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Abstract

This thesis focuses on Blind source separation (BSS), which is the problem of
finding hidden source signals in observed mixtures given no or little knowledge
about the sources and the mixtures. Based on the well-performing, yet heuris-
tically based, algorithm of Parra and Spence, 2000, a probabilistic model is
formulated for the BSS problem. A time-domain EM algorithm ‘KaBSS’ is de-
rived which estimates the source signals, the associated second-order statistics,
the mixing filters and the observation noise covariance matrix. In line with
the literature, it is found that the estimated quantities are unique within the
model only if the sources can be assumed non-stationary and contain sufficient
time-variation. Furthermore, the statistical framework is exploited in order to
assess the correct model order: the number of sources within the mixture can be
determined using the socalled Bayes Information Criterion (BIC). Monte Carlo
simulations as well as experimental results for mixtures of speech signals are
documented and compared to results obtained by the algorithm of Parra and
Spence.

Keywords: Blind source separation, Independent component analysis, non-
stationary sources, EM.

iii



iv



Resumé

Denne afhandlings emne er blind signalseparation (BSS), der drejer sig om at
estimere skjulte kildesignaler i observerede blandinger p̊a basis af ringe eller
ingen viden om kildesignaler og blandinger. En probabilistisk model for BSS-
problemet formuleres med afsæt i Parra og Spences (2000) højt-ydende, men
heuristisk funderede algoritme. P̊a baggrund af modellen udledes ‘KaBSS’, en
EM-algoritme, der estimerer kildesignalerne og deres 2. ordensstatistik, bland-
ingsfiltrene og observationsstøjens kovarians. I overensstemmelse med littera-
turen findes det, at de estimerede størrelser kun er unikke indenfor modellen,
hvis en antagelse om kildernes ikke-stationaritet er rimelig, og hvis kilderne
er tilstrækkelig tidsvariante. Ydermere udnyttes den statistiske ramme til at
vurdere den korrekte modelorden: Antallet af kilder i blandingen fastsl̊as ved
at benytte det s̊akaldte Bayes Information Criterion (BIC). S̊avel Monte Carlo
simulationer som eksperimentelle resultater for blandinger af talesignaler doku-
menteres og sammenlignes med resultater, opn̊aet via Parra og Spences algo-
ritme.
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Nomenclature

Below follow the most used symbols and abbreviations. Scalars, vectors and
matrices appear as : y, y and Y.

p The order of an autoregressive random process

L The filter length of the source signal channels

ds The number of sources

dx The number of sensors

N The number of segments

xt Multivariate sensor signal at time t

nt Multivariate sensor noise signal at time t

τ The number samples in a segment

st Multivariate source signal at time t

si,t Source signal i at time t

s̄t Multivariate source signal at time t. Stacked for use in the model con-
cerning the mixing of AR(p) random processes

vt Multivariate source innovation noise signal at time t

v̄t Multivariate source innovation noise signal at time t. Stacked for use in
the model concerning the mixing of AR(p) random processes

vi,t Innovation noise signal of source i at time t

θ Set of all parameters

A The mixing matrix of the model concerning the instantaneous mixing of
AR(1) random processes

Ā The mixing matrix of the model concerning the instantaneous mixing of
AR(p) random processes

¯̄A The mixing matrix of the model concerning the convolutive mixing of
AR(p) random processes

R The sensor noise covariance matrix
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F The evolution matrix of the AR(1) random process sources

F̄ The evolution matrix of the AR(p) random process sources

f̄i The AR parameters of source i

Q The innovation noise covariance of the AR(1) random process sources

Q̄ The innovation noise covariance of AR(p)random process sources

qi The innovation noise variance of source i

L(θ) The log-likelihood function of the parameter vector θ

α Adaptation rate of the stepsize η

η Step-size of the AEM algorithm

KaBSS Kalman blind source separation

BSS Blind source separation or Blind signal separation

ICA Independent component analysis

EM Expectation-maximization

AEM Adaptive overrelaxed expectation-maximization

BIC Bayes information criterion
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Chapter 1

Introduction

Blind source separation (BBS) is the problem of recovering the hidden source
signals from a number of different mixture signals, which are observed at sensors.
The term blind refers to the fact that the mixing process and the source signals
are unknown. An example that occurs to most humans is the so-called cocktail
party problem: during a social event, extract a single voice from the composition
of chatter and other noises that reach the ears. The cocktail party problem is
especially relevant due to its applicability in hearing aids and speech recognition.
It is a problem that is solved in difficult noise settings by the human auditory
system. No algorithm has ever come close to that.

The general BSS problem comes at many levels of difficulty differentiated
by various mixing processes and the numbers of sources and sensors. However,
two linear mixing functions completely dominate the literature. They have
names referring to the fact that often sources are best described as time-series,
or signals. The first and simplest of those is the instantaneous mixing:

xt = Ast + nt

where the sensor vector, xt, at time t results from a matrix multiplication of
the mixing matrix, A, with the source signal, st, added with observation noise,
nt. The dimensions of vectors xt and st correspond to the number of sensors
and sources, dx and dx, respectively. A more challenging task arises when the
sources have been mixed convolutively, i.e. a convolution sum involving the
source signals is required for the description of data:

xt =
L−1∑

k=0

Akst−k + nt

where Ak is a matrix of filters and contains L times the number of parameters
in A.

The instantaneous mixing model is insufficient for many real-life problems,
since physical signals, like sound waves, propagate with finite velocity. Hence
the signals arrive at different times at different sensors, requiring a model that
can handle delays. Figure 1.1 illustrates a situation where a signal travels a
number of paths to reach a sensor. Different attenuations and delays result.

Blind source separation algorithms function in mainly two ways: One family
of methods exploits that the probability density function of xt bear traits of
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Figure 1.1: The convolutive mixing problem. On the left: the signal from source
1 travels to sensor 1 on a number of paths associated with different delays and
attenuations. On the right: the impulse response of the linear channel filter
models the signals paths. The signal at the sensor is obtained by convolving the
source signal with the filter.

the (non-Gaussian) sparse or dense distribution of st. Independent component
analysis (ICA) estimates A or the equivalent inverse model W using those
higher-order statistics, see e.g. [1] and [2]. This is mainly a spatial approach,
in that the temporal correlation of the individual sources is ignored.

Another group of algorithms identify the sources based on their temporal
distribution. A pioneer in this field is Molgedey’s and Schuster’s decorrelation
algorithm [3] for instantaneous noise-free mixings. The mixing matrix, A, is
found by computing the time-lagged second-order statistics of xt, i.e. Rx(τ) =∑

t xtxT
t−τ , at lags τ = 0, τ0 and diagonalizing it by the solving of the resulting

eigenvalue problem. Second-order statistics are implicitly assumed a sufficient
descriptor for xt and st. While computationally efficient, the algorithm is limited
in a number of ways: it addresses primarily noise-free, quadratic, i.e. the number
of sources and observation channels are equal, mixtures of stationary source
signals.

The direct application of the decorrelation technique to the convolutive prob-
lem does not provide solutions that are unique. By explicitly assuming the
non-stationarity of the sources and measuring the second-order statistics at dif-
ferent times, sufficient constraints are imposed on A. A number of authors have
exploited this fact: Parra and Spence [4] provide well-performing off-line and
on-line algorithms for the noisy convolutive mixture problem based on decorre-
lation in the frequency domain. Matsuoko, Ohya and Kawamoto also work along
those lines, see [5] In [6], the problem is solved in the time-domain. Higher-order
statistics and temporal methods converge in a vast number contributions, e.g.
[7] and [8].

Common to many of the contributions mentioned is the technique of trans-
forming the convolutive problem into an instantaneous problem by the means
of a discrete Fourier transform (DFT). Replacing convolution with multiplica-
tion is attractive but comes at a cost, see section 2.4.3. Recently, Anemüller
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and Kollmeier have elaborated this approach by considering correlation across
bands in the spectrogram, see [9].

The main contribution of this work is to provide an explicit probabilistic
model and its associated estimators for the decorrelation of convolutive mixtures
of non-stationary signals. The algorithm, which is termed ‘KaBSS’, estimates
all parameters including mixing filter coefficients, source signal parameters and
observation noise covariance and the posterior distribution of the sources con-
ditioned on the observations by employing an Expectation Maximization (EM)
scheme. Parts of this work have been submitted for publication, see appendix
C and [10].

A formulation of the convolutive problem in the general framework of Gaus-
sian linear models, well reviewed by Ghahramani and Roweis in [11], serves as
a starting point for the derivation of the algorithm. The Kalman Filter model
is a special case that can be made serve the purpose of modelling the instan-
taneous or convolutive mixings of statistically independent sources added with
observation noise. The natural estimation scheme for the Kalman filter model is
the EM-algorithm which iteratively employs maximum-likelihood (ML) estima-
tion of the parameters and maximum-posterior (MAP) inference of the source
signals, see e.g. [12]. The log-likelihood of the parameters is computed exactly,
which can be used to determine the correct model order, e.g. the number of
sources. In conclusion, the thesis has the following focus.

Problem statement
Based on the decorrelation algorithms [3] and [4] devise a statistical
model for the blind source separation of instantaneous and convolu-
tive mixtures. Investigate the identifiability of the parameters and
derive the estimators for the algorithm. Explore the conditions that
allow for artificially generated and real mixtures to be separated by
the algorithm. Exploit the advantages that are associated with being
probabilistic, such as estimating the noise levels and determining the
model order. Give suggestions to promising paths of future research.

The specialization of the Kalman filter model to non-stationary convolutive
mixtures is covered in chapter 2, while the learning in this particular model
is described in chapter 3. Monte Carlo simulations and experiments with real
speech data are documented in chapter 4.
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Chapter 2

The model

The following chapter will address the formulation of a model that fits the
specifications of a general blind source separation problem. To begin with, we
note that half the model is already specified by either the instantaneous or the
convolutive mixing defined in the introductory chapter. This part of the model
we term the observation model, and both mixing functions are addressed in the
following.

What is left to modify is the source model. The literature contains a rich
variety of suggestions how to best describe the sources. However, one assump-
tion is common to the vast majority of contributions, namely the statistical
independence of the sources:

p(s1,t, s2,t, .., sds,t) =
ds∏

i=1

p(si,t) (2.1)

where si,t is the ith element of the source vector st. It has already been men-
tioned that some methods exploit the temporal correlation of each of the sources,
which is an approach that will be elaborated here.

2.1 AR(1)

To begin with, we suggest a first-order linear autoregressive process:

st = Fst−1 + vt

where vt ∼ N (0,Q) is the source innovation noise. The innovation noise co-
variance, Q, and the evolution matrix F are assumed diagonal in order to abide
to equation 2.1. Furthermore, stability is ensured by |(F )ii| < 1, for all i. The
AR process is started from s1 ∼ N (µ,Σ).

It is now noted that the above recursion fits into the general framework of
Gaussian linear models, lately popularized by Roweis and Ghahramani, [11]. A
special case is the Kalman filter model, which consists of a dynamical continu-
ous state-space model and an observation model identical to the instantaneous
mixing model. In other words, the Kalman filter model (no inputs) fits our
purposes perfectly:

st = Fst−1 + vt (2.2)
xt = Ast + nt
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The observed dx-channel mixture, xt, results from the multiplication of the
mixing matrix, A, on st. The observation noise is distributed as nt ∼ N (0,R),
where R is assumed diagonal for simplicity.

In conclusion, by requiring F,Q and Σ to be diagonal matrices, the Kalman
filter model satisfies the fundamental requirement of any ICA formulation,
namely that the sources are statistically independent. The underlying source
model is an AR(1) process.

2.2 AR(p) sources

Limiting the source model to a 1st order AR random process may prevent
achieving results with real world signals. By generalizing equation 2.2 to employ
AR(p) models for the sources, many classes of signals, including speech, are
expected to be well described - at least on a small time-scale. Speech is examined
closer in sections 2.5 and 4.1. The general AR(p) model for source i is defined
as follows:

si,t = fi,1si,t−1 + fi,2si,t−2 + .. + fi,psi,t−p + vi,t (2.3)

where vi,t ∼ N (0, qi).

A common ‘trick’ in dealing with Kalman filters allows for the inclusion of
the above regression into the model, e.g. see [13]. The technique is based on
the stacking of variables and parameters in order to maintain a memory of past
samples of st. At the same time, restrictions on the format of the matrices of the
model are enforced to maintain the source independency assumption of (2.1).
The stacked source vector is defined as follows:

s̄t =
[

sT
1,t sT

2,t · · · sT
ds,t

]T
(2.4)

where the bar indicates stacking. The ‘memory’ of the individual sources resides
in si,t:

si,t =
[

si,t si,t−1 · · · si,t−p+1

]T (2.5)

The stacking procedure consists of including the last p samples of st in s̄t and
passing the (p−1) most recent of those unchanged to s̄t+1 while obtaining a new
st by the AR(p) recursion of equation (2.3). An example is shown in figure 2.1
that illustrates the principle for two AR(4) sources. The involved parameter
matrices must be constrained in the following way to enforce the independency
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Figure 2.1: The AR(4) source signal model. The memory of st is updated by
discarding si,t−4 and composing new s1,t and s2,t using the AR recursion. Blank
spaces signify zeros.

assumption and produce the AR processes:

F̄ =




F̄1 0 · · · 0
0 F̄2 · · · 0
...

...
. . .

...
0 0 · · · F̄L




F̄i =




fi,1 fi,2 · · · fi,p−1 fi,p

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




Q̄ =




Q̄1 0 · · · 0
0 Q̄2 · · · 0
...

...
. . .

...
0 0 · · · Q̄L




(Q̄i)jj′ = { qi j = j′ = 1
0 j 6= 1

∨
j′ 6= 1

Similar definitions apply to Σ and µ. Since only the si,t’s are relevant to the
instantaneous mixing, the delayed versions are discarded by inserting (ds−1)×dx

dimensional matrices of zeros into A:

Ā =
[

a1 0 a2 0 .. aL 0
]

where the ai is the i’th column of A. Figure 2.2 illustrates this concept.
In conclusion, the basic Kalman Filter model formulation, describing the

instantaneous mixture of AR(1) processes has been augmented to incorporate
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Figure 2.2: The instantaneous mixing model. Only the most recent sample from
each source is included in the mixing. All other are excluded by the zeros of Ā.
Blank spaces signify zeros.

AR(p) processes:

s̄t = F̄s̄t−1 + v̄t

xt = Ās̄t + nt

2.3 Convolutive mixing of AR(p) sources

It has already been argued that instantaneous mixing is inadequate for the solv-
ing of e.g. a real cocktail party problem. Conveniently, a further generalization
of the Kalman Filter model to convolutive mixing requires only a slight modifi-
cation of the observation model, namely an ’upgrade’ of Ā to a full dx× (p×ds)
matrix of mixing filters:

¯̄A =




aT
11 aT

12 .. aT
1ds

aT
21 aT

22 .. aT
2ds

aT
dx1 aT

dx2 .. aT
dxds


 (2.6)

where aij = [aij,1, aij,2, .., aij,L]T is the impulse response of the signal path
between source i and sensor j, length L. Figure 2.3 illustrates this principle.

