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Abstract

The matrix exponential can be found in various connections in analysis
and control of dynamic systems. In this short note we are going to list
a few examples. The matrix exponential usably pops up in connection
to the sampling process, whatever it is in a deterministic or a stochastic
setting or it is a tool for determining a Gramian matrix.

This note is intended to be used in connection to the teaching post the
course in Stochastic Adaptive Control (02421) given at The Depart-
ment of Informatics and Mathematical Modelling (IMM), The Technical
University of Denmark. This work is a result of a study of the literature.

First version was originally written before 2004. Latest revision was done in 2018.

1 Introduction

One way to give a formal definition on the matrix exponential is through its
Taylor expansion

eA = I +A+
1

2
A2 + ... +

1

n!
An + ...
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The numerical evaluation of the matrix exponential can in some situations be
done by applying the definition and the Taylor expansion. Depending on the
properties of A different numerical alternatives might be used (see e.g. (Moler
& Loan 1978)).

The following Lemma can be found in e.g. (Chen & Francis 1995) (page 235).
Consider matrices A11, A12 and A22 with adequate dimensions. Let[

F11 F12

0 F22

]
= exp

([
A11 A12

0 A22

]
h

)
(1)

then
F11 = eA11h F22 = eA22h

and

F12 =

∫ h

0

eA11(h−s)A12e
A22s ds

Proof: Let

A =

[
A11 A12

0 A22

]
h

Since the matrix is block upper triangular, we easily get

A2 =

[
A11 A12

0 A22

]
h

[
A11 A12

0 A22

]
h

=

[
A2

11 ×
0 A2

22

]
h2

and

An+1 =

[
An11 ×
0 An22

]
hn
[
A11 A12

0 A22

]
h

=

[
An+1

11 ×
0 An+1

22

]
hn+1

Consequently:
F11 = eA11h and F22 = eA22h

If we differentiate (1) we get

d

dt

[
F11 F12

0 F22

]
=

[
A11 A12

0 A22

] [
F11 F12

0 F22

]
and

d

dt
F12 = A11F12 +A12F22

Using the solution for F22 and the fact that F12(0) = 0 we have

F12 =

∫ h

0

eA11(h−s)A12e
A22sds

This lemma has several applications in connection to system theory, as we will
illustrate in the next sections.
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2 Sampling of a deterministic system

Let a deterministic (LTI) system in continuous time be given by the state space
description

d

dt
x = Ax+Bu x(0) = x0

It is well known that the solutions to this description is given by

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s) ds (2)

yi

D
A

A
D

Plant

ui

Figure 1: Sampled-data control system with the plant embedded with sensors
and actuators among filters and converters.

xh = eAhx0 +

∫ h

0

eA(h−s)Bu(s) ds

xh = eAhx0 +
[∫ h

0

eA(h−s)B ds
]
u0

xh = eAhx0 +
[∫ h

0

eAτB dτ
]
u0

From a computer point of view (and using a zero order hold sample and hold
network) the system (or the plant) can in discrete time be described by a discrete
time model

xi+1 = Φxi + Γui

yi = Cxi

where

Φ = eAh Γ =

∫ h

0

eA(h−s)B ds =

∫ h

0

eAτB dτ

In the latter substitution we have used τ = h − s. Notice the control action
is assumed to be constant between samples (when we use a zero order hold
network).

Also
Γ = A−1(Φ− I)B = (Φ− I)A−1B

Let [
F11 F12

0 F22

]
= exp

([
A B
0 0

]
h

)
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k−1 k+1k

Figure 2: ZOH

and using the Lemma we have

F11 = eAh F12 =

∫ h

0

eA(h−s)BIds

and

Φ = F11 Γ = F12

The Matlab implementation of this algorithm is listed in Appendix 9 as c2d.m.

