
M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 i

Preface

This M.Sc. Thesis presents the results of my final master project entitled Secure
Routing in Mobile Ad Hoc Networks. The master project was carried out in the period
1st of July to 31st of December 2003 and corresponds to 30 ETCS points. It has been
the final part of my studies for the Master of Science degree (In Danish Civilingeniør-
uddannelsen) at the Department of Informatics and Mathematics Modelling, IMM,
Technical University of Denmark, DTU.

Associate Professor Christian Damsgaard Jensen, IMM, was supervisor of my M.Sc.
Thesis project.

I would like to take this opportunity to thank Christian Damsgaard Jensen for his
counseling, support and not least his interest in my M.Sc. Thesis project.

Furthermore, I would like to thank the following persons: Casper Borly, Finn Conrad,
Simon Haldrup and Tom Skovgaard for comments and discussions during my thesis
work.

Last but not least, I would like to thank my girlfriend Lene Skovgaard for her patience
and understanding.

Lyngby, DTU, 30th December 2003

Lennart Conrad

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 ii

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 iii

Abstract

This M.Sc. Thesis has focused on the design and implementation of trust based route
selection in mobile wireless ad hoc networks. A system that stores and updates trust
values for nodes encountered in mobile ad hoc networks is designed and
implemented. The trust values are used to base routing decisions on. Since a route
consists of many nodes that are grouped, different strategies for evaluation of routes
based of the nodes trust values have been designed and implemented.

The implemented system has been integrated with an existing implementation of the
Dynamic Source Routing protocol; A protocol, used for communication in mobile
wireless ad hoc networks. To identify how and where to incorporate the trust in the
DSR protocol an analysis of possible malicious attacks against the protocol have been
conducted and presented.

To evaluate the performance impacts of applying trust based route selection to the
DSR protocol several different simulations have been performed on the Ns-2 network
simulator. The results from these simulations have been analyzed and presented.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 iv

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 v

Abstract in Danish

Denne M.Sc Thesis har fokuseret på design og implementering af tillids baserede rute
valg i mobile trådløse ad hoc netværk. Et system som gemmer og opdaterer tillids
værdier for kendte noder i ad hoc netværk er blevet designet og implementeret. Tillids
værdierne benyttes til at basere rute valg på. Eftersom en rute består af mange noder
som er grupperede, er forskellige strategier til at evaluere ruter, på baggrund af
nodernes tillids værdier, blevet designet og implementeret.

Det implementerede system er blevet integreret med en eksisterende implementering
af ”Dynamic Source Routing” protokollen, en protokol som benyttes til
kommunikation i trådløse ad hoc netærk. For at indentificere hvor og hvordan tillid
har kunnet indbygges i DSR protokollen, er der foretaget og præsenteret en analyse af
mulige angreb på protokollen.

For at evaluere effekten af at benytte tillids baserede rute valg i DSR er der blevet
foretaget flere forskellige simuleringer på Ns-2 netværks simulatoren. De opnåede
resultater her af, er blevet analyserede og presenterede.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 vi

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 vii

1 Introduction... 1
1.1 Motivation ...2
1.2 Aim and Objectives ..2

1.2.1 Preliminary objectives ...3
1.2.2 Main objectives..3
1.2.3 Post objective ..4

1.3 Report Roadmap ..4

2 State of the art.. 5
2.1 Introduction to Ad Hoc Networks and Routing..5

2.1.1 Routing protocols ..6
2.1.2 The Destination-Sequenced Distance Vector (DSDV) Protocol..................7
2.1.3 The Temporally-Ordered Routing Algorithm (TORA)8
2.1.4 The Dynamic Source Route (DSR) Protocol ...9
2.1.5 The Ad-Hoc On Demand Distance Vector (AODV) Protocol.....................13
2.1.6 Comparison of Ad Hoc Routing Protocols...13
2.1.7 Summary ...14

2.2 Trust Management Systems...14
2.2.1 PolicyMaker...15
2.2.2 KeyNote...16
2.2.3 REFEREE ...16
2.2.4 Summary ...16

2.3 Security In Ad-Hoc Networks..17
2.3.1 Zhou et al Key Management Service ..18
2.3.2 The Security Aware Ad-Hoc Routing Protocol (SAR)................................18
2.3.3 Entity Recognition ...19
2.3.4 The Watchdog – Pathrater approach ..20
2.3.5 The CONFIDANT protocol ..21
2.3.6 Nuglets ..22
2.3.7 Trust based routing ...23
2.3.8 Summary ...23

2.4 Trust ...24
2.4.1 Definitions of trust..24
2.4.2 Different categories of trust ...25
2.4.3 Frameworks for Working with Trust...27
2.4.4 Summary ...29

2.5 Subjective evaluation of methods and techniques................................30

3 Analysis .. 33
3.1 Analysis of DSR ...33

3.1.1 Sending of packets..33
3.1.2 Receiving packets ...34
3.1.3 Forwarding of packets ...35

3.2 Extensions to DSR ...37
3.3 Assumptions made about malicious nodes ..37
3.4 Attacks that are not covered by the analysis ..38
3.5 Prioritization and general assumptions...38
3.6 Summary ..39

4 Design .. 41
4.1 Identification of components...41

4.1.1 Trust Formation ...42

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 viii

4.1.2 Trust updating ...42
4.1.3 Route selection..44
4.1.4 Trust management ..47
4.1.5 Acknowledgement monitoring ...47
4.1.6 Combining the trust modules...49
4.1.7 Existing DSR Implementation in NS-2...49
4.1.8 Merging the trust modules with the existing DSR code.............................51

4.2 Summary ..56

5 Implementation and tests ... 57
5.1 Introduction to the Ns-2 simulator...57

5.1.1 Overview of Ns-2...57
5.2 Implementation details ...58
5.3 Tests ..58
5.4 Summary ..59

6 Simulations and Results... 61
6.1 The randomness of simulations..61
6.2 Metrics..62
6.3 Processing the output...63
6.4 Parameters...64

6.4.1 Table of standard DSR parameters...64
6.4.2 Trust related parameters ...64
6.4.3 Other parameters ..65
6.4.4 Malicious nodes...65

6.5 Preliminary simulations...66
6.5.1 Estimation of initial trust ..66
6.5.2 Estimation of acknowledgement time out..66
6.5.3 Impact of using different scenarios..67

6.6 Comparison of Route selection strategies ..70
6.7 Evolution of trust values ...73
6.8 Malicious packet drops...74
6.9 Examining the Route Cache...75
6.10 Uncertainties ..77
6.11 Summary ..78

7 Future Work, Improvements and Perspective 81
7.1 Introduction of grudging behavior ...81
7.2 Using a sliding window mechanism for acknowledgements81
7.3 Derivation of knowledge by examining received packets81
7.4 Examining cause and location of packet drops82
7.5 Decrease trust over time ..82
7.6 Perspective...82
7.7 Summary ..83

8 Conclusion.. 85

A Bibliography.. 89

B List of used terms and definitions... 93

C Nomenclature ... 94

D List of used acronyms .. 95

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 ix

E Appendices (F – P)... 97

F List of figures .. 97

G List of tables ... 99

H List of equations ... 100

I Content of the CD... 101

J Structure of mobile node in Ns-2.. 102

K Result from simulating DSR with different scenarios............ 104

L Simulation platform... 105

M Sendbuffer drops during simulation with RS1 106

N Output from simulations ... 107

O Implementation details ... 108
O.1 Scanning for timed out acknowledgements108
O.2 Malicious behavior ...108
O.3 File format..108

P Source code ... 109
P.1 DSRParser.java...109
P.2 RouteParser.java...111
P.3 Otcl script...114
P.4 TrustManager (.h and .cc) ...117
P.5 TrustFormater (.h and .cc) ...123
P.6 TrustUpdater (.h and .cc)...126
P.7 ACKMonitor (.h and .cc) ..128
P.8 RouteSelector (.h and .cc) ...130
P.9 TrustConstants.h ...138

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 x

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 xi

1 - Introduction

1 Introduction
The need of access to wireless communication is increasing rapidly as the desire of
mobile connectivity with devices such as cell phones, PDA’s and laptops to data
networks is becoming more and more prevalent
The growing demand for mobile access is reflected by the current increase in the
establishment of local wireless networks and the construction of new pylons for tele
communication. However several factors such as, geographic conditions, economics,
and spontaneous occurring needs can make the establishment or existence of access
points impossible.

To manage situations where access points are out of transmission range, ad hoc
routing protocols that can be used in mobile wireless networks have been developed.

An ad hoc network is a collection of wireless mobile nodes that dynamically functions
as a network without the use of any existing infrastructure and centralized
administration. Nodes move around which can cause links to be broken and
established. Due to the relatively short transmission range of wireless devices, nodes
in the network collaborate to route data to destinations that might be out of the senders
transmission range. An ad hoc network is illustrated in Figure 1-1. As illustrated all
nodes are not in direct connection with each other but can use other nodes as relays in
order to transmit to a destination.
The figure also illustrates another important property of the shown ad hoc network,
the inaccessibility to servers or centralized administration.

Figure 1-1: Mobile wireless ad hoc network

Ad hoc networks are often proposed for search and rescue mission and military
operations where existing infrastructure have been damaged and is inoperative. In
such situations the nodes are related by outside factors such as organizational
hierarchies.

Another type of ad hoc networks, often referred to, as collaborative networks are
networks where agents with no common relations join together to achieve their own
personal goal of sending packets to a destination.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 1

1 - Introduction

The structure of collaborative ad hoc networks is untraditional, since nobody can
claim ownership and control of the network and thereby attend to administration of
the network and require payment for its use.

The structure of the ad hoc network gives rise to security issues of different severity,
since malicious nodes can seek to exploit the openness of the network.

