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Abstract

This Masters Thesis investigate the possibility of using software-based Error Detection And
Correction (EDAC) to protect the storage of space-borne computers from Single Event Upsets
(SEU’s). Two software-based fault-injectors are implemented, which simulate the effects
of SEU’s as stochastic processes, and a number of experiments are performed on programs
running on prototypes of the onboard computer of a small satellite, DTUSat

The faults are injected in a continuous manner until a failure is detected (i.e. test until
’destruction’), after which the state of the target is examined.

One of the targets programs is the DTUSat boot-software, while the other is an program
resembling the application software for the DTUSat. In order to perform a large number of
experiments, two harnesses have been implemented, which allow batches of experiments to
be carried out automatically. The results of the experiments are analyzed, an a number of
metrics are measured (time of first error, runtime before failure, cause of failure etc.).

The injectors are designed to be quite flexible, in that the user can control the fault-rates
and injection model. Also, a number of experiments are performed with different fault-rates,
and it is found that the results obtained are representative over a large interval of injection-
rates.

In order to carry out the experiments in a resonable amount of time, the injection-rates
used are somewhat higher than what can be expected in a low earth orbit (LEO).

Keywords: Fault-tolerance, fault-injection, stochastic simulation, seu, leo, edac, hamming
code
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Chapter 1

Introduction

As more and more devices become computer-controlled, fault-tolerance in software plays an
ever increasing role. The application of fault-tolerance has extended to cover a large set of
methods and many areas of use. However, in this report, the focus will be on problems related
to the space-domain.

1.1 Space issues

When deploying computers and electronics in space, there are many diverse problems to ad-
dress, due to the harsh environment. Typically, the equipment has to be able to function in
large temperature intervals and under the influence of radiation, while having only a mini-
mal power-consumption. At the same time, the equipment is typically expected to be highly
autonomous, i.e. offering high level of reliability and availability.

One of the main problems is radiation, which has various effects on electronics. The
effects are generally categorized as either total dose effects or single events effects. The total
dose cause a gradual performance-degradation until the point of destruction, while single
events are of temporary nature. An important type of single events is the Single Event Upset
(SEU), which causes the contents of storage (RAM) to be altered.

The traditional solution to the general radiation problem has been to use shielding, and
the specific problem of SEU’s has been addressed by using hardware-based error-correcting
codes. However, the use of hardware-based error-correcting codes requires special hardware,
which may not be appropriate to use in especially smaller systems.

1.2 Problem Statement

The purpose of this masters thesis is to investigate the effects of SEU’s on a small satellite
system, the DTUSat onboard computer. This is accomplished by implementing fault-injectors,
which simulate SEU’s as stochastic processes. Further, error-detecting and correcting codes

1



2 CHAPTER 1. INTRODUCTION

(EDAC) are implemented in software, and it is investigated to which extend these code can
counter the effects of the simulated SEU’s. A large numbers of experiments are performed,
and the results are analyzed.

1.3 Organization

The rest of the report is organized as follows:

Chapter 2, Fault-Tolerance Primitives : In this chapter, a number of traditional fault-tolerance
primitives and methods are presented, and discussed. The primitives and methods are
categorized.

Chapter 3, Theory and Basics : This chapter documents the theoretical bases on which
the following chapters rely. The theory for the stochastic simulations and the error-
correcting code and are developed in this chapter, and the platform on which the exper-
iments are performed is presented.

Chapter 4, Failsafe Injector : The failsafe injectors injects faults into the DTUSat boot-
software (failsafe software). The development and implementation of the injector, and
the experiments on the failsafe software are documented in this chapter.

Chapter 5, The Application : The application is implemented as a set of loosely-coupled
modules, which communicate through a shared packet-router. which has a structure
similar to that of the DTUSat application.

Chapter 6, Correctors : The implementation and use of the EDAC-system, and the exper-
iments on the application are covered in this chapter.

Chapter 7, Conclusion : The final remarks discussed some common issues of the project,
and contains the conclusion of the report.

Appendix A, Modeling in SPIN : An appendix describing how to use the SPIN modeller
to model problems of the type described in chapter 3.

Appendix B, Results of the Failsafe Experiments : Tabulated results of the Failsafe Ex-
periments.

Appendix C, Results of the Application Experiments : Tabulated results of the Applica-
tion Experiments.

The sourcecodes for the implemented injectors and programs can be found in the DTUSat
CVS repository, accessible through the url:
http://cvs.dtusat.dtu.dk/cgi-bin/viewcvs.cgi/fts/?cvsroot=Development.



Chapter 2

Fault-Tolerance Primitives

In this section, a number of traditional fault-tolerance primitives are discussed. The function-
ings of the primitives are described and, where applicable, the primitives are categorized. The
last section of this chapter contains a summary of the primitives, in which they are partitioned
into detectors and correctors.

2.1 Primitives

There are several ways of categorizing primitives, for instance [5] categorizes primitives as
either detectors or correctors. While most primitives will fit into one of these categories, the
practical applications of some of the primitives can actually be described as both detecting
and correcting. For instance, if a watchdog-timeout causes a system (or processor) reset, it
can rightfully be categorized as both a detecting and correcting primitive.

2.1.1 Partitioning

The purpose of partitioning is to prevent that faults in one part of a system propagate to other
parts of the system. Partitioning can take place on many levels in both hardware and software.

Examples of Usage

A radical use of partitioning on the hardware level is to allocate different tasks to different
CPU’s, thus minimizing the shared resources to communications channels. This approach is
often used in aircrafts and satellites.

A more common example is by means of an MMU (Memory Management Unit), by which
the memory-contents of a task are protected from malicious accesses of other tasks running
on the same CPU. Note that this example requires support from both the hardware (MMU)
and the software (the operating system).

3



4 CHAPTER 2. FAULT-TOLERANCE PRIMITIVES

On the software level, partitioning is typically implemented by the compiler, the operating
system or by design. For instance, the functional decomposition into layers, modules and
libraries are examples of partitioning.

Partitioning of data typically involves data hiding, for instance: Object-Oriented Program-
ming, the use of resource handles etc.

Classification

As partitioning in itself cannot by used to detect or correct faults, it is better described as a
good practice than as a fault tolerance primitive. As a design-rule it is applicable at many
levels of both hardware and software, and as such it helps to decompose the system in mod-
ules, thus bringing down the complexity of the individual components, and thereby making
the system easier to implement.

Partitioning is therefore classified to addresses failures in external devices and in software.

2.1.2 Assertions

Assertions are checks on the state of the variables at given points in the program. For instance,
variables can be range-checked, and relationships between variables can be validated.

Examples of Usage

The following example shows the use of assertions, where the state of a variable is checked
both before and after its use:

1 int calculation(float factor)
2 {
3 assert(pre_predicate(factor));
4 // use of factor
5 assert(post_predicate(factor));
6 }

The assertion can be seen as expressing invariants of the program. If the assertion ex-
presses a predicate, pred

�
v1 ��������� vn � , on the variables of the program, and the label lassert cor-

responds to the location immediately following the assertion, it is invariant that: at
�
lassert ���

pred
�
v1 ��������� vn � . Of course, if the assertion fails, an appropriate action is taken.

Classification

As they do not correct any errors, assertions are detecting primitives.
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2.1.3 Input Checks

Input checks is a technique that aims to prevent subprograms from malfunctioning due to im-
proper inputs. The technique can be used to express limits or relationships in the inputs, which
cannot be expressed in the used programming language. Depending on the exact implemen-
tation, input checks can be recognized as an instance of ”assertion programming”, ”defensive
programming” or even ”roll-forward recovery”.

Examples of Usage

Assertion Programming and Defensive Programming require that values are validated before
use. The following example demonstrates this use of Input Checks:

1 int calculation(float factor)
2 {
3 assert((0.0<=factor) && (factor<=1.0));
4 // use of factor
5 }

If corrective actions are implemented, the use of Input Checks is somewhat similar to
Roll-Forward Recovery:

1 int calculation(float factor)
2 {
3 if(factor<0.0)
4 factor=0.0;
5 else if(factor>1.0)
6 factor=1.0;
7 // use of factor
8 }

Classification

Input checks is a detecting primitive, as it does not correct any errors. The corrective parts of
the example above are not strictly parts of the input checks

2.1.4 Safety Supervisor

A Safety Supervisor is a control-layer, which is used to ensure that the values output from
functions are within the valid range. However, the Safety Supervisor is concerned only with
the value domain, i.e. it does not validate the calculations performed by the functions. When
an out-of-range value is detected, it should be corrected to a safe (in-range) value; on a small
scale, this behavior is similar to Roll-Forward Recovery. A safety supervisor can also be seen
as a device which renders possibly unsafe values into safe ones.
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Examples of Usage

The Safety Supervisor is usually implemented as a unit separated from the function or com-
ponent it supervises, for example:

1 float safety_supervisor(float input)
2 {
3 float output;
4
5 if(input<minimal_value)
6 output=minimal_value;
7 else if(input>maximal_value)
8 output=maximal_value;
9 else

10 output=input;
11
12 return output;
13 }
14
15 void control(void)
16 {
17 float input, unsafe_output, safe_output;
18
19 input=read_device();
20 // calculate unsafe_output, based on input
21 safe_output=safety_supervisor(unsafe_output);
22 write_device(safe_output);
23 }

Classification

The Safety Supervisor is traditionally categorized as a detecting primitive, even though it also
corrects faulty values.

2.1.5 Defensive Programming

Defensive Programming is a method that addresses unexpected data and usage by a number
of guidelines. Many of the guidelines are specific to a given programming language, but [2]
numbers the following general rules:	 Variables should be range checked.	 Where possible, values should be checked for plausibility.



2.1. PRIMITIVES 7	 Parameters to procedures should be type, dimension and range checked on entry.	 Read-only and read-write parameters should be separated and their access checked.
Functions should treat all parameters as read-only. Literal constants should not be write-
accessible. This helps detecting accidental overwriting and erroneous use.

Note that strongly-typed languages such as Ada and Java satisfy some of these rules in-
trinsically, while others (C and C++) require some manual effort from the programmer. Fur-
thermore, [2] mentions the following techniques:	 Input variables and intermediate variables with physical significance should be checked

for plausibility.	 The effect of output variables should be checked, preferably by direct observation of
associated system state changes.	 The system should check its configuration. This could include both the existence and
accessibility of expected hardware, as well as the fact that the software itself is complete
(this is particularly important for maintaining integrity during and after maintenance
procedures.)

Some Defensive Programming rules overlap with rules that might be used in coding stan-
dards. For instance, when iterating over a fixed-size array, it is common practice to use a
compiler-calculated expression for the array-size, rather than a manually calculated constant.
Other rules might address shortcomings or undesired aspects of the language. For instance,
a standard ’C’ compiler will silently synthesize function declarations, when they are absent
from the programmers hand, but this can be a very unpleasant property. Some compilers
can be configured to issue warnings or errors, whenever it is about to do something which is
potentially dangerous.

Classification

As defensive programming is a proactive method, it cannot be described as a detecting or a
correcting primitive.

2.1.6 Checkpointing and Rollback

The Checkpointing and Rollback -technique revolves around the state of the software: The
internal state of the software is checked regularly at certain locations of the program, and if it
is found to be safe, the state is stored; this is known as a checkpoint operation. However, if
the state is found to be unsafe, the last safe state is resumed; this is the rollback operation.

As [5] points out, Checkpointing and Rollback benefits from support from the operating
system, but most operating systems do not provide these features. Also, for multi-process
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systems, it might be difficult to restore a valid global state, because it is based on saved
local states that are independent from each other. This technique is also known as Temporal
Redundancy in [3].

Classification

The checkpointing and rollback -method is able to correct faulty states, so it is described as a
correcting primitive.

2.1.7 Roll-Forward Recovery

Roll-forward Recovery is a lightweight alternative to Checkpointing and Rollback. Like
Checkpointing and Rollback, Roll-forward Recovery checks the state of the program at cer-
tain locations, but rather than relying on saved states, it relies on predefined valid states. I.e.
the implementor of the software defines which states to roll-forward to. As [5] points out, this
method requires detailed knowledge of the failure-modes of the particular system, and is thus
specific to each system.

Examples of Usage

As Roll-forward Recovery is system specific its implementation will be dictated by the system.
A simple example is the one given in section 2.1.3.

Classification

Like checkpointing and rollback, roll-forward recovery has correcting capabilities, so it is
described as a correcting primitive.

2.1.8 Recovery Blocks

Recovery Blocks consist of a number of different implementations of the same calculation.
The calculations are performed in a sequence, where each calculation is followed by an ac-
ceptance test. If the test accepts the result, the calculated result is used, but if the tests rejects
the result, any side-effects of the calculation are undone and an other calculation/test pair is
performed. There can be any number of these calculation/test pairs, but if they all fail, the
calculation cannot be performed, and is thus aborted. If the implementations of the variations
are of different quality or efficiency, they can be numbered and sorted accordingly. A disad-
vantage of Recovery Blocks is that the execution time of the calculation can vary significantly,
depending on the number of blocks executed.
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Examples of Usage

1 int calculation(args)
2 {
3 res=calculation_1(args);
4 if(correct_1(res))
5 return res;
6
7 undo_1(args, res);
8 res=calculation_2(args);
9 if(correct_2(res))

10 return res;
11 ...
12 res=calculation_n(args);
13 if(correct_n(res)
14 return res;
15
16 return abort_calculation(arg);
17 }

Classification

Recovery-blocks are classified as a corrective primitive.

2.1.9 N-Version Programming, N-Selfchecking Programming

Like Recovery Blocks, N-version software (in both flavors) is based on different implemen-
tations of the same calculation. Unlike Recovery Blocks, all versions are executed when a
calculation is made, which provides for better estimates of the execution time. The versions
in N-Version Programming return the result of the calculation, and when all versions have
been run, the results are collected and examined by a voter. The voter then decides which
result is ”correct”.

The versions in N-Selfchecking Programming perform a check on the calculation before
returning the value – then the results are collected and examined by the voter, only the result
thought to be valid are considered. The N-Selfchecking method requires that each version is
capable of evaluating its own result. As [3] suggests, this can be implemented by calculating
the inverse of the result, or by examining intermediate results.

A major weakness of N-version Programming (in both flavors) is that it is difficult to
produce truly diverse versions, because the manners in which a given algorithms can be prac-
tically implemented is limited. This means that supposedly independent versions can have
common-mode failures.
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Examples of Usage

The implementation reflects the basic structure, where the results of the independent versions
are examined by the voter.

1 int calculation(args)
2 {
3 res1=calculation_1(args);
4 res2=calculation_2(args);
5 ...
6 resn=calculation_n(args);
7
8 res=voter(res1, res2, ... , resn);
9

10 return res;
11 }

Classification

Both flavors of N-version programming are proactive, in the sense that they address problems
of possibly unknown nature before they arise. They both have the ability to correct these
problems, so they are categorized as correcting primitives.

2.1.10 Exception Handling

As the name suggests, Exception Handling is a way to handle exceptions in the software. An
exception is an unexpected error-condition, that cannot be handled by the subprogram which
detected the condition. For instance, this could be caused by unexpected input parameters or
an unexpected state of the program environment. It is common that programming languages
implement the exceptions mechanisms by the constructs throw and catch. The principle is,
that when an exception is detected, it is ”thrown” at the point of detection, and ”caught” at
an appropriate enclosing exception handler. The exception changes the flow of execution,
because when thrown, it will cause the execution to transfer to the handler, and the execution
does not transfer back again. The handler is found among ancestor functions and enclosing
blocks, and the most recently encountered handler is used. When defining an exception han-
dler, its scope is usually confined to a single block of execution; C++ and Java defines the
keyword try for this, while the same functionality is achieved in Ada, using general block-
construct.
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Examples of Usage

1 int calculation(args)
2 {
3 ...
4 throw(Exception);
5 ...
6 }
7
8 int function(args)
9 {

10 try
11 {
12 res=calculation(args);
13 }
14 catch (Exception E)
15 {
16 res=-1;
17 }
18
19 return res;
20 }

Classification

Exception handling addresses foreseeable problems in a structured manner, and is categorized
as a correcting primitive.

2.1.11 Wrappers

When using 3rd party libraries or programs, it is not possible to guarantee the quality of the
products or its impact on the system. One way of controlling unwanted side-effects from
3rd party components, is by using a wrapper. A wrapper is a subprogram, that monitors and
verifies all inputs and outputs from the component. If a sufficiently precise description of the
component is available, the wrapper may be able to detect and correct erroneous outputs from
the component. However, implementing detection and correction might come very close to a
parallel implementation, i.e. effectively being a two-version implementation.
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Examples of Usage

1 int wrapper(args)
2 {
3 args’=transform(args);
4 res=wrapped_function(args’);
5 res’=transform(res);
6
7 return res’;
8 }

Of course, the transforms are depending on the function being wrapped, and on the appli-
cation.

Classification

As wrappers are meant to correct problems in 3rd party components, they are categorized as
corrective primitives.

2.1.12 Watchdog

A common fault tolerance primitive is a Watchdog timer. In its simplest implementation, the
watchdog is basically a free-running timer, which performs some corrective action when it
times out. However, it can be reset from the software, thus preventing it from timing out. In
normal operation the timer should never timeout, as the software resets it on regular intervals.
The Watchdog is normally used to detect timing and liveness problems.

It is common to set up the Watchdog to reboot the system on time-out. However, this use
requires careful analysis of the timing-properties of the system, because it is easy to create an
endless reboot-loop, thereby rendering the system inoperable.

Examples of Usage

1 int function(args)
2 {
3 for(;;)
4 {
5 input=read_device();
6 // calculate output from input
7 write_device(output);
8 watchdog_reset();
9 delay();

10 }
11 }
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Classification

As the watchdog typically implements some kind of corrective action when it times out, in
practice it is both a detecting and correcting primitive.

2.1.13 Execution Flow Check

An Execution Flow Check is somewhat similar to a watchdog processor, in that it is usu-
ally implemented with the support from hardware (i.e as a form of co-processor). While the
processor executes the program, the Execution Flow Check checks that the instructions exe-
cuted are consistent with predefined legal execution traces. If the execution differs from the
expected paths, some kind of corrective action is taken. As [5] points out, Execution Flow
Checks may be difficult to implement because of the need to establish all legal execution
traces. This technique is sometimes referred to as ”Memorizing Executed Cases”.

Classification

The Execution Flow Checks share some similarities with the general watchdog. Like the
watchdog, in order to be useful, it should implement some kind of corrective action, when an
illegal state is detected. It is therefore categorized as a corrective primitive.

2.1.14 Software rejuvenation

As [3] points out, running software tends to age due to resource depletion (e.g heaps being
fragmented or corrupted, and objects not being deallocated). A common solution to this prob-
lem is to reload the software on regular intervals – in [3] this is called Software Rejuvenation.
Software Rejuvenation is a type of preventive maintenance, because it addresses problems
that have yet to be detected.

Classification

As Software Rejuvenation addresses problems not yet arisen, it is a proactive method. It is
best described as a corrective primitive.

2.1.15 EDAC and Scrubbing

EDAC (Error-Detection-And-Correction) and scrubbing aims at preventing unwanted changes
to the memory, i.e. due to SEU’s (Single Event Upsets). Traditionally, this is a hardware-
assisted method, which is based on RAM protected by error-correcting codes. A commonly
applied code is the general Hamming-code, which can correct a single bit-error per codeword.
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An important reason for choosing this code is its simplicity, which makes it easy to imple-
ment in hardware. However, in recent years more advanced codes have been used for these
purposes (for instance [40]).

The hardware is assisted by a scrubbing process, which continuously read-out and write-
back the values of the memory. This process prevents correctable single bit-errors from evolv-
ing into non-correctable multi-bit ones. There are several complications when applying this
method. As [5] points out, the scrubbing process would typically run with low priority, to pre-
vent it from affecting the schedulability of the system. Furthermore, because the memory is
shared between the scrubbing process and the other processes, some type of synchronization
is needed.

Examples of Usage

1 scrubber(region)
2 {
3 do forever
4 {
5 for(address=region.begin; address<region.end; address++)
6 {
7 lock();
8 value=*address;
9 *address=value;

10 unlock();
11 }
12 }
13 }

Classification

As the name suggests, EDAC has the ability to both detect and correct problems, and therefore
it is described as both a detecting and correcting primitive.

2.1.16 Graceful Degradation

Graceful Degradation is a method of dealing with multiple levels of service by disabling
the less important tasks. For instance, the software may handle that certain external devices
fails, or that the processor becomes overloaded. As [5] points out, Graceful Degradation is
commonly implemented as different modes of operations, where each mode corresponds to a
given level of service.
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Classification

Graceful Degradation is mostly a design method, but if it is employed in an automatic manner,
it can be described as a correcting primitive.

2.2 Classification of Primitives

In this section, the classifications of the primitives are summarized. As previously mentioned,
a classification as either correcting or detecting is not appropriate for all primitives. There-
fore, the primitives can be classified in a total of four categories, corresponding to all four
combinations.

Primitive Detect Correct
Partitioning 
 

Defensive Programming 
 

Input checks � 

Assertions � 

Safety Supervisor � 

Execution Flow Checking � 

EDAC and Scrubbing � �
Checkpointing and Roll-back 
 �
Recovery Blocks 
 �
Graceful Degradation 
 �
Roll-forward Recovery 
 �
Exception Handling 
 �
Wrappers 
 �
Software Rejuvenation 
 �
N-Version Programming
N-Selfchecking Programming


 �
Watchdog � �
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Chapter 3

Theory and Basics

In this chapter, the theory on which the project depends, and the theory developed during the
project is presented. This chapter also provides some background information on the hardware
and platform used for the experiments presented in this.

3.1 Abstract Models

The articles [33, 34, 35] provide abstract models for design of fault tolerant software. In the
following section, these principles are described, and two examples of their use is given in
appendix A, where they are also simulated in SPIN.

A central term in the treatment of the abstract models is the use of predicates, which
are used to define and prove key properties of the algorithms. Two other central terms are
closure and convergence, which signifies that the behavior of a system is well-defined, given
a specific set of circumstances, and that the system is able to recover from faults. Also, a path
for incremental developments and improvements is shown.

3.1.1 Closure and Convergence

A program is said to be closed under a predicate, if the predicate is always true under a given
set of circumstances. For instance, if the system does not incur any faults, its behavior can be
described by a predicate, under which the execution is closed. Likewise, if the system does
incur faults, its behavior can be described using a different predicate. Predicates can be used
to describe the properties of the system, such as correctness, safety and liveness.

In this way [35] defines a set of predicates, which describe the behavior of the system both
in absence and presence of faults. If the predicate S describes the behavior of the system in
absence of faults, and T describes the behavior in presence of faults, the system is said to
converge, if the behavior of the system eventually can be described by S, when the faults stop
occurring.

17
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This way, the state-space of the system is divided into regions, of which S is the smallest,
and T (or Tn) are larger regions encompassing S. Figure 3.1 depicts the concept of multiple
predicates dividing the state-space. In the state Sa where S holds, the system experiences a
fault (marked by !), which brings the system into state Ta, where T holds. After some time
where no additional faults have occurred, the system enters state Tb and then Sb, where S
holds again. Note that faults are modeled as a special set of state-transitions, that may occur
as certain points of the execution.

Sa

T1a

T1b
Sb

System state−space

T1

S

!

Figure 3.1: Regions of the state-space covered by different predicates.

3.1.2 Incremental Development

The system may be described by more than two predicates, corresponding to its ability to
handle more than one type of fault. The development can be done incrementally, in which
support for new types of faults is added without the need for redoing the proofs on the already
implemented parts. This is visualized in figure 3.2, in which a new predicate T 2 is added,
corresponding to a new type of fault.

3.2 Practical Application

The abstract models rely on the program having an accurate and bounded state-space, even in
the event of failures. This implies that all actions are well-defined – even the fault-actions. A
special problem in space-applications is that radiation may cause unpredictable changes to the
state-space of the program, which makes it difficult or impossible to describe the properties
of the program.
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Sa

Sb

Sc

Sd

T1 a

T1 b

T2 c

T2 d

System state−space

S

T1T2

!!

Figure 3.2: Regions of the state-space covered by multiple predicates.

The traditional solution to this problem has been to employ special hardware, which has
higher resistance to radiation, but in the following it will be investigated if similar methods
can be implemented in software.

3.3 Fault-injection Model

As mentioned above, when deploying electronics into space, one of the issues to address is ra-
diation. Of course, a general remedy to radiation is shielding, but due to constrains on weight
and volume, it is only feasible to provide a certain amount of shielding. Therefore, is it not
possible to totally eliminate the effects of radiation (i.e. to the level found on earth). Radia-
tion causes several different effects on electronics, but the effects are generally categorized as
either total dose effects or single events effects. The total dose effects are caused by the ac-
cumulated amount of radiation, which gradually degrades the performance of the equipment
until failure. Single events are of temporary nature, as they do not cause lasting damage1 to
the affected device.

In the following a special type of single events, known as Single Event Upsets (SEU)
will be studied. SEU’s cause bits in memory to alter their contents – this is also known as
bitflips. The traditional remedy to bitflips has been to implement error detecting and correct-
ing (EDAC) storage, which is based in a hardware-implemented error-correcting code. The
intensity of bitflips caused by radiation has been studied in previous satellite missions, for in-
stance [43, 44, 45, 46]. As a significant amount of the bitflip-causing radiation originate from
the Sun, the radiation-intensity experienced by an earth-orbiting satellite will vary with the

1Provided they are handled appropriately: Single event latchups can cause fatal damage to a device, if not
detected and handled in due time.



20 CHAPTER 3. THEORY AND BASICS

intensity of the solar-wind, the hight of the orbit and the position in the orbit (due to inhomo-
geneities in the magnetic field of the Earth). Furthermore, the susceptibility to bitflips varies
with both the employed technology and the scale of the technology (the higher the integration
scale, the higher the susceptibility). All this means, that the intensity of bitflips is hard to
estimate with great accuracy, but a cautious estimate is made, based on intensities publicized
in previous studies.

3.3.1 Defining the Model

The effects of bitflips is investigated using fault-injectors, which simulate bitflips. The fault-
injectors are implemented as high-priority processes, which alters the contents of the storage
at random positions at random moments in time. The effect of the bitflips can be modeled as
a number of independent Bernoulli-processes (one for each susceptible bit), but rather than
simulating a large number of processes running in continuous time, the injectors are activated
on regular intervals. On each activation, the injectors decide if an injection should be made
and if so, where it should be made.

The injection model is based on the following assumptions:	 Each failure can be simulated as a separate event.	 Each bit has an equal probability of failure.	 There is a minimal timespan between two events.

The first assumption assures that the processes can be modeled as Bernoulli-processes.
Together with the second assumption, they provide the basis for modeling the process as a
binomial-process. The third assumption provides for a discrete approximation of the mod-
eled processes. The implemented injection model assumes that faults occur only in regular
memory, and not in registers or devices.

3.3.2 Evaluating the Model

In the following it is assumed that bitflips occur with an intensity of r � 1  10 � 5 1
bit
day

– this

is a pessimistic prediction of the fault rate in LEO 2. As the injectors run with a granularity
of 100 Hz, the unit tick is defined to be: 1 tick � 1

100 s. Furthermore, d is defined to be the
number of ticks per day (d � 8 � 64  106 tick

day ). The number of bits considered in the following is

N � 1  106. This is fewer than available on the DTUSat, but it is about the number of bits used
for vulnerable storage in the application. The failsafe mode of operation uses a maximum of
3 K � 2 � 5  104 bits. Refer to section 3.7.1 for a discussion of the two targets.

2Low Earth Orbit: Typically LEO’s are 600-800 km circular orbits
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In any given time-frame, the number of bits that flip can be modeled as a number of
individual Bernoulli experiments, with parameters N and p � r

d . Let X be a stochastic variable,
which models the number of bitflips per tick, then:

X � b � N � rd �
But since N is large and p is small, the distribution of X can be approximated with a

Poisson distribution with parameter λ � N  p, thus:

X � b � N � rd � � P � N  r
d �

An important question is whether a granularity of 100 Hz is reasonable. The assumption
is that at most one bitflip can occur during each cycle. The probability of more than one bitflip
during a cycle can be expressed using X :

P � X � 1 ��� 1 � P � X � 0 ��� P � X � 1 ��� 7  10 � 13

So it is concluded that the probability of having more than one bitflip per cycle is highly
unlikely, and the principle of injecting at most one bitflip per cycle is therefore accepted.
The time between two consecutive Poisson distributed events is modeled by an exponential
distribution with the same intensity. Thus, the time between bitflips should be modeled with:

T � exp � N  r
s �

The estimated value of exponential distribution is:

E � T ����� s
N  r �

For N � 1  106, corresponding to the application, this gives an estimated time between
faults of about 1

10d, corresponding to about 10 faults per day. For N � 2 � 5  104, the estimated
time between faults is about 4 d, which is approximately one fault per four days. However, in
order to carry out the simulations in a fairly limited time-frame of about 250 CPU-hours, the
experiments are run with (aggregate) rates in the range of about once per second to once per
minute.

