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Preface 
This study was completed as a master thesis at the institute of Informatics and Mathematical 
Modeling (IMM) - Technical University of Denmark (DTU). The project has been completed in the 
period between September 1st 2003 and Marts 1st 2004 (and is rated as 35 points). Associate 
Professor Paul Fischer also IMM, DTU has been supervisor for the project.  
 
The report deals with a general classification problem in the area of bioinformatics, namely 
secondary structure prediction. However since we do not have a biological background, the 
problem is treated as a mathematical classification problem.  
 
The report presents the results of the conducted analyses, conclusions and implementations. The 
report describes the analyses, methods and ideas to a level of details, making it possible to 
reconstruct the tests and the results presented in this text.  
 
The structure of the report is chronological and may be read from one end to the other. However 
some of the more theoretical sections may be closely connected to the corresponding result 
sections.  
 
Several different notations are used in the report. Literature references are given as a number in 
index parentheses [] in a smaller font-size, like [1]. Footnotes appear in superscript and usually in 
the end of a sentence, like this1. Equations, formulas and other expressions are numbered using 
a notation like ( X.Y which is the Yth expression in section X. 
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Abstract 
This project deals with a specific classification problem in the area of bioinformatics and biology. 
The problem, typically referred to as secondary structure prediction deals with how the structure 
of protein sequences may be classified using a number of predefined structure classes.  
 
This project analyses the possible use of Markov models for this classification problem. Markov 
models are statistical models which may be used to infer the different structure classes for protein 
sequences based on some training data.  
 
The performance of the developed models are compared to other known models in the area, 
specifically the GOR models, which are similar to Markov models since they are both statistical 
models.  
 
The obtained results show that Markov models may be used for secondary structure prediction 
achieving better performances than just guessing at the most frequent structure class. Starting 
out with a simple Markov model able to predict around 51% of the structures correctly, the model 
has been extended and combined with other methods resulting in a prediction accuracy of 57.2% 
(an increase of around 6%). This resulting model may be characterized as a first generation 
secondary structure predictor.  
 
Given the time needed several of the weaknesses found in the Markov models may be removed 
or at least minimized possibly resulting in better performances. The models proposed in this 
project are not directly usable compared with some of the best predictors current available 
(having prediction accuracies of around 80%). However there may be room for further 
development incorporating biological background knowledge into the proposed Markov models.  
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Resume 
Dette projekt omhandler et specifikt klassifikationsproblem indenfor bioinformatik og biologi. 
Problemet bliver typisk betegnet som forudsigelse af sekundær protein struktur og omhandler 
hvordan protein sekvenser kan klassificeres ved brug af et bestemt antal struktur klasser.  
 
Projektet analyserer brugen af Markov modeller til at løse dette klassificeringsproblem. Markov 
modeller er statistiske modeller, som (givet en mængde træningsdata) kan bruges til at udlede de 
forskellige struktur klasser for proteinsekvenser. 
 
Præcisionen af forudsigelserne for de udviklede modeller er sammenlignet med andre kendte 
modeller indenfor området. Specifikt benyttes GOR modellerne, som minder noget om Markov 
modellerne, idet begge er statistiske modeller.  
 
Resultater viser at Markov modeller kan bruges til forudsigelse af sekundær struktur og opnå en 
højere klassifikationspræcision end ved blot at gætte på den mest hyppige klassifikationstype. 
Den simple Markov model er grundstenen i projektet og kommer op på en præcision på 51%. 
Udvides og kombineres denne model med andre metoder opnås en præcision på 57.2% (en 
stigning på 6% point). Denne resulterende model kan karakteriseres som en første generations 
model til forudsigelse af sekundær struktur.  
 
Med tiden er det muligt at nogle af de svagheder, der er fundet i Markov modellerne kan fjernes 
eller minimeres således at præcisionen kan blive endnu højere. Modellerne, der præsenteres i 
denne rapport kan ikke direkte bruges, sammenlignet med de bedste nuværende modeller på 
markedet (som har en klassifikationspræcision på omkring 80%). Alligevel er der gode 
muligheder for yderligere udvikling af modellerne, f.eks. ved at indføre brugen af biologisk 
baggrundsviden og biologiske metoder i de foreslåede Markov modeller.   
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1. Introduction 
Classification problems are common in many scientific areas and in many cases these problems 
are not trivial to solve. In the area of bioinformatics and biology secondary structure prediction is 
characterized as such a classification problem.  
 
One problem may be characterized as a classification problem, if the solution to the problem 
involves assigning different classes to the source context. This is the case with secondary 
structure prediction. Several structure classes are defined which must then be assigned to the 
(protein) sequence yielding a classified sequence (the procedure involving the assignment of the 
structure classes are typically referred to as predicting, hence the name).  
 
Secondary structure prediction has been (and still is) an area of great interest and this is due to 
the fact that the problem has not been completely solved yet. A relatively large number of 
methods have been developed for the single purpose of determining the secondary structure 
(typically) of protein sequences.  
 
The information in knowing the three-dimensional structure of proteins is of great value in 
determining the functions of unknown proteins. However, knowing the secondary structure of a 
given protein does not automatically supply the three-dimensional structure of the protein, since 
secondary structure is only two-dimensional (this is addressed in more details in the following 
section) [16]. 
 
Therefore, in the long run, knowledge of the secondary structure is not sufficient to tell how a 
particular protein works and interacts with other biological entities nor is it the final goal in 
secondary structure prediction [15]. Typically secondary structure prediction is used as a mean of 
predicting tertiary structure. The tertiary structure deals with another (higher) level of information, 
a more detailed level, where folds and bonds define the level of details. This form of structure 
gives even more information about the functions of proteins and it is therefore of great value for 
scientists in the area.  
 
Several methods and technologies have been applied in the field of secondary structure 
prediction. These methods are usually used for classifying a particular residue (one letter in the 
protein sequence) to a particular structure class or group (referred to as classification type or 
group). Neural networks, information theory, Bayesian statistics and (hidden) Markov models are 
some of the technologies which have been used in an effort to create an accurate secondary 
structure classifier. In other words: a predictor able to predict the secondary structure with such 
precision, that it is in fact usable.  
 
In this particular project Markov models are used as a technology to implement a classifier able to 
predict secondary structure of proteins. The Markov models used are mostly based on simple 
statistics. We start out with a very simple Markov model which is the basis for all further 
extensions. The analysis and development of the models are conducted as an iterative process, 
where one scheme is analyzed, tested, discussed and improved if possible. One model may then 
be the basis for another type of model and so on.   
 
As a method of comparing our implemented classifiers with other known predictors, we analyze 
and implement the GOR model in different versions [1, 2, 3]. The GOR models are similar to the 
Markov models used in that both models are based (almost) only on relatively simple statistics.  

1.1. Purpose of the Project 
The purpose of the project is to analyze and implement some of the various GOR models and 
using these models for comparison with our own Markov models developed. The Markov models 
will be based on a simple model (that will be described in details in a later section) and from this 
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model all extensions will be developed. It is interesting to see how the Markov models will match 
the prediction accuracies of the GOR model and of the other methods available. The Markov 
models will be analyzed, implemented and tested, and based on these tests we may be able to 
conclude whether or not it is a good idea to use Markov models for this kind of classification 
problem.  
 
The best predictors currently available have a prediction accuracy of around 75-80%. It is not our 
intention to break this limit, but merely to analyze the usability and possibility of using Markov 
models for secondary structure prediction.  
 
Typically the current predictors having high accuracies have been developed over several years 
(possibly several decades) and have been under constant improvement during that period. This is 
the case for the GOR model and also for some of the neural network models [2, 3, 16]. Many of the 
known predictors are based on a statistical foundation and on top of that biological knowledge 
may be incorporated in several steps [3, 8]. The Markov models proposed in this text are basically 
used and interpreted as a mathematical (statistical) model. No background knowledge has been 
applied and the improvements of the models are based on observations and experience from 
testing our earlier models.  
 
Since we do not have a biological background, we have treated the problem as an ordinary 
classification problem using Markov models as a mathematical and statistical technique. For the 
same reason, the models proposed in this text may therefore be subject to further investigation 
and possibly improvement (for instance by incorporating biological background knowledge).  
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2. Secondary Structure Prediction 

2.1. Introduction 
The subject of predicting the physical structure of proteins has been researched for more than 
three decades [16]. The reason that so much effort has been made to create a good classifier able 
to predict the structure with high accuracy, is that the knowledge gained is highly valuable.  
 
Proteins are the fundamental molecules of all organisms and the three-dimensional structure 
provides great functional information of the proteins. To be able to determine the structure having 
only the sequence of amino acids (which define the protein) would supply great information on 
the relationship between the structure and the functions of proteins.  
 
Today the protein structure may be determined 100% accurately using X-ray crystallographic or 
NMR (Nuclear Magnetic Resonance) techniques, but this is both very time consuming and 
expensive [16]. At the same time more proteins are determined (or extracted) in large projects like 
the Humane Genome Project [17] and the need for a good structure predictor is growing even 
larger.  

2.2. Protein Structures 
There are several different levels of protein structure, which are referred to as primary, 
secondary, tertiary and quaternary structure. The different levels of structure will be described 
here without going into the very details of the structures.  
 
The primary structure of a protein is the sequence of amino acids in that particular order. Amino 
acids (also referred to as residues) are the building blocks of proteins. There are 20 different 
amino acids. The amino acids are again defined by the nucleotide sequence (DNA) [16, 18].  
 
The secondary structure of a protein is defined by classes of repeated patterns. The folding of the 
protein backbone determines the current class. The two most common patterns are the alpha 
helix and the beta sheet. The alpha helix coils around the imaginary helix axis (clockwise) [18]. 
This is shown in Figure 1.  
 

 
Figure 1: A simplified alpha helix. 

Other kinds of helical structures are possible (π-helix and 3-helix) [7], although the alpha helix is 
the most common helical structure. 
 
The beta sheet is the other most common secondary structure and is known for the backbone to 
be almost fully extended. A simplified beta sheet is depicted in Figure 2. 
 

 
Figure 2: A simplified beta sheet. 

Combining several beta sheets is typically referred to as a beta ladder or beta strand.  
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Usually in secondary structure prediction [2, 3, 8, 11] the possible structures are grouped into 3 
classification groups (structure classes), thereby simplifying the problem, which may be referred 
to as helices (H), (beta) sheets (E) and coils (C), where the coil group is all the structures not 
contained in the first two groups. In some studies the beta sheet group may be referred to as 
(beta) strand [3] and the coil group may be referred to as loop [16]. 
 
Figure 3 depicts the secondary (and tertiary) structure of a protein, showing the three different 
structure classes as described above.  
 

 
Figure 3: Secondary structure elements shown in a protein.  

Typically proteins consists of about 32% alpha helices, 21% beta sheets and 47% coils (or non-
regular structure) [16]. Proteins having similar primary structure (similar amino acids sequences) 
or similar secondary structure are called homologous proteins and are not suited as a basis for 
secondary structure prediction, since the resulting predictor may be biased towards the proteins. 
Homologous proteins are often evolved from a common ancestor. Non-homologous sequences 
(proteins), on the other hand, are useful for secondary structure prediction, since they (ideally) 
simulate any existing protein (given that the amount of data, i.e. the number of protein sequences 
is large enough).  
 
The tertiary structure is defined as the overall folding of the protein in three dimensions, showing 
how the secondary structure parts is connected and how the protein in general is shaped [18].  
 
The quaternary structure describes the overall form of the subunits in the protein (many proteins 
are formed from more than just one sequence) [18]. 
 
This project focuses on the secondary structure prediction as a classification problem and the 
other structure levels will not be addressed any further.  

2.3. Programs and Methods for Secondary Structure Prediction 
Many different classifiers (also referred to as predictors) have been developed over several 
decades [16]. Some of these predictors have been improved and extended over the years while 
others are build on more resent discoveries in the field. This section will briefly mention some of 
the known predictors and how they perform1.  
 
Many of the models developed have been verified by The Protein Structure Prediction Center at 
Lawrence Livermore National Laboratory, California, USA. This institute has from time to time 
organized experiments on the Critical Assessment of Techniques for Protein Structure Prediction 
(CASP) [19]. Many authors like to use CASP as a way to verify their predictor and the claimed 
prediction accuracy. 
 

                                                      
1 The performance of the predictors is usually given as a prediction accuracy which will be defined more precisely in a 
later section. For now it suffices to say that the prediction accuracy is the main measure for prediction schemes and the 
value is ranging in the interval from 0 to 100%. It is usually defined as the percentage of correctly predicted residues.  
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Over the years of trying to improve methods for secondary structure prediction, the data 
availability has grown larger. More and more proteins are classified with secondary structure 
classes, providing more training data for the prediction methods. In some cases the predictors 
obtained higher prediction accuracies when using larger training databases [2, 3].  
 
It is common to see people that have been working in the field for several years, publish 
assembled protein databases containing a large number of protein sequences and their 
corresponding structure classes (the correct classifications) [12]. This makes it much easier for 
new studies to compare their results obtained directly with other methods using the same 
database.  

2.3.1. The GOR Model 
This model was first developed in the 60’s and has been more or less under constant 
development since then. The first four iterations of the GOR model are based only on statistics. 
GOR I used single residue statistics while the later models incorporate pair statistics (GOR III and 
GOR IV) [2]. However in GOR IV the training data were inspected and corrected for faults. Also 
some post-processing of the sequences was added to the basic statistical method. In the newest 
version of the GOR model (GOR V) triplet statistics have been incorporated. Also multiple 
sequence alignments are utilized in GOR V [3].  
 
The first GOR model (GOR I) claimed to predict around 55% of the residues correctly (predicting 
one structure class for each residue in the sequence), while GOR V claims to have a prediction 
accuracy of around 75% [2, 3, 16].  
 
The GOR models will be presented and analyzed in more details in the section 4.The GOR 
Classifier. Also several of the known GOR models have been implemented, tested and compared 
with the Markov models developed (and implemented) in this project.  

2.3.2. The Chou-Fasman Algorithm 
This algorithm was also one of the earlier attempts to implement a good secondary structure 
classifier for proteins. The method is based on statistics of the classification groups to be 
predicted (helices, sheets and coils) and were predicting around 55-60% [16]. 

2.3.3. Neural Networks Using Backpropagation 
Qian and Sejnowski have used a classic neural network solution using the backpropagation 
algorithm to create a classifier having a prediction accuracy of 64.3%. The construction was 
based on a combination of two neural networks having three layers [16].  

2.3.4. The DSC Algorithm 
This algorithm uses linear statistics identifying several key elements of the sequences, such as 
sequence edge effects, residue ratios, secondary structure feedback effects and so on. The 
algorithm predicted around 70% of the residues correctly [16].  

2.3.5. The PREDATOR Algorithm 
This algorithm is based on local pair-wise alignment implemented on the sequence to be 
predicted. It is claimed to predict at 75% [16].  

2.3.6. The PHD Program 
This method incorporates several cascading neural networks. Each network has a specific 
function, the first is to predict the secondary structure and the next networks are used to post-
process the predictions, making corrections and so on.  
The claimed prediction accuracy is 72.2% although CASP2 [16, 19] gets 71.6%. 
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2.3.7. Neural Networks and Multiple Alignments 
Another neural network model has been proposed by Petersen et al. [8]. The model is again 
based on several combined networks and using information from homologous sequences: 
multiple alignments. The method claims to have a prediction accuracy of around 75-80% but 
evaluation by CASP4 is awaited.  

2.3.8. Current State of the Art Predictors 
In general many of the newest methods are based on statistics or neural networks and multiple 
sequence alignments. It seems that the performance of many of the previously developed 
predictors is increased by incorporating some scheme for handling multiple sequence alignments. 
Multiple sequence alignments are homologous sequences generated from the sequence to be 
predicted using existing programs. Several programs are developed for this which may be used 
directly [12, 20]. This makes it a lot easier to incorporate multiple sequence alignments in an 
existing prediction scheme.  
 
In general the prediction accuracies reported in different papers vary somewhat, making it difficult 
to get a clear picture of the best current predictors. However it is clear that the performance 
almost reaches 80%, but is documented around 75%. Prediction accuracies at this level is 
(amongst others) reported by the latest GOR model, GOR V [3] and the neural network method 
proposed by Petersen et. al. [8].  
 
Some of the earlier predictors presented (i.e. GOR I) predicted four different structure classes [1, 
2] but for many years it have been very common to predict only three different structure classes, 
namely the three classes mentioned in the previous section (H, E and C) [2, 3, 15, 16]. This fact 
may have some influence on the performances reported for some of the older methods, since 
four different structure types are in general more difficult to predict than three.  
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3. Using Markov Models for Classification 

3.1. Introduction 
This section and the following subsections introduce the Markov model as a relatively simple 
statistical model, which may be used for classification problems such as secondary structure 
prediction.  
 
The section will first present several standard terms which will be used throughout the remainder 
of the report. Then Markov models in general and how these models may be used for this 
classification problem will be presented.  
 
Later the basic Markov model used in the project will be presented and all developed extensions 
to (or combinations of) this model will be discussed. The extended Markov models are all derived 
from the simple initial model (referred to as the basic Markov model).  
 
The result section later in the report (see the section 7.Tests and Results) addresses the 
performance of the different models presented. 

3.2. General Terms 
The following section presents several general terms and expressions. The terms will be used 
throughout the rest of the report.  

3.2.1. Residue 
A residue is the one character representation of an amino acid. Amino acids are the building 
blocks of proteins. There are 20 different amino acids. Several residues (amino acids) in a 
particular order define a (protein) sequence.  

3.2.2. Alphabet 
The Markov models are defined over an alphabet of all possible residues. The alphabet is 
represented using the symbol �.  In this case there are 20 different residues (each corresponding 
to one amino acid): 
 

( 3.1 

 
However in the protein databases available, the alphabet may be extended with a few more 
residues, which typically are used as wildcards. Wildcards are used in places where several of 
the 20 residues above may occur (see the section 6.Test and Training Data for more information 
on this).  
 
The length of the alphabet is referred to as � . 

3.2.3. Sequence 
A sequence, S, is an ordered set of residues in the alphabet: 
 

( 3.2 

 
If a sequence, S, contains n residues it is said to be of length n and is written:  
 

{ }YWVTSRQPNMLKIHGFEDCA ,,,,,,,,,,,,,,,,,,,=�

}|{ *Σ∈= xxS
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( 3.3 

3.2.4. Classification Alphabet and Group 
A new alphabet is introduced. This alphabet is called the classification alphabet. In this case it 
contains the one character representations for each of the structure classes we want to predict: 
 

( 3.4 

 
The elements in the classification alphabet are referred to as classification groups or just groups. 
The group notation is used since each structure class (H for helix, E for beta sheet/strand and C 
for coil) actually consists of several possible structures.2 

3.2.5. Classification Sequence 
Every sequence of residues, S, of length n has an associated classification sequence, Sclassification 
of length n: 
 

}|{ *
tionclassificationclassifica yyS Σ∈=

 
( 3.5 

 
If a classification sequence, Sclassification, contains n letters from the classification alphabet it is said 
to be of length n and is written: 
  

tionclassificanntionclassifica yyyyyyS Σ∈= ,..,where,... 1321  
( 3.6 

 
The term classification sequence may be referred to as just the classification for some sequence 
S. 

3.2.6. Prediction 
Given a sequence S of residues of length n: 
 

Σ∈= nn xxxxxxS ,..,where,... 1321  ( 3.7 

 
and its associated classification sequence, Sclassification : 
 

tionclassificanntionclassifica yyyyyyS Σ∈= ,..,where,... 1321  
( 3.8 

 
If the sequence S is taken from one of the databases of pre-classified proteins together with the 
associated classification sequence, Sclassification, then the classification sequence is said to be the 
correct classification sequence for S (assuming that the classifications given in the published 
database does not contain any errors). The residue xi is said to be correctly classified as group yi, 
where },...,3,2,1{ ni ∈ . The goal is to be able to predict the correct classification sequence using 
Markov models. 
 
 
                                                      
2 As mentioned before there are several different helix structures which are grouped in the helix classification group 
denoted H in the classification alphabet. The same applies for the other groups where the coil group, C, contains all the 
non-regular structures not in the H or E group.  

Σ∈= nn xxxxxxS ,..,where,... 1321

{ }CEHtionclassifica ,,=�
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Given that the Markov models have generated another classification sequence Sprediction: 
 

tionclassificannprediction zzzzzzS Σ∈= ,..,where,... 1321  ( 3.9 

 
then the classification sequence Sprediction represents the result obtained using the Markov models 
to predict the groups for the residues in S. The residue xi is said to be predicted as zi by the 
Markov models where },...,3,2,1{ ni ∈ . 
 
It is important to separate the two different types of classification sequences.  There is a correct 
classification sequence given by the database of pre-classified proteins, and there is a predicted 
classification sequence generated by the Markov models (this will be addressed further later on).  

3.2.7. Subsequence 
The term subsequence is (in this context) a short description for a maximum uniform 
subsequence, given by a part of a sequence where all residues are correctly classified as the 
same group. Given a sequence S of length n: 
 

Σ∈= nn xxxxxxS ,..,where,... 1321  ( 3.10 

 
and its associated correct classification sequence, Sclassification, (also of length n): 
 

tionclassificanntionclassifica yyyyyyS Σ∈= ,..,where,... 1321  
( 3.11 

 
A subsequence Ssubsequence is now defined as: 
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In this way a sequence of residues can be divided into several subsequences. Each 
subsequence also has an associated classification subsequence. The classification subsequence 
is defined from the correct classification sequence using indices i and j (both yi and yj are 
included in the classification subsequence).  
 
The definition of the subsequence above forces the classification subsequence to contain only 
one type of groups. This is the reason that the subsequence of residues is said to belong to a 
group: all residues in the subsequence are correctly classified as the same group in the 
classification alphabet (H, E or C).  
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3.3. Markov Models for Secondary Structure Prediction 
A Markov model is a simple statistical model which may be used for classification problems like 
secondary structure prediction.  
 
The goal in secondary structure prediction can be described as: 
 

• Having a non-classified protein sequence, S, we want to assign a group for each residue 
in S, resulting in a predicted classification sequence, Sclassification, associated to S.  

 
Furthermore it is wanted that the predicted classification sequence obtained, Sclassification, should 
be as identical as possible to the correct classification sequence. 
 
Figure 4 shows the first 60 residues of the protein 1add-1-AS.all from the DSSP database [12] and 
the associated correct classification sequence (for more information on the DSSP database see 
the section 6.Test and Training Data).  
 
Sequence TPAFNKPKVELHVHLDGAIKPETILYFGKKRGIALPADTVEELRNIIGMDKPLSLPGFLA 
Classification CCCCCCCEEEEEEEHHHCCCHHHHHHHHHHHCCCCCCCCHHHHHHHHCCCCCCCHHHHCC 

Figure 4: An example of a sequence of residues and the corresponding correct classification sequence. 

The goal is to be able to predict the correct classification sequence shown in color codes in 
Figure 4. The classification sequence consists only of the three types of groups to be predicted 
(H, E and C) and the figure shows how these groups are associated to each residue. 
 
To be able to predict the classifications above, three Markov models may be used. Each model 
represents one group, i.e. one model for the helical structures (denoted H), one for the beta 
sheets (denoted E) and one for the non-regular structures, coils (denoted C).  
 
Each model uses a part of the protein sequence (also referred to as the window residues) as 
input and produces one output (for each residue), which is the probability that the residue in 
question may be classified as the group represented by the current model. The result using the 
three models is three outputs (one for each model) which may be compared. The model having 
the largest value is the winner and the group can be predicted (the group that the winning model 
represents is assigned as the classification for the current residue). This procedure is then 
repeated for every residue in the sequence until every residue has a group assigned.  
 
The three Markov models used for this prediction are trained prior the prediction process using a 
large database of correctly classified proteins (protein sequences having their associated correct 
classification sequences given).  
 
The above outline of the prediction process using the Markov models will be described more 
formally in the following subsections. 

3.3.1. Definition of the Markov Models 
The Markov models used in this project are defined by a number of parameters, which are 
estimated based on the training database of classified protein sequences. The models calculate 
an output using a part of the input sequence (the window of residues) and the estimated 
parameters.  
 
It is the idea that Markov models may be able to infer the two-dimensional secondary structure, 
using only one-dimensional sequences as input.  
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A Markov model, MX, representing the group X (X ∈ �classification), is described by s2 + s 
parameters: p(a) and p(a|b), where a, b ∈ �, s = |�| . 3 
 
Using a number of training sequences and their associated correct classification sequences it is 
possible to estimate these parameters. This is done in the following way: 
 

1. A large database of sequences and their correct classification sequences is loaded into a 
suitable data structure. 

2. All subsequences are extracted from every loaded protein sequence and stored in three 
collections, one for each group (H, E and C). Every sequence in the training database is 
processed once. The result of the procedure is three collections of subsequences, one 
collection for each classification group. 

3. One Markov model is trained for each collection of subsequences. This means that in 
total three Markov models are obtained, MH, ME, MC. The following method is used to 
estimate p(a) and p(a|b) in a single Markov model using one of the collections of 
subsequences: 

a. Loop through all subsequences for the current collection. 
b. Estimate p(a) by counting how often a subsequence starts with an a, and dividing 

this number with the total number of subsequences in the collection. The result is 
p(a).  

c. Estimate p(a|b) by counting how often an a is found immediately after a b in all 
subsequences in the collection and dividing this number with the number of times 
a occur after the first position in all subsequences in the collection. The result is 
p(a|b). 

 
The formulas for estimating p(a) and p(a|b) may be written more formally as in the following. 
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As a consequence of the above the following is always true for p(a) and p(a|b): 
 

 

( 3.14 

 
 

                                                      
3 The parameters of the Markov model are a consequence of the Markov assumption, which is explained in more details 
in Appendix A – The Markov Assumption. 
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All modifications of p(a) and p(a|b) should respect these equations. If a certain residue does not 
exist in the training data the alphabet is reduced (leaving that residue out) in order to respect the 
above formulas. 
 
The above procedure may be illustrated with a set of examples. Assume that our entire training 
database consists of only one sequence consisting of the 60 residues depicted in Figure 4. Then 
the three collections of subsequences may be extracted as shown in Figure 5. 
 
Sequence TPAFNKPKVELHVHLDGAIKPETILYFGKKRGIALPADTVEELRNIIGMDKPLSLPGFLA 
Classification CCCCCCCEEEEEEEHHHCCCHHHHHHHHHHHCCCCCCCCHHHHHHHHCCCCCCCHHHHCC 

 
Groups Helices, H Beta Sheets, E Coils, C 
Subsequences LDG 

PETILYFGKKR 
VEELRNII 
LPGF 

KVELHVH TPAFNKP 
AIK 
GIALPADT 
GMDKPLS 
LA 

Total number of subsequences in each group 4 1 5 

Figure 5: Extraction of subsequences for the 60 residue sequence shown with its associated correct classification 
sequence. 

Now the parameters p(a) and p(a|b) may be estimated for each of the three Markov models 
representing one group each. This is done following the above instructions. Starting with the 
Markov model, MH, the p(a) parameter is estimated by counting how many times each residue in 
the alphabet � begins the subsequence (and dividing this number with the total number 
subsequences for group H): 
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As for the p(a|b) parameters the number of occurrences of b following a are counted and divided 
by the number of times a occurs after the position in the current subsequence.  
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This continues until all parameters all estimated.  
 
The same procedure is repeated for the Markov models ME and MC using the collection of 
subsequences associated with the current group. This procedure is referred to as training the 
Markov models, since the parameters are estimated based on the training data (which is a 
sample for simulating all possible protein sequences).  
 
The estimated parameters just described are used to calculate the output of the models from 
some input. This output and input for the Markov models will be described in the following 
sections. 

3.3.2. Output of the Markov model – the Score Function 
The goal of the Markov models is to predict a classification sequence that is as identical as 
possible to the correct classification sequence. Predicting the classification group for each 
residue in the sequence is possible after completing the training of the three models.  
 
The training data contains both the protein sequences and the correct classifications which 
makes it possible to check how well the models classify a sequence by comparing the resulting 
classification sequence with the correct one. This will be addressed further in the following 
sections.  
 
As mentioned earlier three Markov models are trained (by estimating their parameters), one 
model for each group in the classification alphabet (MH, ME, MC). Each of these models will be 
used when a residue is classified (the classification group is predicted).  
 
The output of the three different Markov models determines which group is the most likely 
classification for that residue. The output of the models may be referred to as the score function 
or just the score value.  
 
Given the (unclassified) sequence S = x1x2x3...xn, where x1,...,xn ∈ � and the index i of the residue 
we want to classify in S, we define the window size as the number of residues which is taken into 
account, when trying to find the classification for the residue xi. Having a window size of l, the 
residues xi to xi+l-1 are used as input for the Markov models trying to classify the residue xi. 
 
Now given the window size l and the parameters defining the model p(a) and p(a|b) the score 
function, scX for the Markov model predicting group X (where X  ∈ �classification) is then defined as: 
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( 3.17 

 
The window size is actually the number of terms in the score function. This also means that l is 
the number of residues that affects the final probability and therefore also affects the final 
predicted classification for the residue xi. The residues that are used in the score function 
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represent a window in the sequence (having length l) starting at position i and ending at position 
i+l-1. 
 
All individual terms in the score function have a value between 0.0 and 1.0. This means that the 
window size affects the size of the score value returned by the score function. A larger window 
size yields a smaller score value. Comparing score values based on different window sizes is 
therefore unfair (normalization methods compensating for this are presented later). 
 
It is important to notice that to predict the classification, zi, for the residue xi, the residues xi to xi+l-1 
(all residues in the window) are used to calculate one score value (for each Markov model, MH, 
ME and MC). The way to decide which group is assigned as the classification group for the 
residue xi is described in the next subsection. 

3.3.3. Using the Markov Models as a Classifier 
The general Markov model has been defined by the estimated parameters and the model may be 
evaluated given a part of a sequence as input. For utilizing the models for this type of 
classification (determining a group for each residue in the test sequence) we start out with a 
simple procedure.  
 
For predicting the classification for the residue at position i in the sequence S, each of the three 
Markov models, MH, ME and MC are used. The three score functions represent the three Markov 
models. This also means that the three score functions represent one group each in the 
classification alphabet. The score functions scH, scE and scC use the parameters from the 
corresponding Markov models MH, ME and MC (every model uses the same window size l). The 
three score values are calculated and compared for each position i = 1, 2, ..., n-l+1 in the 
sequence S (where n is the length of S). At every position in the sequence the Markov model with 
the highest score value is chosen as the most probable classification group for the current 
residue.  
 
After the residue has been classified the window is shifted, so that i := i+1. The window size l and 
the sequence S is the same. The classification procedure is repeated until the end of the window 
has reached the end of the sequence. At this point the Markov models have classified the 
sequence for the positions 1 to n-l+1.  
 
However there are some problems with this method. The last l-1 residues can not be classified 
since the window would exceed the end of the sequence, S. Those residues are ignored and not 
taken into account when the prediction accuracy is calculated (see the section 5.3.Prediction 
Accuracy).  
 
The above definition of the Markov models and the classification procedure is the basis for our 
study. All the Markov models and/or extensions to these are derived from this model.  
 
The above classification procedure using the defined Markov models will now be illustrated using 
an example. Assume that we have an alphabet �ex which only consist of 4 different residues:  
 

{ }DCBAex ,,,=�  
 
A single Markov model over the alphabet �ex may be depicted as in Figure 6. In the figure the 
estimated parameters p(a) and p(a|b) are shown.  
 
The drawing is one visual interpretation of the Markov model in question and is very similar to a 
directed graph.  
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Figure 6: A visual interpretation of a simple Markov model. 