This M.Sc thesis investigates several existing security solutions for ad hoc networks
and proposes a trust based route selection solution. The solution addresses the
problem that occurs when malicious nodes starts to drop packets they were supposed
to forward. The design and implementation of the solution is presented and results
from simulations with the implemented system is analyzed and discussed.

Due to the technical nature of this M.Sc. thesis, it is expected that readers of this have
a general technical insight and knowledge of software development methods.

1.1 Motivation
Most common protocols for mobile wireless networks build on the assumptions that
nodes in the network are willing to participate to the networks existence by
forwarding packets for other nodes.

In general most mobile devices operate on battery power, which means that each
transmission has a cost in terms of power consumption. This results in a conflict,
since nodes have to perform the task of forwarding data, from which they achieve no
benefits and as a result consume their own battery power. There is little reason to
assume that some nodes will not try to achieve the benefits of participating in the
network and avoid the disadvantages it involves. This could mean that some nodes
refuse to forward packets as supposed and thereby decrease the efficiency of the
network. Because of the nature of the ad hoc network it is difficult to identify nodes
that express such malicious behavior, because the node originating the transmission
might be out of range to detect the malicious act.

The open structure, lack of existing infrastructure and un-accessibility to trusted
servers make traditional security methods and system insufficient for application in
mobile wireless ad hoc networks. Achieving different levels of security therefore
represents a major issue for the distribution and use of ad hoc networks.

By allowing an unknown node to forward data, nodes perform a trust-based decision.
Trust is a well-known sociological concept that humans on a daily basis base decision
on. By incorporating trust in ad hoc routing protocols and thereby mimicking human
behavior, it is expected that the establishment and evolution of trust can be used to
detect nodes that betrays the trust placed in them. The detection of untrustworthy
nodes can be used to apply trust based route selection strategies to ad hoc routing
protocols and thereby increase the effectiveness of the network.

1.2 Aim and Objectives
This section states the aim and objectives that have been stated for the Master project.
Because of the exploratory nature of the project the list of objectives has evolved in

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 2

1 - Introduction

order to reflect the increasing knowledge and insight in the areas of ad hoc routing
and trust.

The aim of the assignment has been to design and implement a system that can be
used for trust based routing. The system must make it possible for nodes to store and
updates crisp values that represent their trust in other nodes. These values should be
adjusted based on the experiences the nodes have. When a route is selected is must be
selected by an evolution of the nodes on the routes values. It is the aim that such a
system can be applied to the DSR protocol to achieve route selection strategies that
can avoid nodes with low values.

The primary objective, which is stated in Figure 1-2 has been clear from the start.

 Primary objective: To apply trust based route selection to the Dynamic

Source Routing (DSR) protocol, in order to fortify the protocol and improve
route selection, which can increase throughput in situations where malicious
nodes are present in the network.

Figure 1-2: Primary objective.

In order to achieve the primary objective several intermediate objectives are defined.
These objectives are divided into three categories: preliminary, main and post
objectives

1.2.1 Preliminary objectives
The preliminary objectives are objectives that need to be fulfilled in order to gain the
sufficient knowledge to fulfill the main objectives.

PRE-O 1. Examine existing ad hoc routing protocols. To attain knowledge and

insight in the area of ad hoc routing existing protocols must be examined.

PRE-O 2. Investigate security solutions applied to ad hoc networks and ad hoc
routing protocols. Existing security solutions that have been applied to
ad hoc networks and routing protocols must be investigated, to identify
useful methods and approaches.

PRE-O 3. Research the area of trust. Research the area of trust management and

trust in general to gain deeper knowledge of trust as a concept and to find
formal methods for expressing trust.

1.2.2 Main objectives
The fulfillment of the main objectives leads to the fulfillment of the primary
objective.

M-O 1. Analyze the DSR protocol. To detect weaknesses and possible pitfalls the
DSR protocol [Johnson1] must be analyzed. Furthermore, situations where
trust can be incorporated must be identified.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 3

1 - Introduction

M-O 2. Design and implement components to incorporate trust based route
selection to the existing DSR protocol. Based on the analysis modules
that incorporate trust must be designed, implemented and integrated with
the existing implementation of the DSR protocol. Particular emphasis
must be put on the design of different routing strategies.

1.2.3 Post objective
This objective needs to be fulfilled to determine to what extend the primary objective
has been fulfilled and to identify possible areas of improvement.

P-O 1. Simulate behavior of the implemented trust based routing and analyze
results. Simulations with the implemented extension have to be carried
out. The results must be analyzed to determine the impact of applying the
trust based routing strategies and to detect possible areas of improvements.

1.3 Report Roadmap
This section gives a brief presentation of each chapter in the thesis.

Chapter 1 Introduction: In this chapter an introduction to the investigated area ad
hoc networks is presented. Furthermore, the motivation and the objectives are
presented.

Chapter 2 State of the art: This chapter concerns examined areas such as:

• Ad hoc routing protocols
• Trust management systems
• Security in Ad hoc networks
• Trust

Chapter 3 Analysis: In this chapter an analysis of the DSR protocol is presented. The
analysis focuses on how to apply trust to the protocol and how malicious nodes can
misuse the protocol.

Chapter 4 Design: The design of the component that is used to incorporate trust
based route selection in DSR is described. Furthermore the integration with the
existing DSR classes is covered.

Chapter 5 Implementation and tests: This chapter covers the implementation of the
designed system and discusses the tests that have been performed. Furthermore, it
gives a small introduction to the Ns-2 network simulator.

Chapter 6 Simulations and Results: In this chapter the performed simulations are
described and the achieved results are discussed and analyzed.

Chapter 7 Future Work, Improvements: Some of the future area of work and
possible areas of improvements are discussed in this chapter.

Chapter 8 Conclusion: The final chapter presents the conclusion and contribution of
the project and summarizes the achieved results.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 4

2 - State of the art

2 State of the art
To achieve the preliminary objectives, PRE-O 1 and PRE-O 3, several areas such as
ad hoc networks, routing protocols, trust and security in ad hoc networks has been
researched. This chapter investigates these areas.

2.1 Introduction to Ad Hoc Networks and Routing
An ad hoc network consists of mobile wireless nodes. Nodes participating in the
network manage routing without the use of any existing infrastructure. Further more
no centralized access point exists in the network. Mobile wireless nodes will typically
have limited transmission range, which means that packets might have to be
forwarded by several nodes in order to get from one node in the network to another.
Figure 2-1 below illustrates how node A uses a route through node B to get data to
node C, because C is out of A’s transmission range.

A B C

: Transmission radius

Figure 2-1: Node A transmits a package to node C by routing it through node B.

Routing protocols for ad hoc networks need to account for several aspects. Since
nodes can move around, and enter and leave the network, the network topology can
change rapidly. Due to the possible rapid changes in topology, it can require a lot of
communication for a node to keep a static picture of the topology. Since the nodes are
mobile they operate on battery power, which limits the amount of data they can
transmit, before recharging is necessary. Furthermore, the possible bandwidth for
mobile devices today is not as high as for stationary networks. Most mobile devices
today have less processing power and memory than standard PC’s.

Due to these circumstances ad hoc routing protocols must minimize the number of
packets used for maintaining the routes and must be able to adapt to changes in the
topology.

Another issue in ad hoc networks is that links between nodes are not always
bidirectional but can be unidirectional. As illustrated in Figure 2-2 below, this means
that even though node A can transmit to node C through node B, it is not sure that
node C can use the same route back to A. Several issues such that low battery power
or different hardware types can cause unidirectional links.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 5

2 - State of the art

A B C

D

Figure 2-2: Unidirectional links, node A can transmit to node B and B to C, but node C cannot

transmit to node B and must use a different route to A.

If node C should be able to transmit through the node B, the distance between the two
nodes should be decreased. Bi-directional links can be established by lowering the
distance between nodes.

The remainder of this chapter includes a general introduction to ad hoc routing
protocols and an introduction to four well-known ad hoc routing protocols. The mode
of operation for each protocol is explained. Some comparisons of the performance of
these protocols have been conducted and described in the literature and some of the
results from these comparisons are summarized.

2.1.1 Routing protocols
There are several different principles that can be applied when constructing routing
protocols for ad hoc networks. This section introduces some of these principles.

Proactive vs. Reactive
Protocols can be proactive (also called table driven) which means that nodes
periodically registers changes in the topology and updates routing information. The
routes are stored and maintained in routing tables. Proactive protocols have the
advantage that there is little latency since routes are already available [Zou], but the
disadvantage that they require nodes to periodically update routing tables. In a highly
dynamic network this increases routing related traffic. The opposite approach is the
reactive (also called on-demand) protocols. Routes are first discovered on demand,
when data needs to be transmitted to a node where no route has yet been discovered.
The major advantage of on demand routing is that it saves bandwidth because it limits
the routing overhead. The disadvantage is the latency at the beginning of transmission
to nodes when no route, have yet been discovered [Zou].

Source routing vs. Hop-by-hop routing
Some routing protocols include the entire route in the packet header. This type of
routing is referred to as source routing. It has the advantage that intermediate nodes
are not required to maintain up-to-date routing information to forward the packet. The
disadvantage of source routing is that the packet size can grow, especially in large
networks.
Hop-by-hop routing protocols, such as vector protocols, only include information
about the destination in the header and use local tables to determine the next hop on
the route. This has the advantage that it limits the packet size, but has the
disadvantage that it requires nodes to maintain and exchange routing information.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 6

2 - State of the art

In the following sections some routing protocols that build on the described principles
are investigated. Particular emphasis will be put on the description of the DSR
protocol since this is the foundation for the subsequent design and implementation.

2.1.2 The Destination-Sequenced Distance Vector (DSDV) Protocol
The Destination-Sequenced Distance Vector protocol (DSDV) was introduced by
Charlie E. Perkins and Elizabeth Royer in 1994 [Perkins1], [Guoyou1]. The protocol
is a modification of the Bellman-Ford routing algorithm [Siek1]. This is a
decentralized routing algorithm, which requires that each router inform its neighbours
of its routing table. These modifications make the protocol more suitable for routing
in ad hoc networks. The protocol is of the hop-by-hop type.