2.1 Samping of a system with delay

Consider a system with a time delay (d < h)

d

dt
xt = Axt +But−d

(k+1)hkh(k−1)h

kh+d (k+1)h+d

Figure 3: ZOH

In this case

xk+1 = eAhxk +

∫ kh+d

kh

eA(kh+h−s)Buk−1ds+

∫ kh+h

kh+d

eA(kh+h−s)Bukds

or simply

xk+1 = eAhxk +
[
eA(h−d)

∫ d

0

eAsB ds
]
uk−1 +

[∫ h−d

0

eAsB ds
]
uk
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3 Sampling of a stochastic system

Consider a (LTI) continuous time stochastic system

d

dt
x = Ax+ w

where the intensity of w is R. In discrete time, i.e. for t = ih where h is the
sampling period, the system can be described by

xi+1 = Φxi + vi

where the variance of vi is Σ which (see e.g. (Söderström 1994) p. 84) is given
by

Σ =

∫ h

0

eAcsRce
AT

c s ds

or the solution to
d

dt
Σ = AΣ + ΣAT +R Σ(0) = 0

One method can be found in (Söderström 1994) p. 111. Let[
F11 F12

F21 F22

]
= exp

([
A R
0 −AT

]
h

)
then

F11 = eAh = Φ F22 = e−A
Th = Φ−1

and

F12 =

∫ h

0

eA(h−s)Rse
−AT sds =

∫ h

0

eA(h−s)Rse
AT (h−s)ds e−A

Th

If we apply the substitution τ = h− s we get

Φ = F11 Σ = F12F
−1
22

Another method is the following. Let[
F11 F12

F21 F22

]
= exp

([
−A R
0 AT

]
h

)
then

F11 = e−Ah = Φ−1 F22 = eA
Th = ΦT

and

F12 =

∫ h

0

e−A(h−s)ReA
T s ds = e−Ah

∫ h

0

eAsReA
T s ds

and the

Φ = FT22 Σ = FT22F12

The Matlab implementation of this algorithm is listed in Appendix 9 as nc2d.m.
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4 Controlability

If we address the question whatever it is possible to drive the system

d

dt
x = Ax+Bu x(0) = x0

from any initial state to any target state in finite time, we might answer that
(See e.g. (Kailath 1980) p. 610 or (Chen & Francis 1995) p. 236) by checking
the rank properties of the controllability Gramian matrix

Wc =

∫ h

0

eAsBBT eA
T s ds

The controlability Gramian can also be found as the solution to the following
differential equation

d

dt
Wc = AWc +WcA

T +BBT Wc(0) = 0

Define [
F11 F12

0 F22

]
= exp

([
−A BBT

0 AT

]
h

)
then

F11 = e−Ah = Φ−1 F22 = eA
Th = ΦT

and

F12 =

∫ h

0

e−A(h−s)BBT eA
T s ds = e−Ah

∫ h

0

eAsBBT eA
T s ds

and

Φ = FT22 Wc = FT22F12

The Matlab implementation of this algorithm is listed in Appendix 9 as syscwc.m.

5 Observability

The dual to the controllability problem is the observability problem. If we
observe the output from the system

d

dt
x = Ax y = Cx

over a finite period of time, then the question is whatever we can determine any
initial state value. This problem is solved (See e.g. (Kailath 1980) p. 615.) by
checking the rank properties of the obervervability Gramian

Wo =

∫ h

0

eA
T sCTCeAs ds

d

dt
Wo = ATWo +WoA+ CTC Wo(0) = 0
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Define [
F11 F12

0 F22

]
= exp

([
−AT CTC

0 A

]
h

)
then

F11 = e−A
Th = Φ−T F22 = eAh = Φ

and

F12 =

∫ h

0

e−A
T (h−s)CTCeAs ds = e−A

Th

∫ h

0

eA
T sCTCeAs ds

and

Φ = F22 Wc = FT22F12

The Matlab implementation of this algorithm is listed in Appendix 9 as syscwo.m.