3.4 Pseudo-Random Number Generation

As described in the earlier sections, the injectors simulate the stochastic processes of bitflips.
The stochastic processes are simulated using a PRNG (Pseudo Random Number Generator).
A PRNG is a function which returns a number which, on successive calls, generate a sequence



22 CHAPTER 3. THEORY AND BASICS

of numbers that appear to be random. The function maintains an internal state, which dictates
the values of the numbers to be returned. A central concept in PRNG’s is seeding: Before
using the PRNG, the internal state must be initialized. This is done by the user, who supplies
a seed-value. How the seed-value is actually used within the PRNG is dependent on the
implementation, but a key property of PRNG’s is that given a specific seed, the PRNG will
always generate the same sequence. This last fact also justify why the generators are called
”pseudo random”: They are in fact deterministic, but in a seemingly random fashion.

A popular type of PRNG is known as ”Linear Congruence Random Number Genera-
tors”. The sequences of these generators are defined by an equation on the form: rn � 1 ��
a rn � b � mod N. It can easily by shown that this sequence (for the chosen values of a, b

and N) has alternating odd and even values, and generally that the lower order bits are not
very random at all. However, the ANSI C standard recommend that this type of generator
is used to implement the rand-function. For this reason, it has been chosen not to use the
compiler-supplied PRNG.

The PRNG chosen instead is called ”the Mersenne Twister”. The reasons for choosing
this PRNG is that it is well-renowned [36], it is reasonably fast and that it is portable. The
Mersenne Twister comes in two variants: A floating point version and an integer version.
Because the chosen architecture does not support floating points in hardware, it has been
chosen to use the integer version.

3.4.1 Distributions

The chosen PRNG generates uniformly distributed integer values in the range � 0;232 � 1 � ,
but this distribution is rarely needed. Instead this distribution (the general distribution) is used
to create specific distributions. Two types of specific distributions are used in the injectors:
Uniform and exponential distributions. Intuitively, what is needed is a mapping that maps
from the domain of the general distribution to the domain of the specific distribution. In the
following it is shown how the general distribution can be mapped into these specific distribu-
tions. The notation E

�
λ � will be used to represent an exponential distribution with parameter

λ. Note, that the parameter for the exponential distribution is traditionally called α, but in
this context, the symbol λ is used to emphasize the relation to the Poisson distribution (which
parameter traditionally is called λ). The uniform distribution is represented by the symbol U .
In order to distinguish between discrete and continuous uniform distributions, either a set or a
range is used as argument to the distribution, for example U � 0 ����� 2N � or U  0;1 ! .
Uniform Distribution

A tempting way to implement a specific uniform distribution, X � U � 0 ����� N � 1 � , is to use the
modulus to implement the mapping, such as: rspeci f ic � rgeneral mod N. However, unless the
size of the domain of the general distribution is divisible by N, it will not create a uniform
distribution. This is caused by the 232 � 1 mod N largest values of the general distribution
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being mapped to the 232 � 1 mod N smallest values of the specific distribution (thus over-
representing these values).

Instead of using the modulus mapping, a different technique known as ”the rejection
method” is used: A value is generated from the general distribution. If this value is less
than N, it is used as a value of the specific distribution, else a new value is generated, un-
til a usable value is found. Of course, this would be very wasteful if the distribution of the
PRNG was used directly. Instead, an intermediate uniform distribution can be created, which
serves as input to the rejection algorithm. This can be done efficiently simply by masking
off bits of the PRNG distribution. Thus, a mask is created, which maps G � U � 0 ����� 232 � 1 �
to I � U � 0 ����� 2L � 1 � , where L �#" log2

�
N �%$ . Then the algorithm can be described by the

following pseudo-code:

do
u � I;

while
�
u & N �

return u;

(3.1)

Exponential Distribution

The cumulative function of the exponential distribution is defined as: F
�
t � � 1 � e � λt . An

exponential distribution can be created simply by ”running it backwards”, thus isolating t
gives:

t � 1
λ
'� ln

�
1 � F

�
t ��� (3.2)

When running it backwards, F
�
t � should be substituted with a continuous uniform unity

distribution. Because F
�
t � � U  0;1 ! , then 1 � F

�
t � � U  0;1 ! . Note that the expression � ln

�
x �

can be tabulated, thus eliminating the need to calculate the logarithms.

3.5 Error-Correcting Codes

The theory of error-correcting codes is comprehensive, and this presentation will not try to
cover the general theory. However, a brief overview of the applied theory will be given in the
following sections.

Error-correcting codes is a technique used to protect data from corruption due to errors
in transmission or storage. In this context, an error means that the value of one or more of
the symbols in the data has been changed. I.e. the described code cannot handle erroneous
exclusion or inclusion of symbols.



24 CHAPTER 3. THEORY AND BASICS

3.5.1 General Codes

Error-correction is accomplished by two types of transformation: Encoding and decoding.
Encoding is the process of transforming a data-word into a code-word, and decoding is the
reverse process. A data-word and its associated code-word represent the same information,
but the data-word has a representation which is directly usable, while the code-word has a
representation which is tolerant to one or more errors. Thus, the code-word representation is
used in contexts where errors are anticipated.

The theory of error-correcting codes is based on linear algebra, in that data-words and
code-words are treated as vectors, and the encoding and decoding operations are based on
matrix-multiplications. The matrices used for encoding and decoding are known as the generator-
matrix (traditionally called G) and the parity-matrix (traditionally called H). Using these ma-
trices, the encoding and decoding operations are defined as follows (the notation is due to
[1]):

c � d ( G (3.3)

sT � H ( cT (3.4)

Where d is a data-word, c is a code-word and s is the syndrome for c. The syndrome is
an encoding of the state of the code-word – from this, one can tell how many and which bits
in c have been changed. Note that the vectors used in equation 3.4 are columns, but in the
following, all vectors are assumed to be rows. Transposing equation 3.4 yields:

s � c ( HT (3.5)

The matrices G and H are bound together by the relation, that if G �)� I : A � is a generator
matrix for a code, then H �*�+� AT : I � is a parity check matrix for the code (due to [1]). When
the matrices are on the form G �,� I : A � and H �,�+� AT : I � , they are said to be in standard
form. Inserting G in normal form into equation 3.3 yields the following:

c � d (-� I : A �.�*� d : d ( A �/�0� d : p � (3.6)

That is: The code-word c consists of the data-word d appended with parity-bits p �� d ( A � . The code-word may be subject to bit-errors – let c 1 � � d 1 : p 1 � denote a code-word
created using equation 3.6, subject to zero or more bit-errors. Inserting H on normal form and
c 1 into equation 3.5 yields the following:

s � � d 1 : p 1 � (32 � A
I 4 �5� d 1 ( A � p 1 (3.7)

Note that 3.6 and 3.7 eliminate use of G and H, but require that A is available (i.e. that G
and H are on standard form).
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3.5.2 Binary Codes

The previous section describes how encoding and syndrome-decoding of codes with arbitrary
bases are performed. However, in practice the only relevant codes are binary, and this fact can
be used to simplify some of the calculations. Note, that in binary a �5� a and that multiplica-
tion and addition amounts to logical and, and logical exclusive-or respectively. Let 6 denote
logical and, and let 7 denote logical exclusive-or, then 3.6 and 3.7 can be expressed as:

cb �)8 db : db 6 A
b 9 �,8 db : p

b 9 (3.8)

and

sb � � d 1 b 6 A
b � 7 p 1

b
(3.9)

3.5.3 Example: The Hamming (7,4) Code

For example, let the following generator and parity matrices specify a binary code (due to
[1]):

G
H
� :;;< 1 0 0 0 0 1 1

0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

=?>>@ and HT
H
� :;;;;;;;;<

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

= >>>>>>>>@
Encoding a data-word, say  0101 ! yields:  0101 !A( G

H
�B 0101010 ! . Decoding the code-

word yields:  0101010 !C( HT
H
�D 000 ! , signifying no errors. Introducing a bit-error in the code-

word, for instance in bit 3, yields the following decode:  0111010 !A( HT
H
�B 011 ! , signifying

an error in bit 3.
The reason that the syndrome directly evaluates to a bit-number is that each row in the

parity check matrix encodes its number in binary. As a consequence of this, the parity check
matrix is not in standard form. Using Gauss-elimination, the parity check matrix can be
brought into standard form:

H
H
� :< 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

=@FE :< 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

=@ � 8 AT
H

: I 9
Then, note that G

H
�,8 I : A

H 9
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3.6 Creating a Hamming (12,8) Code

In this section it will be described how the Hamming code used in chapter 6 is created. The
classification (12,8) means that the code uses 12 bit code-words and 8 bit data-words, thus
leaving 4 bits for parity. As the syndrome is encoded with the same number of bits as the
parity, there are 16 possible syndromes, one of which encodes ”no error”. Therefore the
syndrome can encode errors in 15 different bits, but because the code-words are only 12 bits,
the code is said to be in-perfect. The Hamming (12,8) is actually a trimmed-down version of
the perfect Hamming (15,11) code. Note that the Hamming (7,4) code of section 3.5.3 is also
perfect.

3.6.1 Constructing the Code

As [1] states, a Hamming-code with r parity bits has a parity matrix with columns that are all
different non-zero r-tuples. But as the (12,8) code is in-perfect, only 12 of the 15 r-tuples are
selected.

H � :;;< 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1
0 1 1 0 0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0 1 0 1 0

=?>>@ E
:;;< 0 1 1 1 1 0 0 1 1 0 0 0

1 0 1 1 0 1 0 1 0 1 0 0
1 1 0 1 0 0 1 1 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1

=?>>@ � � AT : I �
From A the generator is trivially constructed:

G � :;;;;;;;;;;<
1 0 1 1 0

1 1 0 1 0
1 1 1 0 0

1 1 1 1 1
1 1 0 0 1

1 0 1 0 1
1 0 0 1 1

1 1 1 1 0

=?>>>>>>>>>>@
Since the generator and parity check matrices are in standard form, encoding and decoding

can be done using A (using equation 3.8 and 3.9), instead of G and H (using equation 3.3 and
3.5). This simplifies the calculations, and saves some space.
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3.6.2 Decoding the Code

Assume that the data-word d is encoded using equation 3.8. This produces:

c �0� d : d 6 A �
Decoding c amounts to:

s �HG d 6 A I�7 p � p 7 p � 0

That is: When the codeword has incurred no errors, the syndrome is 0. Then assume that
the codeword has incurred a single bit-error; let d̂ denote a codeword in error. Let êi denote
an error bit-vector, which is all zeroes except for position i, which is a one. Now assume that
the codeword has sustained a single error in bit number i in the datapart, then d̂ � d 7 êi and
p̂ � p. Then the calculation of the syndrome becomes:

ŝ � G d̂ 6 A I 7 p̂ �G � d 7 êi � 6 A I 7 p �GJG d 6 A IK7LG êi 6 A IMIK7 p �
p 73G êi 6 A IK7 p �
êi 6 A

That is: When an error occurs in the datapart of the codeword, the syndrome takes on the
value of the row in A, which has the same number as the bit in error in the datapart. Now

assume that an error has occurred in the parity-part, that is d̂ � d and p̂ � p 7 êi, then the
syndrome decodes as follows:

ŝ � G d̂ 6 A I 7 p̂ �G d 6 A I 7 G p 7 êi I �
p 7 p 7 êi �
êi

Thus, when an error occurs in the parity, the syndrome has the value of the bit in error.
Note that due to the structure of the parity-check matrix, the syndrome takes on the value of a
row in H, which has the same number as the bit in error in the codeword.

3.7 Experiments

A general fault-injection experiment is carried out using two entities: A target and a fault-
injector. The target is the entity in which fault are injected, while the injector causes the fault.
Generally, both entities can be implemented in both hardware and software, but it was chosen
to implement both in software, running on the same processor. The major advantage of this
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setup is that it is quite simple to implement the injector. In the following, ”target application”
denotes an entity used as a target for fault injections.

There are two principal methods in which fault injection experiments can be carried out:
Single injection or continuous injection. In the single injection method, an experiment is
composed of a single injection, followed by an examination of the effects. In the continuous
injection method, faults are injected continuously, until the system is affected. While both
methods are destructive, the former method does not necessarily lead to a failure, while latter
does (it can be described as test-until-destruction). Of course, in either case the system must be
restarted between successive experiments to reverse the effects of the previous fault injections.
In the following experiments, the latter method was used.

An important aspect of fault-injection experiments is not to cause more disturbance to
the target, than intended by the fault-injections. As the fault injector is running on the same
processor as the target application, this will inevitably cause some overhead, and if the over-
head is large enough, it may affect the scheduling properties of the target application, thus
influencing the validity of the experiment. Therefore, emphasis has been put on reducing the
resources used by the injectors.

The experiments were performed on a prototype of the DTUSat onboard computer (OBC),
connected to a PC running Linux using two serial cables. The target application and the
injector were run on the OBC, while the PC was used to load and monitor the progress of the
application/injector. The combination of the OBC and the software running on it is called ”the
clientside”, while the PC and its software is known as ”the hostside”.

3.7.1 Targets

What the above section refers to as a ”target application”, is actually two different targets. The
first target known as ”failsafe”, is the flight-version of DTUSat boot-software. The second
target, known as ”the application”, is an application which resembles the structure of the
DTUSat flight application.

The two targets use different firmware: On the failsafe experiment, the firmware is the
failsafe software, which is also the injection target. On the application, the firmware is a
debug-stub (GDB), which is used to load and run the application. The debug-stub is only used
for support, and is not an injection target itself.

3.7.2 Failsafe Software Injection Experiments

The failsafe software implements a number of telecommands, for instance for uploading and
executing of software and inquiry of the status of the software. In the failsafe experiment
a fault-injector is uploaded in the form of a small application. When the injector has been
started, it runs in the background, thus letting the failsafe software resume its normal opera-
tion. In order to detect when the operation of the failsafe software is affected by the injected
faults, its status is continuously queried during the experiments.
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The objectives of these experiments are to investigate how many injections the failsafe
software can resists, and to determine its failure modes and their frequencies.

3.7.3 Application Injection Experiments

The application is run on eCos, an embedded realtime operating system. The application is im-
plemented as a number of loosely-coupled modules, which communicate by passing messages
trough a shared packet-router. The fault-injector used for the application, is implemented as a
separate high-priority thread, which is a part of the application. As in the failsafe experiment,
the status of the application is continuously monitored, in order to detect when it has been
affected by the injections.

The objectives of these experiments are the same as for the failsafe experiment, and in
addition to investigate how countermeasures to the faults can be implemented in software.
The effects of the countermeasures are measured.

3.8 Hardware

This section presents the platform on which the experiments are run. As mentioned above, the
hardware is a prototype of the DTUSat onboard computer (OBC). The computer comprises
the following components:	 CPU: Atmel AT91 (ARM 7 TDMI variant).	 RAM: 1 M.	 FLASH: 2 M.	 ”PROM”: 1 M.

The CPU is a 32-bit RISC processor clocked at 16 MHz. On the prototype, the PROM
is actually a 1 M FLASH – on the flight version, this was replaced with a 32 K PROM. The
PROM contains the firmware of the system – in this context, the firmware is the software used
to boot the system. The flash is not used in the experiments.

The AT91 comprises a number of peripheral devices, which simplify interfacing to other
equipment:	 8K Internal RAM	 2 USARTs	 An Advanced Interrupt Controller (AIC)	 3 Timer/Counter devices (TC)
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The first 32 bytes of the internal RAM is reserved for the exception vectors (see section
4.2.4), but otherwise it is available for general use. The two USARTs are connected to a level-
converter, implementing two RS232 ports. In the original (DTUSat) configuration, port 0 was
used to interface to the radio-modem and port 1 was used for debugging purposes, using a
cable. On the flight version software, the radio-modem port is configured to 2400 baud, while
the debugging port is configured to 9600 baud, but otherwise they are interchangeable.

However, as the prototypes are not equipped with radio-modems, the radio-modem port is
instead used to facilitate the experiments. The port is reworked such that the OBC can be reset
from the RS232 port – this is done by connecting the RTS signal to the Reset pin through the
level-converter. This leaves the Rx-signal unconnected, but this is not a problem as it is not
used. The Tx-signal remains, which allows status information to be output from OBC. In the
following, port 1 is known as the debugging port, while port 0 is known as the auxiliary port.

The use of the AIC, TC’s and the WD is explained in sections 4.2.4, 4.2.5 and 4.2.6. In
the application, the AIC and TC is handled by the operating system (eCos).
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The Failsafe Injector

In this chapter the failsafe injector is discussed. First the environment in which the injector
is running is described, followed by a discussion of the implementation the injector. Then
the harness used for performing automated experiments is discussed, and the results gathered
from the experiments are presented. Finally, some observed weaknesses are discussed, and
the testing of the implementation is described.

4.1 Environment

In the following, the environment in which the failsafe-injector runs is described.
As previously explained, the injector is run on a prototype of the DTUSat onboard com-

puter, loaded with the flight version software. Except for a few voltage and current-sensors
being absent, the computer is functionally identical to the DTUSat onboard computer. How-
ever, since the failsafe software does not make use of these sensors, it is compatible with their
absence. The payload and support modules are also missing from the prototype, but the only
modules used by the failsafe software is the power and radio -module. The DTUSat and the
prototype has a switch, that selects between the ”docked” and ”non-docked” modes of opera-
tion. The major difference between the modes is which port is used for communications: In
docked mode a local serial port is used, while in non-docked mode the radio-modem is used.
As docked mode is selected during the tests, the failsafe software does not try to use the (ab-
sent) radio module. The failsafe software will try to read a few voltage- and current- sensors
on the absent power-module, but due to their absence, they will all read 0. The sensor-values
are used for returning status-information over the communications interface, and are not used
for calculations or regulations, so the failsafe software is compatible with the absence of the
sensors. The failsafe software can handle a number of temperature sensors, but the number
of sensors and their hardware addresses have to be declared in a special flashblock, but since
none are declared, none are used. As justified above, the flight version of the failsafe software
is compatible with the prototype OBC, provided that it is docked. Furthermore, aside from the

31
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absent devices, the computer and the failsafe software is functionally equivalent to that found
on the DTUSat.

4.1.1 FSTERM

The failsafe software implements a simple protocol, which allows commands to be executed
on the DTUSat using the communications interface (whichever is chosen). The protocol im-
plements a simple request/response interface, in which requests are sent from the hostside to
the satellite, and responses are sent from the satellite to the hostside. Apart from beacons, all
communication is initiated by a request, which must be followed by a response. Thus, there
is no queuing of requests or responses.

The requests are used to implement telecommands, and the responses are used to imple-
ment statuses for telecommands. Using the telecommands, it is possible to upload and run
software on the OBC. A program which is compatible with the failsafe environment is known
as a failsafe program. The telecommands used for uploading and running failsafe programs
are: upload, call_function and get_status. The uses of these telecommands are ex-
plained in section 4.4.

The hostside program fsterm implements a general purpose terminal interface to the
telecommands implemented by the failsafe software. The program can communicate with
the satellite over either interfaces, and in both interactive and batch mode. Refer to [13] for a
detailed description of the commands offered by fsterm. The term ”fs-compatible” will be
used to denote a hostside program, which can communicate with the failsafe software using
the failsafe telecommands.

4.1.2 Creating a Failsafe Program

As with all embedded software, the programming model of failsafe programs is limited com-
pared to that of, say, a desktop system. Beside the support for binary upload, and invocation
of functions on arbitrary addresses, the failsafe software does not offer any services to failsafe
programs.

Using the fsterm command call_function, it is possible to call functions on arbitrary
addresses in memory. A failsafe program may implement functions intended to be activated
using this mechanism. Such functions are known as exported functions. In a trade-off between
generality and simplicity, it has been decided that exported functions must take an unsigned
int argument, and return a unsigned int value. Due to the watchdog, exported functions
should return within 4 seconds. When an exported function is invoked through the functions
call telecommand, it executes using the stack of the failsafe software. As the failsafe stack is
of limited size, care should be taken not to overrun the stack.

Under normal conditions, the failsafe software will allocate its stack in the internal mem-
ory of the processor. As the failsafe software at most will use 3K of stack-space, there is 5K
left on the stack for failsafe programs. The failsafe software does not make use of the external
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memory, so this is free to be used by failsafe programs. Failsafe programs (code and data)
will normally be uploaded to, and run from the external memory (which is also the case for
the failsafe injector).

As the failsafe software does not offer any runtime services, a failsafe program must sup-
ply its own runtime support. For instance, the C-library is not directly supported and all
input/output must be implemented from scratch. As floating points are not implemented in
the processor, all floating point operations are emulated in software, thus being quite time-
consuming. For a more complete coverage of the execution model of failsafe programs, refer
to [14].

4.2 Implementing

As mentioned earlier, the failsafe-injector is implemented as a failsafe program, which is up-
loaded and run using failsafe telecommands. The failsafe software runs as a single task, which
contains a simple command-loop (interpret command, carry out command, return status), and
as such the injector has to run in the background, if it is to inject faults at random moments in
time. This is achieved by attaching the injector to a timer interrupt, by which it is activated on
regular intervals. The injector implements a number of detectors, which are used to detect if
the failsafe software performs erroneously. In order to support the functionality of the injector,
the second serial port is used for injector status information.

4.2.1 Injector Callback

As mentioned above, the injector is attached to a timer interrupt, and is activated as a callback
function on regular basis. The timer generates interrupts at 100 Hz, but as this is a somewhat
higher rate than needed, so the rate is subdivided to generate lower rates. The injector imple-
ments this by means of a decrementing counter. On each invocation of the injector the counter
is checked, and if the counter is non-zero it is decremented and the injector function returns.
When the counter reaches zero, a fault is injected and the counter is reset to a non-zero value.
Thus, the basic injector callback function looks as follows:

1 void injector_cb(void)
2 {
3 if(count--<=0)
4 {
5 injector(base,length);
6 count=dist_exp(lambda);
7 }
8 }
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Here count is the global decrementing counter, used to subdivide the rate. The address-
range used for fault-injection is pointed out by base and length. The fault-rate is given by
lambda (on average lambda invocations per fault).

Injection

The injector part of the fault-injector simply works by selecting a random bit in the range
base and length. The bit-address is uniformly distributed over the length. Thus, the basic
injector looks as follows:

1 void injector(void *base, unsigned int length)
2 {
3 unsigned char *fault;
4 fault=((unsigned char*)base)+dist_uniform(length);
5 *fault ˆ= 1 << dist_uniform(8);
6 }

4.2.2 Exported Functions

The failsafe injector implements a number of exported functions, which are used to initialize,
configure and start the injector. In the following subsections, the usages of these functions are
described. All functions return a dummy value (0), and the functions whose arguments are
not described (start and init), take dummy arguments.

Entrypoint: init : The function init is used to initialize the failsafe program. Because
the operations carried out in init are rather time-consuming, the first thing init does
is to disable the watchdog. As it is the responsibility of a failsafe program to clear its
own BSS, this is done next. Then all bytes of unused internal and external memory is
initialized to 0xEF. This is used to detect runaway executions, as a word of all 0xEF
bytes triggers an exception when executed. Lastly, the on-chip interrupt controller is
initialized.

Entrypoint: set seed : The function set_seed is used to seed the PRNG. It is good prac-
tice to use a seed derived from the wall-clock time, but since the OBC only contains
timers which are reset on processor reset, using these would always yield the same seed
value (or values within a small range). The solution is to use a seed supplied from the
hostside, which is the purpose of this function.

Entrypoint: set mode : The injector supports two modes in which the time between events
can be modeled: ”constant time” (mode=0) and ”exponential stochastic time” (mode=1).
Constant time -mode was used during development because of its simplicity, however
if Poisson distributed events are to be modeled, the exponential stochastic time -mode
must be used.



4.2. IMPLEMENTING 35

Entrypoint: set rate : The average time between events is selected with this function.
Note, that this is actually the reverse of the rate, i.e. not events per unit of time, but
units of time between events. Due to details of the implementation, the time-unit of
the constant time mode is 1

100 s, while the time-unit of exponential stochastic mode is
1

1600 s.

Entrypoint: start : As the name suggests, this function starts the injection. However,
before the injector is started, the other major module of the failsafe injector, the detector,
is started. The detector is used to detect if and when the failsafe software performs
an illegal execution. The detector implements several means of detection, which are
discussed in section 4.2.6.

4.2.3 Stack Usage

As mentioned in section 4.1.2, failsafe programs initially use the same stack as the failsafe
software itself, which limits the amount of memory that can be allocated off the stack. How-
ever, the exported functions of the failsafe injector are ”small” functions, which will not over-
flow the failsafe stack, but some stack management is still needed, as interrupt-handlers have
to run on separate stacks on the ARM architecture. Therefore, an interrupt stack is set up as
a part of the function prologue to start – the function also uses this stack, even though it
should be ”small” enough to run, using the failsafe stack.

4.2.4 Vectoring

The ARM architecture implements a number of so-called vectors, which are used to activate
interrupt and exception handlers. The first 8 words of the address-space are used for the
vectors, of which there are 7 defined (leaving one vector reserved for future extensions). As
the failsafe injector is event-driven, it depends heavily on interrupts and exceptions. The
following table briefly describes the vectors used in the injector.

Undefined Instruction : As the name suggests, this exception is raised if the processor at-
tempts to execute an undefined instruction.

Software Interrupt (SWI) : Normally software interrupts are used to implement system
calls. A software interrupt is raised upon execution of a SWI instruction.

Prefetch Abort : A prefetch abort exception is raised if the processor tries to read an in-
struction from an address, which lies outside the address-space.

Data Abort : A data abort exception is similar to the prefetch abort, but is raised when the
processor tries to make a data access (read or write) outside the address-space.
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Interrupts Request (IRQ) : Interrupts are raised by peripheral devices (internal or external
to the processor). Note that since only one interrupt request vector is defined, a request
from any device will raise this exception. It is the responsibility of the interrupt-handler
to determine which device raised the interrupt.

Interrupts

The AT91 processor implements a number of independent interrupt sources, each of which
can be independently prioritized and masked by means of the Advanced Interrupt Controller.
The AIC also provides the source of the interrupt to the interrupt-handler, thus simplifying the
handler.

As the injector make use of more than one interrupt source, the common code to attach and
handle interrupts has been implemented as a common module. The interface to the module
consists of two functions:	 void aic_init(void): This function is used to initialize the AIC, and must be called

before any interrupts can be used.	 void aic_register(void (*handler)(void),
unsigned int mode,
unsigned int id): This function attaches a callback ’C’ func-

tion to the interrupt with number id. The mode controls the interrupt priority, and
whether the interrupt should be level or edge triggered.

The premise of the failsafe software was that it was implemented as simple as possible,
which means that all device-accesses was implemented using polling. As the failsafe software
does not use interrupts, the failsafe injector find the AIC is in its reset state. The function
aic_init first disables all interrupts in the AIC 1, and then attaches the interrupt-callback
(aic_cb) to the IRQ vector.

For each interrupts-source, the AIC has a register which holds the address of the associated
handler. The AIC assists the interrupt handling by means of the ”IRQ vector register”, which,
on the activation of an interrupt, is loaded with the address of the handler of the corresponding
interrupt. Therefore, in order to activate the callback of an interrupt, the interrupt-handler
only has to call the function pointed out by this register. The interrupt mechanism is used
for generation of the timer clock, which drives the fault-injection, and for watchdog timeout
detection.

4.2.5 Timer Generation

The AT91 processor implements three timer-counter devices, which can be programmed to
generate a combination of waveforms and interrupts. The waveforms can be generated on

1In the reset state the interrupts should be disabled, but it does not hurt to do it again, just to be safe.
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both the external pins of the processor, and on internal ’pins’ connected to the other counters.
The failsafe software uses the first timer (timer 0) to create a 100 Hz clock, which is used

to clock the two other timers. The two other timers are then used by the failsafe software to
create precise delays. Since timer 0 is already programmed to generate a 100 Hz clock, it
can be reprogrammed to also generate interrupts with this rate. As the interrupt-generation is
independent from the waveform generation, this does not interfere with the normal operation
of the failsafe software.

The injector callback function is attached to the interrupt of timer 0.

4.2.6 Detectors

An important component of the failsafe injector is the detectors, which are used to detect if and
when the failsafe software performs illegal executions. Of course, the failsafe software does
contain detectors of its own, but these are not really suitable for carrying out experiments.
Therefore, the injector replaces the existing detectors with its own. The replaced detectors
correspond to the following exceptions:	 Undefined Instruction	 Prefetch Abort	 Data Abort	 Software Interrupt (SWI)	 Watchdog Timeout (IRQ)

The reasons for catching the exceptions ”Undefined Instruction”, ”Prefetch Abort” and
”Data Abort” should be obvious.