Assumptions

A1. DSDV assumes that all links in the network are bi-directional.

Mode of operation
DSDV operates by having each node maintain a table with information about
distances and information about the next node on a route. The protocol can be
explained by looking at a small topology, such as the one illustrated in Figure 2-3.

H3

H2

H1

H4

H5

Figure 2-3: A simple topology

Table 2-1 illustrates the route information that the node H4 would store.

Dest Next Hop Metric Seq. No Install
H1 H2 2 S406_H1 T001_H5
H2 H2 1 S128_H2 T001_H5
H3 H2 2 S444_H3 T001_H5
H4 H4 1 S123_H4 T001_H5
H5 H5 1 S489_H5 T001_H5

Table 2-1: Routing table for H4 node in the DSDV protocol.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 7

2 - State of the art

Table 2-1 illustrates the nodes only stores information about destination and next hop,
and not about the entire route. As seen, the route from H4 to H3 goes through H2,
which means that the metric is 2 (hops). The next node on the route from H4 to H3 is
H2, and H4 will therefore forward packets for H3 to H2. Information concerning the
next hop is stored in the Next Hop column.

The sequence numbers in the Seq. No column is used to compare routes. Routes with
higher sequence numbers are considered more favorable. If the sequence number is
the same the route with the lowest metric is preferred. The value in the Install column
is used to help determine when stale routes should be deleted.

Each node in the network must periodically transmit its entire routing table to its
neighbours. Missing transmissions can be used by neighbour nodes to detect changes
(broken links) in the topology. Broken links may also be detected by communication
hardware [Guoyou1]. When a broken link is detected it is assigned a metric value of
infinity and the node that detected the broken link broadcasts an update packet, to
inform others that the link is broken.

2.1.3 The Temporally-Ordered Routing Algorithm (TORA)
The Temporally-Ordered Routing Algorithm (TORA) protocol was developed by
Vincent D. Park and M. Scott Corson [Corson1] in 1997. The protocol is an on-
demand protocol that works by using a link-reversal algorithm such as the Gafni-
Bertsekas (GB) algorithms [Perkins2]. The protocol is designed to minimize the
reaction to topological changes and to discover multiple routes to a destination.
Finding the shortest path is considered to be of less importance in this context.

Assumptions
A1. It is assumed that all transmitted packets are received correctly and in order

of transmission.
A2. Bi-directional communication between nodes is assumed possible.
A3. It is assumed that a link-level protocol, which ensures that nodes always

know their neighbours, is present.
A4. When a node transmits a packet it is broadcasted to all of its neighbours.

Mode of operation
TORA organizes the topology as a graph, were links (edges) between nodes can be in
one of the following three states:

1. Undirected
2. Directed from node i to node j. In this case node i is said to be upstream from

node j.
3. Directed from node j to node i. In this case node i is said to be downstream of

node j.

The protocol uses a metric of height of nodes to direct the network. The method of
operation is described as “water flowing downhill towards a destination through a
network of tubes that model the routing state of the real network. The tubes represent
links between nodes, and the water in the tubes the packets flowing towards its
destination” [Broch1].

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 8

2 - State of the art

The protocol has three basic functions:

• Establishing routes
• Maintaining routes
• Deleting routes.

The establishment of routes essentially corresponds to assigning directions to links in
an undirected network. To accomplish this task a query/reply process is used. The
result of this process is a directed acyclic graph (DAG) [Corson1]. When a node needs
to establish a route to a destination D, it broadcasts a QUERY packet with the
destination. The packet propagates through the network until the destination or a node
with a route to the destination is reached. The recipient broadcasts an UPDATE
packet containing a value of the height that is a value that is assigned to the node.
Every time a node receives the UPDATE packet it sets its height to one greater than
its neighbours. This results in a set of directed links going from the sender of the
QUERY, who has the highest height value, to the destination that has the lowest
height value.

When a node discovers that a route is no longer usable it will increase its height to a
local maximum with respect to its neighbours and transmit an UPDATE packet. This
strategy minimizes the number of nodes that needs to be informed of the changes in
the topology, since it correspond to a situation were water will flow back out of the
node to the nodes that have been sending packets to it.

2.1.4 The Dynamic Source Route (DSR) Protocol
DSR was first introduced and described by David B. Johnson, David A. Maltz and
Josh Broch in 1994 [Johnson1]. The protocol is specifically designed for use in multi-
hop wireless ad hoc networks. The protocol does not require any existing network
infrastructure or administration and is completely self-organizing and self-
configuring. The protocol basically consists of the two mechanisms: Route Discovery
and Route Maintenance, where the Route Discovery mechanism handles
establishment of routes and the Route Maintenance mechanism keeps route
information updated.

Assumptions
Some assumptions concerning the behavior of the nodes that participate in the ad hoc
network are made. The most important assumptions are the following:

A1. All nodes that participate in the network are willing to participate fully in the
protocols of the network.

A2. The diameter of the network are often small, e.g. in the interval of [5:10]
nodes.

A3. Nodes can detect and discard corrupted packages.
A4. The speed at which nodes move is moderate with respect to packet

transmission latency.
A5. Each node can be identified by a unique id by which it is recognized in the

network.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 9

2 - State of the art

Especially A1 is interesting since it builds on the trust and good will of other nodes in
the network. The fact that Johnson et al emphasizes this as an assumption [Johnson1],
indicates that they notice that the goodwill of other nodes might not always exist in
practice.

Mode of operation
DSR operate on demand, which means that no data, such as route advertisement
messages, is send periodically and therefore routing traffic caused by DSR can scale
down and overhead packages can be avoided.
DSR is a source routing protocol, which means the entire route is known before a
packet transmission is begun. DSR stores discovered routes in a Route Cache.

The two mechanisms: Route Discovery and Route Maintenance are described below.

Route Discovery
When a node S sends a packet to the destination D, it first searches its Route Cache
for a suitable route to D. If no route from S to D exists in S’s route cache, S initiates
Route Discovery and sends out a ROUTE REQUEST message to find a route. The
sending node is referred to as the initiator and the destination node as the target. The
fields of the ROUTE REQUEST message are explained in Table 2-2.

Fields Explanation
Initiator ID The address of the initiator.
Target ID The address of the target.
Unique Request ID A unique ID that can identify the

message.
Address List A list of all addresses of intermediate

nodes that the message passes before its
destination. This is empty when the
message is first send.

Hop Limit The hop limit can be used to limit the
number of nodes that the message is
allowed to pass.

Network Interface List If nodes have several network interfaces
this information can be stored in this list.

Acknowledgment bit There is an option of setting a bit so that
the receiver returns an acknowledgement
when a packet is received.

Table 2-2: Fields of the ROUTE REQUEST message. The Italic font are used to indicate fields
used for the more advanced features of DSR.

The initiator initialize the Address List to an empty list and set the Initiator ID, the
Target Id and the Unique Request Id in the ROUTE REQUEST message and then
broadcasts the message. This causes the packet to be received by nodes within the
wireless transmission range.

The initiator keeps a copy of the packet in a buffer, referred to as the send buffer. It
timestamps the message so it can be examined later to determine if it should be send
again. If no route is discovered within a specified time frame, the packet is dropped

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 10

2 - State of the art

from the send buffer. Packets are also dropped from the send buffer if the buffer
overruns.

When a node receives a ROUTE REQUEST message it examine the Target ID to
determine if it is the target of the message. If the node is not the target it searches its
own route cache for a route to the target. If a route is found it is returned. If not, the
nodes own id is appended to the Address List and the ROUTE REQUEST is
broadcasted. If a node subsequently receives two ROUTE REQUESTs with the same
Request id, it is possible to specify that only the first should be handled and the
subsequent discarded [Johnson2].

If the node is the target it returns a ROUTE REPLY message to the initiator. This
ROUTE REPLY message includes the accumulated route from the ROUTE
REQUEST message. The target searches its own Route Cache for a route to the
initiator. The reason that the target node doesn’t just reverse the found route and use it
is that that would require bi-directional links. If a route is not found in the targets
Route Cache, it performs a route discovery of its own and sends out a ROUTE
REQUEST where it piggybacks the ROUTE REPLY for the initiator.

Route Maintenance
Since nodes move in and out of transmission range of other nodes and thereby creates
and breaks routes, it is necessary to maintain the routes that are stored in the Route
Cache. When a node receives a packet it is responsible for confirming that the packet
reaches the next node on the route. Figure 2-4 that the mechanism works like a chain
where each link has to make sure that the link in front of it is not broken. The figure
also illustrates that node C might use another route to communicate to node A.

A B C D E
Message

ACK ACK

Message Message

ROUTE ERRORROUTE ERRORROUTE ERROR

Figure 2-4: The acknowledgement mechanism works like a chain.

Acknowledgment can be performed either by using mechanisms in the underlying
protocol such as link-level acknowledgment or passive acknowledgment. If none of
these mechanisms are available, the transmitting node can set a bit in the packets
header to request a specific DSR acknowledgment. If a node transmits a packet and
does not receive an acknowledgment it tries to retransmit a fixed number of times. If
no acknowledgement is received after the retransmissions, it returns a ROUTE
ERROR message to the initiator of the packet. In this message the link that was
broken is included. The initiator removes the route from its Route Cache and tries to
transmit using another route from its Route Cache. If no route is available in the
Route Cache a ROUTE REQUEST is transmitted in order to establish a new route.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 11

2 - State of the art

Additional features in DSR
As explained in the above sections DSR has a quite simple mode of operation.
However several additional features exist. This section gives an overview of these
additional features. Some features such as prevention of increased spreading of
ROUTE ERRORs and storing of compromising information exist, but are not covered
here.

