure 9.3: Debug Client – Overview

Figure 9.4: Debug Client – Document

Chapter 10

Conclusion

The previous chapters cooperates the initial thesis conjectures by verifying that
it is indeed possible to

• create a model of the general paper document domain,

• computerize and extend the model where the digital equivalences are iden-
tified and used,

• design and create a general distributed document system based on the
computerized model by combining it with existing technologies and soft-
ware packages.

The domain model resulted in an ontology and a finite number of commands
that can be performed on a document in the actual world. The commands
constitute a basis of common denominators, which all paper document oriented
business processes can be broken into (as demonstrated in chapter 9 page 71).
Consequently it is fair to assume that the model can be tailored to support any
paper document domain. We will carry out a practical test of this assumption
in the subsequent part of the report.

Computerizing the model by finding equivalences between the actual world
and the digital world was a relative simple and intuitive process. The model
extension was also manageable as it was obvious which features would benefit
the user. Furthermore, it was determined what to prevent and support by iden-
tifying the undesirable human behavior in the domain development. Again the
model resulted in a finite number of commands that, though being extended,
appreciated the domain, hence used and respected its terminology. There were
unexpected advantages when adopting the domain, the major ones being pro-
file roaming and prevention of conflicting simultaneous document modifications
when using virtual ’persons’.

Based on the design considerations and the requirements, the prototype
implementation was straight-forward and resulted in an EDMS employing the
paper document domain terminology and principles. This provided a platform
API consisting of an intuitive scripting language (the document commands)
capable of expressing complex business processes in a simple manner. As a
consequence of the methodological development approach, the iterations of the
implementation process were kept at a minimum.

75

76 CHAPTER 10. CONCLUSION

The original paper domain has been extended through computerization to
take advantage of the digital domain. An example of this is logging of executed
document commands which automatically provides a detailed event history of
every document in the system. Furthermore, the ’keys’ concept was adopted and
extended to cover individual document commands instead of entire documents.
This provided the EDMS with a flexible security layer making it possible to
support a wide range of security roles.

Integrating the EDMS core requirements with the technologies of a modern
distributed system architecture posed no real challenges – except, of course,
minor startup difficulties with regards to the chosen technologies. As planned,
all data exchange is encapsulated in XML and placed in a relational database,
which implicitly makes it ready for information exchange with foreign systems
and future improvements. Transactions and user authentication have been made
secure using certified encryption packages in the spirit of general encryption
principles.

To summarize, a prototype of an EDMS development platform has been
designed and implemented. At the EDMS level it supports document version-
ing, structuring, and manipulating. At the distributed system level it supports
multiple users with individual access rights, secure transactions, data mining,
information distribution, future proof data encapsulation and storing. All of
these concepts are placed beneath a domain oriented terminology which we
believe speaks the language of the end-users.

Part III

MEDICAL RECORD
SYSTEM

77

Chapter 11

Introduction

This part of the Master Thesis carries out a test of the electronic document
management system (EDMS) framework presented earlier. It will be based on
the development methods outlined by the domain- and requirements descrip-
tions of the world of documents. Furthermore, it will use the implementation
of the general document system as a platform for realizing a domain specific
document management system.

We have decided to focus on the domain of medical records. As of this
writing, there are several ongoing initiatives to attempt to digitize the domain
and at the same time shift existing business processes in new directions. During
this introduction we will present the current state of electronic medical record
(EMR) system development in Denmark, as we see it, and describe our strategy
for developing a sub-module of such a system.

11.1 Brief History of Danish EMR

Initial work on nationwide introduction of EMR in Denmark kicked off in 1996
when the Ministry of Health published a report [22] in which an implementation
strategy was outlined and development projects were funded. To monitor, as-
sist, and evaluate these and future projects the board ’EPJ-Observatoriet’ was
established and has published yearly status reports since 1999.

In 1999 a new strategy report [23] was published by the Ministry of Health.
This report redefined the concept of EMR to not only include the traditional
notes of medical records, but also all other medical information about a given
patient (such as medical images, medicine, etc). The report also introduced the
idea of re-engineering existing medical record business processes into diagnose-
oriented documentation rather than contact-oriented. Contact-oriented is still
the most commonly used style of paper based medical record documentation.

Previously, EMRs had simply been unstructured digitized versions of the
paper based medical records, also known as 1st generation EMR systems. It
was now being suggested to design 2nd generation systems where information
was sub-divided into categories and based on diagnose-oriented documentation.
Work on a nationwide basic structure and terminology for 2nd generation EMR
systems was initiated and eventually resulted in the G-EPJ specification in 2001
[34, 19, 13, 36].

79

80 CHAPTER 11. INTRODUCTION

Finally, in 2003 the National IT-strategy for Danish Health Care 2003-2007
[25] was published. This report dictates that all Danish hospitals shall introduce
EMRs based on the G-EPJ specification by the end of 2005.

11.2 Current Status of Development

At the moment approximately 13% of all Danish hospitals beds are covered by
EMR systems – some of which are 1st generation – and at the current pace of
development total coverage by the end of 2005 seems unrealistic [12]. One of the
reasons for this delay is that the systems are being developed decentralized and
independently of each other by different hospital regions with the only common
denominator being the G-EPJ specification. Furthermore, there are different
modules within the EMR systems, such as the note and medicine modules,
which are being developed in parallel by different companies.

Decentralized development is a good idea as it prevents monopolization,
which might stall future improvements and result in high prices. However,
because of the decentralization a considerable overhead is generated as it takes
a lot of coordination – both politically and practically – before the individual
components of the system can be streamlined and pieced together.

To minimize this administrative overhead most of the EMR development
projects have decided that there is a need for an integration platform on which
the different parts of the EMR systems can be built. Once an integration plat-
form has been decided upon, few doubts remain as to how the different EMR
system parts should interface.

At the moment, two major integration platforms are being used in different
parts of the country. In Aarhus Amt a completely new integration platform, the
Columna Open Architecture [38], has been developed based on the G-EPJ spec-
ification. In Hovedstadsregionen’s Sygehusfællesskab (H:S) a well-established
integration platform, DHE [15] has been decided upon.

The principles behind these are essentially the same. They provide a database
structure and interface clearly defining where any specific type of medical in-
formation belongs. All data generated by the EMR modules are stored in the
database and exchanged via the interface, i.e. the modules can use each oth-
ers data. Since our main contact has been with H:S the focus will be on their
approach to EMR development.

Amager Hospital, which is part of H:S, is currently being used for prototyping
modules of the H:S EMR. As mentioned, their approach is to use DHE as
integration platform and build individual system modules which interface to
this platform. DHE also serves as a bridge to several legacy systems, such as
’Grønt System’, which is currently being used in H:S to store general personal
information about patients. The goal is to design a single web based portal,
which provides seamless access to the different parts of the EMR. A web based
client solution has been chosen as it was deemed familiar to the average user
while being easy to maintain.

11.3. OUR APPROACH 81

11.3 Our Approach

The main difference between our approach and the current initiatives being
taken, is the intention of realizing a future proof 1st generation EMR system,
that can be turned into a 2nd generation EMR system eventually. We believe
that the ’roll-out’ of a completely digitized working environment is difficult
enough for the users without introducing new ways of using the medical record.
Instead the 2nd generation principles should be introduced later, when the users
are familiar with computer interaction.

We intend to use the terms and principles outlined by the fundamental doc-
ument system to describe and adopt the current domain of medical record man-
agement at Danish hospitals. The expectations are that the terminology of the
document system will make it easy to describe the document-oriented parts of
medical record management in a simple, structured, and understandable fash-
ion. By following this design pattern we also expect the requirements of the 1st
generation EMR system to be relatively straight forward and in correspondence
with the domain intrinsics.

Finally we expect that most of the implementation time will be spent on
developing a client side graphical user interface. Realizing the business processes
on the server side should simply be a matter of adopting the business process
requirements exactly as written. Once the system has been implemented we will
consider how the step towards a 2nd generation EMR system could be taken
and briefly evaluate the complexity of this step.

Chapter 12

Domain Development

A domain analysis of the intrinsics and business processes of Danish hospitals
is carried out as an extension of the domain model of paper document manage-
ment presented earlier. To match the scope of this Master Thesis, the domain
acquisition has been limited to a subset of a greater truth. Consequently, the
domain description will focus only on central aspects of the business processes
involving actual management and whereabouts of medical records.

The general issues of document management addressed earlier will be con-
sidered solved and extended upon in this domain development. Whenever ap-
propriate, terms and concepts from the document domain are used in order
to emphasize that the medical record is a specialization of the document do-
main. Section 12.12 page 93 holds a glossary which describes specific terms and
concepts presented during the domain development.

12.1 Synopsis

The domain development presents a model of generalized medical record man-
agement in a Danish hospital. It attempts to describe the behavior of the
hospital staff when managing medical records. This includes defining a hospital
with a number of centers with departments, outlining the manipulation and
structuring of and access to the medical records as well as describing (a subset
of) the actual documents.

12.2 Stakeholders

The stakeholders of the domain [35, 37] are listed and described briefly in this
section. They are structured in context of the stakeholder structure of the
general document management domain. By performing such categorization their
direct relationship to the core document management system becomes evident
from the beginning.

12.2.1 Global Administration

• Ministry of the Interior Maintains a centralized register of all indi-
viduals in the country. When a person is born or a foreigner becomes a

82

12.2. STAKEHOLDERS 83

Danish citizen he is assigned a social security number by this ministry.

• The local authorities Responsible for erecting the buildings when a
decision has been made to build a new hospital.

12.2.2 Local Administration

• Internal services Manages the locks on doors and filing cabinets within
the hospital. Is also responsible for establishing new locations by setting
up new desks, shelves, and cabinets.

• IT department Is responsible for IT-infrastructure and stability of IT
equipment within the hospital.

12.2.3 Person

• Managing director Person responsible for a hospital. The highest au-
thority of a hospital.

• Managing center director Person responsible for a center of a hospital.
The highest authority of a center.

• Head of department Person responsible for running a department of a
center.

• Doctor A person with a master’s degree in medicine.

- Specialist A doctor working with a clinical specialty such as a po-
diatrist, dermatologist, etc.

∗ Consultant A doctor at a hospital who has a share in the re-
sponsibility of running the department in which he is employed.

∗ Resident A specialist employed in a department at a hospital.

∗ General specialist A specialist working with a specialty in his
own practice.

∗ Scientist A doctor dedicated to researching. Normally all doc-
tors must research and publish articles, so this particular cate-
gory overlaps the other categories of doctors.

– Junior resident A younger, not permanently employed, doctor.
Part of the specialist education.

– General practitioner A doctor with his own practice. A general
practitioner can be consulted without reference. His task is to assess
whether a patient requires further treatment elsewhere in the health
services, or if he can treat the illness himself, or if nothing further is
to be done. The general practitioner will only treat simple illnesses
himself.

• Dentist A clinician specialized in dental care. Dentists perform preventive
dental care and sometimes certain forms of patient treatment, such as
examinations, tooth cleaning and filling.

• Psychologist A clinician specialized in the human psyche. Within hos-
pitals psychologists treat mental illnesses.

84 CHAPTER 12. DOMAIN DEVELOPMENT

• Midwife A clinician specialized in pregnancy and delivery. Their work
with women takes place before, during, and after delivery, and their tasks
involve pregnancy examinations, delivery preparation, obstetric aid, ma-
ternity visits, etc.

• Nursing staff Person whose main function is the daily nursing of patients.

– Departmental sister Nurse managing the administrative aspects
of nursing services at a clinic or in a department.

– Nurse A person responsible for treatment and medication in ac-
cordance with what has been outlined by clinicians. They are also
responsible for the daily care and nursing of citizens.

– Nursing aide An educated social worker. Normally responsible for
performing simple care and nursing tasks put forward by a nurse.

• Pharmacist A person knowledgeable about medicine. Typically he works
in the medicine industry or at a pharmacy.

• Physiotherapist Works with treatment and recovering of muscles, sinews,
and bones of the ill and injured.

• Medical secretary Secretary assisting doctors in writing medical records
and other routine tasks.

• Social worker A person creating social changes through guidance, estab-
lishment, and planning of social arrangements. In other words, a person
who counsels people with social difficulties or problems.

• Hospital porter A person with the responsibility of transporting patients
from one place to another inside a hospital.

• Laboratory technician A person who works at a hospital laboratory
performing probing and analytic/diagnostic work.

12.2.4 Third Party

• Citizen Common name for the persons in the domain. Normally this
term refers to a Danish citizen by law, but we will expand upon this by
letting it include immigrants, illegal immigrants, tourists, etc.

• Patient A person currently being treated for an illness somewhere in the
health services.

12.3 Stakeholder Subset

To limit the scope of the domain analysis, only a subset of the listed stakehold-
ers, that is, doctors, nurses, medical secretaries and the IT department, will be
focused upon. These are the primary stakeholders in direct contact with medi-
cal records. The rest of the stakeholders have been introduced only to provide
an idea of how these four central stakeholders relate to the rest of the hospital
organization. Consequently, the other stakeholders will not be elaborated fur-
ther.

12.4. INTERVIEWS 85

12.4 Interviews

The intrinsics, business processes, and other aspects of the domain have been
collected through interviews with a number of people representing each of the
stakeholders in the stakeholder subset. The complete domain description has
been deducted iteratively by gathering information through conversation with
the stakeholders, structuring the information, and sending it back for verifica-
tion. Furthermore, anonymous medical records from Gentofte Hospital, Amager
Hospital, and Herning Hospital have been used to examine the typical layout of
contents in medical records.

Name Stakeholder Occupation

Thomas Dalsgaard Clausen Doctor Resident, Medical dept., Amager Hospital

Kasper Weibel Nielsen IT-dept. IT-architect, IT-dept., Rigshospitalet

Sue Mattoon IT-dept. Systems Consultant, IT-dept., Amager Hospital

Merete Lelund Nurse Glostrup Amts Sygehus, acute neuro. dep. 28

Mette Andersen Nurse Temp Nurse Rigshospitalet, Gentofte

Camilla Christensen Nurse (student) Former porter, Odense Hospital, Neuro. dep.

Table 12.1: Interviewed Stakeholders

12.5 Intrinsics

The world of Danish hospitals can be described as a number of hospitals (places)
in which there are

• doctors, nurses, patients etc. (persons).

• conference-, patient-, staff rooms, hallways etc. (locations).

• carts with medical records in each department and a central archive etc.
(directory).

A medical record can be interpreted as a dossier with a unique identification
– a social security number – containing a number of documents and dossiers.
The medical record is governed by the same basic rules as general documents
regarding manipulation and they will not be repeated here. Instead, the reader
is encouraged to consult the domain intrinsics for the general document system
in 4.4 page 23.

12.5.1 Contents of Medical Record Documents

Determining and defining the contents of all document types in a hospital is a
time consuming process, and it will therefore not be conducted in its entirety
in the context of this Master Thesis. Instead one type of document, a medical
record note, will be shown as a generalized example of document contents and
layout. Medical record notes are created by filling out templates as shown in
figure 12.1. To the untrained eye it is difficult to separate preprinting from

86 CHAPTER 12. DOMAIN DEVELOPMENT

(PATIENTDATA)

CPR-nr:

Name:

240350-1233

John Smith

CONT. NO. 1

KAS GLOSTRUP

KAS HERLEV

DATE/YEAR

21.06.02 Acute admission medical department F-521

52 year old male admitted through casualty department under diagnosis of
hypertensio arterialis.

Allergies
No known

Previous admissions
Never admitted before.

....

....

Figure 12.1: Note Page of a Medical Record

information added by the hospital staff. However, it is evident that the note
consists of four boxes each with their contents. Through the years a number
of general guidelines for the structure of contents in medical record notes have
been established. Examples of these can be found in [29] and [11].

12.5.2 The Structure of Medical Records

The structure of a medical record [17] may differ from hospital to hospital, and
even between departments within the same hospital. The parameters changing
are mostly the title, number, and color of categories inside a medical record.
An example of a medical record structure is described in the following:

1
������ mrlayout =

2
�����

3 ��	�

4 Dossier,Color,SocialSecurityNo,

5 Name,Address,NextOfKin,BedNo,CAVE,

6

7 DossierDescription == MedRec | Continuation | Blood

8 | Rontgen | NurseJournal | Medicine | _,

9 MedRec = SocialSecurityNo × Name × Address

10 × NextOfKin × BedNo × CAVE

11
����

12 obs_Description : Dossier→ DossierDescription,

13 obs_Dossiers : Dossier→ Dossier-set,

14 obs_Color : Dossier→ Color

15
�����

16 ∀ dos:Dossier • obs_Description(dos) = MedRec⇒ (

17
���� obs_Dossiers(dos) = 5 ∧

18 (∃! dos1:Dossier • dos1 ∈ obs_Dossiers(dos) ∧
19 obs_Description(dos1) = Blood) ∧
20 (∃! dos2:Dossier • dos2 ∈ obs_Dossiers(dos) ∧
21 obs_Description(dos2) = Rontgen) ∧
22 (∃! dos3:Dossier • dos3 ∈ obs_Dossiers(dos) ∧
23 obs_Description(dos3) = NurseJournal) ∧

12.6. BUSINESS PROCESSES 87

24 (∃! dos4:Dossier • dos4 ∈ obs_Dossiers(dos) ∧
25 obs_Description(dos4) = Medicine) ∧
26 (∃! dos5:Dossier • dos5 ∈ obs_Dossiers(dos) ∧
27 obs_Description(dos5) = Continuation)

28)

29
�����

30 ∀ dos1,dos2:Dossier • obs_Description(dos1) 6= MedRec ∧
31 obs_Description(dos2) 6= MedRec⇒ (

32 (obs_Description(dos1) = obs_Description(dos2)⇒
33 obs_Color(dos1) = obs_Color(dos2)) ∧
34 (obs_Description(dos1) 6= obs_Description(dos2)⇒
35 obs_Color(dos1) = obs_Color(dos2))

36)

37

���

The specification dictates certain information on the outer dossier and specific
types of dossiers within this outer dossier – colorized categories dividing types
of medical information. It is a generalization of the medical record structure,
and serves primarily as an example.

This domain analysis will be centered around the continuation dossier of the
medical record. This category will be simplified to consisting of four different
types of notes: admission notes, ward round notes, acute notes, and external
notes which are all elaborated in the description of the business processes and
in the glossary.

12.6 Business Processes

This section focuses on central aspects of medical records and the problems
which surround them. The clinical motivation for creating the medical infor-
mation and methods of using the information by the hospital staff is left out of
the domain analysis.

1. The most widely used type of medical record structure, and therefore also
the focus of this Master Thesis, is the chronological ordering of medi-
cal notes as opposed to diagnose specific ordering. The pages inside the
medical records are placed in chronological order within their respective
category. Although a visit to a hospital might involve treatment of several
different illnesses they are not documented separately. Instead they ap-
pear as an intertwined group of notes in the medical record chronologically
sorted based on the date and time the treatments were carried out. This
means that a single page of a medical record might contain notes covering
the treatment of two or more different illnesses.

2. When a member of the hospital staff needs to access a specific medical
record they can search for it in a given department (in the staff room all
medical records for the patients admitted to the particular department
are stored unsorted) or try to locate it in the centralized archive (sorted
by social security number). When the medical record is picked up by
someone it is not physically accessible to others, but if correct procedures
are followed the whereabouts of the removed record is registered and can
be retrieved.

3. When a patient is admitted, his medical record (if it exists) is retrieved
from the archives. If time is of the essence or it could not be retrieved

88 CHAPTER 12. DOMAIN DEVELOPMENT

for other reasons, a new medical record is created. The contents of the
newly created record is later merged into the archived medical record if
such exists. When a patient is admitted, an admission note is created by
the doctor and added to the continuation category in the medical record
by the secretary.

4. When the medical record for an admitted person is not used by the hospital
staff, it is stored in a locked medical record cart in the staff room in the
department to which the patient is attached. This prevents immediate
access to the confidential medical records.

5. The contents of the medical record should always be available in a single
dossier and documents belonging to it should therefore not be removed
and placed elsewhere permanently.

6. When a patient is transferred to another department or taken to a medical
examination or test the medical record is accompanied. Medical exami-
nations or tests can in special cases be conducted with the absence of the
medical record. It is required by the porter and the nurse attached to
the patient to make sure that the record is sent along with the patient if
necessary.

7. The information generated by examinations and tests such as blood tests
or ECGs are added to the medical record when results are available. This
could take minutes or weeks depending on the nature of the examination
or test. When the information is available it has to be approved and
tagged as read by the attending doctor, before it is placed under the
correct category. It is up to the doctor who receives and approves the
information to place it under the correct category of the medical record.
As an alternative, it can be placed as page one in the record in order for
the next staff member to see it and, if possible, place the new information
correctly.

8. After a patient is X-ray’ed, MR or CT scanned, the pictures are stored in a
digital medical image archive with the social security number as reference.
This archive is accessible throughout the hospital. The medical record
contains for each subcategory a table of contents over the available images
as well as descriptions of the images and what medical conclusions could
be drawn from them.

9. The key points of the result of any test or examination are added to the
medical record under the continuation category as an external note.

10. A medical conference is conducted each morning where medical problems
are discussed among several doctors. Matters of dispute or doubt are
discussed in order to deduct the correct diagnosis. Medical test results
are often presented and diagnosed in this forum.

11. Before ward rounds, a meeting is conducted between a single nurse from
a specific department, different doctors, and possibly medical students.
During this meeting each medical record of the department is scrutinized.
The nurse points out important observations from the nurse journal cate-
gory which may help the doctor select the most fitting medical approach.

12.7. SUPPORTING TECHNOLOGIES 89

The amount of time spent on these meetings vary greatly between depart-
ments and hospitals.

12. During ward rounds the doctor is accompanied by the record cart. He
records observations and changes for the particular patient using a dicta-
phone and occasionally adds information in writing to the medical record.

13. After ward rounds the tapes from the dictaphone and the record cart
with all the medical records are sent to the medical secretary. The new
information from the tapes and clean copies of the written notes are added
to the medical records under the continuation category as a ward round
note. Afterwards, the cart is returned to the staff room.

14. When a patient is attended by a doctor without prior agreement, i.e an
emergency occurs, the result of the examination and/or treatment is added
to the medical record under the continuation category as an acute note.

15. A general information sheet regarding blood pressure, temperatures and
fluids is often available at the foot of a patients bed. This sheet is even-
tually added to the medical record as documentation. Another way often
used to maintain this information is for the nursing staff to enter the infor-
mation directly into the medical record under the nurse journal category
– which is reserved for nurse observations.

16. When a patient is discharged the medical record is placed in the archive.

17. The private practitioner of a patient may request information about the
treatment of his patient. The hospital staff extracts the essentials from
the archived medical record and mails it.

12.7 Supporting Technologies

The medical record domain extends the general document domain with the
following supporting technologies:

• Magnetic Resonance (MR) scanner is a way to perform tomography – a
non-invasive imaging tool for medical examination purposes.

• Computed Tomography (CT) scanner is a way to perform tomography –
a non-invasive imaging tool for medical examination purposes.

• Röntgen (X-Ray) is a more primitive non-invasive imaging tool for medical
examination purposes.

• An electrocardiogram (ECG) is a way to monitor the heart cycle of a
patient. The resulting graphs are placed in the medical record.

• An electroencephalogram (EEG) is a way to monitor brain activity of a
patient. The resulting graphs are placed in the medical record.

• Stethoscope, sphygmo-manometer (blood pressure gauge) and thermome-
ter are used to determine the vitals of a given patient.

• A dictaphone is used to store verbal information when handling patients.

90 CHAPTER 12. DOMAIN DEVELOPMENT

• A light wall is used to display X-ray images if hard copies.

• A projector is used to display X-ray images if digital.

12.8 Management and Organization

Figure 12.2 illustrates the organization and hierarchy of a generic hospital. Some
parts of the organization (marked with gray) deals with administration of hos-
pital resources only, while others are involved with actual care of patients (the
hospital centres). The latter group of the organization are of most interest
with regards to this domain analysis, as they are the ones managing medical
records (the IT department is included because of its responsibility in keeping
necessary computer systems running). Because of this the administration will
be considered a third party stakeholder, and as such will not be elaborated
further in terms of business processes and access rights to medical records. A

NurseDoctor

Center management

Hospital management

Center dept. management Economics dept.

Education dept.

Personnel dept.

IT dept.

Medical secretary

Figure 12.2: Hospital Management Hierarchy

hospital is divided into centers each specializing in particular areas of health
treatment, such as heart disease and pregnancy, and each with their own inde-
pendent administration. A center consists of departments dealing with specific
examinations and care within the area of the center, e.g. a pregnancy cen-
ter would have departments dealing with fertility and gynecology, respectively.
Within a department a management coordinates doctors, nurses, and medical
secretaries who work alongside in treating patients and manipulating medical
records. Each type of employee, however, answers to separate parts of the de-
partment management.

12.9 Rules and Regulations

The rules and regulations for the domain of medical records are:

• Security is difficult to enforce, the hospital being a relatively public place.
It shall be emphasized, though, that it is desirable to minimize access to
the patients, while still allowing next of kin to visit. The hospital has a
responsibility of taking care of the well-being of its patients by preventing
intruders from disturbing patients.

12.10. HUMAN BEHAVIOR 91

• The medical records are confidential and should not be accessible to unau-
thorized personnel. Special laws apply when dealing with personal infor-
mation in the health care sector. These laws are described in [24].

• The medical record of an admitted patient is stored in the local depart-
ment. When discharged, the record is stored in a centralized archive for
later retrieval if necessary.

• It is required, that the information written in the medical record can be
traced back to the author, i.e. all information is tagged with a person id
and date.

• It is required by the nurses and doctors to maintain structural information
disciplines – all medical information for a given patient is compiled in a
single dossier (his medical record) to ensure that all information regarding
the patient is kept together.

• During the night all information added to a medical record by a doctor
must be drafts in writing (instead of dictaphone recordings). The infor-
mation will not be added by the secretary before the next day and keeping
information in writing during the night will ensure easy access to the in-
formation if it is needed during this period.

• Nurses are only allowed to add information to the medical records in the
category reserved for them (the nurse journal).

• It is required by the hospital to provide a copy of the medical record upon
request from the patient – a minor fee can be charged.

• Access to medical records is not restricted with regards to doctors, nurses,
and medical secretaries as they are all subject to confidentiality restric-
tions. However, since doctors are obligated to produce scientific publica-
tions there is sometimes an interest in keeping results of research confi-
dential until publications have been made. Because of this, information
might not be shared across departments unless it is vital for the treatment
of a specific patient.

• The IT department is not allowed to view the contents of medical records.
They are, however, responsible for administration and maintenance of the
IT-systems which assist in creating and manipulating medical records – if
such exist within the hospital.

12.10 Human Behavior

Extending the human behavior in the domain of medical records yields

• The hospital being a busy place, there is often not time to maintain a well-
structured medical record. This can lead to error prone work processes.

• There is a chance of misplacing medical records or a particular document
from a medical record as well as placing a piece of information in the
wrong one.

92 CHAPTER 12. DOMAIN DEVELOPMENT

• The tables of contents in the medical record listing the medical examina-
tions such as medical images are not updated regularly.

12.11 A Systematic Narrative

Words that are emphasized can be found in the glossary page 93:

1. A hospital consists of

(a) an archive,

(b) a number of centers consisting of one or more departments,

(c) an administration.

2. A department consists of

(a) one or more staff members,

(b) a single medical record cart,

(c) zero or more patients,

(d) one or more patient rooms,

(e) a single staff room.

3. When a person is admitted to a hospital his medical record is retrieved
from the archive if it exists – otherwise a new medical record is created.

4. A medical record contains all medical information for a single person gen-
erated at the particular hospital.

5. A medical record is structured according to the specification in section
12.5.2 page 86.

6. The structure of the medical records is not altered, nor are complete cat-
egories with contents removed from the medical record.

7. A medical record cart belonging to department A contains the medical
records of the patients of department A.

8. The medical record cart is locked and stored in the department staff room
when not used. It is in use when

(a) it accompanies the doctor(s) and nurse(s) during ward rounds.

(b) it is in the hands of the medical secretary, who adds new information
to the medical records dictated by the doctor.

9. A single medical record can be removed from the cart because

(a) it is placed in the archive (a patient is discharged).

(b) it accompanies a patient requiring some kind of medical examination
or test.

(c) the patient is transferred to another department (the record is placed
in a new department cart).

12.12. GLOSSARY 93

(d) the medical secretary is adding information to it.

(e) it is temporarily used for reference by a staff member.

10. The type of information created by a doctor which can be added to a
medical record consists of

(a) an admission note created when a person is admitted to the hospital
(category continuation).

(b) a ward round note created during ward rounds (category continua-
tion).

(c) an external note created by doctors from other departments or a
summary of an external examination or test (category continuation).

(d) an acute note created when an emergency occurs and is documented
(category continuation).

(e) information created externally such as medical images, diagrams, test
results etc.

12.12 Glossary

Acute note A filled out note template describing a non-scheduled treatment of
a patient. This could for example be the administering of special medicine
to treat an acute condition. The exact time at which the treatment was
performed is also written on the note.

Admission note A filled out note template containing the anamnesis and ini-
tial observations of a patient’s condition at time of admission. The anam-
nesis is composed of individually titled sections describing allergies, former
admissions, dispositions, expositions, current state, state of other organs,
medicine, addictions, and social status. This information is deducted by
interviewing the patient or next of kin. At the end of the admission note
the doctor writes his own objective observations of the current state of the
patient.

Archive A centralized archive that contains all medical records of discharged
patients. Often placed in the basement of the hospital.

Administration An abstract entity dealing with administration, logistics and
maintenance.

Category The medical record is divided into a number of categories each re-
served for a special type of medical information. The names and numbers
of categories vary between departments. The category continuation is as-
sumed always present, however.

CAVE A field in the medical record that reflects special things to consider
before treatment, such as allergies.

Center A hospital consists of a number of centers each with its own adminis-
tration and specialty.

94 CHAPTER 12. DOMAIN DEVELOPMENT

Continuation A collection of admission notes, ward round notes, acute notes,
and external notes describing the examinations and treatments of a given
patient. Each note has a page number so that the continuation can be
read chronologically.

Department A hospital center consists of a number of departments each with
its own administration and specialty.

Doctor A stakeholder with a master’s degree in medicine.

External note A filled out note template which is part of the continuation of a
medical record, but cannot be classified as being either an admission note,
an acute note, or a ward round note. These notes may contain the same
sections as a ward round note. Furthermore, they may contain sections
specifically describing the results of an examination carried out on the
patient – such as the results of a CT-scan or an X-ray.

Hospital A place where medical services and treatments are provided by doc-
tors and nurses, consisting of an archive, a number of centers and an
administration.

IT department Is responsible for IT-infrastructure and stability of IT equip-
ment within the hospital.

Medical image an image from an MR, CT or X-ray scanner.

Medical record A compilation of medical information about a patient. It is
divided into categories. Each admitted patient has a medical record.

Medical record cart A easily transportable cart containing medical records.

Medical secretary A secretary assisting doctors in writing medical records
among other routine tasks.

Nurse Stakeholder from the nursing staff, whose main function is the daily
nursing of patients.

Patient A person currently being treated for an illness somewhere in the health
services, e.g. a person admitted to a hospital.

Social security number A unique identification of a person. The identifica-
tion is issued and maintained by government institutions.

Staff member A doctor, nurse or medical secretary.

Ward rounds Are conducted several times a day and involves one or more
doctor(s) and a nurse. They check up on all their assigned patients and
update the plan for treatment as well as the medical record based on
examinations of the patient’s condition.

Ward round note A filled out note template describing the observations and
conclusions made by the doctor when examining a specific patient on the
daily ward rounds. It consists of individually titled sections describing the
general state of the patient, objective observations, biochemical observa-
tions, conclusions, and changes to the medicine which is to be administered
to the patient.

Chapter 13

Requirements Development

Based on the domain analysis the requirements for a note module of an elec-
tronic medical record system will be determined. This will be carried out by
instantiating the general document system in the domain of medical record
management at Danish hospitals. Using the fundamental building blocks of the
document system an attempt will be made to mimic existing business processes
as much as possible. Section 13.6 page 103 holds a glossary, which describes
specific terms and concepts of the requirements being prescribed

13.1 Stakeholders

As with the domain, the stakeholders are listed in the context of the electronic
document system to provide a clear view of the connection between the general
document domain and the medical record domain.

Administrators – employees in the IT department.

Users – doctors, nurses, medical secretaries.

Maintenance – IT department

Third party – Patients

Foreign system – Not addressed in this requirements development.

13.2 Business Process Re-Engineering

The following enumerated items are the result of re-engineering the business
processes of the domain described earlier in chapter 12.6 page 87. The item
numbers refer to the item numbers of the original business processes.

1. Medical records shall be structured as described in the domain analysis.
The cover of the medical record shall be represented by a cover page
document residing within the outermost dossier, as shown in figure 13.1a.
Medical notes shall be placed in chronological order within their respective
category dossiers in the medical record.

95

96 CHAPTER 13. REQUIREMENTS DEVELOPMENT

_emr

_coverdata

_kontinuation

_blod

_sygeplejerske

_korrespondance

admission_note

(a) Medical Record Structure

<Hospital Name>

Archive

<Center Name 1>

<Center Name 2>

<Department 2.1>

Centers

<Department 2.2>

(b) Directory Structure

Figure 13.1: Medical Record and Directory Structure

2. Medical records can only be accessed via a computer. Records shall at
all times be accessible in the archive. When access to a medical record is
needed a copy of the medical record cover page document is created and
placed in the department cart directory index. This copy shall function
as a reference to the medical record and correspond to the practice of
retrieving medical records for the department cart whenever a patient is
residing at specific department. When a medical note is to be edited or
created the ancestor of the cover page copy is used to briefly retrieve,
modify, and return the full medical record. During this brief time it is
read-only to others. The centralized archive is realized as an ’archive’
directory index where all medical records are present, see figure 13.1b. All
staff members of a given department shall have access permission to this
index.

3. When a patient is admitted his social security number is entered into
the system. If an existing medical record is available in the archive a
reference is retrieved otherwise the user is prompted if he wants to create
a new record. If a social security number is not available a medical record
tagged ’temporary’ is created. When the proper info can be obtained it is
entered. If at that time an existing record is available the user is prompted
if he wants to merge the contents of ’temporary’ record into the existing
record, if not then the record remains ’temporary’.

4. A reference (cover page copy) to the medical record for an admitted patient
is at all times available in the proper medical cart, i.e. the department
directory to which he is attached. The system also enables system users
to possess records, i.e. to have a reference to selected records – a kind of
’favorites’.

5. The system prevents invalid medical record structuring and incorrect place-
ment of notes in the records.

6. When a patient is transferred to another department a new medical record
reference is made by the destination department in their cart. When the
patient is taken to medical examinations or tests, it is required that the
examiner has permissions to access and edit the medical record in order
to add the examination results.

13.2. BUSINESS PROCESS RE-ENGINEERING 97

7. The information generated by examinations and tests are automatically
added by the information sender – access permissions shall be present.
The information is tagged with category and cannot be placed incorrectly
in the medical record. It shall be evident by a table of contents which
information needs approval by a doctor.

8. The medical images shall be stored directly in the medical record. A
table of contents of the available images are automatically updated. Al-
ternatively the images could be stored in an existing system that can be
accessed via links in the table of contents of the medical record – in this
case the TOC has to be updated manually.

9. The key points for tests and examinations shall automatically be trans-
ferred to the medical record under the continuation category as an exter-
nal note when external information is added to other parts of the medical
record, e.g. medical images or blood tests.

10. During the medical conference all relevant information is accessible ac-
cording to item 2.

11. During the pre-’ward rounds’ meeting all relevant information is accessible
according to item 2.

12. During ward rounds all relevant information is accessible through a wire-
less Tablet PC according to item 2. New information such as dictaphone
recordings and notes are recorded directly into the Tablet PC and stored
in the medical record.