It will be argued in details in section 2.4.2 that the sources cannot be re-
covered from a stationary convolutive mixing based solely on the second-order
statistics of the sources. Inspired by [4], we instead assume that the sources
are generally non-stationary in the long term and only stationary on the short
term. This leads to a partition of all signals involved into N segments that each
contains τ consecutive samples of the original signals. The resulting convolu-
tive mixing of AR(p) sources is still within the framework of the Kalman Filter
model:

s̄n
t = F̄ns̄n

t−1 + v̄n
t

xn
t = ¯̄As̄n

t + nn
t (2.7)
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where n = 1, 2, .., N is the segment index. The source model parameters, F̄n,
Q̄n, Σ̄n and µ̄n, are assumed segment-local. The channel, ¯̄A, and the obser-
vation noise covariance, R, are assumed stationary over segments, on the other
hand.

Hua et al. [14] prove that a stationary mixing (of colored noise sources) can
be separated if the spectra of the sources are non-overlapping. Kawamoto et
al. [15] develop an algorithm based on this principle. Wan et. al [16] uses an
extended Kalman filter to model speech and noise in a noise-reduction setup.
However, only a single observation channel is considered.
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Figure 2.3: The convolutive mixing model requires a full ¯̄A to be estimated.

2.4 Identifiability

Before proceeding to the learning of the parameters and the inference of the
source signals, it is investigated to which degree the source signal and parameters
are unique within the model. It will be uncovered that certain parameters may
scale, rotate and permute arbitrarily, something that is often a tolerated evil in
learning. Some of the ambiguities are already well-known, e.g. the permutation
problem where source estimator 1 might estimate true source 2.

As a foundation for the following arguments we will argue that all signals
involved are normally distributed. The individual source signals are jointly dis-
tributed according to a multivariate Gaussian distribution, because any si,t can
be expressed in terms of a linear operation on multivariate Gaussians, si,t−1 and
vi,t. The argument is then applied recursively until the initial source conditions
are reached. A similar line of thought can be applied to xt. If zero mean is
assumed, the time-lagged covariance Cx(τ) is a sufficient statistic for the ob-
served data, meaning that the identification of parameters and source signal
must be based on this quantity alone. In the following, it is implicitly assumed
that Cx(τ) can be accurately estimated.

The distinct cases of the demixing of instantaneously mixed AR(1) processes
and the demixing of convolutively mixed AR(p) processes are treated in the
following sections.
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2.4.1 Instantaneous mixing of AR(1) sources

All information about the sources and the mixing that can possibly be extracted
is contained in Cx(τ). To derive an expression for Cx(τ), the fact is used that
the observation noise nt and the source signal st are statistically independent:

Cx(τ) ≡ 〈xtxT
t+τ 〉 = ACs(τ)AT + δτR (2.8)

where Cs(τ) ≡ 〈stsT
t+τ 〉 and Cn(0) ≡ 〈ntnT

t 〉 = R. Averages, 〈·〉, are performed
over the relevant distributions and the stationarity of all processes is assumed.

In order to obtain an expression for Cs(τ), the AR(1) process assumption on
the source signals is invoked. To begin with, Cs(0) is determined by evaluating
〈stsT

t 〉:

Cs(0) ≡ 〈stsT
t 〉 = F〈st−1sT

t−1〉FT + 〈vtvT
t 〉 (2.9)

= FCs(0)FT + Q (2.10)

It is now exploited that F and Cs(0) are diagonal matrices, hence symmetric
and commutative to multiplication:

Cs(0) = Q(I− F2)−1 (2.11)

In order to continue the derivation, a fortunate property of the autocorrelation
function of AR-processes is exploited:

Cs(τ + 1) ≡ 〈stsT
t−(τ+1)〉 = F〈st−1sT

t−(τ+1)〉
= FCs(τ) (2.12)

Combining (2.11) and (2.12) with (2.8) yields the sought expression for Cx(τ):

Cx(τ) = AQFτ (I− F2)−1AT + δτR (2.13)

From the above, we see that an arbitrary permutation of the diagonal elements
of F, i.e. switching the order of the elements, can be ’undone’ by a corresponding
permutation of the diagonal elements of Q and the columns of A. Furthermore
A and Q2 scale inversely.

An alternative route to wisdom can be taken by examining the effect of
the insertion of an invertible linear transformation P in the model, (2.2). We
premultiply st by P and right-multiply P−1 on A:

Pst = PFst−1 + Pvt

xt = AP−1Pst + nt

A linearly transformed source model is then obtained:

s̃t = F̃s̃t−1 + ṽt

with the definitions:

s̃t ≡ Pst

F̃ ≡ PFP−1 (2.14)
ṽt ≡ Pvt

10



From definition 2.14 we get the following matrix equation:

PF = F̃P

The above is treated element-wise and exploiting that F̃ and F are assumed
diagonal. For all i, j:

(PF)ij = (F̃P)ij ⇔
fiipij = pij f̃jj ⇔

f̃jj = fii

∨
pij = 0

Constraints on P can now be deduced: Each row and column of P must contain
at least one non-zero element, since P is required to be invertible. Further
limitation is achieved by assuming that fii 6= fjj , for all i 6= j. Under this
assumption, a row or column of P must not contain more than one non-zero
element. Thus P is a permutation and scaling matrix. As a result, we can only
identify the sources up to scaled versions that are ordered arbitrarily.

Furthermore, in agreement with [3], it was found that the sources need to
have different autocorrelations.

Having proved that the possible linear transformations leave the parameters
unique up to scaling and permutation, we still need to investigate the more
general effect of a non-linear ambiguity. By considering the worst case scenario
of monaural signal separation, where only one observation channel is available,
a lower bound on the performance of the algorithm is obtained.

Case-study: Monaural separation.

Since the scaling and permutation ambiguities have already been addressed, the
uniqueness of the parameters in the vicinity of the true parameters is inves-
tigated. We hope to find no local invariance, other than the one established
between A and Q. We first observe that the single-channel version of (2.13)
simplifies as:

cx(τ) = aQFτ (I− F2)−1aT + δτr

=
ds∑

i=1

ui
fτ

i

1− f2
i

+ δτr (2.15)

where a reparametrization, ui = a2
i qi, was introduced.

The general solution to the local uniqueness question is answered by proving
the local bilinearity of the function in 2.15, i.e. verifying that an observation of
cx(τ) maps to a number of discrete points in parameter-space. A pragmatic ap-
proach is taken here due to the obvious problem of inverting the given function.
The function in question is defined:

g(τ,u, f) ≡
ds∑

i=1

ui
fτ

i

1− f2
i

+ δτr (2.16)

In order to determine whether or not the seemingly large number of free param-
eters, r and ui, fi for i = 1..ds, are identifiable from cx(τ), a first order Taylor
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approximation of g(τ > 0,u, f) is developed around the true parameters u∗, f∗:

ĝ(τ,u∗ + ∆u, f∗ + ∆f) ≡

g(τ,u∗, f∗) +
L∑

i=1

[gui(τ,u
∗, f∗)∆ui + gfi(τ,u

∗, f∗)∆fi]

where the partial derivatives involved (evaluated at τ,u∗, f∗) are:

gui
(τ,u∗, f∗) =

f∗τi

1− f∗2i

gfi
(τ,u∗, f∗) = u∗i

f∗τi (f∗−1
i + f∗i )

(1− f∗2i )2

= u∗i
(f∗−1

i + f∗i )
1− f∗2i

gui(τ,u
∗, f∗) (2.17)

A linear relationship was found to exist between the partial derivatives. The
first-order Taylor polynomial describes cx(τ) in the vicinity of the true parame-
ters. It will now be examined if other parametrizations of ĝ(·) than the true one
(τ,u∗, f∗) yield the true correlation, g(τ,u∗, f∗). For that purpose, the approx-
imation, ĝ(τ,u∗ + ∆u, f∗ + ∆f), is set equal to g(τ,u∗, f∗) deducing a solution
for ∆u and ∆f :

g(τ,u∗, f∗) = g(τ,u∗, f∗) +
L∑

i=1

[gui(τ,u
∗, f∗)∆ui + gfi(τ,u

∗, f∗)∆fi] ⇔

0 =
L∑

i=1

gui(τ,u
∗, f∗)[∆ui + u∗i

(f∗−1
i + f∗i )
1− f∗2i

∆fi] ⇔

0 =
L∑

i=1

gui(τ,u
∗, f∗)∆vi (2.18)

where the following reparametrization was introduced based on equation 2.17:

∆vi ≡ ∆ui + u∗i
(f∗−1

i + f∗i )
1− f∗2i

∆fi

Having obtained a condition on the parameters in terms of ∆vi, a homogenous
matrix equation is obtained by the aggregation of the scalar equations 2.18
corresponding to τ = 1..ds:

0 = J∆v (2.19)

where

J =




1
1−f∗21

1
1−f∗22

· · · 1
1−f∗2L

f∗1
1−f∗21

f∗2
1−f∗22

· · · f∗L
1−f∗2l

...
...

...
f∗L
1

1−f∗21

f∗L
2

1−f∗22
· · · f∗L

L

1−f∗2l




We are now left with determining the solution space of the matrix equation 2.19.
Under the assumption that the sources have different autocorrelation, fi 6= fj
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for all i, j, the columns of J are linearly independent. Therefore, J is a full rank
matrix and the only solution is:

∆v = 0 ⇔ ∆ui = u∗i
(f∗−1

i + f∗i )
1− f∗2i

∆fi,∀i (2.20)

The first-order Taylor approximation has thus revealed that the only solution
ambiguity in the vicinity of the true parameters involves a linear scaling between
fi and ui. However, that remaining uncertainty can discarded by regarding the
true cx(τ), equation (2.15). Obviously, no linear scaling can exist between fi

and ui, and the proof is complete: the parameters are locally unique.

2.4.2 Convolutive mixing of AR(p) sources

It has been proven by e.g. Parra et al. [4] and others that blind source separa-
tion algorithms based on the second-order statistics of stationary mixtures do
not solve the convolutive mixing problem. Any cost-function that is based on
second-order statistics, or the equivalent power density spectrum, turns out to
be invariant to an arbitrary filtering of the signal path filter, ¯̄A. To see why, we
compute the (true) power spectra and cross power spectra of xt:

Γx(ω) = A(ω)Λs(ω)AH(ω) (2.21)
= |A(ω)|2Λs(ω)

where the Wiener-Khintchine theorem was used to obtain the power spectrum
from the autocorrelation function of a stationary signal. The observation noise
was omitted for simplicity in the derivations and the notation. The cross power
spectra of the sources vanish due to the independency assumption, hence Λs(ω)
is diagonal. In principle, an arbitrary (diagonal) filter matrix, U(ω), and its
inverse can now be inserted into equation 2.21:

Γx(ω) = A(ω)U−1(ω)U(ω)Λs(ω)UH(ω)(UH(ω))−1AH(ω)
= |Ã(ω)|2Λ̃s(ω)

with the definitions:

Ã(ω) ≡ A(ω)U−1(ω)
Λ̃s(ω) ≡ U(ω)Λs(ω)UH(ω)

The resulting undesired filtering, however, is restricted by the parametrization
of A(ω) and Λs(ω). For instance, the source model usually has limited flexibility
and cannot represent any arbitrary filtering.

Lucas Parra and Clay Spence [4] attempt to eliminate the remaining non-
exclusiveness by explicitly assuming the non-stationarity of the source signals.
By measuring the second-order statistics in N segments where the signals are
assumed short-term stationary, and at the same time assuming the signal chan-
nels, ¯̄A, to be long-term stationary, an additional number of conditions are in-
troduced that have the potential to constrain the solution enough to be unique,
except for the usual scaling and permutation.

A small constructed example illustrates the principle: let the sources be
broadband noise with a single spectral peak that moves around between seg-
ments of signal. The peaks do not overlap between segments. We restrict the
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source model to an AR(2) process. As a result, at most 1 spectral peak can be
represented per segment.

In the first segment, the peak can be modelled by either Ã(ω), Λ̃s(ω) or a
combination. If the peak was modelled by Ã(ω) we would mistakenly estimate
st as white noise.

If we add a second segment with a different peak location, the point of
the non-stationarity requirement becomes clear: Ã(ω) cannot model any of
the spectral peaks, because it would pollute the source estimate of the other
segment, adding an extra peak to the spectrum. If a more flexible model was
selected for the source, the unwanted peak could be cancelled by notch filtering
the original source. In conclusion:

Provided the source model is sufficiently restricted, the varying fea-
tures of the source spectra can only be represented by the sources
themselves, not by the channel filters. As a result, convolutive
demixing based on second order statistics is aided by a measure
of spectral dynamism.

Speech signals belong to a class of signals that undoubtedly possess a time-
varying spectrum. Moreover, speech is often modelled by rather constrained
all-pole models. These features suggest that convolutive mixtures of speech
may be separated. All-pole models for speech are treated in section 2.5.

2.4.3 Different permutations over frequency

A common trait of a number of algorithms, e.g. [9], [8], [4] and [7], is the trans-
formation of the time-domain convolutive problem to an equivalent frequency-
domain instantaneous problem.

A frequency domain representation of the convolutive problem was obtained
in equation 2.21. In principle, the diagonal represents an independent instan-
taneous problem for each frequency, ω. For each of those problems, the scaling
and the source ordering are in general not the same.

However, as stated by [4], the representation of the source spectra/autocorrelation
functions involved are parameterized by relatively few parameters. Thus, the
source spectra are limited to smooth envelopes, which in turn prevent the switch-
ing assignment of sources to estimates. An experiment documented in chapter
4 demonstrates the effect of undesired permutations over frequency.

2.5 All-pole models for speech

A popular speech model will be reviewed below as well as its connection to the
proposed Kalman filter model. As a special case, the representational capability
and the limitations of an AR(2) model will be treated due to its analytical
tractability.

In many practical applications, e.g. linear predictive coding (LPC), speech
signals are treated under the implicit assumption of non-stationarity. It is clear,
however, that speech contains structure beyond the short-term spectrum , e.g.
syllables, words and sentences. Hidden Markov models (HMM) are often used
to describe the transitions between the different ’states’ of speech, see, e.g.,
Rabiner’s speech recognizer [17]. Therefore, the conventional assumption of the
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non-stationarity of speech is a crude approximation. For instance, in a high-
level interpretation of speech generation, the ’parameters’ of a human being are
probably stationary during the uttering of a sentence. Hence, in a general sense,
speech is stationary for the duration of the sentence. We are in the business of
separating signals, however, and might be satisfied with a partial speech model
that is descriptive enough for our purposes.

While the physical examination of the human voice apparatus obviously is
fundamental to speech models, the details of the flesh and blood remain largely
irrelevant to our discussion and will be used only superficially for stating the
model. The details in this regard can be found in [18]. Before advancing to the
formulation of the model, we define a phoneme as the smallest unit of speech
that conveys meaning, e.g. vowels and consonants. The speech signal if often
regarded as stationary on the time scale of a phoneme. Vowels, which claim a
special interest in the literature due to their importance in the perception of
speech, typically last from 40ms to 400ms, see [18] p. 115.