6 Sampled-data control

Consider the problem of controlling a continuous time LTI system

d

dt
x(t) = Ax(t) +Bu(t) x(0) = x(0) (3)

such that the (standard continuous time) objective function

J =
1

2
xT (T )Px(T ) +

1

2T

∫ T

0

xT (t)Qx(t) + uT (t)Ru(t) dt

is minimized. The control actions are assumed to be constant between samples,
i.e.

u(t) = ui for ih < t ≤ ih+ h

where h is the length of the (constant) sampling period. We assume for the sake
of simplicity that the horizon is a multiple of the sampling period, i.e. T = Nh.
The Bellman equation becomes in this situation

Vi(xi) = min
ui

[
1

h

∫ ih+h

ih

1

2
xT (t)Qx(t) dt+

1

2
uTi Rui + Vi+1(xi+1)

]
(4)

VN (xN ) =
1

2
xTNPxN

where the Bellman function, Vi(xi), is the optimal cost to go. We will investigate
the following candidate function

Vi(xi) =
1

2
xTi Sixi

which obviously is satisfied for i = N . By notation xi = x(ih) and xN = x(T ).
Let for short s = t− ih ≤ h. The solution to (3) is well known and is

x(t) = eAsxi +

∫ h

0

eA(s−τ)B dτ ui

= Φsxi + Γsui
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where

Φs = eAs Γs =

∫ h

0

eA(s−τ)B dτ =

∫ h

0

eAτB dτ

If we furthermore introduces the integrals

Q1 =
1

h

∫ h

0

ΦTs QΦs ds Q12 =
1

h

∫ h

0

ΦTs QΓs ds Q2 =
1

h

∫ h

0

ΓTs QΓs ds

then the inner part of the minimization in (4) can be written as

I =
1

2

[
xTi uTi

] [ Q1 Q12

QT12 Q2

] [
xi
ui

]
+

1

2
uTi Rui+

1

2

[
xTi uTi

] [ ΦThSi+1Φh ΦThSi+1Γh
ΓThSi+1Φh ΓThSi+1Γh

] [
xi
ui

]
or as

I =
1

2

[
xTi uTi

] [ Q1 + ΦThSi+1Φh Q12 + ΦThSi+1Γh
QT12 + ΓThSi+1Φh R+Q2 + ΓThSi+1Γh

] [
xi
ui

]

That means that the control is given by:

ui = −
[
R+Q2 + ΓThSi+1Γh

]−1 [
QT12 + ΓThSi+1Φh

]
xi

where Si is given by the recursion

Si = Q1+ΦThSi+1Φh−
[
Q12 + ΦThSi+1Γh

] [
R+Q2 + ΓThSi+1Γh

]
−1
[
QT12 + ΓThSi+1Φh

]
SN = P

This ensures that the candidate function satisfy the Bellman equation. No-
tice, the solution to this problem coincide with the solution to a discrete time
problem, just with transformed weight matrices.

We will now use the matrix exponential for determine the these weight matrices.
Let

Σ =

[
Q1 Q12

QT12 Q2

]
For determining the matrices, define the square matrix

A =

[
A B
0 0

]
Then by the Lemma

eAs =

[
eAs

∫ s
0
eA(s−t)dt

0 I

]
=

[
eAs

∫ s
0
eAtdt

0 I

]
=

[
Φs Γs
0 I

]
If we furthermore define the matrix

Qc =

[
Q 0
0 0

]
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it is straight forward to check that

Σ =

∫ h

0

eA
T sQce

As ds =

∫ h

0

[
ΦTs 0
ΓTs I

] [
Q 0
0 0

] [
Φs Γs
0 I

]
ds

If we compute the matrix:[
F11 F12

0 F22

]
= exp

([
−AT Qc

0 A

]
h

)
then

F11 = e−ATh F22 = eAh

and

F12 =

∫ h

0

e−AT (h−s)Qce
As ds = e−ATh

∫ h

0

eA
T sQce

As ds

and finally

Σ = FT22F12

and

F22 =

[
Φh Γh
0 I

]
The Matlab implementation of this algorithm is listed in Appendix 9 as conc2d.m.
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7 Sampled-data control

The problem in section 6 can be treated in a more general framework (see e.g.
(Chen & Francis 1995) page 238). Here the problem will be solved in the same
setting as in section 6.