Caching of Overheard Route Information
Nodes can cache information about routes from packets that they overhear or forward.
This mechanism is called snooping and is mostly used for snooping of routes. For
example a node can cache the route that is returned in a ROUTE REPLY message
when it forwards it. The use of route snooping can limit the amount of ROUTE
REQUEST that are sends, since nodes can discover new routes this way.

Replying to Route Request Using Cached Routes
When a node receives a ROUTE REQUEST message for which it was not the
destination it can attempt to find a route from its Route Cache instead of broadcasting
the ROUTE REQUEST. If a route is found it is returned to the initiator. The node
must however verify that the route that is being returned does not contain any
duplicating nodes since this can lead to loops.

Avoiding Storms of Route Reply
When nodes are allowed to reply to ROUTE REQUEST messages with routes from
their Route Cache the risk of ROUTE REPLY “storms” is present. “Storms” can
occur when a node broadcast a ROUTE REQUEST and its neighbour nodes all has
routes for the target in their cache. This will result in simultaneous ROUTE REPLYs
from all neighbours that can cause congestion or packet collision. This can be avoided
by letting the nodes delay ROUTE REPLYs for a random period. This delay
effectively randomizes the time at which a node returns a ROUTE REPLY message.

Hop Limits on ROUTE REQUEST Messages
Table 2-2 shows the ROUTE REQUEST has a field that can be used to limit the
number of hops that the packet may pass. This can be used to send non-propagating
ROUTE REQUESTs and thereby query neighbour nodes to examine if one has a
suitable route to the destination route in their Route Cache.
It is possible to use the hop limit to implement an expanding ring search. If the hop
limit is increased by 1 every time a ROUTE REPLY is not received, as a result of a
ROUTE REQUEST, the search for a suitable route will spread like a ring in the water.
Johnson points out the risk that this expanding ring search could have the affect of
increasing the average latency of Route Discovery [Johnson1].

Salvaging Packets
When a node forwards a packet, it might successively discover, through the use of
Route Maintenance, that the route for the packet is broken. If the node has another
route to the destination it can use it and thereby salvage the packet. If the packet is
salvaged a ROUTE ERROR should be send to the original sender to report the link on
the route that was broken.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 12

2 - State of the art

Automatic Route Shortening
If a node overhears a packet that it eventually would receive it can return a
“gratuitous” route reply to the original sender to inform the sender that a shorter route
exists.

2.1.5 The Ad-Hoc On Demand Distance Vector (AODV) Protocol
The AODV protocol was presented in 1997 and is designed by Charlie E. Perkins and
Elizabeth Royer, who also designed the DSDV protocol [Perkins1]. The protocol is a
hybrid of the DSR protocol and the DSDV protocol. It uses a route discovery process
much similar to the one used by DSR and makes use of hop-by-hop routing like
DSDV. The primary objectives for the AODV algorithm are:

• To broadcast discovery packets only when necessary.
• To distinguish local connectivity management (neighbour nodes) from

changes in the entire topology.
• To try to forward information concerning changes in local connectivity to

neighbour nodes who are likely to need it.

Assumptions
A1. It is a requirement that the broadcast medium provides the means so nodes

can detect neighbour nodes broadcast messages.

Mode of operation
As mentioned the route discovery process is much similar to the one used by the DSR
protocol. AODV differs from DSR in the way that nodes do not store the entire route
to a destination. The path maintenance mechanism used by AODV is quite similar to
the one used by DSDV and therefore AODV will not be described further.

2.1.6 Comparison of Ad Hoc Routing Protocols
This section gives an introduction to some of the results of performance comparisons
of ad hoc protocols that have been presented in literature [Broch1] [Johnson1]. The
purpose of the section is to give the reader an idea of different protocols performance.
Summarizing all results and conditions is not in the scope of this thesis.

Several performance comparisons of the protocols described in this chapter have been
conducted over time, but none of these seems to have resulted in a unanimous
recommendation of one protocol over the others and no standard has yet been
adopted. One of the most comprehensive comparisons seems to be the one conducted
by Josh Broch et al. in 1998 [Broch1]. DSR, DSDV, TORA and AODV are all
compared using the same simulation environment (Ns-2) under similar conditions.
The overall goal of the comparison was to measure the protocols ability to adapt to
changes in the topology and still deliver packets. The protocols were evaluated using
three metrics:

• Packet delivery ratio, the ratio between the number of packets that the
application layer sends to the protocol and the number of packets received at
the destination.

• Routing overhead, the total number of packets send during the simulation.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 13

2 - State of the art

• Path optimality, the difference between the number of hops a packet took and
the length of the shortest path.

The results show that DSR and AODV deliver over 95% of the packet regardless of
the mobility rate of nodes used for the simulations. For DSR these results correspond
well to other results presented in literature [Johnson1]. The abilities of TORA and
DSDV to deliver packets depend on the movement patterns of nodes in the network;
the more rapidly the nodes move the more packets be dropped.

It is concluded by several sources that DSR has the lowest routing overhead
[Johnson1], [Broch1]. The fact that DSR packets contains a high number of bytes
since the entire route is contained in the packet, is not given much significance, since
the cost of transmitting a packet is much greater than the cost of adding some extra
bytes [Broch1].

The presented results show that DSDV and DSR seem to route very close to the
optimal routes. AODV and TORA have significantly worse results; 4 or more hops
than the optimal route were measured for some packets.

2.1.7 Summary
In this section ad hoc networks have been introduced and different types of routing
protocols for ad hoc networks, such as proactive, reactive, source route based and
hop-by-hop based have been discussed. The four ad hoc routing protocols listed below
have been described.

• DSDV, Destination-Sequenced Distance Vector protocol
• TORA, Temporally-Ordered Routing Algorithm
• DSR, The Dynamic Source Routing protocol
• AODV, Ad-hoc On-demand Distance Vector

The mode of operation and different assumptions for the protocols were covered.
Finally some results from performance comparison of the four protocols have been
pointed out. Based on the results from the performance analysis and the fact that DSR
is based on source routing, which means that the whole route is known at the time of
transmission, supports the decision to apply trust based routing to DSR. The research
and investigations described in this section has lead to the fulfillment of the
preliminary objective PRE-O 1.

2.2 Trust Management Systems
This section introduces trust management system in order to fulfill part of the
preliminary objective PRE-O 3. Trust management systems are used to handle
authorization issues in distributed systems. The basic idea of the trust management
systems is that applications delegate authorization issues to a standard component, the
trust management system. This prevents that each application has to implement its
own authentication mechanism. The trust management system supplies languages to
represent policies and credentials. This gives a unified mechanism so policies and
credentials can be exchanged between different systems. Trust management systems

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 14

http://tonnant.itd.nrl.navy.mil/tora/tora.html

2 - State of the art

only handles authorization issues, so it is required that applications that use trust
management systems handle the appropriate integrity checks and signature
validations.

Matt Blaze, who is one of the pioneers in the area of trust management, defines the
following principles for trust management [Blaze1]:

• Unified mechanism: Policies, credentials and trust relationships are expressed
as programs and existing programs are forced to treat these concepts
separately.

• Flexibility: The system must be expressively rich enough to support complex
trust relationships and at the same time it must be possible to express simple
and standard policies succinctly and comprehensibly.

• Locality of control: Each node in a network can decide whether it will accept
credentials presented by a second party or, alternatively on which third party it
should rely for an appropriate “certificate”.

• Separation of mechanism from policy: The method for validating credentials
does not depend on the credentials themselves or the application that uses
them.

The following sections will introduce three of the most prominent trust management
systems. These systems have been selected because they are the most referenced in
literature and because they are well documented.

2.2.1 PolicyMaker
PolicyMaker was developed by Matt Blaze et al. in 1995 [Blaze1]. The system was
the first tool that embodied the four trust management principles described above.
PolicyMaker is suitable for use together with services whose main goals are privacy,
authentication and enabling of functionality.

PolicyMaker binds public keys to predicates. These predicates are used to describe
actions that the keys are trusted to sign for. Unlike other systems, PolicyMaker does
not deal with the identity of the user of the key, which makes the system ideal when
anonymity is a requirement.

The PolicyMaker system can be thought of as a form of database that the application
queries for answers of the questions of the type: “May the key K perform action A
according to the local policy LP ”. PolicyMaker takes as input a query of the form:

key1, key2,…,keyn REQUEST ActionString

ActionString is an application specific message that corresponds to some kind of
trusted action requested by one or more public keys. It is possible to add filters to the
query so it only returns the ActionString if the filter predicate holds. PolicyMaker
processes the queries based on trust information contained in assertions.
Assertions are of the form:

Source ASSERTS AuthorityStruct WHERE filter

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 15

2 - State of the art

Source indicates the source of the assertion, either a local policy (policy assertion) or
a public key of a trusted third party (signed assertions). AuthorityStruct
specifies the public key(s) to which the assertion applies.

2.2.2 KeyNote
The KeyNote trust management system is a direct successor of the PolicyMaker
system. It is also developed by Matt Blaze and builds on the same ideas as
PolicyMaker.

One of the main differences between PolicyMaker and Keynote is that KeyNote has a
simpler syntax and semantics aimed specifically to build public-key infrastructure
applications were PolicyMaker aimed to provide a framework for a wider range of
applications [Blaze3].

Where the PolicyMaker uses queries, KeyNote instead uses an Action Environment.
This Action Environment is passed from the application to the KeyNote system. The
Action Environment is a triplet that consists of:

• The security policy
• A list of credentials
• The request.

As a result of passing this Action Environment, KeyNote returns an application
specific string, which in the simplest case could be “Action authorized”.

Like other trust management systems KeyNote does note enforce the policies upon
the system, it only provides advice to applications that call it.

2.2.3 REFEREE
The REFEREE (Rule-Controlled Environment For Evaluation of Rules and
Everything Else) system is from 1997 [Yang]. The system differs from PolicyMaker
and KeyNote in the way that it is designed to help making access decisions
concerning web sites.

