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1 Multichannel Imagery

When one collects multivariate data in some field of application a redundancy effect often arises because of
covariation between variables. An interesting issue in reduction of dimensionality of the data is the desire
to obtain simplicity for better understanding, visualizing and interpreting the data on the one hand, and the
desire to retain sufficient detail for adequate representation on the other hand. E.g. a remote sensing device
typically measures the emitted intensity at a number of discrete wavelengths or wavelength intervals for each
element in a regular grid. This “repetition” of the measurement at different wavelengths induces a high degree
of redundancy in the dataset. This can be used for noise reduction and data compression.

A traditional method used in this context is the celebrated principal components transformation. This is a
pixel-wise operation that does not take the spatial nature of image data into account. Also, principal components
will not always produce components that show decreasing image quality with increasing component number. It
is perfectly imaginable that certain types of noise have higher variance than certain types of signal components.

First | shall briefly consider the theory of principal components, see also Conradsen (1984), Anderson
(1984) who both describe several other orthogonal transformations. Following this, two procedures for trans-
formation of multivariate data given on a spatial grid (images) with the purpose of isolating signal from noise
and data compression. These are the minimum/maximum autocorrelation factor transformation, which was
first described by Switzer & Green (1984) and the maximum noise fractions transformation which was de-
scribed by Green, Berman, Switzer, & Craig (1988). The methods are also described in Conradsen, Nielsen,
& Thyrsted (1985), Ersbgll (1989), Conradsen & Ershgll (1991), Conradsen, Nielsen, & Nielsen (1991), Con-
radsen & al. (1991), Larsen (1991), Nielsen (1994). Also, an application of MAF/MNFs to remove periodic
noise in hyper-channel airborne scanner data is described. A new concept of MAF/MNFs of irregularly spaced
data is suggested. This also gives rise to a new form of kriging, namely maximum autocorrelation factorial or
maximum signal-to-noise factorial kriging. Finally, canonical discriminant analysis is described.

2 Principal Components

Based on a technique described by Pearson in 1901 Hotelling (1933) developed principal components (PC)
analysis. The principal components of a stochastic multivariate variable are based on a linear transformation
which produces uncorrelated variables of decreasing variance.

The application of this transformation requires knowledge of or an estimate of the dispersion matrix. The
PCs maximize the variance represented by each component. PC one is the linear combination of the original
bands that explains maximum variance in the original data. A higher order PC is the linear combination of the
original bands that explains maximum variance subject to the constraint that it is uncorrelated with lower order
PCs. PC analysis performs an observation-wise operation that does not take the spatial nature of an image into
account.



Let us consider a multivariate data sehobands with grey level&;(x),i = 1,. .., m, wherex denotes the
coordinates of the sample, and the dispersion{igx)} = =, whereZT = [Z,(z), ..., Z,,(x)]. Without
loss of generality we assume that &} = 0.

We are looking for linear combinations &f

X(x) =p" Z(x) ()
with maximum variance
Var{ X ()} = pTEp. 2

If p is a solution so igp wherec is any scalar. We choogeso thatp’p = 1.
LetA\; > A9, > --- > A, be the eigenvalues ang, p,, . . . , p,,, corresponding orthogonal eigenvectors of

Xi(x)=plZ(x),i=1,....,m (3)

with variance); is thei'th principal component.
We see that witlP = [p, ... p,,]

X = Pz withPPT = PTP=1. 4)

For the dispersion oX we get

M 0 -0
_ 0 X -+ 0
D{X}=P'ESP=AwithA = o _ (5)
0 0 - Ap
This means that
Y =P TAP ! = PAPT = (PA2)(PAz)". (6)

If we seek the variables describing as much as possible of the total variance of the original variables the
solution is the firsi principal components. The fraction of the total variance described by these is given by

M+ N
M+ X+ Ay
A drawback of principal components analysis is that its results depend on the unit of measurement of the

original variables. This problem can be circumvented by considering the standardized variables instead, i.e. by
performing the PC transformation on the correlation matrix instead of on the dispersion matrix.