H(f)

f

t

t

Pulse train

White noise

Excitation signal Speech

Figure 2.4: A popular speech model: An excitation signal that can either be
a a periodic broad band signal or a white noise signal is filtered by the vocal
tract filter. Multiple configurations of the filter are possible, leading to a large
number of differently sounding phonemes.

The most popular model resulting from the analysis of speech is shown in
figure 2.4. Briefly stated, air from the lungs help the glottis produce an excita-
tion signal that is filtered by the vocal tract. A wide variety of phonemes can
be produced by varying the type of excitation signal and the spectral envelope
of the filter. Specifically, the glottis can produce two different excitation sig-
nals corresponding to the two basic classes of phonemes, voiced and unvoiced
phonemes:

Broadly speaking, a voiced phoneme is produced by the glottis emitting a
broad band periodic signal, e.g. a pulse train. The vocal tract filter shapes the
excitation signal by amplifying and attenuating the signal in certain frequency
bands. The so-called formants define the spectral peaks of this filter and almost
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uniquely characterize the different vowels, which can be verified by plotting the
location of the two most prominent peaks in a formants plot, see figure 2.5.

Unvoiced phonemes, on the other hand, result from the glottis emitting a
white noise signal. Again, the vocal tract shapes the excitation signal in various
ways in order to produce a wide array of sounds. The consonants of the English
language belong to this class of phonemes.

Although not suggested by human anatomy, the vocal tract filter is often
modelled by all-pole filters. The main reason is that efficient estimation is
available for such a transfer function, e.g. the solution of the normal equations.
The Kalman filter model employs an AR(p) random process as a model for the
sources. In agrement with the above formulation of speech, the transfer function
of this model is all-pole, which is seen by z-transforming the time-domain source
signal representation:

st = f1st−1 + f2st−2 + . . . + st−p + vt ⇔
H(z) =

S(z)
V (z)

=
1

1− f1z−1 − f2z−2 − . . .− fpz−p
(2.22)

However, the source excitation signal is white Gaussian noise, which is only par-
tially in accordance with the above speech model: the periodic excitation is not
represented in KaBSS. As a consequence, some model bias must be expected. In
his PhD thesis [19], Preben Kidmose advocates the use of long-tailed excitation
noise distributions and demonstrates their superiority. Such models, however,
are not easily implemented in KaBBS. A special case of the AR(p) model is

Figure 2.5: Mean location of the two first formants of American English vowels.
The international phonetic alphabet (IPA) identify the phonemes. Great varia-
tion occurs between speakers. Reprinted from a tutorial of the National Center
for Voice and Speech [20].

now reviewed:
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2.5.1 The AR(2) model.

Based loosely on the deliberations of [21], the analysis sets out by specializing
the transfer function of equation 2.22 to the case p = 2:

H2(z) =
S2(z)
V (z)

=
1

1− f1z−1 − f2z−2
(2.23)

The rational transfer function is rewritten in terms of only positive powers of z,
and subsequently factored:

H2(z) =
z2

z2 − f1z1 − f2

=
z2

(z − z1)(z − z2)

Given the assumption that the coefficients, fi, are real, the poles must be
complex-conjugate, z1 = z∗2 , or real. In the case of complex-conjugate poles
the above can be expressed as:

H2(z) =
z2

(z − r exp[−jω0])(z − r exp[jω0])
(2.24)

The spectral focus of H2(z) is concentrated at ω0. It is known from linear time-
invariant (LTI) systems theory that in order for the system to be stable, the
poles must reside inside the unit circle, i.e. r < 1. The filter gets more peaked
as r approaches 1.

In the case of real poles, the amplification of the filter is situated at either
ω = 0 or ω = π, or both. Figure 2.6 displays the possible spectra.

In order to generate AR(2) random processes with a specific peakedness and
pole placement, a white Gaussian noise signal is then filtered through H2(z).
The coefficients of the filter are identified from the expansion of equation 2.24:

H2(z) =
z2

z2 − zr(exp[−jω0] + exp[−jω0]) + r2

=
z2

z2 − z2r cos(ω0) + r2

From the above, it is deduced that f1 = 2r cos(ω0) and f2 = −r2.
The incorporation of the simple AR(2) model in KaBBS serves the purpose

of constraining the source power spectrum to a degree, where permutation over
frequency and model ambiguities vanish. On the other hand, only a single spec-
tral peak can be represented. In a vowel-modelling scenario, all three formants
would be described by the same filter pole.
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Figure 2.6: Power spectra of the four different types of AR(2) processes. The
poles are either complex-conjugate (top-left) , real and distinct (top-right), or
real and equal (bottom).
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Chapter 3

Learning

In Blind Source Separation two connected learning tasks must be addressed
based on the observed mixture. One is to recover the unknown source signals,
or hidden variables. The second is to estimate the parameters of the mixing
process, e.g. the mixing matrix A of an instantaneous mix or the matrix of
linear filters, ¯̄A, associated with a convolutive mixing. There is a fine distinc-
tion between parameters and hidden variables. Whereas the uncertainty of the
former decreases with observed data size, the uncertainty of the sources does
not. The number of source samples scale with the number of observed, noisy
samples. We term the learning of parameters and hidden variables, estimation
and inference, respectively.

In the preceding chapter, the BSS problem was formulated within a very
general class of Gaussian linear models. Therefore, existing algorithms need
only to be tailored to the special constrained form commanded by the source
independency assumption. The following review is based on [11] and [22]. The
derivations lead to the estimators and Kalman smoother which define KaBSS.

A standard method for learning in models with hidden variables is the Ex-
pectation Maximization (EM) algorithm. It comprises two basic steps that
alternately infers the hidden variables and estimates the parameters while keep-
ing the other fixed. At no iteration of the algorithm can the likelihood decrease.
EM is an iterative scheme for maximum-likelihood (ML) parameter estimation,
in which the task is to find the parameters that make the model most likely
given the observed data.

The simple one-step ML estimation cannot be performed. In abstract form,
the likelihood function of the parameters, θ, given the observed signal and the
assumed data model p(X,S|θ) appears as:

L(θ) = log p(X|θ) = log
∫

dSp(X,S|θ) (3.1)

(3.2)

where L(θ) resulted from the marginalization of the sources. Maximization wrt.
to θ is hard, because the integral is not available in closed form.

Instead, local lower bounds of equation 3.1 are optimized iteratively, guar-
anteing at each step that L(θ) cannot decrease. The below derivations will
justify this rationale. We start by taking the logarithm and applying Jensen’s
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inequality, which places a lower bound on a convex function (see [23]):

L(θ) = log
∫

dSp(X,S|θ)

= log
∫

dSp̂(S)
p(X,S|θ)

p̂(S)
≥ F(p̂, θ)

where the lower bound function, also known from physics as the negative free
energy, is defined as

F(p̂, θ) ≡
∫

dSp̂(S) log
p(X,S|θ)

p̂(S)
(3.3)

The above is true for any choice of pdf for p̂(·). Two terms result from the
expansion of equation (3.3) of which only the first depends on the parameters:

F(p̂, θ) ≡ J (p̂, θ)−R(p̂)

J (p̂, θ) ≡
∫

dSp̂(S) log p(X,S|θ)

R(p̂) ≡
∫

dSp̂(S) log p̂(S)

The two steps of EM can now be defined in terms of the E-step maximization
of F(p̂, θ) wrt. q(·) and the M-step maximization of J (p̂, θ) wrt. θ. It is now
argued that these two operations in combination never decrease L(p̂, θ):

The M-step optimizes J (p̂, θ) (wrt. θ), which is a term of F(p̂, θ), not
affecting the other term, R(p̂). Therefore the M-step optimizes F(p̂, θ) wrt.
θ. Subsequently, the E-step maximizes F(p̂, θ) wrt. p̂(·) by setting q(S) =
p(S|X, θ), as will be proven shortly. Conveniently, this maximum coincides
with F(p̂, θ) attaining equality with L(θ). Combining the facts: the F(p̂, θ) is
equal to L(θ) before the M-step and then optimized wrt θ. As a result, L(θ)
cannot decrease, since F(p̂, θ) bounds it from below.

By inserting into equation 3.3, it is easily proven that the lower bound
touches L(θ) for p̂(S) = p(S|X, θ):

F(p̂, θ)|p̂=p(S|X,θ) =
∫

dSp(S|X, θ) log
p(X,S|θ)
p(S|X, θ)

=
∫

dSp(S|X, θ) log p(X|θ)
= log p(X|θ)
= L(θ)

The following two sections will address the E and M steps, respectively.

3.1 E-step

It was established that the E-step should obtain the source-posterior, p(S|X, θ).
Otherwise, the optimization of F(p̂, θ) would not be equivalent to the optimiza-
tion of L(θ). As a result of the particular choice of model, i.e. the Kalman filter
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model, the Kalman smoother will provide the desired posterior distribution.
Nothing new is added to the Kalman smoother, which is a standard method
of the literature, in this work and only the main traits will be repeated here.
The basic anatomy of the Kalman smoother comprises two basic elements: the
forward recursion, which is equivalent to the popular Kalman filter, and the
backward recursion.

The distinction between filter and smoother lies in the limited observations
available to the filter, which can only condition on past and present observations.
The smoother conditions on all observations:

p(st|xτ ) ∀t ≤ τ

where the notation xτ = {x1,x2, ..,xτ} was used. In this section no parameters
or variables will be marked with bars, since the general Kalman smoother is used.
Furthermore, the segment index, n, is omitted for notational simplicity. Sections
3.1.1 and 3.1.2 describe the forward and backward recursion, respectively.

3.1.1 The forward recursion

The Kalman filter equations that make up the first recursion fulfill two tasks.
The first and most important is to obtain the filtered sources, which are required
for the subsequent backward pass and the second one is the efficient computation
of the log-likelihood.

The filter equations outputs the moments of the source-posterior conditioned
on past and present observations:

p(st|xt) ∀t ≤ τ

Again we used the notation xt = {x1,x2, ..,xt}. Henceforth, superscripts have
this meaning (except for the segment index, n). An efficient recursive sequence
of computation is obtained by applying Bayes’ theorem to the sought distribu-
tion:

p(st|xt) =
p(xt|st)p(st|xt−1)

p(xt|xt−1)
(3.4)

Since all variables involved are (jointly) normally distributed, second-order statis-
tics, i.e mean and covariance, are sufficiently describing the component distri-
butions. Distributions p(st|xt−1) and p(xt|xt−1) are available recursively, and
p(xt|st) is the observation model. The forward recursion therefore simplifies to
recursive operations on the first and second-order moments of the component
distributions. The resulting update equations for the Kalman filter are:

ŝt−1
t = Fŝt−1

t−1 (3.5)

Pt−1
t = FPt−1

t−1F
T + Q (3.6)

Kt = Pt−1
t AT (R + APt−1

t AT )−1 (3.7)
Pt

t = (I−KtA)Pt−1
t (3.8)

ŝt
t = ŝt−1

t + Kt(xt −Aŝt−1
t ) (3.9)

The recursion was initialized by ŝ0
1 = µ and P0

1 = Σ. Equations 3.5 and 3.6
update the moments of the one-step source predictor. Equation 3.7 updates the
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Kalman gain, which weighs prediction against observation. Equations 3.8 and
3.9 update the moments of the source posterior, by including one additional
sample at a time.

The computation of the log-likelihood, L(θ), can be embedded in the forward
recursion. This is seen by decomposing L(θ):

L(θ) =
N∑

n=1

log[p(xτ
n|θ)]

=
N∑

n=1

τ∑
t=2

log[p(xt,n|xt−1
n , θ)] +

N∑
n=1

log[p(x1,n|θ)]

It is clear that the observation predictor distributions, p(xt,n|xt−1
n , θ), are related

to the source predictor moments of update equations 3.5 and 3.6. In fact, the
moments of p(xt,n|xt−1

n , θ) can be computed directly from the source predictor
moments:

x̂t−1
t = Aŝt−1

t

Ht−1
t = R + APt−1

t AT

The moments of p(x1,n|θ) are:

x̂0
1 = Aµ

H0
1 = R + AΣAT

The computed moments are passed on to the backward recursion:

3.1.2 The backward recursion

Although the derivation of the backward recursion is based on identical consid-
erations to those that led to the forward recursion, it is slightly more analytically
intensive. For details see e.g. [22] or the original paper by Rauch. The backward
recursion consists of equations 3.10-3.12:

Jt−1 = Pt−1
t−1F

T [Pt−1
t ]−1 (3.10)

Pτ
t−1 = Pt−1

t−1 + Jt−1[Pτ
t −Pt−1

t ]JT
t−1 (3.11)

ŝτ
t−1 = ŝt−1

t−1 + Jt−1[ŝτ
t − ŝt−1

t ] (3.12)

where the recursion is initialized by ŝτ
τ and Pτ

τ of the forward recursion. Addi-
tionally, the lag-one covariance is required for the M-step:

Pτ
t−1,t−2 = Pt−1

t−1J
T
t−2 + Jt−1[Pτ

t,t−1 − FPt−1
t−1]J

T
t−2

where the recursion is initialized as

Pτ
τ,τ−1 = [I−KτA]FPτ−1

τ−1

Before advancing to the actual parameter estimation of section 3.2, the source
posterior moments required for the estimation are reviewed. The segment index,
n, is reintroduced for forward compatibility.
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Source posterior moments

The direct outputs of the Kalman smoother are ˆ̄sτ,n
t , Pτ,n

t and Pτ,n
t,t−1, i.e. the

mean, covariance and lag-one covariance of the source posterior. It is assumed
in the following that the posterior mean is conditioned on the whole segment.
Therefore, we can write ˆ̄sn

t ≡ ˆ̄sτ,n
t . Autocorrelation functions are obtained from

the covariances of p(s̄τ,n|x̄τ,n, θ):

M̄n
t = Pτ,n

t + ˆ̄sn
t (ˆ̄sn

t )T

M̄1,n
t = Pτ,n

t,t−1 + ˆ̄sn
t (ˆ̄sn

t−1)
T

The special constrained format of the model parameters, θ, is reflected in the
moments:

ˆ̄sn
t =

[
(ŝn

1,t)
T (ŝn

2,t)
T . . . (ŝn

ds,t)
T

]T

M̄n
t =




Mn
1,t 0 · · · 0

0 Mn
2,t · · · 0

...
...

. . .
...

0 0 · · · Mn
ds,t




where ŝn
i,t and Mn

i,t are the posterior mean and autocorrelation of source i.
Individual source moments are given by:

ŝn
i,t ≡ 〈sn

i,t〉
Mn

i,t ≡ 〈sτ,n
i,t (sτ,n

i,t )T 〉
≡ [ mn

i,1,t mn
i,2,t .. mn

i,L,t ]T

The structure of the stacked lag-one covariance is similar to that of M̄n
t . The

time-lagged autocorrelation for source i is:

M1,n
i,t ≡ 〈sτ,n

i,t (sτ,n
i,t−1)

T 〉
For the derivation of the parameter estimators of the instantaneous mixing
AR(p) model, a memoryless, sparse source signal vector is introduced in order
to ease notation:

s̈n
t =

[
sn
1,t sn

2,t .. sn
ds,t

]T
(3.13)

The corresponding sparse moments are:

ˆ̈sn
t = 〈s̈n

t 〉
M̈n

t = 〈s̈n
t (s̈n

t )T 〉
They are obtained from the stacked moments by indexing the relevant matrix
elements.

