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ABSTRACT

In this paper music genre classification has been explored with spe-
cial emphasis on the decision time horizon and ranking of tapped-
delay-line short-time features. Late information fusion as e.g. ma-
jority voting is compared with techniques of early information fu-
sion1 such as dynamic PCA (DPCA). The most frequently sug-
gested features in the literature were employed including mel-
frequency cepstral coefficients (MFCC), linear prediction coeffi-
cients (LPC), zero-crossing rate (ZCR), and MPEG-7 features. To
rank the importance of the short time features consensus sensitivity
analysis is applied. A Gaussian classifier (GC) with full covariance
structure and a linear neural network (NN) classifier are used.

1. INTRODUCTION

In the recent years, the demand for computational methods to or-
ganize and search in digital music has grown with the increasing
availability of large music databases as well as the growing access
through the Internet. Current applications are limited, but this seems
very likely to change in the near future as media integration is a
high focus area for consumer electronics [6]. Moreover, radio and
TV broadcasting are now entering the digital age and the big record
companies are starting to sell music on-line on the web. An example
is the popular product iTunes by Apple Computer, which currently
has access to a library of more than 500,000 song tracks. The user
can then directly search and download individual songs through a
website for use with a portable or stationary computer.

A few researchers have attended the specific problem of music
genre classification, whereas related areas have received more at-
tention. An example is the early work of Scheirer and Slaney [17]
which focused on speech/music discrimination. Thirteen different
features including zero-crossing rate (ZCR), spectral centroid and
spectral roll-off point were examined together using both Gaussian,
GMM and KNN classifiers. Interestingly, choosing a subset of only
three of the features resulted in just as good a classification as with
the whole range of features. In another early work Wold et al. [22]
suggested a scheme for audio retrieval and classification. Perceptu-
ally inspired features such as pitch, loudness, brightness and timbre
were used to describe the audio. This work is one of the first in
the area of content-based audio analysis, which is often a supple-
ment to the classification and retrieval of multimodal data such as
video. In [12], Li et al. approached segment classification of audio
streams from TV into seven general audio classes. They find that
mel-frequency cepstral coefficients (MFCCs) and linear prediction
coefficients (LPCs) perform better than features such as ZCR and
short-time energy (STE).

The genre is probably the most important descriptor of music
in everyday life. It is, however, not an intrinsic property of mu-
sic such as e.g. tempo and makes it somewhat more difficult to
grasp with computational methods. Aucouturier et al. [2] exam-
ined the inherent problems of music genre classification and gave

1This term refers to the decision making, i.e., early information fusion
is an operation on the features before classification (and decision making).
This is opposed to late information fusion (decision fusion) that assembles
the information on the basis of the decisions.

an overview of some previous attempts. An example of a recent
computational method is Xu et al. [23], where support vector ma-
chines were used in a multi-layer classifier with features such as
MFCCs, ZCR and LPC-derived cepstral coefficients. In [13], Li et
al. introduced DWCHs (Daubechies wavelet coefficient histograms)
as novel features and compared these to previous features using four
different classifiers. Lambrou et al. [11] examined different wavelet
transforms for classification with a minimum distance classifier and
a least-squares minimum distance classifier to classify into rock,
jazz and piano. The state-of-art percentage correct performance is
around 60% considering 10 genres, and 90% considering 3 genres.

In the MPEG-7 standard [8] audio has several descriptors and
are meant for general sound, but in particular speech and music.
Casey [5] introduced some of these descriptors, such as the audio
spectrum envelope (ASE) to successfully classify eight musical gen-
res with a hidden markov model classifier.

McKinney et al. [15] approached audio and music genre classi-
fication with emphasis on the features. Two new feature sets based
on perceptual models were introduced and compared to previously
proposed features with the use of Gaussian-based quadratic discrim-
inant analysis. It was found that the perceptually based features
performed better than the traditional features. To include temporal
behavior of the short-time features (23ms frames), four summarized
values of the power spectrum of each feature is found over a longer
time frame (743ms). In this manner, it is argued that temporal de-
scriptors such as beat is included.

