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Abstract. The Minimum Description Length (MDL) approach to shape model-
ling is reviewed. It solves the point correspondence problem of selecting points 
on shapes defined as curves so that the points correspond across a data set. An 
efficient numerical implementation is presented and made available as open 
source Matlab code. The problems with the early MDL approaches are dis-
cussed. Finally the MDL approach is extended to an MDL Appearance Model, 
which is proposed as a means to perform unsupervised image segmentation.   

1. Introduction 

In order to construct an Active Shape or Active Appearance Model [1,2] one needs a 
number of training examples, where the true location of the underlying shape is 
known. From thereon these models are automatically generated. This paper addresses 
the problem of constructing these training examples automatically.  

The problem is divided into two: The first is to define the shapes in terms of con-
tours. The second is to define marks on these contours. The marks should be defined 
so that marks on different examples are located at corresponding locations, hence the 
second problem is sometimes denoted the point correspondence problem, and it has 
been the subject of a series of papers by Taylor and collaborators [3,4,5] founded on 
MDL. This paper reviews the development, describes a simple and efficient imple-
mentation and demonstrates it on open and closed contours. The Matlab code and the 
examples are published to facilitate the dissemination of this technique in medical 
imaging and other applied fields. 

Finally it is proposed to extend the MDL approach to solve also the first problem, 
defining the shape contours in the first place through unsupervised learning with the 
MDL Appearance Model. 



2. History of Minimal Shape Modelling 

The development of the MDL approach to the point correspondence problem is 
marked by three important papers.  

Kotcheff and Taylor � 1998 [3].  In this paper the problem is formulated as finding a 
reparametrisations of each contour. The cost function Cost = Σ log (λm + λcut) is the 
sum over all eigenvalues λm �moderated� by a cut-off λcut, and the optimisation tech-
nique is a genetic algorithm (GA). The contribution of the paper is conceptual while 
the algorithm performance is not spectacular. 

Davies, Cootes and Taylor � 2001 [4].  This paper uses MDL as basis for the cost 
function. The paper computes the cost of transmitting the PCA model and the PCA-
coded data, and the optimal trade-off between the precisions of the various compo-
nents is derived. This leads to a description length expression, which allows a deter-
mination of the optimal number of principal components independent of the preci-
sion. A new a new method of representing reparametrisation is introduced. The per-
formance is impressive on several 2D data sets. The optimisation is still a GA, but in 
the same year more powerful optimisation methods were introduced, so that the com-
putation time is practical � of the order of four hours in Matlab. In addition generali-
sation to 3D is possible. This work attracted a lot of attention due to its combination 
of a principled approach and wide applicability, and it received several awards.  

Davies, Twining, Cootes, Waterton and Taylor � 2002 [5].  This is the first journal 
article on MDL shapes and contains a change in the formalism. Gone is the full PCA 
MDL model, and a master example is selected to have fixed parameterisation to avoid 
that the shapes collapse onto a small part of the contour. 
 
Questions.  Several questions come to mind in this development 
• Why was the MDL approach of 2001 abandoned, and is there something wrong 

it?  
• Can MDL be used to determine the number of principal components in shape 

modelling?  
• Is it possible to run MDL with something faster than genetic algorithms and still 

avoid local minima?  
• How does one prevent the reparametrisations to diverge (run away)? Is one fixed 

master example sufficient? 
• How does the formalism apply to open curves?  
• What is the best way to begin using MDL on 2D problems? 

Outline 

These questions are answered in this paper, which is organised as follows:  



• Section 3 describes a simple and efficient version of the MDL approach to 2D 
shapes and demonstrates it on artificial data. 

• Section 4 analyses the theoretical development of the MDL shape approach. 
• Section 5 applies the method to medical shape data. 
• Section 6 generalises the method to MDL Appearance Models. 
• Section 7 contains the conclusions. 
Matlab source code and test data are available on www.imm.dtu.dk/~hht. 