()

3 Min/Max Autocorrelation Factors

As opposed to the principal components transformation the minimum/maximum autocorrelation factors (MAF)
transformation allows for the spatial nature of the image data. The application of this transformation requires
knowledge of or an estimate of the dispersion matrix and the dispersion matrix of the difference between the
original the spatially shifted image. The MAF transform minimizes the autocorrelation rather than maximizing
the data variance (PC). In reverse order the MAFs maximize the autocorrelation represented by each compo-
nent. MAF one is the linear combination of the original bands that contains minimum autocorrelation between
neighboring pixels. A higher order MAF is the linear combination of the original bands that contains minimum
autocorrelation subject to the constraint that it is orthogonal to lower order MAFs. The MAF procedure thus
constitutes a (conceptually) more satisfactory way of orthogonalizing image data than PC analysis. The MAF
transformation is equivalent to a transformation of the data to a coordinate system in which the covariance ma-
trix of the spatially shifted image data is the identity matrix followed by a principal components transformation.
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An important property of the MAF procedure is its invariance to linear transforms, a property not shared by
ordinary PC analysis. This means that it doesn’t matter whether the data have been scaled e.g. to unit variance
before the analysis is performed.

The minimum/maximum autocorrelation factors procedure was suggested by Switzer & Green (1984). PCs,
MAFs and other orthogonal transforms are described in Ersbgll (1989), Conradsen & Ersbgll (1991), Nielsen

(1994). Again we consider the random variallé = [Z;(x), ..., Z,(x)] and we assume that
E{Z(x)} = 0 8
D{Z(x)} = X. 9)

We denote a spatial shift bx” = [A1, Ag]. The spatial covariance function is defined by
Cov{Z(x),Z(x+ A)} =T(A). (10)
T’ has the following properties
ro) = = (11)
ra)y? = r-a). (12)

We are interested in the correlations between projections of the variables and the shifted variables. There-
fore we find

Covia’Z(x),a”Z(x + A)} = a'T'(A)a (13)
(a'T(A)a)"

a’T(A)Ta

= a'T(-A)a

- %aT(I‘(A)+I‘(—A))a.

Introducing

A = D{Z(x)-Z(x+ A)} (14)
= E{[Z(z)- Z(=z+ A)|[Z(z) - Z(z+ A"},

which considered as a function & is a multivariate variogram, we have

I'A)+T(-A) =23 — 3\ (15)

and thus
1

Covia’Z(x),a’ Z(x + A)} = a” (T - §2A)a (16)

wherefore
la’Spa
T T _ A

Cor{a’ Z(xz),a" Z(x + A)} =1— 3 aTsg a7

If we want to minimize that correlation we must maximize the Rayleigh coefficient
a’Sna
== 5= 18

R(a) =~ (18)
Letk; > --- > Kk, be the eigenvalues ang, ..., a,, corresponding conjugate eigenvectors3if with
respect tax. Then

Yi(z) = al Z(x) (19)

is thei'th minimum/maximum autocorrelation factor or shortly thgn MAF. The minimum/maximum auto-
correlation factors satisfy



i) Corr{Yi(e), Yj(x)} =0, i # j,
i)y Corr{Y;(z),Yi(x+ A)} =1— 1k,
i) Corr{Y;(z),Y1(x + A)} = inf, Cor{a’ Z(x),a” Z(x + A)},
Cor{Y(x), Yy, (w + A)} = sup, Corr{a’ Z(z), TZ(w +A)},
Corr{Y;(x),Y;(x + A)} = inf,epq, Cor{a’ Z(x),a” Z(z + A)},
M; ={a|Cor{a’ Z(x),Y;(z)} =0, j =1,...,i—1}.
The reverse numbering of MAFs so that the signal MAF is referred to as MAFL1 is often used.

3.1 Linear Transformations of MAFs

We now consider the problem of transforming the original variables. If we set

Ulx)=TZ(x) (20)
whereT is a transformation matrix, we have that the MAF solution@ibis obtained by investigating
b'TSATT

b TST b
The equation for solving the eigenproblem is

TSAT'b;, = NTET'b; < (22)

AT ) = MNETTh)
i.e. the eigenvalues are unchanged #@Hd; = a; is an eigenvector foE 5 with respect ta. We find that the
MAFs in the transformed problem are

blU(x) = b/ TZ(x) (23)
= (T7b)"Z(2)
= al'Z(x)
= Yi(x).
Therefore the MAF solution is invariant to linear transformations, which can be useful in computations. Let