Tzanetakis and Cook [20] examined several features such as
spectral centroid, MFCCs as well as a novel beat-histogram. Gaus-
sian, GMM and KNN classifiers were used to classify music on
different hierarchical levels such as e.g. classical music into choir,
orchestra, piano and string quartet.

In the last two mentioned works, some effort was put into the
examination of the time-scales of features and the decision time-
horizon for classification. However, this generally seems to be a
neglected area and has been the motivation for the current paper.
How much time is, for instance, needed to make a sufficiently ac-
curate decision about the musical genre? This might be important
in e.g. hearing aids and streaming media. Often, some kind of early
information fusion of the short-time features is achieved by e.g. tak-
ing the mean or another statistics over a larger window. Are the best
features then the same on all time-scales or does it depend on the
decision time horizon? Is there an advantage of early information
fusion as compared to late information fusion such as e.g. majority
voting among short-time classifications, see further e.g., [9]. These
are the main questions to be addressed in the following.

In section 2 the examined features will be described. Section 3
deals with the methods for extracting information about the time
scale behavior of the features, and in section 4 the results are pre-
sented. Finally, section 5 state the main conclusions.

2. FEATURE EXTRACTION

Feature extraction is the process of capturing the complex struc-
ture in a signal using as few features as possible. In the case of
timbral textual features a frame size, in which the signal statistics
are assumed stationary is analyzed and features are extracted. All



features described below are derived from short-time 30ms audio
signal frames with a hop-size of 10ms.

One of the main challenges when designing music information
retrieval systems is to find the most descriptive features of the sys-
tem. If good features are selected one can relax on the classification
methodology for fixed performance criteria.

2.1 Spectral signal features

The spectral features have all been calculated using a Hamming
window for the short time Fourier transform (STFT) to minimize
the side-lobes of the spectrum.

MFCC and LPC. The MFCC and LPC both originate from the
field of automatic speech recognition, which has been a major re-
search area through several decades. They are carefully described
in this context in the textbook by Rabiner and Juang [16]. Addi-
tionally, the usability of MFCCs in music modeling has been ex-
amined in the work of Logan [14]. The idea of MFCCs is to cap-
ture the short-time spectrum in accordance with human perception.
The coefficients are found by first taking the logarithm of the STFT
and then performing a mel-scaling which is supposed to group and
smooth the coefficients according to perception. At last, the coef-
ficients are decorrelated with the discrete cosine transform which
can be seen as a computationally cheap PCA. LPCs are a short-time
measure where the coefficients are found from modeling the sound
signal with an all-pole filter. The coefficients minimizes a least-
square measure and the LPC gain is the residual of this minimiza-
tion. In this project, the autocorrelation method was used. The delta
MFCC (DMFCC ≡ MFCCn - MFCCn−1) and delta LPC (DLPC ≡
LPCn - LPCn−1) coefficients are further included in the investiga-
tions.

MPEG-7 audio spectrum envelope (ASE). The audio spectrum
envelope is a description of the power contents in log-spaced fre-
quency bands of the audio signal. The log-spacing is done as to
resemble the human auditorial system. The ASE have been used in
e.g. audio thumbnailing and classification, see [21] and [5]. The fre-
quency bands are determined using an 1/4-octave between a lower
frequency of 125Hz, which is the “low edge” and a high frequency
of 9514Hz.

MPEG-7 audio spectrum centroid (ASC). The audio spectrum
centroid describes the center of gravity of the log-frequency power
spectrum. The descriptor indicates whether the power spectrum is
dominated by low or high frequencies. The centroid is correlated
with the perceptual dimension of timbre named sharpness.

MPEG-7 audio spectrum spread (ASS) . The audio spectrum
spread describes the second moment of the log-frequency power
spectrum. It indicates if the power is concentrated near the cen-
troid, or if it is spread out in the spectrum. It is able to differentiate
between tone-like and noise-like sounds [8].