For the special case of instantaneous mixing of AR(1) processes, the bars on
the moment symbols are omitted.

3.2 M-step

The purpose of the M-step is to maximize the lower bound function, F(p̂, θ),
with respect to θ. It was proven in the introduction to this chapter that the
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optimization of the lower bound function was equivalent to moving L(θ) in a
non-decreasing direction. The only relevant (θ-dependant) term of L(θ), i.e.
J (p̂, θ) was given the following definition:

J (p̂, θ) ≡
∫

dSq(S) log p(X,S|θ)

The next step is to express log p(X,S|θ) in terms of the parameters. Before
taking the logarithm, we factor the Kalman filter model using the definitions of
joint and conditional probability,

p(S,X|θ) =
N∏

n=1

{ ds∏

i=1

p(sn
i,1|µn

i ,Σn
i )

}

× { τ∏
t=2

ds∏

i=1

p(sn
i,t|sn

i,t−1,F
n
i ,Qn

i )
}

× { τ∏
t=1

p(xn
t |s̄n

t , ¯̄A,R)
}

The term distributions describe the white noise of the source and observation
model. The natural logarithm is applied to the above:

log p(S,X|θ) = −1
2

N∑
n=1

[
ds∑

i=1

log detΣn
i + (τ − 1)

ds∑

i=1

log qn
i

+τ log detR +
ds∑

i=1

(sn
i,1 − µn

i )T (Σn
i )−1(sn

i,1 − µn
i )

+
τ∑

t=2

ds∑

i=1

1
qn
i

(sn
i,t − (fn

i )T sn
i,t−1)

2

+
τ∑

t=1

(xn
t − ¯̄As̄n

t )T R−1(xn
t − ¯̄As̄n

t )]

Finally the log-model is averaged over the source posterior, p(S,X|θ):

J (θ, p̂) = −1
2

N∑
n=1

[
ds∑

i=1

log |Σn
i |+ (τ − 1)

ds∑

i=1

log qn
i

+ τ log |R|+
ds∑

i=1

〈(sn
i,1 − µn

i )T (Σn
i )−1(sn

i,1 − µn
i )〉

+
τ∑

t=2

ds∑

i=1

〈 1
qn
i

(sn
i,t − (fn

i )T sn
i,t−1)

2〉

+
τ∑

t=1

〈(xn
t − ¯̄As̄n

t )T R−1(xn
t − ¯̄As̄n

t )〉]

A utility function has now been obtained that can immediately be optimized
wrt. the parameters ¯̄A, R, Σ̄, µ̄, F̄ and Q̄. The derivations are in complete
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analogy with [22] except that only partial parameter matrices are estimated, due
to the source independency assumption. Fortunately, it is analytically possible
in all cases to 1) compute the partial derivatives of the cost function wrt. the
parameters, 2) equate them to zero and 3) solve for the ML parameter estima-
tors. The estimators will be derived in the most general case in section 3.2.1,
i.e. for convolutive mixings. Subsequently, they are specialized to instantaneous
mixings, to cases where p < L and to instantaneous mixings of AR(1) processes
in sections 3.2.2, 3.2.3 and 3.2.4, respectively.

3.2.1 Estimators

A number of standard derivatives from matrix calculus are used in the following.
The following, which is due to Roweis [24], is valid for matrices with functionally
independent elements:

|Y| =
1

|Y−1| (3.14)

∂ log |Y|
∂Y

= (Y−1)T (3.15)

∂aT y
∂y

=
∂yT a
∂y

= a (3.16)

∂aT Yb
∂Y

= abT (3.17)

∂aT YT b
∂Y

= baT (3.18)

∂aT YT CYb
∂Y

= CT YabT + CYbaT (3.19)

Below follow the tedious derivations, which are pivotal to this work:

µ

We start out by deriving the estimator for µi, the initial mean of source i in
segment n, using rule 3.16:

∂J (θ, p̂)
∂µn

i

= −1
2
[2(Σn

i )−1µn
i − (Σn

i )−1〈sn
i,1〉]

In order to locate the maximum wrt. µi, the partial derivative is equated to
zero:

µn
i,new = ŝn

i,1

Σ

The next estimator to derive is the corresponding covariance, Σn
i,new. The

partial derivative is computed:

∂J (θ, p̂)
∂(Σn

i )−1
= −1

2
∂

∂(Σn
i )−1

[− log det(Σn
i )−1 + 〈(sn

i,1 − µn
i )T (Σn

i )−1(sn
i,1 − µn

i )〉]

=
1
2
Σn

i −
1
2
〈(sn

i,1 − µn
i )(sn

i,1 − µn
i )T 〉
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The rules 3.14 and 3.15 were applied. We solve for the estimator:

Σn
i,new = Mn

i,1 + (µn
i,new)T µn

i,new − 2(µn
i,new)T µn

i,new

= Mn
i,1 − (µn

i,new)T µn
i,new

f

The estimator for the model parameters of source i in segment n is now derived:
The partial derivative wrt. fi is computed using the chain rule:

∂J (θ, p̂)
∂fn

i

= − 1
qn
i

τ∑
t=2

〈sn
i,t−1(s

n
i,t − (fn

i )T (sn
i,t−1))〉

The estimator is solved for by equating to zero:

fn
new,i = [

τ∑
t=2

〈sn
i,t−1(s

n
i,t−1)

T 〉]−1
τ∑

t=2

〈sn
i,t−1s

n
i,t〉

= [
τ−1∑
t=1

Mn
i,t]

−1
τ∑

t=2

mn
i,1,t,t−1

q

The partial derivative wrt. qn
i is computed:

∂J (θ, p̂)
∂qn

i

= − (τ − 1)
2qn

i

+
1

2(qn
i )2

τ∑
t=2

〈(sn
i,t − (fn

i )T sn
i,t−1)

2〉

= − (τ − 1)
2qn

i

+
1

2(qn
i )2

[ τ∑
t=2

〈(sn
i,t)

2〉+ (fn
i )T [

τ∑
t=2

〈sn
i,t−1(s

n
i,t−1)

T 〉]fn
i

+
τ∑

t=2

[−2(fn
i )T 〈sn

i,ts
n
i,t−1〉]

]

The estimator emerges from equating the partial derivative to zero and setting
fn
i = fn

i,new, since we are only interested in the solution that simultaneously
minimize J (θ, p̂) wrt. fn

i :

1
2(qn

i,new)2

τ∑
t=2

〈(sn
i,t)

2〉 =
(τ − 1)
2qn

i,new

+
1

2(qn
i,new)2

τ∑
t=2

(fn
i )T 〈sn

i,ts
n
i,t−1〉 ⇔

qn
i,new =

1
τ − 1

τ∑
t=2

[(Mn
i,t)11 − (fn

i,new)T mn
i,1,t,t−1]

A

The estimators for the observation model, ¯̄A and R, are identical to those of
the literature on parameter estimation in Gaussian linear models, see e.g. [22].
They will, however, be derived below. The partial derivative of J (θ, p̂) wrt. ¯̄A
is:

∂J
∂ ¯̄A

= −1
2

N∑
n=1

[2R−1 ¯̄A
τ∑

t=1

〈(s̄n
t )T s̄n

t 〉 − 2R−1
τ∑

t=1

[xn
t 〈(̄s

n

t )T 〉]]
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where the rules 3.17, 3.18 and 3.19 were used. The partial derivative is equated
to zero and the estimator is solved for:

Anew = [
N∑

n=1

τ∑
t=1

xn
t
ˆ̄sT

t ][
N∑

n=1

τ∑
t=1

M̄n
t ]−1 (3.20)

R

Finally, the partial derivative wrt. R−1 is computed under the diagonality
assumption on R:

∂J (θ, p̂)
∂ diag[R−1]

= diag[
Nτ

2
R− 1

2

N∑
n=1

τ∑
t=1

〈(xn
t − ¯̄As̄n

t )(xn
t − ¯̄As̄n

t )T 〉]

= diag[
Nτ

2
R− 1

2

N∑
n=1

τ∑
t=1

(xn
t )T xn

t −
1
2
A[

N∑
n=1

τ∑
t=1

〈s̄n
t (s̄n

t )T 〉]AT

+
1
2
[

N∑
n=1

τ∑
t=1

xn
t (s̄n

t )T ]AT +
1
2
A

N∑
n=1

τ∑
t=1

s̄n
t (xn

t )T ]

We now use the expression for ¯̄Anew:

Rnew =
1

Nτ

N∑
n=1

τ∑
t=1

diag[xn
t (xn

t )T − ¯̄Anewˆ̄sn
t (xn

t )T ] (3.21)

The estimators, µ̄i,new, Σ̄i,new, F̄i,new and Q̄i,new, which correspond to indi-
vidual source models must be invoked for all i in order to construct the total
source model, µ̄new, Σ̄new, F̄new and Q̄new, in accordance with the model
definitions of chapter 2.

3.2.2 Specialization to instantaneous mixing of AR(p) sources

It is not desirable to estimate a convolutive model in cases where the mixing
process is sufficiently described by an instantaneous mixing matrix. Therefore
the general estimators are specialized to a constrained form in accordance with
the instantaneous mixing model. The first step is to rewrite J (θ, p̂) slightly for
the purposes, so that it reflects an instantaneous mixing model:

J (A) = −1
2

N∑
n=1

τ∑
t=1

〈(xn
t −As̈n

t )T R−1(xn
t −As̈n

t )〉

where the sparse source vector, s̈n
t , was defined in equation 3.13. The estimator

for A is derived in complete analogy with that of section 3.2.1. The partial
derivative is:

∂J (A)
∂A

= −1
2

N∑
n=1

[2R−1A
τ∑

t=1

〈(s̈n
t )T s̈n

t 〉 − 2R−1
τ∑

t=1

[xn
t 〈(s̈n

t )T 〉]]

A is solved for:

Anew = [
N∑

n=1

τ∑
t=1

xn
t (ˆ̈sn

t )T ][
N∑

n=1

τ∑
t=1

M̈n
t ]−1 (3.22)
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Finally, Ā is reconstructed by inserting matrices of zeros between the columns.
This special constrained format is defined and described in chapter 2.

3.2.3 Specialization to low-order source models

It was established in chapter 2, that a low-order AR, or constrained, source
model is less prone to be invariant to unwanted rotations. Therefore an estima-
tor is derived that allow for p < L, whereas the general estimator assumes that
p = L. From the definition of J (θ, p̂), it is clear the constrained estimator can
be obtained by a truncation of the AR parameter vector:

f̃n
i = [ (fn

i )1 (fn
i )2 · · · (fn

i )p 0 · · · 0 ]T

The relevant part of J (θ, p̂) is retained in:

J (f̃n
i ) = 〈 1

qn
i

τ∑
t=2

(sn
i,t − (f̃n

i )T sn
i,t−1)

2〉

The derivations of the estimator are analogous to the general case and are
omitted here. The result is:

f̃n
new,i =

[ [{∑τ−1
t=1 M̃n

i,t}−1
∑τ

t=2 m̃1,n
i,t

]T 0 · · · 0
]T

where M̃n
i,t and m̃1,n

i,t are the truncated autocorrelation functions.

3.2.4 Specialization to instantaneous mixing of AR(1) sources

Straightforward specialization of the obtained estimators for the convolutive
AR(p) model yields:

µn
new = ŝn

1 (3.23)
Σn

new = diag[Mn
1 ]− diag[µn

new(µn
new)T ] (3.24)

Fn
new =

[ τ∑
t=2

diag[M1,n
t ]

][ τ∑
t=1

diag[Mn
t−1]

]−1

(3.25)

Qn
new =

1
τ − 1

[ τ∑
t=2

diag[Mn
t ]− Fn

new diag[M1,n
t ]

]
(3.26)

Anew =
[ τ∑

t=1

xn
t (ŝn

t )T
][ τ∑

t=1

Mn
t

]−1

(3.27)

Rnew =
1
τ

τ∑
t=1

diag[xn
t (xn

t )T −Anewŝn
t (xn

t )T ] (3.28)

En passant, it is noted that although the direct specialization of the more general
estimators seems obvious considering the present stage of knowledge, it was not
the actual sequence of derivation. Instead, the estimators were derived in the
order of the model definitions and generalizations adhered to in chapter 2. The
procedure was to derive partial derivatives of J wrt. the individual elements of
the parameter matrices and then deduce the total vector/matrix estimator.
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3.2.5 Normalization

At each M-step one particular solution is chosen from the continuum of equiv-
alent scalings of A and Q, namely the one where ||[aT

1ja
T
2j ..a

T
dxj ]

T || = 1, that is
the Euclidian norm of each row of filters in ¯̄A is normalized to 1.

3.3 BIC computation

As a result of the probabilistic formulation of the BSS problem and the analytical
tractability of the model, the log-likelihood of the parameters, L(θ), can be
computed exactly. A major advantage is the ability to compute directly the
Bayes information criterion (BIC). The fundamental idea is that model order
control is desirable. In accordance with the principle of Occam’s Razor (see
[23]), the smallest model possible that explains the data ’satisfactorily’ should
be selected. In this work, the number of hidden sources, ds, will be determined.
For that purpose, we would like to marginalize the parameters, θ and obtain
the model -likelihood, or evidence of the model:

p(X|ds) =
∫

dθp(X|θ, ds)p(θ) (3.29)

Unfortunately, the above integral cannot be performed. Instead, the following
approximation, which is valid for large Nτ , is used:

p(X|ds) ≈ p(X|θML, ds)− |θ|
2

log(Nτ) (3.30)

where θML is the maximum-likelihood estimate of the parameters. The latter
term penalizes high-order models through the number of free parameters, |θ|.
The approximation was obtained by assuming a large data volume (Nτ) and
imposing a quadratic model on p(X|θ, ds). In the EM scheme, it is hard to
obtain θML exactly, since only near-convergence is achieved.

Bayes’ theorem can then be employed to compare the different model order
hypotheses. A flat prior is assumed for ds in order to deduce the hypothesis
posterior:

p(ds|X) =
p(X|ds)∑K

k=1 p(X|ds = k)
(3.31)

This section relies on the BIC review in [25]. In chapter 4, experiments will be
carried out that show the identification of the number of source from convolutive
mixtures.