13. It shall be possible to tag a note as a draft. References to medical records
shall reflect the number of draft notes contained in the medical record. It
is up the secretary to supervise the references and determine when drafts
need clean copying. The information added by the secretary is instantly
available to others.

14. When a patient is attended by a doctor without prior agreement, i.e an
emergency occurs, the result of the examination and/or treatment is added
to the medical record as an acute note.

15. If the information sheet is attached to end of the bed it has to be manually
entered into the electronic medical record whenever appropriate. If it is
entered into the medical record in the category reserved for nurses it is
instantly available.

16. When a patient is discharged the medical record reference in the depart-
ment cart is removed by a member of the hospital staff.

17. The private practitioner can access all information through the Internet
provided permissions are present – no need to rewrite, print and send.

98 CHAPTER 13. REQUIREMENTS DEVELOPMENT

13.2.1 Supporting Technologies

Digitizing the medical records re-engineers supporting technologies with the
following:

• A wireless network is needed for supporting wireless components.

• A wireless Tablet PC shall function as the mobile platform for using med-
ical records.

• The dictaphone is replaced by recording speech directly into the medical
record through the tablet PC.

• A projector is required to display digital medical images.

13.2.2 Management and Organization

The system incorporates a fine grained permission logic which can prevent access
to department directories or even specific medical records and certain types of
manipulations on them. It is up to the hospital administration to decide which
access policy to follow – open or closed. The former will decrease the potentially
fatal situation where a record cannot be retrieved where as the latter protects
the information of the medical records across departments.

13.2.3 Rules and Regulations

All rules and regulations are supported by the fundamental document system
and will not be elaborated further. It should be mentioned, though, that the
ability to provide a copy of the medical record to patients is easy facilitated via
the system by granting read-only access to a given patient.

The strict structural discipline followed by the hospital staff regarding med-
ical records can be aided by the system by forcing the user to follow a desired
structure.

In the domain, physical keys are required to access some parts of hospital.
In the EDMS this is realized by smart cards required by the system at login
time. This smart card is the physical key container to the system holding digital
keys corresponding to the physical keys of the domain. This smart card also
replaces the actual world signature of the user with a digital signature.

13.2.4 Human Behavior

Inappropriate human behavior can be prevented by introducing a business logic
which dictates predefined business processes. This includes a strict enforcement
of structuring discipline ensuring that medical records always have the correct
sub-folders as well as preventing incorrect placement of medical notes.

13.3 Domain Requirements

Performing the domain-to-requirements operation yields well-defined catego-
rized requirement prescriptions, hence the following five sections constitute the
complete set of domain requirements.

13.3. DOMAIN REQUIREMENTS 99

13.3.1 Projection

It is attempted to adopt as many as possible of the existing business processes
without modification in order to produce a user friendly tool. At the same time
the less fortunate issues are addressed and prevented in such a way that they
do not influence the overall business processes.

1. A.1
2. A.2ab
3. A.3
4. A.4
5. A.5 (extended later)
6. A.6
7. A.7 (extended later)
8. A.9a
9. A.10abcde (extended later)

Projected away

• A.2cde (patients are not system users nor are physical entities such as
rooms part of the system)

• A.8ab (the system shall support simultaneous access to a record)

• A.9bcde (the system shall support simultaneous access to a record)

13.3.2 Determinism

10. The documents in the categories of the medical record shall be sorted
chronologically.

13.3.3 Instantiation

11. Roles shall be set up according to the desired security policy. This includes
defining access keys to the different directory indexes, protecting individ-
ual documents with keys, preventing certain commands to be performed
on specific documents without a required key.

12. All users shall be created in the system with an id, name, password and
security certificate.

13. The security certificate shall be available to the client software through a
removable smart card.

14. The directory shall have the structure specified in figure 13.1 page 96.
15. A subset (prescribed in requirements item 9) of medical documents shall

be specified according to the concept derived in the document system re-
quirements development – f(D) → C. Figure 13.2 illustrates the principle
by showing the contents C of the previously presented note type and ac-
centuates the relationship between the dynamic data D (blue) and the
stationary template (black). From this relationship the transfer function
f can be deducted. A complete specification of the template can be found
in J page 195.

100 CHAPTER 13. REQUIREMENTS DEVELOPMENT

(PATIENTDATA)

CPR-nr:

Name:

240350-1233

John Smith

CONT. NO. 1

KAS GLOSTRUP

KAS HERLEV

DATE/YEAR

21.06.02

0,0

3,0

30,0

0,0 3,0 12,0 20,0

Acute admission medical department F-521

52 year old male admitted through casualty department under diagnosis of
hypertensio arterialis.

Allergies
No known

Previous admissions
Never admitted before.

....

....

Figure 13.2: Note Page of a Medical Record With Data

13.3.4 Extension

16. It shall not be possible to violate the medical structure dictated in the
domain development (section 12.5.2 page 86).

17. The structure of the medical record shall differ in that the cover page
(DossierDescription) of the medical record will be contained inside the
outer record dossier as a document, otherwise the structure shall be iden-
tical.

18. Each person shall have a preference document.
19. All medical records shall reside in the archive. It shall not be be possible

for any user to permanently move the medical records from this index.
20. From a reference it shall be possible to access the associated medical record.
21. It shall be possible to create a reference in either a chosen department

medical record cart index or on a person.
22. Every medical record shall at all times be readable to all users provided

access permissions are present.
23. When modifications are necessary for a given record the system shall re-

trieve the record temporarily in accordance with with item 19. This period
shall be system dependent and reduced to a minimum. During its absence
it is read-only to others in accordance with item 22.

24. None of the fundamental document system commands shall be available
directly. Instead a predefined number of command macros shall be offered
to the user:

(a) Add a record reference to a medical record cart.

• GetDosFromDir (get medical record from archive)

• GetDocFromDos (get cover page from medical record)

• Copy (create a copy of the cover page)

• ReturnDoc (return cover page to medical record)

• ReturnDos (return medical record to archive)

13.3. DOMAIN REQUIREMENTS 101

• PutDocInDir (put copy of cover page in department cart)

(b) Remove a record reference from a medical record cart.

• GetDocFromDir (get copy of cover page from dept. cart)

• RemoveDoc (remove copy of cover page)

(c) Remove a record reference from a person.

• RemoveDoc (remove copy of coverpage)

(d) Change department and implicitly change preference document to
reflect new default department.

• Edit (preferences document)

(e) Create a medical record.

• CreateDoc (cover page)

• CreateDos (outer dossier)

• PutDocInDos (put cover page in outer dossier)

• CreateDos (continuation)

• PutDosInDos (put continuation dossier in outer dossier)

• CreateDos (blood)

• PutDosInDos (put blood dossier in outer dossier)

• CreateDos (nurse)

• PutDosInDos (put nurse dossier in outer dossier)

• CreateDos (correspondance)

• PutDosInDos (put correspondance dossier in outer dossier)

• PutDosInDir (put medical record in archive)

(f) Add a record reference to a person.

• GetDosFromDir (get medical record from archive)

• GetDocFromDos (get cover page from medical record)

• Copy (create a copy of the cover page)

• ReturnDoc (return cover page to medical record)

• ReturnDos (return medical record to archive)

(g) Create a note.

• CreateDoc (create medical note)

• GetDosFromDir (get medical record from archive)

• GetDosFromDos (get category dossier from medical record)

• PutDocInDos (put medical note in category dossier)

• ReturnDos (return category dossier to medical record)

• GetDocFromDos (get cover page from medical record)

• Edit (update number of drafts indicated by cover page)

• ReturnDoc (return cover page to medical record)

• ReturnDos (return medical record to archive)

(h) Save note changes.

• GetDosFromDir (get medical record from archive)

• GetDosFromDos (get category dossier from medical record)

102 CHAPTER 13. REQUIREMENTS DEVELOPMENT

• GetDocFromDos (get medical note from category dossier)

• Edit (edit the medical record)

• ReturnDoc (return the medical note)

• ReturnDos (return category dossier to medical record)

• GetDocFromDos (get cover page from medical record)

• Edit (update number of drafts indicated by cover page)

• ReturnDoc (return cover page to medical record)

• ReturnDos (return medical record to archive)

25. It shall also be possible to request tables of contents (TOCs) and infor-
mation about notes and medical records:

(a) Request information about a medical record.

(b) Request person TOC.

(c) Request person preference document.

(d) Request medical record cart TOC.

(e) Request center TOC.

(f) Request Get department TOC (based on center).

(g) Request medical record ids based on search criteria.

13.3.5 Fitting

Fitting the system to already existing domains is beyond the scope of this Master
Thesis. It shall be emphasized though, that several existing systems will have
to be fitted, such as medical imaging databases and legacy systems in general
(DK: Grønt System).

13.4 Interface Requirements

26. The paper-prototype displayed in appendix K page 199 shall serve as
guidelines for the interface development.

27. The presentation of data in the client shall match the extracted templates
as described in requirements item 15.

28. The presentation of a medical record shall match the color codes of cate-
gories in the domain and the graphical presentation shall imitate a paper
medical record.

29. A recorder or dictaphone-like interface shall be available to the user in the
client application.

30. The overall interface shall be tablet PC oriented, i.e. support the use of
touch screens combined with pointing devices.

31. The interface shall support the execution of available command macros
through buttons and context menus.

32. The interface shall support creation, editing and viewing of the different
notes. This shall include the possibility of loading image files, such as
jpeg and bmp.

13.5. MACHINE REQUIREMENTS 103

13.5 Machine Requirements

33. Each system user shall be equipped with a smart card.
34. Windows Tablet PCs with wireless capabilities and smart card reader shall

be available to the staff members.
35. Access points shall be set up covering the entire hospital with wireless

system access.
36. Projectors shall be available in all rooms where medical images should be

available.
37. A headset, possibly wireless, shall be available in order to record sound.

13.6 Glossary

Archive Refers to a specific index in the directory.

Category The medical record is divided into a number of categories each re-
served for a special type of medical information.

Command macros A combination of the document system fundamental com-
mands. The composition of the macros can be deducted by analyzing the
required functionality (business processes).

Cover page A document contained in the outer dossier of a medical record. It
holds all information present on the cover of a real-life medical record

Medical record A compilation of medical information about a patient. It is
divided into categories. Each admitted patient has a medical record. The
medical record is realized in the document system as a series of dossiers
inside a master dossier.

Medical record cart Is represented by an index in the directory. The descrip-
tion of the index is similar to the department, i.e. the department index
is equivalent to the cart.

Note Can be of either type admission note, ward round note, acute note, ex-
ternal notes or generic note.

Person An electronic representation of a user in the system.

Preference document is specific for each user and therefore also present on
the their person. It holds user specific GUI initialization parameters.

Reference A reference is a copy of a given medical records cover page. From
the reference it is possible to obtain an id of the medical record via com-
mands in the document system.

Security certificate A certificate holds the necessary information in order to
authenticate users and encrypt the data exchange.

Smart card A credit card sized memory bank that holds a security certificate.

Template A template is a definition of the transfer function f(D) → C. It
reveals how data D is formated to produce the presented information or
contents C

Chapter 14

Prototype Evaluation

Based on the requirement prescriptions a prototype of a 1st generation EMR
system has been instantiated on top of the fundamental document system. This
chapter will provide an overview of the finished prototype and illustrate how the
fundamental document system is used to realize it. Additionally, it will briefly
describe the basic steps required for migrating to a 2nd generation EMR system
based on G-EPJ.

14.1 The First Generation EMR System

The EMR prototype has been implemented on top of the existing implementa-
tion of the document system. This work took us approximately eight weeks to
complete. Four weeks were spent on the domain analysis, while two weeks were
spent on the subsequent requirements specification. The last two weeks were
spent on implementation based on the requirements. The implementation work
is constituted by the following steps (the percentage indicates the approximate
amount of time spent on the individual steps out of the total implementation
time):

1. Creating a new server side business logic consisting of the macros of basic
document commands as described during the systematic narrative of the
EMR requirements. (15%)

2. Mapping the different structures of medical record notes into an XML
Schema, and creating the necessary database tables and fields for storing
these structures. (5%)

3. Creating a client side graphical user interface which presents the medical
documents in a hospital domain oriented fashion. (80%)

During the GUI implementation step it has been attempted to imitate the layout
of paper based medical records as closely as possible using the usability design
principles of [21]. This involved colorized category tabs and formatted headlines
and paragraphs in the medical notes as indicated by figures 14.1 and 14.2 page
106. Since one of the target client platforms is the Tablet PC much effort has
been put into compensating for the potential lack of keyboard interfacing. This
means that, apart from entering actual medical information, all operations on

104

14.2. MIGRATING TO SECOND GENERATION 105

the medical records are carried out by clicking on various parts of the GUI. In
addition, as prescribed by the requirements, dictaphone functionality has been
integrated with the GUI so that recording and playback is performed by the
client machine and stored in the EMR.

It is interesting to see that most of the implementation work has tilted
towards GUI design. From an end-user’s point of view this is a refreshing
and ideal shift of focus as it allows for thorough usability studies of the part
of the system that interacts with the user. In our opinion, it is a common
mistake in software engineering that much less thought goes into GUI studies
and development than on the server and database design. The graphical user
interface is, after all, what the users will be confronted with so a system design
should be centered around this and not vice versa.

Even though this is a non-optimized prototype with a fairly complex busi-
ness logic, we have not detected any severe signs of performance degradation
(that is, response times are in average less than one second). This strengthens
our confidence in the document system design and the technologies used for
implementing it. An extract of the source code of the EMR system business
logic can be studied in appendix L page 203.

14.2 Migrating to Second Generation

The fundamental document system has been designed to allow continuous re-
engineering of business process. In the EMR prototype, this re-engineering
would be the future shift to 2nd generation electronic medical records.

This shift requires an analysis of the G-EPJ specification from a document
oriented point of view, in many ways similar to the original domain analysis of
the hospital. The individual document types of the G-EPJ specification, such
as ’diagnostic notes’, must be extracted. The new business processes, such as
combining different document information by extracting ’focused information’
for establishing a new diagnose document, must be listed and described, consult
[34] for details.

Similar to the 1st generation EMR requirements development, the G-EPJ
analysis can be used as a basis for formulating the new requirements of the 2nd
generation EMR software. A combination of documents and dossiers describes
the medical record structure and macros of basic document commands express
the business processes.

By following this design pattern we expect it to be a relatively simple task
to expand existing business logic and contents types. The only remaining task
would be to design a new client application or extend the existing one to support
the new business processes. The advantage is that both generations of medical
records are kept in the same system allowing for backwards compatibility and
possible reuse of information across EMR generations.

106 CHAPTER 14. PROTOTYPE EVALUATION

Figure 14.1: Department Medical Journal Cart

Figure 14.2: Admission Note in a Medical Record

Chapter 15

Conclusion

The purpose of the electronic medical record (EMR) part of the project has
been to evaluate the strength of the basic document system when instantiating
it for a specific domain. The aspects examined constitute:

1. How is the development process affected when using the terminology and
principles of the basic paper document model?

2. Is it possible to digitize a specific paper based domain and adopt existing
business processes using the basic document system as a foundation?

3. Is it feasible to initially adopt and implement a digitized version of the
existing domain – and let business process re-engineering be a separate
development step carried out some time after the transition to the digital
domain?

The experiences gained in the process of tailoring the basic document system
to the EMR domain have been through-out positive. The fact that most of
the traditionally required features and technologies of distributed systems are
embedded in the underlying platform have made it possible to focus exclusively
on the hospital domain. This has resulted in a concise domain analysis and
requirements specification focusing on central aspects of medical record man-
agement.

We have found that describing the hospital domain and EMR requirements
was a relatively simple and intuitive process using the document-oriented ter-
minology. The document model and terminology have provided the necessary
building blocks for expressing the hospital and medical record structures, docu-
ment types, and business processes in a systematic narrative closely resembling
natural language – yet easily adoptable for requirements specification and im-
plementation.

The design method shifts much of the implementation focus towards GUI
development. This is a welcome change as it allows for thorough usability
studies and considerations regarding how to use current technologies to support
existing business processes, e.g. replacing the dictaphone with built-in recording
facilities in the client hardware.

The alterations in business processes after digitizing the domain have been
minimal. The obvious differences, such as several persons now being able to ac-
cess the same record simultaneously, are considered beneficial extensions rather

107

108 CHAPTER 15. CONCLUSION

than changes – re-engineering – of the existing business processes. Based on
this, we believe it has been shown that it is indeed possible to digitize a paper
based document domain and adopt existing business processes. In theory, by
building a new domain model and requirements specification as an extension of
the document domain model. In practice, by creating a business logic and client
application on top of the implementation of the document system. As a posi-
tive side note, it should be mentioned that no performance issues surfaced when
instantiating the document system for the specific domain using this approach.

The time spent on the development of the EMR instantiation from the initial
interviews to the finished implementation was approximately eight weeks. It is
interesting to see that, out of these eight weeks, half of the time was spent on
domain analysis while the remainder was divided between requirements spec-
ification and implementation. This illustrates the ease of digitizing a domain
once it has been modelled in accordance to the document system. It demon-
strates that it is not time consuming to initially digitize the domain without
re-engineering – we believe this is also preferable as it indirectly provides the
developers with a clear understanding of the existing domain before it is time
to re-think business processes and make further use of the digitalization.

It has been considered how to perform later business process re-engineering
once the domain is digitized, specifically by introducing 2nd generation medical
record management in the prototype. In chapter 14 page 104 it is presented as a
relatively simple new development phase consisting of further domain analysis,
requirements specification and extensions to the existing implementation. The
flexibility offered by the underlying document system provides the necessary
means to make this a smooth transition that does not compromise backwards
compatibility.

Part IV

SUMMARY

109

Chapter 16

Future Work

As previously indicated the work presented in this Master Thesis focuses on
proof-of-concept. Taking the development to the next stage by creating a com-
plete software product honoring all requirements of a professional EDMS solu-
tion requires further work – both technologically and scientifically.

16.1 Scientifically

It is difficult to assess the completeness of the paper document domain model
as it has been derived through the authors’ personal experiences when working
with paper documents. Some aspects might have been left out and they would
most likely surface when interviewing more people. This could help proving the
model correct, or modifying or extending it if something is missing.

Another problem is that a lot of domains are already digitized to some
degree and the question is whether the methodology provided by our EDMS
framework is also applicable for developing EDMSs in these domains. As we
see it, the main difference between an exclusively paper document domain com-
pared to a partly digitized document domain is that some of the decisions when
handling documents have been automated thereby moving them from the users
to the computer. Using the document terminology this could be described as
introducing computer controlled persons into the domain description. As the
equivalences between the paper domain and the digital domain are made clear
during the development of the domain model it should be possible to use it for
describing both worlds – however, this is an exercise left for future studying.

Finally, it would be interesting to study document relations in the paper
document domain. In the digital domain it is relatively easy, when using a
database, to produce new documents from fragments of other documents. This
could correspond to automating the actual world process of studying various
documents and forming a general idea of:

1. how they relate to each other

2. the overall meaning they provide when combining them

It would be useful to explicitly model this process and include it in the termi-
nology and business processes of the paper document domain model. Such an
extension could further simplify the modelling of complex document relations

111

112 CHAPTER 16. FUTURE WORK

which occur in the digital domain – for instance in the G-EPJ specification for
future EMR systems.

16.2 Technologically

The future work which should be carried out technologically concerns optimiza-
tion and testing. Now that a proof-of-concept has been conducted it is time to
examine performance issues:

• The prototype needs extensive multiuser burn-in tests to verify the cor-
rectness of the design.

• The prototype needs optimization in several areas, such as database access
and network communication.

• There are several minor implementation choices that would be preferable
to change, such as streamlining how XML documents are handled in dif-
ferent parts of the implementation.

• Full system distribution needs to be implemented and tested to validate
the design of the mirror concept.

• In the long run it is desirable to support web clients in addition to the
existing solution.

Chapter 17

Our Experiences

Before we began working on the Master Thesis, it was our ambition to carry
out a complete software development project. We wanted a special emphasis
on domain analysis and requirements engineering using formal techniques but
also on selecting current technologies for implementing and testing the design
in practice. Naturally, this ambition has influenced our approach to the project,
in particular the way we decided to document our findings.

We chose to adopt the triptych software engineering paradigm and the asso-
ciated methodology presented in [6]. Following this principle, while conducting
very constructive meetings and discussions with our supervisor regarding the
method and areas to explore, helped focusing on the next natural step in the
development process and resulted in very few iterations. In particular, our expe-
riences gained from working with domain analysis has convinced us that this is
an indispensable part of software engineering. We attribute most of our results
to the initial work on domain analysis from which everything else was deducted.
The complete methodology is an extensive procedure but all steps described in
the methodology do not necessarily need to be followed meticulously at all times.
It can be considered a guide for ensuring that all aspects are addressed either on
paper, sketch, or in thought. The important thing is to know what to address.

In between working with the Master Thesis, we have spent time authoring
an article and a business plan for the document oriented EDMS. The article
(in Danish), see appendix M page 215, addresses the problems with regards to
software development – with focus on document systems. Writing the article
has helped us put the problems into perspective in a humanistic way ultimately
giving us a better understanding. The business plan, see appendix N page 220,
is a preliminary contribution to Venture Cup – a competition in generating and
describing innovative ideas. Trying to author a business plan clearly demon-
strated one of our weaker sides. Still it gave us an idea of what to expect if we
want to continue with the idea presented in this report.

113

Chapter 18

Conclusion

The main thesis described during the introduction was:

Adopting the terminology and business processes of the paper doc-
ument management domain results in an EDMS development plat-
form which minimizes the language barrier between the domain spe-
cialists and the developers.

We believe that the findings of parts II-III have shown this claim to be true.
The language barrier problems between customer and developer presented in
chapter 1 page 3 are all addressed by the EDMS development platform.

The development process of part II has resulted in an EDMS development
platform, which provides the basic functionality expected from a document
management system today. This includes versioning, structuring, distribution,
authorization, and confidentiality. It has been combined with modern tech-
nologies providing database storage, secure transactions, and future-proof data
encapsulation for exchanging information with foreign systems.

The development approach has resulted in a domain oriented terminology
embedded in the EDMS development platform. It has also introduced a new
document oriented analysis and design methodology associated to the terminol-
ogy. This methodology extends existing development principles and it is to be
used when tailoring the EDMS platform to a specific domain as demonstrated
during the development of the EMR system.

These development principles and the associated paper document domain
terminology can be used to describe a domain and express precise system re-
quirements in a structured natural language. The structured requirements can
be directly transformed to a business logic of the system thereby producing a do-
main specific EDMS in which the requirements are easy to identify and modify.
The result is, in other words, a language that both developer and customer can
use and relate to, and that the framework understands. The language focuses
on the document domain while suppressing aspects foreign to the domain, but
necessary when digitizing.

The EDMS platform was tested by designing and implementing a prototype
of a domain oriented EMR system on top of the platform. We found the lan-
guage provided by the platform to be fully adequate and intuitive to use when
digitizing the EMR domain. As indicated in the findings of part III the new

114

115

development principle keeps the focus entirely on the domain rather than on
technologies and distributed system principles. Consequently, most of the time
and energy could be spent on designing a graphical user interface inspired by
the domain.

In the context of EMR systems we have evaluated the feasibility of initially
adopting existing business processes and keep business process re-engineering as
a separate development step. Although this subsequent re-engineering has not
been carried out in practice on the EMR system, we have discussed how this
would be done and considered the ramifications, such as issues with backwards
compatibility and reuse of existing data. Based on these considerations and the
relatively short amount of time it takes to digitize the domain using the EDMS
platform, we have found it feasible to separate digitization and re-engineering
when developing on top of the EDMS platform.

Naturally, it is too early to state that the document oriented development
methodology is flawless. It was found suitable for digitizing the complex EMR
domain and based on this we assume that it can be applied successfully when
digitizing any paper document domain. However, as indicated in chapter 16 page
111, there are aspects which have been left for further studying. In particular, it
would be interesting to see whether it is indeed possible to describe an already
digitized domain using the paper document terminology.

In closing, we would like to comment on the chosen development method
for domain analysis and requirements engineering. As mentioned in chapter 17
page 113, our experiences with using formal methods and domain analysis and
requirements specification structuring have been overwhelmingly positive. The
approach has provided a constant clear overview of the problem at hand and the
next natural step in the development process. We are thoroughly convinced that
this development strategy helps ensure correctness of the requirements while
keeping the number of design and implementation iterations at a minimum.

Part V

APPENDIX

117

Appendix A

Original Problem

Der ønskes en realisering af et elektronisk patient journal system (EPJ-S) som
bygger p̊a Sundhedsstyrelsens rapport herom (EPJ). EPJ-S skal dels kunne
h̊andtere de i EPJ beskrevne begreber, dels illustrere repræsentation og manip-
ulation af ikke-traditionelle, dvs. ikke-tekstuelle dokumenter som f.eks. EKG
(elektrokardiogrammer), MR (magnetisk resonans) skanninger, CT (computer
tomografier), X-Rays, m.fl. Desuden skal EPJ-S kunne h̊andtere registrering af
versioner af s̊adanne dokumenter: Originaler, kopier, samt redigeringer af orig-
inaler og kopier. Der skal lægges vægt p̊a at EPJ-S designen relaterer sig til
foreliggende oplæg vedr. domæne og kravspecifikationer, samt uddyber disse.

119

Appendix B

Encryption Principles

B.1
����������	
�������
 ���

1
������ AsymmetricEncryption =

2
�����

3 ��	�

4 Data,

5 Key,

6 Signature,

7 KeyPair = Key × Key,

8 HackKey = Key→ Key,

9 HackData = Data→ Data

10

11
����

12 Encrypt : Data × Key→ Data,

13 Sign : Data × Key→ Data × Signature,

14 VerifySign : (Data × Signature) × Key→ ����

15

16
�����

17 ∼(∃ f:HackKey •

18 ∀ (publickey,privatekey):KeyPair •

19 f(publickey) = privatekey ∨ f(privatekey) = f(publickey)),

20

21 ∀ (publickey1,privatekey1):KeyPair,

22 (publickey2,privatekey2):KeyPair •

23 publickey1 = publickey2⇒ privatekey1 = privatekey2 ∧
24 privatekey1 = privatekey2⇒ publickey1 = publickey2,

25

26 ∼(∃ f:HackData •

27 ∀ key:Key, data:Data • f(Encrypt(data,key)) = data),

28

29 ∀ (publickey,privatekey):KeyPair, data:Data •

30 Encrypt(Encrypt(data,publickey),privatekey) ≡ data,

31

32 ∀ (publickey,privatekey):KeyPair, data:Data •

33 VerifySign(Sign(data,privatekey),publickey)

34

���

120

B.2. SYMMETRICENCRYPTION.RSL 121

B.2 ���������	
�������
 ���

1
������ SymmetricEncryption =

2
�����

3 ��	�

4 Data,

5 Key,

6 HackData = Data→ Data

7

8
����

9 Encrypt : Data × Key→ Data,

10 Decrypt : Data × Key→ Data

11

12
�����

13 ∀ secretkey:Key, data:Data •

14 Decrypt(Encrypt(data,secretkey),secretkey) ≡ data,

15

16 ∼(∃ f:HackData •

17 ∀ secretkey:Key, data:Data •

18 f(Encrypt(data,secretkey)) = data),

19

���

Appendix C

DocSys – Draft Domain
Specification

C.1 ���
��������
�����

1
������ DocSys3 =

2
�����

3 ��	�

4 Place = Directory × Staff × Locations,

5 PlaceId,

6 Places = PlaceId→m Place,

7 Person = DD-set,

8 PersonId,

9 Citizens = PersonId→m Person,

10 Staff = PersonId→m Person,

11 System = Places × Citizens × DocumentId-set × DossierId-set,

12 Location = DD-set,

13 LocationId,

14 Locations = LocationId→m Location,

15 Document,

16 DocumentId,

17 Documents = DocumentId→m Document,

18 Dossier = Documents,

19 Directory == mk_dir(DirName→m DD-set × Directory),

20 DirName,

21 DDId == mk_docId(DocumentId) | mk_dosId(DossierId),

22 DD == mk_doc(doc:Document) | mk_dos(dos:Dossier),

23 DossierId,

24 Dossiers = DossierId→m Dossier,

25 DocumentType == master|copy|version,

26 Time,

27 Info,

28 Whereabouts == unknown | mk_citizen(cit:Person) |

29 mk_staff(staff:Person, place:Place) | mk_location(loc:Location, place2:

Place)

30

31 ��	�

32 Cmd = CreaDoc | CreaDoss | Copy | Edit | Cit_Per | To_Doss |

33 From_Doss | To_Dir | From_Dir | To_Loc | From_Loc |

34 Shred | Per_Cit | Send | Return,

35 CreaDoc :: per:Person plid:PlaceId lid:LocationId t:Time i:Info,

36 CreaDoss :: per:Person plid:PlaceId lid:LocationId t:Time,

122

C.1. DOCSYSORIGINAL.RSL 123

37 Copy :: per:Person plid:PlaceId lid:LocationId t:Time doc:Document,

38 Edit :: per:Person plid:PlaceId lid:LocationId t:Time doc:Document edit:

FTE,

39 FTE = (Info→ Info) × (Info→ Info)

40

41
�����

42 ∀ (te,fe):FTE, i:Info • fe(te(i)) = i

43

44 ��	�

45 Cit_Per :: cit:Person plid:PlaceId per:Person doc:Document,

46 To_Doss :: person:Person plid:PlaceId doc:Document doss:Dossier,

47 From_Doss :: person:Person plid:PlaceId doc:Document doss:Dossier,

48 To_Dir :: person:Person plid:PlaceId dd:DD path:DirName∗,

49 From_Dir :: person:Person plid:PlaceId path:DirName∗ ddid:DDId,

50 To_Loc :: person:Person plid:PlaceId lid:LocationId dd:DD,

51 From_Loc :: person:Person plid:PlaceId lid:LocationId dd:DD,

52 Shred :: person:Person plid:PlaceId dd:DD,

53 Per_Cit :: person:Person plid:PlaceId doc:Document cit:Person,

54 Send :: person:Person plid:PlaceId dd:DD person2:Person plid2:PlaceId,

55 Return :: person:Person plid:PlaceId dd:DD person2:Person plid2:PlaceId

56

57
����

58 obs_Dir : PlaceId→ Directory,

59 obs_Staff : PlaceId→ Staff,

60 obs_Locations : PlaceId→ Locations,

61 obs_contents : Location→ DD-set,

62 obs_Id : Document→ DocumentId,

63 obs_Id : Dossier→ DossierId,

64 obs_Id : Person→ PersonId,

65 obs_Id : DD→ DDId,

66 obs_Type : Document→ DocumentType,

67 obs_Lenders : DD→ Person∗,

68

69 obs_Ancestor : Document
∼

→ Document,

70
	�� obs_Type(doc) 6= master

71

72 obs_LocationHist : Document→ LocationId,

73 obs_PersonHist : Document→ PersonId,

74 obs_TimeHist : Document→ Time,

75

76 obs_DocumentHist : Document→ Document∗

77 obs_DocumentHist(doc)≡
78

��� doclist : Document∗ •

79 ∀ n : ��� •

80 n ≤
��� doclist ∧ n > 1 ∧

81 obs_Type(doclist(1)) = master ∧
82 obs_Id(doc) = obs_Id(doclist(

��� doclist)) ∧
83 obs_Type(doclist(n)) 6= master ⇒
84 obs_Id(doclist(n-1)) = obs_Id(obs_Ancestor(doclist(n)))

85
��

86 doclist

87

���,
88

89 obs_BelongsToDir : DD→ ����,
90 obs_DirInfo : DD

∼

→ DirName∗,

91
	�� obs_BelongsToDir(dd)

92 obs_AbsentFromDir : DD
∼

→ ����,
93

	�� obs_BelongsToDir(dd)

94 obs_Whereabouts : DD
∼

→ Whereabouts,

95
	�� obs_Absent(dd)

96 obs_Information : Document→ Info,

124 APPENDIX C. DOCSYS – DRAFT DOMAIN SPECIFICATION

97

98 RemoveDDFromDir : DDId→ Directory,

99 IsPathValid : DirName∗ × System→ ����,
100 InsertDDIntoDir : DD × PlaceId × DirName∗ → Directory

101

102
����

103 M: Cmd→ System→ System

104 M(cmd)(places,citizens,docids,dossids)≡
105

���� cmd ��

106 /*22*/ mk_CreaDoc(person,placeid,locationid,time,information)→
107

��� (dir, pers, locs) = places(placeid) ��

108 assert: person ∈ ��� pers ∧
109 locationid ∈ locs

110

��� did:DocumentId • did /∈ docids ��

111

��� doc:Document •

112 obs_LocationHist(doc) = locationid ∧
113 obs_TimeHist(doc) = time ∧
114 obs_PersonHist(doc) = obs_Id(person) ∧
115 obs_Information(doc) = information ∧
116 obs_Id(doc) = did ∧
117 ∼obs_BelongsToDir(mk_doc(doc)) ∧
118 obs_Type(doc) = master ��

119 (places † [placeid 7→ (dir,pers † [obs_Id(person) 7→ person ∪
120 {mk_doc(doc)}],locs)],citizens,docids ∪ {did},dossids)

121

���

122

���

123

���,
124

125 /*23*/ mk_CreaDoss(person,placeid,locationid,time)→
126

��� (dir, pers, locs) = places(placeid) ��
127 assert: person ∈ ��� pers ∧
128 locationid ∈

��� locs

129

��� did:DossierId • did /∈ dossids ��

130

��� dossier:Dossier •

131

��� dossier = {} ∧
132 ∼obs_BelongsToDir(mk_dos(dossier)) ∧
133 obs_Id(dossier) = did ��

134 (places † [placeid 7→ (dir,pers † [obs_Id(person) 7→ person ∪
135 {mk_dos(dossier)}],locs)],citizens,docids, dossids ∪ {did

})

136

���

137

���

138

���,
139

140 /*24a*/ mk_Copy(person,placeid,locationid,time,document)→
141

��� (dir, pers, locs) = places(placeid) ��
142 assert: person ∈ ��� pers ∧
143 locationid ∈

��� locs ∧
144 mk_doc(document) ∈ person

145

��� did:DocumentId • did /∈ docids ��

146

��� doc:Document •

147 obs_LocationHist(doc) = locationid ∧
148 obs_TimeHist(doc) = time ∧
149 obs_PersonHist(doc) = obs_Id(person) ∧
150 obs_Information(doc) = obs_Information(document) ∧
151 obs_Ancestor(doc) = document ∧
152 obs_Type(doc) = copy ∧
153 obs_Id(doc) = did ∧
154 obs_DirInfo(mk_doc(doc)) = obs_DirInfo(mk_doc(document)) ��

155 (places † [placeid 7→ (dir,pers † [obs_Id(person) 7→ person ∪
156 {mk_doc(doc)}],locs)],citizens,docids ∪ {did}, dossids)

157

���

C.1. DOCSYSORIGINAL.RSL 125

158

���

159

���,
160

161 /*24b*/ mk_Edit(person,placeid,locationid,time,document,(te,fe))→
162

��� (dir, pers, locs) = places(placeid) ��

163 assert: person ∈ ��� pers ∧
164 locationid ∈ locs ∧
165 obs_Type(document) 6= master ∧
166 mk_doc(document) ∈ person

167

��� did:DocumentId • did /∈ docids ��

168

��� doc:Document •

169 obs_LocationHist(doc) = locationid ∧
170 obs_TimeHist(doc) = time ∧
171 obs_PersonHist(doc) = obs_Id(person) ∧
172 obs_Ancestor(doc) = document ∧
173 obs_Type(doc) = version ∧
174 obs_Information(doc) = te(obs_Information(document)) ∧
175 obs_DirInfo(mk_doc(doc)) = obs_DirInfo(mk_doc(document)) ��

176 (places † [placeid 7→ (dir,pers † [obs_Id(person) 7→ person ∪
177 {mk_doc(doc)}],locs)],citizens,docids ∪ {did}, dossids)