3. An Efficient MDL Shape Algorithm 

This section describes the efficient MDL shape algorithm used for the simulations in 
this paper. The algorithm applies to a set of shapes defined as curves in 2D space. 
Shape sets are classified into three kinds: Closed curves, open curves with fixed end-
points and open curves with free end-points. Fixed end-points means that the shape 
has its end-points fixed at the curve end-points, while free end-points means that the 
�true� shape is an unknown subset of the open curve, i.e. the determination of the 
shape end-points is part of the task.  

The curves are represented as a polyline i.e. an ordered list of points. The arc 
length along the curve is normalised to run from 0 to 1. 

We are now seeking a set of 2L+1 marks on each curve to represent the shape. 
They are called marks to indicate that they carry a meaning (like landmarks, post-
marks, hallmarks etc). For closed shapes, the start- and end-points (number 0 and 2L) 
are identical. The mark locations are specified in a hierarchical manner (as described 
by Davies 2001), on L levels. For closed curves with 65 marks, we specify on the first 
level the coordinates of mark 0 and 32 by their absolute arc length position. On the 
second level, mark 16 and 48 are specified by parameters between 0 and 1. For ex-
ample mark 16 can be anywhere on the curve between mark 0 and 32, corresponding 
to the extremes 0 and 1. On the third level the marks 8, 24, 40 and 56 are specified in 
between already fixed marks. This is continued until level 6 so that all marks are 
specified.  

For open fixed-end curves, level 1 places only mark 32, while for open free-end 
curves there are three marks on level 1, namely 0, 32 and 64. 

The end-marks are defined by two positive parameters describing the distance of 
the end-marks from the ends of the curve.  

The initial shape can be defined by marks placed evenly in arc length by setting all 
parameters to a = 0.5 (except for the end-points). Alternatively a priori knowledge of 
a good starting guess can be used. Closed curves should be roughly aligned initially.  

Statistical shape analysis is now performed in the usual way. The number of marks 
is N = 2L for closed curves and N = 2L+1 for open curves (free as well as fixed). First 
the shapes are centred and aligned to the mean shape normalised to one, i.e. the rms 
radius of the mean is 1/√N. The mean is determined using Kent�s method [6] by rep-
resenting mark positions as complex numbers and diagonalising the hermitian N-by-N 
covariance matrix of the set; the mean is the leading eigenvector. If the number of 
shapes s is smaller than N, the �dual� s-by-s matrix is diagonalised instead. 



The covariance matrix of the aligned shapes (normalised with the number of 
shapes, but not with the number of points) is then formed and principal component 
analysis is performed yielding the eigenvalue spectrum. 

The optimisation does not need to be done on all marks, but only on marks up to a 
given level, typically we adjust level 1, 2, and 3. These active marks are called nodes 
because the curve reparametrisations evolve kinks at these marks. The optimisation 
adjusts the node parameters to optimise the correspondence of all the marks over the 
set of examples. The parameters of level 4, 5, 6 are frozen at 0.5 corresponding to 
even distribution in arc length to capture the shape variation between the nodes. 

The objective function is derived from the MDL principle. The cost describes the 
information needed to transmit the PCA representation of the shapes, i.e. the principal 
components. For a mode m with large eigenvalue the cost is log(λm), while for smaller 
lambdas it should tend to a constant. We therefore introduce an important parameter 
λcut which separates these two regimes and use a cost expression from Davies 2002 in 
the low lambda region: log(λcut) + (λm / λcut � 1). (Davies� expression was simplified 
by approximating (s+3) / (s�2) by 1). Adding the constant 1 � log(λcut) leads to our 
final choice for the total cost 

 
Description Length = Σ Lm 

Lm = 1 + log(λm/λcut)  for λm ≥ λcut 
Lm = λm/λcut                for λm < λcut 

(1) 

 
This cost has the attractive properties that it tends to zero when all eigenvalues tend to 
zero, and both Lm and dLm/dλm are continuous at the cut-off.  

In plain words, when λm falls below λcut, the benefit of decreasing it further is no 
longer logarithm, but levels off and reaches a minimum, 1 unit below the transition 
point. A mode with eigenvalue λcut contributes on average a variance of λcut/N per 
mark, and since the rms radius of the aligned shapes is 1/√N, the mode contributes a 
standard deviation per rms radius of σcut = √λcut . We specify λcut in terms of σcut and 
use σcut = 0.003 in all the simulations in this paper. This corresponds to a cut-off at 
0.3 pixels for shapes with original rms radius 100 pixels.  