MPEG-7 spectral flatness measure (SFM). The audio spectrum
flatness measure describes the flatness properties of the spectrum of
an audio signal within a number of frequency bands. The SFM
feature expresses the deviation of a signal’s power spectrum over
frequency from a flat shape (noise-like or impulse-like signals). A
high deviation from a flat shape might indicate the presence of tonal
components. The spectral flatness analysis is calculated for the
same number of frequency bands as for the ASE, except that the
low-edge frequency is 250Hz. The SFM seem to be very robust
towards distortions in the audio signal, such as MPEG-1/2 layer 3
compression, cropping and dynamic range compression [1]. In [4]
the centroid, spread and SFM have been evaluated in a classification
setup.

All MPEG-7 features have been extracted in accordance with
the MPEG-7 audio standard [8].

2.2 Temporal signal features

The temporal features have been calculated on the same frame basis
as the spectral features.

Zero crossing rate (ZCR). ZCR measures the number of time
domain zero-crossings in the frame. It can be seen as a descriptor

of the dominant frequency of music and to find silent frames.
Short time energy (STE). This is simply the mean square power

in the frame.

3. FEATURE RANKING - SENSITIVITY MAPS

3.1 Time stacking and dynamic PCA

To investigate the importance of the features at different time scales
a tapped-delay line of time stacking features is used. Define an
extended feature vector as

zn = [xn,xn−1,xn−2, . . . ,xn−L]T ,

where L is the lag-parameter and xn is the row feature vector at
frame n. Since the extended vector increases in size as a function
of L, the data is projected into a lower dimension using PCA. The
above procedure is also known as dynamic PCA (DPCA) [10] and
reveals if there is any linear relationship between e.g. xn and xn−1;
thus not only correlations but also cross-correlations between fea-
tures. The decorrelation performed by the PCA will also include
a decorrelation of the time information, e.g. is MFFC-1 at time n
correlated with LPC-1 at time n−5?

At L = 100 the number of features will be 10403 which makes
the PCA computational intractable due to memory and speed. A
“simple” PCA have been used where only 1500 of the total of 10403
largest eigenvectors is calculated by random selection of training
data, see e.g. [19]. To investigate the validity of the method 200
eigenvectors was used at L = 50 and the number of random selected
data points was varied between 200− 1500. The variation in clas-
sification error was less than a percent, thus indicating that this is a
robust method. Due to memory problems originating from the time
stacking, the largest used lag time is L = 100, which corresponds to
one second of the signal.

3.2 Feature ranking

One of the goals of this project is to investigate which features are
relevant to the classification of music genres at different time scales.
Selection of single best method for feature ranking is not possible,
since several methods exists each with their advantages and disad-
vantages. An introduction to feature selection can be found in [7],
which also explains some of the problems using different ranking
schemes. Due to the nature of our problem a method known as the
sensitivity map is used, see e.g. [18]. The influence of each feature
on the classification bounds is found by computing the gradient of
the posterior class probability P(Ck|x) w.r.t. all the features. Here
Ck denotes the k’th genre. One way of computing a sensitivity map
for a given system is the absolute value average sensitivities [18]
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where xn is the n’th time frame of a test-set and x̃n is the n’th time
frame of the same test-set projected into the M largest eigenvectors
of the training-set. Both s and xn are vectors of length D - the
number of features. N is the total number of test frames and K is
the number of genres. Averaging is performed over the different
classes as to achieve an overall ranking independent of the class. It
should be noted that the sensitivity map expresses the importance
of each feature individually - correlations are thus neglected.

For the linear neural network an estimate of the posterior dis-
tribution is needed to use the sensitivity measure. This is achieved
using the softmax-function, see e.g. [18].

4. RESULTS

Two different classifiers were used in the experiments: a Gaussian
classifier with full covariance matrix and a simple single-layer neu-
ral network which was trained with sum-of-squares error function
to facilitate the training procedure. These classifiers are quite simi-
lar, but they differ in the discriminant functions which are quadratic



and linear, respectively. Furthermore the NN is inherently trained
discriminatively. They are also quite simple, but after experimenta-
tion with more advanced methods, like the Gaussian mixture mod-
els and HMMs, this became a necessity in order to carry out the vast
amount of training operations needed. Further, the purpose of this
study is not to obtain optimal performance rather to investigate the
relevance of relevant short-time features.