Like PolicyMaker and KeyNote it functions as an engine that can be queried for
recommendations. The answer to a query can be true, false or unknown. Unknown
means that the system was not able to make a decision about whether the requested
action could be recommended using the policy that was in force. In such a case the
calling application needs to determine which action should be taken. All trust
decisions are based on policy control. This means that the system can be used to write
policies about policies, policies about cryptographic keys, certificates or anything
else.

2.2.4 Summary
This section has introduced the basic principles of trust management systems and has
covered three of the most known trust management systems: PolicyMaker, KeyNote
and REFEREE. The introduction has lead to fulfillment of part of the preliminary
objective PRE-O 3. Trust management systems seek to answer the questions:

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 16

2 - State of the art

Is the request R signed by the key(s) K allowed under the policy P?

The idea behind trust management systems is to separate the development of the
authorization mechanism from the development of the application. This is done by
providing languages and API’s that can be used to specify policies and credentials and
a mechanism to evaluate requests based on the specified credentials and policies.
Since the mechanism for verifying credentials does not depend on the format of the
credentials themselves, different applications with different policies can share a single
verification infrastructure.

2.3 Security In Ad-Hoc Networks
This section discusses some of the security issues that are related to wireless Ad-Hoc
networks, and presents some of the proposed solutions to such issues.

The nature of wireless Ad-Hoc networks makes their security characteristics different
from other kinds of networks. One of the major security obstacles is the absence of a
fixed infrastructure, which makes it impossible to use existing trusted servers in the
used security mechanisms. Ad hoc networks are vulnerable to security attacks on both
physical and virtual levels. The devices (Laptops, PDA’s, mobile phones, etc) are
moved around which makes it hard to secure them physically. Furthermore, the use of
wireless links makes the network vulnerable to link level attacks [Zhou]. On a virtual
level many different kinds of attacks can be made on the routing protocols. As
mentioned earlier in section 2.1, none of the protocols, DSDV, TORA, DSR and
AODV, accommodates mechanisms to deal with any type of attacks or malicious
behavior.

Sharp recognizes the following two main problems for obtaining security in a
distributed system in general [Sharp].

1. It is difficult to protect physical connections, which means that one should
assume that communication can be overheard, recorded for replaying or
altered.

2. It is hard to determine whether or not the party you are communicating with

really is who you think he is.

The two problems identified by Sharp actually cover several sub areas of security.
Since security is such a complex field it is often divided into sub parts. Zhou et al
identifies the following properties that need to be covered in order to obtain a secure
ad hoc network [Zhou]:

Confidentiality: Ensures that certain information is protected from
unauthorized disclosure.

Integrity: Guaranties that a message is never corrupted or modified.

Availability: Ensures that the network is functional despite of denial of
service attacks and available when expected.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 17

2 - State of the art

Authentication: Offers facilities for confirming that the node that one is
communicating with is actually the party that one believes it to be.

Non-repudiation: Ensures that data has been sent or received by a particular
party. Non-repudiation with proof of origin is used when the sender cannot
deny that he was the sender of the data and Non-repudiation with proof of
delivery prevents the receiver from denying that data was received.

The following sections introduce different approaches to obtain one or more of the
security properties mentioned above.

2.3.1 Zhou et al Key Management Service
Zhou et al proposes a key management solution, which aims to ensure integrity,
confidentiality and availability [Zhou]. The service adopts a public key infrastructure
(PKI). It is assumed that n trusted servers are present in the network. Each of these
servers has a public/private key pair and stores all public keys of nodes in the
network. These servers know the public keys of other servers and can establish secure
links among each other. The service has one public/private keypair k that is divided
among the trusted servers. A message is given a digital signature in order to obtain
integrity. The signature is given by the use of a threshold signature method
[Desmedt]. The use of threshold signatures makes it possible to sign a message even
though some servers in the network are compromised, and impossible for a
compromised server to sign the message. Figure 2-5 illustrates the procedure

S1

S3

Combiner <m>km

PS(m,s1)

PS(m,s3)

Server 3

Server 2 (compromised)

Server 1

S2

Figure 2-5: Threshold signature, even though server 2 is compromised it is still possible generate
a signature.

Since the trusted servers do not gain any benefits, it its doubtful whether the proposed
solution can be applied to a collaborative network.

2.3.2 The Security Aware Ad-Hoc Routing Protocol (SAR)
Yi et al proposes the SAR protocol to improve security in ad hoc networks [Yi]. Even
though it is not stated directly in Yi’s paper, the used examples and some of the areas
that the paper cover indicates that the area of application assumes that a single
authority is present in the network. The protocol embeds the metrics for the security
level that an application wants to use into Route Request packets. If nodes receive a
packet with a security metric or trust level that they cannot provide the packet is
dropped and nodes that cannot provide the level of security will not be a part of the
route. To incorporate trust levels in the ad hoc network Yi et al. proposes that existing
organizational hierarchies is mirrored in the ad hoc network. Organizational

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 18

2 - State of the art

hierarchies may exist in many forms of ad hoc networks, e.g. search and rescue
operations, major events organization etc. No proposals are presented on how to
handle a situation were no organizational hierarchy exists. The protocol requires that
nodes can be authenticated. To obtain authentication a simple shared secret is used to
generate symmetric encryption/decryption key per trust level. Packets are encrypted
on each trust level, which means that nodes on a different level cannot read the
packets. The issue of how to distribute this secret in the first place is not treated.
The protocol is implemented as an augmentation to the AODV protocol and
simulations were carried out using the Ns-2 [NS2] simulator. The results showed that
even though the overhead per control message were higher, the performance were
sustainable.

2.3.3 Entity Recognition
Seigneur et al recognizes that traditional authentication mechanisms such as Public
Key Infrastructure (PKI) or Kerberos [Kohl] might not be in suitable for ubiquitous
computing [Seigneur]. Traditional authentication schemes help to establishing the
identity of an entity, by binding a secret key to an identity. However, this binding
does however not give any information about how the entity is expected to act. Using
entity recognition, an entity recognizes another entity but does not care about its
identity. This has the advantage that entities can establish relationships without having
pre-determined knowledge of each other. Seigneur et al proposes the, A Peer Entity
Recognition scheme (APER), to be used to achieve entity recognition. In ad hoc
networks the identity of a node might be less important, compared to the expected
behavior of a node.

Entity Recognition
The Entity Recognition (ER) process is compared to the normal Authentication
Process (AP). The comparison is illustrated in Figure 2-6.

A1:Enrollment

A2:Triggering

A3:Detective
work

A4:Action

Authentication Process

E1:Triggering

E2:Detective
work

E3:Retention

E4:Action

Entity Recognition

Figure 2-6: Comparison of Authentication Process and Entity Recognition

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 19

2 - State of the art

E1 In step E1 some kind of triggering takes place. Triggering can be self-

triggering, which means that an entity takes initiative to recognize potential
surrounding entities. Transmission of the DSR ROUTE REQUEST could be
an example of self-triggering.

E2 In step E2 some detective work is done in order to see if the entity can be

recognized. One way to do this recognition is to use the APER scheme, which
is described in further details later.

E3 Step E3 is optional, since the recognition information does not need to be

stored – for instance if the entity has been seen before.

E4 Step E4 is also optional, since no action has to be performed if the only

objective of the process was to collect recognition information.

Figure 2-6 illustrates the first step of the normal Authentication Process A1:
enrollment, that normally acquires an administrator, is unessesary for Entity
Recognition.

A Peer Entity Recognition scheme (APER)
The APER scheme can be used to perform the step E2: Detective work of the ER
scheme. APER requires that public key encryption is possible. APER uses two roles,
the recognizer and the claimant. The basic approach is that the claimant occasionally
broadcasts a digitally signed packet. At any time the recognizer can challenge the
claimant if desired. When the recognizer sends a challenge to a claimant using the
claimant’s public key, the claimant needs its secret key to produce a correct response.
If the response is correct, the recognizer can re-associate the public key with some
context information such as the claimants network address or similar.
APER offers three levels of recognitions:

Level 1 requires that a claimant’s signature be verified over a set of recently
fresh claims.

Level 2 requires Level 1 to be fulfilled. Further, to ensure that the claim is
“fresh” and not just copied from some another broadcast network, the
claimant’s claim must include the hashes of the last n claims. If the recognizer
has one of these hashes the claim can be treated as “fresh”.

Level 3 requires Level 2 to fulfilled, and further requires that the claimant can
respond successfully to a challenge.

APER provides a strong recognition scheme when using level 3, and gives entities the
possibility to establish relationships build on previous recognitions.

2.3.4 The Watchdog – Pathrater approach
Marti et al describes two techniques that can improve the throughput in an ad hoc
network [Marti]. A Watchdog is used to monitor and identify malicious nodes in the
network and a Pathrater to adjust nodes trust rating based on the number of packets
they forward. It is a requirement for the watchdog technique to work, that the wireless

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 20

2 - State of the art

interface supports promiscuous mode, which allows nodes to receive all packets that
are transmitted within their range. The Watchdog monitors whether neighbour nodes
forward packets as they were supposed to. If a packet is not forwarded the Pathrater
will adjust the nodes trust rating in a negative way. If packets are forwarded, the node
will update the trust rating of the forwarding node in a positive manner. The trust
ratings are then used to determine which routes to use. It is important to notice that a
node can only monitor if a neighbour forwards or not, not nodes that are two or more
hops away. This means that other nodes have to detect a malicious node on the path
and report it back to the destination. Malicious nodes are not punished for the
misbehavior, and they still get their own packets forwarded while they at the same
time is relieved of forwarding packets from others. This actually means that malicious
nodes are rewarded for their behavior.