As neither the failsafe software nor the failsafe injector use or define software interrupts,
the processor should never execute SWI instructions. This fact is utilized to detect runaway
execution, i.e. if the processor starts to execute where there should be no code: The unused
bytes of RAM is filled with the value 0xEF, which will trigger a software interrupt if executed.
An unconditional SWI instruction has the general format 0xEF******, where the asterisks may
be any 3 bytes value. So generally, any word starting with 0xEF should trigger the software
interrupt. However, it is possible that the injected faults cause the execution to transfer to an
unaligned address. If unaligned data (of any kind) is read by the processor, the RAM interface
will rotate the data one or more byte-positions, presenting corrupted data to the processor.
For instance, if the word 0x12345678 is placed on an aligned address, a read on address+1
will yield 0x78123456 (if the target is little-endian). However, the processor can have only
one interpretation of the word 0xEFEFEFEF, no matter how many byte-positions it has been
rotated.
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The failsafe software uses a watchdog timer to ensure that the software does not deadlock.
If the watchdog is not reloaded on regular intervals, it will timeout and cause one or more
events, depending one how it is programmed. In the failsafe software, the watchdog is pro-
grammed to perform an internal reset of the processor in the event of a timeout. However, as
this behavior is not suitable when performing experiments, the watchdog is reprogrammed to
raise an interrupt instead.

4.2.7 UART

As described in section 3.8, the AT91 contains two serial ports. The debugging-port is used
to communicate with a fs-compatible hostside program, while the auxiliary-port is used for
returning information from the injector. As the failsafe software does not provide a serial
driver for failsafe programs, the injector has to implement its own. The interface to failsafe
UART-driver consists of three functions:	 void uart_start(void): This function is used to initialize the UART, and must be

called before any bytes are sent or received.	 void uart_sendarray(unsigned int count, const char *buffer): This func-
tion transmits the contents of the buffer on the port.	 char uart_receivebyte(void): This function receives (polls) a byte from the port.

In order to cause the least possible disturbance to the failsafe software, the UART-driver is
optimized to use as little CPU-time as possible. This is done by two means: First, the UART
is set up to run fairly fast (19200 baud), and secondly, the driver uses the hardware-provided
”Peripheral Data Controller”. Each UART has an associated Peripheral Data Controller, that
can automatically transfer blocks of data between the UART and the memory, without inter-
vention from the CPU (besides the initiation of the transfer).

While the UART-driver does contain the function uart_receivebyte, it is not used by
the injector.

Status Information

The status information returned on the auxiliary port is formated as lines of text. For each
event, the failsafe injector returns one or more lines of information. For each injection, the
injector returns two lines of status information:	 Injection: I<address> <before> <after>

delay=<time>
address is the address of the fault-injection, before and after are contents of the
32-bit word covering address before and after injection. time is the time (in number
of ticks) before the next injection.
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Each detector returns a single line of information when activated. The format of the infor-
mation returned by the detectors share the first two values – these are the time in which the
injector has been active, and the count of faults injected. Following these two values, zero or
more detector-specific values can follow, as described below:	 Undefined Instruction : U<time> <count> <address>

address is the address of the offending instruction.	 Prefetch Abort : U<time> <count> <address>
address is the address of the offending instruction	 Data Abort : U<time> <count> <address1> <address2>
address1 is the address of the offending instruction, while address2 was intended to
be used for the offending address (i.e. address of the datum being attempted loaded or
stored). However, this requires that the offending instruction is decoded, and was not
implemented.	 Software Interrupt : S<time> <count> <address>
address is the address of the offending instruction	 Watchdog : W<time> <count>

All values are returned as 32 bit unsigned hexadecimal values.

4.2.8 Injector Main Components

Figure 4.1 shows the main components of the failsafe injector, and their internal commu-
nications. As can be seen, all components are driven by events, originating from hardware
interrupts or exceptions.

4.2.9 Creating the Failsafe Program

An important aspect of embedded programming is linking. As mentioned in section 4.1, the
failsafe software does not provide support for loading of executables, which complicates the
loading of the program. In the following it is described how the failsafe injector is linked, and
how the binary image of the program is created.

Linking

As the platform does not support virtual memory, the linking of the program, has to take this
into account, and place the executable on the correct address.

There are basically two methods of controlling the location of a program: Either through a
linker-script, or through the commandline options. A linker-script allows for detailed control
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Figure 4.1: Main components of the failsafe injector, and the communication between these.

of the individual sections and symbols of the program, while the commandline options only
allows the base-address of each section to be specified. As the failsafe injector does not need
fine-grained control over the linking process, the latter method is used.

When the commandline method is used, the linker allows specification of base-addresses
of the three major program sections: text, data and bss. If only the base-address of the text
section is specified, the linker will place the data and bss sections immediately following the
text section.

Therefore, the failsafe injector is simply linked by setting the base-address of the text-
section to 0x02020000. The linker outputs the executable in elf-format, but since the failsafe
software can only handle raw data, a binary image must be generated, which is done using the
objdump utility. The binary image generated by the objdump utility can be directly loaded
using the failsafe software and an fs-compatible program.

Exported Functions

From a practical point of view, it is an advantage if the exported functions are located on
preselected locations in memory. Below is shown the exported functions and their respective
entrypoints:

Entrypoint Function
0x2020000 init
0x2020004 start
0x2020008 set seed
0x202000c set mode
0x2020010 set rate
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Note that the exported functions seemingly only occupy a single instruction each. This is
because the initialization-code (init.S) contains a table of stubs, which dispatch the control
to the real functions. When the linker links a program, it generally emits the symbols in the
order in which they are encountered in the objects, which means that the initialization-code
must be linked first, in order for the table of stubs to be placed correctly.

4.3 Distributions

As stated in section 3.4, the chosen PRNG is the ”Mersenne Twister”. The Mersenne Twister
is seeded by an unsigned long value, and generates unsigned long values. The seeding
function is called sgenrand, and the randomizing function is called genrand.

4.3.1 Uniform Distribution

Specific uniform distributions can be created using the function dist_uniform(last), which
creates uniformly distributed values in the range  0; last � 1 ! . Recall from equation 3.1 that a
specific uniform distribution can be generated from a general uniform distribution by using the
rejection method. The rejection method requires a mapping, which can create a intermediate
distribution, and a predicate, which can determine whether a value from the intermediate
distribution is located in the specific distribution.

For the mapping a bitmask is chosen, which maps to the smallest n-bit integer-type, which
can represent integers in the range  0; last � 1 ! . Thus, a sequence of bitmasks maskn is created,
such that the binary representation of maskn has the n least significant bits set to one (or:
maskn � 2n � 1 , n & 0). The smallest n, for which last N maskn is then sought for.

The ”accept and reject” iterations can then be performed: A general random number is
generated, masked with maskn, and compared to last. If the number is larger or equal to last,
it is rejected, and the algorithm performs another iteration. If the number is less than last, it
is accepted, and the number is returned.

The specific uniform distribution is implemented as follows:

1 unsigned long dist_uniform(unsigned long last)
2 {
3 unsigned long mask, srn;
4 unsigned int numbits;
5
6 // first find the smallest bitmask, such that last&mask==last
7 for(mask=0, numbits=0; last >= mask; mask=(mask<<1)|1, numbits++);
8
9 for(srn=(genrand()>>(32-numbits))&mask; srn >= last;

10 srn=(genrand()>>(32-numbits))&mask);
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11
12 return srn;
13 }

Note that the implementation uses the most significant bits of the general distribution,
rather than the more intuitive least significant ones. The reason for this is that the more signif-
icant bits are generally more random than the least significant ones (according to [6]). Since
the number of rejectable values in the intermediate distribution is always less than the num-
ber of acceptable values, the probability of selecting an acceptable value is greater than 0.5.
Therefore, the estimated number of iterations it takes to produce a value in the intermediate
distribution is between one and two.

4.3.2 Exponential Distribution

Recall from equation 3.2, that an exponential distribution can be created from its potential
function, by isolating the argument, and applying a uniform unity distribution in the place of
F
�
t � , thus:

e � 1
λ
O� ln

�
u �

Where u � U ! 0;1 ! . As the ARM processor does not incorporate a floating point unit,
floating point operations must be emulated in software, making them quite slow. Of course,
this applies to both the logarithm and the division/multiplication of floating points. Note
also, that the ARM processor does not support integers division, but it does support integers
multiplication. As the overhead of the injector should be kept at a minimum, it is desirable to
try to optimize the calculation.

As it was noted in section 3.4, the calculation of the logarithm can be tabulated, and since
the ARM processor has a general problem with floating points, why not tabulate it in an integer
representation? The obvious problem is lack of precision, but this can be overcome.

Multiplying the right hand side of the equation by 64K P 64K yields:

e � 1
λ
O� ln

�
u �  64K

64K
� 16

λ
O� 4K  ln � u �  1

64K
(4.1)

Substituting with the expressions a � 16 P λ and h
�
u � �Q� 4K  ln � u � yields:

e � a  h � u �  1
64K

(4.2)

Note that u should be a continuous uniform distribution over the interval ! 0;1 ! , but as the
PRNG generates discrete integer values, there is a need for a mapping, which can approximate
the desired distribution. It has been chosen to use the following mapping:
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m
�
û � � û � 1

2

2K
(4.3)

Thus, if û � U � 0 ��������� 2K � 1 � then m
�
û � � U � 1

2 ��������� 2K � 1
2

2K �R� u, and h
�
m
�
û ��� � h

�
u � . Sub-

stituting ĥ
�
û � �TS h � m � û ���%U ��SV� 4K  ln W û � 1

2
2K X U leads to:

h
�
u � � ĥ

�
û � (4.4)

As û has a specific discrete uniform distribution, it can be created directly. The function
ĥ
�
û � is easily tabulated for û �F� 0 ��������� 2K � 1 � . The reason for adding 1

2 in the mapping is
that when tabulating ĥ, the value ĥ

�
v � 1

4K � is a more precise representation of ĥ in the range v;v � 1
2K , than ĥ

�
v � is. Note, that the mapping also makes sure that u P� 0, which neatly makes

sure that the tabulation of ĥ
�
û � does not include a calculation of ln

�
0 � .

If â �YS 16
λ U � a, then

e � â  ĥ � û �  1
64K

(4.5)

As each experiment uses a constant fault intensity, λ will be constant, and therefore it it
only necessary to calculate â once per experiment. As â  ĥ � û � evaluates to an integer, the
multiplication by 1 P 64K can be implemented as a simple shift operation. The function ĥ

�
û � is

implemented as an array of unsigned short int’s called dist exponential array. The
implementation of the exponential distribution function looks as follows:

1 unsigned int dist_exponential(unsigned int a)
2 {
3 unsigned int u, h;
4
5 u=dist_uniform(EXP_DIST_OPT_SAMPLES);
6 h=dist_exp_array[u];
7
8 return (a*h) >> EXP_DIST_OPT_SCALE_SHIFT;
9 }

where Z\[^] _a`cbed fg]hd b^igjk]kl^Zmbn� 2K and Zk[h] _o`ebed fg]hd b^phihl^Z beqo`Mrhds� 64K.
Note that the exponential distribution implementation is used in both the failsafe and the

application injectors.
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4.4 Harness

In order to perform experiments with the failsafe-injector, an fs-compatible hostside harness
is produced. The harness comprises three threads: A main thread, which initiate the exper-
iments, and two control-threads, which are created for each experiment. The first control-
thread, called fs_thread, communicates with the failsafe software, and the second thread,
called log_thread, logs the output of the injector.

4.4.1 Main thread

The main thread parses the command-line parameters, and creates the two control-threads.
The harness supports the following command-line parameters:

Parameter Description
-p Selects name of binary image to run.

Defaults to injector_failsafe.bin.
-m Selects injection mode (i.e. 0=constant rate, 1= exponential stochastic).

Defaults to 0.
-r Selects injection rate.

Defaults to 100 ticks per injection.
-c Selects number of experiments to run.

Defaults to 10.
-l Selects the basename of the logfiles.

Defaults to on-screen logging.
-df Selects the device-name of the serial-port to use for fs-communication.

Defaults to /dev/ttyS0.
-dl Selects the device-name of the serial-port to use for injector logging.

Defaults to /dev/ttyS1.

As can be seen, the harness support batch-operation using the -c-parameter. If more than
one experiment is selected, the harness runs a number of identical experiments, which only
differ in the logname (if any) and the seed-value (see section 4.4.2). The logfile basename
allows the output from each experiment to be placed in separate files. For each experiment,
two logfiles are created – one that logs the injector status information, and one that logs the
communication with the failsafe software. The names of the logfiles is the logfile basename
appended with the suffix _<c>.fs and _<c>.inj respectively (where c is the number of the
experiment). The typical use of the logfile basename is to create a directory for a series of
experiments. Note that while the harness does parse the -df and -dl parameters, it does not
respect the names supplied (i.e. the default values are always used).

For each experiment, the main thread creates two control-threads, which control the serial
communications. After the creation, the main thread awaits the termination of the control-
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thread before continuing.

Each control-thread is passed a set of arguments, corresponding to the commandline pa-
rameters needed by the thread. The fs_thread is passed the filename of the injector and its
configuration parameters (i.e. the rate and the mode). The inj_thread is passed a timeout-
value (i.e. the maximal expected time between injections). Both threads are passed the name
of the logfile to use (if any), and a flag-variable and a mutex.

The communication between the control-threads is kept at a minimum, but due to details
in the implementation of the serial-port driver on Linux and the failsafe software, some com-
munication is needed.

As the failsafe software needs to be presented a ”password” on the debug-port in order
to use it for fs-communication, the debug-port on the PC must be ready for communication
before the OBC is reset. In order to prevent a race-condition between opening the debug port
and resetting the OBC (using the auxiliary port), a mutex is used for synchronization.

Both threads are passed a reference to a flag-variable, which is polled regularly. The
variable is initially false, but if it becomes true, the thread is supposed to exit. Each control-
thread is passed a reference to the other threads flag-variable, such that each thread can request
the completion of the other thread. This way both threads can be orderly terminated when one
detects that the experiment has ended.

4.4.2 FS Logging and Load-Generation

The thread fs_thread is responsible for the communication over the debug-port. This com-
prises answering the prompt; uploading, configuring and starting the injector and reading the
status of the failsafe software.

As explained above, the debug port must be ready for communication before the OBC
is reset. Therefore, the debug-port is opened, after which the mutex is unlocked. Then the
prompt is awaited and the password is given. If the prompt/password procedure fails, the
thread requests the other thread to exit, and exits itself.

Otherwise, the experiment continues: The status of the failsafe software is queried and
saved for later reference, because this is a known-good reply to the query. Then the image of
the failsafe injector is uploaded, and the initialization function is called. A seed for the PRNG
is generated using the usec value returned by the gettimeofday system call. Then the seed,
mode and rate parameters are set, and the injector is started.

Then the status of the failsafe software is queried continuously, until the other thread re-
quest the fs_thread to exit. The reply to the query is checked on several levels: If a message
is successfully received, it is checked if the size of the reply is valid. Then the contents of the
reply is compared to the saved known-good reply.
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check protocol status
some error result: ”error”
no error compare size to ”known-good”

differ result: ”Wrong size of reply”
same compare contents to ”known-good”

differ result: ”Reply corrupted”
same result: ”OK”

The harness produces text-based logfile of each attempted status inquiry. The format of the
logfile is get_status: <result>, where result corresponds to one of the results mentioned
above. The logfile does not convey any timing-information, but as each result takes a fixed
amount of time to complete, the relative time of a result in the logfile can be derived simply
by counting the number of prior results.

Generally, it takes 1 second to send a status inquiry and get the result back, even if the
result is corrupted. The only deviation to this rule-of-thumb is when an inquiry times out.
In this case it takes about four seconds to come to this conclusion. A simple measure of the
performance under fault-injection, is the time from the beginning of the experiment to the first
sign of failure (i.e. the first time a non-OK result is returned). As the time it takes to produce
an OK result is assumed to be constant, the number of OK results before the first non-OK
result is a directly proportional to elapsed time.

4.4.3 Injector Logging

The thread log_thread is responsible for communication over the auxiliary-port. This com-
prises resetting the OBC and logging the injector status information. As noted above, the two
control-threads need to synchronize in order to prevent a race-condition. This is done as part
of the OBC reset: First the OBC is held in reset state for 10 ms, then the threads synchronize,
and then the OBC is released from the reset state. Then the logging of the failsafe-injector
starts. The input is read line-by-line, and written verbatim to the logfile and screen. The
line-read function is subject to a timeout, and the loop exists if the read times out. The loop
also exits if an exception on the OBC is detected, or if the other thread requests so using the
exit-flag. When the loop terminates for whatever reason, the other thread is requested to exit.

As injections happen regularly (even when using the stochastic model), it is possible to
define a threshold, which can be used to determine if the injector has become unresponsive.
This situation is referred to as ”Communication Lost” in their results-section.

Refining the Log-files

This section will not go into details of how the logfiles are processed, but for completeness
the matter is touched briefly here. Each experiment results in two log-files, one logging the
output of the failsafe software, and one logging the output of the injector. The log-files are
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plain text-files formatted as one line per event, and as such they can be processed with standard
text-tools such as: grep, sed, nl, head and tail.

For instance, finding the number of the last occurrence of a given word can be done by
using grep to find each line with the word, using nl to number every such line and using tail
to isolate the last one. Using an appropriate regular-expression substitution, sed can be used
to isolate the number-part of the output from the grep | nl | tail-command.

4.4.4 Resetting the Clientside using RTS

As described in section 3.8, the RTS signal on the auxiliary port is used to reset the OBC. On
the PC/Linux, the RTS-signal is normally handled automatically by the UART if hardware
flowcontrol is enabled. However, by using ioctl’s, it is possible to manipulate the signal
directly. The RTS is connected such that, when RTS is set, the OBC is held in reset state; and
when RTS is cleared, the OBC is running. On the PC, the port is opened as a device-file. The
following snippet will create a pulse which resets the OBC:

1 int bits;
2 int fd;
3
4 bits=TIOCM_RTS;
5 ioctl(fd, TIOCMBIS, &bits);
6 delay(pulse);
7 ioctl(fd, TIOCMBIC, &bits);

Here, the codes TIOCMBIS and TIOCMBIC means set, respectively clear the indicated bits,
and TIOCM_RTS means the RTS-signal. Of course, the fd is the filedescriptor of the device.
Note that if the port is closed, the RTS will return to the set state (i.e. the OBC is held in reset
state).

This procedure for resetting the target is used in both the failsafe and the application
harness.

4.5 Results

A number of experiments have been carried out using the failsafe injector – in this section,
the results of these experiments are presented. The experiments were all performed using
exponential stochastic simulation with four different rates. In the table below, the number of
experiments carried out with each rate is shown 2.

2Note that the result of some experiments have been discarded, due to problems in the injection logs: Some-
times the OBC seemingly begins to transmit 0xFF bytes.
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For each experiment, a number of figures are calculated based on the failsafe and injector
logfiles. From the failsafe logfile, the following figures are extracted:

last OK : The number of the last successful status query. Beyond this count, the failsafe
software is unable to provide the desired service.

first non-OK : The number of the first failed status query. This marks the first time a prob-
lem is encountered.

number of good replies : The number of successful status queries.

number of bad replies : The number of failed status queries.

Figure Rate 10 Rate 100 Rate 1000 Rate 6000
# experiments 96 97 97 47t
last OK u 8.9 166 3060 15064t
first non-OK u 2.3 18 193 885t
# good replies u 5.7 158 3042 14997t
# bad replies u 16.2 53 934 4848t
runtime u 2072 9570 102834 509871t
# injections u 198 96 103 85

runtime to # inj ratio 10.5 99.7 998 5998

As can be seen, the runtime to # inj ratios are approximately equal to the injection rates,
which supports that the stochastic simulation is correct (i.e. that the injection-rates are cor-
rect).

From the injector logfile, these figures are extracted:

cause of failure : The cause of the failure corresponds to either one of the detectors, or a
harness-timeout (”Comm Lost”).

runtime : The number of ticks in which the injector has been active.

number of faults : The number of injections made by the injector.

exception address : The exception address. Note that the failure-causes ”Comm Lost” and
”Watchdog” does not have associated addresses.

For each rate, the frequency of each cause of failure is calculated. The extracts of the
experiments are listed in appendix B.
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Rate 10 Rate 100 Rate 1000 Rate 6000
Cause of Failure # % # % # % # %
Data Abort 29 30 36 37 35 36 23 49
Prefetch Abort 24 25 22 23 17 18 10 22
SWI 7 7 5 5 4 4 0 0
Undef. Instr. 1 1 2 2 1 1 1 2
Watchdog timeout 21 22 16 16 22 23 10 22
Comm. lost 14 16 16 16 18 19 3 6
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4.5.1 Causes of Failure

In the figure below, the frequencies of failure-causes are plotted against the average time
between injections (λ � 1). As can be seen, the predominant failure-cause is Data Abort with a
frequency of about 30% to 50%, while the frequencies of Undefined Instruction and SWI are
quite low. Also, note that the frequency of Data Aborts seem to rise with higher λ � 1.
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Figure 4.2: Frequency of failure-causes.



4.5. RESULTS 51

As explained in section 4.4.2, the number of the first non-OK status inquiry can be used
as a measure of when the failsafe software experiences the first effects of the fault injections.
Intuitively, this measure should be proportional to λ � 1. Each number of the first non-OK
inquiries divided by the corresponding λ � 1, is plotted against λ � 1. The average values are
marked diamonds and, as the figure shows, it has a value of about 0.2 regardless of the value
of λ � 1. This is equivalent to about 20 injections before the first sign of failure.
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Figure 4.3: Time of first observation of problem.
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As with the time to first failure, the time to destruction should intuitively be proportional
to λ � 1. The figure below shows the total runtime of the injectors divided by λ � 1 against λ � 1.
Again, the average values are marked with diamonds. As can be seen, the average values for
λ � 1 �v� 100 � 1000 � 6000 � are all about 100 – corresponding to about 100 injections before total
failure. For λ � 1 � 10 the average value is about 200. This indicates that for λ � 1 & 100, the
simulations provide results which are independent of the rate – it is merely a scalefactor. A
similar pattern is seen in figure 4.3.

0

500

1000

1500

10 100 1000 6000

count

Figure 4.4: Number of injections before failure.

4.6 Discussion

While the failsafe injector has proved quite effective, there is always room for improvements.
In this section, some improvements to the injector are suggested.

One of the problems with the injector is that the resolution of the timer used for injections
is quite low. The reason for this is that the injector is implemented to be as little intrusive as
possible. As there are no free timers available, it reuses the one timer which has a usable setup
by default.

The fact that the communication is sometimes lost is not very satisfying, as all failures
ideally should be detected on the clientside. And as can be seen in the results section, the
frequency of experiments, which end with loss of communication is rather high for some
injection rates. A reason for the loss of communication, is thought to be that the detector-part
of the injector has been damaged by secondary effects of the injections, and is therefore unable
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to detect (or to convey) the fact that a failure has occurred. Of course, damage to the failsafe
injector can be prevented by hardening: The code of the injector can be effectively hardened
by placing it in FLASH, and the global data of the injector can be hardened by unmapping its
memory, when it is not in use. Mapping and unmapping the memory as needed is of course
challenging, but expected to be entirely feasible.

Another weak point of the simulation is the gathering of statistics. In the current im-
plementation, the injection-counter and the injector clock is implemented on the target, and
therefore also sensible to secondary effects of the injections. A safer way to obtain the same
statistic, is to simply count the number in the injector logfile. Also, the logfiles data suffer from
the absence of timestamps. If the individual entries of the logfiles had been timestamped, the
runtime statistics would have been more precise.

If the failure-modes of the failsafe software was to be further examined, it would be useful
to add instruction decoding to the data abort exception handler. This way, the handler could
provide the address of the offending access.

A last issue is whether the performed experiments provide results, which are representative
of lower injection rates. The results presented in figure 4.3 and 4.4 suggests that this is the
case, but recall from section 3.3.2, that the upset-rates which can be experienced in LEO are
more than a factor 1000 lower than the simulated rates.

4.7 Testing

The failsafe software has an associated test-suite which tests certain key functionalities of
the failsafe software. This includes creation and loading of failsafe programs, setup of the
debug-port and testing of exception-handlers.

The failsafe injector is based on this existing code-base, and for the interrupt mechanisms,
the major new developments are setup of interrupt-sources (WD and TC’s) and programming
of the AIC. However, these mechanisms are quite easy to test, as they are completely linear
(i.e. there are no conditions or branches in the execution). The only state maintained by
the interrupt-handling is the end-of-interrupt flag, implemented in the AIC. This flag must be
cleared following the handling of the interrupt. Failing to do so will prevent future interrupts
from being handled, which means that it is quite simple to test if this part works.

Also, the injector logging can be used for testing, as it provides detailed information about
the injector operation (i.e. the injection address, and the contents before and after). This infor-
mation is also useful for assessing the probable damage caused by the individual injections,
as knowledge about the memory layout the failsafe software allows the observer to identify,
for instance code-pointers (i.e. addresses in the PROM) and data-pointers (i.e. addresses in
the internal RAM).

The other new major part in the failsafe injector is the implementation of the exponential
distribution. The exponential distribution has been extensively tested during development, to
control that the approximations does not cause unacceptable errors. The exponential distribu-
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tion has been tested by calculating histograms of the synthesized distributions, and comparing
these with the theoretical values obtained from the definition of the stochastic mass function.
Practically the tests were performed by defining a number of buckets in the expected output
range, and then do a simulation in which each output is placed in the appropriate bucket. In
principle, the exponential distribution can produce infinitively large values, but for practical
reasons, N � 1 buckets are defined: The first N buckets are equally sized, and cover the range! 0;2 � 5  λ � 1 ! ; and the last bucket covers the rest, i.e ! 2 � 5  λ � 1;∞  .

The simulation of the distribution can be done in two different ways: Either one can use the
full implementation of the distribution, i.e pass a U � 0 ����� 1 � distribution through the mapping;
or one can pass a number of equidistant numbers in the range ! 0;1 ! through the mapping. The
difference is that the former approach tests both the PRNG and the mapping, while the latter
approach tests only the mapping. Both approaches have been used, and performing 1000000
experiments, using 20 buckets and λ � 1 � 100 (corresponding to one event per second) gives
deviations between 1 and 5 percents. Using λ � 1 � 1000 (corresponding to one event per ten
seconds) gives deviations of at most 2.5 percent, but most below 1.5 percent, and some below
1 percent.
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The Application

In this chapter, the ideas behind the structure and implementation of the application is ex-
plained. Opposed to the failsafe software, the application is implemented specifically for
experimental use, but its basic structure is similar to that of the DTUSat flight application.

As previously mentioned, the application is implemented as a set of loosely-coupled mod-
ules, which communicate through a shared packet-router. The use of a packet-router is actu-
ally an application of the partitioning principle, described in 2.1.1. By using this principle,
the software is effectively divided into modules with well-defined interfaces.

The application is running on an embedded real-time operating system called eCos. As it is
customary for these kinds of operating systems, it is realized as a library which the application
is linked against. The fault injector for the application is implemented as a thread – it is thus
an integral part of the application. The experiments assume that the application has already
been hardened, by placing all code and static data in non-vulnerable storage. The faults are
therefore only injected into the assumed vulnerable storage.

5.1 Environment

The environment in which the application runs is provided by the clientside firmware and a
hostside debugger. The firmware is a Gnu debugging stub (GDB-stub), using a 57600 baud
RS232 connection on the debugging port. The debugger is the basic Gnu debugger used in
commandline-mode.

The GDB-stub is a relative unintelligent device, which provides a series of low-level prim-
itives to the debugger. The debugger uses these primitives to provide complex functionality,
such as breakpoints, inquiry of memory contents and upload of executable files. In this way,
the debugger is the brains, providing the intelligence; while the GDB-stub is the arms and
legs, providing the hard work. In the following, the term ”GDB” will be used to signify the
combination of the stub and the debugger (or their combined capabilities etc.)

Like a fs-compatible program, the GDB provides the means of uploading, configuring and
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running the application, but opposed to using an fs-compatible program, the application does
not have to be made into an image before upload, as GDB can handle ELF-files directly.

In the following experiments, the auxiliary port is only used for resetting the clientside, as
the injector information is transmitted to the hostside using the GDB-connection.

5.1.1 eCos

As previously mentioned, the application is run on eCos, an embedded RTOS. eCos is a
highly configurable and modular OS, which supports many popular microprocessors and de-
vices/services. eCos provides a range of base-services, such as:	 Multi-threading and synchronization-primitives (e.g. mutex and semaphores)	 Console input/output (using a serial connection).	 C-library support.	 Floating point emulation1.

The eCos configuration is a default configuration, with the option ”Decode Exception
types in kernel” enabled. This enables the detector system to separate exception types from
each other.

5.2 Implementing

The application is implemented as a set of modules, which implement tasks typically found in
an onboard satellite-application. The modules communicate with each others each with vir-
tual devices, simulating devices commonly found in a satellite. Furthermore, the application
provides support for fault injections and EDAC, which are discussed in the following chapter.

5.2.1 Module-based Implementation

The application consists of a number of modules which, in this context, is an entity which
has a unique address, and which is capable of communicating with other modules using the
shared packet-router.

The communication between modules consist of messages, and from a packet-centered
point of view, a module is an endpoint of communication. In the following, a message is a
specific instance of a packet.

The services of the packet-router consist of a set of queues, and the primitives sendMsg
and getMsg. The queues are known as ”inboxes”, and each inbox has an associated address

1Note that even though floating point emulation is available, it is not used in the injector.
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(i.e. module). Using the sendMsg-primitive, modules can enqueue messages on inboxes, and
using the getMsg-primitive, a module can retrieve the first message on its inbox.