A crucial requirement for the cost is that it be insensitive to N in the high-N limit: 
If N is doubled, the rms radius of the aligned shapes decreases by √2. This balances 
the doubling of all eigenvalues that would otherwise occur, with the result that the 
high end of the eigenvalue spectrum - and hence the cost - are unchanged. 

The shape representation assigns the same weight to all marks in the Procrustes 
alignment and in the PCA; one could have a weight proportional with the spacing and 
with some prior, but that would complicate the algorithm. As a consequence, the 
centre of gravity and rms radius of a shape changes as the nodes shift. This gives rise 
to effects, which are often not desirable, but a consequence of the chosen simplicity.  

One effect is that the marks can pile up in some areas and thereby avoid describing 
the rest and reach a small description length.  

One way to avoid this run-away is to select a single shape as master example (as 
introduced by Davies 2002) for which the marks are not allowed to move. Its marks 
can be positioned at landmark position for instance by manual annotation by an ex-
pert, at conspicuous locations e.g. where the curvature is at a local maximum.  



The iterative optimisation can then begin. The nodes, e.g. 8, are ordered according 
to ascending level. Each node is associated with a step length, initially set to 0.01. 
These 8 step lengths are automatically decreased by the algorithm. Now the parame-
ters anode for each node and each example are probed, one at a time according to the 
following pseudo-code, which runs over a number of passes, until the results has 
stabilised, typically 40 passes. 
 

Loop over passes 
  Loop over nodes 
    Loop over 5 steps 

Loop over examples 
  Loop over + and - step 
 Probe a(node) = a(node) +- step of example 
 Recompute marks of example 
 Do Procrustes of set 
 Do PCA of set 
 Compute new MDL 
 If new MDL is lower accept and break loop 
 Undo a(node) change 
  End of +- step loop 
End of example loop 
If <5% of a(node)’s changed, divide step(node) by 2 

    End of step loop 
  End of node loop 
End of passes loop 

 
The three lines in bold each account for approx 1/3 of the processing time. The 

step lengths are adaptive, so there are no parameters to tune. 
For the master example a special code is used: The nodes of this example should 

not be moved, but if a node parameter is far out of correspondence with the rest, it is 
very slow for all the others to move individually to the lonely master. If Mohammed 
does not to come to the mountain, then the mountain must come to Mohammed and 
therefore when the master example is encountered in the pseudo-code above, all the 
other examples are given a step simultaneously to allow for a collective move to-
wards the master.  

The convergence time increases with decreasing cut-off, so if a very low cut-off is 
desired, it can be effective to run the optimisation with larger cut-off initially, de-
creasing to the desired value at the end. This was not needed for the examples in this 
paper.  

Example box-bump 

As a first example, consider the 24 shapes in Figure 1 using σcut = 0.003, 40 passes, 
64 marks and 8 nodes. The basic evaluation in this procedure consists of the 
reparametrisations and the diagonalisation of a complex 24-by-24 matrix and a real 
24-by-24 real matrix. 140 evaluations are made per second on a 1.2 GHz PC in Mat-
lab. The number of evaluations in 40 passes is 40 passes · 8 nodes · 5 steps · 24 ex-
amples · 2 signs = 80,000 evaluations, which takes approximately 10 minutes. Figure 
2 shows the convergence of the node parameters, and Figure 3 illustrates the modes.  

 



 
Fig. 1. The 24 �box-bump� shapes created with a bump at a varying location and with 
varying aspect ratio of the box (first used by Davies et al). Eight nodes are optimised, 
and the first example was annotated manually as shown, while the corresponding 
nodes were placed on the other examples by the MDL algorithm in 10 minutes. 
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Fig. 2. The course of the optimisation of the parameter of the node to the right of the 
bump in the box-bump problem is shown for each example. The master example is 
kept fixed.  



