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ABSTRACT 

We are pursuing a system that monitors the engine condition under multiple load settings, i.e. under 
non-stationary operating conditions. We have obtained data from the electronically controlled 2-stroke 
engine at MAN B&W Research Copenhagen. The running speed when data acquired under simulated 
marine conditions (different load settings on the propeller curve) was in the range from 60 to 120 
rotations per minute; furthermore the running speed was stable within periods of fixed load.  
Electronically controlled engines can change the angular timing of certain events, such as fuel injection 
in order to optimize its performance. However this behaviour inhibits our framework presented in 
COMADEM 2003 from detecting condition changes across those load changes. 
This paper evaluates different methods that align acoustic emission signals observed under different 
load settings. We evaluate the methods on data from the fuel injection period where the largest 
deviations in timing occur. 
The idea is that we, given aligned data, can use the already developed component analysis framework 
for non-stationary monitoring of condition changes.  It should further be noticed that the proposed 
warp framework also enables alignment across cylinders and engines. 
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INTRODUCTION 

We have obtained acoustic emission (AE) RMS signals from the cylinder liner and cover of the 
electronically controlled 2-stroke at MAN B&W Research Copenhagen. During the acquisition the 
running speed was in the range 60-120 rotations per minute. Further the running speed was virtually 
constant during periods of constant load settings.  
Up to now research has mainly focused on condition monitoring under fixed operational conditions, 
see further [1], [2] and [6]. We are currently pursuing non-stationary condition monitoring, i.e. 
condition monitoring under different load settings that should resemble realistic marine conditions. 
Electronically controlled engines can change the angular timing of certain events, such as fuel injection 
in order to optimize its performance. However this behaviour inhibits our framework presented in 
COMADEM 2003 [1] from detecting condition changes across those load changes. The result is a false 
alarm triggered by the condition change. Also mechanically controlled engines display such variations, 



due to the fact that some events have fixed length in time and some in angular “time”, thus it is not 
sufficient to use the crank angular domain as described in [3] to overcome this problem.   
Joint research in the AE-WATT project has revealed a stable functional dependence in the observed 
AE signals w.r.t. running speed/load, which this paper exploits in order to compare AE signals 
observed under different load settings. We expect to add this novel tool to our component analysis 
framework [1] enabling non-stationary condition monitoring. 

Timing changes during injection period 
The three events depicted in Figure 1 are believed to arise from mechanical interaction between the 
injector spindles and their respective stops within the injector, with fuel delivery occurring between the 
second and third peaks. The process is partly mechanically controlled by pre-set spring pressure and 
electronically controlled since the fuel flow to the injector is electronically controlled. 
In order to meet the increased load the engine response is to inject more fuel.  This is achieved by 
prolonging the fuel delivery period with consequential retarded closure of the injector.  Since the AE 
directly reflects the mechanical operations within the injector the increased fuel injection duration is 
readily identifiable.  
Just as the engine changes the timing of the events, we are going to undo those changes. Figure 1 
shows meaned injection period signals at three different loads on the propeller curve. All loads have 
been annotated with a set of event landmarks. The following sections describe the applied method and 
end up with the alignment of the 50% and 25% load data. 
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Figure 1: Mean Acoustic emission signals during injection period with different load settings. The 

markers show the time position of the landmarks that should be aligned. 



METHODOLOGY 

 
Figure 2: Outline of event alignment algorithm 

Equation 1 and 2 define the warping of the observed signal x2[n] into the aligned signal xA[n]. The first 
step is applying the time-warp function f(), i.e.,  a function that aligns the landmarks and events of the 
two conditions in time. This possibly leaves amplitude mismatch which is resolved by subtracting the 
“other condition” mean µ2[n], followed by compression of variance g[n], ending with addition of the 
reference mean µR[n] (see step 1-3 in figure 2). 
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We use data to learn the parameters of the event alignment. In order to ensure generability of the 
algorithm we obtain individual subsets for the learning of each function, i.e. we randomly select some 
examples that we learn the respective landmarks from, another set for the respective mean-signals and 
yet another set for the variance. 