The data set was split into training, validation and test sets.
The validation set was used only to select the number of DPCA-
components. The best classification was found with 50 components
at both L = 50 and L = 100. The data was split with 50, 25 and
25 sound files in each set, respectively, and each of these were dis-
tributed evenly into five music genres: Pop, Classical, Rock, Jazz,
Techno. All sound files have a duration of 10s and with a hop-size
of 10ms. This resulted in 1000 30ms frames per sound file. The
used sampling frequency is 22050Hz. The size of the training set
as well as duration of the sound files was determined from learning
curves2 (results not shown). After the feature extraction, the fea-
tures were normalized to zero mean and unit variance to make them
comparable.
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Figure 1: Classification error as a function of the lag of the GC and
NN using DPCA and majority voting, respectively.

Figure 1 summarizes the examination of the decision time hori-
zon as well as the comparison between early and late information
fusion using DPCA and majority voting, respectively. It is seen
from the figure that there is not an obvious advantage of using
the DPCA transform instead of the computationally much cheaper
majority voting. However, it can be seen from table 1 and 2 that
the methods’ performance depends on the genre. The tables show
test classification error for each genre with error-bars obtained by
repeating the experiment 50 times on randomly selected training
data. The number in parenthesis shows the percentage relative to
lag L = 0 of the classifier. For instance, it is seen that the DPCA
gives remarkably better classification of jazz than majority voting.
This might be used constructively to create a better classifier.

Figure 1 also shows the results after choosing the 10 features
with the best sensitivity consensus ranks (see below). There is a
small deviation for the GC and a large deviation for the NN between
the 10 best features and the full feature set when majority voting is
used. This might be connected to the differences in the number
of variables in the two classifiers which implies that the curve for
the NN with 10 features is dominated by bias since the number of
variables is only 5 · 11 = 55. Thus, 10 features is not really enough

2Classification error or log-likelihood as a function of the size of the
training set.

for this classifier. In contrast, the GC with 103 features has more
than 25000 different variables and might be dominated by variance
which increases the test error. However, the sensitivity ranking still
seems reasonable when compared to the full feature sets and when
comparisons are made with the classification error from a set of 10
random features (illustrated in the figure).

Another examination of early information fusion was also car-
ried out by using the mean values of the short-time features over
increasing time frames (from 1 to 1000 frames). The classification
results are not illustrated, however, since approximately the same
classification rate as without the time information (lag L = 0) was
achieved at all time scales, though with a lot of fluctuations.

Full Feature Set
Pop Classic Rock Jazz Techno

NN
(L=0)

36% ±
0.8%

27% ±
2%

29% ±
1.1%

67% ±
1.1%

41% ±
0.7%

Maj.Vote
(L=100) 17%(−19) 19%(−8) 26%(−3) 63%(−4) 29%(−12)

Time Stacking
(L=100) 21%(−15) 22%(−5) 21%(−8) 45%(−22) 34%(−7)

GC
(L=0)

50% ±
0.2%

39% ±
0.5%

27% ±
0.2%

71% ±
0.5%

31% ±
0.3%

Maj.Vote
(L=100) 32%(−18) 28%(−11) 22%(−5) 68%(−3) 17%(−14)

Time Stacking
(L=100) 28%(−22) 29%(−10) 21%(−6) 39%(−32) 26%(−5)

Table 1: Test error classificstion rates of Gaussian Classifier (GC)
and Neural Network (NN) using the full feature set.