178

���

179

���

180

���,
181

182 /*25*/ mk_Cit_Per(citizen,placeid,person,doc)→
183

��� (dir, pers, locs) = places(placeid) ��

184 assert: person ∈ ��� pers ∧
185 citizen ∈ ��� citizens ∧
186 mk_doc(doc) ∈ citizen ∧
187 obs_Type(doc) = master

188 (places † [placeid 7→ (dir,pers †
189 [obs_Id(person) 7→ person ∪ {mk_doc(doc)}],locs)],
190 citizens † [obs_Id(citizen) 7→
191 citizen \ {mk_doc(doc)}],docids,dossids)
192

���,
193

194 /*27a*/ mk_To_Doss(person,placeid,document,dossier)→
195

��� (dir, pers, locs) = places(placeid) ��
196 assert: person ∈ ��� pers ∧
197 mk_doc(document) ∈ person ∧
198 mk_dos(dossier) ∈ person

199 (places † [placeid 7→ (dir,pers † [obs_Id(person) 7→
200 (person \ {mk_doc(document)}) ∪
201 {mk_dos(dossier † [obs_Id(document) 7→
202 document])}], locs)],
203 citizens, docids, dossids)

204

���,
205

206 /*27b*/ mk_From_Doss(person,placeid,document,dossier)→
207

��� (dir, pers, locs) = places(placeid) ��

208 assert: person ∈ ��� pers ∧
209 obs_Id(document) ∈

��� dossier ∧
210 mk_dos(dossier) ∈ person

211 (places † [placeid 7→ (dir,pers † [obs_Id(person) 7→
212 (person \ {mk_dos(dossier)}) ∪
213 {mk_doc(document),mk_dos(dossier \

214 {obs_Id(document)})}], locs)],
215 citizens,docids,dossids)

216

���,
217

218 /*28*/ mk_To_Dir(person,placeid,dd,path)→
219

��� (dir, pers, locs) = places(placeid) ��

126 APPENDIX C. DOCSYS – DRAFT DOMAIN SPECIFICATION

220 assert: person ∈ ��� pers ∧
221

���� dd ��

222 mk_doc(doc)→ obs_Id(doc) ∈ docids,

223 mk_dos(dos)→ obs_Id(dos) ∈ dosids

224

��� ∧
225 IsPathValid(path,(places,citizens,docids,dossids))

226

227 (places † [placeid 7→
228 (InsertDDIntoDir(dd,placeid,path),pers †
229 [obs_Id(person) 7→ (person \ {dd})], locs)],
230 citizens, docids, dossids)

231

���,
232

233 /*29*/ mk_From_Dir(person,placeid,path,ddid)→
234

��� (dir, pers, locs) = places(placeid) ��
235 assert: person ∈ ��� pers ∧
236

���� ddid ��

237 mk_docId(id)→ obs(id) ∈ docids,

238 mk_dosId(id)→ obs(id) ∈ dosids

239

��� ∧
240 IsPathValid(path,(places,citizens,docids,dossids))

241

��� dd : DD • obs_Id(dd) = ddid ��

242 assert obs_DirInfo(dd) = path

243 (places † [placeid 7→ (RemoveDDFromDir(ddid),pers †
244 [obs_Id(person) 7→ (person ∪ {dd})], locs)],
245 citizens, docids, dossids)

246

���

247

���,
248

249 /*30*/ mk_To_Loc(person,placeid,locationid,dd)→
250

��� (dir, pers, locs) = places(placeid) ��

251 assert: person ∈ ��� pers ∧
252 locationid ∈ locs

253 dd ∈ person

254

��� locationcontents = locs(locationid) ��

255 (places † [placeid 7→ (dir,pers † [obs_Id(person) 7→ (person \ {

dd})],
256 locs † [locationid 7→ (locationcontents ∪
257 {dd})])],citizens,
258 docids,dossids)

259

���

260

���,
261

262 /*31*/ mk_From_Loc(person,placeid,locationid,dd)→
263

��� (dir, pers, locs) = places(placeid) ��

264 assert: person ∈ ��� pers ∧
265 locationid ∈ locs ∧
266 dd ∈ locs(locationid)

267

��� locationcontents = locs(locationid) ��

268 (places † [placeid 7→ (dir,pers †
269 [obs_Id(person) 7→ (person ∪ {dd})],
270 locs † [locationid 7→ (locationcontents \ {dd})])],
271 citizens, docids, dossids)

272

���

273

���,
274

275 /*32*/ mk_Send(person,placeid,dd,person2,placeid2)→
276

��� (dir, pers, locs) = places(placeid) ��

277 assert: person ∈ ��� pers ∧
278 dd ∈ person

279

��� (dir2, pers2, locs2) = places(placeid2) ��
280 assert: person2 ∈ ��� pers2 ∧

C.1. DOCSYSORIGINAL.RSL 127

281 (places † [placeid 7→ (dir,pers † [obs_Id(person) 7→
282 (person \ {dd})],locs), placeid2 7→ (dir2, pers2 †
283 [obs_Id(person2) 7→ (person2 ∪ {dd})],locs)],
284 citizens,docids,dossids)

285

���

286
	��� ��

obs_Lenders(dd) = person

287

���,
288

289 /*34*/ mk_Return(person,placeid,dd,person2,placeid2)→
290

��� (dir, pers, locs) = places(placeid) ��

291 assert: person ∈ ��� pers ∧
292 dd ∈ person

293

��� (dir2, pers2, locs2) = places(placeid2) ��

294 assert: person2 ∈ ��� pers2 ∧
295 obs_Id(person2) =

��
obs_Lenders(dd)

296 (places † [placeid 7→ (dir,pers † [obs_Id(person) 7→
297 (person \ {dd})],locs), placeid2 7→ (dir2, pers2 †
298 [obs_Id(person2) 7→ (person2 ∪ {dd})],locs)],
299 citizens,docids,dossids)

300

���

301

���,
302

303 /*35*/ mk_Shred(person, placeid, dd)→
304

��� (dir, pers, locs) = places(placeid) ��

305 assert: person ∈ ��� pers ∧
306 dd ∈ person

307 (places † [placeid 7→ (dir,pers †
308 [obs_Id(person) 7→ (person \ {dd})], locs)],
309 citizens, docids, dossids)

310

���,
311

312 /*36*/ mk_Per_Cit(person,placeid,document,citizen)→
313

��� (dir, pers, locs) = places(placeid) ��

314 assert: person ∈ ��� pers ∧
315 mk_doc(document) ∈ person ∧
316 citizen ∈ ��� citizens

317 (places † [placeid 7→ (dir,pers † [obs_Id(person) 7→
318 (person \ {mk_doc(document)})],locs)],
319 citizens † [obs_Id(citizen) 7→ (citizen ∪
320 {mk_doc(document)})],
321 docids, dossids)

322

���

323

���

324

325

���

Appendix D

DocSys – Domain
Specification

D.1 ���
�����������

1
������ DocSysTypes =

2
�����

3 ��	�

4 DocumentID,

5 Document,

6 DocumentType == master | copy | version,

7 Ancestor == mk_did(did:DocumentID) | none,

8 DossierID,

9 DossierDescription,

10 Dossier,

11

12 PersonID,

13 Person,

14 Persons = PersonID→m Person,

15

16 LocationID,

17 Location,

18 Locations = LocationID→m Location,

19

20 PlaceID,

21

22 Index,

23 IndexDescription,

24 DirContents,

25 Directory == mk_dir(DirContents × (Index→m Directory)),

26 DirPath == mk_dip(Index∗) | none,

27

28 Key,

29 Keys = Key-set,

30 Signature,

31 Time,

32 Contents,

33 Envelope

34

35
����

36 obs_ID : Document→ DocumentID,

37 obs_Time : Document→ Time,

128

D.2. DOCSYSBASICS.RSL 129

38 obs_PlaceID : Document→ PlaceID,

39 obs_Contents : Document→ Contents,

40 obs_Type : Document→ DocumentType,

41 obs_Creator : Document→ PersonID,

42 obs_DirMembership : Document→ DirPath,

43 obs_Signatures : Document→ Signature-set,

44 obs_Ancestor : Document→ Ancestor,

45

46 obs_Dossiers : Dossier→ Dossier-set,

47 obs_ID : Dossier→ DossierID,

48 obs_Documents : Dossier→ Document-set,

49 obs_Description : Dossier→ DossierDescription,

50

51 obs_ID : Person→ PersonID,

52 obs_Keys : Person→ Keys,

53 obs_Documents : Person→ Document-set,

54 obs_Dossiers : Person→ Dossier-set,

55 obs_Signature : Person→ Signature,

56

57 obs_Documents : Location→ Document-set,

58 obs_Dossiers : Location→ Dossier-set,

59

60 obs_Documents : DirContents→ Document-set,

61 obs_Dossiers : DirContents→ Dossier-set,

62 obs_Keys : DirContents→ Keys,

63

64 obs_Description : Index→ IndexDescription

65

���

D.2 ���
������������

1 DocSysTypes

2
������ DocSysBasics =

3

������ DocSysTypes ����

4
�����

5
����

6 ∈ : Document × Dossier→ ����

7 doc ∈ dos≡
8 doc ∈ obs_Documents(dos),

9

10 ∈ : Document × Person→ ����

11 doc ∈ pers ≡ (

12 ∃! doslist:Dossier∗ •

13 Xor(doc ∈ obs_Documents(pers),

14

��
(doslist) ∈ obs_Dossiers(pers) ∧ doc ∈ recurseDossier(doslist))

),

15

16 ∈ : Document × Location→ ����

17 doc ∈ loc ≡ (

18 ∃! doslist:Dossier∗ •

19 Xor(doc ∈ obs_Documents(loc),

20

��
(doslist) ∈ obs_Dossiers(loc) ∧

21 doc ∈ recurseDossier(doslist))),

22

23 ∈ : Document × DirContents→ ����

24 doc ∈ dcontents≡
25 doc ∈ obs_Documents(dcontents),

26

27 ∈ : Dossier × DirContents→ ����

28 dos ∈ dcontents≡
29 dos ∈ obs_Dossiers(dcontents),

130 APPENDIX D. DOCSYS – DOMAIN SPECIFICATION

30

31 ∪ : DirContents × Document-set → DirContents

32 dcontents ∪ ds≡
33

��� ds1:DirContents •

34 obs_Documents(ds1) = obs_Documents(dcontents) ∪ ds ∧
35 obs_Dossiers(ds1) = obs_Dossiers(dcontents)

36
��

37 ds1

38

���,
39

40 ∪ : DirContents × Dossier-set → DirContents

41 dcontents ∪ ds≡
42

��� ds1:DirContents •

43 obs_Documents(ds1) = obs_Documents(dcontents) ∧
44 obs_Dossiers(ds1) = obs_Dossiers(dcontents) ∪ ds

45
��

46 ds1

47

���,
48

49 \ : DirContents × Document-set → DirContents

50 dcontents \ ds≡
51

��� ds1:DirContents •

52 obs_Documents(ds1) = obs_Documents(dcontents) \ ds ∧
53 obs_Dossiers(ds1) = obs_Dossiers(dcontents)

54
��

55 ds1

56

���,
57

58 \ : DirContents × Dossier-set → DirContents

59 dcontents \ ds≡
60

��� ds1:DirContents •

61 obs_Documents(ds1) = obs_Documents(dcontents) ∧
62 obs_Dossiers(ds1) = obs_Dossiers(dcontents) \ ds

63
��

64 ds1

65

���,
66

67 ∪ : Person × Document-set → Person

68 per ∪ ds≡
69

��� p:Person •

70 obs_ID(p) = obs_ID(per) ∧
71 obs_Signature(p) = obs_Signature(per) ∧
72 obs_Keys(p) = obs_Keys(per) ∧
73 obs_Documents(p) = obs_Documents(per) ∪ ds ∧
74 obs_Dossiers(p) = obs_Dossiers(per)

75
��

76 p

77

���,
78

79 ∪ : Person × Dossier-set → Person

80 per ∪ ds≡
81

��� p:Person •

82 obs_ID(p) = obs_ID(per) ∧
83 obs_Signature(p) = obs_Signature(per) ∧
84 obs_Keys(p) = obs_Keys(per) ∧
85 obs_Documents(p) = obs_Documents(per) ∧
86 obs_Dossiers(p) = obs_Dossiers(per) ∪ ds

87
��

88 p

89

���,
90

91 \ : Person × Document-set → Person

D.2. DOCSYSBASICS.RSL 131

92 per \ ds≡
93

��� p:Person •

94 obs_ID(p) = obs_ID(per) ∧
95 obs_Signature(p) = obs_Signature(per) ∧
96 obs_Keys(p) = obs_Keys(per) ∧
97 obs_Documents(p) = obs_Documents(per) \ ds ∧
98 obs_Dossiers(p) = obs_Dossiers(per)

99
��

100 p

101

���,
102

103 \ : Person × Dossier-set → Person

104 per \ ds≡
105

��� p:Person •

106 obs_ID(p) = obs_ID(per) ∧
107 obs_Signature(p) = obs_Signature(per) ∧
108 obs_Keys(p) = obs_Keys(per) ∧
109 obs_Documents(p) = obs_Documents(per) ∧
110 obs_Dossiers(p) = obs_Dossiers(per) \ ds

111
��

112 p

113

���,
114

115 ∪ : Location × Document-set → Location

116 loc ∪ ds≡
117

��� l:Location •

118 obs_Documents(l) = obs_Documents(loc) ∪ ds ∧
119 obs_Dossiers(l) = obs_Dossiers(loc)

120
��

121 l

122

���,
123

124 ∪ : Location × Dossier-set → Location

125 loc ∪ ds≡
126

��� l:Location •

127 obs_Documents(l) = obs_Documents(loc) ∧
128 obs_Dossiers(l) = obs_Dossiers(loc) ∪ ds

129
��

130 l

131

���,
132

133 \ : Location × Document-set → Location

134 loc \ ds≡
135

��� l:Location •

136 obs_Documents(l) = obs_Documents(loc) \ ds ∧
137 obs_Dossiers(l) = obs_Dossiers(loc)

138
��

139 l

140

���,
141

142 \ : Location × Dossier-set → Location

143 loc \ ds≡
144

��� l:Location •

145 obs_Documents(l) = obs_Documents(loc) ∧
146 obs_Dossiers(l) = obs_Dossiers(loc) \ ds

147
��

148 l

149

���,
150

151 ∈ : Document × Directory→ ����

152 doc ∈ dir ≡ (

153 ∃! dirpath:Index∗, doslist:Dossier∗ •

132 APPENDIX D. DOCSYS – DOMAIN SPECIFICATION

154 Xor(doc ∈ recurseDir(dir,dirpath),

155

��
(doslist) ∈ recurseDir(dir,dirpath) ∧

156 doc ∈ recurseDossier(doslist))),

157

158 ∈ : Dossier × Dossier→ ����

159 dos1 ∈ dos≡
160 dos1 ∈ obs_Dossiers(dos),

161

162 ∈ : Dossier × Person→ ����

163 dos ∈ pers ≡ (

164 ∃! doslist:Dossier∗ •

165

��
(doslist) ∈ pers ∧ obs_ID(dos) = obs_ID(recurseDossier(doslist))),

166

167 ∈ : Dossier × Location→ ����

168 dos ∈ loc ≡ (

169 ∃! doslist:Dossier∗ •

170

��
(doslist) ∈ loc ∧ obs_ID(dos) = obs_ID(recurseDossier(doslist))),

171

172 ∈ : Dossier × Directory→ ����

173 dos ∈ dir ≡ (

174 ∃! dirpath:Index∗, doslist:Dossier∗ •

175

��
(doslist) ∈ recurseDir(dir,dirpath) ∧

176 obs_ID(dos) = obs_ID(recurseDossier(doslist)))

177

178
����

179 recurseDir : Directory × Index∗ → DirContents

180 recurseDir(dir, dirpath)≡
181

��� mk_dir(dcontents, dirs) = dir ��

182
�� ��� dirpath = 0 ���� dcontents

183

����

184 recurseDir(dirs(
��
(dirpath)),��(dirpath))

185

���

186

���

187
	�� ��� mk_dir(dcontents, dirs) = dir ��

188

��� dirpath = 0 ∨
��
(dirpath) ∈

��� dirs

189

���,
190

191 recurseDossier : Dossier∗ → Dossier

192 recurseDossier(doslist)≡
193

�� ��� doslist = 1 ���� ��
(doslist)

194

����

195 recurseDossier(��(doslist))
196

���

197
	�� ��� doslist = 1 ∨

��
(��(doslist)) ∈

��
(doslist),

198

199 updateDir : Directory × Index∗ × DirContents→ Directory

200 updateDir(dir, dirpath, dcontents)≡
201

��� mk_dir(dcontents1, dirs) = dir ��

202
�� ��� dirpath = 0 ���� mk_dir(dcontents, dirs)

203

����

204 mk_dir(dcontents, dirs † [
��
(dirpath) 7→

205 updateDir(dirs(
��
(dirpath)), ��(dirpath), dcontents)])

206

���

207

���

208
	�� ��� mk_dir(dcontents1, dirs) = dir ��

209

��� dirpath = 0 ∨
��
(dirpath) ∈

��� dirs

210

���,
211

212 Xor : ����× ����→ ����

213 Xor(arg1,arg2)≡(
214 arg1 6= arg2),

215

D.3. PDOCSYSTYPES.RSL 133

216 indexExists : Directory × Index∗ → ����

217 indexExists(dir, dirpath)≡
218

��� mk_dir(dcontents, dirs) = dir ��

219
�� ��� dirpath = 0 ����

220 ����

221

����� ��
(dirpath) /∈

��� dirs ����

222

�����

223

����

224 indexExists(dirs(
��
(dirpath)),��(dirpath))

225

���

226

���,
227

228 assert : ����→ ����
229 assert(criteria)≡
230

�� ∼criteria ����
231

�����

232

���

233

���

D.3 ����
�����������

1 docsysbasics

2
������ pDocSysTypes =

3

������ DocSysBasics ����

4
�����

5 ��	�

6 System ′ = Places × DocumentID-set × DossierID-set,

7 System = {| w:System ′ • wf_system(w) |}

8

9
����

10 wf_system : System ′ → ����

11

12 ��	�

13 PlaceMembership == mk_plm(PlaceID) | none,

14 Place = Directory × Persons × Locations × Keys,

15 Places = PlaceID→m Place,

16

17 FTE = (Contents→ Contents) × (Contents→ Contents)

18

19
����

20 obs_PlaceMembership : Document→ PlaceMembership

21

22
����

23 PersonBorn: System × Place × Person × PersonID→ System,

24 PersonDeceased: System × Person→ System,

25 IssuePlacePermit: System × PlaceID→ System,

26 SuspensePlacePermit: System × PlaceID→ System,

27

28 MakeKey: System × Place→ System,

29 DestroyKey: System × Place × Key→ System,

30 CopyKey: System × Place × Person × Key→ System,

31 RemoveKey: System × Place × Person × Key→ System,

32 CreateDirIndex: System × Place × Index∗ → System,

33 DeleteDirIndex: System × Place × Index∗ → System,

34 BuildLocation: System × Place × Location→ System,

35 DestroyLocation: System × Place × Location→ System

36

���

D.4 ����
������������

134 APPENDIX D. DOCSYS – DOMAIN SPECIFICATION

1 pdocsystypes

2
������ pDocSysBasics =

3

������ pDocSysTypes ����

4
�����

5
����

6 ∪ : Dossier × Document-set → Dossier

7 dos ∪ ds≡
8

��� d:Dossier •

9 obs_ID(d) = obs_ID(dos) ∧
10 obs_Description(d) = obs_Description(dos) ∧
11 obs_Documents(d) = obs_Documents(dos) ∪ ds ∧
12 obs_Dossiers(d) = obs_Dossiers(dos)

13
�� d

���,
14

15 \ : Dossier × Document-set → Dossier

16 dos \ ds≡
17

��� d:Dossier •

18 obs_ID(d) = obs_ID(dos) ∧
19 obs_Description(d) = obs_Description(dos) ∧
20 obs_Documents(d) = obs_Documents(dos) \ ds ∧
21 obs_Dossiers(d) = obs_Dossiers(dos)

22
�� d

���,
23

24 ∪ : Dossier × Dossier-set → Dossier

25 dos ∪ doss≡
26

��� d:Dossier •

27 obs_ID(d) = obs_ID(dos) ∧
28 obs_Description(d) = obs_Description(dos) ∧
29 obs_Documents(d) = obs_Documents(dos) ∧
30 obs_Dossiers(d) = obs_Dossiers(dos) ∪ doss

31
�� d

���,
32

33 \ : Dossier × Dossier-set → Dossier

34 dos \ doss≡
35

��� d:Dossier •

36 obs_ID(d) = obs_ID(dos) ∧
37 obs_Description(d) = obs_Description(dos) ∧
38 obs_Documents(d) = obs_Documents(dos) ∧
39 obs_Dossiers(d) = obs_Dossiers(dos) \ doss

40
�� d

���,
41

42 addSignature : Document × Person→ Document

43 addSignature(doc, person)≡
44

��� d:Document •

45 obs_ID(d) = obs_ID(doc) ∧
46 obs_Time(d) = obs_Time(doc) ∧
47 obs_PlaceID(d) = obs_PlaceID(doc) ∧
48 obs_Contents(d) = obs_Contents(doc) ∧
49 obs_Type(d) = obs_Type(doc) ∧
50 obs_Creator(d) = obs_Creator(doc) ∧
51 obs_Signatures(d) = obs_Signatures(doc) ∪ {obs_Signature(person)} ∧
52 obs_PlaceMembership(d) = obs_PlaceMembership(doc) ∧
53 obs_DirMembership(d) = obs_DirMembership(doc) ∧
54 obs_Ancestor(d) = obs_Ancestor(doc)

55
�� d

���,
56

57 setMembership : Document × PlaceMembership × DirPath→ Document

58 setMembership(doc, plm, dirpath)≡
59

�� (dirpath = none ∧ plm = none) ∨ (obs_DirMembership(doc) = none ∧
60 obs_PlaceMembership(doc) = none) ����

61

��� d:Document •

62 obs_ID(d) = obs_ID(doc) ∧

D.5. PDOCSYSWF.RSL 135

63 obs_Time(d) = obs_Time(doc) ∧
64 obs_PlaceID(d) = obs_PlaceID(doc) ∧
65 obs_Contents(d) = obs_Contents(doc) ∧
66 obs_Type(d) = obs_Type(doc) ∧
67 obs_Creator(d) = obs_Creator(doc) ∧
68 obs_Signatures(d) = obs_Signatures(doc) ∧
69 obs_DirMembership(d) = dirpath ∧
70 obs_PlaceMembership(d) = plm ∧
71 obs_Ancestor(d) = obs_Ancestor(doc)

72
�� d

���

73

���� doc
���,

74

75 setMembership : Dossier × PlaceMembership × DirPath→ Dossier

76 setMembership(dos, plm, dirpath) �� d

77
	��� (

78 (all doc:Document • doc ∈ d⇒
79 doc = setMembership(doc, plm, dirpath)) ∧
80 (all dos:Dossier • dos ∈ d⇒
81 dos = setMembership(dos, plm, dirpath))

82)

83

���

D.5 ����
��������

1 pdocsysbasics

2
������ pDocSysWF =

3

������ pDocSysBasics ����

4
�����

5
����

6 wf_doc : System ′ → ����

7 wf_doc((places,docids_in_use,dosids_in_use)) ≡ (

8 ∀ doc,doc2:Document •

9 obs_ID(doc) ∈ docids_in_use⇒ (

10 obs_ID(doc) = obs_ID(doc2)⇒ doc = doc2 ∧
11 (∃! (dir,pers,locs,keys):Place, person:Person, loc:Location •

12 (dir,pers,locs,keys) ∈ ��� places ∧
13 (Xor(Xor(person ∈ ��� pers ∧ doc ∈ person,

14 loc ∈ ��� locs ∧ doc ∈ loc),

15 doc ∈ dir)))))

16
����

17 wf_dos : System ′ → ����

18 wf_dos((places,docids_in_use,dosids_in_use)) ≡ (

19 ∀ dos,dos2:Dossier •

20 obs_ID(dos) ∈ dosids_in_use ∧
21 (obs_ID(dos) = obs_ID(dos2)⇒ dos = dos2) ∧
22 (∃! (dir,pers,locs,keys):Place, person:Person, loc:Location •

23 (dir,pers,locs,keys) ∈ ��� places ∧
24 (Xor(Xor(person ∈ ��� pers ∧ dos ∈ person,

25 loc ∈ ��� locs ∧ dos ∈ loc),

26 dos ∈ dir))))

27
����

28 wf_pers : System ′ → ����

29 wf_pers((places,docids_in_use,dosids_in_use)) ≡ (

30 ∀ pers,pers2:Person •

31 (obs_ID(pers) = obs_ID(pers2)⇒ pers = pers2) ∧
32 (obs_Signature(pers) = obs_Signature(pers2)⇒ pers = pers2) ∧
33 (∃! (dir,pers1,locs,keys):Place •

34 (dir,pers1,locs,keys) ∈ ��� places ∧ pers ∈ ��� pers1))

35

36
�����

37 ∀ w:System ′ •

136 APPENDIX D. DOCSYS – DOMAIN SPECIFICATION

38 wf_system(w) ≡ (wf_doc(w) ∧ wf_dos(w) ∧ wf_pers(w))

39

���

D.6 ����
������

����

1 pdocsyswf

2
������ pDocSysCmds =

3

������ pDocSysWF ����

4
�����

5 ��	�

6 Command = CreateDoc

7 | CreateDos

8 | Copy

9 | Edit

10 | Shred

11 | DisposeOfDos

12 | GetDocFromDos

13 | PutDocInDos

14 | GetDosFromDos

15 | PutDosInDos

16 | GetDocFromDir

17 | PutDocInDir

18 | GetDosFromDir

19 | PutDosInDir

20 | GetDocFromLoc

21 | GetDosFromLoc

22 | PutDocInLoc

23 | PutDosInLoc

24 | SignDocument

25 | ResetMembership

26 | SendDoc

27 | SendDos

28

29 ��	�

30 CreateDoc ::

31 ref_person : Person

32 ref_PlaceID : PlaceID

33 ref_time : Time

34 ref_contents : Contents,

35

36 CreateDos ::

37 ref_person : Person

38 ref_PlaceID : PlaceID,

39

40 Copy ::

41 ref_person : Person

42 ref_PlaceID : PlaceID

43 ref_time : Time

44 ref_doc : Document,

45

46 Edit ::

47 ref_person : Person

48 ref_PlaceID : PlaceID

49 ref_time : Time

50 ref_doc : Document

51 ref_edition : FTE,

52

53 Shred ::

54 ref_person : Person

55 ref_PlaceID : PlaceID

56 ref_doc : Document,

D.6. PDOCSYSCMDS.RSL 137

57

58 DisposeOfDos ::

59 ref_person : Person

60 ref_PlaceID : PlaceID

61 ref_dos : Dossier,

62

63 GetDocFromDos ::

64 ref_person : Person

65 ref_PlaceID : PlaceID

66 ref_dos : Dossier

67 ref_doc : Document,

68

69 PutDocInDos ::

70 ref_person : Person

71 ref_PlaceID : PlaceID

72 ref_dos : Dossier

73 ref_doc : Document,

74

75 GetDosFromDos ::

76 ref_person : Person

77 ref_PlaceID : PlaceID

78 ref_dos : Dossier

79 ref_doc : Dossier,

80

81 PutDosInDos ::

82 ref_person : Person

83 ref_PlaceID : PlaceID

84 ref_dos : Dossier

85 ref_doc : Dossier,

86

87 GetDocFromDir ::

88 ref_person : Person

89 ref_PlaceID : PlaceID

90 ref_dirpath : Index∗

91 ref_docid : DocumentID,

92

93 PutDocInDir ::

94 ref_person : Person

95 ref_PlaceID : PlaceID

96 ref_dirpath : Index∗

97 ref_doc : Document,

98

99 GetDosFromDir ::

100 ref_person : Person

101 ref_PlaceID : PlaceID

102 ref_dirpath : Index∗

103 ref_dosid : DossierID,

104

105 PutDosInDir ::

106 ref_person : Person

107 ref_PlaceID : PlaceID

108 ref_dirpath : Index∗

109 ref_dos : Dossier,

110

111 GetDocFromLoc ::

112 ref_person : Person

113 ref_PlaceID : PlaceID

114 ref_locid : LocationID

115 ref_docid : DocumentID,

116

117 GetDosFromLoc ::

118 ref_person : Person

138 APPENDIX D. DOCSYS – DOMAIN SPECIFICATION

119 ref_PlaceID : PlaceID

120 ref_locid : LocationID

121 ref_dosid : DossierID,

122

123 PutDocInLoc ::

124 ref_person : Person

125 ref_PlaceID : PlaceID

126 ref_locid : LocationID

127 ref_doc : Document,

128

129 PutDosInLoc ::

130 ref_person : Person

131 ref_PlaceID : PlaceID

132 ref_locid : LocationID

133 ref_dos : Dossier,

134

135 SignDocument ::

136 ref_person : Person

137 ref_PlaceID : PlaceID

138 ref_doc : Document,

139

140 SendDoc ::

141 ref_sender : Person

142 ref_origin : PlaceID

143 ref_env : Envelope

144 ref_reciever : PersonID

145 ref_dest : PlaceID

146 ref_doc : Document,

147

148 SendDos ::

149 ref_sender : Person

150 ref_origin : PlaceID

151 ref_env : Envelope

152 ref_reciever : PersonID

153 ref_dest : PlaceID

154 ref_doc : Dossier,

155

156 ResetMembership ::

157 ref_person : Person

158 ref_PlaceID : PlaceID

159 ref_doc : Document

160

161
����

162 M: Command→ System→ System

163 M(cmd)(places, docids, dosids)≡
164

���� cmd ��

165 mk_CreateDoc(person, plid, time, contents)→
166

��� (dir,pers,locs,keys) = places(plid) ��

167 assert(person ∈ ��� pers);

168

��� did:DocumentID • did /∈ docids ��

169

��� doc:Document •

170 obs_ID(doc) = did ∧
171 obs_Time(doc) = time ∧
172 obs_Contents(doc) = contents ∧
173 obs_Type(doc) = master ∧
174 obs_Creator(doc) = obs_ID(person) ∧
175 obs_PlaceID(doc) = plid ∧
176 obs_Signatures(doc) = {} ∧
177 obs_DirMembership(doc) = none ∧
178 obs_PlaceMembership(doc) = none ∧
179 obs_Ancestor(doc) = none

180
��

D.6. PDOCSYSCMDS.RSL 139

181 (places † [plid 7→
182 (dir, pers † [obs_ID(person) 7→
183 person ∪ {doc}],
184 locs, keys)], docids ∪ {did}, dosids)

185

���

186

���

187

���,
188

189 mk_CreateDos(person, plid)→
190

��� (dir,pers,locs,keys) = places(plid) ��

191 assert(person ∈ ��� pers);

192

��� dosid:DossierID • dosid /∈ dosids ��

193

��� dos:Dossier •

194 obs_ID(dos) = dosid ∧
195 obs_Documents(dos) = {} ∧
196 obs_Dossiers(dos) = {}

197
��

198 (places † [plid 7→
199 (dir, pers † [obs_ID(person) 7→
200 person ∪ {dos}],
201 locs, keys)], docids, dosids ∪ {dosid})

202

���

203

���

204

���,
205

206 mk_Copy(person, plid, time, doc)→
207

��� (dir,pers,locs,keys) = places(plid) ��

208 assert(person ∈ ��� pers ∧
209 doc ∈ obs_Documents(person));

210

��� did:DocumentID • did /∈ docids ��
211

��� cpy:Document •

212 obs_ID(cpy) = did ∧
213 obs_Time(cpy) = time ∧
214 obs_Contents(cpy) = obs_Contents(doc) ∧
215 obs_Type(cpy) = copy ∧
216 obs_Creator(cpy) = obs_ID(person) ∧
217 obs_PlaceID(cpy) = plid ∧
218 obs_Signatures(cpy) = obs_Signatures(doc) ∧
219 obs_DirMembership(cpy) = none ∧
220 obs_PlaceMembership(cpy) = none ∧
221

�� obs_Type(doc) = copy ����

222 obs_Ancestor(cpy) = obs_Ancestor(doc)

223

����

224 obs_Ancestor(cpy) = mk_did(obs_ID(doc))

225

���

226
��

227 (places † [plid 7→
228 (dir, pers † [obs_ID(person) 7→
229 person ∪ {cpy}],
230 locs, keys)], docids ∪ {did}, dosids)

231

���

232

���

233

���,
234

235 mk_Edit(person, plid, time, document, (te,fe))→
236

��� (dir,pers,locs,keys) = places(plid) ��

237 assert(person ∈ ��� pers ∧
238 document ∈ obs_Documents(person));

239

��� doc:Document •

240 obs_ID(doc) = obs_ID(document) ∧
241 obs_Time(doc) = time ∧
242 obs_Contents(doc) = te(obs_Contents(document)) ∧

140 APPENDIX D. DOCSYS – DOMAIN SPECIFICATION

243 obs_Type(doc) = version ∧
244 obs_Creator(doc) = obs_ID(person) ∧
245 obs_PlaceID(doc) = plid ∧
246 obs_Signatures(doc) = {} ∧
247 obs_DirMembership(doc) = obs_DirMembership(document) ∧
248 obs_PlaceMembership(doc) = obs_PlaceMembership(document) ∧
249 obs_Ancestor(doc) = obs_Ancestor(document)

250
��

251 (places † [plid 7→
252 (dir, pers † [obs_ID(person) 7→
253 (person \ {document}) ∪ {doc}],
254 locs, keys)], docids, dosids)

255

���

256

���,
257

258 mk_DisposeOfDos(person, plid, dos)→
259

��� (dir,pers,locs,keys) = places(plid) ��

260 assert(person ∈ ��� pers ∧
261 dos ∈ obs_Dossiers(person));

262 (places † [plid 7→
263 (dir, pers † [obs_ID(person) 7→
264 person \ {dos}],
265 locs, keys)], docids, dosids \ {obs_ID(dos)})

266

���,
267

268 mk_Shred(person, plid, doc)→
269

��� (dir,pers,locs,keys) = places(plid) ��

270 assert(person ∈ ��� pers ∧
271 doc ∈ obs_Documents(person));

272 (places † [plid 7→
273 (dir, pers † [obs_ID(person) 7→
274 person \ {doc}],
275 locs, keys)], docids \ {obs_ID(doc)}, dosids)

276

���,
277

278 mk_GetDocFromDos(person, plid, dos, doc)→
279

��� (dir,pers,locs,keys) = places(plid) ��

280 assert(person ∈ ��� pers ∧
281 dos ∈ obs_Dossiers(person) ∧
282 doc ∈ obs_Documents(dos));

283 (places † [plid 7→
284 (dir, pers † [obs_ID(person) 7→
285 (person \ {dos}) ∪
286 {dos \ {doc}} ∪
287 {doc}], locs, keys)],
288 docids, dosids)

289

���,
290

291 mk_PutDocInDos(person, plid, dos, doc)→
292

��� (dir,pers,locs,keys) = places(plid) ��

293 assert(person ∈ ��� pers ∧
294 dos ∈ obs_Dossiers(person) ∧
295 doc ∈ obs_Documents(person));

296 (places † [plid 7→
297 (dir, pers † [obs_ID(person) 7→
298 (person \ {dos}) \ {doc} ∪
299 {dos ∪ {doc}}], locs, keys)],
300 docids, dosids)

301

���,
302

303 mk_GetDosFromDos(person, plid, dos, dos1)→
304

��� (dir,pers,locs,keys) = places(plid) ��

D.6. PDOCSYSCMDS.RSL 141

305 assert(person ∈ ��� pers ∧
306 dos ∈ obs_Dossiers(person) ∧
307 dos1 ∈ obs_Dossiers(dos));

308 (places † [plid 7→
309 (dir, pers † [obs_ID(person) 7→
310 (person \ {dos}) ∪
311 {dos \ {dos1}} ∪
312 {dos1}], locs, keys)],
313 docids, dosids)