A1 > --- > Ay, be the ordinary eigenvalues apdg, . . ., p,, corresponding orthonormal eigenvectors3af If
we—inspired by Equation 6—set

Ry (b) = (21)

T — PA3: (24)
we have for the dispersion of the transformed variables
D{U(z)} = D{TZ(z)} = TXTT = A 2 PTSPA % = I. (25)
With this transformation the original generalized eigenproblem is reduced to an ordinary eigenproblem for
TEATT = D{TZ(x) -TZ(x+ A)} (26)

= D{U(z)-U(z+A)}

and the MAF solution can be obtained by solving two ordinary eigenproblems as follows

e calculate principal components from the usual dispersion matyix

e calculate dispersion matrix for shifted principal compondRfsE 5 P,

e calculate principal components for transformed data corresponding to

A 2PTS,PA 3.

The original generalized eigenproblem can be solved by means of Cholesky factorizaficaisaf.

As far as the practical computation Bfs is concerned Switzer & Green (1984) recommend the formation

of two sets of difference images. The two setsZfe) — Z(z + Ap) andZ(z) — Z(z + A,) whereAy is
a unit horizontal shift and\,, is a unit vertical shift. Calculat&Z », andX, and pool them to obtaiXa.
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4 Maximum Noise Fractions

Principal components do not always produce components of decreasing image quality. When working with
spatial data the maximization of variance across bands is not an optimal approach if the issue is this ordering.
In this section we will maximize a measure of image quality, namely a signal-to-noise ratio. This should ensure
achievement of the desired ordering in terms of image quality. In the previous section another measure of image
quality namely spatial autocorrelation was dealt with.

If we estimate the noise at a pixel site as the difference of the pixel value at that site and the value of a
neighboring pixel, we obtain the same eigenvectors as in the MAF analysis.

The maximum noise fractions (MNF) transformation can be defined in several ways. It can be shown that
the same set of eigenvectors is obtained by procedures that maximize the signal-to-noise ratio and the noise
fraction. The procedure was first introduced by Green et al. (1988) where the authors in continuation of the
MAF work by Switzer & Green (1984) choose the latter. Hence the name maximum noise fractions.

The MNF transformation maximizes the noise content rather than maximizing the data variance (PC) or
minimizing the autocorrelation (MAF). The application of this transformation requires knowledge of or an
estimate of the signal and noise dispersion matrices. In reverse order the MNFs maximize the signal-to-noise
ratio represented by each component MNF one is the linear combination of the original bands that contains
minimum signal-to-noise ratio. A higher order MNF is the linear combination of the original bands that contains
minimum signal-to-noise ratio subject to the constraint that it is orthogonal to lower order MNFs. The MNF
transformation is equivalent to a transformation of the data to a coordinate system in which the noise covariance
matrix is the identity matrix followed by a principal components transformation. The MNFs therefore also bear
the name noise adjusted principal components (NAPC), cf. Lee, Woodyatt, & Berman (1990). The MNFs share
the MAFs’ property of invariance to linear transforms.

First we will deduce the maximum noise fraction transformation. We will then briefly describe methods for
estimating the dispersion of the signal and the noise.

Let us as before consider a multivariate data set dfands with grey level&;(x),i = 1,...,m, wherex
denotes the coordinates of the sample. We will assume an additive noise structure
Z(z) = S(z) + N(z), (27)
whereZT = [Z,(x),..., Z,(z)], andS(x) and N (x) are the uncorrelated signal and noise components. As
before we assume thaf{ E'} = 0. Therefore
D{Z(z)} =¥ = X5 + X, (28)

whereX¥¢ and Xy are the dispersion matrices f&(x) and N (x) respectively. Note that the techniques
described in this section can in principle be applied to multiplicative noise also by first taking logarithms of the
observations.