Marti et al identifies that the mechanism has some weaknesses that are listed below.
The Watchdog cannot detect a misbehaving node in the presence of

• Ambiguous collision
• Receiver collision
• Limited transmission power
• False misbehavior
• Collusion
• Partial dropping

Marti et al. have implemented the Watchdog and Pathrater techniques in the DSR
protocol. Simulations executed on the Ns-2 simulator, showed that the throughput in
the network, when nodes are dropping packages, could be increased by up to 27 % by
adopting the Watchdog and Pathrater techniques. The increase in throughput can
however lead to a routing overhead of up to 24%.

2.3.5 The CONFIDANT protocol
The CONFIDANT protocol works as an extension to reactive source routing protocols
like DSR [Buchegger1]. The basic idea of the protocol is that nodes that does not
forward packets as they are supposed to, will be identified and expelled by the other
nodes. Thereby, a disadvantage is combined with practicing malicious behavior. The
protocol consists of four components:

• The Monitor
• The Trust Manager
• The Reputation System
• The Path Manager

The Monitor is used to monitor the behavior of neighbour nodes. It is possible to
monitor, if packets are forwarded as supposed, unusually frequent route updates, etc.
The monitor registers “’bad” behavior and notifies the reputation system so suitable
actions can be taken. The Trust Manager sends out ALARM messages to warn
friendly nodes of malicious nodes.
When an ALARM message is received the Trust Manager determines whether there is
sufficient trust in the node that send the message, to avoid that innocent nodes are
punished. ALARM messages are only communicated amongst friendly nodes. How to

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 21

2 - State of the art

establish friend relationships among nodes are still in the area of research but the
CONFIDANT protocol adopts an approach known as, The resurrecting Duckling
[Anderson]. It is usually described as the scenario, where ducklings emerge from their
shell and identifies the first living creatures they see (dog, cat, duck, etc.) as their
mother. It is most often used in computer science by establishing a friend relationship
with the first entity that sends a secret key to the duckling [Anderson].
The Reputation System keeps a trust rating of nodes. This rating is changed when a
node behaves malicious. Whether or not a nodes behavior is malicious is determined
according to a threshold function. The ratings are only changed in a negative manner,
which means that once a nodes trust is broken, there is no way to win it back. This is
done since malicious behavior ideally is identified as an exception [Buchegger1].
The Path Manager ranks the routes according to their reputation and ensures that no
malicious nodes are used in routes. It also handles request for routes from malicious
nodes by simply ignoring them.

Buchegger et al. has implemented the CONFIDANT protocol on top of the DSR
protocol and done simulations using the GloMoSim [Bajaj] simulator. Simulations
showed that in some situations, DSR fortified with CONFIDANT lost less than 3% of
the packets, were DSR alone lost up to 70% of all packets [Buchegger2]. Further
simulations showed that the DSR fortified with CONFIDANT performed well with a
fraction as high as 60% malicious nodes.

2.3.6 Nuglets
Buttyan et al. presents the idea of using so called nuglets as a virtual currency in ad
hoc networks [Buttyan]. The nuglets are introduced to motivate nodes to corporate
and provide services to each other. Two methods for implementing the nuglets are
proposed: The Packet Purse Model (PPM) and the Packet Trade Model (PTM). In
PPM the sending node attach some amount of nuglets to the packet being send. Each
forwarding node then takes some amount of these nuglet in order to cover the cost of
forwarding the packet. Two methods for performing this task in practice are proposed.
One is to calculate a fixed charge u for each hop on the route and use a protection
mechanism to ensure that each forwarding node only takes u of the nuglets. This
approach requires that the sending node have knowledge of the total number of hops
on the route. The other method is to have an auction where all neighbouring nodes bid
on the price for forwarding the packet. The sending node then takes the lowest bid and
forwards the packet. To implement this method Buttyan et al. propose to let nodes use
an agent to perform the bidding on their behalf.
The PTM works a bit opposite; here the packet is traded for nuglets, so eventually the
destination node will pay for the packets.
Several security mechanisms such as the presence of trusted and tamper proof
hardware and a public key infrastructure is necessary in order to introduce nuglets.
Further there are several unsolved issues such as how to get new nuglets, which can
be a significant problem for nodes in the periphery of the network.

The main result of the simulations run by Buttyan et al. was that the introduction of
nuglets did not decrease the performance of network significantly.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 22

2 - State of the art

2.3.7 Trust based routing
In his master thesis from 2002, John Keane [Keane] developed and applied trust based
routing DSR. The main idea behind trust based routing is to store information about
the trust that one node has in other encountered nodes. These trust values are adjusted
based on the nodes experiences, such as packet drops or acknowledgements receipts.
This is different from the CONFIDANT approach because nodes only rely on their
own observations. The source routes are evaluated based on some heuristic that uses
the nodes trust value as criteria. Keane’s results showed that his implementation, in
some situations, had a higher throughput than standard DSR. The results were
however not ambiguous since they also showed that standard DSR outperformed the
trust based routing in situations with a high number of malicious nodes. Another
interesting aspect of Keane’s work is that the results clearly showed that malicious
nodes had very low trust values, which indicated that they were identified as
malicious nodes.

2.3.8 Summary
This section has covered some of the security issues, which has to be handled in order
to obtain a secure ad hoc network. By examining these areas the preliminary objective
PRE-O 2 was fulfilled. Several proposed solutions on how to achieve one or more of
the security properties: Confidentiality, Integrity, Availability, Authentication and
non-repudiation has been described.
Zhou et al key management system and The Security Aware Ad-Hoc Routing
Protocol (SAR) is designed to function in environments where a single trusted
authority is present and therefore they build on some strong assumptions that does not
hold in collaborative ad hoc networks where such an authority is not present.
The key management system is designed to secure integrity, confidentiality and
availability and builds on threshold encryption and distribution of keys among several
trusted servers.

The SAR protocol incorporates trust levels in the network that reflects hierarchical
structures of the domain where the ad hoc network is used. By using a shared secret
on each level authentication and confidentiality is achieved.

The solution proposed by Marti et al. uses a Watchdog to identify misbehaving nodes
and a Pathrater to manage nodes ratings. The CONFIDANT identifies misbehaving
nodes, alarm friends about the misbehaving nodes and keeps a trust rating of nodes.
Unlike Marti et al solution, the CONFIDANT protocol punishes misbehaving nodes
by refusing to forward their packets. Simulations of both solutions showed an increase
in throughput when malicious nodes were introduced in the network.

Buttyan et al introduce the use of nuglets as a virtual currency. Nodes use nuglets to
pay other nodes for forwarding their packets. There are, however unsolved issues
related to the case when a node runs out of nuglets. Simulations showed that
introduction of nuglets did not decrease the networks performance significantly.

Keane introduced trust based routing and applied it to DSR and achieved increased
throughput in some situations. By storing and maintaining trust values for nodes he
was able to identify malicious nodes in the network.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 23

2 - State of the art

2.4 Trust
Even though trust is widely used in our daily life, and by many people it is an
extremely complex subject to work with. Many trust-based decisions are made on a
subconscious level, and it is often difficult for people to determine why and if they
trust one person and not another. Furthermore, one person’s reasons for trusting
somebody might differ from another persons. One of the reasons for its complexity is
that it is difficult to define exactly what trust is. This is reflected by the many different
definitions that exist in literature. Trust is also difficult to measure, which adds to the
complexity of the subject. Further it seems that trust in some way is related to the risk
that is associated with a given situation or action [Marsh]; one might trust a neighbour
to look after ones goldfish, but not ones child.

This section introduces some of the most widely accepted definitions of trust and
some of the properties of trust, together with two frameworks that can be used to
express trust in a formalized manner.

2.4.1 Definitions of trust
As mentioned earlier, several people have defined trust in various ways. Some
definitions seem to be more widely accepted than others. In the following some of the
most recognized definitions of trust is introduced.

The perhaps most popular and recognized definition is stated by Morton Deutsch in
1962 (copied from [Marsh]):

a) The individual is confronted with an ambiguous path, a path that can lead
to an event perceived to be beneficial (Va+) or to an event perceived to be
harmful (Va-);

b) He perceives that the occurrence of Va+ or Va- in contingent on the
behavior of another person; and

c) he perceives the strength of Va- to be greater than the strength of Va+.

If he chooses to take an ambiguous path with such properties, I shall say he
makes a trusting choice; if he chooses not to take the path, he makes a
distrustful choice.

The use of the word perception implies that trust is subjective [Marsh] and differs
from person to another person. One might be bold to state that trust lies in the eye of
the beholder. The definition also implies that some kind of analysis of the benefit of
Va+, compared to the cost of Va-, is performed in order to choose the path.

Another definition of trust comes from Diego Gambetta who has gathered thoughts
from diverse areas such as economics and biology. In his work from 1990 he gives the
following definition of trust [Gambetta]:

Trust (or, symmetrical distrust) is a particular level of subjective probability with
which an agent assesses that another agent or group of agents will perform a
particular action, both before he can monitor it (or independently of his capacity
ever to be able to monitor it) and in a context in which it affects his own action.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 24

2 - State of the art

Gambetta expresses trust as a probability, which means that it can be given a value in
the range from 0 to 1. Similar to the definition of Deutsch, Gambetta also notes the
subjectivity of trust. Further the definition indicates that the ability to monitor whether
the trusted action is performed is of importance. A difference between Gambetta’s and
Deutsch’s definitions is that Deutsch uses trust in a person, where Gambetta includes
trust in a group of agents.

2.4.2 Different categories of trust
Trust is subjective and depends on both agent and situation/action, which makes it
difficult to specify general rules. To cope with this issue several attempts have been
made to make some classification of trust.

In the exhaustive work “The meaning of trust” [Mcknight], that builds on analysis of
more than sixty papers related to the area of trust, Mcknight et al. uses trust construct
to categorize trust. The trust constructs relates to each other as antecedents and
consequents, and facilitates scientific measurements and predictions. The trust
constructs are:

• System Trust, which means the extent to which one believes that proper
impersonal structures are in place to enable one to anticipate a successful
future endeavor.