Best 10 Feat.
Pop Classic Rock Jazz Techno

NN
(L=0)

38% ±
1.4%

30% ±
2.5%

40% ±
2.1%

86% ±
1.4%

37% ±
0.96%

Maj.Vote
(L=100) 27%(−11) 23%(−7) 38%(−2) 88%(+2) 25%(−12)

Time Stacking
(L=100) 21%(−17) 23%(−7) 45%(+5) 65%(−21) 37%(0)

GC
(L=0)

34% ±
0.6%

35% ±
1.5%

38% ±
1.4%

65% ±
1.2%

47% ±
0.8%

Maj.Vote
(L=100) 22%(−12) 26%(−9) 32%(−6) 62%(−3) 39%(−8)

Time Stacking
(L=100) 36%(+2) 32%(−3) 22%(−16) 43%(−22) 12%(−35)

Table 2: Test error classification rates of Gaussian Classifier (GC)
and Neural Network (NN) using the 10 best features.

The training of the models has been repeated 50 times on differ-
ent song clips, and the sensitivies have been calculated and ranked.
It is now possible to obtain a consensus ranking from the cumulated
sensitivity histograms of the 103 features, which is shown in fig-
ure 2. Each row shows the cumulated sensitivity histogram where
dark color corresponds to large probability. For L = 0 the number
of features is D = 103, but for L = 100 the amount of features is
D = 10403 due to the time stacking. A similar plot could be gen-
erated at L = 100 but the histograms of each feature would not be
easy to see and interpret. To rank the features, at e.g. L = 100, the
mean value of the sensitivity over time of each feature is applied,
which results in only 103 time-averaged features in figure 2. The
mean value is applied since only low frequency variation in sen-
sitivity over lag-parameters are present (below 5Hz). To provide
the consensus features, the feature which has the highest cumulated
histogram frequency in each column is selected.

Experiments with ranking of the features at L = {0,50,100}
clearly indicates that delta features generally ranks lower at higher
lag time, see also area B and D in figure 2 for L = 100. The
MFCC(A) and LPC(C) generally rank better than e.g. the ASE(E)
and SFM(F) coefficients. However, the high frequency components
of both the ASE and SFM also show relevance, which is an indicator
of “noise-like” parts in the music. The 10 best consensus features
for L = {0,50,100} are shown in table 3. A sanity check of the sen-



sitivity map was performed using the Optimal Brain Damage [3] for
L = 0 and showed similar results.
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Figure 2: Consensus feature ranking of individual feature at L =
100. See text for interpretation. The features are MFCC(A), DM-
FCC(B), LPC(C), DLPC(D), ASE(E), SFM(F) and the single fea-
tures ASC, ASS, STE and ZCR. The ten best features in decreasing
order are: {1,4,6,7,70,2,28,13,101,103}.

L=0 (1 to 5) LPC2 LPC1 MFCC2 LPC3 MFCC4
L=50 (1 to 5) MFCC1 MFCC4 MFCC6 MFCC2 LPC2
L=100 (1 to 5) MFCC1 MFCC4 MFCC6 MFCC7 ASE19

L=0 (6 to 10) LPC4 LPC5 GAIN MFCC1 MFCC3
L=50 (6 to 10) MFCC7 ASE19 LPC1 ASS MFCC10
L=100 (6 to 10) MFCC2 LPC2 MFCC13 ASS ZCR

Table 3: The 10 best consensus features of the NN classifier as a
function of the time stack lag, L. The DPCA transform was em-
ployed.

5. CONCLUSION

Music genre classification has been explored with special emphasis
on the decision time horizon and ranking of tapped-delay line short-
time features. A linear neural network and a Gaussian classifier
were used for classification. Information fusion showed increasing
performance with time horizon, thus state-of-art 80% correct classi-
fication rate is obtained within 5s decision time horizon. Early and
late information fusion showed similar results, thus we recommend
the computational efficient majority decision voting. However, in-
vestigation of individual genres showed that e.g. jazz is better classi-
fied using DPCA. Consensus ranking of feature sensitivities enabled
the selection and interpretation of the most salient features. MFCC,
LPC and ZCR showed to be most relevant, whereas MPEG-7 fea-
tures showed less consistent relevance. DMFCC and DLPC showed
to be least important for the classification. With only the 10 best fea-
tures, 70% classification accuracy was obtained using a 5s decision
time horizon.
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