The figure is somewhat simplified in that every edge in the graph (except the ones going from the 
Start state) actually represents two edges going in each direction. The parameter p(a) is the 
probability of starting in state a, i.e. the probability of observing a subsequence in the training 
database starting with the residue a. The p(a|b) parameter is then the probability of going from 
one state b to another a.  
 
Beginning in the Start state and taking q steps would generate a sequence of q residues.  
 
Assume that three Markov models of the above kind are trained (that is, the parameters are 
estimated based on some training data). Each model would represent a classification group (in 
this case it is the groups H, E and C) and each model could be evaluated (by calculating the 
score values for each possible window) on some sequence, S = x1x2...xn, where xi ∈ �ex and i ∈ 
[1;n].  
 
Given the parameters p(a) and p(a|b) for each of the three models and assuming that the window 
size is 3, that is we are using three residues to predict the classification for the first residue in the 
window, then we may find the predicted classification sequence for the sequence, Sex: 
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Having the three Markov models, one for each classification type, MH, ME and MC, we calculate 
the score functions for each model and compare them. Input to the Markov models is the first 
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three residues (ACC) in the sequence Sex since the window size is 3. The result z1 is the 
classification group for the residue at position 1: 

),,max(arg:
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The model with the highest score value is the most probable classification for the first residue A. 
The process is continued until all possible residues have been classified. In the end a 
classification sequence is obtained for the sequence Sex: 
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 ( 3.20 

 
The classification sequence will only be of length 5 since the last two residues can not be 
classified due to the window size of 3 (as mentioned earlier these residues are ignored and not 
taken into account when the accuracy of the predicted classification is calculated). Using the 
above procedure it is possible to classify any protein sequence.  
 
In the next subsections a few more terms regarding the Markov models will be explained. These 
terms may be used throughout the report.  

3.3.4. Trivial Classification 
To be able to have a benchmark value when testing the Markov models, a trivial classification 
may be used. The trivial classification classifies all residues as the most frequent classification 
group. The most frequent group is determined by investigating the distribution of the different 
classification groups in the training database used. These analyses and results about the 
database can be found in the section 6.Test and Training Data. 
 
If the prediction accuracy of the tested Markov models is better than the trivial classification it 
makes sense to use the Markov models in general.  

3.3.5. Output Graph 
The implemented program outputs a graph displaying the individual outputs of the Markov models 
for the particular test sequence. (See the section 8.Implementation for further details regarding 
the actual program implementation).  
 
Figure 7 is an example of such a graph. 
 

 
Figure 7: An example of the output displayed when classifying a single sequence. 
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In the upper left corner the prediction accuracy (denoted as the classification rate) is shown, this 
fraction shows how well the classification is compared to the correct classification (the value 1.0 
is the same as having a 100% correctly classified sequence).  
 
The graph itself is actually three different graphs. There is one graph for each output of the 
Markov models, MH, ME and MC. For every classified residue the score value for each Markov 
model is shown in the graph. The score values are connected with lines (to show the tendency of 
the values) and are colored to show which model they represent. 
 
Under the three graphs there are two lines of letters. The first line is the protein sequence where 
each letter in the line represents a residue. In the next line the correct classification sequence is 
presented. The correct classification sequence is given by the protein database. The correct 
classification sequence consists of several structure types: {‘H’,’G’,’I’,’B’,’E’,’S’,’T’,’?’,’_’}. Our 
Markov models only predict three different groups, so there is a mapping from the correct 
classifications used in the database to three classification groups that are used in this context (the 
H, E and C groups). 
 
The mapping is shown in Table 1.  
 

Classifications in DB Mapped to group Name and color code 
HGI H Helices 
BE E Beta Sheets 
ST?_ C Coils 

Table 1: Color codes and mappings of the classifications in the database to the groups in �classification 

When this mapping is applied we derive a new correct classification sequence. This sequence 
contains only three types of groups (as previously mentioned). These groups are presented by 
three colors. The mapping showed in Table 1 between the colors and the groups (H, E and C) is 
used to color the two sequences presented under the graph.  
 
In the first line the correct classification sequence is showed with colors (after it is mapped into 
three groups). In the next line the Markov model prediction is shown using the same approach. 
Looking at the first residue in the sequence (A) we see that H and E outputs (the score values) 
from the Markov models are rather small at around 12.5% of the maximum value (each vertical 
line in the graph represents 25% of the maximum value). The score value of the coil model is 
about 25%. This means that the coil group is chosen as the (predicted) classification for this 
residue.  
 
Looking at the first line under the graph we see that the correct classification of the residue is a 
coil (gray). In the line below we see that the Markov models also have predicted the residue as a 
coil (gray). This is the way to read the test graphs like the one above.  
 
The graphs are used in later sections to present the ideas and observations, which have led to 
one or more extensions of the basic Markov model (the initial model which have been presented 
in the previous subsections). 
  
The following sections will describe the models that we have implemented for prediction of 
secondary structure in this project. The models are developed based on the initial Markov model 
defined in the previous sections and also on ideas and observations made during tests of the 
basic model. These ideas may have led to new extended models which may or may not be better 
than the original models. In any case the process has been iterative, trying out new ideas and 
improving those or discarding them.  
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3.4. The Basic Markov Model 
The basic Markov model just presented has two interesting parameters to explore. These 
parameters are the window size and the pseudo count. This section will contain an explanation of 
these parameters and an outline of the test procedure needed to explore the parameters. The 
section 7.Tests and Results will present the results of these tests. 
 
The first parameter the window size, l, denotes as previously mentioned the number of terms in 
the score function. It represents the window of residues xixi+1...xi+l-1 which is used by each Markov 
model to determine the classification zi for the residue xi. We expect the performance to increase 
when the window size is increased from one to two. Two residues contain more information than 
just one.  
 
Having a window size of more than one means that the score function consists of one or more 
p(a|b) terms. Having a window size of one means that the score function consists of one term 
only, the p(a) parameter.  
 
A more detailed analysis of the individual terms in the score function p(a) and p(a|b) will follow in 
the next subsection. At this point, it is uncertain if the model is better or worse when the window 
size is increased (having a window size, l > 1). 
 
Completing the following tests will provide evidence of how the Markov models perform using 
different window sizes (referenced as Test Case 1).  
 
Test Case 1 Method Possible Conclusion(s) 
Explore the window size 
parameter. 

Vary the window size and 
measure the overall performance 
of the model.  

How the window size affects the 
overall performance of the basic 
Markov model. 

Test Case 1: Exploring the window size parameter in the basic Markov model. 

The basic Markov model described in this section is almost working as the simple Markov model 
described in the previous sections. There is one difference however. The basic Markov model 
incorporates the option of using pseudo counts. The following part explains what pseudo counts 
are and why it may be a good idea to use them. 
  
Having some (limited) training data, estimating the parameters p(a) and p(a|b) in the Markov 
models may result in some unwanted features. These unwanted features will now be outlined. 
 
Recall the method of estimating the parameters of a Markov model from the last section. In order 
to estimate the p(a) parameter we need to count how often a given residue will occur (this is done 
for every residue in the alphabet). Having a limited set of training data could cause some of these 
counts to be zero. This happens when the residue never appears in the subsequences of the 
group represented by the Markov model. If the count of residue a is zero then p(a) is zero. If the 
score function uses p(a) then the score function will return zero (because all terms in the score 
function are multiplied). Similar argumentation can be used to show that the same problem exists 
for the parameter p(a|b). 
 
The main problem is that a single zero-probability parameter will cause the score function to 
return zero regardless of all other terms in the function. To avoid this problem a constant (the 
pseudo count constant) is added to the total number of occurrences when counting a certain 
residue (or pair of residues). The value of the pseudo count constant prevents the probability of 
any of the parameters p(a) or p(a|b) from being zero. All terms in the score function will now 
affect the final score value.  
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The new pseudo count constant affects the formulas used for estimating the parameters p(a) and 
p(a|b) for each Markov model. The parameters are now estimated using the following 
expressions: 
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A proof that these new definitions of the parameters p(a) and p(a|b) still respect the earlier 
conditions that each parameter sums to 1 varying a over the alphabet, �, may be found in 
Appendix B – Using Pseudo Counts.  
 
Setting the pseudo count constant c = 0, reduces the above definitions of the parameters to the 
original ones in the simple model.  
 
The two new definitions of the parameter estimations introduce the new variable, the pseudo 
count constant, c. A number of tests will investigate the effect (if any) on the overall performance 
of the basic Markov model. Test Case 2 is aimed at this.  
 
Test Case 2 Method Possible Conclusion(s) 
Explore the pseudo constant, c. Vary c and measure the overall 

performance of the model. 
How c affects the overall 
performance of the basic Markov 
model. 

Test Case 2: Investigating the effect of the overall performance of the models when introducing the pseudo count 
constant. 

It is anticipated that the tests using the models that incorporate the pseudo count constant have a 
better performance than the models not using pseudo counts (c = 0), since the individual terms in 
the score functions will never evaluate to 0 and will therefore not force the score value to 0. 
 
The results of the tests indicate that the window size is the most important parameter. The 
pseudo count constant appears to be of less importance which means that the training data is 
large enough to contain most of all possible pairs.  
 
Again the actual tests and evaluation of these tests will be described in the section 7.Tests and 
Results.  
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3.5. Extensions to the Basic Markov Model 
This section contains a more thorough analysis of the Markov models and presents new 
extensions or enhancements of the model. This section treats every enhancement and extension 
separately and comments on the results (specific test results and evaluations are again reserved 
for the section 7.Tests and Results).  

3.5.1. Extensions Based On the Individual Terms in the Score Function 
Previously the window size and the pseudo count constant have been investigated. This section 
analyses the score function (e.g. the individual terms) in more detail. Given a Markov model M = 
MX for some group X ∈ �classification. Let us recall the score function for the model M in ( 3.22.  
 

( 3.22 

 
where the notation from the previous sections is used.  

3.5.1.1. Analysis of the Term p(a) 
The first term p(a) in the score function is, as previously described, the probability of the residue a 
being the first residue in a subsequence. The score function will supply us with a probability of the 
fact that the residues in the current window represents the first part of a subsequence with the 
first residue being a.  
 
In the following we will look at a sequence S, 
 

�∈== nn xxxxxxS ,...,  where,... 121  
 
and the score functions scH, scE and scC for the three Markov models (MH, ME and MC). Each 
score function (model) represents one classification group. The sequence S and the correct 
classification sequence may be given as: 
 
Sequence, S PETILYFGKKRGIALPADTVEELRNIIGMDKPLSLPGFLA 
Classification HHHHHHHHHHHCCCCCCCCHHHHHHHHCCCCCCCHHHHCC 

 
For simplicity we have that the first m residues in S form a subsequence (all the residues are 
classified as the helix group) and that the window size is much smaller than the size of the 
subsequence (a window size of 4 will be used in the following). In this case m is 11.  
 
If we assume that the Markov model simulates the real world extremely well then the score 
function, scH, will return a large value whenever the current window is the first part of the 
subsequence. The other two score functions (for the Markov models ME and MC) might return 
lower values (assuming that there is a connection between the order of certain residues and the 
groups they are correctly classified as). This means that the value returned by the function scH is 
greater than the values returned by scE and scC, and the first residue is then classified as a helix, 
H. This behavior is as expected. The problem appears when the window is shifted by one, and 
the next residue should be predicted.  
 
This may be illustrated using the above sequence S. Having a window size of 4 the first residue in 
the sequence S is classified using the score functions (for MH, ME and MC) for the residues in the 
window (shown in blue): 
 
Sequence, S PETILYFGKKRGIALPADTVEELRNIIGMDKPLSLPGFLA 
Classification HHHHHHHHHHHCCCCCCCCHHHHHHHHCCCCCCCHHHHCC 
Prediction ? 

 

)|()...|()|()()( 21121 −+−++++= liliiiiii xxpxxpxxpxpxsc
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Now the residue at position 1 (P) has been classified as H and the window is shifted one step as 
in: 
 
Sequence, S PETILYFGKKRGIALPADTVEELRNIIGMDKPLSLPGFLA 
Classification HHHHHHHHHHHCCCCCCCCHHHHHHHHCCCCCCCHHHHCC 
Prediction H? 

 
After the window has been shifted by one the window will no longer contain the first residue in the 
subsequence. The window now consists of the residues at position 2-5.  
 
This means that the term p(a) will cause the score function scH to return a lower value, again we 
assume that there actually is a connection between the order of certain residues and the groups 
they are correctly classified as. Now the score function, scH may not return a higher value than 
the score functions scE and scC. This may result in the second residue being classified as 
something else than the helix group.  
 
The definition of the p(a) parameter ensures (to some extent) that the Markov models in many 
cases are able to predict the first residue of a subsequence correctly, but when predicting the 
next residues the score values may be much lower which may cause the model to assign wrong 
classifications.  
 
This phenomenon where the returned score values peak (having large values) at the  
beginning of a new subsequence is partly illustrated in Figure 8. The figure shows that in several 
cases there is a peak whenever a new subsequence starts (that is when the sequence of 
residues changes classification).  

 

 
Figure 8: An illustration of a classification for some sequence. The peaks are in several cases positioned in the beginning 
of a new subsequence. The blue circle shows a gray peak. The peak is positioned over the first residue in the 
subsequence classified as coils (the C group).  

The point of the above reasoning is that the p(a) parameter could have a large effect on the 
values returned by the score functions for each Markov model (the effect is larger for small 
window sizes than for large window sizes). However it may be that the parameter focuses too 
much on the first residue in a subsequence and may be irrelevant when classifying residues that 
are not the first in a subsequence. 
 
To test the arguments and statements above we present a new definition of the parameter p(a) 
called p’(a): 
 

• The parameter p’(a) is the probability that the residue a exists (classified as the current 
group).  

 
Estimating the new parameter denoted p’(a) may be expressed formally as in the following:  
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The parameter p(a|b) is estimated as usual. For each Markov model representing a classification 
group (H, E or C) the parameters p’(a) and p(a|b) are estimated and the models may be applied 
as usual for the classification process.  
 
This new definition of one of the parameters defining the Markov models must be tested to see if 
there is a difference between the original models using the p(a) parameter and the new models 
using the p’(a) parameter. Test Case 3 describes how this will be determined. 
  
Test Case 3 Method Possible Conclusion(s) 
Is p’(a) better than p(a) 
? 

Set the window size and pseudo count variables as 
fixed values. Produce two tests: 

1) Use the term p(a) and find the 
performance of the models.  

2) Use the term p’(a) and find the 
performance of the models.  

p’(a) is better or worse than 
p(a). The test may be 
inconclusive showing no 
apparent difference 
between the two definitions.  

Test Case 3: Asserting whether p’(a) is better or worse than p(a). 

Performing the above test case makes it possible to measure the (possible) difference between 
the two types of models. Presenting the training data to both models and calculating the 
performance will reveal which model is most accurate (see the section 7.Tests and Results for 
specific results). The results show that the new definition of the p(a) term denoted p’(a) appears 
to be better than the original definition. 
 
While analyzing the impact of the p(a) terms on the resulting score function another test may be 
interesting. The test will reveal whether the term, p(a) is necessary at all. If the term p(a) is left out 
of the score function, the function is reduced to the following (using the same notation as earlier): 
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This new definition of the score function is investigated in Test Case 4.  
 
Test Case 4 Method Possible Conclusion(s) 
Is the terms p(a) or 
p’(a) necessary at all? 

Modify the score functions for the individual Markov 
models (MH, ME and MC) leaving out the p(a) / p’(a) 
term and measure the performance. The 
performance is compared to the results of the 
previous tests. 

The terms p(a) or p’(a) is 
necessary in order to 
achieve good 
performances. 

Test Case 4: Testing whether the p(a) or p’(a) term is necessary in the individual score functions for the three Markov 
models, MH, ME and MC. 
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The tests (see the section 7.Tests and Results) show that the performance of the models are 
slightly worse indicating that the p(a) or p’(a) term is indeed necessary.  

3.5.1.2. Analysis of the Term p(a|b) 
This section deals with the p(a|b) term to investigate the effect of this term in the score function 
associated with a given Markov model. The analysis in this section uses the original definition of 
p(a) unless otherwise mentioned.  
 
To test the importance of the p(a|b) terms a simple test leaving out all the p(a|b) terms in the 
score functions of the Markov models may be conducted. The score function is then reduced to 
one term only, the p(a) term (this effect may be accomplished setting the window size to 1):  
 

)(),( iX xpiSsc =  ( 3.25 

 
Test Case 5 describes the possible tests that may be conducted using this new definition of the 
score function.  
 
Test Case 5 Method Possible Conclusion(s) 
Does it make sense to 
include the p(a|b) 
terms in the score 
functions for each 
Markov model? 

Set window size = 1and use p(a) as the only 
parameter defining the Markov models.  
 
The same test may be conducted using the p’(a) 
definition of the parameter.  

Is it necessary to include 
the p(a|b) terms to get a 
reasonable classification? 

Test Case 5: Investigating the performance of Markov models based on score functions where the p(a|b) terms are left 
out. 

This test reveals that the p(a|b) terms are indeed necessary in order to get a reasonable result 
(see the section 7.Tests and Results). This result is anticipated since the Markov models do not 
contain much information when using only the p(a) parameter.  

3.5.1.3. The Reversed Pair Method 
Knowing that the p(a|b) parameter is crucial for the Markov model, we investigate possible 
changes for this parameter. With the Markov assumption in mind the above tests show that the 
order of the residues in the sequence to be predicted appears to be important for the model.  
 
In some of our earlier tests we applied a trick, which may seem random at first glance. The trick 
was used when estimating the parameters p(a) and p(a|b). The idea was that during the process 
of extracting all the subsequences in the training data for each classification, whenever the 
subsequence Ssubsequence = x1x2...xn was observed the reversed subsequence, Sreversed = xnxn-1...x1 
was also added to the collection of subsequences for that particular classification group (normally 
only the non-reversed subsequence would be added).  
 
The reason for this was to somehow supply the Markov models with more information on the 
subsequences extracted, in this case information on the reversed subsequences.  
 
Looking more closely at how this trick affects the individual parameters estimated in the model 
(especially the p(a|b) parameter) reveals some interesting features. This is illustrated with a 
series of examples.  
 
Having the subsequence Sx = ABBAAAAB and the reversed subsequence Sreversed = BAAAABBA. 
Now assume that we want to estimate the parameter p(A|B) as usual on the subsequence Sx as 
would normally be done. This may be illustrated in the following: 
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Sequence, S ABBAAAAB  
Pairs (BA)   BA     1 
A after the first position.     AAAA  4 

 
This results in the parameter p(A|B) being estimated as 1/4 (assuming that this subsequence is 
the only one in the collection for the current group).  
 
Now trying to estimate the parameter p(A|B) on both the subsequence Sx and the reversed 
subsequence Sreversed yields another value for the p(A|B) parameter. 
 

Sequence, S ABBAAAAB, BAAAABBA  
Pairs (BA)   BA      BA    BA 3 
A after the first position.     AAAA    AAAA  A 9 

 
The resulting value for the p(A|B) parameter is 3/9. This is (as expected) different from the p(A|B) 
parameter estimated using only the subsequence Sx. The trick just described is therefore a new 
definition of the parameter p(A|B) which will be denoted p’(A|B) in the following.  
 
Looking more closely at the way the p’(A|B) parameter is determined reveals that the p’(A|B) 
parameter may be estimated using the procedure for estimating p(A|B) as usual and in addition 
extending this procedure a bit. This will be explained now.  
 
When estimating the parameter p(a|b) every subsequence for the current group is investigated. 
Normally this would include estimating the probability of finding the pair ba which is done by 
counting the number of times the ba pair occurs in total and dividing that by the number of times a 
occurs after the first position in the subsequence.  
 
Now we extend this procedure. In addition to the above, we check for the reversed pair ab in the 
following manner. The number of times the pair ab occurs in the subsequence is counted and the 
number of times the residue a occurs in any position except the last is counted. This corresponds 
to the definition of the p’(a|b) parameter above. 
 
The above is illustrated with an example. 
 
Having a single subsequence, Sx = ABBAAAAB, over the alphabet �x = {A,B} the parameter 
p’(A|B) is estimated in the following way. 
 
First the normal procedure is applied. The number of times the pair BA occurs is summed up and 
the number of times A occurs after the first position is summed up: 
 

Sequence, S ABBAAAAB  
Pairs (BA)   BA 1 
A after the first position.     AAAA 4 

 
This returns 1 and 4 respectively. Now the new trick is applied for the same subsequence, 
counting the number of times that the pair AB occurs and the number of times A occurs except in 
the last position of the subsequence.  
 

Sequence, S ABBAAAAB  
Pairs (AB) AB    AB 2 
A before last position.  A  AAAA 5 

 
This returns 2 and 5 respectively. These results are added to the result obtained in the first 
investigation, resulting in 3 (1 + 2) and 9 (4 + 5) which is 3/9. This is the same as when reversing 
the subsequences and using the original method for estimating p(a|b). The method will be 
referred to as the reversed pair method, since the pair ba is reversed to ab in the above 
procedure.   



 
  By Simon Larsen and Claus Thomsen 

Page 33 of 141 

Introducing the parameter p’(a|b) in the above way ensures that the conditions for the parameters 
defining the Markov models are respected (see ( 3.14.) 
 
The new definition of the parameter p’(a|b) described informally above may be given more 
formally as in the following.  
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The description given above where the subsequences are reversed does in fact have an impact 
on the p(a) parameter as well. However defining the parameter p’(a|b) separately makes it 
possible to keep the original p(a) definition.  
 
The reason for substituting the p(a|b) parameter with this new definition p’(a|b) is that this model 
may prove to be better than the original model. This assumption is based on observations using 
this new definition p’(a|b) instead of p(a|b).  
 
Test Case 6 explores the introduction of p’(a|b). 
 
Test Case 6 Method Possible Conclusion(s) 
Does the reversed pair 
method increase the 
performance 
(compared to the 
original model) ? 

Substitute the p(a|b) parameter with the new 
definition p’(a|b) and conduct a test session as 
usual.  
 
The same test may be conducted using p’(a) 
instead of p(a).  

The reversed pair method 
proves to increases or 
decreases the performance 
compared to the original 
model. 

Test Case 6: Exploring the new definition of the p(a|b) parameter denoted p’(a|b). 

The test results indicate that the performance actually do increase when this new definition p’(a|b) 
is introduced (see 7.2.2.1.3.The Reversed Pair Method). 
 
To find out how this extension affects the model we look at the p(a|b) and p’(a|b) parameters and 
see how they relate. Recall that the parameter p’(a|b) is estimated as the original p(a|b) 
parameter including the reversed subsequences. Let us recall the example presented earlier 
where we estimated the parameter p’(a|b): 
 

Sequence, S ABBAAAAB  
Pairs (BA)   BA 1 
A after the first position.     AAAA 4 

 
In the first step the values (counting the pair BA and number of A’s) are found as usual. Now in 
the second step for estimating p’(a|b) the number of times the reversed pair occurs is counted 
and divided with the number of times A occurs before the last position. 
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Sequence, S ABBAAAAB  
Pairs (AB) AB    AB 2 
A before last position  A  AAAA 5 

 
We can now see that the number of times A occurs is not the same in step one and step two. 
This is because there is an A in the first position of the sequence which means that the first step 
only finds 4 occurrences of A. If the first and the last residue in the subsequence is not an A, the 
same number of A’s will be found in step one and step two. In other words the sum of the values 
found for A in step one and step two will be close to 2n where n is the total number of A’s in the 
subsequences. 
 
To find the final result of p’(a|b) we add the number of normal and reversed pairs: 2+1 = 3 and 
this number is divided with the total number of times A occurs (using the rules of skipping the first 
and last position already described) resulting in a total count of 9 in the example.  
 
The above description of p’(a|b) is transferred into a more general description using that the 
number of times a occur will be close to 2n. An approximated formula for estimating p’(a|b) may 
now be given: 
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where: 

pairsrev is the number of reversed pairs 
pairsnormal is the number of normal pairs 
pairsavr is the average of the sum of reversed and normal pairs. 
n is the number of times a occurs using the usual rules. 

 
If pairsavr is replaced with pairsnormal the definition of p’(a|b) looks like the original definition of 
p(a|b). The formula may be used to see that the new definition of p’(a|b) means that the value 
now also depends on the reversed pair ab in the subsequence instead of only the original pair ba 
in the subsequence.  
 
If the pair ba is more frequent than the pair ab then the actual value of p’(a|b) is reduced 
compared to the value of p(a|b). This will also mean that the value of p’(b|a) is increased 
compared to the value of p(b|a). 

3.5.1.4. Using Only p’(a) Terms in the Score Function 
The Markov models take the order of the residues into account by using the term p(a|b) as 
mentioned several times in the previous sections. Tests have already been conducted leaving out 
the p(a|b) term and resulting in a very simple model (which corresponds to using window size 1). 
This model was too simple.  
 
However if we discard the information about the order of the residues it is possible to come up 
with the following score function (given the usual conditions): 
 

 ( 3.28 

 
This will give us the probability of the residues occurring in the current window (starting from 
index i and ending with index i+l-1). Test Case 7 describes a test session monitoring the 
performance of the models using the above score function.  

)(')...(')('),,( 11 −++= liiiX xpxpxpliSsc
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Test Case 7 Method Possible Conclusion(s) 
Does the new score 
function 

 
( 3.28 affect 

the performance of the 
models? 

Complete a training session using the new score 
function for each Markov model, MH, ME and MC. 

Is this method better or 
worse than the original 
basic model? 

Test Case 7: Testing the models without the order constraints between the residues. 

This new definition of the score function appears to be slightly worse than the model using p’(a) 
and p(a|b) – using window size 3 it is actually better though. The interesting part is that the new 
score function presented above, does not contain any dependencies between the residues (as it 
did before using the term p(a|b)). In other words, there is no information about the order of the 
residues in the window.  
 
Distracting from the fact that the score function supplies a probability and seeing it as a simple 
score function just producing a number, we could try altering the score function to the following: 
 

 ( 3.29 

 
Looking a bit closer at this expression we see that the first term is to the power of l (the window 
size). We already know that all terms are 1.0 or less which means that the exponent acts like a 
discount factor. If the first term is near 1.0 then it means that the residue represented by this term 
is very likely to be a part of the group that the score function (Markov model) represents. The fact 
that the first term is to the power of l means that if this term is near 0.0 the resulting value of the 
score function will drop heavily. This effect decreases as the power of the terms decreases. The 
last term is to the power of 1 and is therefore not weighted in any way.  
 
In other words this new approach demands that the first residues in the window have to be 
observed frequently to avoid the score value to drop. If the value of the score function drops too 
much it will lose when it is compared to the other two score functions (representing the two other 
groups).  
 
Test Case 8 investigates the performance of the models using this new definition of the score 
function. 
 
Test Case 8 Method Possible Conclusion(s) 
Does the new score 
function 

 
( 3.29 affect 

the performance of the 
models? 

Complete a training session using the new score 
function for each Markov model, MH, ME and MC. 

Is this method better or 
worse than the original 
basic model? 

Test Case 8: Test the altered score functions impact on the performance of the models. 

The test is compared to the basic model where p(a) is replaced with p’(a) and where the p(a|b) 
terms are used as usual. The results show that the method using the discount factor yields better 
results than both the basic model and the basic model with p(a) replaced by p’(a). A possible 
reason why the performance of the models using the discount function are increased compared 
to the simple order less score function (not using the discount factor) is that the discount 
introduces a sort of order again. The discount factor causes the score function to change value if 
the position of the residues in the window are changed (this was not a fact before the discount 
factor was added). The section 7.Tests and Results shows the results of the tests. 

3.5.2. Extensions Based On the Overall Score Function 
This section describes various extensions that are primarily based on changing the overall score 
function of the Markov models. It is actually possible to increase the performance of the models 
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by using these extensions (of course some are better than others). Every modification and 
alteration is based on the original basic Markov model.  

3.5.2.1. Adding Noise 
It is not uncommon that algorithms are using random terms when making decisions. Based on 
this fact the Markov models are altered to incorporate random noise.  
 
Using the Markov models for classifying protein sequences involve calculating three score values 
(one for each classification group). Suppose random noise is added to the results returned by the 
three different score functions, before the score values are compared. 
 
Having a function rand() which returns a real random number in the interval [0;1[ and a scale 
factor s (determining how much noise is added) the new overall score function, sc’X for the 
Markov model MX may be given as: 
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where scX is the original score function defined earlier.  
 
Using the scale factor s it is possible to add different amounts of noise to the score value (s is the 
same for each Markov model MH, ME and MC). The noise added is in the interval [-0.5s;+0.5s[. 
 
Test Case 9 explores adding noise to the models.  
 
Test Case 9 Method Possible Conclusion(s) 
How are the models 
affected when noise is 
added? 

Test the models in iterations using different 
amounts of noise from s=0 to s=1.0�10-4. 

This method is worse or 
better than the basic 
Markov model.  

Test Case 9: Exploring the noise amount added to the models. 

The tests show that the models perform worse when adding noise. This subject is not 
investigated any further.  

3.5.2.2. Using Decision Constants 
The following extensions are mainly based upon observations from a typical output of a 
classification graph (for a single test sequence). Figure 9 show such a classification graph. 
 

 
Figure 9: An example of a classification graph showing the score value for each classification group and both the 
correct and the predicted classification sequence. One peak is pointed out, which will be investigated further in the 
following. 

The classification graph shows a number of peaks. In the section 3.5.1.1.Analysis of the Term 
p(a) an explanation is given why such peaks may occur at the start of a new subsequence. These 
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peaks often seem to appear whenever the Markov model finds a new subsequence. The peaks 
usually exist for one residue only.  
 
If a window is placed at position i in a given sequence, the peaks typically start at the previous 
position in the sequence i-1 with a low performance (possible incorrect classification). After that 
the performance increases drastic at position i (which is then correctly classified) and then 
decreases again at position i+1.  
 
Figure 9 shows such a peak (marked with a blue circle). The peak starts at a subsequence and 
ensures that the first residue in the subsequence is predicted correctly as a coil. In this case the 
following residues are predicted correct but problems could occur after the first residue. The value 
of the score function representing the coil group (and the peak) drops after position i in the 
sequence and it is possible for the other score functions (for the H and E group) to win the 
comparison and cause the prediction to be incorrect. 
 
Introducing a new rule may avoid this problem in some cases. The following states the rule: 

• A new winning group (represented by a Markov model) is only accepted whenever the 
score function representing the group returns a larger value than the second greatest 
score function (representing some other group) by a certain amount. 

 
This new rule will be explained in details in the following.  
 
Assume that we have already classified the residue at position i-1 as a coil and we are ready to 
classify the next residue at position i. Now this is normally accomplished by calculating the score 
values using the three score functions for every Markov model MH, ME and MC and assigning the 
classification group associated with the highest score value.   
 
Now this rule is changed a bit. Since the last residue was classified as a coil, the next residue 
may be one as well. Now for some of the other groups (H and E) to be assigned as the 
classification for that residue, the highest score value returned must be higher than the next 
highest score value by some amount. If not the classification for the residue in position i-1 (coil in 
this case) is assigned as the classification for the current residue at position i.  
 
Given that the residue at position i-1 is classified as a coil, and the residue at position i must be 
classified now, the classification is found calculating the three score values for each group: 
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Assume that scwinner = x. Now the helix group is assigned as the new classification if and only if 
the following is true: 
 

( ) ( ) 11 rzscrysc winnerwinner ≥−∧≥−  ( 3.32 

 
where r1 is the decision constant (the difference value), which may be chosen experimentally.  
 
If the above expression is not true, then the group classified for the residue at position i-1 is 
assigned as the classification for the residue at position i. This is called the difference method, 
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since the difference between the highest scoring model and the other two are compared with the 
decision constant r1.  
 