 
Fig. 3. The two first modes of the box-bump set after MDL. Shown is the mean shape 
in green with red marks. The whiskers emanating from the marks indicate three stan-
dard deviations of the principal components. The mean has indeed captured the shape 
of a small semicircular bump and the first component is close to a horizontal dis-
placement of the bump. To keep the centre of gravity fixed, the movement of the 
bump is counterbalanced by an opposite movement of the box.  The second principal 
component describes the aspect ratio. 

Improved control of run-away 

In some cases, a single fixed master example is not sufficient to keep the whole set in 
place. For example the free endpoints of open curves can drift systematically to one 
side or the other, neglecting the master. This is because the statistical weight of the 
majority can outweigh the single master and the gain of run-away exceeds the cost of 
a single outlier. 

A remedy to this mutiny is to add a stabilising term to the MDL cost. Instead of 
fixing the node parameters of the master, one introduces a target ai

target for the aver-
age parameter ai

average for each node i  by means of a quadratic cost: 
 

NodeCost = Σ (ai
average � ai

target)2/T2  (2) 

where T is a chosen tolerance, so if the average drifts e.g. T = 0.05 away from the 
target, one unit is added to the cost. 

The algorithm can in general be run in four modes: Mode 1 fixes the node parame-
ters of one master example. Mode 2 fixes the averages of the node parameters as 
described above. Mode 1 maintains the pure learning idea of one labelled example 
among the unlabelled rest, while mode 2 has stability towards runaway and a sym-
metric treatment of all examples. Finally we introduce mode 3 and 4 where the dy-
namics is controlled by the node cost with �moving target� values, which are adjusted 
at the start of each pass. In mode 3, an annotated master example is provided, and the 
moving targets are adjusted such that the master case relaxes in agreement with the 
annotation. In mode 4, no annotated example is used. Instead the moving targets are 
adjusted such that the average node parameters relax on desired values � a neutral 
choice is 0.5 for all parameters, which leads the marks to be located on average 
evenly in arc length. All four modes are supported by the open source Matlab code.  

Mode 3 is to be preferred over mode 1. It maintains the attractive learning para-
digm of one labelled example among many unlabelled, but avoids the troublesome, 
unsymmetrical treatment of the master example of mode 1.  



4. Theoretical Development of MDL Shape Models 

Davies 2001 presents a fundamental MDL analysis of PCA models. The transmission 
of the shape data set is done by transmitting the mean value and t eigenvectors (the 
model) and for each data example transmitting the t principal component and the n 
residuals (n = 2N). The residuals stem from the use of a limited number t, plus an 
enhancement due to the finite precision used to transmit the model and the principal 
components. The enhancement factor is computed to α = ns / (n(s � 1) � t (n � s)).  

The optimal number of principal components can be determined, i.e. MDL can be 
used to determine the proper model complexity for the data set at hand, and if the 
number of data examples increases, the optimal t increases. For a fixed number t, the 
MDL expression is of the form 

 

DL = Σλm≥λcut log λm + K log (Σλm<λcut λm) (3) 

 
where K is a constant. This expression is similar to the Bayesian BIC expression in 
[7].  

There are two problems with this MDL shape model. 
Firstly, α was computed wrongly; the correct expression is  

α = ns / (ns � (n + tn + ts)). This diverges when the dimension of the PCA coding (the 
mean value contributes n, the loadings vector tn and the scores ts) equals the dimen-
sion ns of the original data. Thus the total MDL cost can be computed only for  
t < (ns � n)/(n + s) and not as in Davies 2001 all the way up to s (if s<n). It is easy to 
verify the corrected expression by reviewing the details in Davies 2001. The expres-
sion (3) is unaffected by the error in α. 

The second and more serious problem is the inappropriateness of MDL for doing a 
complete PCA analysis of shapes. PCA is blind to the spatial arrangement of the 
inputs: Any permutation of the coordinate labels yields an identical PCA. A consider-
able amount of information is spent on transmitting the eigenvectors, but MDL ig-
nores the correlations between eigenvector coordinates of nearby points. This means 
that the MDL analysis gets increasingly inadequate as n increases and the high-n limit 
is not consistent. For this reason it is recommended to use the Davies 2002 version. 