314

���,
315

316 mk_PutDosInDos(person, plid, dos, dos1)→
317

��� (dir,pers,locs,keys) = places(plid) ��

318 assert(person ∈ ��� pers ∧
319 dos ∈ obs_Dossiers(person) ∧
320 dos1 ∈ obs_Dossiers(person));

321 (places † [plid 7→
322 (dir, pers † [obs_ID(person) 7→
323 (person \ {dos}) \ {dos1} ∪
324 {dos ∪ {dos1}}], locs, keys)],
325 docids, dosids)

326

���,
327

328 mk_GetDocFromDir(person, plid, dirpath, docid)→
329

��� (dir,pers,locs,keys) = places(plid) ��

330

��� doc:Document • obs_ID(doc) = docid ��

331 assert(person ∈ ��� pers ∧
332 indexExists(dir,dirpath) ∧
333 doc ∈ recurseDir(dir,dirpath) ∧
334 obs_Keys(recurseDir(dir,dirpath)) ⊂ obs_Keys(person));

335 (places † [plid 7→
336 (updateDir(dir,dirpath,recurseDir(dir,dirpath) \

337 {doc}),

338 pers † [obs_ID(person) 7→
339 (person ∪ {doc})],locs, keys)],
340 docids, dosids)

341

���

342

���,
343

344 mk_PutDocInDir(person, plid, dirpath, doc)→
345

��� (dir,pers,locs,keys) = places(plid) ��

346 assert(person ∈ ��� pers ∧
347 doc ∈ obs_Documents(person) ∧
348 indexExists(dir,dirpath) ∧
349 obs_Keys(recurseDir(dir,dirpath)) ⊂ obs_Keys(person));

350

��� destination = recurseDir(dir,dirpath) ��
351 (places † [plid 7→
352 (updateDir(dir,dirpath,destination ∪
353 {setMembership(doc,

354 mk_plm(plid),mk_dip(dirpath))}),

355 pers † [obs_ID(person) 7→
356 (person \ {doc})],locs, keys)],
357 docids, dosids)

358

���

359

���,
360

361 mk_GetDosFromDir(person, plid, dirpath, dosid)→
362

��� (dir,pers,locs,keys) = places(plid) ��

363

��� dos:Dossier • obs_ID(dos) = dosid ��

364 assert(person ∈ ��� pers ∧
365 indexExists(dir,dirpath) ∧
366 dos ∈ recurseDir(dir,dirpath) ∧

142 APPENDIX D. DOCSYS – DOMAIN SPECIFICATION

367 obs_Keys(recurseDir(dir,dirpath)) ⊂ obs_Keys(person));

368 (places † [plid 7→
369 (updateDir(dir,dirpath,recurseDir(dir,dirpath) \

370 {dos}),

371 pers † [obs_ID(person) 7→
372 (person ∪ {dos})],locs, keys)],
373 docids, dosids)

374

���

375

���,
376

377 mk_PutDosInDir(person, plid, dirpath, dos)→
378

��� (dir,pers,locs,keys) = places(plid) ��

379 assert(person ∈ ��� pers ∧
380 dos ∈ obs_Dossiers(person) ∧
381 indexExists(dir,dirpath) ∧
382 obs_Keys(recurseDir(dir,dirpath)) ⊂ obs_Keys(person));

383

��� destination = recurseDir(dir, dirpath) ��

384 (places † [plid 7→
385 (updateDir(dir,dirpath,destination ∪
386 {setMembership(dos,

387 mk_plm(plid),mk_dip(dirpath))}),

388 pers † [obs_ID(person) 7→
389 (person \ {dos})],locs, keys)],
390 docids, dosids)

391

���

392

���,
393

394 mk_GetDocFromLoc(person, plid, locid, docid)→
395

��� (dir,pers,locs,keys) = places(plid) ��

396 assert(person ∈ ��� pers ∧
397 locid ∈

��� locs ∧
398 (∃ doc:Document •

399 obs_ID(doc) = docid ∧
400 doc ∈ obs_Documents(locs(locid))));

401

��� doc:Document • obs_ID(doc) = docid,

402 loccont = locs(locid)

403
��

404 (places † [plid 7→
405 (dir, pers † [obs_ID(person) 7→
406 (person ∪ {doc})],
407 (locs † [locid 7→
408 (loccont \ {doc})]), keys)],
409 docids, dosids)

410

���

411

���,
412

413 mk_PutDocInLoc(person, plid, locid, doc)→
414

��� (dir,pers,locs,keys) = places(plid) ��

415 assert(person ∈ ��� pers ∧
416 locid ∈ locs ∧
417 doc ∈ obs_Documents(person));

418

��� loccontents = locs(locid) ��

419 (places † [plid 7→
420 (dir, pers † [obs_ID(person) 7→
421 (person \ {doc})],
422 (locs † [locid 7→
423 (loccontents ∪ {doc})]), keys)],
424 docids, dosids)

425

���

426

���,
427

428 mk_GetDosFromLoc(person, plid, locid, dosid)→

D.6. PDOCSYSCMDS.RSL 143

429

��� (dir,pers,locs,keys) = places(plid) ��

430 assert(person ∈ ��� pers ∧
431 locid ∈

��� locs ∧
432 (∃ dos:Dossier •

433 obs_ID(dos) = dosid ∧
434 dos ∈ obs_Dossiers(locs(locid))));

435

��� dos:Dossier • obs_ID(dos) = dosid,

436 loccont = locs(locid)

437
��

438 (places † [plid 7→
439 (dir, pers † [obs_ID(person) 7→
440 (person ∪ {dos})],
441 (locs † [locid 7→
442 (loccont \ {dos})]), keys)],
443 docids, dosids)

444

���

445

���,
446

447 mk_PutDosInLoc(person, plid, locid, dos)→
448

��� (dir,pers,locs,keys) = places(plid) ��

449 assert(person ∈ ��� pers ∧
450 locid ∈

��� locs ∧
451 dos ∈ obs_Dossiers(person));

452

��� loccontents = locs(locid) ��

453 (places † [plid 7→
454 (dir, pers † [obs_ID(person) 7→
455 (person \ {dos})],
456 (locs † [locid 7→
457 (loccontents ∪ {dos})]), keys)],
458 docids, dosids)

459

���

460

���,
461

462 mk_SignDocument(person, plid, doc)→
463

��� (dir,pers,locs,keys) = places(plid) ��

464 assert(person ∈ ��� pers ∧
465 doc ∈ obs_Documents(person));

466 (places † [plid 7→
467 (dir, pers † [obs_ID(person) 7→
468 ((person \ {doc}) ∪
469 {addSignature(doc,person)})],
470 locs, keys)],
471 docids, dosids)

472

���,
473

474 mk_SendDoc(person, plid_org, env, pid_dst, plid_dst, doc)→
475

��� (dir,pers,locs,keys) = places(plid_org),

476 (dir_dst,pers_dst,locs_dst,keys_dst) = places(plid_dst),

477 person_dst : Person • obs_ID(person_dst) = pid_dst

478
��

479 assert(person ∈ ��� pers ∧
480 pid_dst ∈

��� pers_dst ∧
481 doc ∈ obs_Documents(person));

482 (places † [plid_org 7→
483 (dir, pers † [obs_ID(person) 7→
484 (person \ {doc})],
485 locs, keys),

486 plid_dst 7→
487 (dir_dst, pers_dst † [pid_dst 7→
488 (person_dst ∪ {doc})],
489 locs_dst, keys_dst)],
490 docids, dosids)

144 APPENDIX D. DOCSYS – DOMAIN SPECIFICATION

491

���,
492

493 mk_SendDos(person, plid_org, env, pid_dst, plid_dst, dos)→
494

��� (dir,pers,locs,keys) = places(plid_org),

495 (dir_dst,pers_dst,locs_dst,keys_dst) = places(plid_dst),

496 person_dst : Person • obs_ID(person_dst) = pid_dst

497
��

498 assert(person ∈ ��� pers ∧
499 pid_dst ∈

��� pers_dst ∧
500 dos ∈ obs_Dossiers(person));

501 (places † [plid_org 7→
502 (dir, pers † [obs_ID(person) 7→
503 (person \ {dos})],
504 locs, keys),

505 plid_dst 7→
506 (dir_dst, pers_dst † [pid_dst 7→
507 (person_dst ∪ {dos})],
508 locs_dst, keys_dst)],
509 docids, dosids)

510

���,
511

512 mk_ResetMembership(person, plid, doc)→
513

��� (dir,pers,locs,keys) = places(plid) ��
514 assert(person ∈ ��� pers ∧
515 doc ∈ obs_Documents(person));

516 (places † [plid 7→
517 (dir, pers † [obs_ID(person) 7→
518 (person \ {doc}) ∪
519 {setMembership(doc,none,none)}],
520 locs, keys)],
521 docids, dosids)

522

���

523

���

524

���

Appendix E

DocSys – Requirements
Specification

E.1 ����
�����������

1 docsysbasics

2
������ eDocSysTypes =

3

������ DocSysBasics ����

4
�����

5 ��	�

6 System ′ = Places × DocumentID-set × DossierID-set × ExportID-set,

7 System = {| w:System ′ • wf_system(w) |}

8

9
����

10 wf_system : System ′ → ����

11

12 ��	�

13 ExportID,

14 RecycleBin,

15 Place = Directory × Persons × Locations × RecycleBin × Keys,

16 Places = PlaceID→m Place,

17

18 FTE = (Contents→ Contents) × (Contents→ Contents),

19 PersonDossier = Person × Dossier∗,

20 DossierMembership == mk_did(DossierID) | none

21

22
����

23 obs_Events : Document→ Event∗,

24 obs_DossierMembership : Document→ DossierMembership,

25 obs_CommandLocks : Document→ CommandLocks,

26

27 obs_PlaceID : Dossier→ PlaceID,

28 obs_DirMembership : Dossier→ DirPath,

29 obs_DossierMembership : Dossier→ DossierMembership,

30 obs_CommandLocks : Dossier→ CommandLocks,

31 obs_Documents : RecycleBin→ Document-set,

32 obs_Dossiers : RecycleBin→ Dossier-set

33

34
����

35 obs_Group : Document × DocumentID-set → Document-set

36 obs_Group(doc,docids) �� c

37
	���

145

146 APPENDIX E. DOCSYS – REQUIREMENTS SPECIFICATION

38 doc ∈ c ∧
39 (all doc1,doc2:Document •

40 obs_ID(doc1) ∈ docids ∧ obs_ID(doc2) ∈ docids⇒
41

�� doc1 ∈ c ∧
42 (obs_Type(doc2) = version ∧
43 mk_did(obs_ID(doc1)) = obs_Ancestor(doc2))

44 ∨
45 (obs_Type(doc1) = version ∧
46 mk_did(obs_ID(doc2)) = obs_Ancestor(doc1))

47 ����

48 doc2 ∈ c

49

����

50 doc2 /∈ c

51

���)
52

53 ��	�

54 EventType == Create

55 | Copy

56 | Edit

57 | RemoveDoc

58 | Export

59 | GetFromDir

60 | PutInDir

61 | Send,

62

63 Event ::

64 evt_type : EventType

65 evt_executedby : PersonID

66 evt_time : Time

67 evt_place : PlaceID

68 evt_exportid : ExportID

69 evt_exportloc : LocationID

70 evt_dossierid : DossierID

71 evt_sendtoperson : PersonID

72 evt_sendtoplace : PlaceID

73

74 ��	�

75 CommandName == Copy

76 | Edit

77 | RemoveDoc

78 | RemoveDos

79 | GetDocFromDos

80 | PutDocInDos

81 | GetDosFromDos

82 | PutDosInDos

83 | GetDocFromDir

84 | PutDocInDir

85 | GetDosFromDir

86 | PutDosInDir

87 | ExportDoc

88 | SignDocument

89 | ResetDocMembership

90 | ResetDosMembership

91 | SendDoc

92 | SendDos

93 | SetDocPermission

94 | SetDosPermission,

95

96 CommandLocks = CommandName→m Keys

97

98
����

99 CreatePerson: System × Place × Person × PersonID→ System,

E.2. EDOCSYSBASICS.RSL 147

100 DeletePerson: System × Person→ System,

101 CreatePlace: System × PlaceID→ System,

102 DeletePlace: System × PlaceID→ System,

103

104 CreateKey: System × Place→ System,

105 DeleteKey: System × Place × Key→ System,

106 AssignKey: System × Place × Person × Key→ System,

107 RemoveKey: System × Place × Person × Key→ System,

108 CreateDirIndex: System × Place × Index∗ → System,

109 DeleteDirIndex: System × Place × Index∗ → System,

110 CreateLocation: System × Place × Location→ System,

111 DeleteLocation: System × Place × Location→ System,

112 RestoreDocument: System × Place × Person × DocumentID→ System,

113

114 ManipulateSystemState: System→ System

115

���

E.2 ����
������������

1 edocsystypes

2
������ eDocSysBasics =

3

������ eDocSysTypes ����

4
�����

5
����

6 ∪ : RecycleBin × Document-set → RecycleBin

7 bin ∪ ds≡
8

��� b:RecycleBin •

9 obs_Documents(b) = obs_Documents(bin) ∪ ds ∧
10 obs_Dossiers(b) = obs_Dossiers(bin)

11
�� b

���,
12

13 ∪ : RecycleBin × Dossier-set → RecycleBin

14 bin ∪ ds≡
15

��� b:RecycleBin •

16 obs_Documents(b) = obs_Documents(bin) ∧
17 obs_Dossiers(b) = obs_Dossiers(bin) ∪ ds

18
�� b

���,
19

20 ∪ : Dossier × Document-set → Dossier

21 dos ∪ ds≡
22

��� d:Dossier •

23 obs_ID(d) = obs_ID(dos) ∧
24 obs_Description(d) = obs_Description(dos) ∧
25 obs_DirMembership(d) = obs_DirMembership(dos) ∧
26 obs_DossierMembership(d) = obs_DossierMembership(dos) ∧
27 obs_CommandLocks(d) = obs_CommandLocks(dos) ∧
28 obs_PlaceID(d) = obs_PlaceID(dos) ∧
29 obs_Documents(d) = obs_Documents(dos) ∪ ds ∧
30 obs_Dossiers(d) = obs_Dossiers(dos)

31
�� d

���,
32

33 \ : Dossier × Document-set → Dossier

34 dos \ ds≡
35

��� d:Dossier •

36 obs_ID(d) = obs_ID(dos) ∧
37 obs_Description(d) = obs_Description(dos) ∧
38 obs_DirMembership(d) = obs_DirMembership(dos) ∧
39 obs_DossierMembership(d) = obs_DossierMembership(dos) ∧
40 obs_CommandLocks(d) = obs_CommandLocks(dos) ∧
41 obs_PlaceID(d) = obs_PlaceID(dos) ∧
42 obs_Documents(d) = obs_Documents(dos) \ ds ∧

148 APPENDIX E. DOCSYS – REQUIREMENTS SPECIFICATION

43 obs_Dossiers(d) = obs_Dossiers(dos)

44
�� d

���,
45

46 ∪ : Dossier × Dossier-set → Dossier

47 dos ∪ doss≡
48

��� d:Dossier •

49 obs_ID(d) = obs_ID(dos) ∧
50 obs_Description(d) = obs_Description(dos) ∧
51 obs_DirMembership(d) = obs_DirMembership(dos) ∧
52 obs_DossierMembership(d) = obs_DossierMembership(dos) ∧
53 obs_CommandLocks(d) = obs_CommandLocks(dos) ∧
54 obs_PlaceID(d) = obs_PlaceID(dos) ∧
55 obs_Documents(d) = obs_Documents(dos) ∧
56 obs_Dossiers(d) = obs_Dossiers(dos) ∪ doss

57
�� d

���,
58

59 \ : Dossier × Dossier-set → Dossier

60 dos \ doss≡
61

��� d:Dossier •

62 obs_ID(d) = obs_ID(dos) ∧
63 obs_Description(d) = obs_Description(dos) ∧
64 obs_DirMembership(d) = obs_DirMembership(dos) ∧
65 obs_DossierMembership(d) = obs_DossierMembership(dos) ∧
66 obs_CommandLocks(d) = obs_CommandLocks(dos) ∧
67 obs_PlaceID(d) = obs_PlaceID(dos) ∧
68 obs_Documents(d) = obs_Documents(dos) ∧
69 obs_Dossiers(d) = obs_Dossiers(dos) \ doss

70
�� d

���,
71

72 ∪ : PersonDossier × Document-set → Person

73 perdos ∪ docs≡
74

��� (per,doslist) = perdos ��

75
�� ��� doslist = 0 ����

76 per ∪ docs

77

����

78 (per \ {
��
(doslist)}) ∪ {doslist ∪ docs}

79

���

80

���,
81

82 ∪ : PersonDossier × Dossier-set → Person

83 perdos ∪ doss≡
84

��� (per,doslist) = perdos ��

85
�� ��� doslist = 0 ����

86 per ∪ doss

87

����

88 (per \ {
��
(doslist)}) ∪ {doslist ∪ doss}

89

���

90

���,
91

92 \ : PersonDossier × Document-set → Person

93 perdos \ docs≡
94

��� (per,doslist) = perdos ��

95
�� ��� doslist = 0 ����

96 per \ docs

97

����

98 (per \ {
��
(doslist)}) ∪ {doslist \ docs}

99

���

100

���,
101

102 \ : PersonDossier × Dossier-set → Person

103 perdos \ doss≡
104

��� (per,doslist) = perdos ��

E.2. EDOCSYSBASICS.RSL 149

105
�� ��� doslist = 0 ����

106 per \ doss

107

����

108 (per \ {
��
(doslist)}) ∪ {doslist \ doss}

109

���

110

���,
111

112 ∪ : Dossier∗ × Document-set → Dossier

113 doslist ∪ docs≡
114

�� ��� doslist = 1 ����

115

��
(doslist) ∪ docs

116

����

117 (
��
(doslist) \ {

��
(��(doslist))}) ∪ {��(doslist) ∪ docs}

118

���,
119

120 ∪ : Dossier∗ × Dossier-set → Dossier

121 doslist ∪ doss≡
122

�� ��� doslist = 1 ����

123

��
(doslist) ∪ doss

124

����

125 (
��
(doslist) \ {

��
(��(doslist))}) ∪ {��(doslist) ∪ doss}

126

���,
127

128 \ : Dossier∗ × Document-set → Dossier

129 doslist \ docs≡
130

�� ��� doslist = 1 ����

131

��
(doslist) \ docs

132

����

133 (
��
(doslist) \ {

��
(��(doslist))}) ∪ {��(doslist) \ docs}

134

���,
135

136 \ : Dossier∗ × Dossier-set → Dossier

137 doslist \ doss≡
138

�� ��� doslist = 1 ����

139

��
(doslist) \ doss

140

����

141 (
��
(doslist) \ {

��
(��(doslist))}) ∪ {��(doslist) \ doss}

142

���

143

144
����

145 addSignature : Document × Signature→ Document

146 addSignature(doc, sign)≡
147

��� d:Document •

148 obs_ID(d) = obs_ID(doc) ∧
149 obs_Time(d) = obs_Time(doc) ∧
150 obs_PlaceID(d) = obs_PlaceID(doc) ∧
151 obs_Contents(d) = obs_Contents(doc) ∧
152 obs_Type(d) = obs_Type(doc) ∧
153 obs_Creator(d) = obs_Creator(doc) ∧
154 obs_Signatures(d) = obs_Signatures(doc) ∪ {sign} ∧
155 obs_DirMembership(d) = obs_DirMembership(doc) ∧
156 obs_DossierMembership(d) = obs_DossierMembership(doc) ∧
157 obs_Ancestor(d) = obs_Ancestor(doc) ∧
158 obs_Events(d) = obs_Events(doc) ∧
159 obs_CommandLocks(d) = obs_CommandLocks(doc)

160
�� d

���,
161

162 setMembership : Document × DirPath × DossierMembership→ Document

163 setMembership(doc, dirmem, dosmem)≡
164

��� d:Document •

165 obs_ID(d) = obs_ID(doc) ∧
166 obs_Time(d) = obs_Time(doc) ∧

150 APPENDIX E. DOCSYS – REQUIREMENTS SPECIFICATION

167 obs_PlaceID(d) = obs_PlaceID(doc) ∧
168 obs_Contents(d) = obs_Contents(doc) ∧
169 obs_Type(d) = obs_Type(doc) ∧
170 obs_Creator(d) = obs_Creator(doc) ∧
171 obs_Signatures(d) = obs_Signatures(doc) ∧
172 obs_DirMembership(d) = dirmem ∧
173 obs_DossierMembership(d) = dosmem ∧
174 obs_Ancestor(d) = obs_Ancestor(doc) ∧
175 obs_Events(d) = obs_Events(doc) ∧
176 obs_CommandLocks(d) = obs_CommandLocks(doc)

177
��

178 d

179

���,
180

181 setMembership : Document-set × DirPath × DossierMembership→ Document-set

182 setMembership(docs, dirmem, dosmem) �� d

183
	��� (all doc:Document • doc ∈ docs⇒

184 setMembership(doc, dirmem, dosmem) ∈ d),

185

186 setMembership : Dossier × DirPath × DossierMembership→ Dossier

187 setMembership(dos, dirmem, dosmem)≡
188

��� d:Dossier •

189 obs_ID(d) = obs_ID(dos) ∧
190 obs_Description(d) = obs_Description(dos) ∧
191 obs_DirMembership(d) = dirmem ∧
192 obs_DossierMembership(d) = dosmem ∧
193 obs_CommandLocks(d) = obs_CommandLocks(dos) ∧
194 obs_PlaceID(d) = obs_PlaceID(dos) ∧
195 obs_Documents(d) = obs_Documents(dos) ∧
196 obs_Dossiers(d) = obs_Dossiers(dos)

197
��

198 dos

199

���,
200

201 addEvent : Document × Event→ Document

202 addEvent(document,evt)≡
203

��� doc:Document •

204 obs_ID(doc) = obs_ID(document) ∧
205 obs_Time(doc) = obs_Time(document) ∧
206 obs_Contents(doc) = obs_Contents(document) ∧
207 obs_Type(doc) = obs_Type(document) ∧
208 obs_Creator(doc) = obs_Creator(document) ∧
209 obs_PlaceID(doc) = obs_PlaceID(document) ∧
210 obs_Ancestor(doc) = obs_Ancestor(document) ∧
211 obs_Signatures(doc) = obs_Signatures(document) ∧
212 obs_DirMembership(doc) = obs_DirMembership(document) ∧
213 obs_DossierMembership(doc) = obs_DossierMembership(document) ∧

214 obs_Events(doc) = obs_Events(document) ̂ 〈evt〉 ∧
215 obs_CommandLocks(doc) = obs_CommandLocks(document)

216
��

217 doc

218

���,
219

220 addEvent : Document-set × Event→ Document-set

221 addEvent(docs, evt) �� d

222
	��� (all doc:Document • doc ∈ docs⇒

223 addEvent(doc,evt) ∈ d),

224

225 addEvent : Dossier × Event→ Dossier

226 addEvent(dos, evt) �� d

227
	��� (all doc:Document • doc ∈ dos⇒

228 addEvent(doc,evt) ∈ d),

E.2. EDOCSYSBASICS.RSL 151

229

230 dossierListIsValid : Dossier∗ → ����

231 dossierListIsValid(doslist)≡
232

�� ��� doslist = 0 ∨
��� doslist = 1 ����

233 ����

234

����� ��
(��(doslist)) /∈ obs_Dossiers(

��
(doslist)) ����

235

�����

236

����

237 dossierListIsValid(��(doslist))
238

���,
239

240 mostRecentVersion : Document × Document-set → ����

241 mostRecentVersion(doc,docs)≡
242 doc = lastVersion(docs),

243

244 copiedFrom : Document-set × DocumentID-set → Document

245 copiedFrom(docs,docids)≡
246 assert(∃! doc:Document •

247 obs_ID(doc) ∈ docids ∧
248 mk_did(obs_ID(doc)) = obs_Ancestor(firstVersion(docs)));

249

��� doc:Document •

250 obs_ID(doc) ∈ docids ∧
251 mk_did(obs_ID(doc)) = obs_Ancestor(firstVersion(docs))

252
��

253 doc

254

���,
255

256 firstVersion : Document-set → Document

257 firstVersion(docs) �� d

258
	���

259 d ∈ docs ∧
260 ∼(∃ doc:Document •

261 doc ∈ docs ∧
262 mk_did(obs_ID(doc)) = obs_Ancestor(d)),

263

264 lastVersion : Document-set → Document

265 lastVersion(docs) �� d

266
	���

267 d ∈ docs ∧
268 ∼(∃ doc:Document •

269 doc ∈ docs ∧
270 mk_did(obs_ID(d)) = obs_Ancestor(doc)),

271

272 setPermission : Document × Keys × CommandName→ Document

273 setPermission(doc,keys,cmd)≡
274

��� d:Document •

275 obs_ID(d) = obs_ID(doc) ∧
276 obs_Time(d) = obs_Time(doc) ∧
277 obs_Contents(d) = obs_Contents(doc) ∧
278 obs_Type(d) = obs_Type(doc) ∧
279 obs_Creator(d) = obs_Creator(doc) ∧
280 obs_PlaceID(d) = obs_PlaceID(doc) ∧
281 obs_Ancestor(d) = obs_Ancestor(doc) ∧
282 obs_Signatures(d) = obs_Signatures(doc) ∧
283 obs_DirMembership(d) = obs_DirMembership(doc) ∧
284 obs_DossierMembership(d) = obs_DossierMembership(doc) ∧
285 obs_Events(d) = obs_Events(doc) ∧
286

�� keys = {} ����

287 obs_CommandLocks(d) = obs_CommandLocks(doc) \ {cmd}

288

����

289 obs_CommandLocks(d) = obs_CommandLocks(doc) † [cmd 7→ keys]
290

���

152 APPENDIX E. DOCSYS – REQUIREMENTS SPECIFICATION

291
��

292 doc

293

���,
294

295 setPermission : Document-set × Keys × CommandName→ Document-set

296 setPermission(docs,keys,cmd) �� d

297
	��� (all doc:Document •

298 doc ∈ docs⇒ setPermission(doc,keys,cmd) ∈ d),

299

300 setPermission : Dossier × Keys × CommandName→ Dossier

301 setPermission(dos,keys,cmd)≡
302

��� d:Dossier •

303 obs_ID(d) = obs_ID(dos) ∧
304 obs_Description(d) = obs_Description(dos) ∧
305 obs_DirMembership(d) = obs_DirMembership(dos) ∧
306 obs_DossierMembership(d) = obs_DossierMembership(dos) ∧
307 obs_PlaceID(d) = obs_PlaceID(dos) ∧
308 obs_Documents(d) = obs_Documents(dos) ∧
309 obs_Dossiers(d) = obs_Dossiers(dos) ∧
310

�� keys = {} ����

311 obs_CommandLocks(d) = obs_CommandLocks(dos) \ {cmd}

312

����

313 obs_CommandLocks(d) = obs_CommandLocks(dos) † [cmd 7→ keys]
314

���

315
��

316 dos

317

���,
318

319 hasPermission : Person × Document × CommandName→ ����

320 hasPermission(person,doc,cmd)≡
321

��� doclocks = obs_CommandLocks(doc) ��

322
�� cmd ∈

��� doclocks ����

323 doclocks(cmd) ⊂ obs_Keys(person)

324

����

325 ����

326

���

327

���,
328

329 hasPermission : Person × Dossier × CommandName→ ����

330 hasPermission(person,dos,cmd)≡
331

��� doslocks = obs_CommandLocks(dos) ��

332
�� cmd ∈

��� doslocks ����

333 doslocks(cmd) ⊂ obs_Keys(person)

334

����

335 ����

336

���

337

���

338

���

E.3 ����
��������

1 edocsysBasics

2
������ eDocSysWF =

3

������ eDocSysBasics ����

4
�����

5
����

6 wf_doc : System ′ → ����

7 wf_doc((places,docids_in_use,dosids_in_use,cpyids_in_use)) ≡ (

8 ∀ doc,doc2:Document •

9 obs_ID(doc) ∈ docids_in_use⇒ (

10 obs_ID(doc) = obs_ID(doc2)⇒ doc = doc2 ∧

E.4. EDOCSYSCMDS.RSL 153

11 obs_DirMembership(doc) 6= none⇒ obs_DossierMembership(doc) = none ∧
12 obs_DossierMembership(doc) 6= none⇒ obs_DirMembership(doc) = none ∧
13 obs_Type(doc) = master⇒ obs_Ancestor(doc) = none ∧
14 obs_Type(doc) 6= master⇒ obs_Ancestor(doc) 6= none ∧
15 (∃! (dir,pers,locs,bin,keys):Place, person:Person, loc:Location •

16 (dir,pers,locs,bin,keys) ∈ ��� places ∧
17 (Xor(Xor(Xor(person ∈ ��� pers ∧ doc ∈ person,

18 loc ∈ ��� locs ∧ doc ∈ loc),

19 doc ∈ dir),

20 doc ∈ obs_Documents(bin))))))

21

22
����

23 wf_dos : System ′ → ����

24 wf_dos((places,docids_in_use,dosids_in_use,cpyids_in_use)) ≡ (

25 ∀ dos,dos2:Dossier •

26 obs_ID(dos) ∈ dosids_in_use ∧
27 obs_DirMembership(dos) 6= none⇒ obs_DossierMembership(dos) = none ∧
28 obs_DossierMembership(dos) 6= none⇒ obs_DirMembership(dos) = none ∧
29 (obs_ID(dos) = obs_ID(dos2)⇒ dos = dos2) ∧
30 (∃! (dir,pers,locs,bin,keys):Place, person:Person, loc:Location •

31 (dir,pers,locs,bin,keys) ∈ ��� places ∧
32 (Xor(Xor(Xor(person ∈ ��� pers ∧ dos ∈ person,

33 loc ∈ ��� locs ∧ dos ∈ loc),

34 dos ∈ dir),

35 dos ∈ obs_Dossiers(bin)))))

36

37
����

38 wf_pers : System ′ → ����

39 wf_pers((places,docids_in_use,dosids_in_use,cpyids_in_use)) ≡ (

40 ∀ pers,pers2:Person •

41 (obs_ID(pers) = obs_ID(pers2)⇒ pers = pers2) ∧
42 (obs_Signature(pers) = obs_Signature(pers2)⇒ pers = pers2) ∧
43 (∃ (dir,pers1,locs,bin,keys):Place •

44 (dir,pers1,locs,bin,keys) ∈ ��� places ∧ pers ∈ ��� pers1))

45

46
�����

47 ∀ w:System ′ •

48 wf_system(w) ≡ (wf_doc(w) ∧ wf_dos(w) ∧ wf_pers(w))

49

50

51

���

E.4 ����
������

����

1 edocsyswf

2
������ eDocSysCmds =

3

������ eDocSysWF ����

4
�����

5 ��	�

6 Command = CreateDoc

7 | CreateDos

8 | Copy

9 | Edit

10 | RemoveDoc

11 | RemoveDos

12 | GetDocFromDos

13 | PutDocInDos

14 | GetDosFromDos

15 | PutDosInDos

16 | GetDocFromDir

17 | PutDocInDir

154 APPENDIX E. DOCSYS – REQUIREMENTS SPECIFICATION

18 | GetDosFromDir

19 | PutDosInDir

20 | ExportDoc

21 | SignDocument

22 | ResetDocMembership

23 | ResetDosMembership

24 | SendDoc

25 | SendDos

26 | SetDocPermission

27 | SetDosPermission

28 | ReturnDoc

29 | ReturnDos

30 | Merge

31

32 ��	�

33 CreateDoc ::

34 ref_person : Person

35 ref_PlaceID : PlaceID

36 ref_time : Time

37 ref_contents : Contents,

38

39 CreateDos ::

40 ref_person : Person

41 ref_PlaceID : PlaceID

42 ref_time : Time

43 ref_desc : DossierDescription,

44

45 Copy ::

46 ref_person : Person

47 ref_PlaceID : PlaceID

48 ref_time : Time

49 ref_doc : Document,

50

51 Edit ::

52 ref_person : Person

53 ref_PlaceID : PlaceID

54 ref_time : Time

55 ref_doc : Document

56 ref_edition : FTE,

57

58 RemoveDoc ::

59 ref_person : Person

60 ref_PlaceID : PlaceID

61 ref_time : Time

62 ref_doc : Document,

63

64 RemoveDos ::

65 ref_person : Person

66 ref_PlaceID : PlaceID

67 ref_time : Time

68 ref_doc : Dossier,

69

70 GetDocFromDos ::

71 ref_person : Person

72 ref_PlaceID : PlaceID

73 ref_time : Time

74 ref_dos : Dossier

75 ref_doc : Document,

76

77 PutDocInDos ::

78 ref_person : Person

79 ref_PlaceID : PlaceID

E.4. EDOCSYSCMDS.RSL 155

80 ref_time : Time

81 ref_dos : Dossier

82 ref_doc : Document,

83

84 GetDosFromDos ::

85 ref_person : Person

86 ref_PlaceID : PlaceID

87 ref_time : Time

88 ref_dos : Dossier

89 ref_doc : Dossier,

90

91 PutDosInDos ::

92 ref_person : Person

93 ref_PlaceID : PlaceID

94 ref_time : Time

95 ref_dos : Dossier

96 ref_doc : Dossier,

97

98 GetDocFromDir ::

99 ref_person : Person

100 ref_PlaceID : PlaceID

101 ref_time : Time

102 ref_dirpath : Index∗

103 ref_docid : DocumentID,

104

105 PutDocInDir ::

106 ref_person : Person

107 ref_PlaceID : PlaceID

108 ref_time : Time

109 ref_dirpath : Index∗

110 ref_doc : Document,

111

112 GetDosFromDir ::

113 ref_person : Person

114 ref_PlaceID : PlaceID

115 ref_time : Time

116 ref_dirpath : Index∗

117 ref_dosid : DossierID,

118

119 PutDosInDir ::

120 ref_person : Person

121 ref_PlaceID : PlaceID

122 ref_time : Time

123 ref_dirpath : Index∗

124 ref_dos : Dossier,

125

126 ExportDoc ::

127 ref_person : Person

128 ref_PlaceID : PlaceID

129 ref_time : Time

130 ref_locid : LocationID

131 ref_doc : Document,

132

133 SignDocument ::

134 ref_person : Person

135 ref_PlaceID : PlaceID

136 ref_time : Time

137 ref_doc : Document

138 ref_sign : Signature,

139

140 SendDoc ::

141 ref_sender : Person

156 APPENDIX E. DOCSYS – REQUIREMENTS SPECIFICATION

142 ref_origin : PlaceID

143 ref_time : Time

144 ref_reciever : PersonID

145 ref_dest : PlaceID

146 ref_doc : Document,

147

148 SendDos ::

149 ref_sender : Person

150 ref_origin : PlaceID

151 ref_time : Time

152 ref_reciever : PersonID

153 ref_dest : PlaceID

154 ref_doc : Dossier,

155

156 ResetDocMembership ::

157 ref_person : Person

158 ref_PlaceID : PlaceID

159 ref_time : Time

160 ref_doc : Document,

161

162 ResetDosMembership ::

163 ref_person : Person

164 ref_PlaceID : PlaceID

165 ref_time : Time

166 ref_dos : Dossier,

167

168 SetDocPermission ::

169 ref_person : Person

170 ref_PlaceID : PlaceID

171 ref_time : Time

172 ref_doc : Document

173 ref_keys : Keys

174 ref_cmd : CommandName,

175

176 SetDosPermission ::

177 ref_person : Person

178 ref_PlaceID : PlaceID

179 ref_time : Time

180 ref_dos : Dossier

181 ref_keys : Keys

182 ref_cmd : CommandName,

183

184 ReturnDoc ::

185 ref_person : Person

186 ref_PlaceID : PlaceID

187 ref_time : Time

188 ref_doc : Document,

189

190 ReturnDos ::

191 ref_person : Person

192 ref_PlaceID : PlaceID

193 ref_time : Time

194 ref_dos : Dossier,

195

196 Merge ::

197 ref_person : Person

198 ref_PlaceID : PlaceID

199 ref_time : Time

200 ref_doc : Document

201

202
����

203 M: Command→ System→ System

E.4. EDOCSYSCMDS.RSL 157

204 M(cmd)(places, docids, dosids, copyids)≡
205

���� cmd ��

206 mk_CreateDoc(person, plid, time, contents)→
207

��� (dir,pers,locs,bin,keys) = places(plid) ��

208 assert(person ∈ ��� pers);