Consider the problem of controlling a continuous time LTI system

d

dt
x(t) = Ax(t) +Bu(t) x(0) = x(0) (5)

y(t) = Cx(t) +Du(t)

such that the objective function

J =
1

2
xT (T )Px(T ) +

1

2

∫ T

0

‖y(t)‖2 dt (6)

is minimized. Notice the traditional weights is embedded in the output matrices,
C and D. The alternative formulation

J =
1

2
xT (T )Px(T ) +

1

2T

∫ T

0

[
xT (t) uT (t)

] [ Q S
ST R

] [
x(t)
u(t)

]
dt

is easily obtained from the methods described in 8. The control actions are, as
in section 6, assumed to be constant between samples, i.e.

u(t) = ui for ih < t ≤ ih+ h

It is quite easy to check that the cost function in (6) is equivalent with the
discrete time problem of controlling the system

xi+1 = Φxi + Γui x0 = x0

such that the cost function

J =
1

2
xTNPxN +

1

2

N−1∑
i=0

[
xTi uTi

] [ Q11 Q12

QT12 Q22

] [
xi
ui

]
is minimized. Here:

Q11 =

∫ h

0

eA
T sCTCeAs ds

Q12 =

∫ h

0

eA
T tCT

[
D + C

∫ t

0

eAsB ds

]
dt

Q22 =

∫ h

0

[
D + C

∫ t

0

eAsB ds

]T [
D + C

∫ t

0

eAsB ds

]
dt

Let

Σ =

(
Q11 Q12

Q21 Q22

)
and Qc =

[
CT

DT

] [
C D

]
=

[
Q S
ST R

]
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Define the square matrix

A =

[
A B
0 0

]
Then by the Lemma

eAt =

[
eAt

∫ h
0
eA(t−s)ds

0 I

]
=

[
eAt

∫ t
0
eAsds

0 I

]
It is straight forward to check that

Σ =

∫ h

0

eA
T s

[
CT

DT

] [
C D

]
eAs ds =

∫ h

0

eA
T sQce

As ds

Compute the matrix[
F11 F12

0 F22

]
= exp

([
−AT Q

0 A

]
h

)
Then

Σ = FT22F12

and

F22 =

[
Φ Γ
0 I

]
The Matlab implementation of this algorithm is listed in Appendix 9 as smplq.m.

8 Manipulation of cost functions

Connection between output point of view and cost functions. Consider

z = Cx+Du =
(
C D

)( x
u

)
Then

J = ‖z‖2 =
(
xt uT

) [ CT

DT

] [
C D

]( x
u

)
=
(
xt uT

)
Q

(
x
u

)
where

Q =

(
CTC CTD
DTC DTD

)
On the other hand, given Q we can easily find C and D. Assuming Q to be
positive definite we can perform a cholesky factorization, i.e. find H such that

Q = HTH

Then (using a matlab notation)

C = H(:, 1 : n) D = H(:, n+ 1 : end)

If Q is not positive definite (but still symmetric) we have to user SVD instead.
Then

Q = USUT

where U is an upper triangular matrix and S is a diagonal matrix. In this case

H =
√
SUT
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9 Codes

The codes listed below is the Matlab implementations of the algorithms de-
scribed in the previous chapters. The listning occur in their stripped version,
i.e. without any significant input checking or options.

function [Ad,Bd] = c2d(A,B,h)

%Usage [Ad,Bd] = c2d(A,B,h)

%

%Find the discret time model

%

% x(t+1)=Ad*x(t)+Bd*u(t)

%

%when the continuous time model

%

% dot(x)=A*x+B*u

%

%is sampled with h as sampling period and the input is

%constant between samples.