However, one should not through out the baby with the bathwater. With the cor-
rected α, the MDL PCA is perfectly valid and could be a useful tool for data, which 
are not spatial or otherwise sampled in an ordered manner. For instance in analyses of 
demographic data, the method could be used to determine the number of components.  
 
Davies 2002: In this paper the problem with MDL PCA is solved. The analysis is 
now greatly simplified by removing the transmission of the model from the cost, i.e. 
the mean and the eigenvectors are transmitted with infinite precision for free. What is 
left is the cost of transmitting the principal components. This is almost trivial since 
we are dealing with orthogonal variables transmitted one by one and assumed to be 
Gaussian. The cost of transmitting component m is log(λm) for λm ≥ λcut where λcut = 
σcut

2 is related to the principal component discretization step ∆ through σcut = 2∆. So 
for a shape with rms radius 100 pixels, σcut = 0.003 corresponds to a discretization of 



the MDL representation of on the average 0.15 pixels. Below λcut the cost approaches 
a constant as described in Section 3.  

Now there is little left of the delicate balance between model complexity and data 
misfit, which is the strength of MDL, and the optimal number of principal compo-
nents is no longer determined. However, this is not needed for the point correspon-
dence problem and this cost is sufficiently powerful to guide the search for the opti-
mal shape parameterisation. As Ockham said, one should not do with more, what one 
can do with less, and in this sense, the simpler 2002 version is the true way of doing 
MDL shape analysis.  

The new way is not only simpler, it is also more consistent. It can be considered as 
a reformulation of the problem in a proper reference frame - a transformation of the 
data to the natural coordinates of the problem. These coordinates, the principal com-
ponents, are independent of the granularity n by which the shapes are sampled spa-
tially, as demonstrated in Section 3. The formalism has one important and meaningful 
parameter σcut, which controls the desired level of detail in the shape modelling as 
explained in Section 3. 

It is interesting to note the circular path of history of the point correspondence 
problem. The Davies 2002 paper returns to a cost, which is close to the original, intui-
tive notion of compactness (with a cut-off) of Kotcheff and Taylor 98.  

5. Examples from medical images 

The MDL method is applied to a set of 24 contours of metacarpals deduced from 
standard projection radiographs of the hand in the posterior-anterior projection. We 
use 64 marks, 8 nodes and a master example, and the algorithm converges after 40 
passes in 10 minutes - see Figure 4.  

 
Fig. 4. MDL shape analysis of the second metacarpal. The mean and 3 standard deviations of 
the first principal component are displayed.  

The method is also applied to a set of 32 contours of femurs in the supine projec-
tion deduced from projection X-rays (Figure 5). This is treated as an open contour 
with free end-points. Using a single master example causes a slight run-away, so the 
more powerful control method mode 2 is used instead with T = 0.05. The target pa-
rameters at both ends are set to 0.04 and the internal node parameter targets are 0.5, 
corresponding to marks distributed on average evenly in arc length. This is the most 
neutral choice, and the 9 nodes of the shapes will then in general not relax at con-
spicuous locations. If such marks are needed, e.g. for visual validation they can easily 



be constructed afterwards by interpolation between marks. The computation uses 65 
marks, 9 nodes, 40 passes and takes 11 minutes.   

In both examples is was checked that starting with different initial conditions leads 
to the same minimum, so there is no sign of problems with local minima, and there-
fore  there is no need to use genetic algorithms for shapes of this kind. 

 
Fig. 5. Result of MDL analysis of femur contours. Here 14 of the 32 examples are shown with 
the optimised node positions. It is seen that they appear to be placed in a corresponding man-
ner, and the free end-points have selected different portions of the available shafts. 

6. Generalisation to MDL Appearance Model 

This work was motivated by its use for creating training examples for ASM and 
AAM. In the introduction, this problem was divided into two parts: (1) Finding the 
shape contours and (2) defining marks on the contours, and only the latter problem 
was treated so far. In this section it is briefly proposed how the MDL approach could 
be extended to attack the first problem as well. 