209

��� did:DocumentID • did /∈ docids ��

210

��� doc:Document •

211 obs_ID(doc) = did ∧
212 obs_Time(doc) = time ∧
213 obs_Contents(doc) = contents ∧
214 obs_Type(doc) = master ∧
215 obs_Creator(doc) = obs_ID(person) ∧
216 obs_PlaceID(doc) = plid ∧
217 obs_Ancestor(doc) = none ∧
218 obs_Signatures(doc) = {} ∧
219 obs_DirMembership(doc) = none ∧
220 obs_DossierMembership(doc) = none ∧
221 obs_CommandLocks(doc) = [] ∧
222 obs_Events(doc) = 〈〉
223

��

224

��� evt:Event •

225 evt_type(evt) = Create ∧
226 evt_executedby(evt) = obs_ID(person) ∧
227 evt_time(evt) = time ∧
228 evt_place(evt) = plid

229
��

230 (places † [plid 7→
231 (dir, pers † [obs_ID(person) 7→ person ∪ {addEvent(doc,evt

)}],
232 locs,bin,keys)], docids ∪ {did}, dosids,copyids)

233

���

234

���

235

���

236

���,
237

238 mk_CreateDos(person, plid, time, desc)→
239

��� (dir,pers,locs,bin,keys) = places(plid) ��

240 assert(person ∈ ��� pers);

241

��� dosid:DossierID • dosid /∈ dosids ��

242

��� dos:Dossier •

243 obs_ID(dos) = dosid ∧
244 obs_Description(dos) = desc ∧
245 obs_CommandLocks(dos) = [] ∧
246 obs_DirMembership(dos) = none ∧
247 obs_DossierMembership(dos) = none ∧
248 obs_PlaceID(dos) = plid ∧
249 obs_Documents(dos) = {} ∧
250 obs_Dossiers(dos) = {}

251
��

252 (places † [plid 7→
253 (dir, pers † [obs_ID(person) 7→ person ∪ {dos}],
254 locs,bin,keys)], docids, dosids ∪ {dosid}, copyids)

255

���

256

���

257

���,
258

259 mk_Copy(person, plid, time, doc)→
260

��� (dir,pers,locs,bin,keys) = places(plid) ��

261

��� docs = obs_Group(doc,docids) ��

262 assert(hasPermission(person,doc,Copy) ∧
263 person ∈ ��� pers ∧
264 docs ⊂ obs_Documents(person));

158 APPENDIX E. DOCSYS – REQUIREMENTS SPECIFICATION

265

��� did:DocumentID • did /∈ docids ��

266

��� cpy:Document •

267 obs_ID(cpy) = did ∧
268 obs_Time(cpy) = time ∧
269 obs_Contents(cpy) = obs_Contents(doc) ∧
270 obs_Type(cpy) = copy ∧
271 obs_Creator(cpy) = obs_ID(person) ∧
272 obs_PlaceID(cpy) = plid ∧
273 obs_Ancestor(cpy) = mk_did(obs_ID(doc)) ∧
274 obs_Signatures(cpy) = obs_Signatures(doc) ∧
275 obs_DirMembership(cpy) = none ∧
276 obs_DossierMembership(cpy) = none ∧
277 obs_CommandLocks(doc) = [] ∧
278 obs_Events(cpy) = 〈〉
279

��
280

��� evt:Event •

281 evt_type(evt) = Copy ∧
282 evt_executedby(evt) = obs_ID(person) ∧
283 evt_time(evt) = time ∧
284 evt_place(evt) = plid

285
��

286 (places † [plid 7→
287 (dir, pers † [obs_ID(person) 7→
288 ((person \ {doc}) ∪ {addEvent(doc,evt)}) ∪ {addEvent(

cpy,evt)}],
289 locs,bin,keys)], docids ∪ {did}, dosids,copyids)

290

���

291

���

292

���

293

���

294

���,
295

296 mk_Edit(person, plid, time, document, (te,fe))→
297

��� (dir,pers,locs,bin,keys) = places(plid) ��

298

��� docs = obs_Group(document,docids) ��

299 assert(hasPermission(person,document,Edit) ∧
300 person ∈ ��� pers ∧
301 mostRecentVersion(document,docs) ∧
302 docs ⊂ obs_Documents(person));

303

��� docid:DocumentID • docid /∈ docids ��

304

��� doc:Document •

305 obs_ID(doc) = docid ∧
306 obs_Time(doc) = time ∧
307 obs_Contents(doc) = te(obs_Contents(document)) ∧
308 obs_Type(doc) = version ∧
309 obs_Creator(doc) = obs_ID(person) ∧
310 obs_PlaceID(doc) = plid ∧
311 obs_Ancestor(doc) = mk_did(obs_ID(document)) ∧
312 obs_Signatures(doc) = {} ∧
313 obs_DirMembership(doc) = obs_DirMembership(document) ∧
314 obs_DossierMembership(doc) = obs_DossierMembership(document

) ∧
315 obs_CommandLocks(doc) = obs_CommandLocks(document) ∧
316 obs_Events(doc) = obs_Events(document)

317
��

318

��� evt:Event •

319 evt_type(evt) = Edit ∧
320 evt_executedby(evt) = obs_ID(person) ∧
321 evt_time(evt) = time ∧
322 evt_place(evt) = plid

323
��

324 (places † [plid 7→

E.4. EDOCSYSCMDS.RSL 159

325 (dir, pers † [obs_ID(person) 7→
326 ((person \ {document}) ∪
327 {addEvent(document,evt)}) ∪
328 {addEvent(doc,evt)}],
329 locs,bin,keys)], docids ∪ {docid}, dosids, copyids)

330

���

331

���

332

���

333

���

334

���,
335

336 mk_RemoveDoc(person, plid, time, doc)→
337

��� (dir,pers,locs,bin,keys) = places(plid) ��

338

��� docs = obs_Group(doc,docids) ��

339 assert(hasPermission(person,doc,RemoveDoc) ∧
340 person ∈ ��� pers ∧
341 docs ⊂ obs_Documents(person));

342

��� evt:Event •

343 evt_type(evt) = RemoveDoc ∧
344 evt_executedby(evt) = obs_ID(person) ∧
345 evt_time(evt) = time ∧
346 evt_place(evt) = plid

347
��

348 (places † [plid 7→
349 (dir, pers † [obs_ID(person) 7→ person \ docs],
350 locs,bin ∪ addEvent(docs,evt),keys)], docids, dosids,

copyids)

351

���

352

���

353

���,
354

355 mk_RemoveDos(person, plid, time, dos)→
356

��� (dir,pers,locs,bin,keys) = places(plid) ��

357 assert(hasPermission(person,dos,RemoveDos) ∧
358 person ∈ ��� pers ∧
359 dos ∈ obs_Dossiers(person) ∧
360 obs_Documents(dos) = {} ∧
361 obs_Dossiers(dos) = {});

362 (places † [plid 7→
363 (dir, pers † [obs_ID(person) 7→ person \ {dos}],
364 locs,bin ∪ {dos},keys)], docids, dosids, copyids)

365

���,
366

367 mk_GetDocFromDos(person, plid, time, dos, doc)→
368

��� (dir,pers,locs,bin,keys) = places(plid) ��

369

��� docs = obs_Group(doc,docids) ��
370 assert(hasPermission(person,doc,GetDocFromDos) ∧
371 person ∈ ��� pers ∧
372 docs ⊂ obs_Documents(dos) ∧
373 dos ∈ obs_Dossiers(person));

374 (places † [plid 7→
375 (dir, pers † [obs_ID(person) 7→
376 ((person \ {dos}) ∪ {dos \ docs}) ∪
377 docs], locs,bin,keys)],
378 docids, dosids, copyids)

379

���

380

���,
381

382 mk_PutDocInDos(person, plid, time, dos, doc)→
383

��� (dir,pers,locs,bin,keys) = places(plid) ��

384

��� docs = obs_Group(doc,docids) ��
385 assert(hasPermission(person,doc,PutDocInDos) ∧

160 APPENDIX E. DOCSYS – REQUIREMENTS SPECIFICATION

386 obs_DirMembership(doc) = none ∧
387 (obs_DossierMembership(doc) = mk_did(obs_ID(dos)) ∨
388 obs_DossierMembership(doc) = none) ∧
389 person ∈ ��� pers ∧
390 docs ⊂ obs_Documents(person) ∧
391 dos ∈ obs_Dossiers(person));

392 (places † [plid 7→
393 (dir, pers † [obs_ID(person) 7→ ((person \ docs) \ {dos}) ∪
394 {dos ∪ setMembership(docs,none,mk_did(obs_ID(dos)))}],

locs, bin,keys)],
395 docids, dosids, copyids)

396

���

397

���,
398

399 mk_GetDosFromDos(person, plid, time, dos, dos1)→
400

��� (dir,pers,locs,bin,keys) = places(plid) ��

401 assert(hasPermission(person,dos,GetDosFromDos) ∧
402 person ∈ ��� pers ∧
403 dos1 ∈ dos ∧
404 dos ∈ obs_Dossiers(person));

405 (places † [plid 7→
406 (dir, pers † [obs_ID(person) 7→
407 ((person \ {dos}) ∪ {dos \ {dos1}}) ∪
408 {dos1}], locs,bin,keys)],
409 docids, dosids, copyids)

410

���,
411

412 mk_PutDosInDos(person, plid, time, dos, dos1)→
413

��� (dir,pers,locs,bin,keys) = places(plid) ��

414 assert(hasPermission(person,dos,PutDosInDos) ∧
415 obs_DirMembership(dos1) = none ∧
416 (obs_DossierMembership(dos1) = mk_did(obs_ID(dos)) ∨
417 obs_DossierMembership(dos1) = none) ∧
418 person ∈ ��� pers ∧
419 dos1 ∈ obs_Dossiers(person) ∧
420 dos ∈ obs_Dossiers(person));

421 (places † [plid 7→
422 (dir, pers † [obs_ID(person) 7→
423 ((person \ {dos1}) \ {dos}) ∪
424 {dos ∪ {setMembership(dos1,none,mk_did(obs_ID(dos)))}}],

locs,bin,keys)],
425 docids, dosids, copyids)

426

���,
427

428 mk_GetDocFromDir(person, plid, time, dirpath, docid)→
429

��� (dir,pers,locs,bin,keys) = places(plid) ��
430

��� doc:Document • obs_ID(doc) = docid ��

431

��� docs = obs_Group(doc,docids) ��

432 assert(hasPermission(person,doc,GetDocFromDir) ∧
433 person ∈ ��� pers ∧
434 indexExists(dir,dirpath) ∧
435 docs ⊂ obs_Documents(recurseDir(dir,dirpath)) ∧
436 obs_Keys(recurseDir(dir,dirpath)) ⊂ obs_Keys(person));

437

��� evt:Event •

438 evt_type(evt) = GetFromDir ∧
439 evt_executedby(evt) = obs_ID(person) ∧
440 evt_time(evt) = time ∧
441 evt_place(evt) = plid

442
��

443 (places † [plid 7→
444 (updateDir(dir,dirpath,recurseDir(dir,dirpath) \

445 docs),

E.4. EDOCSYSCMDS.RSL 161

446 pers † [obs_ID(person) 7→
447 (person ∪ addEvent(docs,evt))],locs,bin,keys)],
448 docids, dosids, copyids)

449

���

450

���

451

���

452

���,
453

454 mk_PutDocInDir(person, plid, time, dirpath, doc)→
455

��� (dir,pers,locs,bin,keys) = places(plid) ��

456

��� docs = obs_Group(doc,docids) ��

457 assert(hasPermission(person,doc,PutDocInDir) ∧
458 obs_DossierMembership(doc) = none ∧
459 (obs_DirMembership(doc) = mk_dip(dirpath) ∨
460 obs_DirMembership(doc) = none) ∧
461 person ∈ ��� pers ∧
462 docs ⊂ obs_Documents(person) ∧
463 obs_Keys(recurseDir(dir,dirpath)) ⊂ obs_Keys(person));

464

��� evt:Event •

465 evt_type(evt) = PutInDir ∧
466 evt_executedby(evt) = obs_ID(person) ∧
467 evt_time(evt) = time ∧
468 evt_place(evt) = plid

469
��

470 (places † [plid 7→
471 (updateDir(dir,dirpath,recurseDir(dir,dirpath) ∪
472 setMembership(addEvent(docs,evt),mk_dip(dirpath),none)),

473 pers † [obs_ID(person) 7→
474 (person \ docs)],locs,bin,keys)],
475 docids, dosids, copyids)

476

���

477

���

478

���,
479

480 mk_GetDosFromDir(person, plid, time, dirpath, dosid)→
481

��� (dir,pers,locs,bin,keys) = places(plid) ��

482

��� dos:Dossier • obs_ID(dos) = dosid ��

483 assert(hasPermission(person,dos,GetDosFromDir) ∧
484 person ∈ ��� pers ∧
485 indexExists(dir,dirpath) ∧
486 dos ∈ recurseDir(dir,dirpath) ∧
487 obs_Keys(recurseDir(dir,dirpath)) ⊂ obs_Keys(person));

488

��� evt:Event •

489 evt_type(evt) = GetFromDir ∧
490 evt_executedby(evt) = obs_ID(person) ∧
491 evt_time(evt) = time ∧
492 evt_place(evt) = plid

493
��

494 (places † [plid 7→
495 (updateDir(dir,dirpath,recurseDir(dir,dirpath) \

496 {dos}),

497 pers † [obs_ID(person) 7→
498 (person ∪ {addEvent(dos,evt)})],locs,bin,keys)],
499 docids, dosids, copyids)

500

���

501

���

502

���,
503

504 mk_PutDosInDir(person, plid, time, dirpath, dos)→
505

��� (dir,pers,locs,bin,keys) = places(plid) ��

506 assert(hasPermission(person,dos,PutDosInDir) ∧
507 person ∈ ��� pers ∧

162 APPENDIX E. DOCSYS – REQUIREMENTS SPECIFICATION

508 obs_DossierMembership(dos) = none ∧
509 (obs_DirMembership(dos) = mk_dip(dirpath) ∨
510 obs_DirMembership(dos) = none) ∧
511 dos ∈ obs_Dossiers(person) ∧
512 obs_Keys(recurseDir(dir,dirpath)) ⊂ obs_Keys(person));

513

��� evt:Event •

514 evt_type(evt) = PutInDir ∧
515 evt_executedby(evt) = obs_ID(person) ∧
516 evt_time(evt) = time ∧
517 evt_place(evt) = plid

518
��

519 (places † [plid 7→
520 (updateDir(dir,dirpath,recurseDir(dir,dirpath) ∪
521 {setMembership(addEvent(dos,evt),mk_dip(dirpath),none)}),

522 pers † [obs_ID(person) 7→
523 (person \ {dos})],locs,bin,keys)],
524 docids, dosids, copyids)

525

���

526

���,
527

528 mk_ExportDoc(person, plid, time, locid, doc)→
529

��� (dir,pers,locs,bin,keys) = places(plid) ��

530

��� docs = obs_Group(doc,docids) ��
531 assert(hasPermission(person,doc,ExportDoc) ∧
532 person ∈ ��� pers ∧
533 locid ∈ locs ∧
534 docs ⊂ obs_Documents(person));

535

536 /* The actual exporting (printing/cdburning) should be

537 done elsewhere */

538

539

��� exportid:ExportID • exportid /∈ copyids ��

540

��� evt:Event •

541 evt_type(evt) = Export ∧
542 evt_executedby(evt) = obs_ID(person) ∧
543 evt_time(evt) = time ∧
544 evt_place(evt) = plid ∧
545 evt_exportid(evt) = exportid ∧
546 evt_exportloc(evt) = locid

547
��

548 (places † [plid 7→ (dir,pers † [obs_ID(person) 7→
549 (person \ {doc}) ∪ {addEvent(doc,evt)}],locs,bin, keys)],
550 docids, dosids, copyids ∪ {exportid})

551

���

552

���

553

���

554

���,
555

556 mk_SignDocument(person, plid, time, doc, sign)→
557

��� (dir,pers,locs,bin,keys) = places(plid) ��

558

��� docs = obs_Group(doc,docids) ��

559 assert(hasPermission(person,doc,SignDocument) ∧
560 person ∈ ��� pers ∧
561 mostRecentVersion(doc,docs) ∧
562 docs ⊂ obs_Documents(person));

563 (places † [plid 7→
564 (dir, pers † [obs_ID(person) 7→
565 ((person \ {doc}) ∪ {addSignature(doc,sign)})],
566 locs,bin,keys)],
567 docids, dosids, copyids)

568

���

569

���,

E.4. EDOCSYSCMDS.RSL 163

570

571 mk_SendDoc(person, plid_org, time, pid_dst, plid_dst, doc)→
572

��� (dir,pers,locs,bin,keys) = places(plid_org),

573 (dir_dst,pers_dst,locs_dst,bin_dst,keys_dst) = places(plid_dst),

574 person_dst : Person • obs_ID(person_dst) = pid_dst

575
��

576

��� docs = obs_Group(doc,docids) ��
577 assert(hasPermission(person,doc,SendDoc) ∧
578 person ∈ ��� pers ∧
579 docs ⊂ obs_Documents(person) ∧
580 pid_dst ∈

��� pers_dst);

581

��� evt:Event •

582 evt_type(evt) = Send ∧
583 evt_executedby(evt) = obs_ID(person) ∧
584 evt_time(evt) = time ∧
585 evt_place(evt) = plid_org ∧
586 evt_sendtoperson(evt) = pid_dst ∧
587 evt_sendtoplace(evt) = plid_dst

588
��

589 (places † [plid_org 7→
590 (dir, pers † [obs_ID(person) 7→
591 (person \ docs)],
592 locs,bin,keys),

593 plid_dst 7→
594 (dir_dst, pers_dst † [pid_dst 7→
595 (person_dst ∪ addEvent(docs,evt))],
596 locs_dst,bin_dst,keys_dst)],
597 docids, dosids, copyids)

598

���

599

���

600

���,
601

602 mk_SendDos(person, plid_org, time, pid_dst, plid_dst, dos)→
603

��� (dir,pers,locs,bin,keys) = places(plid_org),

604 (dir_dst,pers_dst,locs_dst,bin_dst,keys_dst) = places(plid_dst),

605 person_dst : Person • obs_ID(person_dst) = pid_dst

606
��

607 assert(hasPermission(person,dos,SendDos) ∧
608 person ∈ ��� pers ∧
609 dos ∈ obs_Dossiers(person) ∧
610 pid_dst ∈

��� pers_dst);

611

��� evt:Event •

612 evt_type(evt) = Send ∧
613 evt_executedby(evt) = obs_ID(person) ∧
614 evt_time(evt) = time ∧
615 evt_place(evt) = plid_org ∧
616 evt_sendtoperson(evt) = pid_dst ∧
617 evt_sendtoplace(evt) = plid_dst

618
��

619 (places † [plid_org 7→
620 (dir, pers † [obs_ID(person) 7→
621 (person \ {dos})],
622 locs,bin,keys),

623 plid_dst 7→
624 (dir_dst, pers_dst † [pid_dst 7→
625 (person_dst ∪ {addEvent(dos,evt)})],
626 locs_dst,bin_dst,keys_dst)],
627 docids, dosids, copyids)

628

���

629

���,
630

631 mk_ResetDocMembership(person, plid, time, doc)→

164 APPENDIX E. DOCSYS – REQUIREMENTS SPECIFICATION

632

��� (dir,pers,locs,bin,keys) = places(plid) ��

633

��� docs = obs_Group(doc,docids) ��

634 assert(hasPermission(person,doc,ResetDocMembership) ∧
635 person ∈ ��� pers ∧
636 docs ⊂ obs_Documents(person));

637 (places † [plid 7→
638 (dir, pers † [obs_ID(person) 7→
639 (person \ docs) ∪
640 setMembership(docs,none,none)],
641 locs,bin,keys)],
642 docids, dosids, copyids)

643

���

644

���,
645

646 mk_ResetDosMembership(person, plid, time, dos)→
647

��� (dir,pers,locs,bin,keys) = places(plid) ��

648 assert(hasPermission(person,dos,ResetDosMembership) ∧
649 person ∈ ��� pers ∧
650 dos ∈ obs_Dossiers(person));

651 (places † [plid 7→
652 (dir, pers † [obs_ID(person) 7→
653 (person \ {dos}) ∪
654 {setMembership(dos,none,none)}],
655 locs,bin,keys)],
656 docids, dosids, copyids)

657

���,
658

659 mk_SetDocPermission(person, plid, time, doc, keys1, command)→
660

��� (dir,pers,locs,bin,keys) = places(plid) ��

661

��� docs = obs_Group(doc,docids) ��
662 assert(hasPermission(person,doc,SetDocPermission) ∧
663 person ∈ ��� pers ∧
664 keys1 ⊂ obs_Keys(person) ∧
665 docs ⊂ obs_Documents(person));

666
�� command = ExportDoc ∨ command = Copy ����

667 (places † [plid 7→
668 (dir, pers † [obs_ID(person) 7→
669 (person \ {doc}) ∪ {setPermission(doc,keys1,command)}],
670 locs,bin,keys)],
671 docids,dosids,copyids)

672

����

673 (places † [plid 7→
674 (dir, pers † [obs_ID(person) 7→
675 (person \ docs) ∪ setPermission(docs,keys1,command)],
676 locs,bin,keys)],
677 docids,dosids,copyids)

678

���

679

���

680

���,
681

682 mk_SetDosPermission(person, plid, time, dos, keys1, command)→
683

��� (dir,pers,locs,bin,keys) = places(plid) ��

684 assert(hasPermission(person,dos,SetDosPermission) ∧
685 person ∈ ��� pers ∧
686 keys1 ⊂ obs_Keys(person) ∧
687 dos ∈ obs_Dossiers(person));

688 (places † [plid 7→
689 (dir, pers † [obs_ID(person) 7→
690 (person \ {dos}) ∪ {setPermission(dos,keys1,command)}],
691 locs,bin,keys)],
692 docids,dosids,copyids)

693

���,

E.4. EDOCSYSCMDS.RSL 165

694

695 mk_ReturnDoc(person, plid, time, doc)→
696

��� (dir,pers,locs,bin,keys) = places(plid) ��

697

��� docs = obs_Group(doc,docids) ��

698 assert(person ∈ ��� pers ∧
699 docs ⊂ obs_Documents(person) ∧
700 (obs_DossierMembership(doc) 6= none ∨
701 obs_DirMembership(doc) 6= none));

702

703 /* the document shall be returned to its membership container

*/

704

705 (places,docids,dosids,copyids)

706

���

707

���,
708

709 mk_ReturnDos(person, plid, time, dos)→
710

��� (dir,pers,locs,bin,keys) = places(plid) ��

711 assert(person ∈ ��� pers ∧
712 dos ∈ obs_Dossiers(person) ∧
713 (obs_DossierMembership(dos) 6= none ∨
714 obs_DirMembership(dos) 6= none));

715

716 /* the dossier shall be returned to its membership container */

717

718 (places, docids,dosids,copyids)

719

���,
720

721 mk_Merge(person, plid, time, doc)→
722

��� (dir,pers,locs,bin,keys) = places(plid) ��
723

��� docs = obs_Group(doc,docids) ��

724

��� targetgroup = obs_Group(copiedFrom(docs,docids),docids) ��

725

��� targetdoc = lastVersion(targetgroup) ��

726

��� fte = generateMergeFTE(doc,targetdoc) ��

727 assert(hasPermission(person,targetdoc,Edit) ∧
728 hasPermission(person,doc,RemoveDoc) ∧
729 person ∈ ��� pers ∧
730 docs ⊂ obs_Documents(person) ∧
731 targetgroup ⊂ obs_Documents(person));

732

��� newsystem = M(mk_Edit(person,plid,time,doc,fte))

733 (places, docids, dosids, copyids) ��

734 M(mk_RemoveDoc(person,plid,time,doc))(newsystem)

735

���

736

���

737

���

738

���

739

���

740

���

741

���

742

743 ��	�

744 WhereAbouts == mk_dip(DirPath) | mk_did(DossierID) | mk_pid(PersonID)

745

746
����

747 /* Find document whereabouts from its ID */

748 findDoc : System × DocumentID→ WhereAbouts,

749

750 /* Find dossier whereabouts from its ID */

751 findDos : System × DossierID→ WhereAbouts,

752

753 /* Document history function */

754 getDocHist : Document→ (Document × (PlaceID × Time × PersonID))∗

166 APPENDIX E. DOCSYS – REQUIREMENTS SPECIFICATION

755 getDocHist(doc)≡
756

��� (plid,time,pid) =
757 (obs_PlaceID(doc),obs_Time(doc),obs_Creator(doc))

758
��

759
�� obs_Type(doc) = master

760 ���� 〈(doc,(plid,time,pid))〉
761

����

762

��� doc2:Document • mk_did(obs_ID(doc2)) = obs_Ancestor(doc) ��

763 getDocHist(doc2) ̂ 〈(doc,(plid,time,pid))〉
764

���

765

���

766

���,
767

768 /* Sample statistic function */

769 getDocList_for_PersonID : System × PersonID→ Document-set

770 getDocList_for_PersonID((places, docids_in_use, dosids_in_use,

copyids_in_use),pid) ≡ (

771

��� docset:Document-set •

772 (all doc:Document •

773 (obs_ID(doc) ∈ docids_in_use ∧ obs_Creator(doc) = pid)⇒
774 doc ∈ docset)

775
��

776 docset

777

���

778),

779

780 /* Generate a domain specific transfer function for merging */

781 generateMergeFTE : Document × Document→ FTE

782

���

Appendix F

DocSys – Secure Protocol
Architecture

F.1
������������
 ���

1
������ SecureSession =

2
�����

3
�������

4 ClientAuthenticate : Data,

5 ServerAuthenticate : Data,

6 LoginRequest : Data,

7 LoginAnswer : ����,
8 SessionKey : Key × Signature,

9 SecureConnection : Data,

10 ClientSend : Data,

11 ServerSend : Data

12

13 ��	�

14 Key,

15 Signature,

16 Data,

17 UserPublicKeys = Data→m Key,

18 UserPasswords = Data→m Data

19

20
����

21 server_publickey : Key,

22 server_privatekey : Key,

23 server_userpublickeys : UserPublicKeys,

24 server_userpasswords : UserPasswords,

25 client_privatekey : Key,

26 client_username : Data,

27 client_password : Data,

28

29 Encrypt : Key × Key→ Key,

30 Decrypt : Key × Key→ Key,

31 Encrypt : Data × Key→ Data,

32 Decrypt : Data × Key→ Data,

33

34 Sign : Key × Key→ Key × Signature,

35 VerifySign : (Key × Signature) × Key→ ����

36

37
����

38 System : ����→ �� ��� ��� ��� ����

167

168 APPENDIX F. DOCSYS – SECURE PROTOCOL ARCHITECTURE

39 System()≡
40 Server(server_privatekey, server_userpublickeys, server_userpasswords)

‖
41 Client (client_privatekey, server_publickey, client_username,

client_password),

42

43 Client : Key × Key × Data × Data→
44

�� ClientAuthenticate,

45 ServerAuthenticate,

46 LoginAnswer,

47 SessionKey,

48 ServerSend

49
��� ClientAuthenticate,

50 ServerAuthenticate,

51 LoginRequest,

52 ClientSend

53 ����
54 Client(privatekey, server_publickey, username, password)≡
55 ProcessClientAuthenticate(privatekey) ‖
56 ConnectToServer(privatekey, server_publickey, username, password),

57

58 ProcessClientAuthenticate : Key→ �� ClientAuthenticate ���
ClientAuthenticate ����

59 ProcessClientAuthenticate(privatekey)≡
60

��� nonce = ClientAuthenticate ? ��

61 ClientAuthenticate ! Encrypt(nonce,privatekey);

62 ProcessClientAuthenticate(privatekey)

63

���,
64

65 ConnectToServer : Key × Key × Data × Data→
66

�� ServerAuthenticate,

67 LoginAnswer,

68 SessionKey,

69 ServerSend

70
��� ServerAuthenticate,

71 LoginRequest,

72 ClientSend

73 ����
74 ConnectToServer(privatekey, server_publickey, username, password)≡
75 /* Server authentication */

76

��� nonce : Data ��

77 ServerAuthenticate ! nonce;

78

��� encrypted_nonce = ServerAuthenticate ? ��

79
�� Encrypt(encrypted_nonce,server_publickey) 6= nonce ����

80
�����

81

���

82

���

83

���;
84

85 /* Login with username */

86 LoginRequest ! Encrypt(username, server_publickey);

87

88 /* Await server response */

89

��� answer = LoginAnswer? ��

90
�� ∼answer ����

91
�����

92

���

93

���;
94

95 /* Receive session key */

96

��� (session_key,signature) = SessionKey ? ��
97

�� ∼VerifySign((session_key, signature),server_publickey) ����

F.1. SECURESESSION.RSL 169

98
�����

99

���;
100

101 /* Await server response */

102

��� answer = LoginAnswer? ��

103
�� ∼answer ����

104
�����

105

���

106

���;
107

108 /* Send password on secure connection */

109 LoginRequest ! Encrypt(password, Encrypt(session_key,

client_privatekey));

110

111 /* Await server response */

112

��� answer = LoginAnswer? ��

113
�� ∼answer ����

114
�����

115

���

116

���;
117

118 /* Secure session established */

119 SecureSessionClient(Encrypt(session_key, client_privatekey))

120

���,
121

122 SecureSessionClient : Key→ �� ServerSend ��� ClientSend ����
123 SecureSessionClient(session_key)≡
124 SecureSenderClient(session_key) ‖
125 SecureReceiverClient(session_key),

126

127 SecureSenderClient : Key→ ��� ClientSend ����
128 SecureSenderClient(session_key)≡
129 /* Send some data to server */

130

��� message : Data ��

131 ClientSend ! Encrypt(message,session_key);

132 SecureSenderClient(session_key)

133

���,
134

135 SecureReceiverClient : Key→ �� ServerSend ����
136 SecureReceiverClient(session_key)≡
137 /* Receive some data from server */

138

��� encrypted_message = ServerSend ? ��

139

��� message = Encrypt(encrypted_message,session_key) ��

140 /* Process data received */

141 SecureReceiverClient(session_key)

142

���

143

���,
144

145 Server : Key × UserPublicKeys × UserPasswords→ �� ��� ��� ��� ����
146 Server(privatekey, userpublickeys, userpasswords) ≡
147 ProcessServerAuthenticate(privatekey) ‖
148 ProcessClientConnection(privatekey, userpublickeys, userpasswords),

149

150 ProcessServerAuthenticate : Key→ �� ServerAuthenticate ���
ServerAuthenticate ����

151 ProcessServerAuthenticate(privatekey)≡
152

��� nonce = ServerAuthenticate ? ��

153 ServerAuthenticate ! Encrypt(nonce,privatekey);

154 ProcessServerAuthenticate(privatekey)

155

���,
156

157 ProcessClientConnection : Key × UserPublicKeys × UserPasswords→

170 APPENDIX F. DOCSYS – SECURE PROTOCOL ARCHITECTURE

158
�� ServerAuthenticate,

159 ClientAuthenticate,

160 LoginRequest,

161 ClientSend

162
��� ServerAuthenticate,

163 ClientAuthenticate,

164 LoginAnswer,

165 SessionKey,

166 ServerSend

167 ����
168 ProcessClientConnection(privatekey, userpublickeys, userpasswords)≡
169 /* Receive username */

170

��� encrypted_username = LoginRequest ? ��

171

��� username = Encrypt(encrypted_username,privatekey) ��

172

173 /* User must exist in server user lists */

174
�� username /∈

��� userpublickeys ∨ username /∈
��� userpasswords

����

175 LoginAnswer!
�����;

176 ProcessClientConnection(privatekey, userpublickeys,

userpasswords)

177

���;
178

179 /* Authenticate client */

180

��� nonce : Data ��

181 ClientAuthenticate ! nonce;

182

��� encrypted_nonce = ClientAuthenticate ? ��

183
�� Encrypt(encrypted_nonce,userpublickeys(username)) 6= nonce

����

184 LoginAnswer!
�����;

185 ProcessClientConnection(privatekey, userpublickeys,

userpasswords)

186

���

187

���

188

���;
189

190 /* User ∃ and ≡ authenticated */

191 LoginAnswer! ����;
192

193 /* Establish a session key */

194

��� session_key : Key ��

195 SessionKey ! Sign(Encrypt(session_key,userpublickeys(username)),

privatekey);

196

197 /* Indicate that secure session ≡ ready */

198 LoginAnswer! ����;
199

200 /* Receive password on secure connection */

201

��� encrypted_password = LoginRequest ? ��

202

��� password = Decrypt(encrypted_password,session_key) ��

203
�� userpasswords(username) 6= password ����

204 LoginAnswer !
�����;

205 ProcessClientConnection(privatekey,userpublickeys,

userpasswords)

206

���

207

���

208

���;
209

210 /* Indicate that password was accepted */

211 LoginAnswer! ����;
212

213 /* Secure session established */

F.1. SECURESESSION.RSL 171

214 SecureSessionServer(session_key)

215

���

216

���

217

���,
218

219 SecureSessionServer : Key→ �� ClientSend ��� ServerSend ����
220 SecureSessionServer(session_key)≡
221 SecureSenderServer(session_key) ‖
222 SecureReceiverServer(session_key),

223

224 SecureSenderServer : Key→ ��� ServerSend ����
225 SecureSenderServer(session_key)≡
226 /* Send some data to client */

227

��� message : Data ��

228 ServerSend ! Encrypt(message,session_key);

229 SecureSenderServer(session_key)

230

���,
231

232 SecureReceiverServer : Key→ �� ClientSend ����
233 SecureReceiverServer(session_key)≡
234 /* Receive some data from client */

235

��� encrypted_message = ClientSend ? ��

236

��� message = Encrypt(encrypted_message,session_key) ��
237 /* Process data received */