3.4 Adaptive Overrelaxed EM

For ’difficult’ problems, standard EM optimization converges slowly or maybe
not at all within reasonable time. Only limited time is available in real life
applications, and often we can only hope to achieve near-convergence. Therefore
it makes sense to try to get closer to the local minimum using an algorithm that
converges faster.
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Inspired by Salakhutdinov and Roweis [26], a simple optimization scheme
is implemented for the speeding up of learning. At the heart of the amended
algorithm is the augmented parameter update equation:

θt+1 = θt + η(θEM
t+1 − θt) (3.32)

Equation 3.32 can be interpreted as a linear extrapolation of the usual M-step
update of θ. The learning rate is (optimistically) increased automatically on
each step:

ηnew = α · ηold (3.33)

At each iteration it is checked that the algorithm does not overstep, in which
case the usual M-step update is used to optimize θ and the learning rate is
reset to η = 1. In this case, the standard EM-step results, as can be verified in
equation 3.32.
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Chapter 4

Experiments

The statistical model and the EM learning scheme presented lend itself to the
solving of a number of problems from across the spectrum. First and foremost,
the separation of an observed mixture into the original source signals is of spe-
cial interest and will be the focus of most of the following experiments. It is
investigated to which degree the separation quality depends on factors such as
noise conditions, the data size and the spectral diversity within and between the
sources. The performance of the proposed algorithm is furthermore compared
with the algorithm of Parra and Spence [4].

Secondarily, the complexity of the model in terms of the number of sources,
is addressed. Given two observation channels, the number of sources is deter-
mined. The mentioned problems of interest are investigated in 3 data domains
of increasing difficulty:

Section 4.2: Initial experimentation verifies that the proposed algorithm successfully
separates artificially generated mixtures that fit the model perfectly. For
that purpose, realizations of AR-processes are simulated and mixed under
varying noise conditions.

Section 4.3: Artificial mixtures of real speech signals are used as a stepping stone before
advancing to real room mixtures. Microphone recordings of individual
audio sources are filtered through known linear filters and added with
noise to construct the sensor signals.

Section 4.4: Real recordings of speech mixtures is used to benchmark KaBSS. The
performance of the algorithm is tested on publicly available signals, which
have been used as reference signals by a number of authors, e.g. [9] and
[4].

Issues concerning the algorithm, such as the frequency permutation problem and
the convergence properties, are addressed in sections 4.5 and 4.6, respectively.

A speech recording is analyzed as a preliminary exercise in order to confirm
the validity of the non-stationary AR model for a specific class of data, namely
speech, see section 4.1.
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4.1 Speech analysis

The main objective of the following is to obtain hands-on confirmation that
the chosen non-stationary model is reasonable for speech as was conjectured in
section 2.4.2.

4.1.1 Analysis of a speech recording

To illustrate the various features of speech, including the assumed wide-sense
non-stationarity, an utterance of the word ’signals’ by a male was recorded at
Fs = 8kHz. Figure 4.1 plots the signal in the time domain. By zooming in
on the various parts of the recording, the different waveforms, corresponding to
different excitation and formant location, are revealed. The waveforms can be
viewed in figure 4.2, although the phenomena are exposed more clearly in the
spectral domain representation of the signal that is seen in figure 4.3.

The spectral variation over time caused by the different excitation signals
and vocal tract filtering is clearly visible. For instance, during the periods of ’s’
and ’l’, the spectrum is similar to that of broad band noise, while the harmonics
stemming from the periodic excitation are clearly discernable during the periods
of the vowels ’i’ and ’a’.

Furthermore, the vowels are identifiable by the location of the formants,
which are the points of amplification of the vocal tract filter. For instance, the
’i’ is predominantly located in the frequencies lower than 600 and between 2000
and 3500. This observation is in concordance with the formants plot in figure
2.5. Contrarily, the ’a’ is located solely in the hundreds.

The spectral time-variance observed in the recording, e.g. between the voiced
and the unvoiced speech and the variation among the vowels, is a factor that
works in favor of KaBSS and any algorithm based on the non-stationarity of
the sources. It was established in section 2.4.2 that the time-variance of the
autocorrelation/spectrum was a condition for the uniqueness of ¯̄A within the
model. The present analysis confirms common knowledge about speech that
such spectral variety exists.

4.1.2 The AR(2) model for speech

In order to assess the bias of the simple AR(2) model when applied to speech,
a small experiment was carried out: a microphone recording of a male speech
signal was obtained at a sample rate of Fs = 8000kHz and segmented into
windows consisting of τ = 160 consecutive samples. The spectrogram can be
viewed in figure 4.4. Subsequently, AR(2) models were adapted to the segments
using the autocorrelation method. The corresponding power spectrogram was
obtained by z-transforming the time-domain recursion, which yields the transfer
function of the linear system, H(z), and evaluating it on the unit circle as de-
scribed in section 2.5.1. This has to be multiplied with the estimated innovation
noise power:

Ps(f) = |H(f)|2σ2
v

The resulting single-pole power spectrum estimate is shown in figure 4.5. No-
tably, the harmonics of the original signal are absent, as they cannot be con-
tained in the model. Furthermore, a number of interesting segments were se-
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Figure 4.1: Amplitude plot of the utterance of the word ’signals’. The letters
on the plot indicate the timing of word components ’s’, ’i’, ’g’, ’n’, ’a’, ’l’, ’s’.
The signal was sampled at Fs = 8kHz.
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Figure 4.2: Amplitude plots of various waveforms stemming from the signal of
figure 4.1. From top left to lower right, the following phonemes are represented:
’s’, ’i’, ’a’, ’l’. While ’s’ and ’l’ are both similar to white noise, the vowels, ’i’
and ’a’, are clearly harmonic and distinguishable by their different harmonics
fingerprints.
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Figure 4.3: Spectrogram of the recorded (Fs = 8kHz) utterance of the word ’sig-
nals’. The spectra are estimated from overlapping frames, length 512, and dis-
played in dB. Several features of speech are clearly visible, e.g. voiced/unvoiced
speech, formants, pulse excitation, non-stationarity and amplitude modulation.
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Figure 4.4: Spectrogram (dB) of the original male speech signal sampled at
Fs = 8000kHz. The spectrogram was produced using a window function and
overlapping frames.
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lected for analysis, namely those in which the pole of H(z) was estimated to
be complex-conjugate. The pole locations, ω0, and peakedness, r, were com-
puted from H(z) in accordance with the descriptions in section 2.5.1. They are
graphed as a time-function in figure 4.6. The pole-location, ω0, varies little over
segments, whereas the peakedness seems less stationary.

It can be said that the AR(2) is a rough model for speech as only one spectral
peak can be described. In contrast, it is known that vowels are characterized by
2-3 formants, or spectral peaks. In addition, the harmonics cannot be modelled
either. This might spell trouble for KaBSS, since the simpler AR models are
preferred in order to avoid the arbitrary rotation of the source estimate discussed
in section 2.4.2.
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Figure 4.5: Estimated power spectrogram (dB) of a male speech signal (Fs =
8kHz) assuming an AR(2) model. The autocorrelation method was used with
a frame length of τ = 160.

4.2 Artificial data

The purpose of experimenting with non-real data is at least twofold. Firstly,
verification is obtained that the algorithm actually converges under optimal
conditions, i.e. when data is generated according to the model assumptions.
Secondly, the behavior of the algorithm under different conditions can be in-
vestigated in a strictly controlled and well-described environment. However, in
order for the experiments with artificially generated signals to have any practical
value, the generated signals must in some way resemble real world signals. For
that purpose, a small study of speech signals was carried out in section 4.1. We
learned that low-frequent AR(2) processes emulate some of the characteristics
of speech, leading to the employment of this class of signals in the following
experiments with artificial data.

It will not be attempted to replicate the reverberation filters of the real world.
They are often very long, e.g. that of a cathedral, in order to accommodate the
delays of numerous echoes. We will concentrate on representing anechoic-like
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Figure 4.6: The piecewise modelling of a speech signal by an AR(2) process us-
ing the autocorrelation method. Only those windows are shown, where transfer
functions with complex-conjugate roots resulted from the estimation, and where
the signal power exceeded a background noise threshold. The upper panel shows
the pole location parameter, f0 = ω0

2π , in each data window plotted on the nor-
malized frequency axis. The lower panel shows the pole peakedness parameter,
r, a measure of the peakedness of the spectrum on a scale going from 0 to 1,
flat and peaked, respectively.

ω0

n source 1 source 2
1 0.8600 0.3194
2 0.3597 0.9130

Table 4.1: The spectral location of the poles of source signals 1 and 2 in segments
n = 1 and n = 2. Frequencies are normalized in the range [0;π].

conditions with short filters.

4.2.1 Learning in quadratic mixtures

As will be demonstrated shortly, KaBSS works well for quadratic separation
problems involving short filter lengths, i.e. ds = dx and L small. It turns out
that source signals and parameters are recovered with little error up to the well-
known permutation and scaling. For the following experiment, low-frequent
realizations of AR(2)random processes were generated along the lines of section
2.5.1. Two segments were generated, N = 2, consisting of τ = 200 consecutive
samples. The pole location can be viewed in table 4.2.1. It is noted that the
spectral overlap of the sources is rather limited. The peakedness parameter
was set to r = 0.9. The sources were filtered trough ¯̄A, where a filter length of
L = 2 was selected. The filter coefficients were drawn from univariate zero-mean
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normal distributions (variance 1):

¯̄A =
[ −0.3401 0.6293 −0.0197 −0.4774
−0.5885 0.3768 −0.2988 −0.8261

]
(4.1)

Subsequently Gaussian diagonal observation noise (R diagonal) was added in
both channels to construct an SNR of 20dB:

Pni
= Pxi

10SNR/10

ni,t ∼ N (0, Pni) i = 1, 2
(4.2)

For this purpose, the power of the mixtures was estimated. Figures 4.7 and 4.8
display the true and estimated source signals along with the mixtures and the
observation noise. Figure 4.9 shows the non-decreasing learning curve of L(θ).
It is verified in figures 4.10, 4.11 and 4.12 that the parameter estimates converge
to the true values. Prior to the plotting the arbitrary scaling and permutation
of the source and parameter estimates were fixed.
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Figure 4.7: The signals of segment 1 of the quadratic mixture. From top to
bottom: 1) The true source signals (1 & 2). 2) The noise-free convolutive
mixings (1 & 2). 3) The observation noise (channel 1 & 2) . 4) The inferred
sources (1 & 2).

With this small demonstration, a success was recorded for KaBSS. Sources
and parameters were all recovered within approximately 100 iterations.

4.2.2 Monaural signal separation.

The extraction of more than one source signal from a single observation chan-
nel attracts its share of attention within the BSS/ICA communities, see e.g.
Roweis’ one-microphone separator [27]. Although not the main focus of this
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Figure 4.8: Segment 2 of the quadratic mixture. Same key as segment 1.
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Figure 4.9: Learning in a quadratic mixture: the log-likelihood of the param-
eters, L(θ), never decreases and eventually supersedes the log-likelihood of the
true parameters L(θtrue), the horizontal line. This expresses fitting to a limited
volume of data.
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Figure 4.10: Learning in a quadratic mixture: converging estimates of source
model parameters, F̄ and Q̄. Parameters of segments 1 and 2 in top and bottom
subplots, respectively. Colors blue and green correspond to sources 1 and 2.
Straight horizontal lines mark true values.
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Figure 4.11: Learning in a quadratic mixture: estimate of ¯̄A as a function of
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refer to coefficients 1 and 2. Straight horizontal lines mark true values.
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Figure 4.12: Learning in a quadratic mixture: Converging estimates of R. The
blue and green colors correspond to the observation noise variance in channels
1 and 2, respectively. Some inaccuracy of the estimators is noted. Straight
horizontal lines mark true values.

work, a simple experiment was carried out that involves a monaural, instanta-
neous mixing of 2 narrow-band AR(2) sources with added white Gaussian obser-
vation noise. The resulting mixture consisted of τ = 100 samples. One source
was low-frequent (ω0 = π

10 ), while the other was high-frequent (ω0 = π − π
20 ).

The asymmetry of the poles was chosen in order to guarantee a measure of
generality.

The convolutive model is not strictly required in monaural signal separation,
since its main motivation in, e.g., binaural problems is the potentially different
time-shifting in different channels. As a consequence, the mixing was performed
by simply adding the two sources, leading to the following true ’filter’ matrix:

Ā =
[

1 0 1 0
1 0 1 0

]
(4.3)

No mixing matrix was estimated in this experiment. White Gaussian noise was
added to construct an SNR of 30dB as described in the previous section.

The original source signals, the mixture, the added noise and the source
estimates can be viewed in figure 4.13. The learning curve is shown in figure
4.14. The convergence of R, Q̄ and F̄ are graphed in figures 4.15, 4.16 and 4.17.

The separation of two frequency-distinct signals is not ground-breaking, since
it could be done by e.g. bandpass filtering. However, the approach taken here
is essentially blind. Given the information that the mixture is composed of
two sources , their spectral location and spread are recovered along with MAP-
estimates of the source signals. Furthermore the noise level is well estimated.
Future experiments should be devoted to investigate mixtures of spectrally over-
lapping sources.
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Figure 4.13: Monaural blind source separation, from top to bottom: The original
sources 1 and 2, the mixture, the observation noise and the estimated sources 1
and. Note the permutation and (negative) scaling of ŝt.
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Figure 4.14: The learning curve for the monaural problem in terms of L(θ)
Something ’new’ appears to be learned after 50 iterations. The log-likelihood of
the true parameters is marked by the horizontal line.
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Figure 4.15: The convergence of the noise variance estimate for the monaural
problem. The horizontal line marks the true value.
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Figure 4.16: The convergence of the estimates of the innovation noise variances.
Colors blue and green signify source 1 and 2. The source estimate assignment
to numbers was reversed to fix a permutation of sources. The horizontal lines
mark the true values.
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Figure 4.17: The convergence of the estimates of the AR-parameters. Colors
blue and green correspond to sources 1 and 2. A permutation of sources was
fixed by switching the assignment of numbers to sources. The horizontal lines
mark the true values.

4.2.3 Model order

It will now be demonstrated that KaBSS can be used to determine the num-
ber of sources. A major advantage of having formulated a statistical model is
that, e.g., the Bayes Information Criterion (BIC) can be employed to obtain
an approximate model-posterior, p(ds|X). The reasoning is described in section
3.3.

Data

The source signals were generated as realizations of narrowband AR(2) pro-
cesses. The length of the signals was τ = 100. The peakedness parameter,
which was discussed in section 2.5.1, was set to r = 0.9. Three classes of mix-
tures were created of varying spectral diversity, by drawing the pole locations,
ω0, from uniform distributions, U(·), reflecting the desired spectral variation.

1. High spectral diversity. ω0 ∼ U( π
10 , 17π

20 )

2. Medium spectral diversity. ω0 ∼ U( π
10 , 3π

5 )

3. Low spectral diversity. ω0 ∼ U( π
10 , 7π

20 )

When similar pole locations in a single segment resulted from the data construc-
tion phase, the pole locations were automatically redrawn from the distributions.
A histogram of the sample distribution of ω0 is shown in figure 4.18.
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Depending on the number of sources in the particular experiment, the source
signals were filtered through the relevant filters, which are inspired by [6]:

[
aT

11

aT
12

]
=

[
1 0.35 −0.2 0 0
0 0 0.7 −0.2 0.15

]

[
aT

21

aT
22

]
=

[
0 0 −0.5 −0.3 0.2

1.3 0.6 0.3 0 0

]

[
aT

31

aT
32

]
=

[
0.8 0.6 0.1 0 0
0 0.7 0.9 0.05 0

]

[
aT

41

aT
42

]
=

[
0 0 0.8 −0.3 0.2
0 1 −0.4 0.1 0

]

A total of N = 5 segments of mixture was generated and added with white
Gaussian noise at SNR = 25dB, as prescribed previously in this chapter.