Another method to decide which classification should be assigned for the residue at position i is 
called the ratio method. It is similar to the difference method, but now the ratio between the 
highest score value and the other two are compared with a decision constant, r2 and may be 
written as (following the example used for the difference method): 
 

22 r
z

sc
r

y
sc winnerwinner ≥∧≥  ( 3.33 

 
where r2 is the decision constant. If this expression is true then the helix group is assigned as the 
classification for the residue at position i. 
 
The two decision constants used in the above definitions may be determined experimentally 
performing some tests for several distinct values of the constants. One way to extend this method 
is to have several decision constants, one for each classification group. This has not been tested 
though.  
 
Test Case 10 explores using decision constants.  
 
Test Case 10 Method Possible Conclusion(s) 
Conduct a test using 
the difference  
method. 

Complete several test sessions varying the 
decision constant r1 and observe the results.  

The difference method 
increases or decreases 
performance. 

Conduct a test using 
the ratio method. 

Complete several test sessions varying the 
decision constant r2 and observe the results. 

The ratio method increases 
or decreases performance. 

Test Case 10: Using decision constants. 

Tests have confirmed that both of these methods lead to an increase in performance (compared 
to the basic Markov model).  
 
Another method has been tried out. Instead of assigning the previous classification for the current 
residue, we assign the most frequent classification. This method decreases the performance of 
the models.  
 
Again the specific tests and results are presented and commented in the section 7.Tests and 
Results.  

3.5.2.2.1. The Ratio-II Method 
This subsection presents yet another method (denoted the ratio-II method) which affects the way 
the classifications are chosen for each residue in the sequence. Suppose we want to ensure that 
a drastic change in the highest score value occurs from position i-1 to position i, before a new 
group is assigned as the classification for the residue at position i.  
 
This may be accomplished calculating the ratio between the highest score value in position i and 
in position i-1. If this ratio exceeds some constant, r3, then the group having the highest score 
value is chosen as the classification group for the residue at position i.  
 
This ratio is calculated as: 
 

( )
( )),1,(),,1,(),,1,(max

),,(),,,(),,,(max
liSscliSscliSsc

liSscliSscliSsc
ratio

CEH

CEH

−−−
=

 
( 3.34 
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To assign the group associated with the highest score value for the residue at position i, it must 
be true that ratio ≥ r3, where r3 is the decision constant. If this is not the case the classification for 
the previous residue is assigned for the current residue. 
 
The decision constant may be determined running several tests and varying the size. This is 
investigated in Test Case 11. 
 
Test Case 11 Method Possible conclusion(s) 
Apply the ratio-II 
method 

Vary the constant r3 and observed the performance 
of the models.  

The method increases or 
decreases the 
performance. 

Test Case 11: Testing the ratio-II method. 

Tests show that performance of the models is increased using this method compared to the 
performance of the basic Markov model (see the section 7.Tests and Results).  

3.5.2.3. The Momentum Method 
This subsection introduces the momentum method, which is a way to let the score function for 
step i be dependent on the score function for one or more steps before i. In other words the score 
value found for the residue at position i is dependent on the score values found for one or more of 
the previous residues.  
 
The peaks observed in the classification graph (which have been discussed earlier) are the main 
reason behind using the momentum methods. A peak means that the value of one of the score 
functions is high. It also means that the probability of classifying the residue as the group the 
score function represents is high.  
 
One of the problems addressed earlier is that the high value of the score function only exists for 
the current residue and not for the next. In order to let the score function remembers that it just 
recognized a group with high probability we introduce the momentum. The momentum will act like 
a sort of memory meaning that after a few residues the memory of the peak still remains. After a 
while though, the peak value observed for some previous residue should be of less importance. 
 
The behavior described above can be implemented by a momentum. A new temporary function 
tempX is introduced (where X  ∈ �classification). This function depends on the original score function 
but is used in the comparison when the winning group is found instead of the score function.  
 
Given a sequence S, and i as the current position in the sequence and the window size l, the 
temporary function may be defined using a weight w and the already defined score function, sc:  
 

),1,(),,(),,( liSscwliSscliStemp XX −⋅+=  ( 3.35 

 
The function introduces a new variable w which determines how much the previous score value is 
weighted. This means that the new temporary function is based on the previous value of the 
score function (weighted using constant w) and the value of the score function calculated for the 
current position in the sequence. The method is investigated in Test Case 12.  
 
 
 
Test Case 12 Method Possible Conclusion(s) 
Testing the primitive 
momentum method. 

Run several test sessions varying the weight 
parameter and measure the performance of the 
models. 

The primitive momentum 
method increases or 
decreases performance. 

Test Case 12: Exploring the primitive momentum method by varying the weight, w. 
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The results using the momentum method defined above is as good (in fact slightly better) as most 
of the previous extensions. Investigating the formula a bit further reveals that the memory only 
goes one step back (that is the temporary function is only affected by the last value of the score 
function). This version of the momentum method is also called primitive momentum. 
 
Updating the current value of the score function will cause the current score value to have 
memory of all previous values of the score functions. The method is referred to as momentum or 
real momentum. The following formula shows the effect: 
 

),1,(),,(:),,( liSscwliSscliSsc −⋅+=  ( 3.36 

 
where the same parameters as before are used.  
 
To show that the function incorporates memory it is possible to resolve the previous values of the 
score function: 
 

[ ]
),2,(),1,(),,(:),,(
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2 liSscwliSscwliSscliSsc
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( 3.37 

 
Continuing this way it is possible to expand the formula until i-n = 1 where n is the number of 
possible steps one may go back in the sequence. This method is contained in Test Case 13. 
 
Test Case 13 Method Possible Conclusion(s) 
Testing the real 
momentum method. 

Run several test session varying the weight 
parameter and measure the performance of the 
models. 

The real momentum 
method increases or 
decreases performance. 

Test Case 13: Exploring the real momentum method by varying the weight, w and incorporating more memory. 

This method yields better results than the first momentum method (see the section 7.Tests and 
Results).  
 
It is interesting to see the outputted classification graphs when using the basic model and the real 
momentum method. The peaks have clearly been smoothed out a bit. The first figure shows the 
output graph for the first part of a sequence using the basic Markov model without momentum 
(see Figure 10). The second figure shows the output graph when the real momentum method is 
used (see Figure 11). 
 

 
Figure 10: An example of an output graph showing the output of the score functions (using the basic Markov model). 
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Figure 11: An output graph of the same sequence used in Figure 10, except now the real momentum method is 
applied. The memory effect is definitely visible. 

3.5.3. Extensions Based On Alternating the Training Procedure 
The training of the Markov model is the same thing as estimating the parameters p(a) and p(a|b) 
for that model. When the parameters are estimated all subsequences for each classification 
group are extracted from all sequences in the training data.  
 
A new way of extracting the subsequences is now introduced. The reason for introducing this new 
method will become apparent later in this section. The following describes the new method for 
extracting subsequences. 
 
The window size used is given by l. For every extracted subsequence the next l-1 residues in the 
sequence are appended to the subsequence. Given a sequence S of length n and a 
subsequence Ssub of length (j-i+1) in S: 
  

njixxxS

xxxS

jiisub

n

≤≤≤=
=

+ 1,...

...

1

21

 
( 3.38 

 
Given the window size l, the new subsequence may be generated by appending the next l-1 
residues from S: 
 

111 ...... −+++= ljjjiinewsub xxxxxS
 

( 3.39 

 
It is important to note that the number of appended residues is the same as the window size 
minus 1.  
 
This is illustrated with an example. Suppose we have the sequence, Sx: 
 
Sequence, Sx TPAFNKPKVELHVHLDGAIKPETILYFGKKRGIALPADTVEELRNIIGMDKPLSLPGFLA 
Classification CCCCCCCEEEEEEEHHHCCCHHHHHHHHHHHCCCCCCCCHHHHHHHHCCCCCCCHHHHCC 

 
Now assume that we want to extract the subsequences for the coil group and assume that the 
window size is 3. First the subsequences are extracted as usual. After that the next 2 residues 
(the window size minus 1) are appended to the subsequences: 
 

Sequence, Sx TPAFNKPKVELHVHLDGAIKPETILYFGKKRGIALPADTVEELRNIIGMDKPLSLPGFLA 
Classification CCCCCCCEEEEEEEHHHCCCHHHHHHHHHHHCCCCCCCCHHHHHHHHCCCCCCCHHHHCC 
  
1. subsequence TPAFNKPKV 
2. subsequence                  AIKPE 
3. subsequence                                GIALPADTVE 
4. subsequence                                                GMDKPLSLP 
5. subsequence                                                           LA 
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The procedure yields the subsequences above. Note that the last subsequence is extracted as 
usual, since there are no residues to append. The Markov models will now be trained using the 
new subsequences.  
 
The idea behind using this method will now be explained. Assume that all subsequences are 
extracted in the original way (described in the introduction). The parameters for the Markov 
models are estimated as usual and some sequence S is to be classified.  
 
Now at some point when classifying the sequence S, the window will be placed in such a way that 
it overlaps (at least) two different subsequences (for different groups). Now since each Markov 
model, MH, ME and MC are only trained on the subsequences for the H, E and C group 
respectively, one may assume that the models have problems classifying whenever the window 
overlaps two or more groups. Assuming that the order of the residues in the sequence is 
connected to the classifications, then the score functions will return small probabilities for these 
situations where the windows overlaps different groups, since those situations are not in the 
training subsequences.  
 
Including the next l-1 residues in each subsequence extracted means that the models are trained 
on these overlaps as well. The assumption is that the models may be better to classify the 
residues around the overlapping sections in the sequences.  
 
This method is dealt with in Test Case 14. 
 
Test Case 14 Method Possible Conclusion(s) 
Test the new method 
of generating the 
subsequences for 
training of the models. 

Conduct a test session using this new method.  The models may perform 
better, incorporating 
knowledge about the 
overlapping subsequences.  

Test Case 14: Testing the new method of extracting the subsequences. 

Implementing the new training method does not yield better results. The issue could be that a 
new problem is introduced.  
 
Assume that the window is placed at the first residue of a subsequence starting at index i in the 
sequence S. The first l-1 residues (beginning at position i) have been seen by the Markov model 
that represents the correct classification group for the residue at position i-1, but these residues 
has also been seen by the Markov model representing the correct classification of the current 
residue (at position i).  
 
The method introduced above means that the Markov models representing different groups are in 
fact trained on parts of the same data. This introduces new problems when classifying the 
residues, for which more than one model are trained on. The method might have that effect and 
will therefore cause the classification for these residues to be unreliable.  
 
Using the original training method (only using the exact subsequences for the particular group) 
the Markov models had problems classifying the ends of the subsequences. Now the problem 
has been moved to the beginning of the subsequences.  
 
The next subsection analyses this potential problem in more details.  

3.5.3.1. Classifying the Ends of Subsequences 
In order to clarify whether the Markov models have problems classifying the ends of the 
subsequences a new test is constructed. The idea is that the residues, which are believed to be 
problematic for the models to classify, are skipped. If the test shows that the performance of the 



 
  By Simon Larsen and Claus Thomsen 

Page 43 of 141 

model is increased by skipping the problematic residues, we may conclude that the model has 
problems classifying residues whenever the window overlaps two or more subsequences.  
 
The test does not result in another possible classifier, since it directly uses information from the 
correct classification sequences associated with each sequence in the training data. 
 
The correct classifications associated for each sequence are used to detect whenever a new 
subsequence starts and this knowledge is used in the following: 
 
Assuming that the window size is l: 

• Whenever the window contains residues of two or more different subsequences the 
window is shifted to the beginning of the next subsequence (i.e. skipping the residues in 
between). 

• Skipped residues are not classified. The skipped residues are not taken into account 
when calculating the accuracy of the models.  

 
In this way the ends of the subsequences are not classified. Given a subsequences of length n 
and window size l where n ≥ l. The first n-l+1 residues will be classified using the standard 
method and the rest of the residues will be skipped. If n < l then all residues in the subsequence 
are skipped (that is, not classified). Test Case 15 is used to see if the Markov model really has 
problems classifying the ends of the subsequences. 
 
Test Case 15 Method Possible Conclusion(s) 
Test whether or not the 
Markov model fails to 
predict overlapping 
subsequences in 
window. 

Whenever the window contains residues of two or 
more different subsequences the window is shifted 
to the beginning of the next subsequence. All 
skipped residues are not classified. The window 
size is varied.  

If performance increases 
the Markov models may 
have problems classifying 
small subsequences or 
ends of the subsequences. 

Test Case 15: Skipping classification of ends of the subsequences. 

Test results show that the performance of the model increases when the window size is 
increased. Further analysis of the data shows surprising results. It seems that it is not possible to 
conclude whether or not the Markov models have problems classifying the ends of the 
subsequences using the above test. The reason is that by skipping the residues (and thereby the 
subsequences of smaller lengths than the window size) the distribution of the classification 
groups (H, E and C) in the actual training data is changed.  
 
Using the calculated accuracy matrices it is possible to see the exact distribution of the three 
classification groups. This distribution reveals that the helix group gets more frequent when the 
window size is increased. This also means that the prediction accuracy of the trivial classifier 
(now always predicting the helix group) is increased. The performance measured in the test is 
compared to the trivial classifier for every window size. This shows that the actual performance 
has not increased. For more details regarding the tests and results see section 7.Tests and 
Results. 

3.5.3.2. The Swap Residue Method 
A new method called swap method is introduced. The idea is to investigate whether it is possible 
that two residues right next to each other may switch place in the sequence of residues without 
affecting the correct classification sequence for the entire sequence.  
 
Again the estimated parameters p(a) and p(a|b) defining the Markov models are affected by this 
trick. Suppose a subsequence Sx = x1x2...xn is given, then for each possible pair in the sequence, 
the residues in the pair are switched (one pair at a time) yielding n-1 new subsequences. These 
subsequences (plus the original one) are all added to the collection of subsequences for that 
particular group during the extraction of subsequences (prior parameter estimation).  
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Then the parameters p(a) and p(a|b) defining the Markov model, MX may be estimated as usual, 
now using more subsequences (and therefore more information). The method will be illustrated 
with an example.  
Given the subsequence Sx = AGGTANSCL the following subsequences are generated: 
 

Original subsequence, Sx AGGTANSCL 
1. GAGTANSCL 
2.  AGGTANSCL 
3.  AGTGANSCL 
4.  AGGATNSCL 
5.  AGGTNASCL 
6.  AGGTASNCL 
7.  AGGTANCSL 
8.  AGGTANSLC 

 
The residues which switch place are marked in blue. The procedure results in many more 
subsequences in the collections for each classification group. As mentioned earlier the 
parameters p(a) and p(a|b) are affected using this method, but by adding the subsequences in 
the way described above the same definition of the parameters may be used (only now they are 
used on more subsequences, which are not really in the training data – but generated prior to the 
training).  
 
The method described as the swap residue method is tested using Test Case 16.  
 
Test Case 16 Method Possible Conclusion(s) 
Doest the added 
subsequences (the 
swap residue method) 
increase the 
performance of the 
models? 

Complete a training session using this method, by 
adding the subsequences generated from the 
original one actually in the training data.  

The method may increase 
or decrease the 
performance of the models. 

Test Case 16: Testing the new method, the swap residue method. 

The test results indicate that the method increases the performance of the Markov models, 
leading to the possible conclusion that two residues may actually switch place without affecting 
the correct classification sequence. 

3.6. Normalizing the Markov Models 
This section treats the possibility to add up values of score functions for different window sizes 
(but for the same classification group). The main problem is that it is actually not possible to 
compare the values of two different score functions if they are calculated using a different window 
size. The number of terms in the score function depends on the window size. When the number 
of terms increases the value of the score function is getting smaller. So when comparing two 
score values based on different window sizes, then the score value obtained using the model with 
the smallest windows size will most likely dominate (because the associated score function 
contains fewer terms). To overcome this problem some sort of normalization scheme has to be 
used. 
 
If the normalization problem is solved, the solution may be extended to combine several models 
and hopefully increase the performance of the combined models compared to one model having 
a specific window size. Instead of just having one Markov model for each group with a fixed 
window size, combining several models for the same group with different window sizes might 
make the overall model more flexible.  Since the subsequences vary in length, it seems like a 
good idea to combine models that actually uses different window sizes. 
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Two such methods for normalizing the output of the Markov models have been implemented, 
making it possible to compare and add up score values calculated based on different windows 
sizes. The two different methods will be described next.  

3.6.1. Basic Normalization 
The first method denoted basic normalization, will be presented in the following (the method has 
been invented for this purpose only).  
 
We have 3 different Markov models MH, ME and MC, one for each group (H,E,C) and we want to 
normalize the output of the score functions associated with the models for different window sizes.  
 
Assume that we want to normalize the score functions for window size l1 to ln. The following table 
(Table 2) can be constructed: 
 
Window Size l1 l2 ... ln 
 scH1 scH2 ... scHn 
 scE1 scE2 ... scEn 
 scC1 scC2 ... scCn 

Table 2: Normalizing models having windows sizes l1 to ln. 

The values inside the matrix, scH1 to scCn, is the returned score values calculated from the score 
functions associated with each Markov model for a particular window size. In this way scH1 is the 
value of the score function that has a window size of l1 and represents the model MH.  
 
If l1 < l2 < …< ln then the ln-column will most likely contain the smallest values (compared to the 
other values in the particular row) and the l1-column will most likely contain the largest values 
(because of the number of terms in the score functions used to calculate the score values). 
 
To be able to compare the values of the score functions directly all columns are scaled so the 
largest number in each column is set to 1.0. Column l1 is scaled using the ratio, r: 
 

),,max(
1

111 CEH scscsc
r =

 
( 3.40 

 
In this way the largest value will become 1.0 and the others will be relatively smaller. This 
procedure is applied to all columns.  
 
Now an overall score value may be found for each Markov model representing one group. This 
new score value may be found by summing up all the scaled values in each row, resulting in 
three score values, sc’H, sc’E and sc’C. The usual classification procedure can now be applied 
because the above system is reduced to contain only three score functions (values). 
 
Using the same notation as in the above table (showing the normalization matrix) the formula for 
the combined score function for group X, sc’X is given as: 
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where n is the number of windows sizes for which the normalization procedure should be applied 
(l1 to ln). 
 



 
Classification of Protein Sequences Using Markov Models 

Page 46 of 141 

This normalization scheme is investigated further in Test Case 17. 
 
Test Case 17 Method Possible Conclusion(s) 
Test the basic 
normalization 
procedure. 

Run the test. Vary the window sizes and vary the 
number of models to be normalized.  

Does the method increase 
or decrease the 
performance? 

Test Case 17: Testing the basic normalization method. 

The test shows that this method increases the performance of the models compared to using only 
one specific window size. The results are available in the section 7.Tests and Results. 

3.6.2. Frequency Normalization 
Another method for normalizing the outputs of models representing the same group but using 
different windows sizes is presented in this section. The normalization method described in this 
section both normalizes the values returned by the score functions and weights each value for 
each window size (using a certain scheme).  
 
First the normalization part is described. As in the previous section the goal is to combine models 
representing the same group, but using different window sizes.  
 
Again assume that we want to combine models using windows size l1 to ln where the following is 
true: l1 < l2 < ... < ln. The score function using window size l1 will most likely return values that are 
larger than the score function using window size l2, since the window size is equal to the number 
of terms in the score function.  
 
Let us recall the table depicting one possible matrix containing the score functions for several 
window sizes for each classification group (see Table 2). Now instead of scaling the columns as 
in the basic normalization method described in the previous section, each value is scaled using 
the nth root (where the window size determines the order of the root function).  
 
Now the new combined score value for the group X, sc’X may be found using the following 
formula: 
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where n is the number of window sizes for which the normalization procedure should be applied 
(l1 to ln). Now having this new method for normalizing the outputs of the models, the weighting of 
each term in the sum above is now explained.  
 
The idea is to weight the normalized score value for each window size, according to some 
frequencies calculated based on the training data. Assume that the weights w1 to wn are defined 
for the helix group, then the above expression may be rewritten (for the helix group only) to 
incorporate the individual weights: 
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As mentioned before the weight factors are calculated based on the training data. The description 
of how to obtain the weight factors will follow now.  
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Assume that we want to combine 3 Markov models having window sizes of 3, 4 and 5. For each 
group the training data is inspected to calculate the frequencies of the subsequences having 
length 3, 4 and 5 for the current group. The result is three frequencies for each classification 
group (H, E and C), which may be used as part of the weight factor.  
 
The weight factor for the score function using window size l, is then defined as the frequency of 
subsequences having length l divided by the total number of subsequences (for one particular 
group).  
 
The frequencies mentioned above may be calculated using several methods. This is illustrated 
with an example. Prior to the calculation the training data is investigated and collections of 
subsequences is generated, one collection for each classification group. For each classification 
group we loop through the collection of subsequences and calculate the frequencies needed (for 
the chosen window sizes).  
 
Example: 
This helical subsequence exists in the training data: PETILYFGKKR (length: 11).  
 
Now we have (at least) three different options: 

1. All frequency counters for subsequences length 1 to 11 is increased by one.  
2. Only the frequency counter for subsequences of length 11 is increased by one.  
3. The frequency counter for subsequences of length 1 is increased by 11 (the number of 

times a subsequence of length one may be generated from the above subsequence, 
keeping the same order of the residues), the counter for subsequences of length 2 is 
increased by 10 and so on.  

 
This is repeated for all subsequences and for each classification group. The result is several 
frequencies for each classification group (one frequency for each group and window size 
combination). 
 
Assume that we wish to normalize the models having windows size l1 to ln. The following table 
(Table 3) shows which values are calculated (scXi denotes the score function (value) for the 
Markov model representing group X using window size li): 
 

 Groups and frequencies 
Window size H  E  C  

l1 scH1 fH1 scE1 fE1 scC1 fC1 
l2 scH1 fH2 scE2 fE2 scC2 fC2 
... ... ... ... ... ... ... 
ln scHn fHn scEn fEn scCn fCn 
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Table 3: The values calculated for the frequency normalization method. 

In Table 3 fH1 is the frequency counter for the helix group, using window size l1 and so on. 
 
The resulting score value for the combined (normalized) set of models may then be calculated as 
in: 
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For each classification group (denoted X in the above formula), the normalized score value may 
be calculated and used as usual when classifying sequences. The difference is that the 
normalized score values are affected by several models using different window sizes and 
weighted by the frequency ratios determined from the training data.  
 
The method just described and denoted as the frequency normalization is treated in Test Case 
18. 
 
Test Case 18 Method Possible Conclusion(s) 
Test the frequency 
normalization 
procedure. 

Run the test. Vary the window sizes and vary the 
number of models to be normalized.  

Does the method increase 
or decrease the 
performance? 

Test Case 18: Testing the frequency normalization method. 

This method appears to have a positive effect on the performance of the models tested.  
The tests also show that the three options for calculating the frequencies obtain the same results.  
 
The specific test results are again available in the section 7.Tests and Results.  

3.6.3. Alternative Normalization Methods 
The two normalization methods described in the previous sections are of course not the only 
ways to normalize the models (but they are the only ones implemented). Several other methods 
may be investigated.  
 
One way is to scale the outputs of the different score function using another function than the nth 
root used in the frequency normalization scheme. Given the same conditions as for the frequency 
normalization the new normalized score function for some group X may be calculated as in the 
following (leaving out the individual weight factors): 
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where the window sizes are li, i ∈ [1;n]. The constant k could be determined based on the mean 
value for each term in the score function. This is a direct substitute for the nth root used in the 
frequency normalization procedure, but other types of normalizations may be used.  
 
Ignoring the size of the score values returned by score functions using different window sizes is 
possible. One possible way is to find the predicted classification group for some residue using 
several window sizes. Having these predictions (classification groups) for each window size, the 
most frequent group may be chosen.  
 
Let us assume that we want to normalize the models using window sizes 3, 4, 5, 6 and 7. Each 
model is then used to get the predicted classification group. Suppose that for window size 3, 4 
and 5 the helix (H) classification group is predicted, for window size 6 the coil group (C) is 
predicted and for window size 7 the beta sheet group (E) is predicted. Now the most frequent 
group is the helix group (3 out of 5) and this group is then assigned as the classification group for 
the current residue.  
 
This scheme could be extended to incorporate some weight system for each window size (like the 
one used in the frequency normalization).  
 
Due to the time period for this project we have not implemented the normalizations methods 
described in this section.  
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3.7. Combining Markov Models Having Different Orientations 
Based on the analyses and methods described in the earlier sections we have found that the 
Markov models sometimes have trouble learning when one subsequence ends and the next 
begins. This section deals with the orientation of the Markov models and how this may be used to 
improve the general performance of the basic model.  
 
The idea is to combine two Markov models, one for each direction of the sequence. When trying 
to predict the residue at position i in the sequence S, one Markov model may apply the score 
function on the residue xi and the residues at position i+1 to i+l-1 where l is the window size. 
Another model may use the score function on the residues xi to xi-l+1. 
 
Up until now whenever we have applied the score function to find the score value for the current 
window of residues, the residue at position i and the next l-1 residues have been considered (l is 
the window size): 
 
Sequence, Sx TPAFNKPKVELHVHLDGAIKPETILYFGKKRGIALPADTVEELRNIIGMDKPLSLPGFLA 
Predicted 
classification 

CCCCC? 

 
Now the normal window of residues and the reversed window of residues are taken into account.  
 
Sequence, Sx TPAFNKPKVELHVHLDGAIKPETILYFGKKRGIALPADTVEELRNIIGMDKPLSLPGFLA 
 TPAFNKPKVELHVHLDGAIKPETILYFGKKRGIALPADTVEELRNIIGMDKPLSLPGFLA 
Predicted 
classification 

----C? 

 
The reversed window is treated in the reversed direction. Mathematically we may define the two 
score functions using the usual notation: 
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In practice this is accomplished having one model as usual and having another one for which the 
training sequences has been reversed (before anything else is done).  
 
The question is now how to combine the two score values (for each classification group) obtained 
using the functions above. The simple way is to add the two results to get the new score value.  
 

)()( rightrightleftleftoverall xscxscsc +=
 

( 3.47 

 
Another variation is to use the minimum or maximum of the two returned results.  
 

( ))(),(min rightrightleftleftoverall xscxscsc =
 

( 3.48 

 
Now having the combined score function, the classification process may be conducted as usual, 
now using the overall score function scoverall.  

 
One of the downsides of using this combined model, is that more residues can not be predicted, 
since a cutoff of l-1 (l being the window size) residues is necessary at each end of the sequence 



 
Classification of Protein Sequences Using Markov Models 

Page 50 of 141 

to be predicted (no rules for these residues have been defined, they are ignored during the 
classification process). 
 
This combination of two Markov models, one for each direction, may be used for all earlier 
models presented. In other words, we may combine two of the basic Markov models (without any 
extensions) or we may combine two models which are several normalized models.  
 
The argumentation for using this setup is that both the residues on the left side and on the right 
side of the residue to be predicted has an effect on the resulting classification.  
 
The combined model using both orientations is tested using Test Case 19.  
 
Test Case 19 Method Possible Conclusion(s) 
Test the combo model 
described above.  

Run the test for various window sizes.  Does the method increase 
or decrease the 
performance? 

Test Case 19: Testing the combo model (using normal and reversed orientation). 

The tests showed some increase in performance using the method described above (see 7.Tests 
and Results). 

3.8. Combining Different Extensions 
Up until this point we have added standalone extensions meaning that one extension has been 
applied to the model at a time. A few methods work as simple combinations like the normalization 
methods and using p’(a) combined with the reversed pair method. In this section we will discuss 
the idea of applying several extensions at the same time. This will result in a combined model 
consisting of known extensions.  
 
There are many possibilities to combine the extensions presented in the previous sections. If all 
combinations should be applied it would require a lot of work and tests to analyze the models. 
Only a few of the presented models will be combined to see if it is possible to obtain higher 
prediction accuracies in this way. If this is possible there is a basis for further research. 
 
We will intuitively expect that if a model with low performance is combined with another model of 
high performance the overall performance will be somewhere in between. We will also expect that 
it might be possible to gain performance when models with equal (or close to equal) performance 
are combined. These statements are only assumptions and the test result will show if it is actually 
possible to gain performance by combining different extended models. 
 
Looking at the results obtained by running the tests for the different extensions makes it possible 
to handpick the better models. The following combinations are chosen: 

• The new definition of the parameter denoted as p’(a). 
• The reversed pair method 
• Frequency normalization 
• The Momentum method 

 
The following table shows the test case (Test Case 20): 
 
Test Case 20 Method Possible Conclusion(s) 
Test the combination of 
p’(a), the reversed pair 
method, frequency 
normalization and 
momentum. 

Run the test using the best values for the each 
method (for extensions having parameters 
associated). 

Is it possible to increase the 
performance by combining 
different extensions? 

Test Case 20: Testing combinations of different extensions. 
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The test results show that the model consisting of combinations actually gains performance 
compared to the basic Markov model. The results also show that the combined model performs 
better than the extensions alone. This means that it is actually possible to combine models with a 
certain performance and thereby reach a higher level of performance. See the section 
7.2.5.Combining Different Extensions for further details. 

3.9. Summary 
In the previous sections different modifications to the basic Markov model have been proposed. 
The modifications are based on observations and ideas, which became apparent during the 
preliminary test runs.  
 
The modifications (extensions) proposed may be grouped as: 

• Modifications of the individual terms in the score function (the parameters p(a) and 
p(a|b)). 

• Modifications of the overall score function.  
• Modifications of the extracted subsequences (which also has an impact on the estimated 

parameters p(a) and p(a|b)). 
• Normalization methods to combine models predicting the same group but using different 

window sizes.  
• Sequence orientation. Predicting both ways in a sequence.  

 
Modifying how the parameters p(a) and p(a|b) are estimated by introducing p’(a) and p’(a|b) 
appears to increase the performance of the model. An example of a new score function only 
consisting of p’(a) terms associated with a discount factor according to position has also been 
shown. This method also seems to increase the performance. The methods that take the order of 
the residues into account seem to be better than those that do not consider the order of the 
residues.  
  
The modifications of the overall score function have also in general lead to better performances of 
the models. The methods using decision constants have increased the general performance. 
These methods are introduced to avoid that the model changes the predicted classification 
groups frequently yielding a predicted classification sequence with lots of small subsequences. 
This method seems to work. The momentum method has also increased the performance of the 
model. This method takes advantage of the peaks produced by the model. The method extends 
the peaks and thereby also avoids that the model changes the predicted classification group 
frequently. 
 
The modification of the extracted subsequences (which serves as the training data for the model) 
has only increased the performance of the model using a window size of 3. For larger window 
sizes this method did not increase the performance. It is not possible to use Test Case 15 to 
conclude whether or not the Markov model has problems classifying whenever the window 
contains two or more subsequences. However altering the subsequences using the swap residue 
method did increase the performance of the models.  
 
Normalizing different models has increased the performance. Also combining different model 
types has lead to an increase of performance.  
 
The modifications that did not increase the overall performance of the model have given a better 
understanding of the Markov model – some of these modifications have also served as a basis 
for the ideas that have improved the model. 
 
The specific test results obtained using the new models are presented in the section 7.Tests and 
Results. Each model is treated separately. 
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4. The GOR Classifier 

4.1. Introduction 
One of the more practically used schemes for predicting secondary protein structure is the GOR 
model. The model is somewhat different from the Markov models used in this project, but there 
are some similarities.  
 
The model is named from the first letters of the inventors first names [1]. The model is based on 
calculating frequencies from the training data and using these frequencies (combined with 
statistics and information theory) to predict secondary structure of one or more test sequences.  
 