Warp path 
The function f() describes the warp-path[10], i.e. a time-stretching function. An example of a warp 
path is shown in Figure 3. The local slopes correspond to the necessary local (reciprocal) time-
stretching. Depending on how the warp path is obtained a set of constraints can be defined, e.g. not 
allowing negative slope etc. The dark rhomb in the figure is the Itakura-parallelogram[8], which is one 
of normally applied constraints. We have applied another constraint namely the landmarks, which we 
obtain from analysing the engine. Simply if f() aligns the landmarks it also aligns the signals.. 



 
Figure 3: A warp path. Figure due to Leonard et al. [10]. The local slopes correspond to the necessary 

local (reciprocal) time-stretching.  

Dynamic Time Warping based on Phase Vocoder Techniques 

Dynamic Time Warping (DTW) has successfully been applied to alignment of speech segments [4]. In 
DTW the actual time alignment is performed using Phase Vocoders [9]. The Phase Vocoder (PV) 
alters the time duration of a sequence whilst keeping the frequency information literally unchanged[5], 
i.e., playing speech at a faster rate without the well known chip-monk effect. However for alignment of 
signals in a component analysis based framework as ours, the artefact of spurious peaks is problematic. 
What happens is that the PV in some cases repeats or skips frames of observed signal, possibly 
removing or repeating the, for us important events. Thus using DTW for the functional form of f() in 
Eqn. (1) was abandoned. 

Spline interpolation in time domain 

By allowing changes in the frequency content can use spline-interpolation in the time-domain. We 
have tested 2 types of splines, piecewise linear (1st order) and cubic (3rd  order) splines. In many cases 
the cubic interpolation is better, as the derivatives of the warp-path are continuous. This means that the 
time-stretch at the landmarks is smoother. Sometimes, especially if landmarks are close to each other, 
cubic interpolation can lead to negative slope. This is an issue that we will have to investigate further, 
most likely ending up with a constrained regression scheme. 

Amplitude warp 
The function g[n] is only allowed to compress variance, since we cannot determine the source of the 
observed variance. Is the observed variance due to mode variation or measurement noise? Indeed 
amplification of measurement noise would be wrong. In experiments with unconstrained g[n] we 
observed that amplification of measurement noise lead to negative values – remember the observed 
signals are non-negative RMS signals. On the other side the constraint also keep the variance after 
alignment lower or equal to the variance in the un-aligned data, thus the aligned examples seem more 
“normal” than the un-aligned; this is called over-fitting an important issue that we will investigate 
further. 



 
Figure 4: Example of amplitude warp. Samples from a two-dimensional i.i.d. Gaussian are translated, 

scaled and translated, i.e., removing mode mean, re-scaling variance and adding reference mean. 

Example of event alignment 
Figure 5, Figure 6 and Figure 7 show how 50% load data is event alignment into resembling 25% load 
data. Figure 5 show the data after time-stretching, as expected the landmarks, peaks and valleys are 
aligned but we notice the prominent amplitude mismatch. Figure 6 shows the data means after 
amplitude warp – they are identical. Notice that this is even though another set of examples was used 
to learn the parameters as Figure 2 indicate. Figure 7 displays the result of applying the event 
alignment to a set of 50% load examples, again another set of examples was used to learn the 
parameters.   
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Figure 5: Amplitude mismatch after time warp. The two displayed signals are meaned over 30 cycles. 
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Figure 6: The event alignment provides a perfect match of the mean signals of 25% load data and 

aligned 50% data. 
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Figure 7: Examples of negated 25% load data and 50% load data. Notice the lesser amount of variance 

around 182˚ in the aligned data. 



CONCLUSION 

We have demonstrated how knowledge of engine evens can be used to turn data acquired under one 
operational condition into resembling another also known condition. We believe that this approach 
enables condition monitoring across known condition changes and thus enables non-stationary 
condition monitoring. Non-stationarity is a key component in our research for reliable condition 
monitoring under marine conditions, and we will continue this research and conduct the necessary 
experiments with full cycle data that demonstrate the non-stationary behaviour of the whole condition 
monitoring system. Another line of work is automatic identification of events where our research 
indicates that other sensor positions, namely close to the injector could provide better resolution w.r.t. 
events.  
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