238 SecureReceiverServer(session_key)

239

���

240

���

241

���

Appendix G

DocSys – Communication
Architecture

G.1 ����
����

1 comlayer,

2 clientconnection,

3 data

4
������ Client(D : Data, Com : ComLayer(D)) =

5
�����

6
����

7 Client : ���→ �� {Com.L [i].Listen | i : Com.Srv_Rng},

8 {Com.C [i].Client | i : Com.Con_Rng}

9
��� {Com.C [i].Server | i : Com.Con_Rng}

10 ����
11 Client(serveraddress)≡
12

��� con_no = Com.Connect(serveraddress) ��

13 ClientConnect(con_no)

14

���,
15

16 ClientConnect : ���→ �� {Com.C[i].Client | i : Com.Con_Rng}

17
��� {Com.C [i].Server | i : Com.Con_Rng}

18 ����
19 ClientConnect(con_no)≡
20

�����

21
�����

22 CC : ClientConnection(D,Com.C [con_no])
23

��

24 CC.ClientConnection()

25

���

26

���

G.2 ����
�����
������
��

1 connection,

2 data

3
������ ClientAdminLogic(D : Data, Con : Connection(D)) =

4
�����

5
����

6 AdminLogic : ����→ �� Con.Client ��� Con.Server ����
7 AdminLogic()≡

172

G.3. CLIENTBUSINESSLOGIC.RSL 173

8 /* Generate and send request*/

9 Con.ClientSend(D.mk_admin(D.CreatePerson)) de
10 Con.ClientSend(D.mk_admin(D.RemovePerson));

11 /* Receive and process response */

12
���� Con.ClientReceive() ��

13 D.mk_reply(reply)→
14

���� reply ��

15 D.OK→ AdminLogic(),

16 D.Error→ �����

17

���,
18 _→ �����

19

���

20

���

G.3 ����
�����
�����������

1 connection,

2 data

3
������ ClientBusinessLogic(D : Data, Con : Connection(D)) =

4
�����

5
����

6 BusinessLogic : ����→ �� Con.Client ��� Con.Server ����
7 BusinessLogic()≡
8 /* Generate and send request*/

9

��� placeid,id : ��� ��

10 Con.ClientSend(D.mk_cmd((placeid,id),D.CreateDoc)) de
11 Con.ClientSend(D.mk_cmd((placeid,id),D.PutDocInDir))

12

���;
13 /* Receive and process response */

14
���� Con.ClientReceive() ��

15 D.mk_reply(reply)→
16

���� reply ��

17 D.OK→ BusinessLogic(),

18 D.Error→ �����

19

���,
20 _→ �����
21

���

22

���

G.4 ����
���

�����
 ���

1 connection,

2 clientforeignlogic,

3 clientadminlogic,

4 clientbusinesslogic,

5 data

6
������ ClientConnection(D : Data, Con : Connection(D)) =

7
�����

8
����

9 ClientConnection : ����→ �� Con.Client ��� Con.Server ����
10 ClientConnection()≡
11

�� ∼Con.ClientAuthenticate() ���� ����� ���;
12 Con.ClientProvideIdentification();

13 Con.AwaitSecureConnection();

14 InstBusinessLogic() de
15 InstAdminLogic() de
16 InstForeignLogic(),

17

18 InstBusinessLogic : ����→ �� Con.Client ��� Con.Server ����
19 InstBusinessLogic()≡

174 APPENDIX G. DOCSYS – COMMUNICATION ARCHITECTURE

20

�����

21
�����

22 BCL : ClientBusinessLogic(D,Con)

23
��

24 Con.ClientSend(D.mk_connectiontype(D.Business));

25 BCL.BusinessLogic()

26

���,
27

28 InstAdminLogic : ����→ �� Con.Client ��� Con.Server ����
29 InstAdminLogic()≡
30

�����

31
�����

32 BCL : ClientAdminLogic(D,Con)

33
��

34 Con.ClientSend(D.mk_connectiontype(D.Admin));

35 BCL.AdminLogic()

36

���,
37

38 InstForeignLogic : ����→ �� Con.Client ��� Con.Server ����
39 InstForeignLogic()≡
40

�����

41
�����

42 BCL : ClientForeignLogic(D,Con)

43
��

44 Con.ClientSend(D.mk_connectiontype(D.Foreign));

45 BCL.ForeignLogic()

46

���

47

���

G.5 ����
�������
��������

1 connection,

2 data

3
������ ClientForeignLogic(D : Data, Con : Connection(D)) =

4
�����

5
����

6 ForeignLogic : ����→ �� Con.Client ��� Con.Server ����
7 ForeignLogic()≡
8 /* Push or pull data */

9 Con.ClientSend(D.mk_foreign(D.PullData)) de
10 Con.ClientSend(D.mk_foreign(D.PushData));

11 /* Receive and process response */

12
���� Con.ClientReceive() ��

13 D.mk_reply(reply)→
14

���� reply ��

15 D.OK→ ForeignLogic(),

16 D.Error→ �����
17

���,
18 _→ �����

19

���

20

���

G.6 �����������

1 connection

2
������ ComLayer(D : ����� ��	� Data

���) =
3

�����

4
�����

5 C [i : Con_Rng] : Connection(D),

6 L [i : Srv_Rng] : ����� ������� Listen : ��� ���

G.7. COMMANDS.RSL 175

7

8 ��	�

9 Con_Rng = {|n : ��� • 1 ≤ n ∧ n ≤ max_con|},

10 Srv_Rng = {|n : ��� • 1 ≤ n ∧ n ≤ max_serv|}

11

12
����

13 max_con : ���,
14 max_serv : ���
15

16
������

17 count : ��� := 0

18

19
����

20 Accept : ���→ ��� {L[i].Listen | i : Srv_Rng}

21
���� count

22 ����� count

23 ���
24 Accept(address)≡
25 count := count+1;

26 L[address].Listen ! count;

27 count,

28

29 Connect : ���→ �� {L[i].Listen | i : Srv_Rng}

30 ���
31 Connect(address)≡
32

��� con_no = L [address].Listen? ��

33 con_no

34

���

35

���

G.7 �����
�
����

1 place,

2 dblayer,

3 data

4
������ Commands(D : Data, DB : DBLayer(D)) =

5
�����

6
�����

7 Place : Place(D,DB)

8

9
����

10 CreateDoc : D.ID→ ����
11 CreateDoc(id)≡
12 Place.CreateDoc(id),

13

14 PutDocInDir : D.ID→ ����
15 PutDocInDir(id)≡
16 Place.PutDocInDir(id)

17

���

G.8 ��

�����
 ���

1
������ Connection(D : ����� ��	� Data

���) =
2

�����

3
�������

4 Client : D.Data,

5 Server : D.Data

6

7
����

8 ClientSend : D.Data→ ��� Server ����

176 APPENDIX G. DOCSYS – COMMUNICATION ARCHITECTURE

9 ClientSend(t)≡
10 Server ! t,

11

12 ClientReceive : ����→ �� Client D.Data

13 ClientReceive()≡
14

��� t = Client ? ��

15 t

16

���,
17

18 ServerSend : D.Data→ ��� Client ����
19 ServerSend(t)≡
20 Client ! t,

21

22 ServerReceive : ����→ �� Server D.Data

23 ServerReceive()≡
24

��� t = Server ? ��

25 t

26

���

27

28
����

29 ServerAuthenticate : ����→ ����,
30 ServerProvideIdentification : ����→ ����,
31 ClientAuthenticate : ����→ ����,
32 ClientProvideIdentification : ����→ ����,
33 EstablishSecureConnection : ����→ ����,
34 AwaitSecureConnection : ����→ ����
35

���

G.9 �����
��

1
������ Data =

2
�����

3 ��	�

4 Data == mk_cmd(ID × Command) |

5 mk_admin(AdminCommand) |

6 mk_foreign(ForeignCommand) |

7 mk_reply(Reply) |

8 mk_connectiontype(ConnectionType)

9

10 ��	�

11 ID = PlaceID × ���,
12 PlaceID = ���
13

14 ��	�

15 Command == CreateDoc | PutDocInDir,

16 AdminCommand == CreatePerson | RemovePerson,

17 ForeignCommand == PullData | PushData

18

19 ��	�

20 Reply == OK | Error,

21 ConnectionType == Business | Admin | Mirror | Foreign

22

23

���

G.10 ��������
��

1 data

2
������ DBLayer(D : Data) =

3
�����

4
����

G.11. PLACE.RSL 177

5 CreateDoc : D.ID→ ����,
6 PutDocInDir : D.ID→ ����
7

���

G.11 ��������

1 dblayer,

2 data

3
������ Place(D : Data, DB : DBLayer(D)) =

4
�����

5
����

6 CreateDoc : D.ID→ ����
7 CreateDoc(id)≡
8 DB.CreateDoc(id),

9

10 PutDocInDir : D.ID→ ����
11 PutDocInDir(id)≡
12 DB.PutDocInDir(id)

13

���

G.12
���������

1 dblayer,

2 mdblayer,

3 comlayer,

4 serverconnection,

5 data

6
������ Server(D : Data, Com : ComLayer(D)) =

7
�����

8
����

9 Server : ���→ �� {Com.C [i].Server | i : Com.Con_Rng}

10
��� {Com.L [i].Listen | i : Com.Con_Rng},

11 {Com.C [i].Client | i : Com.Con_Rng}

12
���� Com.count

13 ����� Com.count

14 ����
15 Server(serveraddress)≡
16

��� con_no = Com.Accept(serveraddress) ��

17 ServerConnect(con_no) ‖ Server(serveraddress)

18

���,
19

20 Server : ��� × ���→ �� {Com.C [i].Server | i : Com.Con_Rng},

21 {Com.C [i].Client | i : Com.Con_Rng},

22 {Com.L [i].Listen | i : Com.Con_Rng}

23
��� {Com.L [i].Listen | i : Com.Con_Rng},

24 {Com.C [i].Server | i : Com.Con_Rng},

25 {Com.C [i].Client | i : Com.Con_Rng}

26
���� Com.count

27 ����� Com.count

28 ����
29 Server(serveraddress, mirroraddress)≡
30

��� con_no = Com.Accept(serveraddress) ��

31

��� mcon_no = Com.Connect(mirroraddress) ��

32
�� ∼Com.C [mcon_no].ClientAuthenticate() ���� ����� ���;

33 Com.C[mcon_no].ClientProvideIdentification();
34 Com.C[mcon_no].AwaitSecureConnection();
35 Com.C[mcon_no].ClientSend(D.mk_connectiontype(D.Mirror));
36 MirrorConnect(con_no,mcon_no) ‖
37 Server(serveraddress, mirroraddress)

38

���

178 APPENDIX G. DOCSYS – COMMUNICATION ARCHITECTURE

39

���,
40

41 ServerConnect : ���→ �� {Com.C[i].Server | i : Com.Con_Rng}

42
��� {Com.C [i].Client | i : Com.Con_Rng}

43 ����
44 ServerConnect(con_no)≡
45

�����

46
�����

47 DB : DBLayer(D),

48 SC : ServerConnection(D,Com.C [con_no],DB)
49

��

50 SC.ServerConnection()

51

���,
52

53 MirrorConnect : ��� × ���→ �� {Com.C [i].Server | i : Com.Con_Rng}

54
��� {Com.C [i].Client | i : Com.Con_Rng}

55 ����
56 MirrorConnect(con_no,mcon_no)≡
57

�����

58
�����

59 MDB : MDBLayer(D,Com.C [mcon_no]),
60 SC : ServerConnection(D,Com.C [con_no], MDB)

61
��

62 SC.ServerConnection()

63

���

64

���

G.13
����������
������

��

1 connection,

2 commands,

3 dblayer,

4 data

5
������ ServerAdminLogic(D : Data, Con : Connection(D), DB : DBLayer(D)) =

6
�����

7
�����

8 Commands : Commands(D,DB)

9

10
����

11 AdminLogic : ����→ ��� Con.Client �� Con.Server ����
12 AdminLogic()≡
13

���� Con.ServerReceive() ��

14 D.mk_admin(cmd)→
15

���� cmd ��

16 D.CreatePerson→ /* Add new person to place */

17 Con.ServerSend(D.mk_reply(D.OK)),

18 D.RemovePerson→ /* Remove person from place */

19 Con.ServerSend(D.mk_reply(D.OK)),

20 _→ �����

21

���,
22 _→ �����

23

���;
24 AdminLogic()

25

���

G.14
����������
�����������

1 connection,

2 commands,

3 dblayer,

G.15. SERVERCONNECTION.RSL 179

4 data

5
������ ServerBusinessLogic(D : Data, Con : Connection(D), DB : DBLayer(D)) =

6
�����

7
�����

8 Commands : Commands(D,DB)

9

10
����

11 BusinessLogic : ����→ ��� Con.Client �� Con.Server ����
12 BusinessLogic()≡
13

���� Con.ServerReceive() ��

14 D.mk_cmd(id,cmd)→
15

���� cmd ��

16 D.CreateDoc→ Commands.CreateDoc(id);

17 Con.ServerSend(D.mk_reply(D.OK)),

18 D.PutDocInDir→ Commands.PutDocInDir(id);

19 Con.ServerSend(D.mk_reply(D.OK)),

20 _→ �����

21

���,
22 _→ �����

23

���;
24 BusinessLogic()

25

���

G.15
��������

�����
 ���

1 connection,

2 serverforeignlogic,

3 serveradminlogic,

4 servermirrorlogic,

5 serverbusinesslogic,

6 dblayer,

7 data

8
������ ServerConnection(D : Data, Con : Connection(D), DB : DBLayer(D)) =

9
�����

10
����

11 ServerConnection : ����→ �� Con.Server ��� Con.Client ����
12 ServerConnection()≡
13 Con.ServerProvideIdentification();

14
�� ∼Con.ServerAuthenticate() ���� ����� ���;

15 Con.EstablishSecureConnection();

16
���� Con.ServerReceive() ��

17 D.mk_connectiontype(con_type)→
18

���� con_type ��

19 D.Business→ InstBusinessLogic(),

20 D.Mirror→ InstMirrorLogic(),

21 D.Admin→ InstAdminLogic(),

22 _→ �����

23

���,
24 _→ �����

25

���,
26

27 InstBusinessLogic : ����→ �� Con.Server ��� Con.Client ����
28 InstBusinessLogic()≡
29

�����

30
�����

31 BSL : ServerBusinessLogic(D,Con,DB)

32
��

33 BSL.BusinessLogic()

34

���,
35

36 InstMirrorLogic : ����→ �� Con.Server ��� Con.Client ����
37 InstMirrorLogic()≡

180 APPENDIX G. DOCSYS – COMMUNICATION ARCHITECTURE

38

�����

39
�����

40 LDB : DBLayer(D),

41 ML : ServerMirrorLogic(D,Con,LDB)

42
��

43 ML.MirrorLogic()

44

���,
45

46 InstAdminLogic : ����→ �� Con.Server ��� Con.Client ����
47 InstAdminLogic()≡
48

�����

49
�����

50 LDB : DBLayer(D),

51 SAL : ServerAdminLogic(D,Con,LDB)

52
��

53 SAL.AdminLogic()

54

���,
55

56 InstForeignLogic : ����→ �� Con.Server ��� Con.Client ����
57 InstForeignLogic()≡
58

�����

59
�����

60 LDB : DBLayer(D),

61 SAL : ServerForeignLogic(D,Con,LDB)

62
��

63 SAL.ForeignLogic()

64

���

65

���

G.16
������������
��������

1 connection,

2 commands,

3 dblayer,

4 data

5
������ ServerForeignLogic(D : Data, Con : Connection(D), DB : DBLayer(D)) =

6
�����

7
�����

8 Commands : Commands(D,DB)

9

10
����

11 ForeignLogic : ����→ ��� Con.Client �� Con.Server ����
12 ForeignLogic()≡
13

���� Con.ServerReceive() ��

14 D.mk_foreign(cmd)→
15

���� cmd ��

16 D.PullData→ /* Extract data from DB */

17 Con.ServerSend(D.mk_reply(D.OK)),

18 D.PushData→ /* Insert data into DB */

19 Con.ServerSend(D.mk_reply(D.OK)),

20 _→ �����

21

���,
22 _→ �����

23

���;
24 ForeignLogic()

25

���

G.17
��������������������

1 connection,

G.18. SYSTEM.RSL 181

2 commands,

3 dblayer,

4 data

5
������ ServerMirrorLogic(D : Data, Con : Connection(D), DB : DBLayer(D)) =

6
�����

7
�����

8 Commands : Commands(D,DB)

9

10
����

11 MirrorLogic : ����→ ��� Con.Client �� Con.Server ����
12 MirrorLogic()≡
13

���� Con.ServerReceive() ��

14 D.mk_cmd(id,cmd)→
15

���� cmd ��

16 D.CreateDoc→ Commands.CreateDoc(id);

17 Con.ServerSend(D.mk_reply(D.OK)),

18 D.PutDocInDir→ Commands.PutDocInDir(id);

19 Con.ServerSend(D.mk_reply(D.OK)),

20 _→ �����

21

���,
22 _→ �����

23

���;
24 MirrorLogic()

25

���

G.18
������ ���

1 comlayer,

2 server,

3 mirror,

4 client,

5 data

6
������ System =

7
�����

8
�����

9 D : Data,

10 Com : ComLayer(D),

11 S : Server(D,Com),

12 M : Mirror(D,Com),

13 C [i : Client_Range] : Client(D,Com)

14

15 ��	�

16 Client_Range = {|n : ��� • 1 ≤ n ∧ n ≤ client_no|}

17

18
����

19 client_no : ���
20

21
����

22 System : ����→ �� {Com.L[i].Listen | i : Com.Srv_Rng},

23 {Com.C[i].Client | i : Com.Con_Rng},

24 {Com.C[i].Server | i : Com.Con_Rng}

25
��� {Com.L[i].Listen | i : Com.Srv_Rng},

26 {Com.C[i].Client | i : Com.Con_Rng},

27 {Com.C[i].Server | i : Com.Con_Rng}

28
���� Com.count

29 ����� Com.count

30 ����
31 System()≡
32 S.Server(1,10) ‖ M.Mirror(10,{1}) ‖ ‖ {C[i].Client(1) | i :

Client_Range}

33

���

182 APPENDIX G. DOCSYS – COMMUNICATION ARCHITECTURE

G.19 ��
���������

1 connection,

2 dblayer,

3 data

4
������ MDBLayer(D : Data, Con : Connection(D)) =

5

������ DBLayer(D) ����

6
�����

7
�����

8 ∀ id : D.ID •

9 CreateDoc(id)≡
10 Con.ClientSend(D.mk_cmd(id,D.CreateDoc)),

11

12 ∀ id : D.ID •

13 PutDocInDir(id)≡
14 Con.ClientSend(D.mk_cmd(id,D.PutDocInDir))

15

���

G.20 ���������

1 dblayer,

2 comlayer,

3 mirrorconnection

4
������ Mirror(D : Data, Com : ComLayer(D)) =

5
�����

6
����

7 Mirror : ��� × ���-set → �� {Com.C [i].Server | i : Com.Con_Rng},

8 {Com.L [i].Listen | i : Com.Srv_Rng},

9 {Com.C [i].Client | i : Com.Con_Rng}

10
��� {Com.L[i].Listen | i : Com.Srv_Rng},

11 {Com.C[i].Server | i : Com.Con_Rng},

12 {Com.C[i].Client | i : Com.Con_Rng}

13
���� Com.count

14 ����� Com.count

15 ����
16 Mirror(mirroraddress, servers)≡
17

��� con_no = Com.Accept(mirroraddress) ��

18 MirrorConnect(con_no, servers) ‖ Mirror(mirroraddress,servers)

19

���,
20

21 MirrorConnect : ��� × ���-set → �� {Com.C [i].Server | i : Com.Con_Rng},

22 {Com.L [i].Listen | i : Com.Srv_Rng

},

23 {Com.C [i].Client | i : Com.Con_Rng}

24
��� {Com.L [i].Listen | i : Com.Srv_Rng

},

25 {Com.C [i].Server | i : Com.Con_Rng

},

26 {Com.C [i].Client | i : Com.Con_Rng

}

27 ����
28 MirrorConnect(con_no, servers)≡
29

�����

30
�����

31 DB : DBLayer(D),

32 MC : MirrorConnection(D,Com,Com.C [con_no],DB)
33

��

34 MC.MirrorConnection(servers)

35

���

36

���

G.21. MIRRORADMINLOGIC.RSL 183

G.21 ����������

��������

1 connection,

2 commands,

3 dblayer,

4 data

5
������ MirrorAdminLogic(D : Data, Con : Connection(D), DB : DBLayer(D)) =

6
�����

7
�����

8 Commands : Commands(D,DB)

9

10
����

11 AdminLogic : ����→ ��� Con.Client �� Con.Server ����
12 AdminLogic()≡
13

���� Con.ServerReceive() ��

14 D.mk_admin(cmd)→
15

���� cmd ��

16 D.CreatePerson→ /* Create person in DB */

17 Con.ServerSend(D.mk_reply(D.OK)),

18 D.RemovePerson→ /* Remove person from DB */

19 Con.ServerSend(D.mk_reply(D.OK)),

20 _→ �����

21

���,
22 _→ �����
23

���;
24 AdminLogic()

25

���

G.22 ��������

�����
 ���

1 connection,

2 mirrorforeignlogic,

3 mirroradminlogic,

4 mirrorlogic,

5 dblayer,

6 data

7
������ MirrorConnection(D : Data, Com : ComLayer(D), Con : Connection(D), DB :

DBLayer(D)) =
8

�����

9
����

10 MirrorConnection : ���-set → �� Con.Server,

11 {Com.L [i].Listen | i : Com.Srv_Rng},

12 {Com.C [i].Client | i : Com.Con_Rng}

13
��� Con.Client,

14 {Com.C [i].Server | i : Com.Con_Rng}

15 ����
16

17 MirrorConnection(servers)≡
18 Con.ServerProvideIdentification();

19
�� ∼Con.ServerAuthenticate() ���� ����� ���;

20 Con.EstablishSecureConnection();

21
���� Con.ServerReceive() ��

22 D.mk_connectiontype(con_type)→
23

���� con_type ��

24 D.Mirror→ InstMirrorLogic(servers),

25 D.Admin→ InstAdminLogic(),

26 _→ �����
27

���,
28 _→ �����

29

���,
30

184 APPENDIX G. DOCSYS – COMMUNICATION ARCHITECTURE

31 InstMirrorLogic : ���-set → �� Con.Server,

32 {Com.L[i].Listen | i : Com.Srv_Rng},

33 {Com.C[i].Client | i : Com.Con_Rng}

34
��� Con.Client,

35 {Com.C [i].Server | i : Com.Con_Rng}

36 ����
37 InstMirrorLogic(servers)≡
38

�����

39
�����

40 ML : MirrorLogic(D,Com,Con,DB)

41
��

42 ML.MirrorLogic(servers)

43

���,
44

45 InstAdminLogic : ����→ �� Con.Server ��� Con.Client ����
46 InstAdminLogic()≡
47

�����

48
�����

49 MAL : MirrorAdminLogic(D,Con,DB)

50
��

51 MAL.AdminLogic()

52

���,
53

54 InstForeignLogic : ����→ �� Con.Server ��� Con.Client ����
55 InstForeignLogic()≡
56

�����

57
�����

58 MFL : MirrorForeignLogic(D,Con,DB)

59
��

60 MFL.ForeignLogic()

61

���

62

���

G.23 ������������
��������

1 connection,

2 commands,

3 dblayer,

4 data

5
������ MirrorForeignLogic(D : Data, Con : Connection(D), DB : DBLayer(D)) =

6
�����

7
�����

8 Commands : Commands(D,DB)

9

10
����

11 ForeignLogic : ����→ ��� Con.Client �� Con.Server ����
12 ForeignLogic()≡
13

���� Con.ServerReceive() ��

14 D.mk_foreign(cmd)→
15

���� cmd ��

16 D.PullData→ /* Extract data from DB */

17 Con.ServerSend(D.mk_reply(D.OK)),

18 D.PushData→ /* Insert data into DB */

19 Con.ServerSend(D.mk_reply(D.OK)),

20 _→ �����

21

���,
22 _→ �����

23

���;
24 ForeignLogic()

25

���

G.24. MIRRORLOGIC.RSL 185

G.24 ��������������

1 connection,

2 commands,

3 dblayer,

4 comlayer

5
������ MirrorLogic(D : Data, Com : ComLayer(D), Con : Connection(D), DB :

DBLayer(D)) =
6

�����

7
�����

8 Commands : Commands(D,DB)

9

10
����

11 MirrorLogic : ���-set → ��� Con.Client,

12 {Com.C [i].Server | i : Com.Con_Rng}

13
�� Con.Server,

14 {Com.L [i].Listen | i : Com.Srv_Rng},

15 {Com.C [i].Client | i : Com.Con_Rng}

16 ����
17 MirrorLogic(servers)≡
18

���� Con.ServerReceive() ��

19 D.mk_cmd((placeid,id),cmd)→
20

�� placeid /∈ servers ���� ����� ���;
21

��� con_no = Com.Connect(placeid) ��

22
�� ∼Com.C [con_no].ClientAuthenticate() ���� ����� ���;

23 Com.C[con_no].ClientProvideIdentification();
24 Com.C[con_no].AwaitSecureConnection();
25 Com.C[con_no].ClientSend(D.mk_connectiontype(D.Mirror));
26

���� cmd ��

27 D.CreateDoc → Com.C [con_no].ClientSend(D.mk_cmd((placeid,id),
D.CreateDoc));

28 Commands.CreateDoc(placeid,id);

29 Con.ServerSend(D.mk_reply(D.OK)),

30 D.PutDocInDir→ Com.C [con_no].ClientSend(D.mk_cmd((placeid,id),
D.PutDocInDir));

31 Commands.PutDocInDir(placeid,id);

32 Con.ServerSend(D.mk_reply(D.OK)),

33 _→ �����

34

���

35

���,
36 _→ �����
37

���;
38 MirrorLogic(servers)

39

���

Appendix H

DocSys – Implementation

H.1
�������
���

1 // DSCommands.h: interface for the DSCommands class.

2 //

3 //

4

5 ��� !defined(AFX_DSCOMMANDS_H__A6B32622_E1C5_4941_93CD_D6BA5BA17830__INCLUDED_)

6 �
������ AFX_DSCOMMANDS_H__A6B32622_E1C5_4941_93CD_D6BA5BA17830__INCLUDED_

7

8 �������� "DSDocument.h" // Added by ClassView

9 �������� "afx.h"

10 �������� "DSPerson.h"

11 �������� "DSPlaceID.h"

12 �������� "DSTime.h"

13 �������� "DSContents.h"

14 �������� "DSPlace.h"

15 �������� "../DBLayer/DSDBLayer.h"

16 �������� "DSLocationID.h"

17 �������� "DSExportID.h"

18 �������� "DSDossier.h"

19 �������� "DSSet.h"

20 �������� "DSError.h"

21

22 �
������ DSCreateDoc "1"

23 �
������ DSCreateDos "2"

24 ������� DSCopy "3"

25 ������� DSEdit "4"

26 ������� DSRemoveDoc "5"

27 ������� DSRemoveDos "23"

28 �
������ DSGetDocFromDos "6"

29 �
������ DSPutDocInDos "7"

30 �
������ DSGetDosFromDos "8"

31 ������� DSPutDosInDos "9"

32 ������� DSGetDocFromDir "10"

33 ������� DSPutDocInDir "11"

34 ������� DSGetDosFromDir "12"

35 ������� DSPutDosInDir "13"

36 �
������ DSExport "14"

37 �
������ DSSignDocument "15"

38 �
������ DSResetDocMembership "16"

39 ������� DSResetDosMembership "17"

40 ������� DSSendDoc "18"

41 �
������ DSSendDos "19"

186

H.1. DSCOMMANDS.H 187

42 ������� DSSetDocPermission "20"

43 �define DSSetDosPermission "21"

44 ������� DSMerge "22"

45 ������� DSReturnDoc "24"

46 ������� DSReturnDos "25"

47 ������� DSReadDocument "26"

48

49

50 ��� _MSC_VER > 1000

51 �	����� once

52 ������ // _MSC_VER > 1000

53

54
����� DSCommands

55 {

56
	����:

57
��� ReturnDos(DSPersonID& perid, DSTime& time, DSDossierID& dosid);

58
��� ReturnDoc(DSPersonID& perid, DSTime& time, DSDocumentID& docid);

59
��� RemoveDos(DSPersonID& perid, DSTime& time, DSDossierID& dosid);

60 DSDocumentID CreateDoc(DSPersonID& perid, DSTime& time, CString strDesc,

DSContents& cont);

61 DSDossierID CreateDos(DSPersonID& perid, DSTime& time, DSDossierDescription

&desc);

62 DSDocumentID Copy(DSPersonID& perid, DSTime& time, DSDocumentID& docid);

63 DSDocumentID Edit(DSPersonID& perid, DSTime& time, DSDocumentID& docid,

DSContents& cont);

64
��� RemoveDoc(DSPersonID& perid, DSTime& time, DSDocumentID& docid);

65
��� GetDocFromDos(DSPersonID& perid, DSTime& time, DSDossierID& dosid,

DSDocumentID& docid);

66
��� PutDocInDos(DSPersonID& perid, DSTime& time, DSDossierID& dosid,

DSDocumentID& docid);

67
��� GetDosFromDos(DSPersonID& perid, DSTime& time, DSDossierID& outer_id,

DSDossierID& inner_id);

68
��� PutDosInDos(DSPersonID& perid, DSTime& time, DSDossierID& outer_id,

DSDossierID& inner_id);

69
��� GetDocFromDir(DSPersonID& perid, DSTime& time, DSIndexID& idxid,

DSDocumentID& docid);

70
��� PutDocInDir(DSPersonID& perid, DSTime& time, DSIndexID& idxid,

DSDocumentID& docid);

71
��� GetDosFromDir(DSPersonID& perid, DSTime& time, DSIndexID& idxid,

DSDossierID& dosid);

72
��� PutDosInDir(DSPersonID& perid, DSTime& time, DSIndexID& idxid,

DSDossierID& dosid);

73
��� Export(DSPersonID& perid, DSTime &time, DSLocationID& locid,

DSDocumentID& docid);

74
��� SignDocument(DSPersonID& perid, DSTime& time, DSDocumentID& docid,

DSSignature& sig);

75 DSDocumentID Merge(DSPersonID &perid, DSTime& time, DSDocumentID &docid);

76
��� SendDos(DSPersonID &perid, DSTime &time, DSPersonID &dest_perid,

DSDossierID &dosid);

77
��� SendDoc(DSPersonID &perid, DSTime &time, DSPersonID &dest_perid,

DSDocumentID &docid);

78
��� SetDosPermission(DSPersonID &perid, DSTime &time, DSDossierID &dosid,

DSSet &keys, CString &strCmd);

79
��� SetDocPermission(DSPersonID &perid, DSTime &time, DSDocumentID &docid,

DSSet &keys, CString &strCmd);

80
��� ResetDosMembership(DSPersonID &perid, DSTime &time, DSDossierID &dosid)

;

81
��� ResetDocMembership(DSPersonID &perid, DSTime &time, DSDocumentID &docid

);

82 DSCommands(DSDBLayer* db);

83
������ ~DSCommands();

84

188 APPENDIX H. DOCSYS – IMPLEMENTATION

85
	����:

86 DSDocument ReadDocument(DSPersonID& perid, DSTime& time, DSDocumentID& docid

);

87

88

89 DSPlace* Place();

90 DSDBLayer* m_pDatabase;

91

92
	��
���:

93

94 DSPlace* m_pPlace;

95 };

96

97 ������ // !defined(

AFX_DSCOMMANDS_H__A6B32622_E1C5_4941_93CD_D6BA5BA17830__INCLUDED_)

H.2. CONTENTS EXAMPLE.XSD 189

H.2 ��
��
�� ����������

1 <?���
������="1.0" encoding="UTF-8"?>

2 <!-- edited ���� XMLSPY v2004 rel. 2 U (http://www.xmlspy.com) by DiabloDiab (

DiabloDiab) -->

3 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="

qualified" attributeFormDefault="unqualified">

4 <xs:element name="contents">

5 <xs:complexType>

6 <xs:choice>

7 <xs:annotation>

8 <xs:documentation>Choice</xs:documentation>

9 </xs:annotation>

10 <xs:element name="personinfo">

11 <xs:complexType>

12 <xs:choice>

13 <xs:annotation>

14 <xs:documentation>Choice</xs:documentation>

15 </xs:annotation>

16 <xs:element name="version_01">

17 <xs:annotation>

18 <xs:documentation>@tablename = "table1"</xs:documentation>

19 </xs:annotation>

20 <xs:complexType>

21 <xs:sequence>

22 <xs:annotation>

23 <xs:documentation>sequence</xs:documentation>

24 </xs:annotation>

25 <xs:element name="name">

26 <xs:annotation>

27 <xs:documentation>value = "John Doe"</xs:documentation>

28 </xs:annotation>

29 </xs:element>

30 <xs:element name="address">

31 <xs:annotation>

32 <xs:documentation>value = "Oak Street 1"</

xs:documentation>

33 </xs:annotation>

34 </xs:element>

35 </xs:sequence>

36 <xs:attribute name="tablename" ��	�="xs:string" ���="required
" fixed="table1"/>

37 </xs:complexType>

38 </xs:element>

39 <xs:element name="version_02">

40 <xs:annotation>

41 <xs:documentation>@tablename = "table1"</xs:documentation>

42 </xs:annotation>

43 <xs:complexType>

44 <xs:sequence>

45 <xs:annotation>

46 <xs:documentation>sequence</xs:documentation>

47 </xs:annotation>

48 <xs:element name="name">

49 <xs:annotation>

50 <xs:documentation>@tablename = "table2"</

xs:documentation>

51 </xs:annotation>

52 <xs:complexType>

53 <xs:sequence>

54 <xs:annotation>

55 <xs:documentation>sequence</xs:documentation>

190 APPENDIX H. DOCSYS – IMPLEMENTATION

56 </xs:annotation>

57 <xs:element name="firstname">

58 <xs:annotation>

59 <xs:documentation>value = "John"</

xs:documentation>

60 </xs:annotation>

61 </xs:element>

62 <xs:element name="lastname">

63 <xs:annotation>

64 <xs:documentation>value = "Doe"</xs:documentation

>

65 </xs:annotation>

66 </xs:element>

67 </xs:sequence>

68 <xs:attribute name="tablename" ��	�="xs:string" ���="
required" fixed="table2"/>

69 </xs:complexType>

70 </xs:element>

71 <xs:element name="address">

72 <xs:annotation>

73 <xs:documentation>value = "Oak Street 1"</

xs:documentation>

74 </xs:annotation>

75 </xs:element>

76 </xs:sequence>

77 <xs:attribute name="tablename" ��	�="xs:string" ���="required
" fixed="table1"/>

78 </xs:complexType>

79 </xs:element>

80 </xs:choice>

81 </xs:complexType>

82 </xs:element>

83 <xs:element name="invoice">

84 <xs:complexType>

85 <xs:sequence/>

86 </xs:complexType>

87 </xs:element>

88 </xs:choice>

89 </xs:complexType>

90 </xs:element>

91 <xs:element name="personinfo">

92 <xs:complexType>

93 <xs:choice>

94 <xs:annotation>

95 <xs:documentation>Choice</xs:documentation>

96 </xs:annotation>

97 <xs:element name="version_01">

98 <xs:annotation>

99 <xs:documentation>@tablename = "table1"</xs:documentation>

100 </xs:annotation>

101 <xs:complexType>

102 <xs:sequence>

103 <xs:annotation>

104 <xs:documentation>sequence</xs:documentation>

105 </xs:annotation>

106 <xs:element name="name">

107 <xs:annotation>

108 <xs:documentation>value = "John Doe"</xs:documentation>

109 </xs:annotation>

110 </xs:element>

111 <xs:element name="address">

112 <xs:annotation>

H.2. CONTENTS EXAMPLE.XSD 191

113 <xs:documentation>value = "Oak Street 1"</xs:documentation>

114 </xs:annotation>

115 </xs:element>

116 </xs:sequence>

117 <xs:attribute name="tablename" ��	�="xs:string" ���="required"
fixed="table1"/>

118 </xs:complexType>

119 </xs:element>

120 <xs:element name="version_02">

121 <xs:annotation>

122 <xs:documentation>@tablename = "table1"</xs:documentation>

123 </xs:annotation>

124 <xs:complexType>

125 <xs:sequence>

126 <xs:annotation>

127 <xs:documentation>sequence</xs:documentation>

128 </xs:annotation>

129 <xs:element name="name">

130 <xs:annotation>

131 <xs:documentation>@tablename = "table2"</xs:documentation>

132 </xs:annotation>

133 <xs:complexType>

134 <xs:sequence>

135 <xs:annotation>

136 <xs:documentation>sequence</xs:documentation>

137 </xs:annotation>

138 <xs:element name="firstname">

139 <xs:annotation>

140 <xs:documentation>value = "John"</xs:documentation>

141 </xs:annotation>

142 </xs:element>

143 <xs:element name="lastname">

144 <xs:annotation>

145 <xs:documentation>value = "Doe"</xs:documentation>

146 </xs:annotation>

147 </xs:element>

148 </xs:sequence>

149 <xs:attribute name="tablename" ��	�="xs:string" ���="required
" fixed="table2"/>

150 </xs:complexType>

151 </xs:element>

152 <xs:element name="address">

153 <xs:annotation>

154 <xs:documentation>value = "Oak Street 1"</xs:documentation>

155 </xs:annotation>

156 </xs:element>

157 </xs:sequence>

158 <xs:attribute name="tablename" ��	�="xs:string" ���="required"
fixed="table1"/>

159 </xs:complexType>

160 </xs:element>

161 </xs:choice>

162 </xs:complexType>

163 </xs:element>

164 </xs:schema>

Appendix I

DocSys – Specification
Relationship Example

In order to show the the relationship between specifications and implementation
– from domain to requirement to implementation – the following is extracted
from the report and presented together.