The GOR model has been modified several times [1, 2, 3], resulting in several versions of the 
model. The idea behind the original model and the later versions will be described in more details 
in the following sections.  

4.2. The GOR Idea in Theory 
The GOR model is based on information theory (and Bayesian statistics), more specifically an 
information function described by Fano [2, 4]. Information functions may be used as a 
mathematical method of obtaining as much information as possible from some data. In the 
particular area, this function has been used: 
 

[ ])(/)|(log);( SpRSpRSI =  ( 4.1 

 
The function may be applied in several fields, but in this case the function is interpreted as 
follows: S is one of the classification groups to be predicted (H, E or C) and R is one of the 
residues. p(S) is then the probability that S is observed and p(S|R) is the conditional probability 
that S is observed having R. From the definition of conditional probabilities, p(S|R) = p(S, R) / 
p(R), where p(S,R) is the joint probability of observing both S and R.  
 
These basic rules are used to derive an approximation to the above information function  
using the following definitions: 
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where N equals the total number of residues in the current database, fS is the frequency of the 
classification group S, fR is the frequency of the residue R and fS,R is the frequency of having both 
classification group S and residue R in the training data.  
 
Using the above stated rules we have: 

( 4.3 
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To include more information in the formula and thereby increase knowledge about the data the 
information difference is introduced: 
 

( 4.4 

 
where nS (not S) is the classification groups other than S (for the three different classification 
groups, this gives nS to be H and E, when S is C and so on). The above expression may be 
written as a function of the defined frequencies: 
 

( 4.5 

 
This expression may be used as a simple predictor, where the information difference value is 
calculated for each possible classification group. The highest value (for some group) will then 
indicate the most probable classification group for that residue. This assumes that the 
frequencies have been calculated based on some training data, and that the actual values of the 
information difference above are calculated for each residue in one or more test sequences.  
 
In practice the procedure of predicting residues is similar to the way Markov models predict – 
values representing the different groups are compared and the highest value dictates the 
classification. In this case the frequencies fS,R, fnS,R, fnS and fS are calculated for each possible 
value of R and S, where R ∈ � and S ∈ �classification.  Having some test sequence Aseq, for which 
the classification sequence is to be predicted, each residue in Aseq must be investigated. For 
every residue the expression in ( 4.5 is calculated (for every group). The group associated with 
the highest value returned, may be assigned as the classification group for that residue. This 
procedure may be repeated until every residue has been classified.  
 
The expression for the information difference in ( 4.5 may be extracted from the knowledge of the 
information function in ( 4.3 and the definition of the information difference in ( 4.4: 
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 ( 4.6 

The information difference in ( 4.4 and ( 4.5 gives information about some state, using both the 
ordinary information (S, R) and the complementary information contained in (nS, R).  
 
One of the key elements in the GOR method is that a local sequence (or a window) of the current 
sequence is viewed and analyzed at some point in time. The information difference may be 
extended to such a local sequence, where the length of the local sequence is the current window 
size. The extended information difference may then be given as in: 
  

( 4.7 

 
where the expression p(Sj, R1,...Rn) is the joint probability for the classification group S at position 
j in the sequence R1,...,Rn.  
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All GOR versions are based on this expression, which is approximated differently for each 
version. This will be explained further in the next section, where each model version is described 
in more details.  

4.3. The Different GOR Models 
The GOR model has been modified several times from the basic form, which will be presented 
next. The different versions are based on different approximations to ( 4.7 and/or different 
databases. 
 
The evolution of the GOR model has happened over several decades [2, 3, 16] and in that period 
of time the number of correctly classified protein sequences available for testing and training 
purposes has increased. This means that some of the GOR models that have been tested and 
documented to have some prediction accuracy (based on a specific database), in fact may have 
an even higher prediction accuracy (using a larger database), due to the increased number of 
(correctly) classified protein sequences. This is the case for GOR II, whose only difference to 
GOR I (according to [2]) is the database size.  
 
Because of this fact the GOR models version I, III and IV will be presented, since these are 
definitely different. We have implemented and tested each of three different models on several 
databases and used the models as a benchmark tool for the Markov models developed in this 
project. Also the new version of the GOR model, GOR V [3], will be described, even though this 
model differs considerably from the other models due to the fact that it adds several new 
enhancements (based on biological background knowledge) to the GOR IV model. 

4.3.1. GOR I 
The GOR I model has taken into account the directional information contained in the 8 residues 
before and after the current residue (the one, whose classification group is to be predicted). This 
creates a window of 17 residues, where each residue (other than the center residue) is matched 
with the classification group for the center residue. In other words this approximation assumes 
that there is no correlation between the different residues in the current window.  
 
This lead to a formal expression of GOR model version I: 
 
GOR I 
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where j is the position in the sequence of residues, where the classification group is to be 
predicted (i.e. the center residue in the window of 17 residues) and m ∈ [-8,8], except 0.  
 
The expression may be rewritten as a function of frequencies calculated from the training data: 
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The expression above may be used directly when predicting secondary structure of proteins. The 
frequencies given in the above expression may be calculated (counted) easily from the training 
data and stored for further use. Predicting the actual test sequence may then be done using the 
calculated frequencies in the following manner:  
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For the current residue to be predicted, one calculates a value for each possible classification 
group. The group with the highest score is assigned as the predicted group for the current 
residue. This procedure continues until all possible residues are predicted.  
 
As mentioned earlier the difference between GOR I and GOR II is the database size. In this text 
GOR I will be defined as above and GOR II will not be considered any further. Also GOR I and II 
were originally designed to predict structures having four different classification groups. In this 
text, GOR I will be used for predicting structures having 3 different classifications types (H, E and 
C).  

4.3.2. GOR III 
The next generation of the GOR model, GOR III introduced the so called pair information. Using 
the center residue in the window, one pair for every ordered combination of this residue with the 
other residues in the window is generated. Having a window size of 17 residues, the current 
residue (the one to be predicted) is matched with each of the other 16 residues in the window (8 
on each side) generating 16 pairs. These pairs are taken into account in this model. This means 
that the correlation between the types of the residues in the current window and the type of the 
residue to be predicted is considered. 
 
GOR III 
 

( 4.10 

 
 
where j is the position in the sequence of residues, where the classification group is to be 
predicted and m ∈ [-8,8], except 0.  
 
The second term in ( 4.10 is a conditional expression, yielding that the information difference is 
now calculated based on both the current residue at position j and the residue at some position, j 
+ m, in the current window. The classification of the residue at position j + m is still not 
considered.  
 
The expression in ( 4.10 may again be rewritten as a function of frequencies calculated from the 
training data: 
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At the time this third version of the GOR model was proposed, the data available was somewhat 
limited to around 12.000 correctly classified residues in total. Because of this fact some of the 
frequency expressions in the above model ( 4.13 were impossible to calculate from the data 
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available. Dummy frequencies were introduced to estimate the frequencies based on the current 
data. In this project GOR III has been used without using dummy frequencies, since it is believed 
that the database available now, is large enough for this (See the section 7.Test and Training 
Data).  

4.3.3. GOR IV 
The fourth version of the GOR model is in fact an expansion of GOR III. As mentioned, GOR III 
introduced the pair information where all possible pairs with the residue to be predicted were 
considered.  
 
GOR IV expands this idea and looks at all possible pairs of residues in the current window (of 17 
residues). There are (17 x 16) / 2 pairs to consider. In other words GOR IV takes into account that 
the residues from each pair are correlated. GOR IV is then expressed as in the following (using a 
slightly different notation that in [2]). 
 
GOR IV 
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At first when GOR IV was proposed [2], there was no optimization of any kind on the above 
expression. The window size was constant (at 17) and nothing else was done to increase the 
performance of the algorithm. The expression is therefore shown for the window size of 17, 
although it is possible to vary the window size.  
 
The expression above may be written with as a function of the window size.  
 

 

 

( 4.15 

 
 
 
Here d is the window size variable, defined as the number of residues to be considered on each 
side of the center residue (the residue to be predicted). For the standard window size of 17, d 
equals 8 (the window size is equal to 2d + 1).  
 
The above expression may be rewritten as a function of the frequencies calculated from the 
training data: 
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4.3.4. GOR V 
In 2002 another version of the GOR model was proposed [3]. This version was build directly on 
top of the above GOR IV model. The expression for GOR IV in ( 4.15 has been the basis for the 
new model, and on top of that several new adjustments have been implemented.  
 
GOR V uses the reasonable results from the GOR IV model and adds several enhancements to 
the model. In the following the new steps in the GOR V model will be explained briefly. The 
following section refers to [3]. 
 
First of all another larger database has been used for the training and prediction procedure. The 
database assembled by Cuff and Barton [5, 6] containing 513 non-redundant sequences has been 
used. This database contains around 20.000 more residues than the database used with the 
original GOR IV model (This new database is the same database as we use in this project. More 
information is available in the section 7.Test and Training Data). 
 
The second enhancement is decision constants. The decision constants are used in the final 
prediction part to ensure that the current classification group will only be predicted if the 
probability for that particular group is within some margin/threshold (compared to the probabilities 
for the other classification groups). This gives the possibility to adjust the prediction scheme for 
faults. If for example the model has a tendency to over-predict the coil (C) group, when in fact it is 
a helix (H) structure, the decision constants ensures that a coil will only be predicted if the 
probability for that group is larger than the probability for the helix group by some margin (i.e. the 
decision constant). 
 
The third step was to include triplet statistics in the model. In the GOR IV model described above, 
only pair (and single) statistics are included (this will of course change the expression in ( 4.15). 
 
The fourth step was to apply a resizable window for the model. When predicting sequences of 
smaller lengths, the window was decreased in size (according to some optimized parameters). 
This gives the advantage of being able to predict secondary structure on smaller proteins using a 
much smaller window (the GOR IV model had problems predicting sequences of small lengths, 
i.e. 20-30 residues). 
 
The last step (which was the most successful and contributed to the largest increase in the 
prediction accuracy) was to use multiple sequence alignments for the prediction. This was 
implemented using the PSI-BLAST algorithm / program for generating the sequence alignments 
[20]. If no alignments where generated within five iterations, the original test sequence would be 
used for the prediction. In this case the prediction is very similar to the GOR IV model, except that 
the above 4 steps is completed. If the PSI-BLAST returned a set of alignments, these were used 
directly for the prediction of the secondary structure. Also some post-processing was conducted 
on the returned alignments. The idea was to exclude alignments that were too identical to the 
original sequence (the test sequence). The result was slightly better when excluding alignments 
that had an identity of 97% or greater to the test sequence.  
 
The new GOR V model based on GOR IV and incorporating the above steps has shown a 
considerable increase in performance when predicting secondary structure. The results obtained 
with the various GOR models during the timeline of the GOR development period, will be 
described briefly in the next section.  

4.4. Documented Results Using the Various GOR Models 
One of the first GOR papers was published in the late seventies [1] and since then the work on 
GOR has continued resulting in several iterations of the model. The newest model GOR V has 
been described in a few papers published within the last few years [3].  
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The papers renew the success of the model as a reasonable secondary structure predictor 
compared to the prediction accuracies achieved by other known models. Although neural network 
models currently seems to have the highest prediction accuracies (closing in on the barrier at 
80%), the GOR model in the newest version is capable of predicting secondary structure with a 
prediction accuracy of around 74%.  
 
The people behind the GOR V model [3] claim that the GOR model in general has a considerable 
advantage compared to the neural network methods. This is based on the fact that the GOR 
model is very clear in the structure of which the model is based on (information theory combined 
with Bayesian statistics) and how the model works compared to the neural network models, which 
may seem like a black box.  
 
Since this project deals with Markov models and the GOR models, this section will present an 
overview of the documented performances of the various GOR models.  
 
GOR I was developed more than 25 years ago and started out predicting four different 
classification groups based on a rather small database. The second GOR model, GOR II, was 
updated with a new database in 1989 but the general algorithm was the same. In the subsequent 
iterations of the GOR model, the four-group setup, was decreased to a three-group setup (H, E 
and C). In 1996 Garnier et al. published a paper [2] presenting GOR III and GOR IV. The paper 
summed up the GOR models from version I to version IV.  
 
In 2002 Kloczkowski et al. [3] published another paper describing the new GOR V model, which 
incorporated multiple sequence alignments (and several other extensions). In this paper the 
authors claim a 10% increase of the prediction accuracy, putting the GOR model in the group of 
the best current classifiers for secondary structure prediction.  
 
The documented results for the different GOR models are shown in the following table (Table 4): 
 

Model Q3 Reference 
GOR I 55.0 [2] 
GOR III 63.3 [2] 
GOR IV 64.4 [2, 3] 
GOR V 73.4 [3] 

Table 4: Documented results for the different GOR models. 

The results for GOR I has been obtained using a smaller database consisting of 67 proteins (later 
that performance was increased approximately 1% by using a larger database of 267 proteins).  
 
The results for GOR III and IV in the above table have been obtained using the database 
described in [2] containing 267 proteins (around 63.500 residues) and using a full jackknife 
procedure (see the section 5.2.The Implemented Test and Training Procedure for a description of 
this method). Furthermore dummy frequencies were incorporated to obtain the above Q3 for GOR 
III. 
 
The result for the GOR V model has been obtained using the 513 non-redundant proteins (around 
84.000 residues) assembled by Cuff and Barton (The DSSP Database) [5, 6].  
 
We have implemented GOR I, III and IV mostly as benchmark tools for our own classifiers (the 
Markov models). The results obtained using the implemented GOR models and the Markov 
models will be presented in a later section (see 7.Tests and Results).  
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5. Evaluating Tests and Models 

5.1. Introduction 
Being able to compare different tests and evaluate tests in a standard way is valuable considering 
the number of tests possible and the number of other predictors developed.  
 
This section will introduce several standard tools and/or methods which will be utilized for 
evaluation and comparison of the models implemented in this project (i.e. both the Markov 
models and GOR models). The standard notion of prediction accuracy will be defined and may be 
used to compare our results (with some caution) with the results from other studies.  
 
Comparing and evaluating the results obtained using the implemented Markov models is a crucial 
part of determining which model is the better one. It is desirable to compare our results directly 
with results obtained in other studies, to get a clear picture of the real performance of the 
implemented models.  
 
In this section we will describe what measurements and tools are used to make this evaluation 
and comparison. Also the implemented training procedure will be described in more detail.  

5.2. The Implemented Test and Training Procedure 
The actual training method for the training of the Markov models and the following testing, has 
been adopted from similar studies [2, 3, 8]. This approach is very convenient in that it makes it 
possible to compare our results directly with the results documented by other studies. In particular 
we are interested in comparing the results obtained using our Markov models with the results 
documented for the GOR models.  
 
The training procedure used is a variant of the known jackknife method [2, 3] and may also be 
referred to under the name ‘leave one out cross validation’ (in short LOOCV).  
 
The basic idea is described in the following: 
 

• Assume that we have the complete database of which the model is to be evaluated. This 
database consists of a number of sequences, n (each sequence is associated with a 
correct classification sequence).  

• For each training session, the Markov models are trained on every sequence in the 
database, leaving one out. The sequence which is left out (referred to as the test 
sequence) is then classified by the models trained on the rest of the sequences. This is 
repeated for every sequence in the database. That is, every sequence is left out once 
and the models are tested on that sequence (for every sequence a classification 
sequence will be predicted).  

 
In this case the result is n similar tests (one for each sequence in the database).  
 
As a measure of quality one prediction accuracy pr. sequence may be obtained using this 
procedure (the prediction accuracy pr. sequence is defined as the percentage of correctly 
predicted residues for that particular sequence).  
 
The overall prediction accuracy (pr. residue) may be calculated after all test sequences have 
been predicted. This prediction accuracy is the percentage of all correctly classified residues for 
all residues predicted (these two different prediction accuracies will be treated in more later in this 
section). 
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It may be argued that the overall prediction accuracy may be too high using this jackknife 
procedure, since every sequence is tested once and does therefore have influence on the final 
result (every sequence is used both as a test sequence and a training sequence, although it is 
not in the same iteration). To counter this potential problem the database may be split into two 
parts, using one part for training and the other for predicting. This approach may yield results with 
lower prediction accuracies, but the results may be more independent of the database used.  

5.3. Prediction Accuracy 
It is important to be able to estimate the overall performance of the Markov models (or any other 
model) tested. The prediction accuracy (as mentioned several times before) may be defined for 
this usage. In general the prediction accuracy is defined as the percentage of correctly predicted 
residues for the current setup and is referred to as Q3.  
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where nH, nE and nC is the number of correctly predicted residues for each type of classification 
group H, E and C. N is the total number of residues predicted (which is not necessarily the total 
number of residues in database, since residues may be ignored for several reasons already 
pointed out earlier).  
 
There is however two ways to define this prediction accuracy when using the above jackknife 
method. We may calculate the prediction accuracy based on each iteration using the jackknife 
procedure (that is, for every tested sequence the prediction accuracy for that single sequence is 
calculated based on the numbers of correctly predicted residues).  
 
This results in one prediction accuracy for each sequence in the database (while performing the 
jackknife procedure). This method has one downside though. In the case of a short test sequence 
even a few wrongly predicted residues, may result in a very low prediction accuracy (because of 
the definition of the prediction accuracy).  
 
Therefore when evaluating the final result of the jackknife test and training procedure the 
prediction accuracy is measured as the percentage of correctly predicted residues of all predicted 
residues (for all tested sequences). This prediction accuracy may be referred to as the prediction 
accuracy pr. residue. The other method may be referred to as the prediction accuracy pr. 
sequence.  
 
The pr. sequence prediction accuracy has the advantage that it is possible to calculate the mean 
standard deviation when using the jackknife procedure. One Q3 value for each test sequence is 
obtained in the jackknife procedure, allowing the mean standard deviation to be calculated after 
the procedure has terminated. The pr. sequence Q3 may also be used to identify sequences 
which are hard to predict, that is sequences resulting in a low pr. sequence Q3. 
 
Given n sequences, the corresponding prediction accuracies xi for sequence i and the mean 
prediction accuracy xavr, the mean standard deviation may be defined as: 
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The standard deviation holds information regarding the spread of the pr. sequence prediction 
accuracies. When observing or using the standard deviation, it is important to remember that the 



 
  By Simon Larsen and Claus Thomsen 

Page 63 of 141 

value is based on prediction accuracies calculated pr. sequence (which may result in a large 
standard deviation because of the fact that small sequences may result in low values for the pr. 
sequence Q3). To use the formula of the standard deviation it is required that the data is normally 
distributed. This has been tested on several samples (from the test sessions) which actually show 
that the Q3 value pr. sequence is normally distributed. 

5.4. Accuracy Matrix 
When evaluating the Markov models it is interesting to learn as much as possible from the current 
test and training session. The previous section described how the models are evaluated overall, 
that is how well the models predict sequences (overall), without differentiating between the 
different classification groups.  
 
To learn more about the different classification groups, it is convenient to introduce an accuracy 
matrix. This method is adopted from the papers on the GOR model [2, 3].  
 
The matrix is of the size 3 × 3 using the indices i and j for the relative position in the matrix. The i 
and j indices also denote the three classification groups (H, E and C). An element, Aij, in the 
matrix, [Aij], is the number of residues predicted to be in state j that is actually in state i (according 
to the current database used).  
 
Using this matrix definition, it is possible to derive valuable information of the overall prediction 
performance, but also more specifically on the individual subclasses, the different classification 
groups.  
 
The sum of the elements in a column of the accuracy matrix, [Aij], is the total number of residues 
that are predicted to be in group j: 
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On the other hand the sum of the elements in a row of the accuracy matrix is the number of 
residues that are observed as classification group i in the database: 
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The correctly predicted residues are accounted for in the diagonal elements of the matrix, since 
these are the residues that are predicted to be in group i and are observed in group j (where i = j). 
The other elements of the matrix gives information of the incorrectly predicted residues, that is 
how many residues are predicted to be in group i, when they are in fact in group j (i ≠ j).  
 
It is now possible to calculate the overall prediction accuracy pr. residue, Q3, which was defined 
in the previous section. The prediction accuracy is the percentage of all correctly predicted 
residues (defined by the sum of the diagonal elements) of the total observed residues and may 
be defined using the accuracy matrix, [Aij]: 
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N is defined as the sum of the all observed residues (which equals all predicted residues) in: 
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The matrix also makes it possible to measure the individual accuracies (noted as Q3 obs, since it is 
based on the observed residues in the group) within each classification group: 
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A similar measurement (noted as Q3 pred), may be calculated for each group: 
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This measurement is the probability that a residue predicted as some group X is in fact correctly 
classified as group X.   
 
The accuracy matrix may then be depicted and expanded as in Table 5: 
 

 Predicted 
Observed H E C Total 
H a11 a12 a13 N1 
E a21 a22 a23 N2 
C a31 a32 a33 N3 
Total n1 n2 n3 N 
Qpred qH pred qE pred qC pred  
Qobs qH obs qE obs qC obs  
Q3    Q3 

Table 5: Accuracy matrix including the extra elements described above. 

The darker area is the actual accuracy matrix. The other values in the table above are calculated 
based on these values. The matrix may also be referred to as a confusion matrix when used in 
the area of bioinformatics [21]. 

5.5. Matthews Correlation Coefficient 
Considering that the best results in the area of secondary structure prediction are relatively high 
(with prediction accuracies just below 80% for the three classification group setup), it is 
interesting to look at a few very simple classifiers, that are easy to interpret (the classifiers have 
been mentioned before, under the term trivial classification).  
 
The following examples may be uses as a few rules of thumb, when analyzing the resulting 
classifiers for the problem.  
 
A classifier using a completely random assignment of the classification group for each residue in 
the test sequence, would result in a prediction accuracy of 33%. This type of classifier will only be 
used if one does not know anything about the populations of the groups. If the distribution of the 
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groups is known an equal or higher performance is achieved by classifying all residues as the 
most frequent group (a prediction accuracy of 33% is achieved if the groups are equally 
populated). 
  
In the case of the DSSP database (see the section 6.Test and Training Data) the most common 
classification group (using the structure class reduction scheme also described in section 6.Test 
and Training Data) is the coil (C) group with around 43% of the classified residues. This means 
that any prediction accuracy below 43% is worse than using the very simple classifier, which 
classifies every residue as a coil. It should be noted that a classifier that always predicts the same 
group is useless in the sense that it does not really supply any new information about the protein 
sequence.  
 
To measure the quality of the prediction, Matthews’s correlation coefficient (defined in [13], 
typically used for classification problems, for instance in [3, 14]) may be used for each group: 
 

�
�
�

�
�
�
�

�
+�

�
�

�
�
�
�

�
+�

�
�

�
�
�
�

�
+�

�
�

�
�
�
�

�
+

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
−��
�

�
�
�
�

�

=

��������

����

≠≠ ≠≠≠ ≠≠≠

≠≠≠ ≠

33 333 333

333 3

ij
ji

ik ij
jk

ij
ij

ik ij
jk

ij
jiii

ij
ijii

ij
ji

ij
ij

ik ij
jkii

i

AAAAAAAA

AAAA

C

 

( 5.9 

 
The correlation coefficient makes it possible to compare the quality of the prediction with the 
random assignment (prediction accuracy of 33%), which yields Ci = 0. For the perfect prediction 
the coefficients are all 1, Ci = 1. If the correlation coefficient is negative, the prediction is worse 
than the random assignment.  
 
Matthews correlation coefficient is undefined for the trivial classification for which every residue is 
classified as the most frequent group in the database (which is the coil group), since the 
expression above returns a division by zero.  

5.6. Summary 
The measurements described in the previous sections will be used when interpreting the results 
using the different Markov models (and also the GOR models) implemented in this project.  
 
The main measure for the prediction precision accomplished using the implemented models will 
be the pr. residue prediction accuracy (Q3), which is also the most common measure used in 
other studies [2, 3, 8, 16]. The other measures such as the mean standard deviation, the accuracy 
matrix and Matthews’s correlation coefficient will be used whenever appropriate (when extra 
measures are needed).  
 
The definitions above will be used without introduction in the section 7.Tests and Results. 
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6. Test and Training Data 

6.1. Protein Databases and Classification Type Reduction 
The two main databases used in this project are the database used by Garnier et al. [2] for the 
GOR IV classifier and the newest database assembled by Cuff and Barton [5, 6].  
 
The first database used for the GOR IV classifier will be referred to as the GOR database. This 
database will not be used much, but since GOR IV is tested on this particular database we find it 
interesting to see if we can achieve the same performance using our own implementation of GOR 
IV (compared to the results documented for GOR IV [2]). 
 
The second database assembled by Cuff and Barton [5, 6] is the primary database used for testing 
the classifiers developed in this project. This database will be referred to as the DSSP database4. 
The reasons for using this database instead of the one provided by the people behind GOR IV [2] 
are: 

• The database contains more sequences than the GOR database. 
• For the development of the GOR V model this database has been used.  
• The database is newer than the GOR database (hopefully containing fewer errors).  
• The database has been used in several studies. 

 
However both databases could be used since each of them contain protein sequences and their 
associated correct classification sequences (the secondary structure). The contents of the 
databases are a bit different (as will be explained later) but both are usable.  
 
A quick summary of the two databases is shown in Table 6: 
 

Database Sequences Residues 
GOR db 267 65230 
DSSP db 513 84119 

Table 6: A summary of the two databases used for this project. 

6.1.1. The GOR Database 
The GOR database is relatively straight forward since there are only four possible classification 
types: helix (H), beta sheet (or strand) (E), coil (C) and unknown (X).  The unknown classification 
type is the result used when the current residue did not have any coordinates in the PDB file (The 
Protein Data Bank). The X type was omitted when using the GOR model as described in [2].  
 
We have included the X type in the prediction procedure and tested the results when the X 
classification type is treated as each of the other classification groups (H, E, and C). The tests 
showed no large difference in the performances of the models and since it is not that frequent it is 
treated as a helix type.  
 
According to [2] this database has been checked by V. Di Franscesco for homologous sequences 
and may therefore be used for secondary structure prediction. For secondary structure prediction 
it is custom to check the database for homologous sequences to avoid that the sequences are 
too identical within some margin (typically 30%). If some of the sequences are indeed identical 
(within the margin) there is a possibility that the results (prediction accuracies) may be biased 
towards the training data.  

                                                      
4 The DSSP program is a program written to define the secondary structure of proteins in a standard way. The program 
may be used to extract the secondary structure of protein sequences given the three-dimensional atomic coordinates. The 
program does not predict secondary structure [7]. 
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6.1.2. The DSSP Database 
The DSSP database is a bit more informative than the GOR database. The DSSP assignments 
are available in the file, along with the assignments of other structural definition programs. Also 
multiple alignments for the sequence have been given (generated using the automated alignment 
procedure within Jpred, a prediction program developed by the Barton Group [12]).  
 
Since the DSSP program returns the secondary structure in 8 different classification types, these 
types must be reduced/mapped to 3 different groups for the prediction (the three-state prediction 
of secondary structure is the most common). This however, may be done in several ways. 
Various papers have described how this is done for their classifier [2, 8]. The mapping of the 
DSSP database (and GOR database) is mentioned later in this section (see also Table 7 and 
Table 8 that contains these mappings). 
 
The 8 structure types for the DSSP assignments are (as described in [7]): 

• H = Alpha helix 
• B = Residue in isolated beta-bridge 
• E = Extended strand, participates in beta ladder 
• G = 3-helix (3/10 helix) 
• I  = 5 helix (pi helix) 
• T = Hydrogen bonded turn 
• S = Bend 
• _ = Gap 

 
Furthermore there are some assignments of the type ‘?’. These are believed to be unknowns 
(and are treated as coils). 
 
There are at least three different common ways to reduce the above classification types into 
groups. The methods are mentioned in [2, 8]. Usually the reduction results in three classification 
groups, one for helix, one for coil and the last classification group may (amongst others) be called 
(beta) strand or sheet.  
 
The Critical Assessment of Structure Prediction, CASP [9], assumes that H, G and I are reduced 
to a helix group (H), B and E are reduced to a strand group (E) and the rest are reduced to at coil 
group (C). This is the method adopted in this project.  
For the GOR V model described in [3], the following assignment was used. H was translated into 
a helix group (H), E was translated into strand (E) and the rest (B, G, I, S, T, and _) were 
translated into the coil group (C). 
 
Other mappings and/or features have been used. The ‘I’-classification type (π helix) may be 
included in the coil group (this does not change much, since it is very rare) and the B type may 
also be included in the coil (C) group.  
 
Several people have made some pre-processing on the sequences before the actual training and 
prediction was done. This correction routine was based on the fact that helices rarely are shorter 
than 4-5 residues and therefore all helices of length 5 or shorter were treated as coils. Also the 
helical G types have been treated as alpha helices (H) if and only if they were neighbors to 
(alpha) helix types (H). Also corrections for bridges (classification type B) have often been used. 
The subsequence BC is then mapped to EE (strand/sheet type) and BCB is mapped to CCC (coil 
type) [11].  
 
In one paper the authors [8] claim that the type reduction from the 8 different classification types 
returned by the DSSP program, may influence the overall prediction accuracy with up to 3%. This 
is of course a problem when comparing the results obtained using different classifiers, which are 
also based on different reductions schemes for the above classification types.  
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The DSSP database contains (as mentioned) 513 non redundant sequences. All the sequences 
has been compared pair-wise and are non redundant to a 5SD cut-off [12]. 
 
As mentioned before the DSSP database is the primary data source used in this project. The 
database is used as it is, without altering the data using any of the correction schemes mentioned 
previously. The distribution of the data is however examined. This is done to get information 
about the distribution of the classification groups, the length of the subsequences and so on. This 
kind of knowledge may be valuable when interpreting the results returned by the implemented 
Markov models. 

6.2. Database Distribution 
The two databases introduced above have been investigated to get an overview of the 
distribution of the classification groups and how each classification group is distributed according 
to the lengths of the subsequences.  
 
The results are based on the two reduction schemes already presented in the previous section. 
The reduction scheme for using the GOR database is shown in Table 7. 
 

Group Group Name Types 
H  Helix group  HX 
E  Beta sheet group  E 
C  Coil group  C 

Table 7: The reduction scheme used for the GOR database. 

 
The reduction scheme showed in Table 7 shows how the original structure classes are reduced. 
This means that the original classes H,X are reduced to H, E is kept as E and C is kept as C. 
 
The reduction scheme used for the DSSP database is shown in Table 8. 
 

Group Group Name Types 
H  Helix group  HGI 
E  Beta bridge/ladder group  BE 
C  Coil group  TS?_ 

Table 8: Reduction scheme used for the DSSP database. 

Again this table shows how the structure classes in DSSP database are reduced. Structure 
classes H,G,I are reduced to H and B,E are reduced to E and T,S,?,_ are reduced to C. 
 
Now investigating the basic distribution of the classification groups of both databases we find the 
results shown in Table 9. 
 

Group GOR db Percentage DSSP db Percentage 
H 21585 33.1% 29097 34.6% 
E 13605 20.9% 19059 22.7% 
C 28375 43.5% 35963 42.8% 
Total 65230  84119  

Table 9: The distribution of the classification groups in the GOR and DSSP databases. 

 
Table 9 shows that the distribution of the two database (according to the classification groups) 
are very similar. There are more helices and beta sheets in the DSSP database, but more coils in 
the GOR database. The table also shows that the most frequent group is the coil group with 
around 43% of the residues. The least frequent group is the beta sheet group with around 22% of 
the residues.  
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The trivial classification will therefore yield a prediction accuracy of 42.8% when using the DSSP 
database (and classifying every residue as coils).  
 
Now since we are using the subsequences for the training of the Markov models it may be 
interesting to look at how these are distributed in each group according to the lengths of the 
subsequences. This is shown in Figure 12. 
 