Simulation setup

In order to determine the most likely model order hypothesis, the model poste-
rior p(ds|X) must be approximated. For this purpose, the evidences of a range
of models are computed according to the following procedure:

1. The parameters of the source model (F̄, Q̄) and of the observation model
( ¯̄A, R) are initialized by assigning zeros to the former and non-zero values
to the latter.
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2. The EM-algorithm estimates all parameters (F̄, Q̄, ¯̄A, R) and computes
the log-likelihood, L(θ|ds). KaBSS is allowed 160 iterations to converge.

3. Repeat 8 times the steps 1-2 and select the highest L(θ|ds).

4. Repeat the steps 1-3 for various model orders, ds = 1, 2, 3, 4, 5, obtaining
the various L(θ|ds).

5. Compute the BIC likelihood, p(X|ds), and the resulting posterior, p(ds|X)
according to the formulae of section 3.3. The number of free parameters
are:

|θ| = ds × [(p + 1)×N︸ ︷︷ ︸
F̄,Q̄

+ L× dx︸ ︷︷ ︸
¯̄A

] + dx︸︷︷︸
R

−1.

The above was repeated 6 times for each of the spectral diversity classes that
were mentioned in section 4.2.3 and for an array of true model orders, dtrue

s =
2, 3, 4. An example of the resulting p(ds|X) can be viewed in figure 4.19.
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Figure 4.19: Example of a posterior probability distribution resulting from the
BIC approximation. The MAP estimate of the number of sources, ds, is d̂s = 3,
since this is the single most likely hypothesis.

In table 4.2.3, the fraction of the experiments that yielded an estimate of ds in
agrement with ds,true is listed for the different diversity classes. As anticipated,
the model order was easier to estimate, when the various sources distinguished
themselves in the frequency domain. It is a remarkable result that 3 sources
in 2 sensors can be correctly assessed as such. One might speculate that less
spectral variation could be accepted if the number of segments was increased.
Future experimentation is to confirm such an hypothesis.
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True ds

spectral diversity 2 3 4
high 3/3 3/3 1/3

medium 6/6 1/6 0/6
low 6/6 0/6 0/6

Table 4.2: The fraction of correct classifications into the model orders specified
by the column labels. The different rows correspond to the varying spectral
diversity of the source signals. Only 3 simulations were carried out for the
‘high’ category, elsewhere 6 simulations.

4.3 Mixtures of audio signals

In the following, experiments are carried out with authentic audio recordings
that are mixed artificially. The performance of the proposed algorithm is tested
in various noise settings, for different data sizes both in terms of the number
of segments, N , and the segment length, τ , and for different orders of the AR-
processes. The performance is assessed by measuring the cross-talk in terms of
the signal to interference ratio (SIR), a metric that is described in appendix A.

4.3.1 Noise-dependency

In order to investigate the behavior of the algorithm in noisy conditions, real
recordings of speech were mixed through artificial channel filters and added
with varying levels of noise. Albeit much shorter than real room impulse func-
tions (that can be seconds long), the designed filters contain delays. Hence
the obtained mixing is fundamentally different from instantaneous mixing and
resembles that experienced in an anechoic chamber.

The speech signals were recorded at 8kHz from one male speaker and 2
active periods of length T = 5s were chosen for the experiment. Signal path
filters of length L = 3 were used to artificially mix the 2 source signals into the
2-dimensional observable mixture. As a consequence of the problem dimensions,
4 signal paths result. They are contained in ¯̄A:

¯̄A =
[

1 0.3 0 0 0 0.8
0 0.8 0.24 1 0 0

]
(4.4)

Observation noise was added in each sensor channel to construct the desired
signal to noise ratio:

Pni = Pxi

10SNR/10

ni,t ∼ N (0, Pni) i = 1, 2
(4.5)

In the following experiments, a segment of data consists of τ = 50 subsequent
samples. The sequence of experimentation followed the recipe presented below:

1. All data was segmented. A test set of Mtest segments is randomly sampled
from the data. The remainder of the segments are assigned to the training
pool, Mpool.

2. From Mpool, Mtrain segments are randomly sampled for training.
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3. The parameters of the source model (F̄, Q̄) and of the observation model
( ¯̄A, R) are initialized by assigning zeros to the former and non-zero values
to the latter.

4. The EM-algorithm estimates all parameters (F̄, Q̄, ¯̄A, R)

5. In order to test the estimates of ¯̄A and R obtained on step (4), the al-
gorithm estimates F̄ and Q̄ (not ¯̄A, R) obtaining the test log-likelihood,
Ltest(θ), in the process. Repeat from (2) the first k times at this point.

6. Select the estimates of ¯̄A and R that yielded the highest Ltest(θ).

7. As a final source signal inference step, use the best estimate of ¯̄A and R
and estimate F̄ and Q̄. The sources are inferred in the process. Overlap-
ping windows are used in this stage.

8. Measure the SIR as described in appendix A.

The model orders were set to ds = 2, p = 2 and L = 3. Summarizing, the
algorithm was restarted k = 10 times within each experiment, training and
testing the observation model ( ¯̄A and R) on separate data sets. The size of the
test set was Mtest = 100 (segments), and for each restart the size of the training
set was Mtrain = 10 (segments). A fixed number of iterations was allotted for
the convergence of parameters that was aided by the adaptive step-size scheme
of [26]. The learning rate was set to α = 1.2. The numbers of iterations for the
different stages of training, testing and final inference were:

Itrain = 300
Itest = 15
Itotal = 15

The experiment described above was repeated 10 times for varying SNR. A
reference method, the blind source separation algorithm of Parra and Spence
(PS), [4], was tried on the same data. The hyper parameters of this algorithm
were set to T = 1024, Q = 6, K = 7 and N = 5 after a search for the best
fit in terms of SIR, see appendix A. Figure 4.20 shows the performance of
the two algorithms for varying SNR. In very noisy conditions, KaBSS clearly
outperforms PS. However, the separation ability of KaBSS collapses for SNR≥
30. This finding, which is crucial to the exploitation of the potential of KaBSS,
leads to experimentation with added regularization noise.

Noise regularization

A simple simulated annealing scheme was implemented to ’fix’ the apparent con-
vergence problems in noise-free situations. Prior to invoking KaBSS as described
above, noise is added at a specified SNR. The noisy mixture is used to obtain
a starting guess on the parameters. Subsequently, the algorithm is run on the
’clean’ mixture using the parameter estimates obtained on the noisy mixture.
This approach proved successful as can be viewed in figure 4.21. Evidently, a
wider range of SNR’s can be treated by KaBSS. Figure 4.22 demonstrates that
the noise-level is correctly estimated for all SNR. These results are significant,
as they suggest the applicability of KaBSS to real problems. However, more
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Figure 4.20: The separation performance for varying SNR of KaBSS (solid)
and the reference method proposed by Parra and Spence (PS - dotted) [4].
The signals are two utterances by the same speaker. Two convolutive mixtures
were created with variable strength additive white noise. The SIR measures
the crosstalk between the two sources in the source estimates. The error bars
represent the standard deviation of the mean for 10 experiments at each SNR.

hyper-parameters have entered the equation, as the power of the added noise
must be specified as must the number of annealing steps. In other words, the
realm of meta-heuristics has been entered.

Longer filters

The experiment setup was repeated for slightly larger filter lengths, i.e. L = 8:
[

aT
11

aT
12

]
=

[
0.3679 0.1353 0.0498 0.0183 0.0067 0.0025 0 0

0 0.3311 0.1218 0.0448 0.0165 0.0061 0.0022 0

]

[
aT

21

aT
22

]
=

[
0 0 0.2943 0.1083 0.0398 0.0147 0.0054 0.0020

0.3311 0.1218 0.0448 0.0165 0.0061 0.0022 0 0

]

The filter coefficients were generated from the truncated and delayed exponen-
tial function, exp[−n + n0], and therefore has all-pole-like filter characteristics.
The SIR was measured for varying SNR on mixtures resulting from this filter.
A setup identical to the one with the short filters was selected, and with noise
regularization turned on. Figure 4.23 shows the results which indicate that sep-
aration can succeed for longer filters. However, the designed exponential filters
are still in another category than real-world filters. Considerable degradation
of the separation performance resulted from using longer mixing filters. The
artificial filter used by Kidmose in [19] of length L ≈ 15, was tried in the same
experiment setup. A SIR of 9.4 ± 0.6dB resulted from 10 repetitions, but a
listening test and inspection of the signals revealed that some segments were
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Figure 4.21: Separation performance with added regularization noise. Solid and
dotted lines correspond to the SIR of KaBSS and PS, respectively. Otherwise
same key as in figure 4.20.
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Figure 4.22: True (*) and estimated noise variances in channels 1 and 2. The
small noise variances cannot be accurately estimated.
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under the influence of unstable AR processes. Many of the runs, however, were
successful.
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Figure 4.23: The measured SIR performance of KaBSS on the male-male prob-
lem with medium length filters.

4.3.2 Dependency on data size

In order to assess how much data was required in order for KaBSS to separate
the signals, an experiment was undertaken that was similar to the one in section
4.3.1. The SIR was measured for varying Mtrain and τ , the number of training
segments and the number of samples in a segment, respectively. The experiment
was repeated 10 times for each Mtrain and τ with the SNR fixed at 30dB.

Figure 4.24 clearly demonstrates that training on a single segment cannot
lead to successful separation. For this particular problem, it seems that approx.
10 segments are required. Figure 4.25 show the segment length required for ac-
curate estimation and inference of the sources. As expected, too short segments
prove inadequate for estimating the source statistics of relatively low-frequent
speech signals. We would expect performance to deteriorate for very large τ as
speech is only wide-sense stationary in periods of up to ∼ 400ms. This however,
was excessively time consuming to prove empirically.

4.3.3 Dependency on AR model order

Another experiment similar to that of section 4.3.1 was carried out. Instead
of varying the SNR, the model order, p, was investigated for a range of values.
The SNR was fixed at 20dB. The experiment was repeated 5 times for each
p = [1, 2, 3, 4, 5, 6, 7, 8]. Figure 4.26 displays the obtained SIR performance.
Although the variance of the mean is relatively high, due to the limited number
of experiments, a trend emerges from the measurements: simpler source models
are to be preferred. This observation is in line with the deliberations of sections
2.4.2 and 2.4.3, which suggest the use of simple source models.
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Figure 4.24: The separation performance for varying number of training seg-
ments, Mtrain. The optimal SIR is obtained for M ≥ 10. A single segment is
clearly inadequate. The segment length was fixed at τ = 50.
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Figure 4.25: The separation performance for varying segment length. It seems
that a segment length of τ = 70 is required for optimal separation, given M = 5.
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Figure 4.26: SIR for various orders of AR models for the sources. Two male
speech signals were artificially mixed, sampled at Fs = 8000.

KaBBS PS
Mixture 1 ŜIR 45.7 12.1

SE(ŜIR) 4.10 0.153

Mixture 2 ŜIR 34.8 10.5
SE(ŜIR) 2.77 0.0739

Table 4.3: The separation performance measured in SIR for the proposed al-
gorithm (KaBSS) and the reference method (PS). The mean and the standard
deviation of the mean are given for two mixtures of one male voice and one
female voice. A total of 10 runs was performed for each mixture and algorithm.

4.3.4 Dependency on spectral diversity

It is well-known that spectral diversity is an important parameter in blind source
separation problems. For instance, the separation of a female voice from a male
voice obviously is easier than separating same gender voices. An experiment
duplicating the setup of section 4.3.1 verifies this simple fact. All hyper param-
eters of both algorithms were left unchanged from previous experiments. Here
only, the SNR was fixed at 20dB. Male and female voices were recorded at
8kHz and subsequently mixed through the filters. Five seconds of mixture was
generated. The male recordings originated from the same male speaker that
was used in the experiments of section 4.3.1.

Table 4.3 reports the SIR results for two different mixtures. They suggest
that KaBSS benefits greatly from the spectral variation of the male/female
mixture. Compared to the male/male mixture, an SIR improvement of at least
22dB was measured for both the mixtures. The algorithm of Parra and Spence
did not seem to benefit as greatly. This might be due to high sensitivity to
signal and hyper parameters (which were fitted to the experiment of section
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4.3.1).
Researchers, Hua and Tugnait, [14], have proved that distinct source power

spectra are mandatory for the separation of colored noise sources based on
second-order statistics. They considered only stationary signals. An algorithm,
based on theoretic foundation laid out by these authors, was recently published
by Kawamoto and Inouye, [15].

4.4 Real-life data

Now follow attempts to separate mixtures that were actually measured in the
real world. In order to facilitate the comparison with other methods, previously
analyzed data sets were acquired. Two such sets are a mixture of speech and
music, and a mixture of two male voices. They are dealt with in sections 4.4.1
and 4.4.2, respectively.

4.4.1 Speech in music noise

According Te-Won Lee, see [28], the mixture was acquired as follows: Two source
signals, one speech and one pop music, were played through two loudspeakers
in a real room. A male speaker saying the words ‘one’, ‘two’, ‘three’, etc.
generated the speech signal. The mixture was captured by two microphones.
Loudspeakers and microphones were placed in the corners of a 602cm2 square.
The signal was downsampled from Fs = 16kHz to Fs = 8kHz in order to reduce
the computational burden. The filter length and the order of the AR processes
were set to L = 5 and p = 2 (however p = 5 for the final source inference
stage). The segment length was set to τ = 160. The multistart scheme that
was described in section 4.3.1 was also used for this experiment.

The unmixed signals are unavailable and the separation quality can only be
judged based on a listening test and the prior knowledge about the signals. For
instance, it would be expected that the speech signal is close to zero between
the utterances of ’one’, ’two’ etc.

Figure 4.27 shows the estimated source signals. Obviously, the counting
sequence has been extracted from the mixture. A listening test confirms that
partial separation has been obtained in that the speech and music now dominate
each their channel. Furthermore, spectrograms of the estimated sources are
provided in figures 4.28 and 4.29. As a feature of KaBSS, local AR models of
the source signals are estimated. These models can be combined into a model
spectrogram, see section 4.1. Figures 4.30 and 4.31 show these source model
spectrograms. The estimated innovation noise variances for the sources, qn

i , are
graphed in figure 4.32 over segments. The active periods of the speech signal
are convincingly ’detected’. Evidently, KaBSS could serve as a multichannel
voice activity detector (VAD).