We define the signal-to-noise ratio of tfith band as

Var{S;(x)}

Var{N;(x)}’ (29)
i.e. the ratio of the signal variance and the noise variance. We define the noise fraction'tbf aad as

Var{N;(x)}

Var{Z;(x)}’ (30)

i.e. the ratio of the noise variance and the total variance. We define the maximum noise fraction transformation
as the linear transformations

Yi(x)=al Z(x),i=1,...,m (31)
such that the signal-to-noise ratio fBy(x) is maximum among all linear transforms orthogonati6x), j =
1,...,7 — 1. Furthermore we shall assume that the vectgrare normed so that

aiTZaizl,izl,...,m. (32)



Maximization of the noise fraction leads to the opposite numbering, namely a numbering that gives increas-
ing image quality with increasing component number.
The SNR forY;(x) is

Var{a! S(zx)} _ al'Ssa; (33)
Var{a! N (z)} al'Sya;

_ aZT(E — EN)CLZ‘

a;prNaZ-
_ a;fFEaZ- 1
N aiTENai .
If we work on the noise fraction instead, we get

Var{a? N (z)} _ al'Yya; (34)
Var{a!l Z(z)} alSa;

In both cases we will find the vectots as eigenvectors to the real, symmetric, generalized eigenproblem
det3y — \X) = 0. (35)
Thus the SNR fol;(x) is given by

(36)

where)\; is the eigenvalue QE 5 with respect ta.

An important characteristic of the MNF transformation which is not shared by the PC transformation is the
invariability to linear scaling (the signal-to-noisatio is maximized).

As for the MAFs the reverse numbering of MNFs so that the signal MNF is referred to as MNFL1 is often
used (in this case the transformation is often termed the minimum noise fraction transformation).

4.1 Estimation of the Noise Covariance Matrix

The central problem in the calculation of the MNF transformation is the estimation of the noise with the purpose
of generating a dispersion matrix that approxima¥g. In this process we will make use of the spatial
characteristics of the image. Five methods are suggested, see also Olsen (1993)

e Simple differencing. The noise is estimated as for MAFs as the difference between the current and a
neighboring pixel. In this case we refer¥yy asXa.

e Causal SAR. The noise is estimated as the residual in a simultaneous autoregressive (SAR) model in-
volving the neighboring pixel to the W, NW, N and NE of the current pixel.

¢ Differencing with the local mean. More pixels could be entered in to the estimation by differencing
between the current pixel and the local mean.

¢ Differencing with local median. Mean filters blur edges and other details. This could be avoided by using
the local median instead of the local mean.

Quaderatic surface. The noise is estimated as the residual from a fitted quadratic surface in a neighborhood.



4.2 Periodic Noise

As satellite images and images obtained from airborne scanners often are corrupted by striping we will consider
methods for eliminating this form of noise. As periodic noise such as various forms of striping often has a high
degree of spatial correlation, it will often be considered signal by the MAF and MNF transformations. To some
extent the striping will be isolated in some of the factors. Periodic noise can be removed by Fourier methods.
It should be noted that periodic noise can be very disturbing as the regular pattern catches the viewer’s eyes.

A simple bandwise Fourier filtering may corrupt significant parts of the relevant signal. Therefore we shall
minimize the amount of filtering by eliminating this noise by filtering out the relevant structures in the MNF
Fourier domain. In order not to create an inverse pattern by setting the Fourier values to zero we keep the phase
and fill the magnitude values by an iterative algorithm that takes means of the neighboring values. If we want
to remove other types of noise also (e.g. salt-and-pepper noise) we can filter or skip the MNFs that contain
the noise pattern in question before transforming back from MNF space to the original image space, Nielsen
(1994).

5 MAF/MNFs of Irregularly Spaced Data

Consider the above formulation of the MAF/MNF problem. For irregularly spaced data an alternative to the
estimate of the noise dispersi@y (or ratherX ) is simply the dispersion matrix of a new variable consisting

of the difference between a data value and its nearest neighbor for all variables. This defines a new data ana-
lytical concept namely minimum/maximum autocorrelation factors (MAFs) for irregularly spaced multivariate
data, Nielsen, Conradsen, Pedersen, & Steenfelt (1997).

Analogous to the extension of MAFs into MNFs for gridded data, a more elaborate mo@&l,fbased on
each observation’s neighborhood can be defined. With gridded data the neighborhood is easily defined. With
non-gridded or irregularly spaced data, the Voronoi tessellation of the plane and its dual concept, the Delaunay
triangulation are useful. To each point in the plane we associate a Voronoi polygon which is the part of the
plane that is nearer to that point than to any other point. From the Voronoi tessellation we can construct the
Delaunay triangulation by joining points with common Voronoi polygon edges.