DSSP Distribution

0
200
400
600
800

1000
1200
1400
1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Length

H

E

C

 
Figure 12: Distribution of the subsequences in the DSSP database according to the length. 

The GOR database has a somewhat different distribution of the subsequences according to their 
length. This is shown in Figure 13. 
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Figure 13: Distribution of the subsequences in the GOR database according to the length. 

These figures are interesting since there are a few obvious differences. The helix groups for the 
two databases are almost alike although there are some helices of length 1 and 2 in the GOR 
database. On the other hand the DSSP database has quite a few helices of length 3. Since the 
GOR people [2, 3] uses correction algorithms for the data (treating helices of small lengths as coils 
and so on), this may be the explanation that there are almost no helices of length 1, 2 and 3. In 
fact further analysis of the GOR database shows that there are no helices of classification type H 
of length 1, 2 and 3 (but there is some of type X).  
 
Also there are no beta sheets (E) of length 1 in the GOR database, while there are quite a few of 
them in the DSSP database. This may again be a result of the correction algorithm used by the 
GOR people [2, 3] where one idea is to replace the bridges (B type) with coils (C). The coil group 
is the most identical of the three classification groups.  
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Based on the distribution of the subsequences as shown above the mean subsequence length for 
each classification group may be calculated. These results are shown in Table 10. 
 

Group DSSP GOR 
H 9.3 10.9 
E 4.3 5.3 
C 4.7 6.0 

Table 10: Average subsequence length for each group. 

The table shows that the GOR database tends to have subsequences that are a bit longer (about 
one residue) than the subsequences in DSSP database. We see that the (H) subsequences with 
a mean length around ten residues are twice as long as the mean lengths for the (E) and (C) 
subsequences. 
 
The mean subsequence length has been found by analyzing the DSSP and GOR databases. The 
number of subsequences for each group and for each length has been found. This is done by 
counting the number of helical subsequences of length = 1,2,3,… until all subsequences has 
been accounted for. The number of helical subsequences is stored for each length. This 
procedure is used for all groups. The information retrieved in this way is used to calculate the 
mean subsequence lengths. 
 
These average lengths of the subsequences in the databases may be used as rules of thumb 
when analyzing the Markov models.  
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7. Tests and Results 
This section will describe the tests completed for each developed Markov model. The tests are 
presented and discussed separately in the following subsections. Each test is intended to reveal 
possible interesting abilities of the particular Markov model. Also the tests are used to determine 
whether the particular extension is actually better than the basic Markov model or the model it 
has extended. 
 
The section 5.Evaluating Tests and Models is the basis for the more formal treatment of the 
results obtained. As mentioned in that section the prediction accuracy, Q3, will be the main 
measure to determine whether one model scheme is better than another (the pr. residue 
prediction accuracy is used unless otherwise mentioned). When analyzing the models more 
closely the other measures described may be applied. 
 
The results are presented in the same order the models are originally presented in the section 
3.Using Markov Models for Classification. Each test case described in that section will be 
presented again in this section and the obtained test results will be shown. It is assumed that the 
section 3.Using Markov Models for Classification has been read and the general ideas behind 
each extension are known.  
 
The GOR model is treated in the later subsections of this section. The different versions of the 
GOR models which we have implemented are tested and treated separately. A comparison of the 
GOR models to the developed Markov models will be presented in a later subsection.  
 
Finally the results will be summarized and discussed further giving an overview of the best 
Markov models developed and how these perform compared with the GOR models.  

7.1. Time Consumption Running Tests 
This section is meant as a very brief introduction to how time consuming the test sessions are.  
 
For each iteration in the jackknife procedure the following tasks must be completed: 

• Determine which sequences are used for training and add the corresponding sequence 
files to a collection. 

• Read the training sequences and the correct classification sequences in the database 
and extract all subsequences for each classification group. 

• Estimate the parameters p(a) and p(a|b) for each Markov model, MH, ME and MC using 
the extracted subsequences.  

• Read and classify the test sequence (the one left out of the current training procedure). 
 
This procedure is repeated until every sequence has been classified.  
 
Running a standard test using the basic Markov model and the DSSP database, the total time 
spent completing the full jackknife procedure is divided into each task as shown in Figure 14. 
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Time Consumption Using the Jackknife Procedure
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Figure 14: The time consumption completing the jackknife test and training procedure. 

The figure shows that the process of estimating the parameters for each of the three Markov 
models, MH, ME and MC is the most time consuming part of the jackknife procedure. It also shows 
that the part classifying the actual test sequence does not have a strong impact on the time 
consumption (increasing the window size does not increase this percentage much).  
 
The percentages are calculated based on the overall time consumption for each task in the 
jackknife procedure. The results presented are shown to indicate the general time consumption in 
the whole classification process.  
 
A few practical examples5: 
 

• Using the basic Markov model (the pseudo count constant, c = 1 and the window size, l = 
3) the total time used for the jackknife procedure classifying the DSSP database was 38 
minutes.  

• Using the basic Markov model (the pseudo count constant, c = 1 and the window size, l = 
10) the total time used for the jackknife procedure classifying the DSSP database was 40 
minutes.  

 
Of course using some of the extensions of the basic Markov model do indeed increase the time 
consumption of the full jackknife process, since these extensions incorporate more programming 
logic. Some of the extensions also increase the number of subsequences (by adding new 
subsequences) and therefore the parameter estimation will be more time consuming. 
 
No deeper analysis of the theoretical time consumption has been done. 

7.2. Test Results Using Markov Models 
This section and the following subsections present the tests and results obtained using the 
different Markov models and extensions presented in the section 3.Using Markov Models for 
Classification.  

                                                      
5 These tests were conducted on a 2.0 GHz AMD machine running Windows XP. 
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7.2.1. The Basic Markov Model 
The basic Markov model from which all other models are derived have been tested and analyzed 
in details. This section outlines and discusses the test results obtained using this model.  
 
The section 3.4.The Basic Markov Model outlined two test cases that should be completed using 
this first model. The first test case is based on the very simple model which does not incorporate 
any scheme for pseudo counts. In this model the window size, l,  may be varied as the only 
parameter (the parameters p(a) and p(a|b) defining each of the three Markov models MH, ME and 
MC are determined during the training of the models, while the window size parameter is used 
when classifying test sequences).  
 
The first test case, Test Case 1, is intended to reveal how the model performs for different values 
of the window size.  
 
Test Case 1 Method Possible Conclusion(s) 
Explore the window size 
parameter. 

Vary the window size and 
measure the overall performance 
of the model.  

How the window size affects the 
overall performance of the basic 
Markov model. 

Test Case 1: Exploring the window size parameter in the basic Markov model. 

Test Case 2 is intended to analyze the effect of the pseudo count constant when using the basic 
model for classification. The pseudo count constant may be varied and for each value the models 
are tested.  
 
Test Case 2 Method Possible Conclusion(s) 
Explore the pseudo constant, c. Vary c and measure the overall 

performance of the model. 
How c affects the overall 
performance of the basic Markov 
model. 

Test Case 2: Investigating the effect of the overall performance of the models when introducing the pseudo count 
constant. 

Remember that setting the pseudo count constant, c = 0, is the same as using the original model 
having no logic for handling pseudo counts. Due to this fact it is possible to combine Test Case 1 
and Test Case 2 into one test. 
 
Having the chosen values for the window size parameter, l: 
 

{ }10,9,8,7,6,5,4,3,2,1=l  
 
and having the chosen values for the pseudo count constant, c: 
 

{ }1000,100,10,5,1,5.0,0=c  
 
one test session may be completed for each possible combination of the windows size, l, and the 
pseudo count constant, c.  
 
The values chosen for the two parameters in question are chosen based on observations from 
the training database (see the section 6.Test and Training Data) and analyses of the expressions 
for the parameters p(a) and p(a|b).  
 
It is anticipated that having a window size of 1 is too small (remembering that the individual score 
functions for each Markov model would then consist of only one term, the p(a) parameter). On the 
other hand a window size of 10 would in many cases mean that the current window overlaps 
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several classification groups (several subsequences) since many subsequences are of smaller 
lengths (the mean lengths of the subsequences are shown in the section 6.2.Database 
Distribution). This may confuse the model and result in unwanted results (having low prediction 
accuracies).  
 
The values for the pseudo count constant are chosen in a large interval ranging from 0 to 1000. 
Having a pseudo count constant equal to 0 reduces the model to the simple initial model, which is 
interesting to include in the test. The idea is to see if the pseudo count method actually changes 
the performance of the models. The other values for the pseudo count constant are chosen in a 
range from 0.5 to 1000 to make sure that a large interval is being tested. We assume that having 
a very large pseudo count constant may make the parameters p(a) and p(a|b) somewhat 
unreliable (the expressions for the parameters p(a) and p(a|b) would converge to 1/|�| when the 
value of the pseudo count constant is very large). 
 
Running the above combined test, results in a graph showing the prediction accuracies (Q3) for 
each combination of the window size and the pseudo count constant. The graph is shown in 
Figure 15. 
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Figure 15: Results for the basic Markov model, varying the window size and the pseudo count constant. 

The graph is based on the values found for each combination of the window size parameter and 
the pseudo count constant. To see the tendency in the obtained values (prediction accuracies) 
the graph is interpolated between the actual test results.  
 
The results obtained combining Test Case 1 and Test Case 2 shows several interesting features 
about the models tested. First of all the highest prediction accuracy obtained, Q3 = 51.2% is 
obtained using a window size of 5 and a pseudo count constant of 5 (l = 5, c = 5).  
 
The trivial classification mentioned earlier yields a Q3 of 42.8% which is lower than the best Q3 
found above. This indicates that the models trained are definitely better than the trivial 
classification and the Markov models are in fact able to infer some of the secondary structure 
from the one-dimensional protein sequences.  
 
On the other hand the worst Q3 value is 39.3% for the model scheme using a window size of 1 
and a pseudo count constant of 1000. This Q3 value is below the benchmark value for the trivial 
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classification and shows that the models trained are having prediction accuracies ranging over a 
relatively large interval (both beyond and above the Q3 for the trivial classification).  
Figure 15 also shows an optimal area of values for the window size and the pseudo count 
parameters having prediction accuracies above 51%. It seems that the window size is optimal 
around 4 and 5 and the pseudo count constant is optimal at values {0.5, 1, 5, 10}. This leads us 
to believe that we have found a set of values for the window size and the pseudo count constant 
which may be used in following tests exploring other features and models.  
 
Another interesting thing which is evident from Figure 15 is that having a pseudo count constant, 
c = 0, does not seem like a major problem. The window size parameter has a much larger effect 
on the prediction accuracies for the tested models. Lets assume that the training database is 
large enough, so that every parameter p(a) and p(a|b) for each of the models MH, ME and MC may 
be estimated to some value different from 0. If this is the case, the use for pseudo counts is not 
needed, since pseudo counts are implemented to prevent parameters being estimated as zero-
probabilities.  
 
Summing up the knowledge gained from Test Case 1 and Test Case 2 we find: 

• The basic Markov model scheme is better than the trivial classification (for specific values 
of the window size and the pseudo count constant). 

• Optimal values for the window size {4, 5} and for the pseudo count constant {0.5, 1.0, 
5.0} have been found (using this particular model). 

• The window size parameter has much more influence on the performance (Q3) of the 
models than the pseudo count constant (which may be explained by the large database 
used for training). 

7.2.1.1. Accuracy of the Individual Classification Groups 
Since it seems that the pseudo count constant does not have a drastic effect on the performance 
of the basic Markov model, we now focus at the test results obtained using a pseudo count 
constant of 1. It is interesting to see how the individual prediction accuracies for each 
classification group behave for different window sizes.   
 
Let us recall the accuracy matrix introduced in the section 5.Evaluating Tests and Models. Using 
the matrix, two types of individual Q3 values (Q3 obs and Q3 pred) were defined for each 
classification group. The observed Q3 values Q3 obs is the probability of predicting some residue 
as group X when the residue is in fact correctly classified as group X. The other individual Q3 
value Q3 pred is the probability that some residue is actually correctly classified as group X when it 
has in fact been predicted as group X.  
 
In the above test combining the window size with the values for the pseudo count constant, the 
according accuracy matrices have been found for each combination. Calculating the Q3 obs and Q3 

pred for each classification group is then possible. The results are interesting in that they supply 
information regarding the individual groups and how they are affected when varying the window 
size.  
 
The values for the individual Q3 obs and Q3 pred are shown in Figure 16 and Figure 17 respectively. 
The overall Q3 values are also shown. 
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Figure 16: Graph showing the Q3 obs values using the basic Markov model. 
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Figure 17: Graph showing the Q3 pred values using the basic Markov model. 

The two figures above shows several interesting features.  
 
Looking at Figure 16 first, we see that the Q3 obs for the beta sheet group (E) is lowered when 
increasing the window size. This may be partly explained by the fact that the beta sheets are the 
subsequences with the smallest mean length (of 4.3 residues closest to 4) and increasing the 
window size may mean that several subsequences overlap in the window. The consequence of 
this is possible misclassifications (incorrectly assigned classifications. This is explained in the 
section 3.Using Markov Models for Classification). The misclassifications occurs for a fixed 
number (depends on window size) of residues in a subsequence and since the beta sheet 
subsequences have the smallest mean length, a larger percentage of the beta sheet residues are 
incorrectly classified. 
 
The Q3 obs values for the helix group (H) and the coil group (C) are increased when increasing the 
window size. The helix group is the group having the longest mean subsequence length of 9.3 
residues, which may explain why more helices are classified correctly when increasing the 
window size. The coil group has a mean subsequences length of 4.7 (closest to 5). At this 
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window size we se that the performance starts to drop. The same argumentation may be used for 
the beta sheet group but the effect is not as clear as for the coil group.  
 
Remember that having a Q3 obs of 100% for some group does not necessarily mean that the 
classifier is perfect (this may be accomplished using the trivial classification which always predicts 
one group). The three Q3 obs values must all be taken into account when assessing the overall 
performance.  
 
The ideal situation would be to have Q3 obs = Q3 pred = 100% for every group (equal to the perfect 
prediction). This leads us to Figure 17 which shows the Q3 pred values for each group. Here we 
see that the values for all groups increases using window size 4, which means that every 
individual group is predicted better, since more residues predicted as group X are in fact correctly 
classified as group X. An interesting feature here is that the curves formed by the individual 
values of Q3 pred are very similar to the curve formed by the overall values of Q3 (shown in yellow), 
meaning that if every individual Q3 pred value is increased (or decreased) the overall prediction 
accuracy follows a similar pattern.  
 
In general the graphs depicted in Figure 16 and Figure 17 showing Q3 obs and Q3 pred can be used 
to analyze a model. The graphs provide information about how the model performs internally (for 
each group) giving a more detailed view of the model. 
 
Summing up the knowledge gained from this section: 

• The accuracy matrix and the terms Q3 obs and Q3 pred may provide additional information 
when analyzing the models. 

7.2.1.2. Reversing the Training Sequences 
Originally when the basic Markov model was implemented we played around with the model to 
see how it actually worked. One of the things we tried out was to reverse the training sequences 
(and their corresponding correct classification sequences) before the parameters defining each of 
the models MH, ME and MC were estimated. The effect is that the estimated parameters are based 
on the reversed subsequences.  
 
Conducting a test and training session where the training sequences were reversed yielded some 
interesting results. It seemed that the overall prediction accuracy was larger when using the 
reversed sequences compared to the normal setup. The results obtained using a pseudo count 
constant of 1 and window sizes of 3, 4, 5 and 6 are shown in Table 11. 
 

 Direction  

Window Size Normal Reversed 

3 48.8 50.6 

4 51.0 52.2 

5 51.2 52.7 

6 50.2 51.7 

Table 11: Results obtained using reversed training sequences. 

It is interesting to see that the overall Q3 actually is increased by 0.8–1.5% when reversing the 
training sequences. These results were surprising at the time, since we anticipated the results to 
be (almost) the same as when using the normal direction. The explanation for this increase in Q3 
may be found in the way the Markov models are defined.  
 
Reversing the sequences has an impact on the p(a) and p(a|b) parameters defining the models. 
These parameters are estimated on the training data (the exact method is described in the 
section 3.3.1.Definition of the Markov Models). When reversing the training sequences, the 
estimated parameters will probably end up having different values than when estimating the 
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parameters as usual. At the time of this discovery we had difficulties explaining the phenomenon 
of the increased Q3 values when reversing the training sequences.  
 
Later on the new definition of the p(a) parameter denoted p’(a) was introduced and analyzed (this 
is addressed in section 3.5.1.1.Analysis of the Term p(a)). Using this new definition p’(a) we ran 
some additional tests to see if the reversed sequences still resulted in higher prediction 
accuracies. This was not the case though. The results for the normal sequences and the reversed 
sequences were very similar leading us to think that the original p(a) term was the main cause for 
this difference (the definition of the p’(a) parameters ensures that the values of the parameters 
values remain the same for the normal and reversed sequences, since p’(a) is the probability of 
observing a regardless of the direction of the sequences).  
 
Analyzing the p(a) parameter and the p’(a) parameter using the extracted subsequences from the 
training database proved that there are in fact obvious differences between the estimated p(a) 
parameters using the normal sequences and the reversed ones, whereas the p’(a) parameters 
are almost the same. This leads to one possible explanation of the performance increase in the 
original model using reversed sequences. The large effect of the p(a) parameter on the resulting 
score values is causing these Q3 differences (This is shown in more details in Appendix C – 
Additional Analyses and Tests, Reversing Training Sequences in the Basic Markov Model).  
 
However we are well aware that reversing the sequences does not only affect the p(a) parameter 
but also the p(a|b) parameter. This parameter may also be investigated, but it is a bit more 
tedious considering the number of combinations of a and b.  
 
As always it may be that the reason for the larger Q3 values observed reversing the sequences 
may be explained using biological knowledge (the sequence may has a biological direction).  
 
Summing up the knowledge gained from this section: 

• Reversing the training sequences increases the performance (using the basic Markov 
model definition). 

7.2.2. Extensions to the Basic Markov Model 
For each extension (and for each test case) presented in the section 3.Using Markov Models for 
Classification the specific test results will be presented and analyzed. The results of every model 
scheme are compared to the results obtained in previous section where the basic Markov model 
was tested. 

7.2.2.1. Extensions Based On the Individual Terms in the Score Function 
The test cases concerning the individual terms in the score functions will now be presented again 
and the associated results will be commented.  

7.2.2.1.1. Term p(a) 
Test Case 3 explores the new definition of the first term in the score function, p’(a). First the 
parameter p(a) is redefined denoted as p’(a). The difference is that the parameter p(a) is the 
probability of observing the residue a as the first residue in a subsequence (for some group), 
whereas the parameter p’(a) is the probability of observing the residue a in any position.  
 
Test Case 3 Method Possible Conclusion(s) 
Is p’(a) better than p(a) 
? 

Set the window size and pseudo count variables as 
fixed values. Produce two tests: 

a) Use the term p(a) and find the 
performance of the models.  

b) Use the term p’(a) and find the 
performance of the models.  

p’(a) is better or worse than 
p(a). The test may be 
inconclusive showing no 
apparent difference 
between the two definitions.  

Test Case 3: Asserting whether p’(a) is better or worse than p(a). 
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The results (prediction accuracies) obtained from running the above test described in Test Case 3 
are shown in Table 12. 
 

Window Size Using p(a) Using p'(a) 
3 48.8 50.4 
4 51.0 52.4 
5 51.2 52.6 
6 50.2 51.7 

Table 12: Results obtained substituting p(a) with p’(a). 

The results have been obtained using window sizes {3, 4, 5, 6} which include the optimal values 
found during the test of the basic Markov model (described in the previous section). The pseudo 
count constant has been set to one, c = 1 (this value for the pseudo count constant will be used 
unless otherwise mentioned).  
 
The results show that the new definition of the first term in the score function, p’(a), does indeed 
increase the performance of the models (the prediction accuracy, Q3, is higher). Using the p(a) 
term is the same as using the basic Markov model from the last section, for which the highest 
prediction accuracy obtained is 51.2% (using a window size, l =5). Using the same values for the 
window size and the pseudo count constant, result in an increase of 1.4% when substituting p(a) 
with p’(a). 
 
These test results seem to backup the assumption that the Markov models may get confused 
when classifying sequences, for which the first residue in the window is not the first residue in a 
subsequence.  
 
Having these results in mind, let us see how the models perform when excluding the first term, 
p(a) or p’(a), from the score function. This is treated in Test Case 4.  
 
Test Case 4 Method Possible Conclusion(s) 
Is the terms p(a) or 
p’(a) necessary at all? 

Modify the score functions for the individual Markov 
models (MH, ME and MC) leaving out the p(a) / p’(a) 
term and measure the performance. The 
performance is compared to the results of the 
previous tests. 

The terms p(a) or p’(a) is 
necessary in order to 
achieve good 
performances. 

Test Case 4: Testing whether the p(a) or p’(a) term is necessary in the individual score functions for the three Markov 
models, MH, ME and MC. 

The Q3 values obtained running the above tests is depicted in Table 13. 
 

Window Size Only p(a|b) Normal, p(a) Normal, p'(a) 
3 50.5 48.8 50.4 
4 52.0 51.0 52.4 
5 51.7 51.2 52.6 
6 50.3 50.2 51.7 

Table 13: Test results leaving out p(a) / p’(a) compared to when using one of the terms. 

The first column in Table 13 (after the different values of the window size) is the test results using 
only the p(a|b) terms (leaving out p(a) or p’(a)). The two next columns show the results from the 
last tests, when using either p(a) or p’(a). Again the pseudo count constant, c equals 1.  
 
The results indicate that when using the definition p(a) the term may be left out, yielding better 
results (although some of the results are very close). However using the p’(a) term instead of the 
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p(a) term yields different results. The results are now (in most cases) better using both the terms 
p’(a) and p(a|b). 
 
Summing up the knowledge gained about the first term in the score function: 

• Substituting p(a) with p’(a) yields better results in general.  
• Leaving out the terms p(a) or p’(a) leads to two conclusions: 

o The basic model (using p(a|b) and p(a)) is worse than only using p(a|b) which 
means that the p(a) term decreases performance. 

o Using only the p(a|b) term is worse than combining it with p’(a) which means that 
p’(a) is still needed in order to keep the performance up. 

7.2.2.1.2. Term p(a|b) 
Now the other parameter p(a|b) in the score function is investigated. First a basic test revealing 
whether or not it is necessary to include the term at all is conducted. Then possible modifications 
to the parameter is suggested and tested.  
 
Test Case 5 describes the possible tests that may be conducted leaving out the p(a|b) parameter 
from the score function.  
 
Test Case 5 Method Possible Conclusion(s) 
Does it make sense to 
include the p(a|b) 
terms in the score 
functions for each 
Markov model? 

Set window size = 1and use p(a) as the only 
parameter defining the Markov models.  
 
The same test may be conducted using the p’(a) 
definition of the parameter.  

Is it necessary to include 
the p(a|b) terms to get a 
reasonable classification? 

Test Case 5: Investigating the performance of Markov models based on score functions where the p(a|b) terms are left 
out. 

Running the two tests where the window size is 1 (see Test Case 5) yield the following results 
(shown in Table 14). 
 

Window Size Only p(a) Only p'(a) 
1 40.6 47.2 

Table 14: The Q3 values for running the tests without using the parameter p(a|b). 

Both tests leaving out the parameter p(a|b) shows a drastic decrease in performance (Q3). This is 
expected since the score function is reduced to one term only and the classifications are 
assigned using the probability of one residue only (the one in the window). There is no need to 
investigate this any further and we may continue with the assumption that the order of the 
residues (and thereby the parameter p(a|b)) is in fact connected with the correct classification 
sequence for some sequence, S.  
 
Now knowing this, different variations of the parameter p(a|b) may be tested.  
 
Summing up the conclusion from Test Case 5: 

• The term p(a|b) is necessary in order to achieve a reasonable prediction accuracy. 

7.2.2.1.3. The Reversed Pair Method 
This method deals with a new definition of the parameter p(a|b). The parameter is redefined 
denoted as p’(a|b). The parameter is now estimated on the subsequences extracted (as usual) 
but now including the reversed subsequences for the group in question (the exact method is 
described in the section 3.5.1.3.The Reversed Pair Method).  
 
Test Case 6 is used to explore the method.   
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Test Case 6 Method Possible Conclusion(s) 
Does the reversed pair 
method increase the 
performance 
(compared to the 
original model) ? 

Substitute the p(a|b) parameter with the new 
definition p’(a|b) and conduct a test session as 
usual.  
 
The same test may be conducted using p’(a) 
instead of p(a).  

The reversed pair method 
proves to increases or 
decreases the performance 
compared to the original 
model. 

Test Case 6: Exploring the new definition of the p(a|b) parameter denoted p’(a|b). 

The test results using this new definition of the parameter p’(a|b) is shown in Table 15. Again the 
window size parameter is varied from 3 to 6 and the pseudo count constant is 1.  
 

 Basic MM Reversed Pair Method 
Window Size  Using p(a) Using p’(a) 

3 48.8 49.9 50.6 
4 51.0 51.7 52.6 
5 51.2 52.0 53.1 
6 50.2 51.2 52.3 

Table 15: Results obtained using the reversed pair method. 

The results show that using the method denoted as the reversed pair method, the performance 
increases for both the model using the parameter p(a) and the model using the parameter p’(a). 
However using the parameter p’(a) yields the best results (with the single best Q3 at 53.1% for 
window size 5).  
 
The results show that the definition of the parameter p’(a|b) increases the performance of the 
models. This may be explained by the fact that more information (the reversed subsequences) is 
added to the process of estimating the p’(a|b) parameter. 
 
Summing up the conclusion from Test Case 6: 

• The reversed pair method increases the performance in general. 
• The highest value for Q3 using the reversed pair method is 53.1% using the p’(a) term 

and a window size of 5. 

7.2.2.1.4. Using Only p’(a) Terms in the Score Function 
Now the results concerning Test Case 7 and Test Case 8 will be presented. The first methods are 
based on the idea that the order of the residues may not have a large effect on the associated 
correct classification sequence. The second method actually introduces a sort of order constraint 
again (discount factor) but uses the first method as a basis. This first method be tested by 
substituting the order terms p(a|b) with the non-order terms p’(a) in the score functions (the exact 
method is described in the section 3.5.1.4.Using Only p’(a) Terms in the Score Function).  
 
Test Case 7 Method Possible Conclusion(s) 
Does the new score 
function 

 
( 3.28 affect 

the performance of the 
models? 

Complete a training session using the new score 
function for each Markov model, MH, ME and MC. 

Is this method better or 
worse than the original 
basic model? 

Test Case 7: Testing the models without the order constraints between the residues. 

The results associated with the tests described in Test Case 7 are shown in Table 16. 
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Window Size 
Basic MM using 
p'(a) and p(a|b) 

New method using  
only p'(a) terms 

3 50.4 52.3 
4 52.4 52.1 
5 52.6 51.1 
6 51.7 49.8 

Table 16: Prediction accuracies for the new method, using non-order terms in the score function. 

The results show that the new method performs well on small window sizes but the performance 
decreases somewhat when using larger window sizes. The explanation for this phenomenon may 
be found in that using a small window of few residues, the order may not be that important (since 
few residues are present and the window size is the number of terms in the score function). When 
enlarging the window size, the order may have more and more impact on the correct 
classification sequence, which is shown in the decreasing prediction accuracy for larger window 
sizes.  
 
Summing up the conclusion from Test Case 7: 

• The new score function only increase performance for window size 3 where Q3 = 52.3%. 
• For higher values of the window size the model performs worse than the basic model 

using p’(a). 
 
The method is altered to incorporate a discounting function on each of the non-order terms p’(a). 
This method means that each term in the score function is discounted dependent on the position 
in the current window. It is therefore not possible to change the order of the residues without 
changing the value of the score function. In other words a different order constraint has now been 
introduced (compared to when using the p(a|b) terms). 
 
Test Case 8 investigates the performance of the models using the discounting function.  
 
Test Case 8 Method Possible Conclusion(s) 
Does the new score 
function 

 
( 3.29 affect 

the performance of the 
models? 

Complete a training session using the new score 
function for each Markov model, MH, ME and MC. 

Is this method better or 
worse than the original 
basic model? 

Test Case 8: Test the altered score functions impact on the performance of the models. 

The results from this test are shown in Table 17. 
 

Window Size 
Basic MM using 
p'(a) and p(a|b) 

New method using  
only p'(a)^li terms 

3 50.4 52.7 
4 52.4 53.3 
5 52.6 53.3 
6 51.7 53.1 

Table 17: Introducing the discounting function on the non-order terms. 

This method seems to yield better results than the basic Markov model (using the p’(a) parameter 
instead of the p(a) parameter). This method is an extended version of the previous order-less 
method. The previous method performed quite well and was actually better than the basic model 
using p’(a) for small window sizes. Using larger window sizes the previous order-less method was 
worse than the basic model using p’(a).  
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The new method uses a discount factor. This factor affects the score function. It is now 
impossible to rearrange the residues without changing the value of the score function. This 
means that a order constraint has been reintroduced but not in the usual way using p(a|b) terms.  
 
The conclusion is that the new method has increased performance by introducing new concepts. 
Only p’(a) values are used for calculating the score function. A new order constraint has been 
introduced, the discount factor. 
 
Summing up the knowledge gained from Test Case 8: 

• Using p’(a) terms only increase the Q3 for small window sizes but decreases the Q3 for 
larger window sizes. 

• Using p’(a) terms only incorporating the discounting function the Q3 is increased (the 
highest Q3 value is 53.3% using window size 4 and 5). 

7.2.2.2. Extensions Based On the Overall Score Function 
The following sections show the results of the tests from the corresponding sections in 3.Using 
Markov Models for Classification. All tests in this section are performed using window size 4 and 
pseudo count 1 if nothing else is stated. Each section presents the test case. Comments and 
results are presented for every test case. 

7.2.2.2.1. Adding Noise 
Test Case 9 explores adding noise to the models. The noise is added to the individual score 
values before they are compared to find the largest one. The value of the noise-amount has to be 
determined so it does not dominate the final score value completely. The chosen values in the 
test have been selected by analyzing the average of the score values for all models. Table 18 
shows the average individual score value for specific window sizes.  
 

Window size  Average score value 
1 5.84E-2 
2 4.10E-3 
3 2.44E-4 
4 1.45E-5 
5 8.70E-7 
6 5.21E-8 
7 3.11E-9 
8 1.86E-10 
9 1.11E-11 

10 6.70E-13 

Table 18: Average score values for specific window sizes. 

Table 18 shows that for a window size of 4 the average score function output for all models is 
1.46E-5. To test how the noise affects the models, the amount will be varied in the tests. The 
chosen values are shown in Test Case 9. 
 
 
Test Case 9 Method Possible Conclusion(s) 
How are the models 
affected when noise is 
added? 

Test the models in iterations using different 
amounts of noise from s=0 to s=1.0�10-4. 

This method is worse or 
better than the basic 
Markov model.  

Test Case 9: Exploring the noise amount added to the models.  

Using the new model, where noise is added to the score function, yields the results depicted in 
Figure 18. 
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Figure 18: Adding noise to the output of the Markov models. 

In Figure 18 we see that the performance of the model using the noise method decreases as the 
noise-amount is increased. The other curve (for the basic model) is shown as a reference and we 
see that the performance of the noise method is lower than the performance of the basic Markov 
model. The noise method may be considered worse than using the basic Markov model.  
 
Taking a closer look at the graph we see that if the amount of noise equals zero then the model 
has a Q3 of 51.1%. When the model has a zero noise amount the model is identical to the basic 
model using a pseudo count constant of 1 and a window size of 4.  
 