The estimated signal path filters can be found in figure 4.33. Some varia-
tion was found to exist between runs of the algorithm, although the separation
quality remained relatively constant. The filters of the indirect channels ex-
hibit delays of a single sample, approximately corresponding to a difference in
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Figure 4.27: The separation of a mixture of speech (top) and music (bottom).
The MAP estimates of the source signals. The speech signal is a counting
sequence: ’one’, ’two’, etc. The music signal is pop music.
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Figure 4.28: Spectrogram (dB) of MAP estimated speech from a real mixture.
The features of speech are clearly visible along with remnants of the music. The
spectrogram was produced using a Hanning window and overlapping frames.
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Figure 4.29: Spectrogram (dB) of the music estimate (MAP) resulting from
applying KaBSS to a real mixture of speech and music. The sound picture is
dominated by the music, although the speech signal has not been completely
removed.
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Figure 4.30: The learned model of the speech signal. In each segment, the
frequency response of the AR process, H(f), was multiplied with the estimated
innovation noise covariance.
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Figure 4.31: The learned model of the music signal.
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Figure 4.32: The estimated innovation noise variances of sources 1 and 2, qn
i ,

graphed as a function of segments, n. The utterances of ’one’, ’two’, etc. clearly
stand out from the background noise.
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Figure 4.33: The estimated channel filters of the speech/music mixture. Aij is
the filter between source i and sensor j. A delay of approximately one sample
exists between the direct and indirect channels.

travelled distance of:

∆s ≈ vsound∆t

=
300m

s

8000 1
s

≈ 4cm

where vsound = 300m
s is the speed of sound in office conditions. This distance is

certainly shorter than expected, provided the given knowledge of the experiment
setup. However, Yellin and Weinstein, who originally provided Te-Won Lee
with the data, mention mixtures of speech and music in [29] recorded under
circumstances that could have produced a delay of 4cm. A listening test was
performed in order to judge the estimated sources. Although the quality of
the separation is inferior to that achieved by Te-Won Lee et al. in [7] and by
Anemüller et al. in [9] as presented on the authors’ web sites, the results are
still encouraging further experimentation.

4.4.2 Males counting in Spanish and English

This mixture, also made available by Te-Won Lee, consists of two male speakers
simultaneously counting in English and Spanish. The speakers and the two
microphones that recorded the mixture were arranged in a square, side lengths
60cm, in a real room. The original signal was downsampled from Fs = 16kHz to
Fs = 8kHz. KaBSS was invoked with the same hyper parameters as in section
4.4.1. Again, the quality of the separation is slightly inferior to that of Te-Won
Lee. However, the Spanish and English utterances clearly dominate one channel
each.
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4.5 The frequency permutation problem
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Figure 4.34: Spectrogram displaying the permutation over frequency in source
estimate 1. The high frequencies are dominated by the music, whereas the low
frequencies essentially contain an estimate of the speech.

During the experimentation with the real data sets of sections 4.4.1 and
4.4.2, the occurrence of the problem of permutation over frequency, mentioned
in section 2.4.3, was observed. The phenomenon was primarily noticed for
flexible source models, i.e. a high order of the AR processes. This is completely
in line with the analysis of section 2.4.3, where it was stated that constraining
the source model is mandatory in order to achieve uniqueness of the sources and
the parameters within the model. The observation of more data should alleviate
the problem, since more spectral variation would probably occur, allowing for
more complex source models.

4.6 Convergence issues

It was proven that the EM-algorithm (see section 3) converges to a local mini-
mum and that the log-likelihood never decreases in the process. However, the
number of iterations required to reach near-convergence is an unknown factor,
for some problems it could be very large, see e.g. [26].

In order to speed up the convergence, the adaptive overrelaxed EM (AEM)
optimization scheme of section 3.4 was implemented. The hyper-parameter, α,
determines how fast the step-size, η, increases. If α = 1, then η remains 1,
which generates a conventional EM step. In other words, α = 1 ’disables’ AEM.

An experiment was carried out based on an artificially generated convolu-
tive mixture. Different step-sizes, α, were tried in order to evaluate the relative
importance of AEM. Figure 4.36 shows the learning curves which indicate that
standard EM converges critically slower than AEM for any choice of α. The
advantage of using the AEM scheme comes at a small cost: only a small per-
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Figure 4.35: Spectrogram displaying the permutation over frequency in source
estimate 2. The situation from figure 4.34 reversed.

centage of the updates are rejected, which happens when the update does not
lead to an increasing log-likelihood.

In spite of having improved the convergence properties of KaBSS by the
adaptive step-size update, non-convergence does still happen. The occurrence
of this phenomenon is positively identified when the learning curve never su-
persedes the log-likelihood of the true parameters, L(θtrue). No local minima
exist since exp[L(θ)] is Gaussian, and the convergence problems could be caused
by the covariance matrix of exp[L(θ)] being associated with a large eigenvalue
spread. Therefore, KaBSS is very much depended on a good starting guess of the
parameters. If the true sources are known, the SIR can be used to discriminate
between the good and bad solutions. Knowledge of the true sources, however,
is not in general the case. Instead, we hypothesize that the good solutions can
be chosen based on either: 1) the test log-likelihood, Ltest(θ), 2) the training
log-likelihood, Ltrain(θ), itself.

In order to assess the problem, an artificial mixture of speech signals was
generated along the lines of the experiments in section 4.3 with male and female
speech. Signals and filters were selected to be the same. Training segments were
repeatedly sampled (randomly) from a training pool of signal segments, and the
model was fitted to the data. The observation model was then evaluated on the
test segments. As a result, both training and test log-likelihoods were obtained.
Subsequently the SIR was estimated, since the original sources are available.

In order to ’verify’ hypothesis 1, Ltest(θ) was plotted against the estimated
SIR. A clear positive correlation results, indicating that Ltest(θ) does indeed
discriminate between bad and good solutions.

Figure 4.38 shows the scatter plot of Ltrain(θ) versus Ltest(θ) for different
samplings of training segments. The conclusion is that Ltrain(θ) and Ltest(θ) are
positively correlated in most cases - that the model often generalizes well. An
exception occurs when the sampled segments are not representative of the audio
recording as a whole. Then, Ltrain(θ) and Ltest(θ) may correlate negatively.

59



100 200 300 400 500

2040

2050

2060

2070

2080

2090

2100

2110

2120

iterations

L(
θ)

α=1.00
α=1.10
α=1.20
α=1.50
α=2.00
α=3.00
α=5.00
α=10.00

Figure 4.36: Learning curves for the EM (α = 1) and AEM estimators in terms
of the log-likelihood, L(θ). A convolutive mixture of AR(2) processes was used
to benchmark the algorithms.

Since limited time is available for running the algorithm, the number of training
segments has to be limited, which in turn cause the negative correlation of the
training and test log-likelihoods to occur.
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Figure 4.37: The test likelihood, Ltest(θ), plotted against the SIR for a
male/male convolutive mixture with added noise.
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Figure 4.38: Training and test likelihoods for the male/male convolutive prob-
lem. Each color corresponds to a new selection of Mtrain = 10 training segments.
The parameters estimated during the training phase were tested on the same
Mtest = 100 test segments.
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Chapter 5

Discussion

Some efforts were invested into the comparative study of KaBSS and the algo-
rithm of Parra and Spence. A few remarks should be attached to the analysis:
only the relative importance of the different a priori assumptions in a given data
domain should be judged and not which algorithm is the ‘better’. Different algo-
rithms are useful for different applications. The experiments show that KaBSS
benefits from its noise model and AR source prior when those assumptions are
appropriate. In the face of a large data volume, the benefits might vanish.

The computational cost of KaBSS has not been given much attention. How-
ever, the separation of 5 seconds of mixture, sampled at 8kHz, took a few
hours on a state-of-the-art computer (2.5GHz). The algorithm of Parra and
Spence spent in the order of 10 seconds to separate the signals. In order
to locate the bottlenecks, Matlab’s profiler was invoked. In agreement with
theoretical analysis, the critical part of KaBSS was located to the Kalman
smoother. The forward-backward recursions perform a matrix inversion which
costs O([dS×L]3). At each iteration of the EM algorithm, this operation is per-
formed for each sample and for each segment. As a result, the computational
cost of KaBSS is in the order of O(N × τ × [dS×L]3), i.e. it scales linearly with
data size. This holds provided that the number of required iterations do not
increase with the data size. However, long filters cannot be handled well. The
algorithm seems to be suitable for under-complete problems with more sensors
than sources. Many types of images could be modelled and analyzed in this
framework.

5.1 Outlook

The author’s ideas to improve KaBSS are presented below:

• The applicability of KaBSS in other data domains should be investigated,
given the fact that the source model is highly general. As mentioned
before, it would be prudent to investigate problems wherein the number
of sensors are greater than the number of sources, i.e. undercomplete
problems. Image data is a prominent example.

• When a signal is segmented into windows, effects such as spectral leakage
and loss of spectral resolution result. Consequently, the spectrum of the
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signal becomes distorted by these effects. Only the rectangular window
function, which does nothing to prevent these issues, was used. A future
upgrade of KaBSS should implement a better window function, e.g. the
Hanning window, which alleviates the spectral leakage problem.

• In many applications, it is desired that the channel filter models nothing
but a single delay and attenuation. The current algorithm estimates as L
filter coefficients, when it might have been more appropriate to estimate
only a few parameters of a flexible channel filter model.

• The high-level description of the assumed ’non-stationarity’ is another
model amendment. Hidden Markov models are often used to model the
time-variance of speech, and could potentially be used to explain the tran-
sitions between the switching AR models.

• The log-likelihood of the parameters is computed in a forward recursive
fashion. It is possible that its gradient with respect to the parameters
can also be computed recursively. The obtained gradient could then be
used in a gradient-based optimizer. A literature study and/or theoretical
analysis will answer this question.

• Provided the above recursive gradient could be computed, a stochastic
gradient algorithm in line with LMS could be implemented for real-time
applications.

• Attention was early in the project diverted from instantaneous mixture
problems towards the more challenging convolutive mixtures. Preliminary
experimentation with KaBSS in the ’instantaneous’ mode suggested that
KaBSS could serve well as probabilistic extension of the decorrelation
algorithm of Molgedey and Schuster, [3].

• The noise regularization scheme is as of now a heuristic at work. Future
work should advance theoretical understanding.

• Minor code/numerical issues remain. In particular, the simultaneous set-
ting of α 6= 1 and estimation of µ and Σ has proved unstable, eventually
causing the likelihood to decrease. Therefore, the estimation of µ and Σ
was turned off during the experiments.

5.2 Conclusion

The Kalman Blind Source Separator (KaBSS) for convolutive mixtures of signals
is obviously the principal result of this work, see appendix C. It separates a
number of benchmark mixtures of speech that were measured in real rooms.
Furthermore, a comparative study was carried out on various artificial noisy
mixtures of speech signals. It indicated that KaBSS is useful in bad noise
conditions. Benefits of being probabilistic were reaped, such as determining
the number of sources from the log-likelihood of the parameters. The Bayes
Information Criterion was employed for this purpose.

KaBSS emerged from the probabilistic formulation of the algorithm of Parra
and Spence, [4]. An expectation-maximization (EM) scheme was derived for the
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estimation of the parameters. The actual estimators adhere to the independency
of the sources.

Also, the conditions under which the algorithm does work and does not work
were investigated both in terms of theoretical work and empirical study. For
instance, it was found out that the parameters of a sum of AR(1) processes
are unique up to scaling and permutation. For this to hold, the sources need
to have different autocorrelations. It was also argued that the sources need
to be wide-sense non-stationary and model-constrained. Empirical verification
followed from the experiments. More, the Monte Carlo runs and experiments
made it clear that the algorithm exhibits poor convergence properties in noise-
free conditions. However, experiments showed that these situations could be
handled by using regularization noise.

Finally, new ideas were presented that could potentially turn into imple-
mentable innovations.
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Appendix A

Quality measures

In the following, it will be discussed how to evaluate the inferred sources against
the known true sources. In broad terms, we are interested in how closely the
estimates approximate the true sources. The computation of the mean square
error (MSE) is one naive approach that would fail, because the convolution
and deconvolution processes inadvertently may cause the estimate to be a time-
shifted version of the original. In this case, a speech signal and its time-shifted
replica may produce a high MSE, while a listening test will not reveal any
difference.

The block diagram in figure A.1 represents the total system that takes the
original sources as inputs and outputs the source estimates. In between, the
sources are mixed, exposed to observation noise and processed by a separation
system. The total system, H(f), is a time varying filter that characterizes
the various paths of the source signals as they are transformed into the final
estimates.

Viewing the mixing and demixing systems as a one, it is interesting to ask
which fraction of signal power went the right way from source signal to source
signal estimate as opposed to the signal parts that cross over and corrupt the es-
timates of other signal sources. In other words, we want to quantify the amount
of cross-talk defined as the ratio between the power in the direct channels and
the power in the cross channels.

SIR =
∑

k∈K Pk∑
m∈M Pm

where K and M denote the sets of direct and cross signal paths, respectively,
and Pk, Pm the powers of the signals contribution to the estimates. It can be
written as:

SIR =
∑

k∈K

∑
ω |Hk(ω)|2|Sk(ω)|2∑

m∈M

∑
ω |Hm(ω)|2|Sm(ω)|2

When the BSS algorithm is a backward system, i.e. W is estimated and the
sources are inferred by the filtering of xt through W, the total system is readily
available as H(ω) = A(ω)W(ω). The present algorithm, however, is a forward
system and no W(ω) is estimated.
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Under the simplifying assumption that H(ω) is a pure-delay filter, the SIR
can be computed as:

SIR =
∑

k∈K maxδ rk(δ)∑
m∈M maxδ′ rm(δ′)

(A.1)

where the unbiased estimate of the normalized cross-correlation of the signal
attributed to channel i is used:

ri(δ) =
1

T · α
∑

τ

si,τsi,τ−δ

α =
√

Ps · Pŝ

The normalization by α is obtained by estimating the powers of the original
and estimated sources. Although only strictly correct when H(f) is a delay-
only filter, the expression given in equation A.1 remains a good approximation
for high SNR. A full linear approach to the estimation of the channel powers
would include the system identification of H(f) by e.g. least squares.

xtst st

H(f)

W(f)A(f)

nt

Figure A.1: A blind source separation model.
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Appendix B

Source code and data

The supplied CD-ROM, which can be obtained from the author, contains source
code and data. The content is:

Matlab

• AR2: Analysis of AR(2) random processes.

• BIC: Determination of the number of sources in an artificial mixture.

• generate_conv_mix: Generation of a mixture from two sources.

• KaBSS: The algorithm and test scripts.

• molgedey: The author’s implementation of the Molgedey-Schuster decor-
relation algorithm.

• monaural_demo: Demonstration of the difficulty of monaural ICA.

• parra: Parra and Spence’s algorithm and test scripts.

• parra_limits: The fitting of the Parra-Spence algorithm to a mixture.