In order to be able to communicate, each module must at least implement a thread, which
monitors its inbox. This thread is known as the modules inbox-thread, and the modules are
implemented following the rule that only the inbox-threads are allowed to retrieve messages.
However, the other threads are allowed to send messages.

5.2.2 Selection of Modules

The application is designed with the following two objectives in mind: It should be complex
enough to simulate a realistic scenario, but also of limited size and complexity. In this context,
it is considered a realistic scenario, if the application accesses a couple of devices, and does
some inter-module communication.

A module can be classified according to whether or not it accesses devices, and if the
accesses comprise reading, writing or both. This gives rise to four classes of modules, and
for systematism it was decided to specify one of each type. In addition to these four modules,
a special watchdog-module was also specified. In the following, the main objectives of the
modules are described:

Module Non Comm: The Non Comm-module does not access any devices, but implements a
database used to store samples provided by the In- and InOut- modules. This resembles
the housekeeping-module in the DTUSat application.

Module In: The In-module reads samples from B-device and sends the samples to the Non
Comm- and Out- modules.

Module Out: The Out-module receives samples from the In-module, and writes the samples
back to B-device.

Module InOut: The InOut-module implements a regulation-loop, which tries to prevent
changes to the values sampled from the A-device by applying opposite directed ”forces”.
The samples read, are sent to the Non Comm-module. The implemented algorithm re-
sembles the Ḃ-algorithm employed in the attitude-control module of the DTUSat appli-
cation.

Module WD: The WD-module implements a watchdog algorithm, which is used to ensure
that all modules are operative, by querying each on a regular basis. The WD-module
is supported by the WD-device, which implements a watchdog, that must be ”touched”
on regular intervals.
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5.2.3 Simulated Devices

As mentioned above, the application uses a number of simulated devices. The device-names
A and B are quite imprecise, but they are chosen in order to emphasize, that the devices are
not meant to provide a detailed simulation of any actual device. The communications between
modules and devices are implemented as simple function-calls. The devices are described in
the following:

Device A: The A-device simulates a virtual object, which can move on a single axis. The
current position of the object can be obtained using the read-primitive, and a force can
be applied to the object using the write-primitive. Furthermore, the object is subject to
external forces of random size and direction at random moments in time.

Device B: The B-device provides random samples using the read-primitive. After a sample
has been read, the device blocks the read-primitive, until a value has been written to
the device using the write-primitive.

Device WD: The WD-device provides only a single primitive: touch. This primitive is used
to reset the watchdog timer, and must be called on regular intervals in order to prevent
the watchdog to time out. On timeout, the watchdog causes the application to halt
with an error-message. Also, the WD-device provides a timer, which is used to limit
the runtime of the application. When this timer times out, the application halts with a
special message. This timer is used in the experiments to ensure that they do end at
some time.

5.2.4 Logical Connections in the Application

Figure 5.1 shows which logical connections exist in the application, and by which means they
are provided. The packet-router provides logical interconnection between the modules, while
some of the modules communicating with devices.

5.2.5 Packet communication

In this section, the basis for packet-based communication is described. First the general struc-
ture of PDU’s (Protocol Data Units) is described, and then the actual passed PDU’s are de-
scribed.

PDU-format

All messages passed between modules have a common header, which is used to handle the
message. The information in the header can be divided in two categories: The information
used to transport the message, and some generic information used by the receiving end. The
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Figure 5.1: Logical connections in the application.

transport information contains the module-id of the source and destination modules and the
size of the message. The generic information contains a message-id and an argument.

The message-id defines the type of the message, while the argument is an option argument
to the message. The message-ids are subdivided in two fields, where the first field contains
the id of the originating module, and the second field is a module specific identifier. The
payload of the message follows the header, and contains message-specific information. A
packet (PDU) has the following structure:

PDU :: � � source;destination;size;message � id;argument;
t
payload u �

size :: �xw t payload uCw
message � id :: � � module � id; identi f ier �

Instead of accessing the fields directly, a range of accessor-functions are implemented,
which are used to interface to the PDU’s. When accessing messages there are basically two
use cases: Either a message is being constructed, or single fields of the message are being
extracted. Therefore, the functions which extract fields from a message are implemented on
a single field-basis, while only a single function exists for constructing a message (i.e. it is
assumed that all information needed to construct the message is available).

Inter-Module Communication

In order for two modules to communicate, the messages passed must make sense to both ends,
but is does not necessarily have to make sense to third parties. However, from a practical point
of view, it is sometimes convenient to define messages which are generally understood – this
suggests that messages are partitioned in two major categories: Private messages and public
messages. Public messages are implemented by using a special value for the module-id in the
message-id field. The public messages currently implemented, are related to the watchdog
algorithm and acquisition of housekeeping data.
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module-id identifier description
In 0x01 PDU MSG INPUT DATA: Used to send data-samples from

module In to modules Out.

none 0x02 PDU MSG GEN ALIVE REQ: Alive request-message send
from the WD -module to each module, in order to de-
termine if they are alive. Each alive-request contains
an argument, which is expected to be returned in a
PDU MSG GEN ALIVE RES ACK-message.

none 0x03 PDU MSG GEN ALIVE RES ACK: Alive response-message
send in response to a PDU MSG GEN ALIVE REQ. The re-
sponse carries the same argument as the originating request.

none 0x10 PDU MSG GEN HK: A generic housekeeping message. Send
by producers of housekeeping data (i.e. the In and InOut
-modules) to the non comm-module.

Figure 5.2 shows the messages passed between modules and the dataflow between mod-
ules and devices. Devices are symbolized as circles, while modules are symbolized as boxes.
The lines and arrows show the directions of communication. Even though the watchdog-
related communication consists of two messages, one in each direction, it is symbolized as a
single line with two arrows, to minimize the clutter.
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Figure 5.2: Message- and data- flow in the application.
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5.2.6 Details

In this section, the implementation of the modules and devices will be discussed in more
details. Particularly the allocation of threads, and some of the implementational details, will
be pointed out.

Watchdog Algorithm

The watchdog algorithm consists of a supervisor part and a number of subordinate parts.
The supervisor part is implemented in the watchdog module, while the subordinate parts are
implemented in each module being under watchdog supervision. The watchdog algorithm
revolves around the notion of a round. A round corresponds to a single watchdog-cycle, in
which all supervised modules are queried, and the watchdog device is reset (provided that all
modules answered the query correctly).

The supervisor part of the algorithm is implemented as a separate thread in the watchdog
module. Each round is initiated by the supervisor, which sends out alive-requests to each
supervised module. Each alive-request contains a nonce, which the modules must return in
an alive-response message. The alive-response messages are received by the watchdog inbox-
thread, which stores the values in the global array ack (the value of a nonce is stored with
the modules id as the index). The modules are expected to answer the alive-request messages
within a specific time-frame, and when this time has elapsed, the global ack array is inspected.
If all the values in the array contains the correct nonce, it is concluded that all modules have
successfully answered the alive-request, and the watchdog device is therefore reset. As the
global array is shared between multiple threads, it is of course protected by a mutex.

The subordinate parts of the watchdog algorithm is implemented in each supervised mod-
ule. The objectives of the subordinates is to determine if all its threads are alive and if so,
to answer the alive-requests. Some modules (Non Comm and Out) are implemented as sin-
gle threads, which makes the implementation particularly simple: When an alive-request is
received, just answer it right away.

The multithreaded modules In and InOut are implemented with two threads: An inbox-
thread and a worker thread. The worker-threads are implemented as infinite loops with a
work-sleep structure. As the periods of the worker-threads are several times higher than the
period of the watchdog algorithm, the liveness of the worker-threads can be determined, by
having the workers incrementing a shared counter on each iteration. On reception of an alive-
request, the value of the counter is read and reset. If the value read is greater than 0, the worker
is taken to be alive, and an alive-response is returned.

As the watchdog-module itself is under watchdog supervision, it too contains a subordi-
nate part, but it does not check the liveness of its worker-thread, as it is assumed to be alive.
This can be assumed because the alive-request originates from the worker-thread, and there-
fore it can be concluded that it must have been alive recently. Also, as it is the worker-thread
which resets watchdog-device, it must be alive to do so..
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Housekeeping

As previously mentioned, the Non Comm module receives housekeeping-data from the two
input-modules, and stores this in a database. The housekeeping-data messages are sent with
message-id PDU MSG GEN HK, and single integer-value as payload. The housekeeping-data
differs from much of the other global data, in the application in that the data might be left
in the database for extended period of time, without being accesses. This makes the data
vulnerable to bitflips, but unlike most of the other global data, bitflips in the housekeeping
data does not affect the application per se.

In and Out Modules

The In- and Out- modules communicate privately, and share the handling of the A-device. The
worker-thread of the In module reads the B-device, and sends the sampled data to the Out-
module as PDU MSG INPUT DATA-messages. The sampled data is also sent to the Non Comm
-module as housekeeping data, using the PDU MSG GEN HK-messages. The Out-module simply
outputs the received samples to the B-device.

InOut Module

As mentioned above, the InOut-module implements a regulation loop, which tries to prevent
changes to the values sampled from device A. This is done by calculating the difference be-
tween successive readings, and applying a negative proportional force on the virtual object.
The force is clamped to limit its absolute value.

5.2.7 Injector

As mentioned in the introduction to this chapter, the experiments assume that the application
has already been hardened by placing static objects (code and data) in non-volatile storage
(i.e. FLASH). The injection targets are therefore only the parts of the application, which are
stored in volatile storage (i.e. RAM). The volatile data is divided into variables allocated on
the program stacks and global variables allocated in the data section. The variables allocated
in the data section are further divided into ”os-data” and ”regular globals”.

The os-data are global data, which is used within the operating system. For instance,
mutexes and thread-objects are required to be allocated by the application, on behalf of the
operating system. Because these objects are used directly by the scheduler, they are catego-
rized as os-data. The regular globals (or just ”globals”) are used to represent the global state
of the program. This gives cause to the three subtargets: stacks, globals and os-data.
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Injector Targets

The structure of the application means that it is not readily possible to define a single address-
range in which to inject faults. This is caused by the application having several subtargets for
injection, and by subtargets not being continuous.

The solution is to make the application cooperate in the task: Each module, subject to fault
injection, exports a function which is used to declare the ranges of is subtargets. The function
is called with a bitpattern containing a set of subtargets, and for each selected subtarget, the
regions of the corresponding variables are added to the cumulative injection target.

In order to test the application, the injector supports a special dummy injection target. This
target is an area unused by the application, and therefore injections into this target only has
secondary effects (i.e. the timing effects caused by the active injector).

Accuracy of eCos Timers

The injector and other periodic tasks are implemented as infinite work-sleep -loops, which are
based on the function cyg thread delay to implement the sleep-periods. As eCos uses a 100
Hz timer to time drive its scheduler, it is expected that this is also the granularity of time-based
events (i.e. 1 tick). A small program written during development of the injector to examine
the accuracy of the cyg thread delay-function. The program implements two threads: One
with a high priority and one with a low priotity. The low priority thread increments a global
variable continuously, while the high-priority thread implements a work-sleep-loop.

The sleep-periods in the high-priority thread are varied, and just before and after each
sleep-period, the value of the global counter is read. The difference of the counts are used as
a measure of the length of the period, and the measurements show, that for sleeps longer than
5 ticks, the jitter is about 1 tick.

Implementation

On injector startup, the size of the accumulated target is calculated, and used to calculate the
proper injection rate. The injector is implemented as a high-priority thread with a general
sleep-work pattern. The calculated injection rate is used to generate exponentially distributed
periods of sleep between injections and, as in the failsafe injector, the faults are uniformly
distributed over the size of the accumulated target.

Unlike the failsafe injector, the application-injector injects faults in 12 bits per address (per
byte), because it simulates the use of error-correcting storage (see chapter 6). The 4 upper bits
are injected on the address � 512 K. Each injection is printed on the console with the address,
and memory contents before and after. The injector counts the number injections in the global
variable injector_count.
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5.2.8 Detectors

Like the failsafe injector, the application contains a number of detectors. The operating system
provides means of handling processor exceptions through the function cyg exception set -
handler. Using this function, handlers for the ”data-abort” and ”prefetch-abort” exceptions
are installed. There is no need to install a handler for the ”undefined instruction”- excep-
tion as the application runs under the supervision of the GDB-stub, which provides detection
automatically.

During the development of the detectors, the capabilities of the GDB-stub was investi-
gated, in order to determine to which extend it could be used for detection. However, it
was found that it would only provide detection for undefined instructions, as data-aborts was
silently ignored, and prefetch-aborts could cause a loss of the debug connection.

As mentioned in section 5.1.1, the operating system is configured with the option ”Decode
Exception types in kernel” enabled, which is disabled per default. This option is necessary if
different handlers for different exception are needed (as it is in this case). The default setting
will only allow a single shared handler for all exceptions.

Application-level Detectors

In addition to the hardware-based exceptions described above, the application implements a
set of detectors on the application-level, which monitor the state of the application.

As message-passing is an integral part of the application, this is an obvious area in which
to implement detectors. On the module-level, each module implements detectors which check
the type of incoming messages, to make sure they are known.

The packet-router implements detectors which check the incoming messages for valid
source, destination and valid size, and that messages can be successfully placed on the proper
queue (i.e. that it is not full). The packetrouter checks the the id of modules when they
read messages off their queue; no checks are done on the actual messages at this point. The
scrubber of the EDAC-system (see section 6.1.5), checks the validity of handles passed by the
application.

The WD-device implements two timer: A ’normal’ watchdog timer and a time limit timer.
While expiry of the time limit is not a failure per se, expiry of both timers are treated as failure
detections.

Halting an Experiment

As in the failsafe-experiment, the activation of a detector is supposed to end the experiment.
As the application is running under supervision of a debugger, the termination of the applica-
tion can be implemented using a breakpoint, which also has the effect of returning control to
the debugger, thus allowing it the opportunity to perform any post-experiment activities.

The eCos environment supports ”compiled-in” break-points, which are break-points in-
serted into the ’C’-code. Before terminating the application, a detector should issue a message
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stating why the experiment has ended, i.e. which detectors have been activated, and why (if
known). This functionality is implemented in the function exit break point, which is used
by all detectors.

5.2.9 Configuration Interface

As described above, there are various aspects of the application, which can be changed to
provide different scenarios for experimentation. These parameters are implemented as global
integer variables, which are available to the debugger. The following parameters are defined:

Parameter injector mode : As the name implies, the injector_mode controls the mode of
the injector. The injector_mode encodes the following subparameters as bitfields:

Injector
parameters Values
mode enable

disable
model constant rate

exponential stochastic
target stacks

globals
os-data
dummy

Parameter injector rate : The interpretation of this parameter depends on the chosen injec-
tions model. For exponential stochastic simulation, this value specifies the average time
between injections per K of injection target. For constant rate simulation, this parameter
specifies the time between injections. Both values are measured in 1

100 seconds.

Parameter seed : This value is used to seed the PRNG. Its use is similar to the use of the
seed primitive in the failsafe injector.

Parameter edac mode : This parameter specifies the mode of operation of the EDAC (Error
Correction And Detection) system (see chapter 6). The following modes are supported:

EDAC mode Values
function mode enable

disable
process mode enable

disable
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Parameter wd maxage : This parameter specifies the time limit of the application. The
value is measured in 1

100 seconds.

5.3 Harness

The application is uploaded to the target using GNU debugger over a serial connection. The
upload and execution of the application can be done interactively by manually issuing the
commands to connect to the target, upload the executable file, and execute the program, but in
order to carry out a large number of experiments, this procedure has to be automated. This is
accomplished by a harness, which controls the debugger by sending it the proper commands
and logging its output.

5.3.1 Commandline Parameters

The harness is controlled by a number of commandline parameters. The functionality of the
harness is similar to that of the failsafe harness, but it is slightly simpler.

The harness supports the following command-line parameters:

Parameter Description
-c Specifies the number of experiments to perform.

Defaults to 10.
-l Specifies the basename of the logfile.

Defaults to no logfile.
-s Specifies the name of the scriptfile.

This parameter is mandatory.
– (dash-dash) Specifies the end of the parameters to the harness,

and the start of the parameters to the scriptfile.
This parameter is mandatory.

The options for controlling the number of experiments -c) and the basename of the logfile
-l), are similar to their counterparts in the failsafe harness. The use of the scriptfile parameter
is different from the failsafe harness, and is explained in the next section.

5.3.2 Commanding GDB

The debugger in question is a variant of the basic GDB, known as ”Redhat Insight”. The
difference between Insight and GDB is that Insight is extended with a Tcl/Tk GUI. However,
using the commandline option -nw causes the debugger to run in commandline mode (i.e.
reverting to ”normal” GDB mode).

During the construction of the harness, the capabilities and functionality of the debugger
was examined. While the debugger has support for execution of scripts, using a commandline
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option, this approach is not usable as it suppresses the console output from the debugged pro-
gram. Instead it was attempted to use pipes to pipe in the commands, and pipe out the output
of the debugger. This approach has proved usable and is the method used for controlling the
debugger.

The commands for the debugger is basically a number of lines of text, with a single com-
mand on each line. There are two major ways in which the commands can be represented:
Either they can be hardcoded into the harness, or they can be read from a file.

The advantage of storing the commands in a file, is that they can be changed without
changing the harness, which is why this solution was selected. However, some commands
need to be modified or parameterized by the harness, which means that the contents of the
command-file cannot be used as input directly. Instead, the command-file is used as a tem-
plate, from which the final commands are extrapolated.

5.3.3 Controlling GDB

The extrapolation of the template is performed by our friend vsprintf, a member of the
hard-working printf-family. The actual extrapolation is done by reading the contents of the
scriptfile into memory, and calling vsprintf with the contents as the format-string, and a
pointer to the part of the argv-array following the ’--’-parameter. 2 Before doing the actual
extrapolation, a basic substitution is performed: The argv array is searched for the string
<seed>, and if found, it is substituted with the current microsecond time.

When the commands have been extrapolated, the clientside is reset using the modified
RTS-signal (as in the failsafe harness). Finally, the harness starts the debugger as a separate
process, which is controlled through pipes attached to stdin, stdout and stderr. The child-
process (GDB) is started in the standard (UNIX) fork-exec manner.

5.3.4 The Scriptfile

The scriptfile, which act as a template for the GDB-commands, is called run.gdb, and is
located in directory of the harness executive. The commands in the scriptfile can be divided
into commands for setup, commands for program loading and execution, and commands for
cleanup.

The setup-commands configure which communications settings (device and speed) to use,
and which program-file to read symbols from. The commands for program loading and ex-
ecution, load the program-file into the target and configure the program for the current ex-
periment. When the program has been loaded and configured, it is started, after which the
application gains control over the target. The debugger awaits to regain control over the tar-
get, which happens when the application stops with an exception or a breakpoint. Then the

2This use of vsprintf is a slight hack, as the argument-pointer really should be a va list, not a char **,
as the argv is. However, as long as only the %s format is used, this usage is safe (at least on the x86 platform).
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cleanup-commands are executed – the injection-count is read from the target, and the debug-
ger quits.

Note that the program file (i.e. the file containing the application) is loaded in two steps:
First it is loaded into the debugger (using the file-command), and next it is loaded into the
target (using the load-command).

5.4 Discussion

This section describes some problems identified during the development of the application.
An important question is whether realistic simulations can be performed with a timer

granularity of 100 Hz. The problem is that all time-based activities are based on the same
100 Hz timer, which might cause aliasing, i.e. that injections can only occur at certain points
in the execution of the program. A solution to this is to use a separate high-speed timer for
the injections. This should be feasible, as the eCos AT91 HAL (hardware abstraction layer)
does not make use of all three timer/counters, and eCos does provide support for user-handled
interrupts.

Some of the issues mentioned in the discussion of the failsafe injector apply to the ap-
plication injector as well: Timestamping of events would be of benefit, as it would provide
more accurate measurements of runtime. Unlike the experiments on the failsafe software, the
communication in the application experiments has run quite stable, with only a couple of in-
stances of lost communication. This can be explained by the GDB implementing a protocol,
providing error-detection.



Chapter 6

Correctors

While chapters 4 and 5 have described how to simulate the injection of bitflips, this chapter
describes a scheme for reversing the effects of bitflips, based on the commonly used Hamming
(12,8) code. Following the description of the Hamming code, the results of the experiments
performed on the application are presented, and a model for fault injections is proposed. Last,
the implementation is discussed, and the testing of the application is described.

6.1 Implementing

In this section the implementation and usage of the EDAC system is discussed. First the im-
plementation of the Hamming code is described, then the practical implementation of EDAC-
primitives is explained, and lastly the application of these primitives is discussed.

6.1.1 Hamming Code

As described in sections 3.5 and 3.6, the Hamming codes can be implemented using the A-
matrix only. Recall from equation 3.8 and 3.9, that the calculation of d 6 A is used in both
encoding and decoding. Defining the function p

�
d � � d 6 A, note that p : � 28 �zy � 24 � .

Because of the low number of combinations in the input and output domains, the function is
an obvious candidate for tabulation. However, the function must of course be implemented
before it can be tabulated.

This suggests that the algorithm is implemented in two versions: A version based on its
arithmetic definition, and an optimized version, based on a table created by the arithmetic
version.

Because of details in the use of the code, the implementations handle the data and parity
parts of the codewords separately.

Both implementations implement two primitives: An encoder, which calculates the parity;
and a decoder, which calculates the syndrome. Recall from section 3.6, that the value of
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the syndrome is equal to the row in HT , whose corresponding bit is in error. Thus, it is
trivial to create a table, which translates syndromes into bitmasks which point out the bits in
error. However, because of the separation of the data and parity information, two tables are
generated: One which corrects errors in the data part, and one which corrects errors in the
parity part.

The Arithmetic Implementation

If A
i

denotes the i’th column of A, then the i’th bit of output of p is:

ri � 8{
n | 1

� dn 6 A
i } n �

but if using bitwise exclusive-or on an 8-bit quantity, this can be translated into:

ti � d 6 A
i

ri ��~ 8
n | 1 ti } n

This way, the calculation of the parity is simply implemented as:

hamming parity
�
data ��

f or i � 1 ����� 4�
temp � data 6 A

i
;

resi � ~ 8
n | 1 temp

n
;�

return res;�
The syndrome is calculated by recalculating the parity, and xor’ing it with the received

parity, thus:

hamming syndrome
�
data � par ��

temp � hamming parity
�
data � ;

return temp 7 par;�
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The Optimized Implementation

The optimized implementation is based on a table created using the arithmetic version. The
table consists of the parity of the 256 possible values of data. The table is populated simply
as:

f or i � 0 ����� 255
hamming lut  i !h� hamming parity

�
i � ;

and the parity and syndrome operations simply become:

hamming parityopt
�
data � hamming syndromeopt G data � par I� �

return hamming lut  data! ; temp � hamming lut  data! ;� return temp 7 par;�
6.1.2 Applying EDAC

The Hamming code is used to implement an EDAC system, which protects the vulnerable
storage of the application. The implementation of the code separates the data from the parity
bits, and the reason for this is a desire to make the EDAC system as transparent as possible.
If the parity-bits were not separated from the data-bits, the implementation would be limited
to work on byte entities only, as consecutive data-bytes would be interspaced with the corre-
sponding parity bits. Instead, the separation allows sequences of data-bytes, whose parity bits
are stored elsewhere.

Now that the data and parity parts are separated, an obvious question is where the parity-
bits should be stored. One approach would be to explicitly allocate a buffer for the parity-bits,
for each block of data bytes to be protected. But a weak point in this approach is that it
requires the user to allocate the parity-buffers. Instead it has been chosen to allocate the upper
half of the ram for parity-bits. This way, every byte in the lower half of the memory has a
corresponding byte in the upper half, which contains its parity-bits. The advantage of this
approach is that the user does not have to allocate space for the the parity bits, and that the
address of the parity-bits is trivial to calculate from the address of the data-bits. The major
disadvantage is, that not only is half the memory of the parity-space wasted because only 4
bits per byte are actually used, but this scheme also allocates parity-space for the parts of the
program, which is assumed to be stored in non-volatile storage (i.e. code and static data).

6.1.3 EDAC Helper

The implementation of the Hamming code used in the application consists of two primitives:
edac_encode and edac_decode. The arguments for both primitives is a buffer, in the form
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of a pointer and a count of bytes. The encode-primitive calculates and updates the parity-
space associated to the buffer, while the decode-primitive calculates the syndromes and the
buffer and its associated parity-space, and corrects any errors found. Note that both primitives
are assumed to always succeed, as the encoding primitive cannot fail, and decoding primitive
cannot detect errors it cannot correct. Therefore they do not return any status-information.
The primitives are implemented as functions containing the appropriate loops, inlined with
the algorithms described above.

As the edac_encode and edac_decode are called quite often, the program tends to spend
quite some time executing these functions. This raises an interesting question:

When edac_encode and edac_decode are busy protecting the memory used by other
functions, who protects the memory used by edac_encode and edac_decode (i.e. stack)?
The only practical solution is to have edac_encode and edac_decode protecting their own
memory. As edac_encode and edac_decode are assumed to execute for short periods of
time, the scheme for protecting their own memory is slightly simplified, in that it will only
correct errors in the data part, and leaves errors in the parity part uncorrected.

The implementation of the Hamming code is a highly optimized version, written in assem-
bler. The reason for writing it in assembler is, that an analysis of the code generated by the
C-compiler, revealed that its use of registers, and the translation of the loops was not optimal.

The EDAC system supports two different types of protection of storage: Manual and
automatic. Manual protection requires the user to select at which points in the execution of
the program a given variable is encoded and decoded, while automatic protection leaves this
job for a scrubber-process. The manual methods described in the following should be quite
easy to automate in a compiler, thus relieving this burden from the user.

6.1.4 Manual Protection

In principle, the use of manual protection can be formulated in two simple rules: After an
assignment to a variable, its contents should be protected, and before its use, its contents
should be validated. However, for practical reasons, the rule for validation is slightly relaxed,
as variables are assumed to stay valid for short periods of time. In general, it is assumed that
a variable can be invalid if control has passed to an other function, between the protection and
the use of the variable. Variables are considered valid across simple arithmetic operations,
that is: If a variable is assigned to, and some arithmetic operations are performed before its
use, it is still considered valid. Also, variables are considered valid across validation of other
variables – otherwise it would be impossible to perform operations which require more than
one argument on validated variables.

The distinction between protect and encode, and validate and decode, is used to indicate
that encoding and decoding signifies low-level operations, while protecting and validating sig-
nifies higher-level operations. The interface for the higher-level operations is implemented as
three flavors of macros:
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Macro-names Usage
EDAC PROTECT STACK opt2(regc,argc)
EDAC VALIDATE STACK opt2(regc,argc)

Protects implicit contents on the stack

EDAC PROTECT(var)
EDAC VALIDATE(var)

Protects named variable,
compiler calculates size.

EDAC PROTECT2(var,size)
EDAC VALIDATE2(var,size)

Protects named variable,
user supplies size.

As can be seen, each flavor consists of two macros: one which protects and one which
validates. The stack flavor is used to protect implicit variables on the stack, and takes two
arguments: The number of stored registers on the stack, and the number of function-arguments
on the stack. The two other flavors are used to protect explicit variables. The macros obey the
global variable edac mode, which is used to enable and disable the EDAC-system.

Protecting the Stack

The general discipline for protection of the stack is that, upon entry to a function, the stack
should be protected, and upon exit (or other use of the protected values), the values should be
validated.

On ARM systems, the first four words worth1 of function arguments are passed in the
first four registers (a1 through a4), while subsequent arguments are passed on the stack ([17]
defines the ARM-specific details of intrinsic types of common programming languages). This
means that for functions which take many arguments, it is necessary to protect the arguments
passed on the stack. Besides its use for argument passing, the stack is also used for saving the
contents of registers during execution of functions. Figure 6.1 shows the layout of the stack
after a hypothetical function has executed its prologue. The function takes six words worth of
arguments, of which two words are passed on the stack; and saves four registers on the stack.

The rounded boxes show where the frame-pointer (the fp-register) and the stack-pointer
(the sp-register) point to, after the prologue. Note the use of the frame-pointers: The saved
frame-pointers form a linked list, from which the stack-contents of the previous functions
in the call-chain be obtained. The stack-contents saved on behalf of a currently executing
function is pointed out by the frame-pointer (the fp-register). The parts of the stacks which
need protection, are marked by the argc and regc values, which are passed the macros.

1Note that some multi-word types are passable in registers. This applies to double and small struct -
arguments.
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FP

arg4

arg5

...

SP

...

FP

LR

PC

argc

regc

SP

Figure 6.1: A typical layout of the stack for a function taking many arguments.

In order to efficiently access the contents of fp, the macros are implemented as inline-
assembler, and the following structure of the macros is used:

1 asm("sub %%0,%%fp,%0 "
2 "mov %%r1,%1 "
3 "bl edac_function "
4 :: "I"(4*(regc-1)), "I"(4*(regc+argc))
5 : "r0","r1","r2","r3","lr");

The calculation 4*(regc-1), is the amount which should be subtracted from fp, to get
the address of the first saved register (i.e. the address of PC in the above example). The
calculation 4*(regc+argc) is the number of bytes which should be handled by the function
(edac_function being replaced by edac_encode and edac_decode). The argument-class
"I" specifies that the argument must be an integer, which can be used as an immediate value,
which really ensures that the sub and mov -instructions are valid.