The performance of the model converges towards a Q3 of 33% when the amount of noise 
gradually increases. When the noise-amount is numerically large the random term will completely 
dominate the value of the score function. The score function will therefore return a random value. 
This means that the winning group will be completely random.  
 
The probability of finding each of the three classification groups: helix, sheet and coil are given by 
pH, pE and pC. The value of pH, pE and pC is calculated by counting how often the group occurs in 
the database and dividing with the total number of residues in the database. The average 
performance of using a random guess can be calculated as:  
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Summing up the conclusion from Test Case 9: 

• Adding noise to the score functions does not seem to be useful.  

7.2.2.2.2. Using Decision Constants 
Test Case 10 explores the use of decision constants. Two tests are considered. The first test 
explores the difference method. This method requires knowledge of the numerical level of the 
score values returned by the individual score functions. The tests conducted while analyzing the 
noise method (from the previous section) provides information about this (see Table 18). The 
table shows the average numerical value of the score function when the window size is 4. This 
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value is 1.4572⋅10-5. The maximum value for the difference-limit is chosen to be 1⋅10-5. In the test 
case the difference-limit (the decision constant) is varied in the interval [0.0; 1⋅10-5]. 
 
Test Case 10 Method Possible Conclusion(s) 
Conduct a test using 
the difference  
method. 

Complete several test sessions varying the 
decision constant r1 and observe the results.  

The difference method 
increases or decreases 
performance. 

Conduct a test using 
the ratio method. 

Complete several test sessions varying the 
decision constant r2 and observe the results. 

The ratio method increases 
or decreases performance. 

Test Case 10: Using decision constants.  

Figure 19 shows the test results obtained for the difference method. 
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Figure 19: Q3 as a function of the difference-limit using the difference method. 

The graph shows that the difference method increases the performance of the model. The basic 
idea behind the model, that a new classification group is only assigned if the new score value 
exceeds the winning score value from the last round (last residue) by a certain amount seems to 
be a good idea.  
 
When using this model we expect the predicted classification sequence to contain longer 
subsequences (residues classified as the same classification group). The method ensures that 
the model does not keep changing the predicted classification for every residue. By observing the 
training data (see the section 6.2.Database Distribution) we know that it is logically correct to 
have fewer longer subsequences instead of having many short subsequences only consisting of 
one or two residues. This point seems to be backed up by this test. 
 
The problem with this method is that it requires knowledge about the numerical value of the score 
function. The difference limit is set with respect to this knowledge. This limit may be found 
experimentally by varying the parameter and observe the performances of the model. The limit 
may then be chosen from the model having the largest Q3 value (as done in this section). 
 
The ratio-I method is carried out the same way by varying the ratio-limit (the decision constant). In 
contrary to the difference method just described, the limit for this method is intuitively independent 
of the numerical level of the score values. The reason for this is that the ratio between two score 
values is calculated. Figure 20 shows the obtained prediction accuracies using this method.  
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Using Decision Constants - The Ratio-I Method
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Figure 20: Shows the Q3 as a function of the ratio-limit using the ratio-I method. 

Figure 20 shows that for some values of the ratio limit the method increases the overall Q3 and 
for some it decreases the Q3. The curve seems to peak at the ratio limit of 2 which means that a 
given Markov model has to return a score value twice as large as the next greatest score value 
(from one of the other models) in order to change the classification group. If this is not the case 
the old classification (the classification group assigned for the previous residue) is used.  
 
For a deeper analysis of this model see Ratio-I Method in Appendix C – Additional Analyses and 
Tests. The analysis carried out in the appendix shows how to use the accuracy matrix to analyze 
this model. The analysis provides an insight to the way the model works but does not find new 
information which might be used to improve the model. 
 
Summing up the conclusion from Test Case 10: 

• The difference method and ratio-I method increases the overall performance of the 
models. 

• Using the difference method, the highest value of Q3 = 52.8% is achieved having a 
difference-limit of 5.0�10-6. The parameter value is very dependent of the window size. 

• Using the ratio-I method, the highest value of Q3 = 53.1% is achieved having a ratio-limit 
of 2.0.  

7.2.2.2.3. The Ratio-II Method 
Test Case 11 explores using the ratio-II method. The ratio limit is varied. As with the ratio-I 
method the limit does not depend on the window size, although it is possible that different ratio-
limits lead to better results when the window size is varied. The ratio-limit is varied and the 
performance of the model is measured (the exact method is described in the section 
3.5.2.2.1.The Ratio-II Method).  
 
Test Case 11 Method Possible conclusion(s) 
Apply the ratio-II 
method 

Vary the constant r3 and observed the performance 
of the models.  

The method increases or 
decreases the 
performance. 

Test Case 11: Testing the ratio-II method. 
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The results of the test are shown the graph in Figure 21. 
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Figure 21: Performance of the Decision Ratio II method. 

Figure 21 shows that the model using the ratio-II method has the highest prediction accuracy 
when the ratio value is between 0.6 and 1.0. When this limit is greater than 1.0 the performance 
drops and eventually (when the ratio is large) the model will perform worse than the basic model. 
 
We will now try to explain what it means when the ratio-limit is in the interval [0.0; 1.0] and how 
come the performance drops drastically when the limit is increased above 1.0.  
 
When the ratio-limit is 0 there is no restriction when choosing a new winning group (the model 
behaves as the basic Markov model). When the ratio-limit is less than 1.0 a restriction is added. 
The restriction ensures that the new highest score value needs to be closer to the previous 
winning score value, but it is not required to be the same value (or higher for that matter), to 
change the classification group. All values for the ratio-limit in the interval [0.0; 1.0] have the 
effects of a ratio-limit of 0.0 or 1.0 to some degree (the closer they are to one of them). Figure 21 
shows that ratio-limits just below 1.0 seem to result in the highest prediction accuracies.  
 
When the ratio-limit is greater than 1.0 it is a different situation. This situation means that the 
highest current score value needs to be greater than the previous score value in order to dictate a 
new winning group. The graph shows that larger ratio-limits make the model perform worse. In 
other words this means that if the restriction for changing the classification group is too strict, the 
performance drops (as in the case of a ratio-limit > 1.0). 
 
Summing up the conclusion from Test Case 11: 

• The ratio-II method increases the general performance of the model. 
• The best Q3 value (of 53.2%) is found using a ratio-limit of 0.8.  

7.2.2.2.4. The Momentum Method 
The momentum method is investigated in Test Case 12. The primitive momentum method does 
only have memory of the previous score value (for classifying the previous residue). The primitive 
momentum may be considered as a method which simply takes the previous classification into 
account before a new classification is made. If the momentum weight has a value of 0.5 it means 
that 50% of the previous score value will be added to the current. In other words the previous 
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score value affects the current value by 50% of its own value. If the weight exceeds 1.0 it means 
that the previous value of the score function has a higher importance than the current when a 
residue is being classified.  
 
Test Case 12 Method Possible Conclusion(s) 
Testing the primitive 
momentum method. 

Run several test session varying the weight 
parameter and measure the performance of the 
models. 

The primitive momentum 
method increases or 
decreases performance. 

Test Case 12: Exploring the primitive momentum method by varying the weight, w.  

Figure 22 shows the results obtained using the primitive momentum method.  
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Figure 22: Performance of the primitive momentum method. 

Figure 22 shows the performance of the primitive momentum method for window size = 4 when 
the weight is varied. The graph shows that the performance peaks at a weight value around 1.0. 
After this point the performance drops slowly.  
 
It is interesting that the performance is relatively high when the value of the weight is greater than 
1.0. Actually the performance for the weight value of 1.1 is slightly higher than for the weight 
value of 1.0. This means that the previous classification is weighted higher than the current 
classification. 
 
We will now look at the meaning of a weight value of 1.0. If the value of the weight is 1.0 then the 
previous value of the score function is added to the current score value without any form of 
reduction. This means that if the previous residue is classified as a helix then the helix score 
value will be rewarded more than the other two score values for the current residue. We will 
therefore expect that if the helix group has a large score value for a residue then the next residue 
has a better chance of being classified as a helix (because the helix score value is rewarded 
more than the two other score values). If we look at the value of the score function we see that 
the previous and the current score value is weighted equally when the weight is 1.0. 
 
Summing up the conclusion from Test Case 12: 

• The primitive momentum method increases the general performance of the model. 
• The highest performance (Q3 = 53.9%) is obtained using a weight value of 1.1 (using a 

weight value of 1.0 yields the same result, only 0.02% points lower). 
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The following presents the real momentum method which not only takes the previous score value 
into account but all previous values. 
 
The test of the real momentum method is contained in Test Case 13. This momentum method 
has memory back to the beginning of the sequence. We will therefore expect that weight values 
over 1.0 will cause the score value to explode (and the Q3 to drop drastically) because weight 
values greater than 1.0 will cause the previous score values to be weighted higher than the 
current. 
 
Test Case 13 Method Possible Conclusion(s) 
Testing the real 
momentum method. 

Run several test session varying the weight 
parameter and measure the performance of the 
models. 

The real momentum 
method increases or 
decreases performance. 

Test Case 13: Exploring the real momentum method by varying the weight, w and incorporating more memory.  

Figure 23 shows the outputted graph of the results obtained using the real momentum method.  
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Figure 23: Performance of the momentum method. 

The graph (in Figure 23) has the same tendency as the ratio-I method and the ratio-II method 
although the methods in theory are different. The graph shows that the momentum model 
performs better than the basic model in a large interval. The graph shows that the maximum 
Q3=54.8% is obtained for a weight of 0.5. This means that the resulting score value is the current 
score value plus 50% (0.5) of the last score value for the same model and 25% (0.52) of the 
previous value and so on. We see that having a weight of 1.0 has decreased the performance of 
the model drastically (and is below the performance of the basic model).  
 
The conclusion is that it is possible to gain performance using the momentum method. Using this 
method the frequent group changes in the predicted classification sequence are minimized, in 
that the current individual score value is dependent on the previous individual score value (and 
the previous group will be chosen more).  
 
Summing up the conclusion from Test Case 13: 

• The real momentum method increases performance of the model (compared to the 
performance of the basic Markov model). 

• The highest performance (Q3 = 54.8%) is obtained using a weight value of 0.5. 
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7.2.2.3. Extensions Based On Alternating the Training Procedure 
This method is dealt with in Test Case 14. The method alters the subsequences that are used to 
train the Markov model. For each subsequence l-1 residues are appended where l is the window 
size. The idea is to avoid the problem that might arise when more than one subsequence is in the 
window (explained in the section 3.5.3. Extensions Based On Alternating the Training Procedure). 
 
Test Case 14 Method Possible Conclusion(s) 
Test the new method 
of generating the 
subsequences for 
training of the models. 

Conduct a test session using this new method.  The models may perform 
better, incorporating 
knowledge about the 
overlapping subsequences.  

Test Case 14: Testing the new method of extracting the subsequences.  

The following table shows the test results: 
 

Window Size  Q3 
3 49.1 
4 50.3 
5 50.2 
6 49.5 

Table 19: Performance using the new method of extracting the subsequences. 

The table shows the performance using the new method of extracting the subsequences with 
different window sizes. The performance is around 50% for window sizes from 3 to 6. This 
performance is worse than the basic model for window size 4,5,6 and slightly better than the 
basic model using window size 3.  
 
The reason why we do not see any increase in the performance has been given in the 
corresponding section in 3.Using Markov Models for Classification. The explanation given there is 
that a new problem is introduced. The following section tries to deal with the original problem 
namely that the Markov model might have problems predicting the ends of the subsequences. 
 
Summing up the conclusion from Test Case 14: 

• The new score function does not increases the performance of the model and does 
therefore not solve the issue. 

7.2.2.3.1. Classifying the Ends of Subsequences 
Test Case 15 investigates the question about whether or not the Markov model has problems 
classifying whenever two or more subsequences overlap in the window. 
  
Test Case 15 Method Possible Conclusion(s) 
Test whether or not the 
Markov model fails to 
predict overlapping 
subsequences in 
window. 

Whenever the window contains residues of two or 
more different subsequences the window is shifted 
to the beginning of the next subsequence. All 
skipped residues are not classified. The window 
size is varied.  

If performance increases 
the Markov models may 
have problems classifying 
small subsequences or 
ends of the subsequences. 

Test Case 15: Skipping classification of ends of the subsequences. 

The test has been performed varying the window size from 3 to 10. For every test the number of 
skipped residues and the total number of observed residues have been recorded. These numbers 
are used to calculate the percentage of how many residues are skipped during the classification 
process. The intention of this method is to make it clear whether or not the models have problems 
classifying the residues in a window that overlaps one or more subsequences. The results 
obtained (using the above method) are shown in Table 20. 
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Window Size Skipped residues in % Performance (Q3) in % 
3 32.8 50.2 
4 45.9 54.8 
5 56.6 57.8 
6 65.2 59.8 
7 72.0 62.2 
8 77.3 64.3 
9 81.6 65.9 

10 85.1 67.8 

Table 20: Results obtained using the test method. Skip % is the percent of all residues not classified. Performance is the 
Q3 values obtained. 

Table 20 shows that the performance increases when the window size is increased. It may 
appear as if the model is having problems classifying when two or more subsequences are 
present in the current window, but this conclusion can not be drawn. Table 21 shows why this is 
not possible.  
 

(H) Distribution in % (E) Distribution in % (C) Distribution in % 
40.9 20.0 38.9 
44.2 18.6 37.1 
48.3 16.5 35.0 
52.8 14.0 33.0 
57.0 11.3 31.5 
60.7 8.9 30.3 
63.7 6.8 29.3 
66.0 5.3 28.5 

Table 21: The observed distribution of the three groups H, E and C. 

The distribution of the residues according to group they are correctly classified as, is presented 
for the DSSP database in section 6.2.Database Distribution Table 9. In this table we see that 34% 
the residues is of group H, 23% is of group E and 43% is of group C. Table 21 shows the 
distribution when we apply the new test method. The method involves a procedure where 
residues are skipped. This causes residues of certain groups to be skipped more than others. 
Groups that have a large fraction of subsequences of small size will often be skipped using this 
method. This is the case for the E and C group because a large fraction of these groups is small 
subsequences. When the window size is increased this effect becomes more and more obvious. 
 
In Table 21 we see that already at window size 3, the helix group is the most frequently observed 
group. As the window size increases the percentage of helix groups observed is increased. For 
all window sizes greater than 3 the helix group is the most frequent (since the other groups are 
skipped). This means that the trivial classifier (always predicting the helix group) has a prediction 
accuracy equal to the distribution of the helix group. Figure 24 shows the performances obtained 
in Table 20 and Table 21 as graphs. 
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Figure 24: Graph showing both the % of skipped residues and the increasing performance as we increase the window 

size. 

The graph on Figure 24 shows three curves, one showing the performance (Q3) of the model as a 
function of the window size (Cut ends). Another curve shows the percentage of skipped residues 
as a function of the window size (Skipped). The last curve shows the distribution of helices as a 
function of the window size. This value is the same as the performance of the trivial classifier 
always predicting the helix group. For example using a window size of 7, between 70% and 75% 
of all residues are skipped using this method. The prediction accuracy for the model is between 
60% and 65% and between 55% and 60% for the trivial classifier using a window size of 7. 
 
At window size 3 the blue curve (Cut Ends) is 10% better than then yellow curve (the trivial 
classifier). This interval is almost the same as comparing the basic model to the trivial classifier 
(predicting the coil group). The difference between the blue and the yellow curve gets smaller as 
the window size is increased. This means that the model gets closer to the trivial classifier. The 
performance of the trivial classifier is an absolute minimum reference the performances are 
compared. The fact that the model performance gets closer to the trivial classifier shows that the 
model actually performs worse in the sense of how usable the model is. 
 
The classifier introduced has changed the distribution of the groups. This fact causes the results 
to be inconclusive. The data has been changed and the model is therefore not tested in a reliable 
environment. The conclusion is therefore that the test scheme is invalid and that no real 
conclusion can be drawn.  
 
Summing up the conclusion from Test Case 15: 

• This test turned out to be invalid.  
• The method changed the distribution of the groups. It is shown that the performance 

actually did not improve compared to the trivial classifier. 

7.2.2.3.2. The Swap Residue Method 
The next method tested is the one denoted as the swap residue method. The idea of this method 
is that a number of extra subsequences are added to the training data and therefore more data is 
available when the parameters are estimated. From each subsequence several new 
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subsequences are generated. In each of the new subsequences two residues following each 
other (in the original subsequence) switch places.  
 
The procedure generates more subsequences for the models to be trained on, but the 
subsequences are alike, except for the residues that have switched place.  
 
This method is tested using Test Case 16.  
 
Test Case 16 Method Possible Conclusion(s) 
Doest the added 
subsequences (the 
swap residue method) 
increase the 
performance of the 
models? 

Complete a training session using this method, by 
adding the subsequences generated from the 
original one actually in the training data.  

The method may increase 
or decrease the 
performance of the models. 

Test Case 16: Testing the new method, the swap residue method. 

The prediction accuracies obtained from this test are shown in Table 22. 
 

Window size 
Basic MM 

p(a) 
Basic MM 

p'(a) 
Swap Residue 

p(a) 
Swap Residue 

p'(a) 
3 48.8 50.4 50.0 50.5 
4 51.0 52.4 51.8 52.7 
5 51.2 52.6 52.2 52.8 
6 50.2 51.7 51.4 52.2 

Table 22: Prediction accuracies obtained using the swap residue method. 

The tests show that this new method actually increases the performance compared to the original 
Markov models. The models using the swap residue method performs better than the 
corresponding basic Markov models using the parameters p(a) and p’(a). The swap residue 
method improves the Q3 by 0.2-1.2% when using the p(a) parameter for the different window 
sizes. Using the p’(a) parameter the Q3 is increased from 0.1-0.5%.  The larger increase in Q3 
when the p(a) parameter is used might be because the p(a) parameter indirectly also changes 
when the subsequences are modified.  
 
The conclusion is that it seems like it is possible to switch two residues in a pair positioned in a 
subsequence and still have the same correct classification for that sequence. 
 
Summing up the conclusion from Test Case 16: 

• This method increases the general performance of the model.  
• The highest value of Q3 is 52.8% using a window size of 5 and the p’(a) term. 

7.2.3. Normalizing the Markov Models 
Two different normalization methods have been implemented for use with the Markov models. 
The basic idea is to combine models using different window sizes but classifying the same group, 
to incorporate more information (more models) when predicting the secondary structure. 
Hopefully this will lead to an increase in the performance of the models. 

7.2.3.1. Basic Normalization 
The exact normalization procedure for this method is described in the associated section 
3.6.1.Basic Normalization. Basically it scales the outputs obtained from the different models using 
different window sizes and adds this up to a total (for each classification group). These values are 
then used to decide which classification group is assigned for the residue being predicted.  
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This normalization scheme is investigated further in Test Case 17. 
 
Test Case 17 Method Possible Conclusion(s) 
Test the basic 
normalization 
procedure. 

Run the test. Vary the window sizes and vary the 
number of models to be normalized.  

Does the method increase 
or decrease the 
performance? 

Test Case 17: Testing the basic normalization method. 

The tests using the basic normalization scheme incorporates two basic variables, which is the 
number of different models that are normalized and the window sizes used for each model. The 
normalization scheme is built in such a way that a starting value for the window size is chosen 
and then the number of models to normalize is chosen.  
 
Let us assume that we choose windows size, l = 3 and the number of normalized models to 4. 
This would mean that models using window size = {3, 4, 5, 6} are normalized. The window size 
given is the starting value for this variable. It is not possible to normalize two models using 
window size 5 and 10 in this way.  
 
However, this could easily be implemented, but the above approach is chosen since the initial 
test results show that window sizes in the interval [3, 6] are the most promising.  
 
To test the basic normalization scheme we have chosen the window size and the number of 
normalized models in an appropriate interval, using window sizes beginning from 2 to 5 and 
normalizing 3, 4 and 5 models. The overall test results using these values are shown in Table 23. 
 

 Normalized Models  
Window Size 3 4 5 

2 49.4 50.5 51.0 
3 51.3 51.6 51.7 
4 51.6 51.5 51.2 
5 51.0 50.8 50.5 

Table 23: Prediction accuracies using the basic normalization scheme. 

Table 23 should be interpreted as explained in the following. The value available in the first row 
and the first column of the table is the overall Q3 when normalizing three models using window 
sizes 2, 3 and 4. In this case the Q3 value is 49.4%. 
 
It is obvious that the scheme does not increase the overall Q3 drastically. The best Q3 obtained 
using the basic Markov model without the normalization scheme is 51.2%. Now using this 
scheme the best Q3 is 51.7%, an increase of 0.5% (normalizing 5 models using window sizes 3, 
4, 5, 6 and 7).  
 
One reason that this scheme is not drastically better than the basic Markov model may be that 
each model which affects the normalized score value has as much influence as any other model. 
In other words the models using different window sizes (which are normalized yielding a 
normalized score value) are not weighted in any way. Including three models which performs 
equally well (having around the same overall Q3) and including one model which is worse, may 
pull down the overall Q3 of the normalized models.  
 
However the normalization scheme does show a small increase in the Q3 values. For instance 
normalizing the models using window sizes 4, 5 and 6 yields a Q3 of 51.6%. Using the basic 
Markov models for each window size (4, 5 and 6) the Q3 results are 51.0%, 51.2% and 50.2% 
respectively. The average is then 50.8% where as the normalized result is 51.6%, an increase of 
0.8%. This seems to be the general case, that the normalized Q3 is actually better than the 
average of using the models separately.  
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Summing up the conclusion from Test Case 17: 
• This method increases the performance of the model slightly.  
• The highest value of Q3 is 51.7% normalizing the models using window sizes: 3, 4, 5, 6, 

7. 

7.2.3.2. Frequency Normalization 
The other normalization method which we have implemented is denoted as the frequency 
normalization method, where the outputs of the score function is normalized and weighted using 
frequencies calculated based on the subsequences in the training data. The method is described 
in more details in the section 3.6.2.Frequency Normalization and is treated in Test Case 18. 
 
Test Case 18 Method Possible Conclusion(s) 
Test the frequency 
normalization 
procedure. 

Run the test. Vary the window sizes and vary the 
number of models to be normalized.  

Does the method increase 
or decrease the 
performance? 

Test Case 18: Testing the frequency normalization method. 

In the section 3.6.2.Frequency Normalization it is described how the frequencies used for 
weighting may be calculated in three different ways. Each method has been tested separately 
and it seems that the second option for calculating the frequencies is yields the best results 
(although the difference is small).  
 
The results presented here are based on the models using the second option for calculating the 
frequencies. The frequencies of subsequences having the exact lengths are calculated as 
described in 3.6.2.Frequency Normalization.  
 
The frequency normalization procedure is tested the same way as the basic normalization 
method described in the previous section. The beginning window sizes are {2, 3, 4, 5} and the 
number of normalized models is {3, 4, 5}. This means that each combination of the values 
mentioned are tested. The first combination having a beginning window size of 2 and normalizing 
3 models means that models using window sizes 2, 3 and 4 are normalized. 
 
The results of this test are showed in Table 24. 
 

 Normalized Models  
Window Size 3 4 5 

2 49.1 49.8 50.1 
3 50.7 50.9 51.2 
4 51.5 51.7 51.7 
5 51.3 51.2 51.2 

Table 24: Prediction accuracies using the frequency normalization method. 

This normalization method does not differ too much from the basic normalization method treated 
in the previous section. The results are not drastically different from using the basic Markov 
model (for a fixed window size) but nevertheless each result is better than the average of the Q3 
values for the models which are normalized. This means that we actually do gain some 
performance using the normalization scheme, although it is not a drastic change (the 
performance increase is around 0.5-1.5%). 
 
Looking at the two normalization methods presented the frequency scheme has a tendency to be 
better when normalizing more models than the basic normalization scheme from the previous 
section. This may be due to the fact the each term is weighted (using the information obtained 
calculating the frequencies of the subsequences for each group). 
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The normalization method denoted as the frequency normalization may very well be used to 
increase the performance and incorporate more models into the prediction scheme, even though 
the prediction accuracy does not seem to increase drastically.  
 
Summing up the conclusion from Test Case 18: 

• The frequency normalization method increases the performance of the models slightly.  
• The highest obtained value of Q3 is 51.7% when normalizing window sizes: 4, 5, 6, 7 or 

window sizes: 4, 5, 6, 7, 8. 

7.2.4. Combining Markov Models Having Different Orientations 
This section deals with the combo model, which combines prediction of the residue at position i 
using both the residues at the positions before i and after i. The idea is to use two basic Markov 
models, which are trained using different orientations. The exact idea behind this model is 
described in details in section 3.7.Combining Markov Models Having Different Orientation. 
 
Hopefully the overall prediction accuracies are higher using this combined model compared to the 
basic Markov model. The combined model using both orientations is tested using Test Case 19.  
 
Test Case 19 Method Possible Conclusion(s) 
Test the combo model 
described above.  

Run the test for various window sizes.  Does the method increase 
or decrease the 
performance? 

Test Case 19: Testing the combo model (using normal and reversed orientation). 

The results are shown in Table 25. 
 

Window Size Func: scforward + scbackward Basic Markov Model 
3 51.0 48.8 
4 53.3 51.0 
5 53.9 51.2 
6 53.2 50.2 

Table 25: Results using the combined model. 

The obtained prediction accuracies using this new model are obviously higher than using the 
basic Markov model (which corresponds to only using the scforward value). In most cases the 
increase in Q3 is larger than 2%. The largest increase is when using a window size of 5, where 
the basic Markov model has a Q3 of 51.2% and the combined model has a Q3 of 53.9%, an 
increase of 2.7%.  
 
Other functions for using the scforward and scbackward values have been tested. Taking the minimum 
or the maximum of the values and using this value as the overall score value did not show either 
an increase or a decrease of the overall performance of the model. 
 
This combined model seems to be a good idea based on the overall performance of the model. 
The explanation for this increase of the overall Q3 value may be found in the fact that 2l-1 
residues are taken into account for every residue that is classified (where l is the window size). 
Only l residues are taken into account when using the basic Markov model. The combined model 
predicts the classification sequence using more information about the sequence to be predicted 
than the basic Markov model normally does.  
 
Summing up the conclusion from Test Case 19: 

• This method of combining two Markov models with different orientation increases the 
performance of the model.  

• The highest obtained value of Q3 is 53.9% using a window size of 5. 
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7.2.5. Combining Different Extensions 
This section presents the results obtained by running Test Case 20. The test reveals if it is 
possible to achieve higher prediction accuracies by combining several different model extensions.  
 
Test Case 20 Method Possible Conclusion(s) 
Test the combination of 
p’(a), the reversed pair 
method, frequency 
normalization and 
momentum. 

Run the test using the best values for the each 
method (for extensions having parameters 
associated). 

Is it possible to increase the 
performance by combining 
different extensions? 

Test Case 20: Testing combinations of different extensions. 

The following extensions are chosen to be combined into one model: 
• The new definition of the parameter denoted as p’(a). 
• The reversed pair method 
• Frequency normalization 
• The momentum method 

 
The resulting performance obtained by running the test is 57.2% (see Table 26). This 
performance is actually higher than all other performances obtained previously. This means that 
we have reached a higher level of performance by combining different extensions that as 
standalone extensions has a lower performance. 
 

Window size 
Basic Markov 
Model  

Combination of  
extensions 

4 51.0 57.2 

Table 26: Prediction accuracies obtained using a combination of extensions. 

To see how this model has improved compared to the original basic Markov model only using 
pseudo counts the following graph is presented (see Figure 25). 
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Figure 25: Comparison of the new combined model with the basic Markov model.  
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Figure 25 shows a comparison of the combined model and the basic model per sequences in the 
training data. If we only look at the red dots we see that they are placed at the diagonal. Each red 
dot represents a pr. sequence Q3 obtained testing the basic Markov model on the DSSP 
database (it is the individual prediction accuracies obtained for each test sequence). A single red 
dot is plotted by measuring the Q3 value pr. sequence for a single sequence in the training data 
using the basic model and then plot it at coordinates (x,y) = (Q3, Q3). Looking at the red dots we 
see that they seem to be concentrated in the interval from 0.4 to 0.6 which means that a 
sequence typically is classified with a Q3 value between 0.4 and 0.6 using the basic model.  
 
The pr. sequence Q3 values obtained using the basic model will be denoted as Q3basic. In the 
same way the pr. sequence Q3 values obtained using the combined model will be denoted as 
Q3combination. 
 
The blue dots represent the pr. sequence prediction accuracies obtained for each sequence in 
the database using the basic model and the combined model respectively. The values are plotted 
using the coordinates (x,y) = (Q3basic, Q3combination). This means that if the first sequence in the 
database has Q3basic = 0.4 and Q3combination = 0.6 a point will be plotted at (x,y) = (0.4; 0.6).  
 
The graph is useful for comparing how the two models classify every single sequence and how 
the new model has been improved. Table 27 describes how the graph may be interpreted.  
 
Condition Explanation Graph 
 Q3 basic = Q3 combination Both models classify the sequence 

with the same accuracy. 
The point is plotted on the 
diagonal. 

Q3 basic < Q3 combination The combined model classifies with 
the highest accuracy. 

The point is plotted above the 
diagonal 

Q3 basic > Q3 combination The basic model classifies with the 
highest accuracy. 

The point is plotted below the 
diagonal. 

Table 27: A description of how to interpret the graph in Figure 25. 

Now using the table we see that most of the points are above the diagonal which means that the 
combined model is classifying most sequences more correctly than the basic model. Only a few 
points are placed below the diagonal which means that the combined model predicts those 
sequences worse than the basic model.  
 
The graph shows that the high performance achieved using the new combined model is not the 
result of increasing the pr. sequence prediction accuracy for a few sequences and leaving the 
rest unaffected. On the contrary it seems that the new model does indeed increase the 
performance of almost every sequence in the database, resulting in a higher overall performance 
(Q3).  
 
The conclusion that may be drawn based on the graph above, is that overall ability to classify the 
sequences has been improved when a combination of extensions are applied.  The main part of 
all sequences in the training data is classified with a higher accuracy, which is seen by the fact 
that most points are placed above the diagonal line. 
 
Summing up the knowledge gained in this section: 

• Combining different extensions may improve the overall Q3 even more than when using 
the individual extensions.  

7.3. Test Results Using the GOR Classifier 
The GOR model has been implemented in different versions. GOR I, III and IV has been 
implemented following the definitions of the models described in the section 4.The GOR 
Classifier. However there are small differences in our implementations compared to the ones 
described in [2]. 
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Every model is tested on the DSSP database presented by Cuff and Barton [5, 6] containing 513 
non-redundant protein sequences and also on the GOR database which was used in [2] (the 
database was kindly provided by the authors of [2]).  
 
Additionally the following applies: 

• All models are used to predict the three different classification groups H, E and C. This 
includes GOR I which was originally developed to predict four different classification 
groups. 

• GOR III has been used in the raw version (presented in 4.The GOR Classifier section) 
without using dummy frequencies (since the DSSP database contains more than enough 
information to do this). 

• GOR IV has been implemented and used in the original form, without using any decision 
constants in the prediction process and without altering the sequences from the database 
(such as treating helical subsequences below length 5 as coils and so on [2]).  

 
The GOR models are primarily used as benchmark tools for our own Markov models. Since we 
test the GOR models and the Markov models on the same data the results are directly 
comparable.  
 
The results obtained using our implementation of the GOR models are summarized in Table 28: 
 

Model version Database Q3 
GOR I GOR 

DSSP 
60.7 
60.5 

GOR III GOR 
DSSP 

59.6 
60.0 

GOR IV GOR 
DSSP 

63.4 
63.4 

Table 28: Results obtained using our implementation of the different GOR models. 

Remember that the GOR database mentioned in Table 28 is the exact same database used in [2]. 
 