Results

The .mat files of the experiments:

• BIC

• male_female

• SNR

• spanish_english

• speech_music
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Appendix C

Publication

The following pages contain the part of the work that was submitted for publi-
cation, see [10].
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PROBABILISTIC BLIND DECONVOLUTION

OF NON-STATIONARY SOURCES

Rasmus Kongsgaard Olsson and Lars Kai Hansen

Informatics and Mathematical Modelling, B321 Technical University of Denmark
DK-2800 Lyngby, Denmark

email: rko@isp.imm.dtu.dk,lkh@imm.dtu.dk

ABSTRACT

We solve a class of blind signal separation problems us-
ing a constrained linear Gaussian model. The observed
signal is modelled by a convolutive mixture of colored
noise signals with additive white noise. We derive a
time-domain EM algorithm ‘KaBSS’ which estimates
the source signals, the associated second-order statistics,
the mixing filters and the observation noise covariance
matrix. KaBSS invokes the Kalman smoother in the E-
step to infer the posterior probability of the sources, and
one-step lower bound optimization of the mixing filters
and noise covariance in the M-step. In line with (Parra
and Spence, 2000) the source signals are assumed time
variant in order to constrain the solution sufficiently.
Experimental results are shown for mixtures of speech
signals.

1. INTRODUCTION

Reconstruction of temporally correlated source signals
observed through noisy, convolutive mixtures is a fun-
damental theoretical issue in signal processing and is
highly relevant for a number of important signal pro-
cessing applications including hearing aids, speech pro-
cessing, and medical imaging. A successful current ap-
proach is based on simultaneous diagonalization of mul-
tiple estimates of the source cross-correlation matrix [5].
A basic assumption in this work is that the source cross-
correlation matrix is time variant. The purpose of the
present work is to examine this approach within a prob-
abilistic framework, which in addition to estimation of
the mixing system and the source signals will allow us
to estimate noise levels and model likelihoods.

We consider a noisy convolutive mixing problem
where the sensor input xt at time t is given by

xt =

L−1∑

k=0

Akst−k + nt. (1)

The L matrices Ak define the delayed mixture and st

is a vector of possibly temporally correlated source pro-
cesses. The noise nt is assumed i.i.d. normal. The objec-
tive of blind source separation is to estimate the sources,
the mixing parameters, and the parameters of the noise
distribution.

Most blind deconvolution methods are based on
higher-order statistics, see e.g. [4], [1]. However, the
approach is proposed by Parra and Spence [5] is based
on second order statistics and is attractive for its rela-
tive simplicity and implementation, yet excellent perfor-

mance. The Parra and Spence algorithm is based on es-
timation of the inverse mixing process which maps mea-
surements to source signals. A heuristic second order
correlation function is minimized by the adaptation of
the inverse process. The scheme needs multiple correla-
tion measurements to obtain a unique inverse. This can
be achieved, e.g., if the source signals are non-stationary
or if the correlation functions are measured at time lags
less than the correlation length of the source signals.

The main contribution of the present work is to pro-
vide an explicit statistical model for the decorrelation of
convolutive mixtures of non-stationary signals. As a re-
sult, all parameters including mixing filter coefficients,
source signal parameters and observation noise covari-
ance are estimated by maximum-likelihood and the ex-

act posterior distribution of the sources is obtained. The
formulation is rooted in the theory of linear Gaussian
models, see e.g., the review by Ghahramani and Roweis
in [7]. The so-called Kalman Filter model is a state
space model that can be set up to represent convolutive
mixings of statistically independent sources added with
observation noise. The standard estimation scheme for
the Kalman filter model is an EM-algorithm that im-
plements maximum-likelihood (ML) estimation of the
parameters and maximum-posterior (MAP) inference of
the source signals, see e.g. [3]. The specialization of the
Kalman Filter model to convolutive mixtures is covered
in section 2 while the adaptation of the model parame-
ters is described in section 3. An experimental evalua-
tion on a speech mixture is presented in section 4.

2. THE MODEL

The Kalman filter model is a generative dynamical state-
space model that is typically used to estimate unob-
served or hidden variables in dynamical systems, e.g.
the velocity of an object whose position we are track-
ing. The basic Kalman filter model (no control inputs)
is defined as

st = Fst−1 + vt (2)

xt = Ast + nt

The observed dx-dimensional mixture, xt =
[x1,t, x2,t, .., xdx,t]

T , is obtained from the multipli-
cation of the mixing matrix, A, on st, the hidden state.
The source innovation noise, vt, and the evolution ma-
trix, F, drive the sources. The signals are distributed
as vt ∼ N (0,Q), nt ∼ N (0,R) and s1 ∼ N (µ,Σ).

By requiring F,Q and Σ to be diagonal matrices,
equation (2) satisfies the fundamental requirement of
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Figure 1: The AR(4) source signal model. The mem-
ory of st is updated by discarding si,t−4 and composing
new s1,t and s2,t using the AR recursion. Blanks signify
zeros.

any ICA formulation, namely that the sources are sta-
tistically independent. Under the diagonal constraint,
this source model is identical to an AR(1) random pro-
cess. In order for the Kalman model to be useful in
the context of convolutive ICA for general temporally
correlated sources we need to generalize it in two as-
pects, firstly we will move to higher order AR processes
by stacking the state space, secondly we will introduce
convolution in the observation model.

2.1 Model generalization

By generalizing (2) to AR(p) source models we can
model wider classes of signals, including speech. The
AR(p) model for source i is defined as:

si,t = fi,1si,t−1 + fi,2si,t−2 + .. + fi,psi,t−p + vi,t. (3)

In line with e.g. [2], we implement the AR(p) process in
the basic Kalman model by stacking the variables and
parameters to form the augmented state vector

s̄t =
[

sT
1,t sT

2,t .. sT
ds,t

]T

where the bar indicates stacking. The ‘memory’ of the
individual sources is now represented in si,t:

si,t = [ si,t si,t−1 .. si,t−p+1 ]
T

The stacking procedure consists of including the last p
samples of st in s̄t and passing the (p − 1) most recent
of those unchanged to s̄t+1 while obtaining a new st by
the AR(p) recursion of equation (3). Figure 1 illustrates
the principle for two AR(4) sources. The involved
parameter matrices must be constrained in the following
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Figure 2: The convolutive mixing model requires a full
¯̄A to be estimated.

way to enforce the independency assumption:

F̄ =









F̄1 0 · · · 0

0 F̄2 · · · 0
...

...
. . .

...
0 0 · · · F̄L









F̄i =













fi,1 fi,2 · · · fi,p−1 fi,p

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0













Q̄ =









Q̄1 0 · · · 0

0 Q̄2 · · · 0
...

...
. . .

...
0 0 · · · Q̄L









(Q̄i)jj′ = {
qi j = j′ = 1
0 j 6= 1

∨

j′ 6= 1

Similar definitions apply to Σ̄ and µ̄. The generaliza-
tion of the Kalman Filter model to represent convolutive
mixing requires only a slight additional modification of
the observation model, augmenting the observation ma-
trix to a full dx × p × ds matrix of filters,

¯̄A =





aT
11 aT

12 .. aT
1ds

aT
21 aT

22 .. aT
2ds

aT
dx1

aT
dx2

.. aT
dxds





where aij = [aij,1, aij,2, .., aij,L]T is the length L(= p)
impulse response of the signal path between source i
and sensor j. Figure 2 illustrates the the convolutive
mixing matrix.

It is well-known that deconvolution cannot be per-
formed using stationary second order statistics. We
therefore follow Parra and Spence and segment the sig-
nal in windows in which the source signals can be as-
sumed stationary. The overall system then reads

s̄n
t = F̄ns̄n

t−1 + v̄n
t

xn
t = ¯̄As̄n

t + nn
t
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where n identify the segment of the observed mixture.
A total of N segments are observed. For learning we will

assume that during this period the mixing matrices ¯̄A
and the observation noise covariance, R are stationary.

3. LEARNING

A main benefit of having formulated the convolutive
ICA problem in terms of a linear Gaussian model is that
we can draw upon the extensive literature on parameter
learning for such models. The likelihood is defined in
abstract form for hidden variables S and parameters θ

L(θ) = log p(X|θ) = log

∫

dSp(X,S|θ)

The generic scheme for maximum likelihood learning of
the parameters is the EM algorithm. The EM algorithm
introduces a model posterior pdf. p̂(·) for the hidden
variables

L(θ) ≥ F(θ, p̂) ≡ J (θ, p̂) −R(p̂) (4)

where

J (θ, p̂) ≡

∫

dSp̂(S) log p(X,S|θ)

R(p̂) ≡

∫

dSp̂(S) log p̂(S)

In the E-step we find the conditional source pdf based on
the most recent parameter estimate, p̂(S) = p(S|X, θ).
For linear Gaussian models we achieve F(θ, p̂) = L(θ).
The M-step then maximize J (θ, p̂) wrt. θ. Each com-
bined M and E step cannot decrease L(θ).

3.1 E-step

The Markov structure of the Kalman model allows an
effective implementation of the E-step referred to as the
Kalman smoother. This step involves forward-backward
recursions and outputs the relevant statistics of the pos-
terior probability p(s̄t|x1:τ , θ), and the log-likelihood of
the parameters, L(θ)1. The posterior source mean (i.e.
the posterior average conditioned on the given segment
of observations) is given by

ˆ̄st ≡ 〈s̄t〉

for all t. The relevant second order statistics, i.e. source
i autocorrelation and time-lagged autocorrelation, are:

Mi,t ≡ 〈si,t(si,t)
T 〉

≡ [ mi,1,t mi,2,t .. mi,L,t ]T

M1

i,t ≡ 〈si,t(si,t−1)
T 〉

The block-diagonal autocorrelation matrix for s̄t is de-
noted M̄t., It contains the individual Mi,t, for i =
1, 2, .., ds.

1For notational brevity, the segment indexing by n has been
omitted in this section.

3.2 M-step

In the M-step, the first term of (4) is maximized with
respect to the parameters. This involves the average of
the logarithm of the data model wrt. the source posterior
from the previous E-step

J (θ, p̂) = −
1

2

N
∑

n=1

[

ds
∑

i=1

log detΣn
i + (τ − 1)

ds
∑

i=1

log qn
i

+τ log det R +

ds
∑

i=1

〈(sn
i,1 − µn

i )T (Σn
i )−1(sn

i,1 − µn
i )〉

+

τ
∑

t=2

ds
∑

i=1

〈
1

qn
i

(sn
i,t − (fn

i )T sn
i,t−1

)2〉

+

τ
∑

t=1

〈(xn
t − ¯̄As̄n

t )T R−1(xn
t − ¯̄As̄n

t )〉]

where fT
i = [ fi,1 fi,2 .. fi,p ]. The derivations are

analogous with the formulation of the EM algorithm in
[3]. The special constrained structure induced by the
independency of the source signals introduces tedious
but straight-forward modifications. The segment-wise
update equations for the M-step are:

µi,new = ŝi,1

Σi,new = Mi,1 − µi,newµT
i,new

fT
i,new

=
[

τ
∑

t=2

(m1

i,t)
T
][

τ
∑

t=1

Mi,t−1

]

−1

qi,new =
1

τ − 1

[

τ
∑

t=2

mi,t − fT
i,new

m1

i,t

]

Reconstruction of µ̄new, Σ̄new, F̄new and Q̄new from
the above is performed according to the stacking defi-

nitions of section 2. The estimators ¯̄Anew and Rnew

include the statistics from all observed segments:

¯̄Anew =
[

N
∑

n=1

τ
∑

t=1

xt,n(ˆ̄st,n)T
][

N
∑

n=1

τ
∑

t=1

M̄t,n

]

−1

Rnew =
1

Nτ

N
∑

n=1

τ
∑

t=1

diag[xt,nxT
t,n − ¯̄Anew

ˆ̄st,nx
T
t,n]

We accelerate the EM learning by a relaxation of the
lower bound, which amounts to updating the parame-
ters proportionally to an self-adjusting step-size, α, as
described in [6]. We refer to the Kalman filter based
blind source separation approach as ‘KaBSS’.

4. EXPERIMENTS

The proposed algorithm was tested on a binaural convo-
lutive mixture of two speech signals with additive noise
in varying signal to noise ratios (SNR). A male speaker
generated both signals that were recorded at 8kHz. This
is a strong test of the blind separation ability, since
the ‘spectral overlap’ is maximal for a single speaker.
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The noise-free mixture was obtained by convolving the
source signals with the impulse responses:

¯̄A =

[

1 0.3 0 0 0 0.8
0 0.8 0.24 1 0 0

]

Subsequently, observation noise was added in each sen-
sor channel to construct the desired SNR. Within each
experiment, the algorithm was restarted 10 times, each
time estimating the parameters from 10 randomly sam-
pled segments of length τ = 70. Based on a test log-

likelihood, Ltest(θ), the best estimates of ¯̄A and R were
used to infer the source signals and estimate the source
model (F̄ and Q̄). The model parameters were set to
p = 2 and L = 3.

The separation quality was compared with the State-
of-the-Art method proposed by Parra and Spence2[5].
A signal to interference ratio (SIR): SIR = P11+P22

P12+P21

is
used as comparison metric. Pij is the power of the
signal constituting the contribution of the ith original
source to the jth source estimate. The normalized cross-
correlation function was used to estimate the powers in-
volved. The ambiguity of the source assignment was
fixed prior to the SIR calculations. The results are
shown in figure 3. Noise-free scenarios excepted, the
new method produce better signal-to-interference val-
ues peaking at an improvement of 4dB for an SNR of
20dB. It should be noted that the present method is
considerably more computational demanding than the
reference method.

5. CONCLUSION

Blind source separation of non-stationary signals has
been formulated in a principled probabilistic lin-
ear Gaussian framework allowing for (exact) MAP-
estimation of the sources and ML-estimation of the
parameters. The derivation involved augmentation of
state-space representation to model higher order AR
processes and augmentation of the observation model
to represent convolutive mixing. The independency con-
straint could be implemented exactly in the parameter
estimation procedure. The source estimation and the
parameter adaptation procedures are based on second-
order statistics ensuring robust estimation for many
classes of signals. In comparison with other current con-
volutive ICA models the present setup allows blind sep-
aration of noisy mixtures and it can estimate the noise
characteristics. Since it is possible to compute the like-
lihood function on test data it is possible to both use
validation sets for model order estimation as well as ap-
proximate schemes such as AIC and BIC based model
order selection. A simulation study was used to validate
the model in comparison with a State-of-the-Art refer-
ence method. The simulation consisted in a noisy con-
volutive mixture of two recordings of the same speaker.
The simulation indicated that speech signals are de-
scribed well-enough by the colored noise source model
to allow separation. For the given data set, the pro-
posed algorithm outperforms the reference method for
a wide range of noise levels. However, the new method

2See ”http://newton.bme.columbia.edu/ lparra/publish/”.
The hyper-parameters of the reference method were fitted to the
given data-set: T = 1024, Q = 6, K = 7 and N = 5. It should be
noted that the estimated SIR is sensitive to the hyper-parameters.
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Figure 3: The separation performance for varying SNR
of KaBSS and the reference method proposed by Parra
and Spence (PS) [5]. The signals are two utterances by
the same speaker. Two convolutive mixtures were cre-
ated with variable strength additive white noise. The
SIR measures the crosstalk between the two sources in
the source estimates. The error bars represent the stan-
dard deviation of the mean for 10 experiments at each
SNR.

is computationally demanding. We expect that signifi-
cant optimization and computational heuristics can be
invoked to simplify the algorithm for real-time applica-
tions. Likewise, future work will be devoted to monitor
and tune the convergence of the EM algorithm.
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