Note that the use of manual protection of the stack, requires that the user supplies the
argc and regc -values. While the argc-value can be deducted from the ’C’ source-code, the
regc-value is determined by the code generated by the compiler.

The most practical way to obtain this value is to insert the macros at the proper locations
in the code, but with dummy values for the argc-value. Then compile the code and examine
the generated assembler to obtain the correct value; insert the found values, and recompile.
After the recompile, it should be checked that values used for regc are still valid.

Even though this is the most practical way to use stack-protection, it really is not very con-
venient, but as mentioned above, these methods are better suited for implementation directly
in the compiler.
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Protecting Explicit Variables

Recall, that the arguments for the EDAC-functions are a pointer and a byte-count. The macros
for protecting explicit variables come in two variants: One which is just a wrapper around the
two EDAC-functions, and one in which the compiler automatically calculates the size of the
protected variable. The automatic variant is most commonly used, but in some circumstances,
it cannot determine the size of the variable, and then it is necessary that the user provides the
size.

6.1.5 Automatic Protection

The automatic protection is build around a scrubber-process, which validates the protected
variables on a regular basis. The scrubber-interface has three primitives:

Function Usage
edac scrub(ptr,size) Registers a memory-region for scrubbing.

Returns a handle to the region.
edac lock(handle,ptr,size) Locks the region identified by handle,

and validates the subregion identified
by ptr and size.

edac unlock(handle,ptr,size) Protects the subregion identified by
ptr andsize, and unlocks the region
identified by handle.

The modules which use the scrubber must register their regions during module-initializa-
tion, and for each registered region, a handle is returned. Because the scrubber-process ac-
cesses the registered regions, accesses from the other processes must be serialized using the
lock and unlock primitives. As the names apply, the lock and unlock primitives marshal the
control to the regions, but they also perform validation and protection of the subregion. This is
based on the observation, that when the user locks a region, it is with the intension of access-
ing at least a part of it. Therefore, the lock and unlock primitives also provide the handling
of a subregion. This way, the user only has to make one call to gain, and one call to release
access to a subregion.

The scrubber process is implemented as a loop, which iterate over the registered regions.
For each region, the region is locked, validated and unlocked.

6.1.6 Examples of Use

In this section, some examples of the use of the implemented primitives is given. A commonly
used construct in the application, is the following loop, which retrieves a message from the
packet-router, and dispatches control to a function which carry out some action. The following
piece of code is taken from the Non Comm-module:
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1 static void inbox(cyg_addrword_t pow_data)
2 {
3 pdu_t packet;
4 for(;;)
5 {
6 EDAC_PROTECT_STACK_opt2(5,0);
7
8 getMsg(MODULE_THIS, &packet);
9 switch(pdu_get_message(&packet))

10 {
11 ...
12 case PDU_MSG_GEN_ALIVE_REQ:
13 handle_alive_message(pdu_get_argument(&packet));
14 break;
15
16 case PDU_MSG_GEN_HK:
17 handle_hk_data(pdu_get_source(&packet),
18 pdu_get_payload(&packet));
19 break;
20 ...
21 }
22 EDAC_VALIDATE_STACK_opt2(5,0);
23 }
24 }

Note the use of the stack-protection: As the function never returns, the stack is protected
and validated in the start and end of the loop. As the function only take a single argument,
there are no arguments on the stack to protect, why the argc-value is zero. Note that as
the function does not return, it is actually not necessary to protect the saved registers in this
function, so it is only done for completeness here.

The function pdu_set_all is special in the way that it takes ”many” (7) arguments, some
of which (3) are passed on the stack.

1 void pdu_set_all(pdu_t *pdu,
2 unsigned char src,
3 unsigned char dest,
4 unsigned short int message,
5 unsigned short int argument,
6 unsigned short int payloadsize,
7 const void *pp)
8 {
9 const unsigned char *payload=pp;

10
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11 EDAC_PROTECT_STACK_opt2(4,3);
12 EDAC_PROTECT(payload);
13
14 pdu->header.source=src;
15 pdu->header.destination=dest;
16 ...
17 EDAC_VALIDATE_STACK_opt2(4,3);
18 }

The four saved registers and the three stack-passed arguments are protected. Note that the
arguments are actually considered valid at this point, as the argument passing can be seen as
a type of assignment, in which temporary variables are assigned the values being passed.

The last example demonstrates the use of the scrubber in the Non Comm-module. The
Non Comm-module allocates a global array, which contains housekeeping information re-
ceived from the other modules. This array is accessed infrequently, and therefore is a can-
didate for automatic protection, using the scrubber. During module initialization, the array
is registered with the scrubber. The handle for the region is stored in the global variable
hk_store_handle. As the handle itself is an injection target, it too must be protected.

1 void noncomm_init(void)
2 {
3 ...
4 hk_store_handle=edac_scrub(hk_store, sizeof(hk_store));
5 EDAC_PROTECT(hk_store_handle);
6 ...
7 }

The global array is used to implement a circular fifo, in which the housekeeping-data is
stored. The function handle_hk_data does the actual storage:

1 static void handle_hk_data(unsigned char source, void *buffer)
2 {
3 pdu_contents_housekeeping_t *payload;
4
5 EDAC_PROTECT_STACK_opt2(4,0);
6
7 payload=(pdu_contents_housekeeping_t*)buffer;
8 EDAC_PROTECT(payload);
9 EDAC_PROTECT(*payload);

10
11 EDAC_VALIDATE(hk_store_next);
12 EDAC_VALIDATE(hk_store_handle);
13 edac_lock(hk_store_handle, &hk_store[hk_store_next],
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14 sizeof(hk_store[hk_store_next]));
15 {
16 EDAC_VALIDATE(hk_store_next);
17 EDAC_VALIDATE(source);
18 EDAC_VALIDATE(payload);
19 EDAC_VALIDATE(*payload);
20 hk_store[hk_store_next].source=source;
21 hk_store[hk_store_next].datum=payload->sample;
22 }
23 EDAC_VALIDATE(hk_store_handle);
24 edac_unlock(hk_store_handle, &hk_store[hk_store_next],
25 sizeof(hk_store[hk_store_next]));
26
27 EDAC_VALIDATE(hk_store_next);
28 hk_store_next=(hk_store_next+1) % HK_STORE_SIZE;
29 EDAC_PROTECT(hk_store_next);
30
31 EDAC_VALIDATE_STACK_opt2(4,0);
32 }

Note that the subregion only contains the record being accessed. Also, note the revalida-
tion of hk_store_next in line 15 and 25, and that the handle is being revalidated in line 22.
The reason for this, is that variables are considered invalid across a edac_lock operation, as
it includes a semaphore-locking, which is potentially lengthy.

6.2 Results

A large number of experiments have been carried out on the application. One of the main
objectives of the experiments is to examine the effects of the EDAC-system. Therefore, a
number of series of experiments are performed, which are used to compare the performance
of the application with and without the use of the EDAC-system.

Recall from section 5.2.7, that the application defines four subtargets for injection, namely:
Stacks, globals, os-data and a dummy target. Experiments were carried out on each target,
and the combined target of stacks and globals. Except for the dummy-target, experiments

were performed with rates of 1000 (corresponding to 0 � 1 in jection
s
K ) and 5000 (corresponding to

0 � 02
in jection

s
K ). Experiments on the globals-, stacks-, and combined- targets were performed

both with and without use of the EDAC-system. Note from section 5.2.3, that the watchdog-
device implements a time limit which, per default, limits the runtime of an experiment to 60
minutes. However, it was found that this limit was too low for the experiments on the globals
target, with rate 5000 and EDAC turned on. Therefore, an extra series of experiments was
performed, but with the time-limit raised to 200 minutes. In the following this variation is
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called HTL (meaning ”High Time Limit”). For each series, the number of experiments, the
average number of injections before failure and the average number of successful watchdog
resets are calculated. The number of successful watchdog resets is an indirect measure of
runtime, because the watchdog is reset every 2 seconds. Except for the ’globals’ targets with
EDAC, the number of successful watchdog resets is proportional to the rate, for each pair of
target and EDAC-mode. For instance: The number of successful WD resets for ’stack, rate
5000, edac’ is about five times higher than for ’stack, rate 1000, edac’, etc. A total of about
1250 experiments were performed (some of which have been discarded due to various prob-
lems), which is summarized in the following table:



80 CHAPTER 6. CORRECTORS

Target Rate 1000 Rate 5000
Figure no EDAC EDAC rel no EDAC EDAC rel

Stack
# experiments 101 99 50 49t
# injections u 156 176 1.12 165 215 1.30t
# succ. WD resets u 19.0 21.8 1.27 95.9 124 1.29

#inj to #WD ratios 8.2 8.1 1.7 1.7

Global
# experiments 100 97 49 34t
# injections u 684 4575 6.69 676 2612 3.86t
# succ. WD resets u 97.5 658 6.75 480 1843 3.84

#inj to #WD ratios 7.0 7.0 1.4 1.4

Global, HTL
# experiments 50t
# injections u 3662 5.42t
# succ. WD resets u 2585 5.39

#inj to #WD ratios 1.4

Stack & Global
# experiments 99 95 98 99t
# injections u 204 270 1.32 238 313 1.32t
# succ. WD resets u 13.8 18.3 1.33 76.2 101 1.33

#inj to #WD ratios 14.8 14.8 3.1 3.1

Operating System
# experiments 99 97t
# injections u 8.81 9.31t
# succ. WD resets u 28.2 150

#inj to #WD ratios 0.31 0.062

Dummy
# experiments 12t
# injections u 22206t
# succ. WD resets u 1681

Note that the ratios of
t
# injections u to

t
# succ. WD resets u are proportional to the

injection rates and the size of the aggregate targets. This means that experiments on the same
targets with constant rates have similar ratios. Furthermore, as the ratios are also proportional
to size of the aggregate target, the ratios of #inj to #WD ratios are proportional to their
rates, for same target. For instance, for the ’stacks’-target, the ratios for rate 1000 (8.1) is
about a factor 5 higher, than the ratios for rate 5000 (1.7) , corresponding to a factor 5 in rate.
Likewise, for the other targets. The fact that the ratios are equal for experiments on targets
with same aggregate size, and their ratios are equal to the ratios of the injection rates pro-
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vides evidence that the injections are performed with the correct rates (i.e. that the stochastic
simulation is working as expected).

The failure-causes for each series of experiments have been analyzed, which is summa-
rized in the following tables:

Rate 1000 Rate 5000
Target no EDAC EDAC no EDAC EDAC

Figure # % # % � % # % # % � %

Stack
Data Abort 31 30.1 35 35.1 5.0 13 26.0 18 36.7 10.7
Pref. Abort 11 10.9 5 5.1 -5.8 8 16.0 3 6.1 -9.9
Undef. Instr. 37 36.6 39 39.4 2.8 17 34.0 17 34.7 0.7
WD t.o. 12 11.9 12 12.1 0.2 4 8.0 7 14.3 6.3
Unkn. Mess. 3 2.9 2 4.0
PDU large 1 2.0
Mailb. full 6 5.9 8 8.1 2.2 3 6.0 4 8.2 2.2
Copy failed 1 1.0 1 2.0
Recv failed 1 2.0

Rate 1000 Rate 5000
Target no EDAC EDAC no EDAC EDAC

Figure # % # % � % # % # % � %

Global
Data Abort 13 13.0 29 29.9 16.9 7 14.3 7 20.6 6.3
Pref. Abort 1 1.0
Undef. Instr. 12 13.4
WD t.o. 48 48.0 36 37.1 -10.9 24 49.0 9 26.5 -22.5
Time-limit 9 9.3 14 41.2
Bad scr. handle 6 6.0 2 4.1
Unkn. Mess. 20 20.0 11 11.3 -8.7 11 22.4 4 11.8 -10.6
Mailb. full 12 12.0 5 10.2

Rate 5000
Target EDAC

Figure # % � %

Global, HTL
Data Abort 17 34 19.7
Undef. Instr. 4 8
WD t.o. 9 18 -31.0
Time-limit 9 18
Unkn. Mess. 11 22 -0.4
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Rate 1000 Rate 5000
Target no EDAC EDAC no EDAC EDAC

Figure # % # % � % # % # % � %

Stack & Global
Data Abort 32 32.3 36 37.9 5.6 37 37.8 31 31.3 -6.5
Pref. Abort 6 6.1 8 8.4 2.3 6 6.1 7 7.1 1.0
Undef. Instr. 33 33.3 29 30.5 -2.8 28 28.6 37 37.4 8.8
WD t.o. 17 17.2 18 18.9 1.7 12 12.2 20 20.2 8.0
Bad scr. handle 1 1.0
Unkn. Mess. 3 3.0 9 9.2 1 1.0 -8.2
Mailb. full 6 6.1 4 4.2 -1.9 4 4.1 3 3.0 -1.1
Copy failed 1 1.0 2 2.0

Rate 1000 Rate 5000
Target no EDAC EDAC

Figure # % # % � %

Operating system
Data Abort 34 34.3 36 37.1 2.8
Pref. Abort 3 3.0 2 2.1 -0.9
Undef. Instr. 17 17.2 20 20.6 3.4
WD t.o. 29 29.3 31 32.0 2.7
Mailb. full 16 16.2 8 8.2 -8.0

Rate 5000
Target EDAC

Figure # %

Dummy
Time-limit 12 100

The experiments performed on the dummy target show that for every invocation, it runs
until it reaches its timelimit.
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Figure 6.2 shows the number of successful injections and watchdog resets of the experi-
ments on the stack. As can be seen, the effects of EDAC is rather limited: The increase in all
figures is in the range 12 to 30 percent. The most notable change in the causes of failure (figure
6.3), is that EDAC seems to cause a decrease in the number of prefetch aborts at the expense
of a similar increase in the number of data aborts. This effect seems to be larger for rate 5000.
An explanation for this could be that the protection of the stacks is successful at protecting
code-pointers (i.e. return addresses for function), thus preventing run-away execution.

0

100

200

300

400

500

600

700

800

900

injections WD resets

0

50

100

150

200

250

300

350

400

450

Target: Stacks

Rate 1000, noEDAC
Rate 1000, EDAC

Rate 5000, noEDAC
Rate 5000, EDAC

Figure 6.2: The number of injections and successful watchdog resets before failure for target
’Stacks’.
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As can be seen in figure 6.4, the effect of EDAC for rate 1000 is an increase in runtime
and number of injection of a factor 6.7. For rate 5000 with a time limit of 60 minutes, the
increase is about 3.8, but figure 6.5 shows that the time limit account more than 41 percent of
the failure causes, which clearly limits the average runtime. For the high-limit experiments,
the use of EDAC increases the runtime and the number of injections with a factor of about
5.4. This factor is smaller than for rate 1000, but the failure-causes reveal that for rate 5000
with raised time limit, there is still twice as many experiments, reaching the time limit, than
for rate 1000.

0

2000

4000

6000

8000

10000

12000

injections WD resets

0

1000

2000

3000

4000

5000

6000

7000

8000

Target: Globals

Rate 1000, noEDAC
Rate 1000, EDAC

Rate 5000, noEDAC
Rate 5000, EDAC

Rate 5000, high limit, EDAC

Figure 6.4: The number of injections and successful watchdog resets before failure for target
’Globals’.
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The runtime and number of injections in the experiments on the combined ’stacks and
globals’-target are about 20 percent lower than the corresponding figures for the stacks -
experiments. This is not surprising, as the injection-rates in the stack-subtargets are the same
as for the corresponding stack-experiment, but in addition, faults are also injected into the
global-subtargets.
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Figure 6.6: The number of injections and successful watchdog resets before failure for target
’Stacks & Globals’.
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As the os-data are opaque data to the application, they are not protected by EDAC, and the
experiments on the os-data are used only to investigate the effects of the injections. As can be
seen from figure 6.8, the os-data are highly sensitive to faults. This is due to the fact that the
os-data are used internally by for instance the scheduler.
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Figure 6.8: The number of injections and successful watchdog resets before failure for target
’Operating System’.
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6.3 Discussion

As with the failsafe experiments, it is noted that the injection rates are many times higher than
what can be expected in LEO. Again, the question is whether the results gathered are represen-
tative of lower rates. However, the experiments are very time consuming, and the performed
experiments already represent a significant amount of CPU-time. With an aggregate fault rate
of 10 faults per day, an experiment on the ’stacks and globals’-target has an estimated runtime
of more than 90 days.

While allocating half the RAM for parity bits provides a systematic and fast mapping, it
is also quite wasteful. Not only does it allocate parity-bits for the assumed static parts of the
program, but it also only utilizes half the allocated space, as only four of every 8 allocated bits
are used. A solution to the latter problem could be to use a (16,8) code, for instance the code
used in [40].

An other question related to the EDAC is how to correct bit-errors: A general principle
of scrubbing is that all single bit-errors should be corrected before they grow into multi-bit
errors. This is usually ensured by a scrubber process, but if the bit-error rate is sufficiently low,
it might be acceptable not to employ a scrubber, but only to correct errors on a demand basis
(i.e. faulty codeword are corrected when they are loaded by the processor). The Hamming
code provides means for directly correction of errors in both the data and parity part of the
codeword, but codes such as [40] can only correct errors on the data-part (the parity can,
of course, be regenerated from the data-part). However, even though the chosen code does
provide means for directly correction of errors in both parts of the codeword, it may make
sense not to correct errors in the parity part, if the temporal scope of the codeword is limited
(as it is the case for the protection of the stack in the encode/decode-primitives).

The manual part of the EDAC-system is somewhat complicated to use, as it requires the
user to supply information intrinsic to the compilation of the program. Also, this part of the
EDAC-system requires quite disciplined use, as performing validation on data which has not
been protected, may cause corruptions, as the data-parts do not correspond to the the parity-
parts.

A weakness in the scrubber-system is that the synchronization of the regions is based on
mutexes, on which the scrubber might sleep. This means that if a process locks its region for
an extended period, the scrubber might sleep on the regions mutex, thereby causing the sus-
pension of scrubbing on all regions. However, it does not cause starvation of other processes,
i.e. processes will still be able to lock their respective regions. A simple way to solve this
problem is to use a timed lock operation, when acquiring the region – this way the scrubber
can simply skip any locked regions.
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6.4 Testing

As with the failsafe injector, the application injector logging provides means for testing its
operation, as injector address and contents before and after are printed.

As with the failsafe injector, the application also builds on an existing code-base, as the
packet-router is based on the packet-router used in the DTUSat application. However, it is
streamlined and reorganized slightly and modified to add support for injection and EDAC.
The initial operation of the message-passing was largely tested by printing the contents of the
received messages, but some of the algorithms provide means for checking themselves. For
instance, if the Out-module cannot receive messages from the In-module, the A-device will
block, and if the watchdog does not receive all the expected messages and thereby resets the
WD-device, it will halt the application. Also, a number of experiments have been performed
on the dummy target, which shows that the application is capable of running until it reaches
its timelimit.

Testing the Tabulated Hamming Implementation

The implemented Hamming code has the ability to correct single-bit errors. As each code-
word is 12 bits, for each value of the data part, there is 13 code-words which can correctly
be decoded (one code-word without errors, and 12 code-word with one bit-error each). This
gives a total of 28  13 � 3328 code-words which can be decoded. Exhaustive search of this
combination-space is trivial, so the implementation is tested as follows:

For each value of the data-part, the parity is calculated. Then the syndrome of data-parity
tuple is calculated, and it is ensured that it is zero. Then, for each 4 bits of the calculated
parity, the bits are flipped in succession, thereby creating a corrupted code-word. For each bit
flipped, the syndrome is calculated, and it is ensured that it is nonzero. Then the syndrome is
translated into error-bitmasks, and it is ensured that they indicates no errors in the data part,
and an error in the parity. The error-bitmask is then applied to the corrupted code-word, and
then it is assured that the code-word has been corrected. Then the same procedure is applied
to the data-part. For each calculation of the parity and the syndrome, both implementations
are used, and it is ensured that the results are equal.



Chapter 7

Conclusion

7.1 What Has Been Done

This report is the results of a masters thesis in software-based fault-tolerance. The report doc-
uments the development of fault-injectors, which simulate the effects of radiation on space-
borne computers and their storage. In accordance with the nature of the faults, the fault-
injectors are implemented as simulated Poisson-processes.

As the injectors fit tightly to their injection-targets, two injectors are implemented because
experiments are run on two targets. The hardware used to run the injectors and targets are
prototype versions of the DTUSat onboard computers, running either the flight-version of
the DTUSat boot-software (failsafe software); or an application running on the embedded
real-time operating system eCos. Both types of experiments investigate the failure modes
and rates of their target software, but the experiments on the application also serve to test an
implementation of an error detecting and correcting code (EDAC).

There are two principal ways in which injection experiments can be performed: Either a
single fault is injected, after which the system is examined to determine if it has been affected;
or faults are injected continuously (subject to a stochastic model) until the system fails. All
experiments are performed using the test-until-destruction -approach.

The EDAC system comprises two parts: An automatic part and a manual part. The au-
tomatic part is implemented as a classic scrubber process, which automatically detects and
corrects fault in the storage, while the manual part is implemented with cooperation from
the user. It is the intension that the manual part can be replaced with an automatic method,
implemented either directly in the compiler, or as a standalone tool.

In order to automate the experiments, a harness is produced for each target, which al-
lows batches of experiments to be run automatically. The harnesses store the output from the
experiments in logfiles, which are then processed and refined offline.
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7.2 Limitations

In this section, a number of weak points in the implementations are pointed out.
The injectors are implemented in software, which has both advantages and disadvantages.

The main advantage is that the actual injection code is relatively simple to implement, and that
no new hardware is needed. The disadvantages is that even though the stochastic simulation is
carefully implemented, the granularity of the simulation is somewhat limited by the hardware
(for instance by limited resolution in the hardware-timers). Also, the injectors are limited in
their scope, in that they do not inject faults into implicit storage such as CPU- and device-
registers.

In order to complete the experiments in a reasonable time, the injectors are run with fault-
rates that are higher than what can be expected in space. However, analysis of the results
indicate that the failure modes and rates are comparable over a wide range of injection rates.

7.3 Results

The experiments on the failsafe software show that, on average, it takes about 20 injections
for the software to be affected (i.e. the first transient failure), and about 100 injections for the
software to fail completely (i.e. destruction).

While the failsafe software contains only a single injection-target, the application is di-
vided into four subtargets: These cover the program stacks (stacks), global variables (globals),
both stacks and globals (stacks and globals), and operating system data (os-data). The experi-
ments on the globals-target show that when using the EDAC system, the application runs 5-6
times longer before experiencing problems, than without the EDAC system. However, the
increases in runtime are only 12 to 30 percent for the stacks- and stacks and globals- targets.
The experiments on the os-data-target were performed only to test its sensitivity, and were not
performed using the EDAC system, as this would require changes to the operating system. As
can be expected, the operating system is highly sensitive to injected faults.

7.4 Conclusion

Based on the results obtained from the experiments, it can be concluded that EDAC-protection
of the program stacks is infeasible in its current implementation.

The increase in runtime is a mere 30 % at best, and while it can be argued that a small
increase is better than no increase, it must be noted that protection of the stacks is quite
complicated to use in its current implementation. It is therefore judged that protection of the
stacks is not a competitive alternative to hardware-based methods (e.g. using error-correcting
RAM and radiation-hardened devices). However, is it also found that protection of global
storage was effective, yielding a significant increase in runtime.
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This suggests a division of the storage in two parts – one part which is software-hardened,
and one which is hardware-hardened. The software-hardened part could be used to store data,
which is not critical to the reliability of the system, while the other could be used for the
critical parts. The non system-critical data is typically scientific data, which are obtained
during the mission and stored for later download (to the Earth). This implies a store-retrieve-
delete use-pattern, in which data usually are accessed quite infrequently. The system-critical
data are usually those attributed to the operating system and the application software.

There is a trend for using an ever increasing amount of storage for scientific data, and
since hardware hardened storage typically has an increased cost, higher power-consumption
and lower capacity, compared to non-hardened storage, there are economically and design-
based reasons for avoiding their use.

7.5 Future Work

There is a number of areas which could be further investigated, for instance: It would be in-
teresting to perform experiments with rates similar to what is expected in space, and a more
elaborate analysis of the failure modes might also be of interest.
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Appendix A

Modeling in SPIN

Recall from section 3.1, that the abstract models form a basis for analyzing and proving prop-
erties of fault tolerant programs. As an alternative to manual proofs, this section presents a
method for proving the same properties, by using a verification tool for concurrent systems,
called SPIN.

A.1 Promela

In the following, a brief overview of the features and usage of SPIN is given. It is by no means
meant to provide a detailed description, as it is given in [24], [25], and [26].

SPIN is a tool for analyzing the logical consistency for concurrent systems. The system
to be analyzed is described in promela, a meta-language for process description. Programs in
promela are described using variables, processes and channels. The use of variables is some-
what similar to that of ’C’, in that the notation for basic arithmetics in promela is derived
from ’C’, and the intrinsic types are equivalent. Unlike ’C’, promela directly supports the
notion of processes, but does not support functions. In many cases however, functions can
be modeled using processes and channels. Just like ’C’, promela uses the notion of variable-
scopes (i.e. local and global), but as functions are not supported, local and global are relative
to processes, not functions. Channels are used to provide structured communication between
processes, similar to that of CSP (Communicating Sequential Processes). However, as chan-
nels are not used in the following examples, they will not be discussed further. SPIN uses
the ’C’ preprocessor to provide support for C-style macros, which are used extensively in the
following examples.

Guarded Statements

A boolean expression, used as a statement, is interpreted as a guard in promela. For instance,
the construct (a>b) -> d=e; comprises two statements; the first (a>b) is used as a guard,
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which only allows the second (d=e) to be executed if the first is true. Note the use of ->:
In promela, ; and -> are interchangeable as statement-separators, but in the following -> is
used to separate guards from statements, as it emphasizes the nature of the construct.

Do-Constructs

One of the main control-structures in promela is the do-construct, which has the general
structure:

1 do
2 :: alternative_1
3 :: ...
4 :: alternative_n
5 od

The do-construct is executed as an infinite loop, in which an executable alternative is se-
lected for execution on each iteration. Alternatives which are non-executable include guarded
alternatives with false guards, and channel operations which are blocked. If more than one
alternative is executable, a nondeterministic choice is simulated. Alternatives may contain a
break construct, which causes the do-construct to terminate.

If-Constructs

Another important control-structure is the if-construct. The structure of the if-construct is
similar to that of the do-construct:

1 if
2 :: alternative_1
3 :: ...
4 :: alternative_n
5 :: else alternative_e
6 fi

Like the do-construct, a number of alternatives is given, but the if-construct also offers
the optional else-construct, which is executable when none of the others are.

Atomic Operations

Sometimes it is necessary or beneficial to be able to specify that compound operations should
be treated as atomic. For instance, certain protocols rely on the ability to perform atomic
increment or swap -operations, but in other cases, atomic operations can be used to optimize
the promela-program, as it reduces the number of states in program.
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Starting Processes

When a promela program starts, the special init process is implicitly started. The init-
process may instantiate other processes from process-types, by using the run-statement. A
process has a function-like structure, which supports parameters to be passed from the creator.

An other special process is the ”never-claim”, identified by the never-keyword. The
never-claim is a process which is expected never to terminate, and doing so raises an error
(i.e. the never-claim has been violated). The never-claim is used to express and verify proper-
ties of the program, such as invariants and temporal dependencies.

A.2 Examples

In the following examples, it will be demonstrated how to translate some of the proofs given
in [35] and [33] into promela-programs in a fairly systematic way. It is, however, not possible
to translate every construct in every example in a one-to-one fashion, as some of the examples
use high-level primitives, which are not directly representable in promela.

A.2.1 Example: Two-phase

The two-phase program, due to [35], implements a distributed voting process, in which a
number of processes cooperate in making a decision. The idea is the following:

The processes should reach a decision, either commit or abort based on votes cast by the
individual processes. All processes should reach the same decision, and the commit decision
should only be reached if all processes vote yes. If all processes vote yes, then all processes
reach a commit decision. The faults modeled are crash-restart, i.e. that processes sponta-
neously stops and restarts.

The protocol consists of two phases: First the vote are cast, and then a decision is made.
Each process has three variables, which define the state of the process: The fault-state of the
process is determined by its up-variable – when up � true the process is running, and when
up � f alse the process is halted. The phase of decision is controlled by ph – when ph � 0
the process has not yet cast its vote; when ph � 1 the process has cast its vote, but has not
yet made its decision; and when ph � 2 the process has made its decision. The vote and the
decision is represented by d: In phase 1 it holds the vote of the process, and in phase 2 it holds
the decision.

The system consists of a number of processes. A central process c acts as a coordinator,
in that it effectively controls the phases of all processes.

When process c is in phase 0, it casts its vote, and advances to phase 1. In phase 1, it
examines the states of the other processes: If they are all found to be running (i.e. up � true),
and in phase 1, and has cast a yes-vote (i.e. d � true), process c advances to phase 2, with the
decision commit (i.e. d � true). However, if the examination shows that there is one or more
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processes, which either have failed (i.e. up � f alse), or have advanced to a higher phase with
the decision abort, process c advances to phase 2, with the decision abort (i.e. d � f alse).