• Dispositional Trust, which is the extent to which one consistently trust in a

wide variety of situations and in different persons.

• Situational Trust, which means the extent to which one intends to depend on
a non-specific other party in a given situation.

• Belief Formation Process, which is the process where experience and

information is used to create new trusting beliefs.

• Trusting Belief, which is the extent to which one believes another person in a
situation, is able and willing to act in ones best interest. It differs from
situational trust in the way that the person is known in this situation and there
fore prior experiences can be used to determine the degree of trusting belief.

• Trusting Intention, which is the extent to which one party is willing to

depend on another party in a given situation with a feeling of relative security,
even though it is realized that it can have negative consequences.

• Trusting Behavior is the extent to which a person voluntarily depends on

another person in a specific situation with a feeling of relative security, though
it is realized that it can have negative consequences.

Figure 2-7 illustrates how the trust constructs are related.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 25

2 - State of the art

T rusting behavio r

T rusting in ten tion

S itua tiona l
trus t

S ystem
trust

T rusting be lie fs

B e lie f fo rm ation
processesD ispos itiona l trust

Figure 2-7: Relations between Mcknight et als. Trust Constructs

The construct above gives an insight in how one type of trust can lead to another.
Stephen Marsh uses a somewhat similar, but simpler classification [Marsh], inspired
by the work of Mcknight et al.

• Basic trust, which is derived from an agents past experiences in all prior
situations. It represents how trustful an agent is. Basic trust corresponds to
dispositional trust, from Mcknight et als categories.

• General trust, which represents the trust of one agent in another agent.

• Situational trust, which is the trust that one agent has in another agent in a

given situation.

• Importance and utility, which expresses the utility an agent, gains from a
situation.

The classification of trust leads to a more formal way of describing trust, which is
covered in section 2.4.3.

There seems to be a general understanding that trust is not transitive, which can be
illustrated by the following statement: ”If Ann trusts Bob and Bob trusts Cathy, then
Ann trusts Cathy”. However the introduction of recommendations or similar can be
used to construct transitive trust relations.

Trust depends on the situation that an agent is in. This is illustrated in Marsh’s
framework by the introduction of situational trust.

There seems to be a general agreement in the literature that trust evolves over time,
and can be adjusted in both positive and negative directions dependent on
experiences. There is however no unambiguous agreement on how this evolution is
expressed. It could be in a linear, exponential function or other kind of way. Further it
is recognized that some sort of relation exists between risk and trust, since a decision
to trust someone or something, is a decision laced with risk [Marsh].

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 26

2 - State of the art

2.4.3 Frameworks for Working with Trust
This section briefly introduces two frameworks that can be used to describe and work
with trust in a formal manner.

Marsh’s Framework
Marsh’s framework makes it is possible to express trust values over time. The
notation can be found in Table 2-3 and builds on the trust categories described in
section 2.4.2.

Description Representation Values
Situation α, β, …
Agents a, b, c, …
Set of agents A
Societies of agents S1, S2, …; or Sx ∈ A
Knowledge (e.g. x knows y at time t) Kx(y)t True/False
Importance (e.g. of α to x at t) Ix(α)t [0,+1]
Utility (e.g., of α to x at t) Ux(α)t [-1,+1]
Basic Trust (e.g., of x at t) Tx

t [-1,+1]
General Trust (e.g., of x in y at t) Tx(y)t [-1,+1]
Situational Trust (e.g. ., of x in y for α at t) Tx(y, α)t [-1,+1]

Table 2-3: Temporally indexed notation in Marshs framework

It is notable that trust can be assigned a crisp value in the interval [-1,+1]. By applying
operators such as ∧ (AND), ∨ (OR) and ¬ (NEGATION) it is possible to express and
derive complex rules. Since crisp values are used it is possible to do a numerical
comparison and ordering. Several basic rules are introduced in Marshs framework
from which others rules can be derived. It is considered out of the scope of this thesis
to cover all of these, but to give the reader an idea and overview of how the rules
looks some examples is given below in Figure 2-8 and Figure 2-9. The example in
Figure 2-8 shows how the cooperation of y can lead to a higher trust value.
The more complex example in Figure 2-9 illustrates how a general trust value for
agent z in agent x can be derived.

Cooperate(y)x ⇒ Tx(y)t+1 ≥ Tx(y)t
Figure 2-8: The cooperation of y in a situation a leads

() () () () () ())(() ()()t

z
at

z
t

y
at

z
at

z
t

y
t

z
t

z yTxTxTxTxKxKyKxK ≤∧≤∧⇒∧∧ +++¬

Figure 2-9: Example showing how trust can be derived.

As Figure 2-9 illustrates z’s trust in x does not exceed the trust z had in y.
Marshes framework does not focus on a particular way to express the functions used
to determine the crisp values of the different trust types.

Jonker and Treurs Framework
Jonker and Treurs framework focuses on the dynamics of trust based on experience
[Jonker]. The framework introduces a basic notation and two types of functions: The

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 27

2 - State of the art

trust evolution function and the trust update function. In the framework several
possible properties of these functions are identified and expressed in a formal way.

The following types of initial trust are used:

1. Initially trusting
a. Without prior trust influencing experiences, the agent has a

unconditional trust of maximal trust value

b. Without prior trust influencing experiences, the agent has a conditional

trust value below the maximal trust value

2. Initially distrusting
a. Without prior trust influencing experiences, the agent has a

unconditional distrust of maximal distrust value
b. Without prior trust influencing experiences, the agent has a conditional

distrust above the minimum distrust value.

Jonker and Truer identifies the following six types of trust dynamics:

1. Blindly positive, which can be either:
a. Always unconditional trust
b. Definitive having trust: which means that after a certain number of

positive experiences a state of unconditional trust is reached and
remained in.

2. Blindly negative, which can be either:
a. Always unconditional distrust
b. Definitive losing trust: after a certain number of negative (sequenced)

experiences a state of unconditional distrust is reached and remained
in.

3. Slow positive, fast negative dynamics: It is hard to gain trust but easy to lose
trust.

4. Balanced slow: The evolution in both positive and negative direction is slow.
5. Balanced fast: The evolution in both positive and negative direction is fast.
6. Slow negative, fast positive: It is easy to gain trust but hard to loose it.

The basis of the framework is the four sets shown in Table 2-4.

Set Description Possible values
E A partially ordered set of experience classes

for
{-,+}, [-1,1]

N The set of natural numbers 0, 1, 2, ….
ES The set EN of experience sequences {+, +,-,+,-} or {1, -1, 1, 1}
T

A partially ordered set of trust
qualifications/trust values

{LOW, MEDIUM, HIGH}
,[-1,1].

Table 2-4: The four sets of the framework

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 28

2 - State of the art

The four sets are used to define the trust evolution function, the trust update function
and several properties of the functions.

Trust Evolution Function
A trust evolution function, only uses past experiences to determine the trust value.
The trust evolution function is defined as:

te: ES × N → T Equation 2-1

Jonker and Treur identify sixteen possible properties, such as minimal and maximal
initial trust, of trust evolution functions. An interesting property is the degree of
memory based on window n that expresses the number of experiences back in time
that should be used in the calculation. This property is interesting since its value can
lead to quite different results. Figure 2-10 illustrates a small example:

Trust evolution function ES Tn=8 Tn=4

n

ES
T

n

∑
= 1

[-1, -1, -1, -1, 1, 1, 1, 1]

0

-1

Figure 2-10: Using the degree of memory based on window n for trust evolution functions

As the example illustrates quite different result is achieved by using a window size of
8 instead of a window size of 4.

Trust Update Function
The trust update functions differ from the trust evolution function since it uses the
current experience and the last calculated value of the trust to calculate the new trust
value.
The trust update function is defined as:

tu: E × T → T Equation 2-2

A trust update function uses a prior determined value of trust and a new experience to
calculate a new value for trust.

2.4.4 Summary
This section has introduced different definitions and key aspects of trust. To illustrate
the complexity and versatility of trust, some of the most common definitions of trust
have been discussed. Two categorizations of trust have also been covered. The
categorizations lead to a better understanding of how the different types of trust are
related. Furthermore some of the most important properties of trust have been
identified. Two frameworks that make it possible to describe and work with trust in a
formal way has been introduced.

The framework presented by Marsh is suitable for describing trust in different
situation where the framework presented by Jonker and Treur focuses on describing
the dynamics of trust based on experience. The dynamics of trust is described by

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 29

2 - State of the art

introducing the two functions: the trust evolution function and the trust update
function. Both frameworks propose to use the interval [-1,1] to represent trust values.

The completion of the investigation of trust and formal trust frameworks, has lead to
the fulfillment of stated objective PRE-O 3.

2.5 Subjective evaluation of methods and techniques
Where the previous sections has sought to keep an objective perspective of the
introduced areas, this section includes subjective evaluations of some of the covered
areas and put into perspective if- and how they can be applied to develop trust based
routing.

In section 2.1 the four protocols DSDV, TORA, DSR and AODV were described.
Several assumptions for the protocols where summarizes. Marti et al [Marti] identifies
that none of the routing protocols described in this chapter handle security issues. All
assumes that no nodes are malicious and are willing to participate in the routing
protocol.

Section 2.1.6 dealt with performance evaluations done for some of the protocols. The
results of the evaluations indicated that DSR and AODV both delivered a high
percentage of the send packets. One of the main differences between DSR and AODV
is that DSR uses source routing and stores the entire routes, where AODV only stores
information about the next hop on the route and used hop-by-hop routing. It would be
quite a challenge to apply trust based routing to AODV since the only information
that is available to build some sort of trust based decision on, is the next node on the
route.

Since DSR is a source route protocol and therefore stores the entire routes it is
possible to make a much better trust based evaluation of the route. The above
observations have contributed to the decision on applying trust based routing to the
DSR protocol.