The table shows that our implementation of GOR I appears to have a higher prediction accuracy 
than the 55% reported in [2]. Again the 55% prediction accuracy may be on a much smaller 
database (and using four different classification groups). Also the table shows that there is almost 
no difference in using either of the two databases (the DSSP and the GOR database) even 
though the DSSP database contains around 20.000 more residues (and around 250 more 
sequences). One explanation for this may be that the sequences in the GOR database hold 
enough information to train the classifiers properly.  
 
The GOR III model is documented to have a prediction accuracy of 63.3% using dummy 
frequencies and decision constants. Our implementation of GOR III reaches a prediction 
accuracy of 60.0% without using dummy frequencies or decision constants.  
 
Also we see that our implementation of GOR IV has an overall prediction rate of 63.4% whereas it 
was reported to be 64.4% in [2] using the same database (the GOR database). This leads to the 
fact that there may be small differences in our implementation of the GOR models compared to 
the implementation described in [2] (this was mentioned earlier). 
  
In the following section, some of the more specific results obtained using our implementation of 
the GOR models will be presented.  
 
To get an understanding of the GOR models, we have investigated the models more closely. We 
have tried to vary the window size (which is normally fixed at 17, where the center residue is the 
residue to be predicted) and seen how this affected the models.  These tests were carried out 
before we discovered that a resizable window had been implemented in the fifth version of GOR.  
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7.3.1. Test Results Using the GOR Model with Various Window Sizes 
To get an idea about the GOR model, we have tried to vary the window size for GOR I and GOR 
III. The results for the DSSP database and the GOR database are shown in Figure 26. 
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Figure 26: Performance of the GOR I model.  

In the case of GOR I, the graph shows that using the larger DSSP database does not increase 
the prediction accuracy. In fact they look almost the same. Also it is worth noting that the window 
size of 17 (x = 8) gives in fact one of the best overall prediction accuracies. Increasing the 
window size seems to introduce some over fitting of the model.  
 
In the case of GOR III the graph is a bit different (see Figure 27). First of all there is an obvious 
difference between the two databases, even though it is only around 0.5% point. A more 
interesting point is the fact that the performance begins to decrease for window sizes greater than 
15 (x > 7). This shows that the window size of 17 used in the paper [2] may not be the window 
size producing the best overall results (a window size of 15, x = 7 appears to be even better).  
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Figure 27: GOR III performance on the DSSP and GOR databases.  
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The GOR models have also been tested on smaller datasets (subsets of the databases) 
containing less than 100 sequences. Since GOR I uses less information than GOR III (which 
includes pair statistics), GOR I actually performs quite good on smaller datasets. The prediction 
accuracy was only decreased by a few percent compared to the overall result of around 60.5% 
when using the full databases.  
 
Using GOR III on smaller subsets of the databases does decrease the performance a lot more 
than for the GOR I model. In this case the prediction accuracy drops drastically to around 50% 
and lower for datasets containing less than 50 sequences. The reason for this observation lies in 
the pair statistics incorporated in the GOR III model. The statistics (frequencies) calculated 
become a problem when the database is too small (since some of the combinations of residues 
are not in the training data).  
 
The GOR IV model has not been tested using different window sizes.  

7.4. Comparison of the GOR Models with the Markov Models 
The conducted tests using both the GOR models and the different Markov models show that the 
GOR models are superior to the Markov models, in that higher prediction accuracies are 
achieved.  
 
The first GOR model (GOR I) reaches a prediction accuracy of 60.5% using the DSSP database. 
This prediction accuracy is obtained using our own implementation of the model. The best 
Markov model developed, which is a combination of different extensions achieve a prediction 
accuracy of 57.3%.  
 
It seems that the classification problem of assigning the different secondary structure classes to 
each residue is more successful using the GOR models. The fourth GOR model (GOR IV) has a 
prediction accuracy of 63.4% using our implementation of the model. Although this is around 1% 
less than the documented prediction accuracy it is a lot more than 57% (the Q3 for the highest 
scoring Markov model).  
 
In this section we will try to find a possible explanation to why the GOR models are superior to the 
Markov models when it comes to the overall prediction accuracy.  
 
The problem of classifying the secondary structure of protein sequences may be thought of as 
capturing the necessary information from the training sequences and using this information to 
create a model, which is able to predict the structure for an independent test sequence (not in the 
training data). 
 
One way of looking at how much information is captured in the models, is to look at the number of 
parameters in the different models. The parameters are used in the classification process when 
some group is assigned for every residue. The initial Markov models are based on the 
parameters p(a) and p(a|b), which have been redefined several times in the previous sections. 
The general case is that there are g(s2 + s) parameters for each Markov model predicting a 
particular group (g is the number of groups and s = |�|). If we consider each group H, E and C 
then 3⋅(s2 + s) parameters are used.  
 
The first GOR model (GOR I) does not use the same number of parameters as the Markov 
model. The GOR I model uses 2�w�g�s+2�g parameters where w denotes the number of residues 
in the window. The first term 2�w�g�s is the parameters used for pairs consisting of a residue and 
a group for each position in the window these values are multiplied with two because of the 
information difference (see 4.2.The GOR Idea in Theory). The second term 2�g is the parameters 
used for the frequency of each group and not group (see 4.3.1.GOR I for further details of GOR I 
model). 
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In general the GOR models uses a window size of 17, making w = 17. Having three different 
classification groups the number of parameters is 2�17�3�s+2�3  =  102s+6. 
 
Having the alphabet size |�| = s = 20 and w = 17, the GOR model has 102�20+6 = 2046 
parameters. In comparison the Markov model has 3⋅(202 + 20) = 1260 parameters (that is the 
total number of parameters used, when predicting three classification groups). The GOR I model 
does indeed capture more information, when measuring the number of parameters. 
 
The parameters used in the Markov models tell something about when a given residue appears 
as the first residue in a subsequence (the p(a) parameter) and what pairs of residues occur (the 
p(a|b) parameter). These parameters are used to calculate the probability of a window occurring 
in a sequence. This method relies on the Markov assumption (see Appendix A – The Markov 
Assumption). It does not incorporate any scheme for the exact positions like the GOR model. The 
GOR model looks at the position of the residue to be predicted and the relative positions of the 
other residue in the window. That is the GOR model does indeed consider the location of the 
residues. 
 
The windows W1 = BABGB and W2 = BGBAB, would result in the same score value using the 
basic Markov model. The reason is that the two windows produce the same pairs: BA, AB, BG, 
GB. The GOR I model will in this case be able to see the difference. The reason for this is that the 
model contains statistics based on the positions in the window and the model will therefore 
recognize that two residues have switched places. 
 
Another interesting point when analyzing the parameters in the GOR I model and the Markov 
models is that the parameters in the Markov models are always independent of the window size 
used. The number of parameters for the GOR I model is dependent on the window size 
(previously called w). The Q3 for the GOR I model drops whenever the window size is lowered (as 
seen in Figure 26), which means that the performance of the model depend on w and therefore 
also on the number of parameters. 
 
The resulting remark may be that the GOR I model does indeed consider the exact positions of 
the residues in the local sequence (the window) while the specific pairs are considered in the 
Markov models. The Markov model uses the pairs to calculate the probability of the window and 
thereby only considers the position of the residues indirectly.  
 
Looking at the GOR III and GOR IV models (see section 4.3.The Different GOR Models) we see 
that the number of parameters is increased. This model incorporates frequencies as 
 

mjj RSf
+, , 

mjj RnSf
+, , 

njmjj RRSf
++ ,, , and 

njmjj RRnSf
++ ,,   

 
The expressions are used in the definition of GOR IV, see the section 4.3.The Different GOR 
Models. These expressions are dependent on several positions in the local sequence. This 
means that the models include even more information about the exact positions of the residues in 
the window than GOR I. The tests show that these extensions increases performance compared 
to the original GOR I model. 
 
It seems that the GOR models are in fact better to predict the secondary structures than the 
Markov models and the fact that the GOR models considers the exact positions of the residues 
may be an explanation for this.  

7.5. Summary 
The previous sections have presented the results for each of the treated models, both the 
different GOR models and the different Markov models. Summing up the results obtained using 
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the different models we see that the GOR models are superior to the Markov models. The 
previous section gave a possible explanation to this.  
 
Now focusing on the Markov models, we see that different extensions have been proposed and 
different results have been obtained. Using the basic Markov model with pseudo counts and a 
reasonable window size a prediction accuracy of 51.2% was achieved. We have seen that the 
window size has more influence on the general performance than the pseudo count constant. 
 
Replacing p(a) and p(a|b) by introducing p’(a) and p’(a|b) has increased the performance (Q3) of 
the model from 51% to 53%. The new score function only consisting of p’(a) values and 
incorporating a discount factor according to the position also has a performance of 53%.  
 
The difference, ratio-I and ratio-II methods have performances of around 53%. The momentum 
method almost achieved a prediction accuracy of 55%. The window size parameter has not been 
explored on these methods since it would require a lot of time to perform the tests. Instead the 
new parameter associated with the methods has been explored. However it is possible that the 
new parameter also depends on the window size. It is a fact that the difference-limit depends a lot 
on the window size (because the numerical values of the score function changes drastic when the 
window size is changed). 
 
The test classification method where some of the residues were skipped according to the window 
size turned out to be inconclusive. It was not actually possible to conclude that the Markov model 
has problems predicting two or more subsequences in same window. 
 
The normalization schemes used in this project did not increase the performance drastically (they 
achieved a prediction accuracy of 51.7% at their best). The combined model using both the 
forward and the reversed sequence direction achieved a prediction accuracy of almost 54%. 
Combining some of the better extensions resulted in prediction accuracies above 57%. This is an 
increase of more than 2% of the best individual extension. In total the basic Markov model has 
been improved from around 51% to around 57% (using the combined model of different 
extensions), an increase of 6%. 
 
The first GOR model, GOR I, obtained a prediction accuracy of 60.5%, which is more than 3% 
higher than for the best Markov model scheme. It appears that the GOR models indeed capture 
the information in the one-dimensional protein sequences more than the implemented Markov 
models.  
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8. Implementation 
This section contains an overview of the implementation. The general use of the Markov models 
is described and the corresponding classes are mentioned in order to get a picture of the 
structure of the program. The section is divided into several parts. The sections only give an 
overview of the implementation see Appendix E – CD and Source Code for actual details. The 
contents of these parts will now be explained. 
 
Data and Data Handling describes the data and how data is managed in our program. We have 
two different formats for files containing sequence data. The method for reading these files into 
variables is described. This introduces the classes involved. 
 
The Markov Model describes how the Markov models are implemented. The descriptions should 
make it possible to understand the concepts used. The concept of extending the model and how 
these extensions are applied in the source code are also described here. 
 
Running Tests is the last section and contain information about how the models are tested and 
how the command line parameters are used to launch tests. 

8.1. Data and Data Handling 
This section contains information about the different data files we have used and the classes 
using them. In the following table the different data files are shown by their extension.  
 
Type Description 
.dat Our own data files. These files contain a list of the sequences (file names) 

that should be read. 
.seq Sequence data from the GOR database (all sequences in one file) [2]. 
.obs Observation data from GOR database (correct classification sequences 

corresponding to the .seq file) [2]. 
.all These files are earlier referred to as the DSSP database. Each file contains 

one sequence and the associated classification sequence [12]. There are 513 
different files.  

.csv Microsoft Excel files (comma separated files) which are outputted by our 
program. 

Table 29: Different file types used in this project. 

Table 29 shows a brief description of each file. In the next sections the files will be described 
further together with the classes that use them. One of the file types (.dat files) is our own format. 
The rest are already defined. 
 
The .csv file is used to output results. The results are outputted as comma separated values. This 
file type makes it possible to load the results obtained by running a test into Excel (or some other 
program able to read the csv files) and process the test data. In the following the other file types 
mentioned will be described. 

8.1.1. Sequences and Classification Sequences 
In order to train the Markov models it is necessary to load sequences and their associated correct 
classification sequences. The sequences used in this project are from the distribution material 
used in Jpred (the DSSP database) and has been downloaded from the internet [12]. Every file 
contains a protein sequence and the associated correct classification sequence, plus some extra 
information not used in this project.  
 
These files have the extension .all.  
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1: RES:Q,C,K,... 
2: DSSP:_,_,S,... 
3: DSSPACC:e,e,e,... 
4: STRIDE:C,C,C,... 
5: RsNo:4,5,6,... 
6: DEFINE:_,_,E,... 
7: align1:Q,C,K,...  
8: align2:T,S,A,... 
9: align3:R,Y,K,... 
10: align4:N,S,V,... 
 

Listing 1: Listing of a .all-file containing a sequence and its associated correct classification sequence. 

Listing 1 shows a part of a typical .all file. The first line contains the sequence. The keyword is 
“RES:” and after the colon the residues are listed separated by commas. In the second line the 
correct classification sequence is listed. The keyword for the classification sequence is “DSSP:” 
and the following structure groups are also separated by commas.  
 
In order use the data in the .all file it is necessary to store the sequence and classification 
sequence in variables. The class CSequence is created for this purpose. CSequence can hold a 
sequence and the associated classification sequence. The class CParser is used to read the data 
from the .all file and store it in a CSequence class. The following diagram shows the dataflow of 
the sequence from raw data in .all file to the class CSequence containing the same data ready for 
use in the program. 
 

 
Figure 28: Dataflow from raw sequence data to the class CSequence. 

Figure 28 shows the dataflow for only one sequence and therefore one file. In order to train the 
Markov models it is necessary to read all sequences (there are 513 files/sequences in the DSSP 
database). This is done by automating the process shown on the figure and iterating through all 
files. The class CSequenceHandler does this job.  
 
In order to train the Markov model we also need to split the sequences up into subsequences. 
CSequence is able to supply the necessary information for this job. To split the sequence up into 
subsequences we need to know the sequence and the associated classification sequence. 
CSequence contains these sequences. When we iterate through all files we split every sequence 
up into subsequences and put them into three collections one collection for each group. Each 
collection of subsequences is held by the class CSubSequenceCollection. It is not possible to 
track the subsequences to their original sequences after they are extracted. Figure 29 shows the 
iteration through all files and how they are split into subsequences and sorted according to the 
different classification groups. 
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Figure 29: The sequence data is read by the class CSequenceHandler. 
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The procedure shown in Figure 29 is carried out by the class CSequenceHandler. A short 
description of the figure follows: 
 

• Step A: 
o All files containing sequences are given to the class CSequenceHandler. 

• Step B: 
o Here we enter the loop. Every iteration of the loop start by taking out a new file 

from the original collection. When the loop ends all files are handled. 
• Step C: 

o When the file has been chosen (in Step B) it is passed on to the parser (the 
name of the class is CParser). The parser reads the data file and puts the 
sequence and its classification into a CSequence class. 

• Step D: 
o The sequence and its correct classification sequence in the data file are stored in 

the class (CSequence) 
• Step E: 

o Now the extracted sequences are split up into several subsequences. These 
subsequences are sorted by group meaning that if a subsequence is classified 
as a helix then it is saved in the helix subsequence collection and so on. In this 
way we have three collections. Each collection contains a number of 
subsequences which are all taken from the sequence. In this way the original 
sequence and classification is converted into collections of subsequences. The 
collections are temporary. 

• Step F: 
o The temporary collections are added to permanent collections. Now we go to 

step B and continue as long as there are files left to read. 
• Step G: 

o When all files are read the permanent collections of subsequences (now taken 
from all sequences from all files) are stored in the CSequenceHandler class. Now 
CSequenceHandler contains the necessary subsequences to train the Markov 
model. 

 
The dataflow for reading the sequence data has now been presented. In the next section we 
explain the use of other files and formats.  

8.1.2. Other Files 
We have previously showed a table (Table 29) of the different file types used in this project. The 
previous section explained the .all file. This section will explain the .seq and .obs formats used by 
the provided GOR database [2]. The .dat file will also be explained which is our own format that 
contains a list of sequences that will be used in the training. The sequences (given by the 
filenames) in the .dat-file are also referred to as datasets. 
 

8.1.3. The GOR Database 
The previous section explained the file format of .all files which contains sequence data. We have 
also obtained sequence data in another format, namely the data used in the GOR database 
(provided by the authors of [2]). These files have extensions .seq and .obs. In order to read these 
sequences they are converted into .all files. The conversion is carried out by CParser class. 
 
The GOR data consist of only two files. One has extension .seq and contains all sequences. The 
other file has extension .obs and contains the correct classifications for the corresponding 
sequences in the .seq-file. 
 
Listing 2 shows a sample of a .seq file. 
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1: !1AAJa APOAMICYANIN                   ELECTRON TRANSPORT             105 
2: DKATIPSESPFAAAEVADGAIVVDIAKMKYETPELHVKVGDTVTWINREA 
3: MPHNVHFVAGVLGEAALKGPMMKKEQAYSLTFTEAGTYDYHCTPHPFMRG 
4: KVVVE@ 
5: !1AAKa UBIQUITIN CONJUGATING ENZYME   PRELIMINARY                    150 
6: MSTPARKRLMRDFKRLQQDPPAGISGAPQDNNIMLWNAVIFGPDDTPWDG 
7: GTFKLSLQFSEDYPNKPPTVRFVSRMFHPNIYADGSICLDILQNQWSPIY 
8: DVAAILTSIQSLLCDPNPNSPANSEAARMYSESKREYNRRVRDVVEQSWT 
9: AD@ 
 

Listing 2: Listing of a .seq file from GOR data. 

First line in the .seq file starts with an exclamation mark, some sort of ID, the protein name and 
some description. In the end of the first line there is a number indicating how many residues the 
sequences consist of. In Listing 2 the first protein is Apoamicyanin and consists of 105 residues. 
The second line and the following 105 letters contain the residue in the sequence. The sequence 
is terminated using the ‘@’ character. The first sequence is terminated in line four where the first 
‘@’ character is. 
 
The classification sequences found in the .obs file is using the same format (see Listing 3). 
 
 
1: !1AAJa APOAMICYANIN                   ELECTRON TRANSPORT             105 
2: CCEECCCCCCEECCCCCCCCEEEEEECCEECCCEEEECCCCEEEEEECCC 
3: CCCCCEECCCCCCCCCEECCCCCCCEEEEEEECCCEEEEEEECCEEEEEE 
4: EEEEC@ 
5: !1AAKa UBIQUITIN CONJUGATING ENZYME   PRELIMINARY                    150 
6: CCCCCCCHHHHHHHHHCCCCCCCEEEEEECCEEEEEEEEEECCCCCCCCC 
7: CEEEEEEECCCCCCCCCCEEEECCCCCCCCCCCCCCCCCHHHHCCCCCCC 
8: CHHHHHHHHHHHHHCCCCCCCCCHHHHHHHHHCHHHHHHHHHHHHHHCCC 
9: XX@ 
 

Listing 3: Listing of a .obs file from GOR data. 

To convert the .seq and .obs files into several .all files we first of all need to know what name we 
will call every .all file (because we need one file for each sequence). Since the data does not 
contain two proteins with the same ID we use this as the unique file name. This means that a new 
file is created for every sequence parsed. Listing 4 shows the result of converting the first 
sequence in the GOR-data (from Listing 2 and Listing 3) to .all-file format: 
 
 
1: RES:D,K,A,T,I,P,S,E,S,P,F,A,A,A,E,V,A,D,G,A,I,V,V,D,I,… 
2: DSSP:C,C,E,E,C,C,C,C,C,C,E,E,C,C,C,C,C,C,C,C,E,E,E,E,E,… 
 

Listing 4: File (.all) after GOR data is converted. 

The filename of the new .all file is 1AAJa.all. After the conversion the file (1AAJa.all ) contains the 
residues from the first sequence in the .seq file. Each residue is now separated by a comma. The 
sequences are marked by the keyword “RES:”. The second line is the classification sequence 
marked with the keyword “DSSP:” and the structure classes following according to the standard 
used in .all-files. 

8.1.4. Sequence File List 
The class CSequenceHandler has to know which files that contain the sequence data. This 
information is stored in a .dat file. A .dat file is a simple file that contains names of other files. 
These filenames are the names of the corresponding files containing the sequences and the 
correct classification sequences (.all files). It is possible to use comments in the .dat files by 
letting the first character of the line be ‘;’. A sample of a .dat file can be seen in Listing 5. 
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1: ; 
2: ;This is a test .dat-file 
3: ; 
4: 1alkb-1-AS.all 
5: 1cbg-1-AS.all 
6: 1celb-1-AUTO.1.all 
7: 1lap.all 
8: 1qbb-3-AUTO.1.all 
9: 1reqc-2-AS.all 
10: 1rlr-2-JAC.all 
11: 1trh-1-AS.all 
12: 1tsp-1-AS.all 
13: 1vnc-1-JAC.all 
14: 2glsa.all 
15: 4gr1.all 
16: 6cpp.all 
17: 6cts.all 
18: 7cata.all 
19: 7icd.all 
 

Listing 5: Example of a .dat file. The .dat file contains sequence-filenames. 

If we use a .dat file like the one shown in Listing 5 we will train the Markov model using the 
sequences contained by the 16 .all files. The training procedure (the jackknife method) used in 
this project demands that it is possible to leave one of these file out and then train the Markov 
models using the remaining .all files. This is possible using the class CDataHandler. This class 
reads a .dat file and stores the information in the .dat file in a vector. The class can return how 
many filenames it contains and it can return the filename at index i. When we use this class it is 
possible to control which files that are added to the CSequenceHandler object. This means that it 
is possible to control which files are used to train the Markov models. The relation between 
CSequenceHandler and the Markov models is shown later in the section 8.2.The Markov Model - 
General. 

8.1.5. Summary of Data and Data Handling 
In the section called 8.1.Data and Data Handling the dataflow in our program is outlined. Listing 6 
contains a brief description of how the sequences are read. Each step has been described in 
more details in the previous section. Listing 6 shows how sequences are loaded from .all files into 
variables in CSequenceHandler. 
 
 
CDataHandler loads .dat file containing .all sequence-files 
Using CDataHandler the necessary sequence files are added to CSequenceHandler 
CSequenceHandler splits all sequences up into subsequences 
 This is done by using: 
  CParser to parse a single file 
  CSequence to contain the sequence that is parsed and retrieve subsequences 
  CSubsequenceCollection to hold the extracted subsequences 
 

Listing 6: Scheme shows how to load sequences from files into the class CSequenceHandler. 

The next section will give an overview of how the Markov models are implemented. In the section 
General we show how the Markov models interact with the data handling part described in this 
section. 

8.2. The Markov Model 
This section presents an overview of the implementation of the Markov model. The basic 
functionality is presented first. This includes estimating the model parameters and using these 
parameters to return the value of the score function. 
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After the general introduction the basic model is presented. This model is able to generate a 
classification sequence when a sequence is inputted. 
 
The last sections explain how different extensions to the model are applied.  

8.2.1. General 
The class CMarkovModel contains the basic operations and parameters in the Markov model. 
The class contains the parameters p(a) and p(a|b) for each of the three Markov models (H,E and 
C). The parameters are estimated based on the subsequences supplied by CSequenceHandler 
(described in previous section).  Figure 30 shows the classes used by CMarkovModel to retrieve 
the sequence data. 
 

 
Figure 30: Classes used by CMarkovModel to retrieve sequences. 

Figure 30 shows that CSequenceHandler uses the data files to extract the subsequences for the 
three groups. CMarkovModel uses the subsequences in CSequenceHandler to estimate the 
parameters defining the Markov model. The class CSequenceParam supplies information about 
the groups. This class is initialized by the user. The user stores which groups the sequences 
contains and includes an identifier for these groups. The identifier is used to retrieve information 
about subsequences later. The identifier is necessary for the CMarkovModel object to extract the 
subsequences belonging to some classification group. 
 
CMarkovModel contains 3 sets of parameters. One set for every model. This is shown in Figure 
31. 
 

 
Figure 31: The structure of CMarkovModel 
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Figure 31 shows that CMarkovModel contains the parameters for all three models. The 
parameters for each model are estimated based on the input from CSequenceHandler. The 
function in CMarkovModel that estimates the parameters are called calc(…). This function takes 
the subsequences and the group information as input. Subsequences are supplied by 
CSequenceHandler and the group information is supplied by CSequenceParam. 
 
CMarkovModel serve as a base class for the models used in this project. These models are 
explained in the following sections. The basic Markov model class, CMarkovModelBasic, extends 
this class. CMarkovModelBasic contains a function called GetClassificationRate(…) which takes 
a sequence and information about the groups as input. This function will classify a single 
sequence based on the parameters estimated using a given dataset. This will all be explained in 
the next section.  
 
To summarize this section the following list is shown. The list shows the steps for estimating the 
parameters for the three Markov models (representing the groups H, E and C): 
 
1) Load subsequences into CSequenceHandler. 
2) Call calc() in CMarkovModel using subsequences and group information as input. 
3) The estimated parameters are stored in CMarkovModel. 
 
When the parameters are estimated for each model it is possible to calculate the score functions 
for each model and classify a sequence. This is explained in the following section.  

8.2.2. Basic Implementation 
CMarkovModelBasic extends the CMarkovModel class. The base class CMarkovModel contains 
the estimated parameters and a function that returns the value of the score function. This function 
takes a group and a window of residues as input. The return value is the value of the score 
function associated with the group. CMarkovModelBasic’s job is to compare the score functions 
for every model (H, E and C) and classify each residue according to the winning score function. 
Figure 32 shows this process. 
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Figure 32: Markov models used for classifying a sequence 

Figure 32 shows that the class CMarkovModelBasic has extended the functionality of 
CMarkovModel. CMarkovModelBasic uses the parameters from each Markov model to calculate 
the score functions. This is actually done in CMarkovModel that CMarkovModelBasic extends. 
The score functions are compared and the residue is predicted. The window marked with a red 
rectangle in the top of the figure is used as input for the score functions. As mentioned earlier 
CMarkovModel has a function that returns the value of the score function given the group and a 
window of residues. This function is used by CMarkovModelBasic to retrieve the values of the 
three score functions. CMarkovModelBasic contains the input sequence and its classification 
sequence. 
 
The window of residues and the current position in the sequence and classification sequence is 
managed by CMarkovModelBasic. These positions are shifted by one to the right whenever a 
prediction has been made (this process is described in section 3.Using Markov Models for 
Classification).  
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The prediction iteration (predicting the residue and shifting the window) is performed until the end 
of the window has reached the end of the sequence. CMarkovModelBasic records the number of 
correctly predicted residues and the total number of observed residues (residues predicted). 
These numbers are used to calculate the prediction accuracy, Q3. The numbers are saved as 
public variables in the CMarkovModel class and can be accessed by the user of the model (this 
makes it possible to store the Q3 values for further data analysis). 

8.2.3. Extensions to the Basic Model 
The following sections describe the classes involved when the Markov model is extended. The 
structure of the sections is the same as earlier in the report. First extensions based on the 
individual terms in the score function are presented. After that the extensions based on the 
overall score function is presented. In the last part of the section the normalized and combined 
models are presented.  
 
Every section will give an outline of where the actual changes are carried out and information 
about how it is done. The section ends with an overview of the stages that is visited during the 
use of a Markov model. The stages where the different extensions are applied are recalled here. 

8.2.4. Extensions Based On the Individual Terms in the Score Function 
The extensions based on the individual terms are made in CMarkovModel. The following figure 
(Figure 33) shows where these changes are applied: 
 

 
Figure 33: Extensions to the terms in the score function are made inside CMarkovModel more specific in a function called 

GetModelValue(…). 

Figure 33 shows that the score function and its terms can be accessed in the function called 
GetModelValue. This function is inside the CMarkovModel class. CMarkovModel contains a 
number of private variables that affects the way that the score function is calculated. The 
variables in CMarkovModel that affect the score function are: 
 
Variable Description 
m_bUseSingleResidueTerm If true the p(a) term is used in the score function, 

else its neglected 
m_bUsePairResidueTerm If true the p(a|b) terms are used in the score 

function, if false the terms are neglected. 
m_bAlternativeModelValue If true the alternative score function is used where 

we only use p’(a) terms. If false the usual score 
function is used. 

m_bAlternativeModelValue_simpleversion If true the p’(a) terms does not use the discounting 
factor. This variable only has an effect if 
m_bAlternativeModelValue is true.  

Table 30: Boolean variables activating different code blocks. 
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The variables in Table 30 can be set by functions in CMarkovModel. This means that if 
CMarkovModelBasic needs to use a certain method for calculating the score function it needs to 
call the setup functions in CMarkovModel before GetModelValue() is called. The setup function 
will set one of the Boolean values in the table to true depending on which setup function is called. 
This method of enabling and disabling extensions is used in general. 

8.2.5. Extensions Based On the Overall Score Function 
Extensions based on the overall score function are made in CMarkovModelBasic. These 
extensions are typically applied after the value of the score function is retrieved. Some extensions 
alter the returned value (the momentum method), others alter the way that we find the winning 
score function (decision constants). Figure 34 shows an overview of CMarkovModelBasic. 
 

 
Figure 34: CMarkovModelBasic with extensions. The red boxes indicate where an extension has been applied in the 

source code. 

Figure 34 shows a part of CMarkovModelBasic. It is the figure presented earlier but the 
extensions have now been filled in. Compared to the figure presented earlier the protein 
sequence and the correct classification sequence have been omitted.  
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The figure has a number of red boxes. These boxes represent the places where the extensions 
have been applied. The first extension (box A – the score function) is placed in CMarkovModel. 
This box applies extensions to the individual terms in the score function. The boxes marked with 
B apply changes to the overall score function. The box marked with C represents the rule for 
determining the winning score function (possibly by using decision constants).  
 
Inside each box in the figure there are blocks of code. These blocks can be enabled and 
disabled. The code blocks are extensions to the model. If the blocks are disabled no extensions 
are used. In this way it is possible to apply different methods by activating the code blocks. It is 
possible to combine methods from different boxes. This is also explained later. 
 
Adding noise, decision constants and ratio-II methods 
These methods add restrictions for classifying a residue as a new group (the box marked with C 
in Figure 34). The noise method works differently but the code needed for this method is placed 
at the same location in the source code. A new comparison block is added if we enable some of 
the methods just mentioned. This means that new rules for picking a group for the current residue 
are used. When the three Markov models have returned the value of their score function the new 
comparison block will make the decision about the prediction. The standard method is to compare 
all values and let the winning model predict the group. The new rules are described separately in 
the section 3.5.2.Extensions Based On the Overall Score Function. The new comparison code is 
activated through Boolean variables which are declared in CMarkovModel. Whenever the user of 
the class (CMarkovModelBasic) wants a certain extension enabled calling a simple function will 
do the trick. The function will enable the Boolean variable and therefore the comparison block 
needed in order to active the necessary rule. 
 
Momentum 
Momentum alters the value of the score function (the boxes marked with B in Figure 34). This 
block of code is activated just after the score function values are retrieved. The previous values of 
the score functions are saved in an array and make it possible to retrieve the last value of the 
score function (step i-1 if the current step is i). It is therefore possible to apply the momentum 
methods. The values of the score functions are altered and used as usual in 
CMarkovModelBasic. This means that after the score values are altered they are compared as 
usual. 
 
It is actually possible to enable both momentum and for instance the ratio-II method. The reason 
is that the code is independent of each other and is placed in two different places in the source 
code. The momentum code is added after retrieving the score function values and the ratio-II rule 
is applied after the values has been found for all models.  

8.2.6. Extensions Based On Alternating the Training Procedure 
These extensions are made in CSequenceHandler and CSequence. As mentioned earlier 
CSequenceHandler reads the sequences and the correct classification sequences and stores 
them in variables. CSequence is able to extract all subsequences in a single sequence. These 
two classes are therefore central when the training process is changed.  
 