I.1 Domain Specification

1 M: Command→ System→ System

2 M(cmd)(places, docids, dosids)≡
3

���� cmd ��

4 mk_Edit(person, plid, time, document, (te,fe))→
5

��� (dir,pers,locs,keys) = places(plid) ��

6 assert(person ∈ ��� pers ∧
7 document ∈ obs_Documents(person));

8

��� doc:Document •

9 obs_ID(doc) = obs_ID(document) ∧
10 obs_Time(doc) = time ∧
11 obs_Contents(doc) = te(obs_Contents(document)) ∧
12 obs_Type(doc) =
������ ∧
13 obs_Creator(doc) = obs_ID(person) ∧
14 obs_PlaceID(doc) = plid ∧
15 obs_Signatures(doc) = {} ∧
16 obs_DirMembership(doc) = obs_DirMembership(document) ∧
17 obs_PlaceMembership(doc) = obs_PlaceMembership(document) ∧
18 obs_Ancestor(doc) = obs_Ancestor(document)

19
��

20 (places † [plid 7→
21 (dir, pers † [obs_ID(person) 7→
22 (person \ {document}) ∪ {doc}],
23 locs, keys)], docids, dosids)

24

���

25

���

26

���

192

I.2. REQUIREMENTS SPECIFICATION 193

I.2 Requirements Specification

1 M: Command→ System→ System

2 M(cmd)(places, docids, dosids, copyids)≡
3

���� cmd ��

4 mk_Edit(person, plid, time, document, (te,fe))→
5

��� (dir,pers,locs,bin,keys) = places(plid) ��

6

��� docs = obs_Group(document,docids) ��

7 assert(hasPermission(person,document,Edit) ∧
8 person ∈ ��� pers ∧
9 mostRecentVersion(document,docs) ∧

10 docs ⊂ obs_Documents(person));

11

��� docid:DocumentID • docid /∈ docids ��

12

��� doc:Document •

13 obs_ID(doc) = docid ∧
14 obs_Time(doc) = time ∧
15 obs_Contents(doc) = te(obs_Contents(document)) ∧
16 obs_Type(doc) =
������ ∧
17 obs_Creator(doc) = obs_ID(person) ∧
18 obs_PlaceID(doc) = plid ∧
19 obs_Ancestor(doc) = mk_did(obs_ID(document)) ∧
20 obs_Signatures(doc) = {} ∧
21 obs_DirMembership(doc) = obs_DirMembership(document) ∧
22 obs_DossierMembership(doc) = obs_DossierMembership(document) ∧
23 obs_CommandLocks(doc) = obs_CommandLocks(document) ∧
24 obs_Events(doc) = obs_Events(document)

25
��

26

��� evt:Event •

27 evt_type(evt) = Edit ∧
28 evt_executedby(evt) = obs_ID(person) ∧
29 evt_time(evt) = time ∧
30 evt_place(evt) = plid

31
��

32 (places † [plid 7→
33 (dir, pers † [obs_ID(person) 7→
34 ((person \ {document}) ∪
35 {addEvent(document,evt)}) ∪
36 {addEvent(doc,evt)}],
37 locs,bin,keys)], docids ∪ {docid}, dosids, copyids)

38

��� ��� ��� ��� ���,

I.3 Implementation Specification

1 DSDocumentID DSCommands::Edit(DSPersonID& perid, DSTime& time,

2 DSDocumentID& docid, DSContents& cont)

3 {

4 DSEvent event;

5 DSPerson per = DSPerson(m_pDatabase,perid);

6 DSDocument doc = DSDocument(m_pDatabase, docid);

7 DSDocument edt = DSDocument(m_pDatabase);

8 Assert(per.Contains(docid),ERR_PER_DOES_NOT_CONTAIN_DOC);

9 Assert(per.Contains(doc.GetKeys(DSEdit)),ERR_PER_DOES_NOT_CONTAIN_CMD_KEY);

10 Assert((doc.m_strNewestEditionId == docid.GetEditionID()),ERR_CANNOT_EDIT_OLD_VERSION);

11 Assert((doc.m_strContentsType == cont.m_strContentsType &&

12 doc.m_strContentsVersion == cont.m_strContentsVersion),

13 ERR_CONT_TYPE_OR_VERSION_MISMATCH);

14 edt.m_id = doc.NextEditionID();

15 edt.m_creator = perid;

16 edt.m_type = doc.m_type;

17 edt.m_time = time;

18 edt.m_ancestor = doc.m_ancestor;

194APPENDIX I. DOCSYS – SPECIFICATION RELATIONSHIP EXAMPLE

19 edt.m_strContentsType = doc.m_strContentsType;

20 edt.m_strContentsVersion = doc.m_strContentsVersion;

21 edt.m_strDesc = doc.m_strDesc;

22 edt.m_membership = doc.m_membership;

23 edt.Flush();

24 edt.SetContents(cont);

25 event.m_executedBy = perid;

26 event.m_time = time;

27 event.m_id = edt.m_id;

28 event.strCmd = DSEdit;

29 doc.Add(event);

30
������ edt.m_id;

31 }

Appendix J

EMR – Template
Specification

In order to provide the reader with an idea of where to start when defining
templates are here an example. It is started off by explicitly defining types
needed in the later template specification, such as fonts, colors and information
data types. It is followed by a figure of the note and its specification.

J.1 ����
��
�����

1
������ mrcontents =

2
�����

3 ��	�

4 text = section∗,

5 section = heading × paragraph∗,

6 heading = format × ����∗,
7 paragraph = format × ����∗
8

9 ��	�

10 binary == image | audio,

11 image == xray | ct | mr | ekg | eeg,

12 audio == dictaphone_recording

13

14 ��	�

15 ref = ���,
16 dimension = ����× ����,
17 position = ����× ����,
18 color == red | pink | black | white | blue,

19 width = ����,
20 font == arial | times_new_roman,

21 size = ���,
22 style == normal | italics | bold | underline

23

24 ��	�

25 layout = position × dimension × border_layout × color,

26 border_layout = color × width,

27 format = font × size × style × color

28

29 ��	�

30 txt_label = layout × text,

31 bin_label = layout × binary,

195

196 APPENDIX J. EMR – TEMPLATE SPECIFICATION

32 txt_input = layout × ref,

33 bin_input = layout × ref,

34

35 contents = group × data,

36 data = (ref→m text) × (ref→m binary),

37

38 group == mk_grp(layout × label∗ × input∗ × group∗),

39 label == mk_ltxt(txt_label) | mk_lbin(bin_label),

40 input == mk_itxt(txt_input) | mk_ibin(bin_input)

41

���

(PATIENTDATA)

CPR-nr:

Name:

240350-1233

John Smith

CONT. NO. 1

KAS GLOSTRUP

KAS HERLEV

DATE/YEAR

21.06.02

0,0

3,0

30,0

0,0 3,0 12,0 20,0

Acute admission medical department F-521

52 year old male admitted through casualty department under diagnosis of
hypertensio arterialis.

Allergies
No known

Previous admissions
Never admitted before.

....

....

Figure J.1: Note Page of a Medical Record With Data

J.2 ��
������

1 mrcontents

2
������ mrnote =

3

������ mrcontents ����

4
�����

5
����

6 pdformat1 : format = (times_new_roman,6,normal,black),

7 pdhead1 : heading = (pdformat1,"(PATIENTDATA)"),

8 pdtext1 : text = 〈(pdhead1,〈〉)〉,
9 pdlabel1 : label = mk_ltxt(((9.0,2.5),(3.0,0.2),(white,0.0),white),

pdtext1),

10

11 pdformat2 : format = (times_new_roman,12,normal,black),

12 pdhead2 : heading = (pdformat2,"CPR:"),

13 pdtext2 : text = 〈(pdhead2,〈〉)〉,
14 pdlabel2 : label = mk_ltxt(((0.5,0.5),(1.5,0.5),(white,0.0),white),

pdtext2),

15 pdinput2 : input = mk_itxt(((2.0,0.5),(3.0,0.5),(white,0.0),white), 1),

16

17 pdhead3 : heading = (pdformat2,"Name:"),

18 pdtext3 : text = 〈(pdhead3,〈〉)〉,

J.2. MRNOTE.RSL 197

19 pdlabel3 : label = mk_ltxt(((0.5,1.5),(1.5,0.5),(white,0.0),white),

pdtext3),

20 pdinput3 : input = mk_itxt(((2.0,1.5),(3.5,0.5),(white,0.0),white), 2),

21

22 pdgroup : group = mk_grp(((0.0,0.0),(12.0,3.0),(black,0.2),white),

23 〈pdlabel1,pdlabel2,pdlabel3〉,
24 〈pdinput2,pdinput3〉,
25 〈〉)
26

27
����

28 pnformat1 : format = (times_new_roman,12,bold,black),

29 pnhead1 : heading = (pnformat1,"CONT. NO.__________"),

30 pntext1 : text = 〈(pnhead1,〈〉)〉,
31 pnlabel1 : label = mk_ltxt(((4.0,2.5),(4.0,0.5),(white,0.0),white),

pntext1),

32 pninput1 : input = mk_itxt(((6.0,2.0),(1.0,1.0),(white,0.0),white), 3),

33

34 pnformat2 : format = (times_new_roman,10,normal,black),

35 pnhead2 : heading = (pnformat2,"KAS GLOSTRUP"),

36 pntext2 : text = 〈(pnhead2,〈〉)〉,
37 pnlabel2 : label = mk_ltxt(((1.0,1.0),(4.0,0.5),(white,0.0),white),

pntext2),

38 pninput2 : input = mk_itxt(((0.5,1.0),(0.5,0.5),(black,0.2),white), 4),

39

40 pnhead3 : heading = (pnformat2,"KAS HERLEV"),

41 pntext3 : text = 〈(pnhead3,〈〉)〉,
42 pnlabel3 : label = mk_ltxt(((1.0,1.5),(4.0,0.5),(white,0.0),white),

pntext3),

43 pninput3 : input = mk_itxt(((0.5,1.5),(0.5,0.5),(black,0.2),white), 5),

44

45 pngroup : group = mk_grp(((12.0,0.0),(8.0,3.0),(black,0.2),white),

46 〈pnlabel1,pnlabel2,pnlabel3〉,
47 〈pninput1,pninput2,pninput3〉,
48 〈〉)
49

50
����

51 dformat : format = (times_new_roman,6,normal,black),

52 dhead : heading = (dformat,"DATE/YEAR"),

53 dtext : text = 〈(dhead,〈〉)〉,
54 dlabel : label = mk_ltxt(((0.5,0.1),(1.0,0.2),(white,0.0),white),dtext),

55 dinput : input = mk_itxt(((0.5,0.5),(2.0,26.0),(white,0.0),white), 6),

56

57 dgroup : group = mk_grp(((0.0,3.0),(3.0,27.0),(white,0.0),white),

58 〈dlabel〉,
59 〈dinput〉,
60 〈〉)
61

62
����

63 tinput : input = mk_itxt(((0.0,0.0),(17.0,27.0),(white,0.0),white), 7),

64

65 tgroup : group = mk_grp(((3.0,3.0),(17.0,27.0),(white,0.0),white),

66 〈〉,
67 〈tinput〉,
68 〈〉)
69

70
������

71 ���	���� : group := mk_grp(((0.0,0.0),(20.0,30.0),(white,0.0),white),

72 〈〉,
73 〈〉,
74 〈pdgroup,pngroup,dgroup,tgroup〉)
75

76
����

198 APPENDIX J. EMR – TEMPLATE SPECIFICATION

77 dataformat1 : format = (times_new_roman,12,normal,blue),

78 dataformat2 : format = (times_new_roman,12,underline,blue),

79

80 data1head : heading = (dataformat1,"240350-1233"),

81 data1 : text = 〈(data1head,〈〉)〉,
82 data2head : heading = (dataformat1,"John Smith"),

83 data2 : text = 〈(data2head,〈〉)〉,
84 data3head : heading = (dataformat1,"1"),

85 data3 : text = 〈(data3head,〈〉)〉,
86 data4head : heading = (dataformat1,"X"),

87 data4 : text = 〈(data4head,〈〉)〉,
88 data5head : heading = (dataformat1,""),

89 data5 : text = 〈(data5head,〈〉)〉,
90 data6head : heading = (dataformat1,"21.06.02"),

91 data6 : text = 〈(data6head,〈〉)〉,
92 data7head1 : heading = (dataformat2,"Acute admission medical department F

-521"),

93 data7para1 : paragraph = (dataformat1,"52 year old male admitted through

casualty department under diagnosis �� hypertensio arterialis."),

94 data7head2 : heading = (dataformat2,"Allergies"),

95 data7para2 : paragraph = (dataformat1,"No known"),

96 data7head3 : heading = (dataformat2,"Previous admissions"),

97 data7para3 : paragraph = (dataformat1,"Never admittet before."),

98 data7 : text = 〈(data7head1,〈data7para1〉),(data7head2,〈data7para2〉),(
data7head3,〈data7para3〉)〉,

99

100 d : data = ([1 7→ data1, 2 7→ data2, 3 7→ data3, 4 7→ data4, 5 7→ data5, 6 7→
data6, 7 7→ data7], [])

101

102
����

103 f : data→ ���� ���	���� contents,

104 f_inv : contents→ data

105

106
����� ∀ d : data • f_inv(f(d)) = d

107

108

���

Appendix K

EMR – GUI Design

4210 Neurologisk

Journalvognen indeholder

EfternavnFornavn CPRNr. Sengenr. Manglende renskrivninger (ældste)

Brian Christensen

John Doe 121212-2134 1

Jane Jensen 123456-9876 11 2 (fra 26/3/04 kl. 11:43 af LS)

Læs journalFjern journal fra vogn Kopier journal til migOpret ny journal Find journal i arkiv

 22/03/04 16:24Logget på som: Brian Christensen

Ole Olesen 080808-1234 42 1 (22/03/04 11:24 af HH)

Niels Jensen 102431-1234 41

'Opret Ny journal'

<System response>
Create new patient tab and
change focus to this
 (tab info temp).

'Læs journal'

<System response>
Create new tab and change
focus to this. The tab is
populated with the given
journal. The journal has
focus on 'Stamdata'

'Kopier journal til mig'

<System response>
Copy a journal reference
of the highlighted item
to the current user. It will
then be visible in the
person tab

'Fjern journal fra vogn'

<System response>
Remove the journal reference
from the TOC of the department.
User needs to verify removal!

<System respnse>
When open journals are
activated via the tab the chosen
patient tab is displayed.

<System respnse>
When the 'Person' tab is activated
iit is displayed.

<System response>
Pressing escape simulates
smart card absence. Messagebox
shall be displayed

Skift afdeling'Skift afdeling'

<System response>
The department is changed via
an TOC dialog of all available
departments after which the TOC
of the selected department is
displayed

''Find journal i arkiv''

<System response>
The search dialog will appear.

Figure K.1: Department tab layout

199

200 APPENDIX K. EMR – GUI DESIGN

4210 Neurologisk

Du har følgende journaler på dig

Ole Olesen 080808-1234 42 1 (22/03/04 11:24 af HH)

EfternavnFornavn CPRNr. Sengenr. Manglende renskrivninger (ældste)

Brian Christensen 080808-1234
Ole Olesen

Åbn journalFjern journal fra mig

Niels Jensen 102431-1234 41

22/03/04 16:24Logget på som: Brian Christensen

'Fjern journal fra mig'

<System response>
Remove the journal reference
from the TOC of the person.
User needs to verify removal!

'Åbn Journal'

<System response>
Create new tab and change
focus to this. The tab is
populated with the given
journal. The journal has
focus on 'Stamdata'

Figure K.2: Person Tab Layout

4210 Neurologisk Brian Christensen 080808-1234
Ole Olesen

 22/03/04 16:24 Logget på som Brian Christensen

Stamdata Kontinuation Blod Sygeplejerske Korrespondance

Gem ændringer

'Gem ændringer'

<System response>
The current data in
the form is comitted
to the database

<System response>
When any of the tabs are pressed
(excluding 'stamdata')
a TOC of the given tab is listed.
Which tab is pressed shall be
immediately evident

Luk journal

'Luk journal'

<System response>
The current journal tab is closed.
Possibly a warning if data is not
committed to the database.

Figure K.3: Patient Tab Layout

201

4210 Neurologisk

DatoOverskift Oprettet afType Kladde

Brian Christensen 080808-1234
Ole Olesen

Åbn dokument

 22/03/04 16:24 Logget på som Brian Christensen

Stamdata Kontinuation Blod Sygeplejerske Korrespondance

Stuegang Ændring i medicin Hans Hansen22/03/04 11:24
Stuegang Intet ændret Peter Jensen21/03/04 10:51

Ja

Indlæggelse Indlagt med kramper Hans Christian20/03/04 20:43

Opret dokument

'Åbn dokument'

<System response>
The TOC area is changed to input
area. The appropriate form
schema is presented and
populated with the correct data.

Opret dokument'

<System response>
A document is created (not
comitted) in the correct context
(bound to the correct tab). The
'Kontinuation' tab is the only tab
with several contents types.
Only 'Udefineret Tekst' is
available to other tabs

Luk journal

'Luk journal'

<System response>
The current journal tab is closed.
Possibly a warning if data is not
committed to the database.

Figure K.4: Medical Record Category Layout

Indlæggelse

Stuegang

Special

Akut

Udefineret Tekst

Vælg notattype

OkAfbryd

'Ok'

<System response>
The TOC area is changed
to input area. The appropriate
form schema is presented and
ready for data input.

4210 Neurologisk

DatoOverskift Oprettet afType Kladde

Brian Christensen 080808-1234
Ole Olesen

 22/03/04 16:24 Logget på som Brian Christensen

Stamdata Kontinuation Blod Sygeplejerske Korrespondance

Stuegang Ændring i medicin Hans Hansen22/03/04 11:24 Ja

Indhold

<Binær lyddata>

Gem ændringer Næste notatForrige notat

'Gem ændringer'

<System response>
The current data in the form is
comitted
to the database

'Næste notat'

<System response>
The next note (according to the
previous TOC) is loaded into the
form. (possibly a warning if
present info not comitted to
database)

'Forrige notat'

<System response>
The previous note (according to
the previous TOC) is loaded into
the form. (possibly a warning if
present info not comitted to
database)

'Luk journal'

<System response>
The current journal tab is closed.
Possibly a warning if data is not
committed to the database.

Luk journal

Figure K.5: Medical Record Note Display Layout

202 APPENDIX K. EMR – GUI DESIGN

Fundne journaler

CPR Efternavn Fornavn

240377-xxxx Olsen Bent

080808-1234 Olsen Ole

120120-xxxx Olsen Karina

Kopier til afdeling Kopier til mig Åbn fra arkiv Luk

CPR

Fornavn

EfternavnFind journal Luk

OlsenEfternavn

'Find journal'
Return the journals
that match the query

'Kopier til afdeling'

<System response>
Copy a journal reference
of the highlighted items to
the current department. It
will then be visible in the
department tab

'Kopier til mig'

<System response>
Copy a journal reference
of the highlighted items
to the current user. It will
then be visible in the
person tab

'Åbn fra arkiv'

<System response>
Open the highlighted journals in
new tabs (possibly with max)
Put focus on the first. The tabs
are populated with correct data.
The journal has focus on
'Stamdata'

'Luk'

<System response>
Return to main screen

Figure K.6: Search Dialog

Appendix L

EMR – Business Logic

1
��� DSBusinessLayerEMR::CommandCreateRecord(DSXMLNode &commandnode)

2 {

3 DSTime time = DSTime(CTime::GetCurrentTime());

4

5 // Parse contents

6 DSXMLNode contentsnode = commandnode.FindNode("//contents");

7 DSContents contents;

8 contents.Get()->LoadSchema("http://www.lindqvist.it/contents.xsd");

9
��(!contents.Get()->Parse(&contentsnode.GetText()))

10 {

11 Error("Error in contents");

12
������;

13 }

14

15 // set type and version of contents

16 contents.m_strContentsType = contents.Get()->FindNode("//contents/*").GetName

();

17 contents.m_strContentsVersion = contents.Get()->FindNode("//contents/*/*").

GetName();

18 contents.Get()->FindNode("//_antalkladder").SetText(&CString("0"));

19

20 // create cover data document

21 DSDocumentID covdat = m_pCommands->CreateDoc(m_PersonID,time,"_coverdata",

contents);

22 contents.CleanUp();

23

24 DSDocumentID newref = m_pCommands->Copy(m_PersonID,time,covdat);

25 m_pCommands->PutDocInDir(m_PersonID,time,m_DepartmentID,newref);

26

27 // create medical record and place cover data document inside

28 DSDossierID emr = m_pCommands->CreateDos(m_PersonID,time,DSDossierDescription

("_emr"));

29 m_pCommands->PutDocInDos(m_PersonID,time,emr,covdat);

30

31 // create and add remaining subfolders

32 m_pCommands->PutDosInDos(m_PersonID,time,emr,m_pCommands->CreateDos(

m_PersonID,time,DSDossierDescription("Kontinuation")));

33 m_pCommands->PutDosInDos(m_PersonID,time,emr,m_pCommands->CreateDos(

m_PersonID,time,DSDossierDescription("Blod")));

34 m_pCommands->PutDosInDos(m_PersonID,time,emr,m_pCommands->CreateDos(

m_PersonID,time,DSDossierDescription("Sygeplejerske")));

35 m_pCommands->PutDosInDos(m_PersonID,time,emr,m_pCommands->CreateDos(

m_PersonID,time,DSDossierDescription("Korrespondance")));

203

204 APPENDIX L. EMR – BUSINESS LOGIC

36

37 // Put record in archive

38 m_pCommands->PutDosInDir(m_PersonID,time,m_ArchiveID,emr);

39

40 Success(newref);

41 }

42
��� DSBusinessLayerEMR::CommandCreateNote(DSXMLNode &commandnode)

43 {

44 DSDocument coverdata = DSDocument(m_pDatabase,GetDocumentID(commandnode.

FindNode("documentid")));

45

46
��(coverdata.m_type.GetType() == DScopy)

47 coverdata = DSDocument(m_pDatabase,coverdata.m_ancestor.m_DocumentID);

48

49 DSContents cont;

50 cont.Get()->LoadSchema("http://www.lindqvist.it/contents.xsd");

51
��(!cont.Get()->Parse(&commandnode.FindNode("contents").GetText()))

52 {

53 Error("Error in contents");

54
������;

55 }

56 CString notetype = cont.Get()->FindNode("//contents/*").GetName();

57 CString noteversion = cont.Get()->FindNode("//contents/*/*").GetName();

58 cont.m_strContentsType = notetype;

59 cont.m_strContentsVersion = noteversion;

60 DSDocumentID newnote = m_pCommands->CreateDoc(m_PersonID,DSTime(),notetype,

cont);

61

62

��� getsuccess =
�����;

63 �����(!getsuccess)
64 {

65 ���

66 {

67 m_pCommands->GetDosFromDir(m_PersonID,DSTime(),m_ArchiveID,coverdata.

m_membership.GetDossierID());

68 getsuccess = ����;
69 }

70
�����(DSError e)

71 {

72
��(e.GetType() != ERR_IDX_DOES_NOT_CONTAIN_DOS) ����� e;

73

���� Sleep(200);

74 }

75 }

76

77
��(cont.Get()->FindNode("//_kladde").GetText() == "Ja")

78 {

79 DSDocument newestcoverdata(m_pDatabase,DSDocumentID(coverdata.m_id.

GetPlaceID(),coverdata.m_id.GetGroupID(),""));

80 DSContents covercont = newestcoverdata.GetContents();

81
��� no_of_drafts = atoi(covercont.Get()->FindNode("//_antalkladder").

GetText());

82 CString str_no_of_drafts;

83 str_no_of_drafts.Format("%d",no_of_drafts+1);

84 covercont.Get()->FindNode("//_antalkladder").SetText(&str_no_of_drafts);

85 m_pCommands->Edit(m_PersonID,DSTime(),newestcoverdata.m_id,covercont);

86 }

87 cont.CleanUp();

88

89 CString subdossier = commandnode.FindNode("//subdossier").GetText();

90 DSDossier dos(m_pDatabase,coverdata.m_membership.GetDossierID());

91 DSSet set = dos.GetTOC();

92 set.Reset();

205

93 �����(set.HasMore())
94 {

95 DSObject* elem = set.Next();

96
��(elem->IsKindOf(RUNTIME_CLASS(DSDossier)))

97 {

98 DSDossier* dossier = (DSDossier*)elem;

99
��(dossier->m_dossdesc.GetDescription() == subdossier)

100 {

101 m_pCommands->GetDosFromDos(m_PersonID,DSTime(),dos.m_id,dossier->m_id);

102 m_pCommands->PutDocInDos(m_PersonID,DSTime(),dossier->m_id,newnote);

103 m_pCommands->ReturnDos(m_PersonID,DSTime(),dossier->m_id);

104 }

105 }

106 }

107 set.CleanUp();

108 m_pCommands->ReturnDos(m_PersonID,DSTime(),dos.m_id);

109 Success(newnote);

110 }

111
��� DSBusinessLayerEMR::CommandAddToDepartment(DSXMLNode &commandnode)

112 {

113 DSTime time = DSTime(CTime::GetCurrentTime());

114 DSDocument coverdata = DSDocument(m_pDatabase,GetDocumentID(commandnode.

FindNode("documentid")));

115

116
��(coverdata.m_type.GetType() == DScopy)

117 coverdata = DSDocument(m_pDatabase,coverdata.m_ancestor.m_DocumentID);

118

119 DSSet deptoc = m_Department.GetTOC();

120 deptoc.Reset();

121 �����(deptoc.HasMore())
122 {

123 DSObject* elem = deptoc.Next();

124
��(elem->IsKindOf(RUNTIME_CLASS(DSDocument)))

125 {

126 DSDocument* doc = (DSDocument*)elem;

127
��(doc->m_ancestor.m_DocumentID.GetPlaceID().GetID() == coverdata.m_id.

GetPlaceID().GetID() && doc->m_ancestor.m_DocumentID.GetGroupID() ==

coverdata.m_id.GetGroupID())

128 {

129 deptoc.CleanUp();

130 Success();

131
������;

132 }

133 }

134 }

135 deptoc.CleanUp();

136

137

��� getsuccess =
�����;

138 �����(!getsuccess)
139 {

140 ���

141 {

142 m_pCommands->GetDosFromDir(m_PersonID,time,m_ArchiveID,coverdata.

m_membership.GetDossierID());

143 getsuccess = ����;
144 }

145
�����(DSError e)

146 {

147
��(e.GetType() != ERR_IDX_DOES_NOT_CONTAIN_DOS) ����� e;

148

���� Sleep(200);

149 }

150 }

206 APPENDIX L. EMR – BUSINESS LOGIC

151

152 DSDocumentID newref = m_pCommands->Copy(m_PersonID,time,coverdata.m_id);

153 m_pCommands->PutDosInDir(m_PersonID,time,m_ArchiveID,coverdata.m_membership.

GetDossierID());

154 m_pCommands->PutDocInDir(m_PersonID,time,m_DepartmentID,newref);

155 Success(newref);

156 }

157
��� DSBusinessLayerEMR::CommandAddToPerson(DSXMLNode &commandnode)

158 {

159 DSTime time = DSTime(CTime::GetCurrentTime());

160

161 DSDocument coverdata = DSDocument(m_pDatabase,GetDocumentID(commandnode.

FindNode("documentid")));

162

163
��(coverdata.m_type.GetType() == DScopy)

164 coverdata = DSDocument(m_pDatabase,coverdata.m_ancestor.m_DocumentID);

165

166 DSSet pertoc = m_Person.GetTOC();

167 pertoc.Reset();

168 �����(pertoc.HasMore())
169 {

170 DSObject* elem = pertoc.Next();

171
��(elem->IsKindOf(RUNTIME_CLASS(DSDocument)))

172 {

173 DSDocument* doc = (DSDocument*)elem;

174
��(doc->m_ancestor.m_DocumentID.GetPlaceID().GetID() == coverdata.m_id.

GetPlaceID().GetID() && doc->m_ancestor.m_DocumentID.GetGroupID() ==

coverdata.m_id.GetGroupID())

175 {

176 pertoc.CleanUp();

177 Success();

178
������;

179 }

180 }

181 }

182 pertoc.CleanUp();

183

184

��� getsuccess =
�����;

185 �����(!getsuccess)
186 {

187 ���

188 {

189 m_pCommands->GetDosFromDir(m_PersonID,time,m_ArchiveID,coverdata.

m_membership.GetDossierID());

190 getsuccess = ����;
191 }

192
�����(DSError e)

193 {

194
��(e.GetType() != ERR_IDX_DOES_NOT_CONTAIN_DOS) ����� e;

195

���� Sleep(200);

196 }

197 }

198

199 DSDocumentID newref = m_pCommands->Copy(m_PersonID,time,coverdata.m_id);

200 m_pCommands->PutDosInDir(m_PersonID,time,m_ArchiveID,coverdata.m_membership.

GetDossierID());

201 Success(newref);

202 }

203
��� DSBusinessLayerEMR::CommandRemoveFromDepartment(DSXMLNode &commandnode)

204 {

205 DSTime time = DSTime(CTime::GetCurrentTime());

206 DSDocumentID docid = GetDocumentID(commandnode.FindNode("documentid"));

207

207

208 m_pCommands->GetDocFromDir(m_PersonID,time,m_DepartmentID,docid);

209 m_pCommands->RemoveDoc(m_PersonID,time,docid);

210 Success();

211 }

212
��� DSBusinessLayerEMR::CommandRemoveFromPerson(DSXMLNode &commandnode)

213 {

214 DSTime time = DSTime(CTime::GetCurrentTime());

215 m_pCommands->RemoveDoc(m_PersonID,time,GetDocumentID(commandnode.FindNode("

documentid")));

216 Success();

217 }

218
��� DSBusinessLayerEMR::CommandSaveChanges(DSXMLNode &commandnode)

219 {

220 DSContents contents;

221 contents.Get()->LoadSchema("http://www.lindqvist.it/contents.xsd");

222
��(!contents.Get()->Parse(&commandnode.FindNode("contents").GetText()))

223 {

224 Error("Error in contents");

225
������;

226 }

227 CString notetype = contents.Get()->FindNode("//contents/*").GetName();

228 CString noteversion = contents.Get()->FindNode("//contents/*/*").GetName();

229 contents.m_strContentsType = notetype;

230 contents.m_strContentsVersion = noteversion;

231

232 DSDocument note(m_pDatabase,GetDocumentID(commandnode.FindNode("documentid"))

);

233 DSContents contprevedition = note.GetContents();

234

235 DSDossierID rootid = note.m_membership.GetDossierID();

236 DSIndexID idxid;

237

238

��� foundroot =
�����;

239 �����(!foundroot)
240 {

241 DSDossier parent(m_pDatabase,rootid);

242 idxid = parent.m_membership.GetIndexID();

243
��(parent.m_dossdesc.GetDescription()== "_emr") foundroot = ����;

244

���� rootid = parent.m_membership.GetDossierID();

245 }

246

247

��� getsuccess =
�����;

248 �����(!getsuccess)
249 {

250 ���
251 {

252 m_pCommands->GetDosFromDir(m_PersonID,DSTime(),idxid,rootid);

253 getsuccess = ����;
254 }

255
�����(DSError e)

256 {

257
��(e.GetType() != ERR_IDX_DOES_NOT_CONTAIN_DOS) ����� e;

258

���� Sleep(200);

259 }

260 }

261

262 DSDocumentID newref;

263 ���

264 {

265 newref = m_pCommands->Edit(m_PersonID,DSTime(),note.m_id,contents);

266 }

208 APPENDIX L. EMR – BUSINESS LOGIC

267
�����(DSError e)

268 {

269 contprevedition.CleanUp();

270 m_pCommands->ReturnDos(m_PersonID,DSTime(),rootid);

271 Error("Noten er blevetæ ndret af en anden i mellemtiden");

272
������;

273

274 }

275

276
��(contents.Get()->FindNode("//_kladde").GetText() != contprevedition.Get()->

FindNode("//_kladde").GetText())

277 {

278
��� status;

279
��(contents.Get()->FindNode("//_kladde").GetText() != "Ja")

280 status = -1;

281

����

282 status = 1;

283

284 DSDossier emrdos(m_pDatabase,rootid);

285 DSSet emrtoc = emrdos.GetTOC();

286 emrtoc.Reset();

287 �����(emrtoc.HasMore())
288 {

289 DSObject* elem = emrtoc.Next();

290
��(elem->IsKindOf(RUNTIME_CLASS(DSDocument)))

291 {

292 DSDocument* doc = (DSDocument*)elem;

293 DSDocument newestcover(m_pDatabase,DSDocumentID(doc->m_id.GetPlaceID(),

doc->m_id.GetGroupID(),""));

294 DSContents covercont = newestcover.GetContents();

295
��� no_of_drafts = atoi(covercont.Get()->FindNode("//_antalkladder").