When in phase 0, the other processes cast their vote, provided process c is running. If
process c is found not to be running, the other processes will advance to phase 2, with the
decision abort.

In [35], the following pseudo-code for the program is given:

program Two � phase
constant X : set o f ID;

c : X ;
var ph : array X o f 0 �?� 2;

up : array X o f boolean;
d : array X o f boolean;

process j : X ;
parameter l : X ;
begin j � c � up � j � ph � j � 0 � ph � j � d � j : � 1 � ?�

j � c � up � j � ph � j � 1 ����� l � X : up � l � 1 � d � l ��� ph � j � d � j : � 2 � true�
j � c � up � j � ph � j � 1 ���� l � X : � up � l � 1 ��� ph � l � 1 ��� d � l ��� � ph � j � d � j : � 2 � false�
j �� c � up � j � ph � j � 0 ��� up � c � ph � c � 1 � � ph � j � d � j : � 1 � ?�
j �� c � up � j � ph � j � 0 ��� up � c � ph � j � d � j : � 2 � false�
j �� c � up � j � ph � j � ph � k ��� up � k � ph � k � 2 � � ph � j � d � j : � 2 � d � k

end
faults F�

true � up � j ��� up � j �
The following invariant is shown for the program:

S � ph � c � 0 �0��� j : ph � j � 0 ��� ph � j � 2 ��� d � j ���� ph � c � 1 �0��� j : ph � j �� 2 ��� d � j �� ph � c � 2 � d � c �0��� j : ph � j �� 0 � d � j �� ph � c � 2 ��� d � c �0��� j : ph � j �� 2 ��� d � j �
The program is now expressed in promela, with the purpose of proving the invariant.
As promela does not support the implication ( � ), existence ( � ) and forall ( � ) -operators,

these are defined using macros. The implication-operator is simply defined from its definition:

#define IMPLIES(a,b) ((a)->(b):true)

Note that The Ternary Infix Operator in promela uses -> instead of ?, as ? is used for
channel operations. The notation a->b:c is therefore equivalent to a?b:c in ’C’.

The quantifiers are defined with the assumption that the domain they work upon is the
integers in the range 0 ��� 2. The argument for the macros is a predicate, which is evaluated for
each element in the domain, thus:
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#define FORALL(p) (p(0) && p(1) && p(2))
#define EXIST(p) (p(0) || p(1) || p(2))

The boolean expression used in the program are quite complex, so they are build in steps,
using macro-expansion. First, the subexpressions used in the quantifiers are defined, and then
they are used in the quantifiers, thus:

#define UP_PH1_YES(l) (( up[(l)]) && (ph[(l)]==1) && ( d[(l)]))
#define DOWN_PH12_NO(l) ((!up[(l)]) || ((ph[(l)]>=1) && (!d[(l)])))

byte ph[N] = 0;
bool up[N] = true;
bool d[N];
bool vote[N] = 1 ;

proctype process(byte j)
{

byte k;
k=0;

end: do
:: atomic{ (j==c && up[j] && ph[j]==0) ->

ph[j]=1 ; d[j]=vote[j] }

:: atomic{ (j==c && up[j] && ph[j]==1 && FORALL(UP_PH1_YES) ) ->
ph[j]=2; d[j]=true }

:: atomic{ (j==c && up[j] && ph[j]==1 && EXIST(DOWN_PH12_NO) ) ->
ph[j]=2; d[j]=false }

:: atomic{ (j!=c && up[j] && ph[j]==0 && (up[c] && ph[c]==1 )) ->
ph[j]=1 ; d[j]=vote[j] }

:: atomic{ (j!=c && up[j] && ph[j]==0 && !up[c]) ->
ph[j]=2 ; d[j]=false }

:: atomic{ (j!=c && up[j] && ph[j]<ph[k] && (up[k] && ph[k]==2)) ->
ph[j]=2 ; d[j]=d[k] }

od
}

The constant N is the number of processes (3), and the vote array is used to hold the value
of the votes being cast (corresponding to the question-marks in the abstract program). As can
be seen, the program uses guarded statements, and each compound statement is made atomic
in accordance with the abstract description.

The faults are implemented as separate processes, in a one-to-one correspondence, and
are implemented such that they cause a random number of faults, and then terminate. This is
achieved by using the fact that a random execution is simulated when more than one alternative
is executable. This way, one of the alternatives is to cause a single fault, while the other is to
stop causing faults.

proctype fail(byte j)
{
end: do
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:: (ph[j]!=2) -> up[j] = !up[j]
:: break
od

}

The processes are started from the init-process, simply by six run-statements (in paral-
lel):

init
{

atomic
{

run process(0);
run process(1);
run process(2);

run fail(0);
run fail(1);
run fail(2);

}
}

Like the expressions in the main processes, the invariant is quite complicated, so it too is
build in steps. First, S is divided into subexpressions corresponding to the conjuncts in S:

#define invariant (S1 && S2 && S3 && S4)

Then each Sn is defined, and for each, another subexpression is defined, thus:

#define S1 (IMPLIES(ph[c]==0, FORALL(PH0_PH2_NO)))
#define S2 (IMPLIES(ph[c]==1, FORALL(PHN2_NO)))
#define S3 (IMPLIES(((ph[c]==2) && d[c]), FORALL(PHN0_YES)))
#define S4 (IMPLIES(((ph[c]==2) && !d[c]), FORALL(PHN2_NO)))

#define PH0_PH2_NO(j) ((ph[(j)]==0) || ((ph[(j)]==2) && !d[(j)]))
#define PHN2_NO(j) ((ph[(j)]!=2) || (!d[(j)]))
#define PHN0_YES(j) ((ph[(j)]!=0) && (d[(j)]))
#define PHN2_NO(j) ((ph[(j)]!=2) || (!d[(j)]))

Then, using the compound expression for the invariant, the never-claim can be defined.
The never-claim used is an idiom for an invariant, taken from the SPIN documentation. Note
that since our requirement is formulated as a negation, i.e. something that should never hap-
pen, the invariant is negated in the never-claim. The comment is an LTL-formula (linear-time
temporal logic) specifying the same requirement as the never-claim (invariance). The textual
interpretation of this is ”always not invariant”.

never /* []!(invariant) */
{

do
:: (invariant)
:: (! (invariant)) -> break
od

}
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A.2.2 Example: Token-ring

This example shows the use of the incremental approach, in which layers of functionality
are added sequentially. The program implements a distributed token-based mutual-exclusion
algorithm. The processes are logically placed in an array, which is treated as a ring. Each
process has a flag, which is accessible to all processes, and the idea is that each process looks
at the flag of the previous process, and assigns this value to its own flag. The first process looks
at the last process’ flag, and assigns the negated value of its flag to its own flag. The copying
of the neighboring values creates a ripple-effect, in which alternating waves zeroes and ones
ripple through the flags. At any moment there should be exactly one pair of neighboring
processes which has different flag-values, and this marks the position of the token (i.e. which
process owns the critical section). In the specification, due to [33], j is the number of the
process, and � 2 denotes addition modulo 2 (i.e. exclusive-or):

TR1 :: j �� 0 � x � j �� x ��� j � 1 � � x � j : � x ��� j � 1 �
TR2 :: j � 0 � x � j ���� x � N   2 1 �#� x � j : � x � N   2 1

If the values of the flags are interpreted as a bitstring, the value of this string can be
expressed with a regular expression. If X denotes the bitstring, then the following is invariant:

STR � X � �C¡ l : 0 ¢ l ¢ N � 1 : � 0l1 £ N � 1 � l ¤e¥ 1l0 £ N � 1 � l ¤ �K�
While the regular expressions provide concise descriptions, there is also a significant gap

between what can be expressed with regular expressions, and what can be expressed as never-
claims in a promela-program. However, with a few modifications the above expression can be
expressed in promela. Instead of looking for runs of zeroes and ones, one can look for neigh-
boring flags which are not equal, of which there should be at most one pair. The following
function is used to calculate the difference between the flags of two neighboring processes.

f
�
j �§¦ if x � j � x � � j � 1 � then 1

else 0

Determining the number of different neighboring flags is now simply a matter of calculat-
ing ∑N � 1

j | 0 f
�
j � . As there should be exactly one pair of neighboring processes with different

flags, the invariant becomes S 1TR � � ∑N � 1
j | 0 f

�
j � � 1 � .

The implementation is now hardened: A new symbol, ¨ , is introduced, which is used to
symbolize that the state of x � j has been corrupted, and the specification is augmented to take
advantage of this. The addition simply makes sure that a process never copies a corrupt value.
As long as just a single non-corrupt value exists, this will propagate to the corrupt values, and
the system is able to recover.
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PTR1 :: x ��� j � 1 �/��ª© � TR1
PTR2 :: x � N ��«© � TR2
Faults true � x � j : �ª©

The invariant for the augmented program is:

SPTR � X � �J¬
l : 0 ¢ l ¢ N � 1 :

���
0 ¥ ¨ � l � 1 ¥ ¨ � £ N � 1 � l ¤ ¥�
1 ¥ ¨ � l � 0 ¥ ¨ � £ N � 1 � l ¤ ��¯® w j : x � j �D¨°wM¢ 1

Again, the invariant is expressed as a regular expression over the bitstring X, and as can
be seen, the additions did not make the invariant any simpler – quite the contrary. This regular
expression cannot readily be expressed in promela, not even by using clever transforma-
tions. However, instead of focusing on a regular expression, which captures the relationships
between the internal variables, is it more beneficial to focus on the actual purpose of the al-
gorithm: Mutual exclusion. An easy way checking if the mutual exclusion property has been
violated, is to implement a global counter, which counts how many processes are in the critical
region: Whenever a process enters the region, the counter is incremented, and when a process
leaves the region, the counter is decremented. This can be expressed in promela directly.

The implementation is now hardened even more. If all processes fail (i.e. � j : x � j �±¨ ), the
algorithm deadlocks, as all processes refuse to copy any values. The next addition addresses
this problem by introducing another symbol, ² , which is used to indicate that x � N has incurred
a failure. The ² symbol is propagated in reverse direction, and when x � 0 �Q² it is reset to
x � 0 � 0. This value then ripples forward.

FTR1 :: x ��� j � 1 ����ª³ � PTR1
FTR2 :: x �N ��ª³ � PTR2
FTR3 :: x �N �ª© � x � N : �ª³
FTR4 :: j �� N � x � j �ª©´� x ��� j   1 �µ��³ � x � j : �«³
FTR5 :: x � 0 �ª³ � x � 0 : � 0

Again, the invariant can be expressed as a regular expression (which is not representable
in promela):

SFTR � X � �J¬ l � m : 0 ¢ l � m � l � m ¢ N � 1 :
���

1 ¥ ¨ � l � 0 ¥ ¨ � m � ¨ ¥ ² � £ N � 1 � l � m ¤ ¥�
0 ¥ ¨ � l � 1 ¥ ¨ � m � ¨ ¥ ² � £ N � 1 � l � m ¤ ���

Next, the program is described in promela. The implementation corresponds to the de-
scription of FTR.

First some constants and variables are defined. The constant ASZ is the size of the array
(x), and N is the last (highest numbered) process. Further, the ² and ¨ symbols are defined
as constants, and a macro for modulo 2 arithmetics is defined. The variable csc is the critical
section counter, which counts the number of processes in the CS.
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#define ASZ 4
#define N ASZ-1

#define BOTTOM 2
#define TOP 3

#define MOD2(a) ((a)%2)

byte x[ASZ]=0;

int csc;

The processes are defined as a process-type, called tokenring. The operations on x
directly correspond to the operations in the abstract program. The csc-variable is incremented
upon entry and decremented upon exit of the critical section.

proctype tokenring(int j)
{

byte px;

end: do
:: atomic { ((j!=0) && (x[j-1]!=BOTTOM) &&

(x[j-1]!=TOP) &&
(x[j]!=x[j-1]) &&
(x[j-1]+x[j]==1)) ->

px=x[j-1]; }
/* critical section */
csc=csc+1;
csc=csc-1;
x[j]=px

:: atomic { ((j!=0) && (x[j-1]!=BOTTOM) &&
(x[j-1]!=TOP) &&
(x[j]!=x[j-1]) &&
(x[j-1]+x[j]!=1)) ->

x[j]=x[j-1] }

:: atomic { ((j==0) && (x[N]!=BOTTOM) &&
(x[N]!=TOP) &&
(x[j]!=MOD2(x[N]+1)) &&
(MOD2(x[N]+1)+x[j]==1)) ->

px=MOD2(x[N]+1); }
/* critical section */
csc=csc+1;
csc=csc-1;
x[j]=px

:: atomic { ((j==0) && (x[N]!=BOTTOM) &&
(x[N]!=TOP) &&
(x[j]!=MOD2(x[N]+1)) &&
(MOD2(x[N]+1)+x[j]!=1)) ->

x[j]=MOD2(x[N]+1) }

:: atomic { (x[N]==BOTTOM) -> x[N]=TOP }

:: atomic { ((j!=N) && (x[j]==BOTTOM) &&
(x[j+1]==TOP)) ->

x[j]=TOP }

:: atomic { (x[0]==TOP) -> x[0]=0 }
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od
}

As in the previous example, the fault-actions are implemented as a separate process:

proctype fail(int j)
{

do
:: x[j]=BOTTOM
:: break
od

}

The init-process implements a loop, in which the processes are started.

init
{

int c;

atomic
{

do
:: if

:: (c<=N) ->
run tokenring(c);
run fail(c);
c=c+1

:: else -> break
fi

od;
}

}

The never-claim is identical to the previous example (expressing invariance). In effect, the
invariant states that at most one process is in the critical section at any moment in time.

#define invariant S
#define S ((csc==0) || (csc==1))

never /* []!(invariant) */
{

do
:: (invariant)
:: (! (invariant)) -> break
od

}

A.3 Discussion

In the previous chapter, two examples from [35] and [33] are examined. It is demonstrated
how it is possible to formulate and model the examples using a tool for automatic program
analysis.

The main advantage of using automated tools is of course that it eliminates the need for
manually proving properties, however the automated analysis is paid for in CPU and RAM
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resources. It is not unusual that even a small simulation requires more than 100 MB of RAM,
and it is not unrealistic to formulate problems which cannot be simulated on a 32-bit machine
(due to the ’limited’ address-space). SPIN does support advanced simulation-modes, which
can be used to handle large problems, but these techniques have not been studied, as they are
out of the scope of this report.

Another problem is the limited expressive power of promela, which sometimes makes it
difficult to formulate the models. However, using a bit of creativity, it is possible to reformu-
late the models in such a way that they can be expressed in promela.
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Appendix B

Results of Failsafe Experiments

B.1 Experiment 1: Rate 10

Last first good bad cause of exception
OK n-OK repl. repl. failure runtime # faults address

8 1 6 3 Data Abort 1085 98 0x01002810
3 4 3 191 Watchdog 3636 362 0x00000000
6 1 5 6 Data Abort 1954 182 0x01001938

14 4 8 7 Data Abort 2406 207 0x01007FE4
14 5 10 12 Comm Lost

1 44 Watchdog 1193 114 0x00000000
2 3 2 4 Pref. Abort 1170 98 0xA888E4B4
2 1 1 5 Pref. Abort 1499 140 0xEFEFEFEE
1 2 1 4 Pref. Abort 1121 112 0xE9E9E9E8
6 3 4 6 Watchdog 2248 235 0x00000000

17 11 15 39 Watchdog 2758 293 0x00000000
4 3 3 3 Data Abort 806 82 0x01000CDC

1 5 Data Abort 1785 156 0x01002810
14 1 8 8 Data Abort 2394 226 0x01001938

1 5 Comm Lost
17 1 11 8 Data Abort 2483 225 0x01000CDC
10 1 7 5 Watchdog 1983 185 0x00000000

1 1 Watchdog 359 31 0x00000000
continued on next page

111



112 APPENDIX B. RESULTS OF FAILSAFE EXPERIMENTS

continued from previous page
Last first good bad cause of exception
OK n-OK repl. repl. failure runtime # faults address

2 1 1 7 Watchdog 2215 226 0x00000000
1 4 Pref. Abort 774 72 0xE9E9E9E8

3 1 1 6 Watchdog 1853 171 0x00000000
1 2 Watchdog 379 33 0x00000000

6 4 4 4 Data Abort 1177 126 0x01002D58
8 2 6 5 Pref. Abort 763 96 0x09000C08

1 6 Watchdog 806 72 0x00000000
4 5 4 2 Data Abort 470 51 0x01002358

16 1 9 23 Pref. Abort 8155 792 0xE5D5002C
1 2 1 12 Data Abort 3374 307 0x0100120C
2 1 1 4 Pref. Abort 1108 121 0x41002518
3 1 1 3 Watchdog 1092 107 0x00000000
7 1 4 17 Data Abort 3186 304 0x01001ECC
2 3 2 2 Data Abort 430 40 0x01002358

1 73 Watchdog 6849 625 0x00000000
8 1 4 5 Data Abort 1565 147 0x0100120C
1 2 1 3 Pref. Abort 750 80 0x05000C08
1 2 1 6 Comm Lost
5 6 5 12 Comm Lost

1 11 Watchdog 1842 151 0x00000000
2 3 2 2 Pref. Abort 436 34 0xE3A04A00
2 3 2 30 Data Abort 10931 1005 0x01001EF0

1 2 Data Abort 384 35 0x010011F8
4 5 4 5 Watchdog 1547 149 0x00000000
2 3 2 1 Watchdog 406 45 0x00000000
8 3 6 3 Undef. Instr. 1099 96 0x01003EEC
4 3 3 6 Data Abort 1911 174 0x01001938
5 2 4 7 Data Abort 2273 223 0x0100197C

1 1 Pref. Abort 104 9 0x09001E54
4 1 3 4 Pref. Abort 1358 143 0x05001E54
4 2 3 3 Pref. Abort 798 83 0xE9E9E9E8

1 35 Data Abort 1022 103 0x01002040
1 2 1 2 Pref. Abort 408 36 0x81000C08

28 1 13 34 Watchdog 5547 552 0x00000000
1 2 1 17 SWI 2681 257 0x0100A754

continued on next page
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continued from previous page
Last first good bad cause of exception
OK n-OK repl. repl. failure runtime # faults address

8 1 4 15 Data Abort 5524 528 0x01002810
1 1 Data Abort 202 21 0x01002810

14 1 8 12 Pref. Abort 4197 396 0xEFEFEFEE
3 2 2 7 Comm Lost
5 3 4 2 Watchdog 792 82 0x00000000
3 4 3 5 Watchdog 837 74 0x00000000
5 4 4 102 Comm Lost

1 3 Pref. Abort 764 63 0x41002518
1 3 Data Abort 766 59 0x01002358

21 3 13 10 Data Abort 3552 342 0x01002358
2 3 2 5 SWI 348 31 0x00000C0C
8 1 5 8 SWI 1569 141 0x00002740

15 6 10 8 Watchdog 3146 295 0x00000000
1 2 Watchdog 744 67 0x00000000

1 2 1 5 Data Abort 1471 152 0x01002358
1 2 Pref. Abort 387 39 0xEFEFEFEE

3 4 3 5 Data Abort 1507 162 0x01001948
20 4 15 12 Comm Lost

321 1 178 404 Watchdog 14859 1465 0x00000000
1 7 Comm Lost

1 2 1 1 Pref. Abort 35 2 0xE9E9E9E8
10 3 7 13 Data Abort 3500 342 0x01001A3C
3 4 3 30 SWI 5597 485 0x00022060

11 9 9 8 SWI 1697 143 0x0261BF54
7 1 5 34 Pref. Abort 11988 1161 0x21002518

14 5 10 10 Comm Lost
3 1 1 3 Data Abort 926 88 0x01002810
1 2 1 2 Pref. Abort 413 38 0xEFEFEFEE
6 3 5 5 SWI 495 42 0x000025B4
6 5 5 3 Pref. Abort 864 77 0x8864B49E

1 1 Pref. Abort 370 33 0x05001E54
13 3 9 24 Comm Lost
4 1 1 7 Data Abort 2314 237 0x01002544

1 4 Data Abort 415 42 0x01001DBC
42 1 25 23 Comm Lost

continued on next page
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continued from previous page
Last first good bad cause of exception
OK n-OK repl. repl. failure runtime # faults address

2 1 1 4 Pref. Abort 1397 132 0xE1E1E1E0
2 1 1 6 SWI 724 66 0x022D0232
6 7 6 5 Comm Lost

1 3 Data Abort 710 89 0x0100197C
34 2 27 29 Comm Lost

1 6 Comm Lost
1 2 1 3 Pref. Abort 773 71 0xA88864B4
3 4 3 2 Pref. Abort 458 41 0xEFEFEFEE
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B.2 Experiment 2: Rate 100

Last first good bad cause of exception
OK n-OK repl. repl. failure runtime # faults address
352 12 339 15 Data Abort 14022 133 0x01001938
145 2 142 4 Watchdog 5060 49 0x00000000

54 55 54 39 SWI 1742 10 0x00002060
423 21 412 12 Data Abort 14497 127 0x01001DE0
275 17 266 10 Pref. Abort 9773 90 0xEFEFEFEE
240 36 230 48 Comm Lost
251 65 241 11 Data Abort 9966 101 0x01002248
141 21 136 66 Comm Lost
255 5 245 11 Watchdog 10502 100 0x00000000

83 1 79 5 Watchdog 3606 33 0x00000000
94 39 90 5 Watchdog 4266 44 0x00000000

327 2 308 20 Data Abort 15413 142 0x010025C4
33 25 32 2 Data Abort 1206 12 0x01002724

2 3 2 1 Pref. Abort 60 2 0x81001DE0
58 19 56 3 Pref. Abort 2191 19 0xE1A0C00C

2 3 2 1 Pref. Abort 57 4 0x810025B0
40 2 37 41 SWI 2171 25 0x00002728
21 22 21 22 Data Abort 1823 22 0x01001AD0

371 4 356 53 Comm Lost
106 38 104 3 Pref. Abort 3344 36 0xE9E9E9E8
104 38 49 111 Pref. Abort 48749 469 0x09002518

1 78 Data Abort 33006 337 0x01007FE4
43 44 43 1 Data Abort 1158 13 0x01002810

2 3 2 2 Pref. Abort 484 9 0x21000C08
98 12 94 42 Comm Lost

460 31 440 21 Pref. Abort 18565 192 0xA88864B4
160 10 147 14 Data Abort 5257 52 0x01002724
256 8 246 315 Undef. Instr. 25345 235 0x00001630

8 3 7 39 Comm Lost
45 18 42 5 Data Abort 2708 26 0x01002358

143 27 140 4 Watchdog 5006 52 0x00000000
continued on next page
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continued from previous page
Last first good bad cause of exception
OK n-OK repl. repl. failure runtime # faults address

273 14 256 20 Watchdog 14573 135 0x00000000
189 8 175 16 Pref. Abort 10535 103 0x41000C08
187 21 179 9 Data Abort 7384 80 0x0100258C
245 26 232 95 Data Abort 15318 169 0x01007FE4
260 14 240 21 Data Abort 7581 92 0x0100197C
388 3 368 22 Watchdog 18052 201 0x00000000

64 7 62 16 Watchdog 3291 31 0x00000000
183 35 179 491 Data Abort 27510 288 0x000015AC

18 15 17 4 Data Abort 1694 20 0x01000AD8
136 20 126 49 Comm Lost

81 5 78 42 Comm Lost
4 5 4 2 Data Abort 542 4 0x010011F8

282 27 271 13 Data Abort 11540 124 0x01001938
174 6 166 46 Comm Lost
151 8 143 9 Data Abort 6807 69 0x01007FE4

77 16 74 144 Data Abort 8784 76 0x01002810
56 9 54 3 Pref. Abort 2139 23 0x41000F0C

372 12 353 58 Comm Lost
46 2 44 4 Data Abort 2332 25 0x0100120C

4 5 4 684 Comm Lost
738 26 708 68 Comm Lost

18 19 18 1 Pref. Abort 445 3 0xA88864B4
42 8 38 5 Pref. Abort 2985 30 0x11002744

516 4 488 30 Watchdog 23737 244 0x00000000
118 50 115 5 Watchdog 4466 47 0x00000000
158 13 146 89 Pref. Abort 12392 126 0x81000C08

13 14 13 38 Comm Lost
48 30 45 4 Pref. Abort 2339 30 0x21000F0C
29 7 28 3 Undef. Instr. 1534 15 0x0100A51C

274 12 266 351 SWI 22234 212 0x00000060
122 32 104 143 Pref. Abort 16230 153 0x21002518
339 9 320 21 Data Abort 16096 157 0x01000CDC
210 6 174 76 SWI 20642 185 0x00002740
264 13 250 44 Watchdog 23676 246 0x00000000

98 20 96 3 Data Abort 2754 21 0x0100120C
continued on next page
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continued from previous page
Last first good bad cause of exception
OK n-OK repl. repl. failure runtime # faults address

358 24 345 15 Pref. Abort 14162 132 0x09002518
296 12 284 50 Comm Lost
152 4 144 47 SWI 7291 59 0x0000251C
224 109 217 46 Comm Lost
133 9 129 43 Comm Lost

32 6 29 4 Data Abort 1949 31 0x010025C4
49 39 48 3 Data Abort 2017 15 0x01001A3C

487 14 467 23 Data Abort 19217 209 0x0100258C
46 11 45 3 Pref. Abort 1926 23 0xE91BA830
17 18 17 318 Data Abort 14011 128 0x01002810

213 8 202 13 Watchdog 9882 113 0x00000000
143 73 138 7 Data Abort 5845 56 0x01001938
239 30 234 6 Watchdog 8118 76 0x00000000
144 19 137 8 Pref. Abort 6218 76 0xE9E9E9E8

83 10 78 6 Data Abort 4099 55 0x01007FE4
87 8 84 5 Pref. Abort 3710 35 0x09002518

1 2 Data Abort 444 5 0x01000CDC
138 19 131 9 Data Abort 6517 64 0x01001948
322 41 311 651 Pref. Abort 25508 237 0xE9E9E9E8
115 2 108 22 Pref. Abort 11492 115 0xEFEFEFEE
374 22 355 36 Data Abort 23293 229 0x0100197C
109 12 104 6 Data Abort 4602 44 0x01002040
230 15 216 15 Data Abort 11043 133 0x0100279A
155 4 149 7 Watchdog 6472 75 0x00000000

92 4 88 43 Comm Lost
167 49 162 7 Data Abort 6413 53 0x01000CDC

22 3 17 6 Data Abort 2556 19 0x01002810
478 8 455 24 Pref. Abort 20564 209 0xEFEFEFEE

54 5 50 37 Data Abort 16528 171 0x01001EF0
265 17 253 13 Watchdog 10723 112 0x00000000

91 49 90 2 Watchdog 3004 29 0x00000000
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B.3 Experiment 3: Rate 1000

Last first good bad cause of exception
OK n-OK repl. repl. failure runtime # faults address

1303 11 1293 11 Watchdog 35742 38 0x00000000
11305 269 11253 53 Data Abort 270968 271 0x01002040
2157 2 2144 14 Pref. Abort 56617 56 0xE5853000
1557 331 1548 10 Data Abort 40994 45 0x0100279A
3632 186 3609 24 Undef. Instr. 96433 114 0x01008F10

926 77 919 8 Watchdog 25482 28 0x00000000
570 299 568 3 Data Abort 14490 15 0x01002040

1241 2 1234 8 Data Abort 32637 25 0x01001CDC
14992 98 14928 435 Comm Lost
4441 155 4420 23 Data Abort 115482 124 0x01001ECC
4675 109 4644 32 Watchdog 124737 117 0x00000000
8288 245 8232 427 SWI 221114 229 0x022D0232

321 147 320 29 Pref. Abort 20079 26 0x11000C08
1236 340 1231 7 Watchdog 32142 25 0x00000000

548 165 544 314 Pref. Abort 148020 142 0x09002518
1925 318 1914 13 Data Abort 51088 45 0x0100197C
6061 579 6023 39 Data Abort 160366 184 0x01002040
2719 286 2712 8 Watchdog 68472 61 0x00000000
1479 76 1474 6 Data Abort 37515 38 0x01002E78
6536 828 6510 27 Pref. Abort 167319 158 0xE5853000
3498 79 3484 15 Data Abort 89597 92 0x01002810

104 105 104 2980 Data Abort 80521 82 0x01007FE4
3345 135 3141 582 Comm Lost

575 133 572 374 Comm Lost
6245 189 6220 396 Comm Lost

797 226 792 6 Watchdog 21180 20 0x00000000
547 401 546 3943 Pref. Abort 116170 105 0xE9E9E9E8

1233 343 1228 377 SWI 32064 30 0x0269026E
4086 530 4068 390 SWI 105514 116 0x02000004
3694 86 3678 17 Pref. Abort 95109 82 0xE91BA830

547 401 546 13155 Comm Lost
continued on next page
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continued from previous page
Last first good bad cause of exception
OK n-OK repl. repl. failure runtime # faults address