Two ways of estimating= come directly to mind: the use of the dispersion matrix of a new variable
consisting of the difference between a data value and the mean or the median of all its, say, first order Delaunay
neighbors for all variables. This defines a new data analytical concept namely maximum noise fractions (MNFs)
for irregularly spaced multivariate data.

Of course, both the MAFs and MNFs defined in this fashion can be extended to allow for other neighbor-
hoods, e.g. confined by distance and/or direction constraints.

Grunsky & Agterberg (1988, 1991) circumvent the problem of irregularity of the sampling pattern by fitting
parametric surfaces to observed correlations. Because of the lack of positive definiteness of the joint correlation
structures this approach seems less satisfactory than the method proposed here.

The MAF/MNFs for irregularly spaced data possess the characteristics that they are orthogonal and they
are ordered by decreasing autocorrelation/signal-to-noise ratio. Typically, low order factors will contain a lot
of signal, high order factors will contain a lot of noise. The MAF/MNFs thus relate beautifully to interpolation
by kriging. Because the low order MAF/MNFs contain signal they are expected to have low nugget effects
and long ranges of influence. This tendency is expected to develop towards higher nugget effects and shorter
ranges of influence as the higher order MAF/MNFs contain increasingly more noise. As the factors are orthog-
onal there is no cross-correlation for small lags or displacements. | therefore suggest the use of separate (as
opposed to co-) kriging for interpolation purposes and introduce a new data analytic concept: maximum auto-
correlation factorial or maximum signal-to-noise factorial kriging based on the above new MAF/MNF analysis
of non-gridded, multivariate data. In order to obtain kriged versions of the original data the inverse MAF/MNF
transformation can be applied.



6 Example, Noise in Hyperspectral GERIS Data

In this section the above orthogonal transformations are applied to a hyperspectral scene, namely a dataset
recorded over central Spain using the Geophysical Environmental Research Corporation (GER) airborne scan-
ner with the purpose of isolating signal from noise.

The GER imaging spectrometer (GERIS) actually consists of three spectrometers, that view the ground
through the same aperture via an optoelectronic scanning device. The three spectrometers record a total of 63
bands through the visible, near infrared and short wave-infrared wavelength range between 0.47 and 2.45
The spectral resolution in the visible region between 0.47 and/@84#& 12.3 nm. In the near infrared region
from 1.40 to 1.9Qum it is much broader, around 120 nm. In the short wave-infrared region between 2.00 and
2.45pum the sampling frequency is 16.2 nm.

The scanner uses a rotating mirror perpendicular to the flight direction to scan a line of 512 pixels with a
scan angle of 45to either side of the flight track. A flight altitude of 3,000 meters and an aperture setting of
2.5 mrad leads to a nominal pixel size of 7.5 meters. The recorded data are stored in 16 bits with a dynamic
range of 12 bits. After recording, the dataset is corrected for aircraft roll by the use of roll data recorded by a
gyroscope hard mounted to the scanner optics.

Apart from noise introduced by the atmosphere, the instrumentation, and from quantization and sampling,
the GERIS data are corrupted by a heavy two line and four line banding. This is due to slight differences of
the surfaces of the rotating mirrors in the scanning device. These differences in the optical properties probably
stem from dirt and oil on the surfaces.

6.1 PC versus MAF

In Figures 1 and 2 the 62 principal components and the 62 minimum/maximum autocorrelation factors are
shown. The images are ordered row wise with component/factor 1 in the top-left corner (paper in landscape
mode). Each subimage consists of ¥@20 7.5¢<7.5 n? pixels. Because of the extreme noise content channel

28 is omitted from the analyses. It is evident that the principal components transformation is not capable of
producing a natural ordering of image quality. The minimum/maximum autocorrelation factors do a much better
job in terms of ordering as well as separating signal from noise. One might describe the MAF transformation
as a decomposition of spatial frequency.

7 Canonical Discriminant Analysis

Considerk groups (or classes or populations) with . . . , n,, multivariate p-dimensional) observatiodsX ;;},
where: is the group index and thgis the (multivariate) observation number. The group means are denoted
X1,..., X}, and the overall mean is denoté¥, i.e.