First notice that the point correspondence problem can be viewed as segmentation 
on a contour: the bump and the sides of the boxes are the segments of the object. 
These segments are annotated on the master example and the task of the optimisation 
is to locate the corresponding segments on the other examples. Thus we are perform-
ing unsupervised segmentation with a single labelled example. The problem is solved 
by brute force using a greedy algorithm minimizing the coding length of the shapes 
expressed in the PCA frame of reference. 

Now consider the analogous problem of unsupervised image segmentation: As-
sume that we have 100 images of objects of a certain class, for instance X-ray images 
of a specific bone in a specific view. With just one example labelled by marks on the 
object boundary, it is often possible for humans to correctly segment the other 99 
images in a corresponding way. However, this problem has not been solved in com-
puter vision, despite the human proof-of-concept, despite the huge computer power 
available, and despite the obvious application e.g. for construction of AAMs for 



medical imaging. In addition it is an interesting cognitive question how humans man-
age to solve the task. It is suggested that Ockham�s principle of minimum description 
length or economy in explanation can be the guiding principle of this process. If so, 
the human mind must have extra-ordinarily flexible and powerful optimisation skills. 
The successful and fast MDL shape model reviewed and improved in this paper natu-
rally encourages us to apply a similar solution to the unsupervised object segmenta-
tion problem.  

The following scheme is proposed: Match the master shape approximately onto the 
unlabeled examples using a rigid transformation. This can be done either manually or 
by some simple template matching method based on image correlation. 

The shapes on each example are now allowed to reparameterise individually along 
the contour, exactly as in the MDL shape model as shown in Figure 6 left using the 
same hierarchical system of nodes. But the shapes are now also allowed to deform by 
displacements perpendicular to the curve, as shown in Figure 6 right. Again this is 
done in a coarse-fine manner using the same node hierarchy, where the displacement 
drops linearly to zero towards the neighbouring nodes on the same level.  
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Fig. 6. The reparametrisation used in MDL shape model (left) and the additional reparametrisa-
tion (right) introduced in the MDL Appearance Model for unsupervised vision.  

The cost function is based on an appearance model of the set of images. An image 
template is defined in terms of a triangulation controlled by the shape marks. This is 
designed on the labelled example. Auxiliary points are constructed from the shape 
marks in order to span a margin around the object as is often done in AAM [8], and 
the triangulation of the image template is defined using the marks and the auxiliary 
points as vertices. Image texture sampling points are defined relative to this mesh. A 
priori knowledge can be inserted into the modelling at this stage by increasing the 
density of sampling points in certain areas of the object, e.g. more points near the 
shape boundary and fewer points in irrelevant areas. In addition to sampling image 
intensities, edge intensities can be sampled [9] to emphasise that we want accurate 
modelling of the edges. 

For any placement of the marks on the examples, a shape and a texture PCA model 
can be built and combined to an appearance model. The cost function is then defined 
in terms of the eigenvalue spectrum and a suitable cut-off value.  



The algorithm is slower than the MDL shape method due to the sampling of some 
or all of say 10,000 texture values every time an example is reparameterised, but as 
demonstrated by Stegmann [10] this can be speeded up using modern graphics cards.  

7. Conclusions 

The MDL shape method was reviewed with the following original contributions: 
1) Correction of the 2001 PCA MDL formula. 
2) Explanation of the problems of full MDL on PCA of shapes. 
3) Efficient treatment of closed and open curves. 
4) The �Mohammed and the mountain� trick. 
5) Alternative control of run-away using average node parameters.  
6) A new optimisation scheme with adaptive step length and a multiple coarse-

fine strategy. 
7) Efficient numerical method: 10 minutes on a 1.2 GHz machine in Matlab. 
8) Open source Matlab code and test examples.  
9) Generalisation to MDL Appearance Models (a kind of �Manchester United�) 

for unsupervised image segmentation from one labelled example. 
Correspondence with Carole Twining is acknowledged. Pronosco is acknowledged 

for providing the contours of metacarpals and femurs.  
Davies clarifies many of the same issues in his thesis [11]. 
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