[n,m]=size(B);

F=expm([[A B]*h; zeros(m,n+m)]);

Ad=F(1:n,1:n);

Bd=F(1:n,n+1:end);

function (S,Ad)=nc2d(A,R,h)

% Usage: (S,Ad)=nc2d(A,R,h)

%

%Find the discret time model

%

% x(t+1)=Ad*x(t)+v(t)

%

% v(t) ~ N(0,S)

%

%when the continuous time model

%

% dot(x)=A*x+w

%

%is sampled with h as sampling period. The continuous time

%white noise is assume to have the intensity R.

n=length(A);

F=expm([-A R; zeros(n,n) A’]*h);

F12=F(1:n,n+1:end);

F22=F(n+1:end,n+1:end);

Ad=F22’;

S=Ad*F12;
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function [Wc,Ad]=syscwc(A,B,h)

%Usage: [Wc,Ad]=syscwc(A,B,h)

%

%Find the controlability Gramian

%

% Wc= int_0^h exp(As)BB’exp(A’s)ds

%

%for the continuous time system

%

% dot(x)=A*x+B*u

%

%If this system is sampled with h as sampling period

%and the input is constant between samples Ad contains

%the discrete time system matrix.

n=length(A);

F=expm([-A B*B’; zeros(n,n) A’]*h);

F12=F(1:n,n+1:end);

F22=F(n+1:end,n+1:end);

Ad=F22’;

Wc=Ad*F12;

function [Wo,Ad]=syscwo(C,A,h)

% Usage: [Wo,Ad]=syscwo(C,A,h)

%

%Find the observability Gramian

%

% Wo= int_0^h exp(A’s)C’Cexp(As)ds

%

%for the continuous time system

%

% dot(x)=A*x y=Cx

%

%If this system is sampled with h as sampling period

%and the input is constant between samples Ad contains

%the discrete time system matrix.

n=length(A);

F=expm([-A’ C’*C; zeros(n,n) A]*h);

F12=F(1:n,n+1:end);

F22=F(n+1:end,n+1:end);

Ad=F22;

Wc=Ad’*F12;
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function [Q1,Q2,Q12,Ad,Bd]=conc2d(A,B,Q,R,h)

% Usage: [Q1,Q2,Q12,Ad,Bd]=conc2d(A,B,Q,R,h)

%

%Transform the Continuous time control problem

%

%dot(x)=Ax+Bu

%

%J=int x’Qx + u’Ru ds

%

%into the discrete time LQ control problem

%

%x(i+1)=Ad*x+Bd*u

%

%Jd= sum (x’ u’) [Q1 Q12; Q12’ Q2] (x;u)

%

[n,m]=size(B);

Qc=[Q zeros(n,m); zeros(m,n) R*h];

Ac=[A B; zeros(n,n+m)];

F=expm([-A’ Qc; zeros(n.n) A]*h);

F22=F(n+m+1:end,n+m+1:end);

F12=F(1:n+m,n+m+1:end);

Q=F22’*F12/h;

Q1=Q(1:n,1:n);

Q2=Q(n+1:end,n+1:end);

Q12=Q(1:n,n+1:end);

Ad=F22(1:n,1:n);

Bd=F22(1:n,n+1:end);

function [Ad,Bd,Cd,Dd]=smplq(A,B,C,D,h)

% Usage [Ad,Bd,Cd,Dd]=smplq(A,B,C,D,h)

% sysd=smplq(sysc,h)

%

%Transform the H2 continuous time problem

%

% dot(x)=A*x+B*u

%

% y=C*x+D*u

%

% J=int y’*W*y ds

%

%into a discrete time H2 problem

%

% x(t+1)=Ad*x+Bd*u

%

% y=C*x+D*u
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%

% Jd=sum y’*W*y

if nargin==5,

typ=1;

elseif nargin==2,

typ=2,

[A,B,C,D]=ssdata(sysc);

else

disp(’Wrong argument list’);

return 1

end

[n,m]=size(B);

Qc=[C’;D’]*[C D];

Ac=[A B; zeros(n,n+m)];

F=expm([-A’ Qc; zeros(n.n) A]*h);

F22=F(n+m+1:end,n+m+1:end);

F12=F(1:n+m,n+m+1:end);

Q=F22’*F12;

Ad=F22(1:n,1:n);

Bd=F22(1:n,n+1:end);

[U,S]=svd(Q);

H=sqrt(S)*U’;

Cd=H(:,1:n);

Dd=H(:,n+1:end);

if typ==2,

Ad=ss(Ad,Bd,Cd,Dd,h),

end