_ 1 ,
XZZH—Z;XZ], ’Lzl,...,k?

and
3 1 k n; k
i=1j=1 =1
As in a one-way analysis of variance the “total” sum of squares matrix is

k n;
T=> > (Xy—-X)(Xi;—-X)".
i=1j=1
We define the “among groups” matrix as
k
=1



Figure 1: Principal components of 62 GERIS bands



Figure 2: Minimum/maximum autocorrelation factors of 62 GERIS bands
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and the “within groups” matrix as

k n;
W=> (X - X)Xy - Xi)".
i=1j=1

With these definitions we have
T=A+W

or in words: the total variation can be written as a sum of the variation of the group means around the overall
mean and the variation around the group means.

We are looking for new variate¥ = d’ (X;; — X) that maximise the ratio between variation among
groups and variation within groups; the latter can be considered as the natural level of variance of the variables
X ;. The idea of maximising this ratio is due to Fisher (1936). This ratio equals the Rayleigh coefficient
d' Ad/dT"Wd, i.e., the transformation is defined by the conjugate eigenvedion$ A with respect taW

Ady, =\ Wd,.

Again inspired by one-way analysis of variance we define the canonical correlation coeffigjelystheir
squaresR? = d} Ad,/d] Td,. This gives the relatio®? = \,/(\,+1). The new variate¥; = d/ (X ;;— X)
are called canonical discriminant functions (CDF). The first CDF defined, iy the affine transformation of
the original variables that gives the best discrimination betweerk tgoups. A higher order CDF is the
affine transformation of the original variables that gives the best discrimination betwegrgtbaps subject
to the constraint that it is orthogonal (with respect4oand W) to the lower order CDFs. Note, that the
number of CDFs is given by rank considerations foandW. If A andW have full rank this number equals
min(k — 1, p).

Scatterplots of the first few CDFs give a good visual impression of the separability of the observations.

8 Canonical Correlations Analysis

This type of analysis will not be described here; see Conradsen (1984), Nielsen & Conradsen (1997), Nielsen,
Conradsen, & Simpson (1998).

9 The Multivariate Analysis Program - maf

The HIPS progranmaf performs several kinds of orthogonal transformations, including principal component,
factor, canonical correlations (multivariate alteration detection), minimum/maximum autocorrelation factor,
maximum noise fractions, and canonical discriminant analysis.

It is recommended that you study the manual page for this progrean (maf). You can print the manual
page by means of

groff -man -Tps < /usr/local/man/manl/maf.l | Ip -dps2 -onb

(or another postscript printer you may wish to use).

Satellite scanners are calibrated to produce non-saturated images globally, i.e. over land, water and ice.
Therefore we often need to stretch local satellite images in order to get a proper result. This can be done by
using

saturate -s -l -3 3 -b < image.hips | xshow
or by using

scale -e image.hips | histobe -a 2 - b 2 | xshow
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10 Problems

The image sequence sotiel.hips consists of anx25® extracted section of 12 bands of a 63 channel image
sequence recorded over central Spain. The first 6 bands are from the visual part of the spectrum and the last 6
are from the infrared part of the spectrum.

The image sequences thikaxs87.hips and thikaxs89.hips are co-registered SPOT HRV data recorded over
Kenya in the years 1987 and 1989, respectively.

The estimation of covariance matrices requires access to pixels from all bands at the same time. By band in-
terleaving the input sequence by line a more RAM economic way of calculating the transformations is obtained.
This can be done by use bi

To avoid unnecessary computation you should note the possiiifygives you to store computed covari-
ance matrices. Also you should be aware of the size of the produced output.

When displaying and printing images you might want to show several frames at the same time. You can
obtain this by using the HIPS progracomicstrip

1. Compare the principal components of the Sotiel sequence calculated using the raw and the standardized
data. What is the difference? Why is this? Apart from the visual differences you might want to compare
the correlations of the components with the original variables. Why is this a better measure than the
actual weight?

2. Calculate the minimum/maximum autocorrelation factors and compare these to the principal components.
What are the differences? Why is this?

3. Calculate MAFs of the PCs and comment.

4. Calculate the canonical variables of the two GER datasets from Sotiel. What are the differences between
the two sets? Comment on the components.

5. Calculate the canonical variables of the two SPOT datasets from Kenya. What are the differences between
the two sets? Comment on the components.
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