GetText());

296 CString str_no_of_drafts;

297 str_no_of_drafts.Format("%d",no_of_drafts+status);

298 covercont.Get()->FindNode("//_antalkladder").SetText(&str_no_of_drafts)

;

299 m_pCommands->Edit(m_PersonID,DSTime(),newestcover.m_id,covercont);

300 covercont.CleanUp();

301 }

302 }

303 emrtoc.CleanUp();

304 }

305 m_pCommands->ReturnDos(m_PersonID,DSTime(),rootid);

306

307 contents.CleanUp();

308 contprevedition.CleanUp();

309 Success(newref);

310 }

311
��� DSBusinessLayerEMR::CommandChangeDepartment(DSXMLNode &commandnode)

312 {

313 DSTime time = DSTime(CTime::GetCurrentTime());

314

315 DSIndexID newdepid = GetIndexID(commandnode.FindNode("indexid"));

316
��(!m_pPlace->Dir()->Contains(newdepid))

317 {

318 Error("Department does not exist");

319
������;

320 }

321

322 DSXMLNode dep = m_contPersonPref.Get()->FindNode("//department");

323 dep.FindNode("_placeid").SetText(&newdepid.GetPlaceID().GetID());

324 dep.FindNode("_localid").SetText(&newdepid.GetID());

209

325

326 m_pCommands->Edit(m_PersonID,time,m_docidPersonPref,m_contPersonPref);

327

328 m_bPrefsLoaded =
�����;

329

330 Success();

331 }

332
��� DSBusinessLayerEMR::RequestCenterTOC(DSXMLNode &parent)

333 {

334 DSIndexID indexid = DSIndexID(m_pPlace->GetID(),EMR_Centers);

335
��(!m_pPlace->Dir()->Contains(indexid))

336 {

337 Error("CENTERS index is not created!");

338
������;

339 }

340

341 DSIndex centers(m_pDatabase, indexid);

342 DSSet centertoc = centers.GetTOC();

343 centertoc.Reset();

344

345 �����(centertoc.HasMore())
346 {

347 DSObject* elem = centertoc.Next();

348
��(elem->IsKindOf(RUNTIME_CLASS(DSIndex)))

349 {

350 DSIndex* iptr = (DSIndex*)elem;

351 DSXMLNode center = parent.AddChild("center");

352 InsertIndexID(center,iptr->m_id);

353 DSXMLNode centername = center.AddChild("name");

354 centername.SetText(&iptr->m_strDesc);

355 }

356 }

357 centertoc.CleanUp();

358 }

359
��� DSBusinessLayerEMR::RequestDepartmentTOC(DSXMLNode &parent)

360 {

361 DSIndexID indexid = GetIndexID(parent.FindNode("//indexid"));

362
��(!m_pPlace->Dir()->Contains(indexid))

363 {

364 Error("Index does not exist!");

365
������;

366 }

367

368 DSIndex departments(m_pDatabase, indexid);

369 DSSet departmenttoc = departments.GetTOC();

370 departmenttoc.Reset();

371

372 �����(departmenttoc.HasMore())
373 {

374 DSObject* elem = departmenttoc.Next();

375
��(elem->IsKindOf(RUNTIME_CLASS(DSIndex)))

376 {

377 DSIndex* iptr = (DSIndex*)elem;

378 DSXMLNode department = parent.AddChild("department");

379 InsertIndexID(department,iptr->m_id);

380 DSXMLNode departmentname = department.AddChild("name");

381 departmentname.SetText(&iptr->m_strDesc);

382 }

383 }

384 departmenttoc.CleanUp();

385 }

386
��� DSBusinessLayerEMR::RequestCartTOC(DSXMLNode &parent)

210 APPENDIX L. EMR – BUSINESS LOGIC

387 {

388 DSTime time = DSTime(CTime::GetCurrentTime());

389 DSSet carttoc = m_Department.GetTOC();

390 carttoc.Reset();

391

392 �����(carttoc.HasMore())
393 {

394 DSObject* elem = carttoc.Next();

395
��(elem->IsKindOf(RUNTIME_CLASS(DSDocument)))

396 {

397 DSDocument* dptr = (DSDocument*)elem;

398
��(dptr->m_strDesc != "_preferences")

399 {

400 DSXMLNode emr = parent.AddChild("document");

401 DSDocument coverdata = DSDocument(m_pDatabase,dptr->m_ancestor.

m_DocumentID);

402 DSContents contents;

403

404
��(coverdata.m_type.GetType() == DScopy)

405 coverdata = DSDocument(m_pDatabase,coverdata.m_ancestor.m_DocumentID)

;

406

407
��(dptr->m_ancestor.m_DocumentID.GetEditionID() != coverdata.

m_strNewestEditionId)

408 {

409 // A newer edition is available

410 DSDocumentID newcovdat = DSDocumentID(coverdata.m_id.GetPlaceID(),

coverdata.m_id.GetGroupID(),coverdata.m_strNewestEditionId);

411 coverdata = DSDocument(m_pDatabase,newcovdat);

412

413 m_pCommands->GetDocFromDir(m_PersonID,time,m_DepartmentID,dptr->m_id)

;

414 m_pCommands->RemoveDoc(m_PersonID,time,dptr->m_id);

415

416

��� getsuccess =
�����;

417 �����(!getsuccess)
418 {

419 ���
420 {

421 m_pCommands->GetDosFromDir(m_PersonID,time,m_ArchiveID,coverdata.

m_membership.GetDossierID());

422 getsuccess = ����;
423 }

424
�����(DSError e)

425 {

426
��(e.GetType() != ERR_IDX_DOES_NOT_CONTAIN_DOS) ����� e;

427

���� Sleep(200);

428 }

429 }

430

431 DSDocumentID newref = m_pCommands->Copy(m_PersonID,time,coverdata.

m_id);

432 m_pCommands->ReturnDos(m_PersonID,time,coverdata.m_membership.

GetDossierID());

433 m_pCommands->PutDocInDir(m_PersonID,time,m_DepartmentID,newref);

434

435 InsertDocumentID(emr,newref);

436 contents = coverdata.GetContents();

437 }

438

����

439 {

440 // The current edition is up-to-date

211

441 InsertDocumentID(emr,dptr->m_id);

442 contents = dptr->GetContents();

443 }

444

445 emr.AddChild("firstname").SetText(&contents.Get()->FindNode("//_fornavn

").GetText());

446 emr.AddChild("lastname").SetText(&contents.Get()->FindNode("//

_efternavn").GetText());

447 emr.AddChild("cpr").SetText(&contents.Get()->FindNode("//_cpr").GetText

());

448 emr.AddChild("bed").SetText(&contents.Get()->FindNode("//_sengenr").

GetText());

449 CString no_of_drafts = contents.Get()->FindNode("//_antalkladder").

GetText();

450
��(atoi(no_of_drafts) > 0) emr.AddChild("draft").SetText(&no_of_drafts)

;

451

���� emr.AddChild("draft").SetText(&CString(""));

452

453 contents.CleanUp();

454 }

455 }

456 }

457 carttoc.CleanUp();

458 }

459
��� DSBusinessLayerEMR::RequestPersonTOC(DSXMLNode &parent)

460 {

461 DSTime time = DSTime(CTime::GetCurrentTime());

462 DSSet persontoc = m_Person.GetTOC();

463 persontoc.Reset();

464

465 �����(persontoc.HasMore())
466 {

467 DSObject* elem = persontoc.Next();

468
��(elem->IsKindOf(RUNTIME_CLASS(DSDocument)))

469 {

470 DSDocument* dptr = (DSDocument*)elem;

471
��(dptr->m_strDesc != "_preferences")

472 {

473 DSXMLNode document = parent.AddChild("document");

474 DSDocument coverdata = DSDocument(m_pDatabase,dptr->m_ancestor.

m_DocumentID);

475 DSContents contents;

476

477
��(coverdata.m_type.GetType() == DScopy)

478 coverdata = DSDocument(m_pDatabase,coverdata.m_ancestor.m_DocumentID)

;

479

480
��(dptr->m_ancestor.m_DocumentID.GetEditionID() != coverdata.

m_strNewestEditionId)

481 {

482 // A newer edition is available

483 DSDocumentID newcovdat = DSDocumentID(coverdata.m_id.GetPlaceID(),

coverdata.m_id.GetGroupID(),coverdata.m_strNewestEditionId);

484 coverdata = DSDocument(m_pDatabase,newcovdat);

485

486 m_pCommands->RemoveDoc(m_PersonID,time,dptr->m_id);

487

488

��� getsuccess =
�����;

489 �����(!getsuccess)
490 {

491 ���
492 {

212 APPENDIX L. EMR – BUSINESS LOGIC

493 m_pCommands->GetDosFromDir(m_PersonID,time,m_ArchiveID,coverdata.

m_membership.GetDossierID());

494 getsuccess = ����;
495 }

496
�����(DSError e)

497 {

498
��(e.GetType() != ERR_IDX_DOES_NOT_CONTAIN_DOS) ����� e;

499

���� Sleep(200);

500 }

501 }

502

503 DSDocumentID newref = m_pCommands->Copy(m_PersonID,time,coverdata.

m_id);

504 m_pCommands->ReturnDos(m_PersonID,time,coverdata.m_membership.

GetDossierID());

505

506 InsertDocumentID(document,newref);

507 contents = coverdata.GetContents();

508 }

509

����

510 {

511 // The current edition is up-to-date

512 InsertDocumentID(document,dptr->m_id);

513 contents = dptr->GetContents();

514 }

515

516 document.AddChild("firstname").SetText(&contents.Get()->FindNode("//

_fornavn").GetText());

517 document.AddChild("lastname").SetText(&contents.Get()->FindNode("//

_efternavn").GetText());

518 document.AddChild("cpr").SetText(&contents.Get()->FindNode("//_cpr").

GetText());

519 document.AddChild("bed").SetText(&contents.Get()->FindNode("//_sengenr"

).GetText());

520 CString no_of_drafts = contents.Get()->FindNode("//_antalkladder").

GetText();

521
��(atoi(no_of_drafts) > 0) document.AddChild("draft").SetText(&

no_of_drafts);

522

���� document.AddChild("draft").SetText(&CString(""));

523

524 contents.CleanUp();

525 }

526 }

527 }

528 persontoc.CleanUp();

529 }

530
��� DSBusinessLayerEMR::RequestJournalTOC(DSXMLNode &parent)

531 {

532 // Determine the correct emr based on the reference document (ancester +

membership)

533 DSDocument emrref = DSDocument(m_pDatabase,GetDocumentID(parent.FindNode("

documentid")));

534

535
��(emrref.m_type.GetType() == DScopy)

536 emrref = DSDocument(m_pDatabase,emrref.m_ancestor.m_DocumentID);

537

538 DSDossier emr = DSDossier(m_pDatabase,emrref.m_membership.GetDossierID());

539

540 DSSet emrtoc = emr.GetTOC();

541 emrtoc.Reset();

542

543 �����(emrtoc.HasMore())

213

544 {

545 DSObject* elem = emrtoc.Next();

546
��(elem->IsKindOf(RUNTIME_CLASS(DSDocument)))

547 {

548 // if coverdata is requsted return only this document

549 DSDocument* dptr = (DSDocument*)elem;

550
��(parent.FindNode("subdossier").GetText() == "coverdata" && dptr->

m_strDesc == "_coverdata")

551 {

552 DSXMLNode document = parent.AddChild("document");

553 InsertDocumentID(document,dptr->m_id);

554

555 DSContents contents = dptr->GetContents();

556 DSDocument firstedition(m_pDatabase,DSDocumentID(dptr->m_id.GetPlaceID

(),dptr->m_id.GetGroupID(),"1"));

557

558 document.AddChild("type").SetText(&dptr->m_strContentsType);

559 document.AddChild("time").SetText(&firstedition.m_time.ToString());

560

561 DSPerson creator(m_pDatabase,firstedition.m_creator);

562 document.AddChild("creator").SetText(&creator.m_strName);

563 document.AddChild("draft").SetText(&contents.Get()->FindNode("//_kladde

").GetText());

564

565 contents.CleanUp();

566

����;
567 }

568 }

569
��(elem->IsKindOf(RUNTIME_CLASS(DSDossier)))

570 {

571 // return the contents of the designated subdossier in the emr

572 DSDossier* dptr = (DSDossier*)elem;

573
��(parent.FindNode("subdossier").GetText() == dptr->m_dossdesc.

GetDescription())

574 {

575 DSSet emrsubtoc = dptr->GetTOC();

576 emrsubtoc.Reset();

577

578 �����(emrsubtoc.HasMore())
579 {

580 DSObject* elem = emrsubtoc.Next();

581
��(elem->IsKindOf(RUNTIME_CLASS(DSDocument)))

582 {

583 DSDocument* dptr = (DSDocument*)elem;

584 DSXMLNode document = parent.AddChild("document");

585 InsertDocumentID(document,dptr->m_id);

586

587 DSContents contents = dptr->GetContents();

588 DSDocument firstedition(m_pDatabase,DSDocumentID(dptr->m_id.

GetPlaceID(),dptr->m_id.GetGroupID(),"1"));

589

590 document.AddChild("type").SetText(&dptr->m_strContentsType);

591 document.AddChild("time").SetText(&firstedition.m_time.ToString());

592

593 DSPerson creator(m_pDatabase,firstedition.m_creator);

594 document.AddChild("creator").SetText(&creator.m_strName);

595 document.AddChild("draft").SetText(&contents.Get()->FindNode("//

_kladde").GetText());

596

597 contents.CleanUp();

598 }

599 }

214 APPENDIX L. EMR – BUSINESS LOGIC

600 emrsubtoc.CleanUp();

601

����;
602 }

603 }

604 }

605 emrtoc.CleanUp();

606 }

Appendix M

Article

Det Digitale Danmark – Effektivisering eller illusion?

Arbejder du i offentlig eller privat administration? Bruger du det

meste af dagen p̊a at dokumentere dit eller andres arbejde? Proble-

mer med at finde det nyeste word-dokument p̊a computeren? Er det

nye dokumentsystem ubrugeligt?

Alt for mange dokumentsystemer leveres – i kundens øjne – med fejl. Nogle
kan være for̊arsaget af fejlprogrammering men de fleste skyldes kommunika-
tionsproblemer mellem leverandør og kunde – der er blevet leveret en hund men
kunden ville have en kat. Kommunikationsproblemer og manglende forst̊aelse for
hinandens arbejdsomr̊ader og arbejdsrutiner er den primære årsag til fejl og re-
sultaterer i tunge eller ubrugelige systemer. Løsningen er at forbedre forst̊aelsen
imellem parterne ved at finde et fælles grundlag – et sprog som begge taler og
kan relatere til – og som kan udtrykke enhver arbejdsrutine og h̊andtere alle
slags dokumenter.

Forst̊aelsesproblemer mellem leverandøren og kunden kan oftest spores ned til
manglende indsigt i det som indenfor softwareudvikling populært betegnes som
’domænet’. Enhver person som arbejder indenfor og har erfaring med et givet
arbejdsomr̊ade er specialist i arbejdsomr̊adet og dets arbejdsrutiner – specialist
i domænet. Oveordnet set, er et domæne et genstandsomr̊ade hvori personer
kan befinde sig, f.eks. arbejdspladsen, hjemmet eller indkøbscenteret. Det er
med andre ord et afgrænset omr̊ade man kan beskrive ved at observere det.

Indenfor et domæne gælder et sæt spilleregler, som ikke altid er lige lette at
gennemskue. Et eksempel p̊a et dokument-domæne er politik, nærmere bestemt
Christiansborg. At beskrive Christiansborg udefra kan være forholdsvist nemt.
At nedfælde de – måske uhensigsmæssige og ineffektive, men funktionelle –
mekanismer, uskrevne regler og arbejdsrutiner som finder sted er langt mere
kompliceret og kræver god indsigt i domænet. Fornuften i dem kan være svær
at se for udenforst̊aende netop pga. manglende indsigt domænet – det er med
andre ord utænkeligt at en person uden erfaring med politik vil kunne nedfælde
disse spilleregler. Det kræver een eller flere medarbejdere fra Christiansborg –

215

216 APPENDIX M. ARTICLE

en eller flere domæne-specialister. Skal et informationssystem laves til Chris-
tiansborg kan en udvikler ved interviews af domæne-specialisten – kunden –
forsøge at danne sig et overblik over domænet, men det kan besværes af kom-
munikationsvanskeligheder mellem de to parter – de har ikke samme opfattelse
af hvad tingene betyder. Desuden kan det, som eksemplet demonstrerer, være
svært for en udenforst̊aende at f̊a det komplette overblik og indsigt.

Kommunikationsvanskelighederne og mangel p̊a erfaring med et arbejdsomr̊ade
for udvikleren vil afspejles i udviklingsforløbet. Kunden kan ikke vide hvilke
informationer der er vigtige at fortælle og udvikleren kan ikke spørge til prob-
lemstillinger der er ukendte for ham. Det kan lede til overraskelser n̊ar ud-
viklingsprocessen afslører større mangler sent i forløbet. Ofte vil et utilstrække-
ligt fundament betyde store forsinkelser og måske endda d̊arlige systemer til
irritation for begge parter. AFs Amanda-system er et godt eksempel p̊a mis-
forst̊aelser. Systemet var godt til bestemte arbejdsrutiner, bare ikke de arbe-
jdsrutiner som de fleste AF medarbejdere benyttede. Domænet var ikke blevet
analyseret til bunds og man forsøgte at strømline arbejdsrutiner, dvs p̊atvinge
medarbejderne nye, men desværre ubrugelige, rutiner. Resultatet taler for sig
selv.

Først n̊ar kommunikationsproblemerne mellem udvikleren og kunden er afhjulpet,
og grundig indsigt i domænet er opn̊aet kan udvikleren koncentrere sig om bruge
sin teknologiske indsigt til at udtænke hvordan digitaliseringen af dokumenter
bedst kan bruges til at lette arbejdsgangen og hvordan kundens øvrige behov
bedst imødekommes. F.eks. vil de fleste kunder idag have XML i deres pro-
dukter, men XML i sig selv er ikke løsningen p̊a noget, det er et redskab som
en køkkenkniv. Brugt korrekt kan den blive uundværlig, men omvendt kan den
ogs̊a skabe flere problemer hvis brugt forkert. Udvikleren kan først tage stilling
til om XML overhovedet er relevant og hvordan det benyttes hensigtsmæssigt
n̊ar der er god forst̊aelse for problematikken.

Det er vores holdning at problemet med manglende forst̊aelse for domænet
kun kan mindskes ved at lette samspillet mellem udvikler og kunde. Den
største hindring er kommunikationsproblemerne, som opst̊ar fordi parterne ikke
taler samme sprog. Kunden fokuserer p̊a de arbejdsrutiner i virksomheden som
skal digitaliseres, imens udvikleren fokuserer p̊a de teknologier og softwareud-
viklingsmetoder som skal anvendes i den sammenhæng. Oftest mødes de p̊a
halvvejen i form af grafiske software specifikationssprog, hvor man med pile,
kasser og tændstikmænd skal udtrykke de nuværende arbejdsrutiner og den ret-
ning man ønsker at bevæge sig mod i det nye system. Problemet er, at dette
stiller krav til kunden om skulle udtrykke sine arbejdsvaner i et ukendt overord-
net sprog, hvor tvetydigheder, misforst̊aelser og mangel p̊a information ofte kan
finde sted.

I stedet for at indordne sig under abstrakte udviklingsmetoder bør der istedet
skabes et fælles sprog som begge kan forholde sig til og udtrykke sig i. Det
er oplagt at basere dette p̊a de praktiske erfaringer, som alle der har arbejdet
med papirdokumenter kender til. Enhver person som arbejder med dokumenter
har sin egen opfattelse af hvad et dokument er. P̊a tværs af personer har disse
opfattelser et sæt grundlæggende fællestræk som har været de samme de sidste

217

mange hundrede år og derfor ogs̊a stadigvæk præger nutidens dokumentbaserede
arbejdsrutiner. Et papir-dokument kan kun befinde sig ét sted i verden ad gan-
gen og kan kan være enten en original, kopi eller version – sidstnævnte opst̊ar
efter at man har rettet i en original eller kopi. Selvom et dokument er en kopi
af et andet er det stadig to forskellige dokumenter uden synlig forbindelse andet
end at indholdet er det samme. Man udfører ting s̊asom at kopiere, sende, un-
derskrive og rette dokumenter man besidder. Et dokument har indhold som kan
være hvad som helst: tekst, skemaer, tegninger, fotografier, grafer, billeder med
meget andet. Patientjournaler, kontrakter, arkitekttegninger, spørgeskemaer og
fagforeningspapirer er derfor dokumenter med de nævnte fællestræk. Disse fun-
damentale principper og egenskaber for papirbaserede dokumenter kan overføres
til computere – nye teknologier s̊asom digitale signaturer er p̊akrævet, men det
kan lade sig gøre.

Løsningen p̊a kommunikationsproblemerne er derfor at skabe et nyt dokumento-
rienteret udviklingssprog, som er baseret p̊a de fundamentale dokumentprincip-
per, og som oversætter disse til deres digitale ækvivalent. Dette sprog vil udgøre
et sæt byggeklodser, som alle arbejdsrutiner indenfor dokumenth̊andtering er
sammensat af. Der kan alts̊a dannes et fælles grundlag, hvorfra alle dokument-
domæner kan udtrykkes – med begreber man har været vant til fra sin dagligdag.
Med udgangspunkt i et s̊adant sprog reduceres et indledende udviklingsforløb
til beskrivelser af hvad man gør med sine papirer og hvordan de ser ud. Andre –
mindre interessante, men nødvendige – emner s̊asom sikkerhed, systemarkitek-
tur, distribution af information, XML m.m., kan holdes udenfor udviklingsar-
bejdet da disse ting kan realiseres overordnet helt uafhængigt af domænets ar-
bejdsrutiner.

Med udgangspunkt i et s̊adant sprog er det muligt at indledningsvist at fastholde
eksisterende arbejdsrutiner ved digitaliseringen. N̊ar brugerne har vænnet sig
til at arbejde elektronisk kan arbejdsrutiner omlægges ved at udtrykke dem i
det underlæggende sprog istedet for at omvæltningen sker fra første dag. P̊a den
måde tvinges udvikleren til sætte sig ind i den eksisterende måde at gøre tingene
p̊a i stedet for at der udvikles helt nye – man kan ikke udvikle nye rutiner p̊a
baggrund af ingenting. Et nyt dokumentsystem skal derfor kunne understøtte
eksisterende arbejdsrutiner – måske er rutinerne uhensigtmæssige, men de fun-
gerer. Det gør det lettere at udvikle et system tilpasset til brugerne og ikke
omvendt. Tankegangen skal være, at et nyudviklet system som minimum bør
kunne efterligne de eksisterende arbejdsrutiner – man kan ikke gen-tænke før
man kan sætte sig ind i, forst̊a og efterligne det eksisterende. Nye rutiner kan
indarbejdes gradvist – disse er noget af det sværeste at ændre og det bør ikke
foreg̊a fra den ene dag til den anden.

Det er netop i denne tid at kimen lægges til de fremtidige digitale dokumentsys-
temer. Det sker i takt med indførelse eller sammenlægning af eksisterende sys-
temer overalt. Der arbejdes i øjeblikket p̊a introduktion af elektroniske pa-
tient journaler (EPJ) p̊a hospitalerne, og for nylig indgik tre større firmaer
en rammeaftale om levering af en fælles offentlig standard for sags- og doku-
menth̊andtering til kommunerne (FESD) – ambitiøse IT-projekter til flere mil-
liarder. De skal især være opmærksomme p̊a den ovenst̊aende problemstilling da
der tale om omfattende domæner med mange mennesker og mange komplekse

218 APPENDIX M. ARTICLE

arbejdsrutiner, som skal digitaliseres og strømlines med tiden. Der er i denne
forbindelse adskillige faldgruber inden målet er n̊aet og sandsynligheden for at
man falder i afhænger direkte af forst̊aelsen af domænet.

Det er derfor vigtigt netop nu at tage stilling til ovenst̊aende problemer, tænke
fremad og ikke ’nøjes’ med forjagede midlertidige løsninger. Man stiller generelt
kritiske krav til s̊a meget andet. Hvorfor ikke ogs̊a stille krav til at et af de vigtig-
ste arbejdsredskaber fungerer optimalt for den enkelte? Det er kun rimeligt at
denne udvikling sættes i gang nu og udfordrer software firmaerne. Selvfølgelig
skal virksomhedens arbejdsrutiner diktere IT-systemet og ikke omvendt. Selv-
følgelig skal systemet kunne tale XML. Selvfølgelig skal nutidens teknologier
udnyttes til at lette og effektivisere den eksisterende arbejdsgang. Alle kan
blive enige om disse punkter, men alligevel opst̊ar der stadig problemer netop i
disse sammenhænge. En manglende forst̊aelse af domænet og dets spilleregler
er ofte roden til problemerne og det er derfor vigtigt at basere de fornuftige krav
p̊a en grundig domæneanalyse.

XML

XML er en enkel og struktureret måde at beskrive information p̊a, hvilket har
gjort den særdeles anvendelig n̊ar information skal udveksles. XML er baseret
p̊a en mere end 20 år gammel standard, hvis principper daterer helt tilbage
til 1960’erne. Siden da har disse principper reelt ikke ændret sig, hvilket viser
styrken i fundamentet og understreger at XML er kommet for at blive. Der er
med andre ord ikke tale om ’ny’ teknologi, som vil blive erstattet med tiden.

Digital signatur

Ligesom med ’virkelige’ underskrifter kan en digital signatur bruges til at finde
ud af hvem der har skrevet under p̊a en tekst. Den mest udbredte metode til
at lave digitale signaturer er via et personligt digitalt certifikat. Det indeholder
information som sætter ejeren i stand til at digitalt signere og sende hemme-
ligheder over internettet – alt hvad der nødvendigt for at opretholde privatlivet
p̊a nettet.

Man kan f̊a udstedt et gratis certifikat fra den danske stat gennem TDC, som
har problemer med at udbrede kendskabet til de statsfinansierede certifikater.
Det kan tilskrives manglende information og reklame for konceptet, samt de
begrænsede anvendelsesomr̊ader, som dog er p̊a hastig fremmarch. Desuden er
certifikaterne stadig behæftet med flere problemer s̊asom besværlig installation
og at Windows-maskiner ikke per automatik genkender TDC certifikater – prob-
lemer som kunne være undg̊aet fra starten men det kan dog stadig n̊as. Ideen
med at udstyre samtlige borgere med certifikater er god og kan være med til at
reducere og p̊a sigt fjerne alt hvad der hedder uønsket email – spam – og virus.

For digitale underskrifter gælder det at man ikke kan ændre teksten uden
at underskriften bliver ugyldig og underskriften kan ikke forfalskes – s̊a p̊a den
måde er den stærkere end underskrifter p̊a papir. Rent teknisk er en digi-
tal signatur data, som kan vedhæftes en tekst. Modtageren af teksten kan
udfra vedhæftede data afgøre hvem der har skrevet under og om teksten er

219

intakt. Man kan måske være tilbøjelig til stadig at stole mere p̊a normale un-
derskrifter, men faktisk er de digitale signaturer s̊a sikre, at det er muligt at
bruge dem til at foretage sig ting, som tidligere krævede underskrevede papirer
og/eller fremmøde – eksempelvis det at udfylde sin selvangivelse. Derfor er det
naturligvis nødvendigt at vise samme p̊apasselighed med sit digitale certifikat
som man gør med sit dankort og sin homebanking.

Appendix N

Business Plan

Business Idea

We offer a document oriented framework, capable of managing any kind of infor-
mation – any kind of document. The framework supports concepts like version
tracking, encrypted XML data exchange, extensive security settings on the in-
dividual document and distribution.

The framework differentiates itself from existing products by offering a series of
building blocks – a series of denominators – that all document oriented business
processes can be broken into. The framework can thereby imitate and support
any – perhaps ineffective – but working business process. The building blocks
and their interaction can be expressed in a simple scripting language originating
in the domain of documents therefore using terminologies easy to understand.
Using the language the end-user is capable of expressing own business processes
effectively minimizing problems arisen from communication problems between
developer and end-user that are common these days.

The philosophy behind the product is that the customer knows what is best
for him and he should therefore be able to express needs in ways not unfamiliar
to him. It is also essential that tailoring can be done in every possible way – the
framework should not place restrictions on the flexibility. It is imperative to be
able to offer adoption of existing business process, despite them being ineffective
– re-engineering is easy carried out in due time by tailoring a new set of rules
in the scripting language and introducing new versions of documents structures.

The overall framework provides a solid foundation for tailored future proof sys-
tems for companies in need of user-friendly, but effective ways to cope with and
manage their documents. This includes, among others, pharmaceutical compa-
nies, construction companies, such as Sund & Bælt (Femern Bælt), public case
management (FESD) and the hospitals that are introducing electronic medical
records (EPJ).

220

221

How to Profit

The product can be a

• Turn-key solution – sold off as a complete system to a customer, who
in cooperation with us tailor the framework to specific needs.

• Off-the-shelf product solutions (OTS) – The framework is tailored to
support a specific generic kind of need (such as management of Microsoft
Word documents) and sold as an OTS product.

• Framework solution business-to-business (b2b) – sold as a frame-
work to a customer, who tailors and sells it to one of his customers.

The customers can be roughly divided into the following segments:

• Large scale customers – OTS solutions. Many competitors with well-
established systems.

• Large scale customers – turn-key solutions. Many competitors, but
many produce inferior products (explained in the market analysis).

• Medium scaled customers – OTS solutions. Several competitors.

• Medium scaled customers – turn-key solutions. Many competitors but
many produce inferior products (explained in the market analysis).

• b2b – Framework solution. Zero or few competitors at the medium scaled
customer level.

We will target the turn-key solution group + b2b as it is here the product
and the philosophy behind will supersede existing products. As a secondary
market we expect to produce selected OTS low-cost solutions that will honor
low and medium scaled customers, their budget and needs – we expect this to
be a simple extension of the original product and would therefore not require
anything particular to realize.

Market Analysis and Market Strategy

The market of document systems is saturated, but we believe that our approach
is a new way of addressing the problem. We believe it is more appealing to cus-
tomers and ultimately results in less expensive systems as the production time
is minimzed.

The market leader today of document software – Documentum – targets large-
scale customers, which is reflected in their prize range starting from $1.000.000.
They try to approach the customization market with new products intended
to be customized by the customer via user friendly GUIs. This is a trade-off
between flexible systems vs. the customer being able to do the customization
himself – the more flexible the more options for the user, thereby inadvertently
preventing the ordinary user from understanding the customization process. We
believe that customization is best handled in cooperation between a skilled de-
veloper and a skilled domain specialist – the customer. No matter what the

222 APPENDIX N. BUSINESS PLAN

tendencies are in existing document software this symbiosis will never vanish.
If customer employees achieve expertise in complex scripting languages, GUIs
etc, it would result in that the specialized employee would alienate himself from
other employees (would go from domain specialist to developer) thereby re-
introducing the common and infamous communication problems.

Other – in comparison to the market leader – inferior products targeted at
low- and mid scaled customers are not very user-friendly nor effective, which
leads to believe that a fast customization of our system could compete with
their products.

There are many companies that can offer turn-key document management sys-
tems, and some excel in doing this. It is, however, often the conclusion that the
systems are inadequate and do not comply with what was intended. It is our
conjecture that it is due to inferior development methods and a lack of domain
understanding. Our product and the philosophy behind deals with these prob-
lems in an intuitive methodological way. Our framework provides a scripting
language that both developer and customer can understand and relate to while
hiding the technical aspects such as security, XML and distribution. The result
is better and faster development methods implicitly leading to better products
for less money.

To our knowledge there are no ’true’ document oriented frameworks at the
medium scaled customer level. Some companies claim that their product can
be tailored to the customer but to some degree they enforce standard business
processes and limitations on the customer disqualifying them from being con-
sidered frameworks. Ultimately the customer adapts – not the product. The
b2b market will be difficult to penetrate as it requires several success stories
before third party companies will be willing to purchase the framework. It is,
however, reasonable to believe that a couple of success stories could make it a
market. It would then compare to the Navision product of Microsoft Business
Solutions and the many solution centers that excel in doing customization of
the general product.

Considerations on IPR

We will not be able to patent the concepts as they are, despite their neglected
use, well-known development principles. The product itself has to be accompa-
nied by the philosophy of domain engineering which can be protected to some
degree. We will not expect to have competitors with the same functionality and
principles as it would require a complete new start for all the existing players
in their basic design. New companies would not be able to copy the concept
immediately as it would require a couple of years of development.

Business Model

We intend to find as many customers as possible in order to mature and refine
the product. This arrangement would initially be free of charge for the customers

223

doing the beta testing except for salaries for the involved developers. As the
product does not have infinite growth potential the company would gradually
transform to consultancy work and modifications and maintenance of existing
systems.

(Current) Competencies

Our team consists of two, soon-to-be, Masters of Science and Engineering in the
area of software development. We have researched the document domain during
the last 12 months which has given us a profound understanding of the domain
and the problems within this area. Academically, we have years of experience
with all the fields of software engineering, such as analysis, design, and imple-
mentation. Both of us have worked for years in IT service and consultancy,
strengthening our customer oriented skills while observing the general behav-
ior and problems of ’normal’ IT users. These skills and experiences provide us
with a clear understanding of the needs of users and the ability to meet their
demands in regards to software development.

Managerial and Organizational Setup

The organization we expect to initially pursue is a small company, with a qual-
ified CEO managing the administrative aspects, such as acquiring customers.
We expect to be part of the R&D together with a couple of ’coders’ – it will
our job to refine the framework and in time customize the framework for newly
acquired customers.

Bibliography

[1] ODA (Office Document Architecture): What is it? What is it good for?
The Seybold Report on Publishing Systems, 19(7):3–5, 1989.

[2] Documentum a division of EMC Corporation. Documentum.
www.documentum.com.

[3] Mart́ın Abadi, Michael Burrows, and Butler Lampson. A calculus for ac-
cess control in distributed systems. ACM Transactions on Programming
Languages and Systems, 15:706–734, 1993.

[4] Gregory R. Andrews. Multithreaded, Parallel, and Distributed Program-
ming. Addison Wesley Longman, Inc., 2000.

[5] Brian Berliner. Concurrent versions system - CVS, 1989.

[6] Dines Bjorner. The SE Book, volume 3. 2003.

[7] Ronald Bourret. XML and Databases. 2003.

[8] Lou Burnard. What is SGML and How Does it Help? Modelling Historical
Data: Towards a Standard for Encoding and Exchanging Machine-Readable
Texts, pages 65–79, 1991.

[9] Ian R. Campell-Grant. Introducing ODA. Computer Standards and Inter-
faces, 11:149–157, 1991.

[10] Ian R. Campell-Grant and Krõnert Günther. First Implementation of The
ODA Standard. Information Processing 89 - Proceedings of The IFIP 11th
World Computer Congress, pages 1025–1028, 1989.

[11] Steen Dawids, Allan Engquist, and Jacob Rosenberg. Memo Medica.
Munksgaard Danmark, 2001.

[12] EPJ-Observatoriet. Statusrapport 2003. EPJ-Observatoriet, 2003.

[13] Gert Galster. Begrebsmodellen i G-EPJ. 2003.

[14] Michael Gertz. Oracle/SQL Tutorial. Database and Information Systems
Group, Department of Computer Science, University of California, Davis,
2000.

[15] GESI. Distributed Healthcare Environment. www.gesi.it.

225

226 BIBLIOGRAPHY

[16] Raise Language Group. The RAISE specification language. Prentice Hall,
1992.

[17] Amager Hospital. Manual for fællesjournal. Amager Hospital, 2001.

[18] R. Hunter, P. Kaijser, and F. Nielsen. Oda: A document architecture for
open source systems. Computer Communications, 12(2):69–79, 1989.

[19] Christian Krog Madsen, Rasmus Dyhrberg, and Nikolaj Christensen. Speci-
fikation af elektroniske patientjournaler. Technical report, IMM, DTU, De-
cember 2002.

[20] Allan Lindqvist, Brian Christensen, Mads Johnsen, and Søren Risg̊ard.
Course 02262: The Document System. Technical report, IMM, DTU, July
2003.

[21] Rolf Molich. Brugervenligt webdesign. Nyt Teknisk Forlag, 2003.

[22] Danish Ministry of Health. Handlingsplan for Elektroniske Patientjour-
naler. Danish Ministry of Health, 1996.

[23] Danish Ministry of Health. National strategi for IT i sygehusvæsenet. Dan-
ish Ministry of Health, 1999.

[24] Danish Ministry of Justice. Act on Processing of Personal Data. Official
Journal, June 2000.

[25] Indenrigs og Sundhedsministeriet. National IT-strategi for sund-
hedsvæsenet. Indenrigs og Sundhedsministeriet, 2003.

[26] Steve Price. Oda: The iso standard for electronic document interchange.
International Open Systems 88, pages 337–354, 1988.

[27] Jeff Prosise. Programming Windows with MFC. Microsoft Press, 1999.

[28] Airi Salminen and Frank Wm. Tompa. Requirements for XML Document
Database Systems. Proceedings of the ACM Symposium on Document En-
gineering, pages 85–94, 2001.

[29] Torben V. Schroder, Svend Schulze, Jannik Hilsted, and Jan Aldershvile.
Basisbog i Medicin & Kirurgi. Munksgaard Danmark, 2004.

[30] Robin Sharp. Principles of Protocol Design. DTU-TRYK, draft second
edition, August 2002.

[31] Ian Sommerville. Software Engineering. Addison-Wesley, sixth edition,
2001.

[32] William Stallings. Cryptography and Network Security. Prentice-Hall, sec-
ond edition, 1999.

[33] Douglas R. Stinson. Cryptography - Theory and Practice. CRC Press, 1995.

[34] Sundhedsstyrelsen. Grundstruktur for Elektronisk Patient Journal. Sund-
hedsstyrelsen, 2001.

BIBLIOGRAPHY 227

[35] Sundhedsstyrelsen. Sundhedsstyrelsens klassifikation af personale i sund-
hedssektoren. Sundhedsstyrelsen, 2002.

[36] Sundhedsstyrelsen. Komponenter i G-EPJ - p̊a begrebsniveau. 2003.

[37] Hovedstadens Sygehusfælleskab. Procesbeskrivelser. 2001.

[38] Systematic. Columna Open Architecture. www.systematic.dk.