5973 119 5940 34 Watchdog 156650 160 0x00000000
3123 304 3108 16 Data Abort 81017 76 0x01001AD0
1201 35 1193 379 Comm Lost

478 19 474 10758 Pref. Abort 286007 277 0x21002E60
4439 216 4408 32 Data Abort 119239 138 0x01001DC4
6775 261 6734 42 Watchdog 179763 181 0x00000000
1534 83 1526 379 SWI 40065 40 0x0285028A
1790 181 1779 12 Data Abort 47412 48 0x01001DB4

999 207 993 7 Watchdog 26832 24 0x00000000
4420 25 4396 395 Comm Lost

962 184 958 5 Data Abort 23145 30 0x01002880
8800 289 8755 46 Data Abort 229320 222 0x01002040
3147 1 3127 391 Comm Lost

816 163 808 379 Comm Lost
9139 85 9095 517 Comm Lost
4330 147 4314 17 Data Abort 110355 100 0x01001E4C
1858 8 1846 14 Data Abort 49877 51 0x0100197C
2119 42 2106 15 Watchdog 56960 58 0x00000000

695 25 691 5 Data Abort 18311 23 0x01001A3C
5144 155 5113 32 Pref. Abort 135950 152 0x11000C08
3527 78 3508 390 Comm Lost
2677 9 2666 12 Watchdog 69085 70 0x00000000
8103 205 8070 34 Watchdog 207722 213 0x00000000
2493 184 2479 15 Data Abort 60074 71 0x01002544
4984 132 4956 29 Watchdog 131330 130 0x00000000

757 546 754 374 Comm Lost
363 364 363 12679 Data Abort 337921 343 0x01002358

1303 11 1293 11 Watchdog 35742 38 0x00000000
149 146 148 3 Data Abort 4432 5 0x0100258C

2277 396 2268 4629 Comm Lost
7190 120 7155 406 Comm Lost

188 189 188 1 Pref. Abort 4524 2 0x41001E54
5674 223 5648 28 Data Abort 147090 140 0x0100197C

21081 99 20981 26528 Watchdog 1234208 1213 0x00000000
5488 395 5463 26 Data Abort 141759 154 0x01002458

continued on next page
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continued from previous page
Last first good bad cause of exception
OK n-OK repl. repl. failure runtime # faults address

734 443 732 3 Data Abort 18438 20 0x010020EC
438 59 432 7 Data Abort 12962 18 0x01001CDC
816 163 808 379 Comm Lost
268 97 266 3 Pref. Abort 7252 8 0x41000F0C
964 153 960 6 Data Abort 25187 26 0x0100197C

1620 696 1613 8 Data Abort 41634 35 0x010025C4
75 76 75 1 Pref. Abort 1820 3 0x21000C08

494 495 494 132 Pref. Abort 68536 73 0x09001E54
1985 155 1973 1285 Pref. Abort 83379 85 0xA88864B4
5558 10 5539 20 Pref. Abort 140701 119 0x41001CA0
1108 131 1103 450 Data Abort 220050 222 0x0100197C
3768 107 3745 24 Data Abort 99720 95 0x01002358
1330 69 1324 7 Watchdog 34754 29 0x00000000
5136 369 5109 28 Pref. Abort 134147 130 0x410025A0

504 11 503 2 Data Abort 12525 8 0x01002724
1828 263 1821 2067 Data Abort 102969 108 0x0100258C
1778 68 1773 7 Data Abort 45124 33 0x01001A44
4805 72 4786 418 Comm Lost

622 328 621 2 Pref. Abort 15331 16 0xEFEFEFEE
4104 13 4080 25 Watchdog 108569 132 0x00000000
4225 59 4199 27 Watchdog 112331 120 0x00000000

215 133 213 717 Watchdog 25958 34 0x00000000
1374 453 1365 11 Data Abort 37054 46 0x010011F8

953 77 948 7 Watchdog 25748 28 0x00000000
316 182 315 1729 Watchdog 52652 58 0x00000000

2268 527 2236 403 Comm Lost
1219 111 1213 377 Comm Lost
1398 81 1390 9 Data Abort 36784 34 0x01001DC4

594 119 590 5 Data Abort 15900 18 0x01001D08
6896 300 6856 41 Pref. Abort 321601 309 0xEFEFEFEE
4888 137 4862 27 Watchdog 128182 121 0x00000000
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B.4 Experiment 4: Rate 6000

Last first good bad cause of exception
OK n-OK repl. repl. failure runtime # faults address

4350 617 4348 2225 Comm Lost
31021 322 30997 25 Data Abort 753756 141 0x01002830

843 380 842 3843 Pref. Abort 112826 16 0x41001E54
9117 186 9108 10 Pref. Abort 222062 29 0xEBFFFFC8

12802 1005 12791 12 Data Abort 311777 59 0x0202071C
13693 12 13685 9788 Data Abort 570592 90 0x010011F8

8702 259 8700 3 Data Abort 209654 28 0x01001DC4
66011 291 65960 52 Pref. Abort 1604413 261 0xE1E1E1E0
71639 1684 71553 8534 Data Abort 1960432 322 0x01002248
22272 1161 22249 37693 Data Abort 1473424 233 0x01002544

2156 1143 2153 4 Data Abort 52977 7 0x01002810
12647 1355 12633 16 Data Abort 309614 64 0x01007FE4

7823 130 7816 8 Watchdog 191005 41 0x00000000
7737 665 7734 4 Data Abort 186906 28 0x01002FB4
7126 214 7122 37182 Comm Lost

45186 2253 43775 1439 Data Abort 1688092 270 0x01001EF0
25458 2507 25439 20 Watchdog 619081 96 0x00000000

6085 272 6080 45738 Data Abort 1259818 195 0x01002358
2683 202 2680 4 Data Abort 65616 9 0x010025C4

16203 376 16188 16 Pref. Abort 395000 68 0xE9E9E9E8
139 140 139 2 Data Abort 3788 2 0x01000CDC

17777 929 17761 17 Pref. Abort 433325 81 0xEBFFFFC8
16246 2776 16236 11 Watchdog 394360 62 0x00000000

4123 555 4119 2227 Comm Lost
198 199 198 1 Pref. Abort 4779 1 0xEFEFEFEE

27972 229 27948 25 Pref. Abort 681034 109 0x11002724
2186 1953 2185 2 Watchdog 53304 8 0x00000000
3839 132 3834 6 Data Abort 94170 18 0x01007FE4

14043 1340 14032 13 Watchdog 342332 48 0x00000000
4334 2377 3739 596 Watchdog 354293 58 0x00000000
4334 2377 3739 596 Watchdog 354293 58 0x00000000

continued on next page



122 APPENDIX B. RESULTS OF FAILSAFE EXPERIMENTS

continued from previous page
Last first good bad cause of exception
OK n-OK repl. repl. failure runtime # faults address

4734 729 4730 6 Data Abort 126381 22 0x01000CDC
13053 739 13046 9 Data Abort 316539 50 0x01000CDC
13694 615 13688 7 Watchdog 331484 64 0x00000000
13432 182 13423 10 Watchdog 326395 54 0x00000000
14990 1104 14972 19 Data Abort 360112 71 0x01002458
13947 566 13938 11 Data Abort 338997 49 0x010011F8

7223 991 7218 41075 Undef. Instr. 1175842 191 0x0100A51C
32681 688 32657 25 Data Abort 793697 119 0x01002040
22542 2776 22521 22349 Watchdog 1096266 205 0x00000000
56478 300 56426 53 Pref. Abort 1376214 239 0xE1A0C00C
17032 151 17015 14177 Data Abort 763543 139 0x0100197C

1260 1261 1260 1 Data Abort 30258 8 0x0100120C
5669 1842 5666 5 Data Abort 137706 19 0x010011F8

16901 209 16890 12 Pref. Abort 410062 78 0x00C66754
4729 729 4724 6 Data Abort 125981 22 0x01002040

905 679 904 2 Pref. Abort 22140 3 0x0500273C



Appendix C

Results of Application Experiments

C.1 Stack and Globals, Error-correction, Rate 1000

# Watchdog # Injections Cause of exception
resets failure address

28 400 Data Abort 0x2044e7c
46 707 Data Abort 0x204e264

4 60 SIGTRAP Cyg Exception Control::
deliver exception

4 63 SIGTRAP Cyg Exception Control::
deliver exception

20 284 SIGTRAP powtab.72
8 122 Data Abort 0x204c034

11 156 Data Abort 0x2044a44
22 299 SIGTRAP vprintf
72 1060 Router, mailbox full mailbox noncomm
18 250 Prefetch Abort 0x2049ff8

5 76 Watchdog
30 429 SIGTRAP 0x02001278

2 27 SIGTRAP Cyg Exception Control::
deliver exception

1 2 Data Abort 0x2049f94
17 236 Data Abort 0x2044e38

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

27 427 Watchdog
11 176 SIGTRAP Cyg Exception Control::

deliver exception
11 137 Data Abort 0x204f284
49 739 Data Abort 0x2049fcc

1 25 Watchdog
6 86 Data Abort 0x204c09c

33 474 SIGTRAP 0x02067c98
9 124 Data Abort 0x2067c34
1 36 Watchdog
9 137 Data Abort 0x204e280

18 292 Watchdog
32 474 Data Abort 0x204e23c

4 41 SIGTRAP Cyg Exception Control::
deliver exception

11 178 SIGTRAP stack main
2 13 Data Abort 0x204e23c
9 151 Data Abort 0x204c09c

12 169 Router, mailbox full mailbox noncomm
28 422 SIGTRAP powtab.72

5 69 SIGTRAP 0x02001278
41 589 Data Abort 0x2046dd0
41 679 Watchdog
34 506 SIGTRAP Cyg Scheduler Implementation::

set need reschedule
34 470 Data Abort 0x2046e64
11 160 SIGTRAP Cyg Exception Control::

deliver exception
17 261 Router, mailbox full mailbox wd

5 81 SIGTRAP 0x02001278
62 928 Prefetch Abort 0x204e28c

5 58 Data Abort 0x2046e6c
continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

4 58 SIGTRAP powtab.72
4 82 Watchdog

13 175 Prefetch Abort 0x204b08c
4 70 Watchdog

42 602 Watchdog
29 461 Data Abort 0x202b4c0

1 20 Watchdog
8 116 Watchdog

46 693 Data Abort 0x204d198
9 141 Prefetch Abort 0x2047388

31 498 SIGTRAP Cyg Counter::add alarm
11 141 Data Abort 0x204e230
12 178 Prefetch Abort 0x204e29c
23 311 SIGTRAP 0x02001278

7 89 SIGTRAP cyg libc main stack
35 517 Data Abort 0x204f290
13 212 Watchdog
23 333 Data Abort 0x202a3c8
15 195 Data Abort 0x204b03c
55 904 Data Abort 0x204d1c0
34 491 Prefetch Abort 0x204d198
17 255 SIGTRAP 0x02001278
67 934 Router, mailbox full mailbox wd

2 32 Data Abort 0x204f238
15 212 SIGTRAP Cyg Scheduler Implementation::

set need reschedule
11 158 SIGTRAP 0x02001278

8 111 Watchdog
1 30 Watchdog

37 554 Data Abort 0x2049f98
8 93 Prefetch Abort 0x204e23c

23 332 Data Abort 0x2049fdc
continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

3 31 Data Abort 0x202aec8
23 377 Data Abort 0x2049f98

1 37 Watchdog
34 477 SIGTRAP 0x02001278

1 36 Watchdog
4 41 Data Abort 0x2044e24

15 218 Prefetch Abort 0x204bfd8
16 225 Data Abort 0x204c05c
30 427 SIGTRAP 0x02001278
31 436 SIGTRAP 0x02001278
67 999 SIGTRAP –

9 135 SIGTRAP 0x02001278
8 138 Watchdog
1 18 Watchdog

15 205 SIGTRAP powtab.72
1 18 SIGTRAP 0x02001278

17 256 Data Abort 0x2044e98
11 143 Data Abort 0x2044e60

4 49 Data Abort 0x204b08c
18 254 Data Abort 0x2046e64

2 12 Data Abort 0x2044e60
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C.2 Stack and Globals, Error-correction, Rate 5000

# Watchdog # Injections Cause of exception
resets failure address

5 11 Data Abort 0x204b09c
11 40 Watchdog
92 269 SIGTRAP 0x00000314
18 60 Watchdog

162 511 SIGTRAP handle IRQ or FIQ
301 902 SIGTRAP 0x00084314
193 588 Data Abort 0x204f200

1 9 Watchdog
106 341 Data Abort 0x204d18c
144 464 SIGTRAP 0x00084314
190 600 SIGTRAP –

3 7 SIGTRAP cygvar discard me .348
136 397 SIGTRAP 0x00000314
137 419 SIGTRAP 0x02001278
376 1150 Data Abort 0x204f228
129 434 Prefetch Abort 0x204d1c0
51 140 Data Abort 0x2046e64

362 1102 Watchdog
9 24 Data Abort 0x204d198

93 295 Watchdog
120 348 Router, mailbox full mailbox wd
369 1105 Watchdog
19 59 Data Abort 0x2046e6c

105 334 SIGTRAP 0x02067cbc
253 766 SIGTRAP handle IRQ or FIQ

1 5 Watchdog
18 57 Data Abort 0x204f290
69 207 Data Abort 0x2049fa4

595 1833 SIGTRAP 0xfffffffe
47 146 SIGTRAP 0x02001278
32 95 Data Abort 0x204b03c

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

65 208 SIGTRAP 0x00084314
15 38 Data Abort 0x204d1dc
49 142 Data Abort 0x204b08c
25 61 Prefetch Abort 0x204b03c

242 702 SIGTRAP 0x02001278
122 391 Data Abort 0x204e264

14 36 SIGTRAP powtab.72
149 453 SIGTRAP 0x00008880

1 6 Watchdog
45 147 SIGTRAP 0x02001278
13 33 SIGTRAP 0x03055674

194 585 Data Abort 0x2049f98
66 226 Data Abort 0x204c034
16 47 Watchdog

252 791 SIGTRAP 0x00000314
50 171 Data Abort 0x204d198
24 65 SIGTRAP hk store
98 296 SIGTRAP 0x00084314
43 144 Prefetch Abort 0x204b08c
93 270 Data Abort 0x2049f78
39 123 Data Abort 0x204d1dc
44 140 SIGTRAP 0x00084314

124 376 Watchdog
638 2011 SIGTRAP 0x00084314

34 97 Data Abort 0x2049f98
7 18 Watchdog

52 159 Watchdog
76 226 Router, mailbox full mailbox wd
95 320 Data Abort 0x204d198
32 91 Watchdog

271 901 Watchdog
41 132 SIGTRAP 0x02001278

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

34 122 Watchdog
2 10 SIGTRAP 0x00084314

164 501 Data Abort 0x2049fdc
126 408 Watchdog
74 212 Unknown Message in
62 187 Prefetch Abort 0x204b03c

4 16 Data Abort 0x2046ea4
59 184 SIGTRAP powtab.72

137 420 SIGTRAP 0x02001278
131 433 Watchdog
23 83 SIGTRAP 0x03050a10
78 222 Watchdog

191 619 Data Abort 0x204c08c
82 260 SIGTRAP Cyg Scheduler Implementation::

set need reschedule
45 145 Prefetch Abort 0x204c09c

5 16 SIGTRAP powtab.72
14 56 Data Abort 0x204d1c4
61 199 Data Abort 0x204f260
10 39 Watchdog
72 238 Prefetch Abort 0x2047388

200 660 SIGTRAP 0x00000314
74 222 Data Abort 0x204d198

199 609 SIGTRAP 0x00084314
133 428 SIGTRAP 0x00000314
117 378 Router, mailbox full mailbox noncomm
107 321 SIGTRAP 0x00084314
69 226 Prefetch Abort 0x204f2a0
91 297 SIGTRAP 0x00000314

147 437 Data Abort 0x2046e54
61 196 Data Abort 0x2049fc0
60 185 Data Abort 0x2046e6c

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

50 159 Data Abort 0x2044df0
1 8 Watchdog

12 35 SIGTRAP 0x00000314
62 199 SIGTRAP 0x0302b59c
43 112 Data Abort 0x2046e64
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C.3 Stack and Globals, No Error-correction, Rate 1000

# Watchdog # Injections Cause of exception
resets failure address

25 371 Prefetch Abort 0x2044e88
10 139 SIGTRAP 0x00084314

9 146 Data Abort 0x204d13c
3 32 SIGTRAP 0x00000314
8 114 Data Abort 0x2049fdc

10 176 Watchdog
1 21 Watchdog

11 162 SIGTRAP cygvar discard me .348
7 108 Router, mailbox full mailbox noncomm

12 176 Data Abort 0x204f260
3 34 Data Abort 0x204e264
3 42 Data Abort 0x204de58
1 26 Watchdog
1 30 Watchdog

23 322 Prefetch Abort 0x2044e88
3 45 SIGTRAP 0xfffffffc
3 47 Data Abort 0x204c034

10 138 Unknown Message Non comm
10 131 SIGTRAP powtab.72

3 64 Watchdog
10 154 Data Abort 0x2046e94

5 92 Watchdog
36 501 Unknown Message in
26 396 Watchdog

2 22 Bad handle edac lock
25 406 Data Abort 0x204f290

5 66 Data Abort 0x2044e74
9 124 SIGTRAP 0x02001278

13 198 Data Abort 0xfffb0
34 520 SIGTRAP 0x02001278
17 247 Data Abort 0x2046e3c

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

6 89 SIGTRAP 0x00000314
4 60 SIGTRAP 0x02001278
6 90 Watchdog

48 731 Prefetch Abort 0x204e29c
8 144 Watchdog

23 371 Watchdog
2 17 Data Abort 0x204c05c
3 43 Data Abort 0x2049f98
9 138 Router, mailbox full mailbox noncomm
1 11 SIGTRAP 0x00000314

13 192 Data Abort 0x2046e64
4 86 SIGTRAP 0x02001278

13 185 Data Abort 0x204e23c
5 65 Data Abort 0x204e264

24 360 SIGTRAP hk store
4 47 Data Abort 0x204e2b8

11 186 Data Abort 0x204d1d4
14 219 Data Abort 0x204d1dc
15 239 Watchdog
30 452 Router, mailbox full mailbox wd

7 81 Data Abort 0x2044e5c
19 279 Watchdog

8 94 Data Abort 0x204b080
57 873 Data Abort 0x2044e74

4 53 Data Abort 0x2044e2c
13 185 SIGTRAP interrupt end
14 208 Router, copy failed mailbox in

2 22 SIGTRAP vprintf
2 21 Data Abort 0x2046ea4

24 372 SIGTRAP 0x00008880
7 112 Data Abort 0x204c00c

14 194 SIGTRAP 0x02001278
continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

15 229 Watchdog
2 18 SIGTRAP 0x00084314
4 49 Data Abort 0x2049fc0

50 731 SIGTRAP 0x02001278
11 162 SIGTRAP 0x02001278
10 133 Prefetch Abort 0x204b03c
17 229 SIGTRAP 0x02001278
26 412 Router, mailbox full mailbox wd

7 98 SIGTRAP cygvar discard me .348
38 514 Unknown Message WD
14 200 SIGTRAP 0x00084314
31 463 SIGTRAP powtab.72
38 548 Prefetch Abort 0x2046e94

5 96 Watchdog
19 277 SIGTRAP 0x00084314
22 337 Data Abort 0x204c05c

8 105 SIGTRAP –
7 115 SIGTRAP powtab.72
4 71 Watchdog

40 605 SIGTRAP 0x00084314
67 958 Data Abort 0x2046e3c
11 162 Prefetch Abort 0x204d1e8

9 110 SIGTRAP 0x02001278
13 188 Data Abort 0x204e270
14 186 Data Abort 0x2044e34
19 291 SIGTRAP powtab.72

2 28 Data Abort 0x204c078
2 29 SIGTRAP 0x00084314
4 57 SIGTRAP Cyg Exception Control::

deliver exception
21 333 Router, mailbox full mailbox noncomm

7 106 Watchdog
continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

30 441 Router, mailbox full mailbox noncomm
18 252 Data Abort 0x2049fd4

5 83 SIGTRAP Cyg Counter::add alarm
18 246 SIGTRAP 0x00084314

4 73 Watchdog
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C.4 Stack and Globals, No Error-correction, Rate 5000

# Watchdog # Injections Cause of exception
resets failure address

73 220 Data Abort 0x2046e64
414 1350 Data Abort 0x204d1d4
108 343 SIGTRAP stack main
234 731 Watchdog
88 278 Router, copy failed mailbox in
63 174 SIGTRAP Cyg Counter::add alarm
61 211 Unknown Message WD
33 97 SIGTRAP 0x0206c9d4

9 34 SIGTRAP 0x00000314
5 18 Data Abort 0x204d1b0

10 33 Unknown Message out
13 31 Prefetch Abort 0x204f2a0

3 11 Data Abort 0x204c034
33 107 Router, mailbox full mailbox noncomm
91 290 Data Abort 0x2046e3c

104 355 Unknown Message in
51 164 Router, mailbox full mailbox inout

426 1278 Data Abort 0x204c05c
14 34 SIGTRAP 0x02001278

115 373 Data Abort 0x204c08c
182 581 Data Abort 0x204e248
23 83 Data Abort 0x203cbb0
27 85 Data Abort 0x204e23c

3 6 Router, copy failed mailbox out
131 407 Data Abort 0x2049f98
25 88 Data Abort 0x204e23c

106 297 Unknown Message in
41 142 SIGTRAP 0x00084314
14 42 Router, mailbox full mailbox out
30 90 SIGTRAP 0x00084314
93 344 Prefetch Abort 0x204e23c

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

35 112 Data Abort 0x2046e64
69 225 Data Abort 0x2046e64
56 207 Unknown Message WD

156 464 Data Abort 0x204d194
93 284 Watchdog
60 162 Data Abort 0x2046e3c
59 174 Data Abort 0x2046e54
60 189 Data Abort 0x204f260
52 186 SIGTRAP 0x02001278
72 204 SIGTRAP 0x02001278

2 4 Data Abort 0x204c09c
124 404 Unknown Message in

13 28 SIGTRAP 0x02001278
53 172 SIGTRAP exception handler
50 153 Data Abort 0x2044e38

243 755 Data Abort 0x204c05c
34 87 Watchdog
14 56 Watchdog
11 31 Data Abort 0x204e258
76 234 SIGTRAP –

259 776 SIGTRAP 0x02001278
59 199 Prefetch Abort 0x2044e38

460 1413 SIGTRAP 0x02001278
138 446 Prefetch Abort 0x204f2a0

31 94 SIGTRAP –
75 244 Unknown Message WD
34 88 Data Abort 0x2044e34
26 85 Data Abort 0x2049f9c
49 155 Watchdog
56 172 SIGTRAP 0x00000150
35 104 Watchdog

5 14 Unknown Message inout
continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

23 80 Prefetch Abort 0x204a014
42 115 SIGTRAP powtab.72
58 180 SIGTRAP 0x00000150
35 114 Unknown Message WD
78 242 Watchdog
49 153 Data Abort 0x204e278
59 190 Watchdog
51 175 Data Abort 0x2049fcc

5 13 SIGTRAP 0x02001278
79 242 SIGTRAP 0x00000150
17 60 Watchdog

100 309 Data Abort 0x204c034
25 73 Data Abort 0x204c08c
71 233 Watchdog

112 341 Watchdog
51 160 Data Abort 0x204e264
65 217 SIGTRAP 0x00000150

124 379 SIGTRAP 0x02001278
112 346 Data Abort 0x204b064
74 231 SIGTRAP 0x00000150
73 205 Watchdog
87 277 Data Abort 0x204cda4

262 799 SIGTRAP 0x02001278
97 305 SIGTRAP Cyg Exception Control::

deliver exception
98 311 SIGTRAP 0x00000150
58 180 Data Abort 0x204e258
68 206 Data Abort 0x204e278

2 3 SIGTRAP 0x00000150
62 234 Data Abort 0x204d1d4
17 52 SIGTRAP 0x02001278
42 122 Data Abort 0x204e29c

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

31 89 Data Abort 0x2044e38
18 58 Data Abort 0x204b064

118 327 Router, mailbox full mailbox noncomm
20 62 Prefetch Abort 0x2044e60
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C.5 Dummy, Error-correction, Rate 1000

# Watchdog # Injections Cause of exception
resets failure address
1681 22541 Time-limit
1680 21869 Time-limit
1681 22058 Time-limit
1681 22048 Time-limit
1681 22366 Time-limit
1680 22113 Time-limit
1680 22354 Time-limit
1681 22358 Time-limit
1681 22001 Time-limit
1681 22265 Time-limit
1680 22335 Time-limit
1680 22161 Time-limit
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C.6 Operating System, Rate 1000

# Watchdog # Injections Cause of exception
resets failure address

11 4 Router, mailbox full mailbox wd
22 4 Data Abort 0x2046e44

3 1 Watchdog
9 5 Prefetch Abort 0x204d184

50 17 Data Abort 0x204f1e8
20 11 Watchdog
64 15 SIGTRAP 0x020aa62c
11 3 Data Abort 0x203cb60
54 17 Watchdog

5 1 Data Abort 0x20649c4
6 1 Data Abort 0x203cbfc

85 29 Data Abort 0x203cbfc
25 8 Watchdog
38 9 Watchdog
16 7 Router, mailbox full mailbox noncomm
69 20 Watchdog

7 2 Data Abort 0x2046e44
3 3 Data Abort 0x2049f9c
9 5 Data Abort 0x203cb70

16 6 Router, mailbox full mailbox wd
10 3 SIGTRAP Cyg Exception Control::

deliver exception
9 1 Router, mailbox full mailbox noncomm

76 24 Router, mailbox full mailbox noncomm
63 15 SIGTRAP Cyg Exception Control::

deliver exception
7 3 Data Abort 0x2046e44

27 9 Data Abort 0x203cb9c
1 1 SIGTRAP 0x02001278

22 8 Router, mailbox full mailbox wd
43 20 Watchdog

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

3 1 Data Abort 0x204c01c
16 6 Prefetch Abort 0x203cbb0
43 13 Watchdog
12 5 Watchdog

2 3 Data Abort 0x204c01c
143 37 Data Abort 0x204b028

2 3 Data Abort 0x204b030
8 2 Data Abort 0x2049fb4
7 5 Watchdog

11 4 SIGTRAP 0x02001278
11 1 SIGTRAP Cyg Exception Control::

deliver exception
3 1 SIGTRAP 0x02001278

21 4 Data Abort 0x2046e24
8 2 SIGTRAP 0x02001278

13 3 Watchdog
41 9 Data Abort 0x2046e44
13 5 Data Abort 0x203cb9c
47 14 Watchdog
19 6 Router, mailbox full mailbox noncomm

2 1 Data Abort 0x204c03c
23 8 Watchdog
31 15 Watchdog
30 7 Router, mailbox full mailbox noncomm
12 3 Prefetch Abort 0x203cbb0
68 18 Data Abort 0x2046e44
19 5 Router, mailbox full mailbox noncomm
62 14 Data Abort 0x2046e60
32 12 Watchdog
40 14 Data Abort 0x2046e44
15 6 Watchdog
35 11 SIGTRAP powtab.72

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

14 1 Data Abort 0x2044e3c
37 10 Watchdog
41 19 SIGTRAP 0x02001278

5 3 Data Abort 0x204c01c
124 43 Watchdog

20 8 Router, mailbox full mailbox wd
9 3 Router, mailbox full mailbox noncomm
5 5 Watchdog
4 2 Data Abort 0x203cb5c

44 16 Data Abort 0x2046e44
21 8 Watchdog

8 3 SIGTRAP Cyg Exception Control::
deliver exception

11 3 Data Abort 0x204cd94
88 27 Data Abort 0x2046e44
33 11 Watchdog
28 5 SIGTRAP –
46 13 Router, mailbox full mailbox wd
12 5 Watchdog
37 10 Watchdog
61 17 Data Abort 0x204c048

6 1 Data Abort 0x204b040
6 1 Router, mailbox full mailbox wd

36 10 Router, mailbox full mailbox noncomm
17 8 Watchdog
70 27 Watchdog
49 12 SIGTRAP Cyg Exception Control::

deliver exception
24 7 Watchdog
12 5 Router, mailbox full mailbox noncomm
44 12 Data Abort 0x2053260

5 4 Router, mailbox full mailbox wd
continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

5 2 Watchdog
49 11 SIGTRAP 0x02001278
79 29 SIGTRAP Cyg Exception Control::

deliver exception
56 14 Watchdog
31 5 Data Abort 0x2046e44
43 10 SIGTRAP 0x02001278

9 4 Data Abort 0x204c03c
5 1 Watchdog

28 7 SIGTRAP mt
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C.7 Operating System, Rate 5000