The altered training procedure described in this report is about appending extra residues to every 
subsequence that is extracted. The place to do this is in CSequence because it is the class that 
extracts the subsequences. CSequenceHandler is the class that uses CSequence so this class 
forwards the information about altering the training method to CSequence. Figure 35 shows how 
CSequence extracts subsequences normally. 
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Figure 35: Normal subsequence extraction. 

Figure 36 shows how extra residues are appended on every subsequence. 
 

 
Figure 36: Alternative training method by concatenating residues to the extracted subsequences. 

To implement this feature in CSequence a new block of code is inserted and is activated by a 
Boolean variable. The new code simply adds the next l-1 residues to the subsequences where l is 
the window size. If it is the last subsequence no extra residues are added. To enable the new 
code block the user calls EnableExtendSubsequence(true) in CSequenceHandler. 
CSequenceHandler will forward the information to CSequence and the training method will be 
altered because the new code block is activated in CSequence. 

8.2.7. Normalized Models 
The normalization methods extend CMarkovModel and works different than CMarkovModelBasic. 
In order to do some sort of normalization several score values for different window sizes are 
retrieved. These score values are normalized meaning that they are manipulated so they can be 
directly combined (without the normalization it would not make any sense to sum the values 
directly). 
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The first example of a normalizing model is the basic normalization model. This model scales (as 
described earlier) the score values obtained using different window sizes. This method makes it 
possible to add up the score values from the different window sizes. When the summed score 
values are calculated the result is replaced with the usual value of the score function associated 
with the group. From this point the model works as CMarkovModelBasic. Figure 37 illustrates 
where the normalization takes place (the red dotted rectangle). 
 

 
Figure 37: The structure of CMarkovModelNormalize that is able to normalize score values. 
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The figure shows that several different window sizes are fed into the Markov models. This 
produces a score value for each window size. This means that we have an array of score values 
outputted for every Markov model. The normalization is shown inside the red dotted rectangle.  
 
In the red dotted rectangle we see that the three arrays of score values are representing a matrix. 
Each column in this matrix is scaled according to the description in section 3.6.1.Basic 
Normalization. After the scaling the rows are summed up and the three results are replaced as 
the usual score values. From here the model works as CMarkovModelBasic. 
 
The normalization takes place between getting the score values and comparing these values. 
The normalization model retrieves several score values (because several window sizes are used) 
where CMarkovModelBasic only retrieves one score value (for each classification group). The 
normalization method works almost as the CMarkovModelBasic because an array of score values 
is summed up and only one score value is used in the end (like CMarkovModelBasic). The fact 
that CMarkovModelNormalize is very similar to CMarkovModelBasic makes it possible to apply 
the extensions presented in 3.5.Extensions to the Basic Markov Model such as the momentum 
method and the decision constants to the normalization model. 

8.2.8. Combining Methods and Models 
We now see that it is possible to combine some of the different methods presented earlier in the 
report. The reason is that the methods are applied in different stages of predicting the final group 
for a residue. The training stage is the first stage to apply the new code in. After this we retrieve 
the value of the score functions. Here we have different approaches of altering the score values 
as describe earlier. Right after this part we can apply the normalization and end up with the usual 
three score values (one for each model). As the last stage we have different ways of comparing 
these values. 
 
The building blocks of the extensions for the Markov model are shown in Figure 38. 
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Figure 38: Figure of different stages in the process of using a Markov model and where the different methods of 

extending the Markov model are applied. 

The figure shows the different stages of using a Markov model from the training of the model to 
predicting a sequence. In every box associated with a stage the affected classes and methods 
used are shown. When a new combined model is created it may consist of one method from each 
box (each stage) in Figure 38. 

8.3. Tests classes 
To be able to test the Markov models used in this project we have implemented several test 
classes. Every test class extends the base test class CTestSettings. CTestSettings contains the 
default test settings such as where to find the data files, the name of the csv output file and so on. 
CTestSettings also supply functions for setting these parameters. The test class that extends 
CTestSettings will therefore be flexible because it contains the test variables and possibility to 
change these by calling appropriate functions. 
 
The class CMarkovModelBasic has an associated test class. This class is called 
CTestBasicMarkovModel. The test class uses the jackknife training method. The sequences used 
for training are given as a .dat file. 

CSequenceHandler, 
CSequence 

Extend subsequences 

Stage: Training 

Stage: Calculate score values CMarkovModel 
Methods for manipulating the 
score function 

 

Stage: Alter score values 
CMarkovModelBasic 

Momentum 
CMarkovModelNormalize, 
CMarkovModelFrequencyNormalize 

Normalization 
CMarkovModelCombo 

Combination of several models 
 

Stage: Find best model -  
  based on score values 

CMarkovModelBasic 
Adding noise 
Using decision constants 
 
 



 
  By Simon Larsen and Claus Thomsen 

Page 123 of 141 

A single default test consists of a loop through each value of the window size and the pseudo 
count constant (meaning that these variables are altered and the Markov model is trained and 
tested using every possible combination of these parameters). The intervals for the parameters 
are set by the user, when calling the appropriate functions in CTestBasicMarkovModel. 
 
To be able to use the extensions such as the momentum method or the decision constants it is 
necessary to enable a new loop. This is possible by calling the function 
EnableExtraParameter(…). This function will activate a new loop in addition to the two existing 
ones. The new loop will be used as the new parameter depending on the method used. If the 
momentum method is used the weight will be the loop parameter (called extra_parameter in 
Listing 7). If the difference method is used the difference-limit is the new parameter and so on. 
Enabling this extra loop will of cause make the test bigger. 
 
The following pseudo code in Listing 7 will show how the test works. 
 
 
1:  Loop through a number of window sizes, l 
2:   Loop through a number of pseudo count values, c 
3:  Loop through a number of different values, extra_parameter 
4:   Use jackknife 
5:    Train a Markov model using a set of sequences 
6:    
7:    Test the model using jackknife method. (The variables l, c 
8:    and the extra_parameter are used when the Markov model 
9:    predicts the sequence.) 
10:   End of jackknife 
11:   Output results of jackknife procedure. 
12:  End of loop extra_parameter 
13: End of loop c 
14:  End of loop l 

 

Listing 7: Testing the basic Markov model. 

Listing 7 shows the three loops iterating through the parameters that should be explored. For 
every iteration of the inner loop the results obtained are logged into a .csv file. This makes it 
possible to produces graphs and other useful test analysis after a test run.  
 
In order to make it easier to test methods without changing the code the possibility of adding 
command line parameters has been implemented. This will be described in the following section. 

8.4. Running Tests Using Command Line Parameters 
Listing 8 shows the output when parameter –h is given.  
 
 
Syntax for CTest 
-------------------------- 
CTest <test type> <args> 
 
<testtype> 
  basicmodel                         use the simple basic Markov model 
  combo                              combine orientation 
  basicnorm                          basic normalization 
  freqnorm                           frequency normalization 
  gor                                gor model 
 
type CTest <test type> -h for more help 

 

Listing 8: Syntax of the command line utility (printed using parameter –h). 
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In Listing 8 we see that it is possible to launch 5 different test types using the command line 
utility. Each test type has some parameters associated. These parameters can be seen by typing: 
 
java CTest <test type>  
 
where the test type can be basicmodel, combo, basicnorm, freqnorm or gor. Listing 8 
shows what the different test types mean. Each test type launches a different test class. 
 
We start out by showing the arguments for the test type basicmodel (see Listing 9). The 
following text serves as an introduction of how to use the help function in the command line utility 
and to get a feeling of how different tests can be performed. In the last part we refer to Appendix 
D – Command Line Utility for examples of how to run tests using the command line utility. 
 
Listing 9 shows the arguments that can be used with the basicmodel test type. The listing is the 
output we receive when the command: java CTest basicmodel –h is written. 
 
 
Syntax for java CTest 
-------------------------- 
java CTest <test type> <args> 
 
<testtype> 
  basicmodel                         use the simple basic Markov model 
  combo                              combine orientation 
  basicnorm                          basic normalization 
  freqnorm                           frequency normalization 
  gor                                gor model 
 
<args> for basicmodel 
  xp:<X1,X2,X3>                      extra param from X1 to X2 and stepsize X3 
  i:<X1,X2,X3>                       pseudo count from X1 to X2 and stepsize X3 
  l:<X1,X2>                          length from X1 to X2 (stepsize=1) 
  csv:<filename>                     set excel output file 
  datafile:<filename>                set data file name 
  datapath:<path>                    set data path 
 
  Following arguments are enabled with prefix + and disabled with prefix - 
  <+|->sr                            single residue term (+) 
  <+|->pr                            pair residue term (+) 
  <+|->sr                            swap residues (-) 
  <+|->am                            alternative model value (-) 
  <+|->xs                            extend subsequence (-) 
  <+|->sv                            simple version for model value (-) 
  <+|->cu                            cut ends (classification) (-) 
  <+|->dd                            decision difference (-) 
  <+|->dr                            decision ratio-I (-) 
  <+|->no                            noise (-) 
  <+|->r2                            decision ratio-II (-) 
  <+|->pm                            primitive momentum (-) 
  <+|->ft                            first term method (-) 
  <+|->mo                            momentum (-) 
  <+|->rp                            reverse pair (-) 
  <+|->d1                            sub: normal method (-) 
  <+|->d2                            sub: reverse method (-) 
  <+|->d3                            sub: Both method (-) 
  <+|->s1                            direction: Forward (-) 
  <+|->s2                            direction: Backwards (-) 
  <+|->pc                            use pseudo count constant (-) 
  <+|->gg                            use GOR groups (-) 
 

Listing 9: Arguments for the test type basicmodel (printed using java CTest basicmodel–h). 

In Listing 9 we see that we have the possibility to use many arguments for the test type 
basicmodel. Most of the arguments shown will extend the model in some way. We will shortly 
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explain the arguments that are not self-explanatory and which arguments that have special 
relations. All arguments will not be explained because most arguments should be self-explanatory 
(when the user has read the report). As we see in Listing 9 the explanation for each argument 
ends with a set of parentheses. These parentheses represent the default value for the argument. 
If there is a ‘-‘ then the argument is disabled if there is a ‘+’ then the argument is enabled. 
 
The single residue term and the pair residue terms are enabled by default. This means that the 
score function works as the original definition. The ‘i:’ argument iterates over a set of pseudo 
count values. If the ‘i:’ argument is used the pseudo count is automatically enabled and the 
switch +pc is not needed. If the GOR database is to be used it is necessary to set the data file 
and data path using ‘datafile:’ and ‘datapath:’ and enable GOR groups with the argument 
+gg. (because the GOR database requires another mapping than the DSSP database) 
 
To see the syntax for the other test types (other than basicmodel) write: 
java CTest <test type> -h  
where <test type> is the test type for which the arguments are shown. 
 
Appendix D – Command Line Utility shows how to run some of the test cases (from the test 
section) using the command line – the examples should make it more clear how the command 
line arguments are actually used. 
 
Appendix E – CD and Source Code shows how the source code is packed in a jar file, which may 
be used directly (without compiling the source files).  
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Discussion 
The general goal in secondary structure prediction is to be able to classify protein sequences with 
such precision that some of the functional properties of proteins may be interpreted from the 
predicted classification sequences.  
 
In this project Markov models have been used to develop several classifiers able to predict the 
secondary structure of protein sequences to some degree (having some precision). Markov 
models are chosen for this, hoping that they are able to infer the secondary structure of the 
proteins from the protein sequences only.  
 
The definition of the simple Markov model proposed in the beginning of the report has been 
analyzed in details. The different parts of the model have been modified (and/or extended) and 
the performances of the new models have been obtained experimentally running tests. Each 
modification has been based on observations from other tests or on ideas originating from 
different analyses. 
 
In the previous sections several different modifications to the basic Markov model has been 
proposed. Some of the modifications turned out to be more successful than others. In general the 
modifications have shown how the Markov models work and what problems there may be using 
these models for this specific classification problem.  
 
Using the basic Markov model it was possible to get a prediction accuracy of 51.2% when 
optimizing the two parameters, the window size and the pseudo count constant. Using this Q3 as 
a benchmark value when testing new modifications of the model, it was possible to quickly 
determine if a new extension of the basic model was better or worse.  
 
When analyzing the basic Markov model it became apparent that this model has difficulties in 
certain situations. The basic model (in its original definition) appears to have problems classifying 
residues not being the first residue in a subsequence. This was discovered investigating the 
parameters defining the models. It seemed that a new definition of the p(a) parameter solved 
some of these problems. Another problem is that the model has difficulties whenever the window 
of residues overlaps two or more subsequences. During the training of the models, the 
subsequences are extracted for each individual group, which means that the models do not 
actually have any knowledge about the boundaries of these subsequences (they are not trained 
on overlapping sections). This problem was dealt with in several ways, however no solution has 
been found. Some of the suggested extensions did increase the performance of the models 
meaning that some of the problems may have been removed.  
 
Using the single extensions to the basic Markov model the prediction accuracy has been 
increased from around 51% to around 55% (an increase of 4%). The best single extension is the 
momentum method for which the best overall Q3 is 54.8%. This method was introduced to 
incorporate memory of the previous predictions into the current one. The basis for this extension 
was found in analyses of single test sequences and the output from the individual score functions 
(for every model MH, ME and MC). It seemed that the returned score value for the correct group 
was high at the beginning of a subsequence, but then decreased immediately after. The 
momentum method is a way to let the prediction process be dependent on the previous steps 
(predicting the previous residues in the sequence).  
 
Tests have shown that it is possible to obtain higher prediction accuracies when combining some 
of the single extensions suggested. Combining some of the better combinations resulted in a 
prediction accuracy of 57.2%, meaning that it actually makes sense to combine different 
extensions. Suppose two extensions are combined which are in theory different from each other. 
The models using either of the extensions are improved which means that there is a good chance 
that the combined model may be improved as well.  
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Implementing the combinations of some of the extensions did increase the performance of the 
models but the prediction accuracies obtained were still around 3% lower than the Q3 for the first 
GOR model.  
 
The GOR I model yields a Q3 of 60.5% using our implementation of the model. The GOR model 
is a statistical model similar to the Markov model. Both models use statistics calculated based on 
the training data to evaluate a window of residues for each classification group. The highest 
scoring classification group is assigned as the classification for the current residue.  
 
The GOR I model is quite different from the implemented Markov models. It incorporates more 
direct information of the order of the residues. Information regarding the exact positions of the 
residues in a local sequence is incorporated into the parameters defining the model (the 
frequencies calculated based on the training data).  
 
The Markov model does take the order of the residues into account, but it is in a more indirect 
way. The Markov models deals in general with pairs (not knowing the exact position).   
 
Also the GOR model uses more parameters than the Markov model based on the first order 
Markov assumption. This fact means that the GOR I model incorporates more specific information 
than the Markov model.  
 
The extensions developed based on the basic Markov model show that it is indeed possible to 
increase the performance of the models based on analyses and investigations of the different 
variables used in the model. The overall prediction accuracy is increased by 6% by changing the 
Markov model or extending it. There is reason to believe that it is possible to increase the 
performance even more, given the time needed for this. Also no biological knowledge has been 
incorporated or utilized for any of the extensions. The newest GOR model (GOR V) shows that it 
is possible to increase the general performance drastically when incorporating several different 
kinds of biological methods. This could be the source of several interesting analyses using the 
Markov models (and the extensions) presented and on top of these use biological background 
knowledge. 
  
The test results have shown that it appears to be difficult to achieve a performance at the same 
level as the GOR I model using the current definition (and implemented extensions) of the Markov 
model.  
 



 
  By Simon Larsen and Claus Thomsen 

Page 129 of 141 

Future Perspectives 
The report has presented Markov models in the simple form and several extensions and/or 
modifications of this model. Some of these extensions have revealed several weaknesses in the 
Markov model. Given the time needed it could be interesting to explore these weaknesses more 
and try to improve the model in these specific areas.  
 
The extensions presented are applied in different stages of the model. These stages may be 
described in short as: 
 

• Training (including subsequence extraction and parameter estimation). 
• Using the score functions. 
• Manipulating the values returned from the score functions. 
• Making the decision of which group to predict as the classification for some residue. 
• Combining models and extensions. 

 
These stages have all been explored to some degree but could all be explored even further. 
Extensions for each of these stages have been presented. Combining different extensions 
appeared to be very effective. This might mean that other model types (for instance neural 
networks) could be combined successfully with the Markov models, resulting in higher prediction 
accuracies.  
 
The training stage where the subsequences are extracted from the correctly classified sequences 
leading to the parameter estimation is an interesting stage. The extensions presented (from this 
stage) have not resulted in remarkable results but it has not been researched that much either. 
This is a possible subject for further research and improvement. 
 
If we look at the model type in general, a Markov model using the Markov assumption of first 
order has been used. It could be interesting to use Markov models based on the second (or third) 
order Markov assumption. These models will incorporate more parameters but it seems that there 
are sufficient data in the DSSP database for this (GOR III and IV also have many parameters). 
The whole normalization process (using models based on different window sizes) could also be 
explored in more details.  
 
Also it could be interesting to incorporate biological knowledge into the whole prediction process. 
The GOR V model has been increased by around 10% using multiple alignments. The database 
could be inspected for errors by someone with a biological background and subsequences which 
do not make physical sense could be corrected.  
 
There are plenty of things which may be explored in more details. It does not automatically mean 
that the performance of the models will increase drastically, but it is definitely possible. 



 
Classification of Protein Sequences Using Markov Models 

Page 130 of 141 

 
 



 
  By Simon Larsen and Claus Thomsen 

Page 131 of 141 

Conclusion 
The tests and analyses conducted in this report have shown that Markov models are able to 
predict the secondary structure of unknown protein sequences to some extent. The prediction 
accuracy obtained using the basic model is better than using the trivial classification where every 
residue is predicted as the most frequent classification group. The trivial classification has a Q3 of 
42.8%. The basic Markov model has a Q3 of 51.2%. 
 
The basic Markov model has been extended in different ways. The extensions are grouped 
according to where they are applied in the model. It would be fairly easy to think of new 
extensions using ideas based on methods presented in this report. Several extensions have been 
applied to the same model. This did indeed increase the performance of the model even more. 
The combined model consisted of 4 different extensions. The best of these extensions has Q3 = 
54.8%. When all extensions are combined the new model achieves a Q3 of 57.2%. 
 
The different GOR models have also been implemented. These models perform better than the 
Markov models. The Q3 value of the best GOR model (GOR IV) is 63.4%. The GOR model using 
the fewest number of parameters (GOR I) has Q3 = 60.5%.  
 
The GOR models and Markov models have been compared. One of the differences of the two 
models is that the GOR model stores information about the exact position of the residues. The 
Markov model only contains indirect information about the position of the residues. The position 
of the residues is indirectly given by the probability of the current window of residues (using pair 
statistics). 
 
As mentioned in the previous section there are several possible extensions and variations of the 
Markov model that could be interesting to explore in more detail. This project has presented some 
ideas of how the models may be analyzed and extended.  
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Appendix A – The Markov Assumption 
The parameters defining the Markov models (as described in 3.3.1.Definition of the Markov 
Models) are based on the so called Markov assumption [22]. The idea is that the probability of 
seeing a certain sequence is reduced to a product of simple terms, where each term is the 
probability of seeing some character a having the character b.  
 
The following formula is known as the Markov assumption of first order: 
 

)|(),,...|( 1121 −− ≈ nnnn xxpxxxxp  
 
The assumption states that the probability of an observation at the time n only depends on the 
observation at the time n-1. If we use a Markov assumption of second order the observation at 
the time n depends on observations at the time n-1 and n-2. 
 
In the following the term Markov assumption or just assumption is used instead of the first order 
Markov assumption. The Markov assumption makes it possible to reduce the complicated term 
stating the probability to see a certain sequence of observations: 
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In the formula the term x1:n-1 means x1,x2,…,xn-1. Using the Markov assumption it is possible to 
rewrite this last equation to a more simple equation: 
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This equation is the basis for the Markov models used in this project. The Markov models used 
will observe residues in a sequence. These residues are placed in some order in the training set. 
To store information about all combinations of residues (according to type and position) would 
require too much space and information from the databases. When we use the Markov 
assumption we reduce the problem to only two different parameters p(a) and p(a|b) which adds 
up to a total count of s2+s parameters (where s=|�|). If the Markov assumption is not used the 
total number of parameters would be sn + sn-1 + sn-2 + … + s where n is the number of residues in 
our window. This number increases very fast when n is increased.  
 
The Markov model is holding the values for p(a) and p(a|b). p(a) is the probability that a sequence 
starts with a and p(a|b) is the probability of seeing a when b is given (meaning that a follows 
immediately after b in a sequence). 
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Appendix B – Using Pseudo Counts 
This appendix validates the parameter estimations when using pseudo counts in the Markov 
models. The two parameters should always respect the conditions given in ( 3.14. This appendix 
shows that this is still the case after the introduction of the pseudo count constant.  
 
p(a) sums to 1 when a varies over the alphabet, �. p(a|b) sums to 1 for all possible a’s (in the 
alphabet) when b varies over the alphabet. 
 
The following shows that p(a) sums to 1: 
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The following shows that p(a|b) also sums to 1:  
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Appendix C – Additional Analyses and Tests 

Reversing Training Sequences in the Basic Markov Model 
Investigating the estimated p(a) and p’(a) parameters on the DSSP database using both the 
normal sequence direction (as given in the database) and using reversed sequences the 
following graph (for the H classification group) is obtained.  
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Figure 39: The Estimated parameters using both the normal sequences and the reversed ones. 

Figure 39 shows how the parameter p(a) behaves when estimated on the normal sequences (as 
given in the database) and on the reversed sequences. The parameter p’(a) is also given. Tests 
show that training the model on reversed sequences lead to better results. The following will use 
Figure 39 to explain this. 
 
The p(a) terms has an effect on the score function. We know from the tests that using p’(a) leads 
to higher performance. We will therefore use p’(a) as a guideline to a better performance on the 
graph on Figure 39. The closer the two p(a)-curves are to the p’(a)-curve the better the 
performance is. 
 
In Figure 39 the parameter p(R) (the probability of observing residue R as the first residue) differs 
somewhat when using normal sequences and reversed sequences compared to the p’(a) graph. 
We see that the p(a) graph using normal sequences differ the most. This provides us with a 
possible explanation why the model using p(a) with normal sequences performs worse than p(a) 
using reversed sequences. 
 
Similar places in the graph may be found (although not that extreme) and may contribute to the 
explanation that the estimated p(a) parameter has some impact on the score function and in the 
end on the overall Q3 (partly causing a difference of 0.8-1.5% when using the basic Markov 
model). Using the parameter definition p’(a) eliminates (to some extent) this difference in Q3.  

Ratio-I Method 
Plotting the individual Q3 performances for each group H, E and C gives us the following graph: 
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Using Decision Constants - The Ratio-I Method (Q3 obs)
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Figure 40: Individual Q3 values for each group. 

Figure 40 shows the individual Q3 values for the three groups (using window size = 4). This gives 
us another picture of how the method Ratio-I affects the model. We can see that a difference-limit 
up to 2.0 improves the performance of the coil and beta sheet groups while the helix group is 
almost unaffected. Having a difference-limit above 2.0 another effect is seen. 
 
When the difference limit is greater than 1.0 the Q3 value for the coil group are superior compared 
to the two other values. In this interval the overall value of Q3 drops (as seen in Figure 20). The 
interesting part here is that the method introduced affects the individual models differently. The 
coil model improves but the other models get worse. We will now look closer at the accuracy 
matrix generated at the end of the jackknife procedure using the above method (and having a 
difference-limit of 7). 
 

  H  E  C  Total 
H 7429 6383 15051 28863 
E 2448 6487 9887 18822 
C 5704 6884 22307 34895 
Total 15581 19754 47245 82580 
Q pred 47.7 32.8 47.2   
Q obs 25.7 34.5 63.9  

Table 31: Statistics for the Ratio-I method when the ratio-limit is 7. 

If we look at the table we see that the models classify the residues as coils very often. The total 
number of residues classified by the models as coils is 47245 out of 82580 possible. This means 
that the models classify 57% of all residues as coils. The actual distribution of coils is 
34895/82580 = 43%. This means that the model is classifying too many residues as coils. Some 
of these guesses have to be wrong because there are only 43% residues which are coils. This 
could explain why the individual Q3 value is high. The model classifies frequently as coil and 
therefore we have more correctly classified coils. 
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The fact that the model over classifies the coil group causes the prediction accuracy for the two 
other groups to drop. The reason for this is that when the model classifies residues that actually 
are beta sheets or helices it may classify them as coils. These residues will be incorrectly 
classified and the prediction accuracy will drop for these two groups individually.  
 
The expression Qpred also shows us that of all the residues we predict as coils only 47% of them 
are predicted correctly. This is another way of saying that the model predicts coils too often and 
as a result misclassifies the other groups. 
 
There is still an open question of why the coil group is predicted frequently. If we recall how the 
method works we know that a new classification group is only chosen if the score value is bigger 
than the second greatest value of a factor given by the ratio-limit. It could be a fact that the coil 
model outputs high values for the score function whenever it predicts a residue as coil. This will 
cause a change in the classification (the model classifies a residue as a coil). After this 
classification has been made the other model has to be large enough in order to avoid that the 
following residue will be classified as coil. If the helix and beta sheet groups are not able to do 
this we would observe the effect seen in the graph. 
 
In this analysis we have not found any information that makes us able to improve this model 
further, but we have seen that the accuracy matrix makes it possible to further analyze the results 
we have obtained. This could be a key element to figure out what makes the model better and 
therefore a deeper insight to which elements that have an impact on the model.  
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Appendix D – Command Line Utility 
This appendix will show examples of how to run some of the test cases using the command line 
utility. In the following we assume that the folder structure showed in Figure 41 is used. 
 

 
Figure 41: Folder structure used in the examples. 

Figure 41 shows the folder structure used for all examples in this appendix. The folder command 
line utility contains the CTest.class file (which is the utility). When we run the utility we 
are in the command line utility folder. The folder data contains the DSSP database and 
the GOR database each database has its own folder. The default values for the paths (in the 
utility) also assume that the folder structure is as shown in Figure 41. If another folder structure is 
used the data path should be given as an argument to the utility. 
 
In the following we present the command lines for running test cases using each of the possible 
test types. 
 
The commands shown in Listing 10 run the combination of Test Case 1 and Test Case 2. 
 
 
1: java CTest basicmodel csv:test1.csv i:0.0,1.0,0.5 l:1,10 
2: java CTest basicmodel csv:test2.csv i:5,10,5 l:1,10 
3: java CTest basicmodel csv:test3.csv i:100,1000,900 l:1,10 
 

Listing 10: Three command lines are used for running the combination of test case 1 and 2. 

Listing 10 shows the three commands used to perform the combination of Test Case 1 and Test 
Case 2. The first line loops over the pseudo count values 0.0 and 1.0 with step size 0.5 this is 
specified using the argument ‘i:0.0,1.0,0.5’. This means that the values: 0.0, 0.5, 1.0 are 
tested. At the same time we also test the values: {1,2,3,4,5,6,7,8,9,10} this is specified using the 
argument ‘l:1,10,1’. The ‘l:’ argument specifies the start, end and step size for the window 
size. 
 
In Test Case 1 and Test Case 2 the values 0.0, 0.5, 1.0, 5.0, 10.0, 100.0 and 1000.0 are used. 
The values 5.0 and 10.0 are tested using the command in line 2. The values 100 and 1000 are 
tested using the command in line 3. Each command generates a new excel file (in csv format). 
This is specified using the argument ‘csv:’. The files generated in Listing 10 are therefore 
test1.csv, test2.csv and test3.csv. The merging of these output files are up to the user. 
 
Listing 11 shows how a part of Test Case 6 is started. The part we are interested in is where we 
use reversed pair and p’(a) in the same model.  
 
 
1: java CTest basicmodel i:1,1,1 l:3,6 +ft +rp 
 

Listing 11: Testing the use of reversed pair (+rp) and p’(a) (+ft) for window sizes 3,4,5,6 using pseudo count 1.0. 

 
Listing 11 shows the use of the extension arguments. We see two new arguments +ft and +rp. 
The first argument +ft enables the use of p’(a). The second argument +rp enables the use of 
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the reversed pair method. We also see that no output file is specified which means that the 
default filename is used (output.csv). 
 
 
1: java CTest gor datapath:.\..\Data\GOR_data datafile:GOR_data.dat +g1 
 

Listing 12: Testing GOR I algorithm using the GOR-database. 

Listing 12 shows how to test the GOR I algorithm using the GOR database. The test type gor 
makes sure that the GOR algorithms are used. The argument +g1 enables GOR I algorithm 
(arguments +g3 and +g4 will enable GOR III and GOR IV algorithm). We also see two new 
arguments datapath and datafile. These new arguments make sure that we point to the 
GOR database in the correct folder and that we use the GOR sequences (supplied in 
GOR_data.dat). 
 
 
1: java CTest combo l:3,6 i:1,1,1 
 

Listing 13: A command line tests the combination of models having different orientation. Window sizes 3 to 6 and pseudo 
count 1.0 is used. 

Listing 13 shows how to run Test Case 19. In this test case the combination of two models having 
different orientation is tested on window sizes from 3 to 6 and pseudo count 1.0. The new test 
type combo can also be seen in Listing 13. 
 
 
1: java CTest basicnorm l:2,5 n:3,5 i:1,1,1 
 

Listing 14: Testing the basic normalization method looping through window size values from 2 to 5 and normalizing 
models from 3 to 5 using pseudo count 1.0. 

Listing 14 shows how to run Test Case 17. The new argument here is ‘n:’. This argument 
specifies how many models that should be normalized. The first test normalizes 3 models starting 
at window size 2 meaning that window sizes 2, 3 and 4 are normalized. The new test type is 
basicnorm. 
 
 
1: java CTest freqnorm l:2,5 n:3,5 i:1,1,1 +f1 
2: java CTest freqnorm l:2,5 n:3,5 i:1,1,1 +f2 
3: java CTest freqnorm l:2,5 n:3,5 i:1,1,1 +f3 
 

Listing 15: Testing the frequency normalization method looping through window size values of 2 to 5 and normalized 
models of 3 to 5 using pseudo count 1.0. 

Listing 15 shows how to run Test Case 18. The new arguments here are +f1, +f2 and +f3. 
These arguments specify what method to use when counting the frequencies (see section 3.6.2 
Frequency Normalization). The new test type introduced here is freqnorm. 
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Appendix E – CD and Source Code 
All source code, test files and so on are available on the associated cd.  
 
The folder structure on the CD is given in the following figure: 
 

 
 
The content of every dir is now explained. 
 
Data: This directory contains the two directories 513_Distribute and GOR_data, which 

holds the DSSP and GOR databases respectively.  
Program: This directory holds the implemented program. The jar executable is located in the 

root of this directory along with the database definition files (.dat). In the subdirectory 
Source, the actual source files are kept (.java), which may be compiled using the 
javac command.  

Report: This directory hold the final report file.  
Test: This directory holds the test files in Excel format (.xls). All results are available in 

these files.  
 
Now running a specific test using the jar executable may be done as usual. A few examples are 
given (assuming the current directory is the program directory mentioned above): 
 
Display help:   
 java –jar RunTest.jar –h 
 
Run a test using the basic Markov model, the pseudo count constant of 1 and the window size of 
5: 
 java –jar RunTest.jar basicmodel i:1,1,1 l:5,5 csv:c:\output.csv 
 
The program has been implemented using Java version 1.4.0_02.  
 
Resulting output running java –version: 
 
 
> java version "1.4.0_02" 
> Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0_02-b02) 
> Java HotSpot(TM) Client VM (build 1.4.0_02-b02, mixed mode) 
 

Listing 16: Output running the java –version command.  

 
 