# Watchdog # Injections Cause of exception
resets failure address

53 6 SIGTRAP 0x00000150
98 2 Data Abort 0x2046e44
66 5 Data Abort 0x20649c4

874 43 Data Abort 0x2046dd8
71 3 Data Abort 0x204c03c

9 1 Watchdog
43 2 Data Abort 0x2046e24
44 3 Data Abort 0x2046e24

207 22 Data Abort 0x2044e2c
21 2 Data Abort 0x2046dd8
11 2 Data Abort 0x204d148

308 20 SIGTRAP 0x02001278
91 5 Data Abort 0x204f24c

148 9 Watchdog
264 13 SIGTRAP Cyg Exception Control::

deliver exception
300 11 Watchdog
189 10 SIGTRAP 0x02001278
108 10 Watchdog

61 4 SIGTRAP 0x00000150
252 13 Data Abort 0x204b040

50 6 Watchdog
258 16 Watchdog
272 24 SIGTRAP 0x02001278
274 13 Watchdog

17 5 Watchdog
29 2 SIGTRAP 0x02001278
10 1 Watchdog

280 17 Data Abort 0x203cb70
99 6 Watchdog
41 3 Prefetch Abort 0x203cbb0

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

93 4 Router, mailbox full mailbox noncomm
85 4 Data Abort 0x2046e50

169 9 SIGTRAP Cyg Exception Control::
deliver exception

266 17 Watchdog
87 4 Watchdog

277 15 Watchdog
19 2 Watchdog
10 2 Watchdog
57 6 Data Abort 0x203cbfc
12 2 Router, mailbox full mailbox wd

279 19 Watchdog
147 14 Watchdog
28 3 Prefetch Abort 0x203cbb0
42 3 Watchdog
17 4 Data Abort 0x2046e44

222 16 Router, mailbox full mailbox noncomm
102 5 Data Abort 0x204c03c
110 11 Watchdog
157 16 Watchdog
153 12 SIGTRAP Cyg Exception Control::

deliver exception
192 16 Data Abort 0x2044e5c
372 15 SIGTRAP 0x00000150
113 8 Watchdog

5 1 SIGTRAP Cyg Exception Control::
deliver exception

166 7 Watchdog
27 2 Data Abort 0x204f24c

135 7 Router, mailbox full mailbox noncomm
515 35 Data Abort 0x203cb60
194 13 Watchdog

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

126 6 SIGTRAP Cyg Exception Control::
deliver exception

117 4 SIGTRAP 0x00000150
63 10 Data Abort 0x204ac38
25 2 Data Abort 0x203cb70

160 10 Watchdog
284 12 SIGTRAP 0x02001278

13 1 Data Abort 0x204c048
304 17 Router, mailbox full mailbox wd

72 7 Data Abort 0x204e240
128 10 Data Abort 0x204f1e8
131 10 Data Abort 0x2046e50

69 6 Router, mailbox full mailbox noncomm
185 12 SIGTRAP 0x00000150
245 15 Watchdog
199 9 Data Abort 0x203cb60

59 3 Watchdog
203 14 Watchdog

56 2 Watchdog
67 2 Router, mailbox full mailbox wd
70 2 Router, mailbox full mailbox wd
29 2 Data Abort 0x2064a80
21 3 Data Abort 0x2046e44

134 5 Data Abort 0x203cb9c
172 13 SIGTRAP Cyg Exception Control::

deliver exception
393 26 Data Abort 0x203cb60

36 3 Data Abort 0x2046e24
249 15 Watchdog

63 9 Data Abort 0x203cb9c
578 30 SIGTRAP hk store
433 19 SIGTRAP Cyg Exception Control::

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address
deliver exception

60 4 Data Abort 0x2046e24
327 23 SIGTRAP 0x00000150

2 1 Data Abort 0x204b054
484 27 Data Abort 0x2049ba0
279 12 Watchdog
32 3 Watchdog
31 2 SIGTRAP Cyg Exception Control::

deliver exception
25 1 Data Abort 0x2046e60
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C.8 Globals, Error-correction, Rate 1000

# Watchdog # Injections Cause of exception
resets failure address

126 908 Watchdog
78 492 Data Abort 0x2046e6c

1681 11494 Time-limit
453 3241 Data Abort 0x204c064
370 2699 SIGTRAP 0x0207f698
350 2471 Watchdog
266 1836 Data Abort 0x2046e6c

1680 11712 Time-limit
1420 9930 SIGTRAP 0x02001278
416 2786 Data Abort 0x2046e6c
334 2418 SIGTRAP 0x02001278
382 2629 Unknown Message Non comm
796 5486 SIGTRAP 0x02001278

8 48 Data Abort 0x2046e6c
257 1791 Data Abort 0x2046e6c

1004 7032 Watchdog
290 1965 Data Abort 0x204c064

1527 10667 Unknown Message Non comm
272 1984 Watchdog

1680 11824 Time-limit
288 2054 Unknown Message out
487 3255 Watchdog
181 1228 SIGTRAP 0x0207e29c

1681 11694 Time-limit
136 973 Unknown Message inout
134 908 Watchdog

1016 6996 Unknown Message inout
9 67 Watchdog

444 3087 Watchdog
699 4902 Data Abort 0x2046e6c

1180 8330 Watchdog
continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

1122 7855 Data Abort 0x2046e6c
1150 8048 SIGTRAP 0x02001278

312 2185 Watchdog
109 748 Data Abort 0x2046e6c
259 1820 Data Abort 0x204c064
120 855 Data Abort 0x2046e6c

1158 8067 Data Abort 0x2046e6c
1680 11784 Time-limit

927 6525 Unknown Message WD
1680 11843 Time-limit

831 5735 Data Abort 0x2046e6c
52 338 Data Abort 0x2046e6c

1420 9958 SIGTRAP 0x02001278
1304 9200 Watchdog
1020 7098 Watchdog
1331 9312 Data Abort 0x2046e6c

63 486 Watchdog
519 3721 SIGTRAP 0x02001278
215 1493 Watchdog
197 1419 Watchdog
139 942 SIGTRAP 0x02001278
838 5952 Data Abort 0x2049bbc

1561 10660 Unknown Message in
1567 10954 Watchdog
1636 11362 Watchdog

334 2290 Watchdog
411 2862 Watchdog

1680 11744 Time-limit
74 520 Data Abort 0x2044e38

457 3296 Data Abort 0x2046e6c
57 421 Watchdog

123 889 Watchdog
continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

325 2251 SIGTRAP 0x02001278
518 3532 Watchdog
228 1542 Watchdog
415 2761 Data Abort 0x204c064
697 4856 Data Abort 0x204c064
192 1386 Data Abort 0x204c064
318 2195 Watchdog
133 985 Data Abort 0x2046e6c

23 154 Unknown Message in
598 4298 Watchdog
503 3383 Watchdog
437 3070 Watchdog

1226 8674 Watchdog
1680 11591 Time-limit
1369 9601 Data Abort 0x204c064
344 2366 Unknown Message Non comm

1 17 Watchdog
1256 8835 Watchdog
205 1410 Data Abort 0x2049fb4
141 1035 Data Abort 0x204f268
777 5431 Data Abort 0x204c064

1345 8259 Watchdog
214 1449 Data Abort 0x204c064

1063 7387 Watchdog
311 2077 Watchdog
457 3158 Watchdog
272 1892 Watchdog
621 4408 Unknown Message in

1681 11519 Time-limit
575 3899 SIGTRAP vfnprintf
676 4602 SIGTRAP 0x02001278
893 6062 Watchdog

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

233 1595 Unknown Message WD
133 852 Data Abort 0x2046e6c
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C.9 Globals, Error-correction, Rate 5000

# Watchdog # Injections Cause of exception
resets failure address
1679 2370 Time-limit
1315 1947 Watchdog
1399 1985 Watchdog
1680 2391 Time-limit
807 1188 Watchdog

1679 2383 Time-limit
1500 2147 Data Abort 0x204c058
1680 2357 Time-limit
1679 2374 Time-limit
897 1253 Data Abort 0x204c064

1680 2419 Time-limit
816 1129 Unknown Message in

1681 2332 Time-limit
713 1024 Data Abort 0x204c064

1680 2337 Time-limit
1680 2367 Time-limit
1679 2433 Time-limit
1680 2388 Time-limit
1680 2296 Time-limit
1679 2347 Time-limit
630 781 Watchdog

3475 5014 Data Abort 0x204c02c
3672 5215 Data Abort 0x2046e5c
4146 5893 Watchdog
5596 7839 Time-limit
1412 2061 Watchdog
2337 3221 Data Abort 0x2046e5c
1131 1572 Unknown Message inout
2323 3297 Watchdog
4731 6748 Unknown Message inout
183 283 Unknown Message inout

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

1285 1917 Watchdog
1044 1470 Data Abort 0x204c054
1425 2025 Watchdog
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C.10 Globals, Error-correction, High Limit, Rate 5000

# Watchdog # Injections Cause of exception
resets failure address
4333 6201 Data Abort 0x204c038
852 1152 Data Abort 0x204c054

1751 2398 SIGTRAP 0x02001278
1799 2570 Data Abort 0x2046e5c
145 219 Data Abort 0x2046e70

2431 3509 Unknown Message in
548 778 Data Abort 0x204c038
196 286 Watchdog
211 273 Unknown Message Non comm

5593 7936 SIGTRAP 0x02001278
3535 5182 SIGTRAP 0x02001278
5596 7802 Time-limit
2045 2827 Data Abort 0x2046e5c
2649 3684 Unknown Message WD
2558 3660 Watchdog
261 328 Unknown Message inout

5595 7923 Time-limit
4056 5856 Unknown Message inout
3841 5424 Unknown Message inout
1024 1458 Unknown Message in
1265 1794 SIGTRAP –
2479 3472 Data Abort 0x204d1b4
2244 3161 Data Abort 0x2046e5c
909 1238 Data Abort 0x204c054

1163 1708 Watchdog
5595 7899 Time-limit
5595 7999 Time-limit
1316 1853 Data Abort 0x204c054
1038 1399 Data Abort 0x2046e5c
5597 7926 Time-limit
5597 8014 Time-limit

continued on next page



C.10. GLOBALS, ERROR-CORRECTION, HIGH LIMIT, RATE 5000 155

continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

5416 7808 Data Abort 0x204c054
3957 5582 Data Abort 0x2046e5c
5596 7996 Time-limit
2304 3257 Watchdog
3219 4568 Data Abort 0x2044e28
5591 7832 Time-limit
3232 4565 Data Abort 0x2049fb4

1 2 Watchdog
145 217 Data Abort 0x2049b7c

1049 1470 Watchdog
247 333 Unknown Message in
355 477 Data Abort 0x2046e2c

1426 2038 Unknown Message inout
5595 7909 Time-limit
2546 3541 Watchdog
2406 3337 Unknown Message inout
1892 2692 Unknown Message inout
2189 3161 Watchdog

260 407 Watchdog
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C.11 Globals, No Error-correction, Rate 1000

# Watchdog # Injections Cause of exception
resets failure address

45 322 Watchdog
41 305 Unknown Message WD
45 346 Watchdog
91 623 Watchdog
81 587 Unknown Message Non comm
38 246 Data Abort 0x2046e64

7 57 Watchdog
135 954 Watchdog

32 234 Data Abort 0x2046e64
25 161 Unknown Message Non comm

204 1461 Router, mailbox full mailbox in
61 411 Unknown Message in

102 711 Bad handle edac unlock
26 200 Watchdog

121 784 Watchdog
41 294 Watchdog

180 1281 Bad handle edac lock
144 1018 Router, mailbox full mailbox noncomm

10 75 Watchdog
51 369 Data Abort 0x2046e64

392 2730 Watchdog
355 2471 Watchdog
112 816 Router, mailbox full mailbox inout
168 1216 Data Abort 0x2046e64
379 2752 Watchdog
143 971 Watchdog

97 679 Router, mailbox full mailbox inout
22 160 Watchdog
54 365 Unknown Message out
30 220 Watchdog

201 1394 Watchdog
continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

2 9 Router, mailbox full mailbox out
27 197 Watchdog

1 4 Bad handle edac lock
61 418 Data Abort 0x2044e34
15 98 Watchdog
18 129 Watchdog
29 194 Router, mailbox full mailbox wd

129 877 Unknown Message Non comm
9 57 Data Abort 0x204f260

336 2462 Watchdog
127 891 Watchdog
86 644 Watchdog
88 610 Watchdog

197 1409 Watchdog
55 381 Data Abort 0x2044e24
39 301 Watchdog

194 1406 Watchdog
30 206 Unknown Message in

129 894 Watchdog
146 1022 Watchdog
95 669 Watchdog

149 1042 Watchdog
25 168 Data Abort 0x2046e3c
19 121 Bad handle edac unlock

234 1685 Watchdog
136 921 Watchdog
89 624 Router, mailbox full mailbox in
42 281 Router, mailbox full mailbox wd
21 144 Watchdog
20 126 Unknown Message Non comm

7 48 Unknown Message Non comm
180 1228 Watchdog

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

26 183 Unknown Message inout
163 1154 Data Abort 0x2049ff8

1 3 Unknown Message Non comm
161 1112 Watchdog

55 410 Router, mailbox full mailbox wd
118 817 Unknown Message out
215 1483 Watchdog
189 1259 Watchdog

26 209 Watchdog
26 160 Unknown Message in

9 75 Watchdog
238 1631 Watchdog
151 1087 Unknown Message in

25 182 Router, mailbox full mailbox out
22 134 Unknown Message Non comm
15 100 Data Abort 0x204c05c

100 711 Data Abort 0x2046e3c
61 450 Unknown Message inout
66 439 Unknown Message inout

113 792 Watchdog
12 82 Watchdog

185 1269 Watchdog
7 59 Watchdog

39 267 Unknown Message Non comm
165 1165 Bad handle edac unlock
122 899 Watchdog
222 1526 Unknown Message Non comm

83 604 Data Abort 0x2046e3c
207 1377 Unknown Message WD

5 30 Data Abort 0x2046e64
103 736 Router, mailbox full mailbox out
125 939 Watchdog

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

160 1062 Router, mailbox full mailbox inout
171 1178 Watchdog
100 678 Prefetch Abort 0x2046e74
44 318 Watchdog
53 355 Bad handle edac lock
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C.12 Globals, No Error-correction, Rate 5000

# Watchdog # Injections Cause of exception
resets failure address

431 622 Watchdog
691 951 Watchdog

1143 1703 Watchdog
626 893 Data Abort 0x2046e64
266 373 Data Abort 0x2046e64
172 245 Watchdog
237 345 Watchdog
272 382 Unknown Message out
399 555 Unknown Message inout
258 365 Data Abort 0x204c05c
102 157 Data Abort 0x2044e5c
481 638 Watchdog
360 517 Bad handle edac lock

1150 1592 Watchdog
222 292 Watchdog
122 163 Router, mailbox full mailbox in

67 97 Watchdog
2 4 Bad handle edac lock

160 242 Watchdog
1001 1387 Unknown Message inout
113 169 Router, mailbox full mailbox out
346 480 Unknown Message out
320 466 Watchdog

1089 1441 Watchdog
17 27 Watchdog

476 686 Unknown Message Non comm
106 144 Unknown Message inout
343 491 Watchdog

34 56 Watchdog
246 346 Unknown Message in
145 189 Watchdog

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

2110 3004 Unknown Message out
119 169 Watchdog
433 615 Data Abort 0x2046e2c
255 352 Unknown Message in

1761 2481 Unknown Message inout
570 819 Router, mailbox full mailbox noncomm
97 128 Watchdog

306 442 Watchdog
381 575 Watchdog
788 1106 Watchdog
566 784 Unknown Message WD
264 358 Router, mailbox full mailbox inout

9 13 Watchdog
1168 1706 Watchdog
2621 3558 Data Abort 0x204c04c

25 34 Router, mailbox full mailbox inout
100 128 Data Abort 0x2046e2c
561 811 Watchdog
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C.13 Stacks, Error-correction, Rate 1000

# Watchdog # Injections Cause of exception
resets failure address

25 197 Data Abort 0x2044e60
2 13 Data Abort 0x2044e60

12 95 SIGTRAP 0x032e2474
23 210 Data Abort 0x2046e64
12 107 Router, mailbox full mailbox wd
93 763 SIGTRAP 0x02069a10
19 156 Data Abort 0x2044e7c
34 269 Data Abort 0x2044e00

3 16 SIGTRAP Cyg Counter::add alarm
36 291 SIGTRAP cyg libc main stack

7 48 Prefetch Abort 0x204c09c
4 22 SIGTRAP powtab.72
1 17 Watchdog
6 46 SIGTRAP Cyg Exception Control::

deliver exception
28 236 SIGTRAP Cyg Exception Control::

deliver exception
21 171 SIGTRAP 0x020ab5a0

2 5 SIGTRAP Cyg Exception Control::
deliver exception

88 695 SIGTRAP 0x02001278
1 19 Watchdog

30 240 Data Abort 0x204cdac
16 115 Data Abort 0x2049f98

2 3 Data Abort 0x2049fcc
33 292 Watchdog

1 11 Watchdog
7 57 Router, mailbox full mailbox noncomm

12 94 SIGTRAP powtab.72
41 339 Data Abort 0x204d644
30 223 Router, mailbox full mailbox noncomm

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

26 222 SIGTRAP Cyg Exception Control::
deliver exception

4 38 Prefetch Abort 0x2046e64
5 48 SIGTRAP Cyg Exception Control::

deliver exception
25 207 Router, mailbox full mailbox noncomm
69 581 Watchdog

1 14 Watchdog
7 50 Data Abort 0x204b03c
1 3 Data Abort 0x2049ff8

23 181 SIGTRAP 0x02001278
16 138 Data Abort 0x204b03c

5 38 SIGTRAP Cyg Exception Control::
deliver exception

9 69 Prefetch Abort 0x204d1c0
11 86 Data Abort 0x204d1c0
12 113 Watchdog
14 101 Data Abort 0x204e228
26 215 Prefetch Abort 0x204f250
59 497 SIGTRAP –
78 606 Data Abort 0x204b068

3 9 Data Abort 0x2044e34
51 406 SIGTRAP 0x02001278
42 317 SIGTRAP powtab.72
14 109 Data Abort 0x204afec
20 170 Data Abort 0x2046e64

2 21 Router, mailbox full mailbox wd
2 9 Data Abort 0x204b03c
9 78 SIGTRAP cygvar discard me .348

29 198 SIGTRAP powtab.72
48 415 Data Abort 0x204e29c
13 92 SIGTRAP powtab.72

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

14 102 SIGTRAP cygvar discard me .348
40 324 Data Abort 0x20432b4
17 137 SIGTRAP Cyg Exception Control::

deliver exception
104 858 SIGTRAP Cyg Exception Control::

deliver exception
3 30 Watchdog

58 498 SIGTRAP Cyg Exception Control::
deliver exception

1 14 Watchdog
25 211 Router, mailbox full mailbox wd
19 138 Data Abort 0x2049f98
34 275 SIGTRAP Cyg Exception Control::

deliver exception
14 97 SIGTRAP cygvar discard me .348
18 136 Data Abort 0x204c028

7 43 Data Abort 0x204c08c
12 90 SIGTRAP Cyg Exception Control::

deliver exception
27 233 SIGTRAP Cyg Exception Control::

deliver exception
11 93 Data Abort 0x2049f6c
23 194 SIGTRAP 0x02001278

1 18 Watchdog
19 145 Data Abort 0x2049fc0

9 66 Prefetch Abort 0x204d1f4
18 154 Data Abort 0x204b03c
17 134 SIGTRAP –
35 268 Data Abort 0x204b038
17 145 SIGTRAP cygvar discard me .348
22 168 SIGTRAP Cyg Exception Control::

deliver exception
continued on next page



C.13. STACKS, ERROR-CORRECTION, RATE 1000 165

continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

15 100 Router, mailbox full mailbox noncomm
49 412 Data Abort 0x202ab04

2 13 SIGTRAP cygvar discard me .348
36 268 SIGTRAP cygvar discard me .348

5 43 SIGTRAP Cyg Exception Control::
deliver exception

61 521 SIGTRAP powtab.72
18 154 Data Abort 0x204d198
58 451 Data Abort 0x204b038
39 312 Data Abort 0x204c05c

2 19 SIGTRAP Cyg Exception Control::
deliver exception

6 41 Router, mailbox full mailbox wd
35 290 Data Abort 0x204f290
11 95 Data Abort 0x204c028
20 131 Data Abort 0x204b09c
19 157 SIGTRAP 0x02001278

5 53 Watchdog
1 17 Watchdog
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C.14 Stacks, Error-correction, Rate 5000

# Watchdog # Injections Cause of exception
resets failure address

13 25 Watchdog
72 121 Prefetch Abort 0x2046e3c

268 472 SIGTRAP cyg libc main stack
94 167 Data Abort 0x2044e38
12 16 Data Abort 0xfffac

314 531 SIGTRAP –
218 361 SIGTRAP cyg libc main stack
106 160 Data Abort 0x204c05c

1 2 Watchdog
292 493 Data Abort 0x204e230

1 4 Watchdog
57 99 Data Abort 0x204b03c

280 533 SIGTRAP powtab.72
1 3 Watchdog

178 294 SIGTRAP cygvar discard me .348
12 17 Router, mailbox full mailbox noncomm

249 473 Router, mailbox full mailbox wd
65 102 SIGTRAP powtab.72
64 112 Data Abort 0x2046e3c
96 172 SIGTRAP 0x00000164

287 494 Watchdog
51 73 SIGTRAP 0x02001278

198 363 Data Abort 0x204e280
31 52 Prefetch Abort 0x2049ff8
59 93 Router, mailbox full mailbox wd

315 544 Data Abort 0x204d198
17 45 Data Abort 0x204b064

363 628 Prefetch Abort 0x2044e38
9 22 Data Abort 0x2044e38

72 122 Data Abort 0x204b03c
8 15 SIGTRAP Cyg Counter::add alarm

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

65 122 SIGTRAP 0x00000164
349 579 Data Abort 0x204d1dc
116 205 Data Abort 0x2046e3c
18 33 Watchdog
81 147 Data Abort 0x204c05c
33 62 Watchdog

224 382 SIGTRAP 0x02001278
44 67 SIGTRAP 0x00000164
62 98 SIGTRAP 0x00000164
64 108 Data Abort 0x2046ea4

169 272 Data Abort 0x204c034
193 330 Router, mailbox full mailbox noncomm
20 32 SIGTRAP 0x00000164

190 370 SIGTRAP 0x00000164
133 227 SIGTRAP 0x02001278
202 370 SIGTRAP 0x00000164
229 401 Data Abort 0x2044e38
70 118 Data Abort 0x2044e38
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C.15 Stacks, No Error-correction, Rate 1000

# Watchdog # Injections Cause of exception
resets failure address

11 66 Unknown Message in
61 493 Data Abort 0x204b078
19 191 SIGTRAP –

9 53 SIGTRAP Cyg Exception Control::
deliver exception

4 24 Prefetch Abort 0x204d198
3 12 Prefetch Abort 0x204e28c

25 196 Watchdog
7 57 Data Abort 0x204d1dc
1 1 Data Abort 0x204e23c

24 182 SIGTRAP 0x02001278
18 145 SIGTRAP Cyg Exception Control::

deliver exception
9 81 Watchdog

16 125 Data Abort 0x204bfd0
60 503 Router, mailbox full mailbox wd

7 41 SIGTRAP 0x02001278
1 8 SIGTRAP cygvar discard me .348
7 38 Data Abort 0x204b078
4 27 Data Abort 0x2049fd4

13 104 SIGTRAP Cyg Exception Control::
deliver exception

33 285 Watchdog
12 91 SIGTRAP cygvar discard me .348
34 304 Router, mailbox full mailbox wd

8 56 Data Abort 0x202b54c
12 99 Data Abort 0x2046dd8

7 52 SIGTRAP 0x02001278
1 1 Data Abort 0x204d1b0
2 14 SIGTRAP Cyg Exception Control::

deliver exception
continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

63 535 SIGTRAP 0x02001278
12 104 SIGTRAP 0x02001278
15 129 SIGTRAP 0xfffffffc

8 67 SIGTRAP Cyg Exception Control::
deliver exception

31 249 Data Abort 0x204b09c
6 48 Router, copy failed Data-abort at 0x204be5c

13 111 Router, mailbox full mailbox noncomm
12 102 Prefetch Abort 0x204b0b8
19 152 Data Abort 0x204d1d0
13 93 SIGTRAP exception handler
63 551 Data Abort 0x204f228
34 281 SIGTRAP Cyg Exception Control::

deliver exception
13 111 Unknown Message inout
11 76 Prefetch Abort 0x204c4ec

6 57 SIGTRAP cygvar discard me .348
32 239 SIGTRAP cygvar discard me .348
19 165 Data Abort 0x2049fd4
35 282 Watchdog
26 206 SIGTRAP powtab.72

5 36 SIGTRAP cygvar discard me .348
10 85 Router, mailbox full mailbox noncomm
64 515 SIGTRAP powtab.72

7 48 Data Abort 0x2049fd4
8 65 Data Abort 0x2046e5c
8 59 Data Abort 0x2049fcc
7 47 Data Abort 0x204e29c

12 89 SIGTRAP 0x02001278
9 64 Data Abort 0x204b060

10 80 Prefetch Abort 0x204b09c
1 6 SIGTRAP 0x02001278

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

11 94 SIGTRAP 0x02001278
11 103 SIGTRAP 0x02001278

6 45 Unknown Message WD
16 137 Watchdog
24 202 SIGTRAP Cyg Exception Control::

deliver exception
53 454 Watchdog
16 141 Prefetch Abort 0x204e2b8
35 315 Watchdog
10 70 SIGTRAP Cyg Exception Control::

deliver exception
12 97 Prefetch Abort 0x204b08c
16 125 Data Abort 0x204d1d4
13 101 Data Abort 0x204b03c
53 454 Data Abort 0x204b03c
13 107 SIGTRAP 0x02001278
11 104 Watchdog
56 453 Data Abort 0x2044e3c
12 94 Watchdog
18 157 Data Abort 0x2046e54

9 75 Data Abort 0x204e230
23 188 Data Abort 0x204e23c

8 64 SIGTRAP 0x020696e8
13 107 Prefetch Abort 0x204a014
21 162 Data Abort 0x204c08c
28 217 SIGTRAP powtab.72
12 101 Data Abort 0x2046ea4
32 266 SIGTRAP 0x02001278
64 521 Router, mailbox full mailbox wd

5 36 Prefetch Abort 0x204f260
29 228 Data Abort 0x2049fd0
24 192 SIGTRAP 0x02001278

continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

2 18 Watchdog
23 185 SIGTRAP Cyg Exception Control::

deliver exception
42 362 SIGTRAP Cyg Exception Control::

deliver exception
9 72 Data Abort 0x2049f98
6 46 Router, mailbox full mailbox noncomm
2 19 Watchdog
3 29 Prefetch Abort 0x2046e94

24 199 SIGTRAP 0x02001278
40 330 Data Abort 0x204d194
25 215 Watchdog
16 133 SIGTRAP Cyg Exception Control::

deliver exception
47 422 Prefetch Abort 0x2047388
20 176 SIGTRAP 0x02001278
31 238 Data Abort 0x204a014
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C.16 Stacks, No Error-correction, Rate 5000

# Watchdog # Injections Cause of exception
resets failure address

75 148 Watchdog
11 29 SIGTRAP 0x00000164
77 143 SIGTRAP 0x00000164
59 100 Unknown Message out
53 89 SIGTRAP 0x00000164

131 209 SIGTRAP 0x020abe74
16 33 Data Abort 0x2044e74
76 129 Data Abort 0x2044e74
65 106 Watchdog
29 47 Prefetch Abort 0x2044eb4

141 260 Unknown Message WD
104 179 Data Abort 0x204f2a0

74 109 SIGTRAP stack inbox
166 303 Prefetch Abort 0x2049ff8
106 201 Watchdog

43 70 SIGTRAP 0x00000164
84 152 Router, copy failed mailbox noncomm
38 62 SIGTRAP 0x00000164

317 521 SIGTRAP 0x02001278
57 104 SIGTRAP 0x02001278

212 369 Data Abort 0x204c024
172 296 Data Abort 0x2044e60

51 85 Data Abort 0x2044e74
36 65 Prefetch Abort 0x2046ea4

212 366 Data Abort 0x204d1d4
66 103 SIGTRAP 0x00000000

182 328 Data Abort 0x2044e60
177 302 Data Abort 0x2044e38
162 290 Router, mailbox full mailbox wd
329 537 Prefetch Abort 0x204b09c

33 56 Router, recv failed
continued on next page
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continued from previous page
# Watchdog # Injections Cause of exception

resets failure address

139 240 Data Abort 0x204d1c0
29 48 Prefetch Abort 0x204c05c
6 8 Data Abort 0x204e228

63 106 SIGTRAP cygvar discard me .348
154 264 Router, mailbox full mailbox wd

21 41 Prefetch Abort 0x204bff8
175 317 Prefetch Abort 0x204f290

60 90 SIGTRAP 0x02001278
38 69 Data Abort 0x204e23c
18 19 Data Abort 0x204e260
49 89 SIGTRAP cygvar discard me .348
95 147 SIGTRAP 0x02001278

260 450 Watchdog
101 178 Router, mailbox full mailbox noncomm

98 164 SIGTRAP 0x0207e29c
49 95 SIGTRAP exception handler
1 2 Router, PDU too large mailbox in
6 14 SIGTRAP 0x02001278

79 113 Prefetch Abort 0x2044e38