In section 2.2 trust management systems were introduced. Trust management systems
can be used to handle authorization and access issues. However, this is not really
applicable to the type of ad hoc routing that is the foundation for this thesis and
therefore none of the covered trust management systems is incorporated in the
designed protocol.

In section 2.3 several different approaches for achieving different levels of protection
against malicious behavior in ad hoc networks were introduced. Solutions, such as the
Security Aware Ad-Hoc Routing Protocol (SAR) and Zhou et als key management
system, offers encryption and a relatively high level of security, but also requires
trusted servers to achieve this level of security. These requirements make them less
applicable to the ad hoc routing used for this thesis.

Investigations showed that by using the APER protocol it is possible to establish
relationships with nodes and recognize encountered nodes. By using APER it is
possible to achieve authentication in ad hoc networks.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 30

2 - State of the art

Other protocols such as CONFIDANT and the Pathrater – Watchdog mechanism
monitor nodes to detect packet drops. As mentioned in section 2.3.5 Buchegger et al
achieved good results with DSR fortified with CONFIDANT. However the
mechanism of using ALARM messages to adjust the rating of paths seems rather
vulnerable to misuse, since friendly nodes send out ALARM messages, but it is not
really clear what happens if a friend acts malicious. Further, the process of
establishing friends is still under investigation. Both methods have problems with
detecting collusion because they rely on other nodes to report malicious behavior.
How collusion can be handled is not treated which is somewhat a deny of a problem.

Keane achieved improvements on throughput in some situations by applying trust
based routing to DSR. Further he showed that storing and updating trust information
could be used to identify malicious nodes. Keane’s methods differs considerable from
the Pathrater – Watchdog and CONFIDANT because he does not rely others to report
and observe malicious behavior, which eliminates problems with collusion and
establishment of friends. However, Keane’s results where somewhat ambiguous since
standard DSR could outperform his implementation even though the percentage of
malicious nodes where high.

In section 2.4 the two frameworks by respectively Marsh and Jonker and Treur were
briefly presented. Since trust can be a rather informal area, it is found important to use
some formal ways to describe the trust processes that is going to be used in this work.
Marsh’s framework is found well suited to express the different types of trust that are
used in certain situations. Jonker and Treurs framework is aimed at describing the
dynamics of trust and is found well suited to describe the evolution of trust.

Most of the results that are summarized from other sources [Johnson1], [Broch1],
[Buchegger2] are achieved by doing simulations on either the Ns-2 simulator [NS2]
or the GloMoSim simulator [Glom].
GLOMOSIM is implemented in the language Parsec [Parsec], which is a C based
language where Ns-2 is based on C++. It is chosen to use the Ns-2 simulator because
it has a C++ implementation of DSR.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 31

3 - Analysis

3 Analysis
To meet the main objective M-O 1, the DSR protocol is analyzed to identify different
situations where malicious nodes may exploit vulnerabilities in the protocol. Possible
solutions on how to handle these exploitable situations are presented. Furthermore
some of the extensions that are made to the DSR protocol are investigated.

There are several vulnerabilities in DSR that can be exploited by malicious nodes.
In order to fortify the DSR protocol it is necessary to find ways to estimate whether a
node is malicious or not. During the analysis situations were one nodes trust in others
can be established or updated are identified. Some vulnerabilities cannot be handled
by introducing trust and therefore the analysis also identifies situations were trust is
found insufficient to make a useful defend. The identified issues are prioritized by
assigning high priorities to issues where trust can be applied.

3.1 Analysis of DSR
This section presents an analysis of the different events that can take place during
communication within the DSR protocol, the possible outcome and possible reactions
to the outcome.
The relevant events can be divided into the following three categories:

• Sending of packets – the case where a node is the source of the packet.
• Receiving of packets – the case where the node is the final destination of the

packet.
• Forwarding of packets – the case where a node is a hop on the route to the

final destination.

3.1.1 Sending of packets
The following issues concerning the sending of packets are identified:

Using ring search to discover routes
When a node has to send a package it queries its route cache for a route. If no route is
found it broadcasts a ROUTE REQUEST. It is a possibility to perform a ring search
as described in section 2.1.4. Since ring search will limit the number of routes that are
actually discovered and thereby increase the risk that all returned routes to a node
include malicious nodes this might not be a good approach to use.

Selection of the “best” route
DSR selects routes from the cache based on the number of hops on the route, favoring
short routes. This route selection strategy must instead be based on trust heuristics.
The area of trust based route selection strategies are investigated further in section
4.1.3. An important observation is the fact that once DSR has a route to a destination
it will use this route as long as it believes that it is working, meaning until it receives a
ROUTE ERROR. This represents a serious problem in the case where only one route
that contains a malicious node is available. It requires changes to DSR to poll for new
routes if the routes available have to low a trust value and the consequences, such as
increased ROUTE REQUESTs is somewhat unclear. Therefore introducing new
mechanisms to discover new routes in the case where only one route containing a
potential malicious node is available is considered out of scope of this assignment.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 33

3 - Analysis

The use of DSR acknowledgement mechanism
As illustrated in Table 2-2 there is an option that allows the sender to set an
acknowledgement bit in the DSR packet header in order to request an
acknowledgement of the packet. If malicious nodes flip this bit it can prevent the
receiver from returning acknowledgements or cause the receiver to send
acknowledgements that was not requested. Since it is difficult to identify positive
node behavior that could lead to an increase in trust without the use of
acknowledgements there must be some mechanism for requiring acknowledgements.
Therefore some extra fields are added to the packet header for this purpose. The area
of acknowledgements strategies is covered in further details in section 4.1.5.

3.1.2 Receiving packets
This section describes and evaluates issues that can occur when a node receive a
packet.

Forming trust relationships and updating trust
When a packet is received, the reversed route is stored in the cache. The route might
contain unknown nodes which means that an initial trust relationship with these nodes
must be established. When a packet is received it also means that all nodes on the
route actually forwarded the package correct. This knowledge is used to update trust
values for the nodes on the route. There is a chance that the source of the route is
malicious and does not forward packages. Therefore the trust value for the source of
the route is not updated. Trust updating is described in further details in section 4.1.2
and trust formation is described in section 4.1.1.

ROUTE ERRORs
When a ROUTE ERROR is received it means that a link is broken which causes DSR
to select a new route and truncate the broken route from the route cache. It could be
beneficial to increase trust for the nodes that forwarded the ROUTE ERROR and
decrease trust for the node that caused the error. There is also a risk that a malicious
node uses ROUTE ERRORs for framing, for instance by issuing false ROUTE
ERRORs.

A malicious node forwarding a ROUTE ERROR might alter it so it looks like a
different link on the route is broken or it might issue a false ROUTE ERROR. It is
difficult to determine if the link between two nodes is broken without relying on one
of them. It would involve cooperation of nodes in the neighbourhood to monitor the
link. To discard a ROUTE ERROR message and still use the route would be useless
since it would not be possible to decide whether the link was really broken or if a
malicious node had forged the ROUTE ERROR. Therefore the only suitable solution
is to use another route to the destination. If the ROUTE ERROR comes from a node,
with a low trust value and the route cache contains a recently used route that the link
was part of the trust value of the node could be adjusted in a negative manner. This
would however mean that nodes that act according to the DSR protocol could be
punished and for this reason it is decided to let DSR handle ROUTE ERRORs.

ROUTE REPLYs
It is possible that malicious nodes return fictive non-usable routes in ROUTE
REPLYS. One way to deal with this is to evaluate the received route based on the
trust in the sender and not trust, route reply’s from nodes with low trust. This

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 34

3 - Analysis

evaluation would however apply to all returned routes and cause extra computations
and it would not solve the problem where a malicious node forged the reply so it
seemed to be initiated by some other node. To avoid the risk that nodes alter routes,
the entire route could be signed and the signature included in the payload as well as in
the packet header. This would of course increase the size of the payload and it would
require that cryptographic methods were available. Another method for verifying the
route is to let all nodes create a hash value based on the address of the node that
forwarded the packet and thereby successive confirming each step of the route.

As pointed out in section 2.1.4 it is optional to reply to route replies from the route
cache. By replying with a route from the route cache the number of forwarded route
replies are limited which decreases the overhead on the network. On the other hand it
might prevent new routes from being discovered. If only one route that includes a
malicious node is contained in the cache this route is returned. This might represent a
problem because it can cause bad routes to be distributed.

Another issue is that the cache represent some a learned part of the topology. Some of
the information stored in the cache might not be valid because nodes can have moved
out of range, turned their power of, etc. This problem is known as cache staleness. Hu
et al points out that, replying from the route cache and at the same time allowing route
snooping might result in stale routes circulating the network indefinitely [Hu]. Even
though Hu et al proposes a solution, to this problem, it is not investigated further here,
but simply noticed that the problem exists.

When a ROUTE REPLY is received, the route might contain previously un-
encountered nodes. This means that the node should establish an initial trust
relationship with these nodes. The new nodes are therefore given a trust value based
on a trust formation strategy.

3.1.3 Forwarding of packets
Issues of forwarding packets are mostly related to behavior of malicious nodes.
The following issues concerning the forwarding of packets are identified:

Drop of forwarding packet
All forwarding packets can be dropped. There is nothing that can be done to prevent
that a nodes drops a packet. The Pathrater – Watchdog technique and the
CONFIDANT protocol that was described in section 2.3.4 and 2.3.5, uses a monitor
technique to detect when a node is not forwarded packages. These techniques do
however not adequately solve the problems of framing and collision among malicious
nodes and therefore it is decided to use another approach where nodes only base
decision on their own experiences and not on events that other nodes inform them of.

Tampering with ROUTE REQUESTs
When forwarding a ROUTE REQUEST message a malicious node can choose not to
add its own address to the address list, which will probably cause the route to be
useless. There is no way for the initiator of the ROUTE REQUEST to directly detect
that the route has passed through a node that has not added it self. A solution to verify
that the address list is not defective has been proposed in the section ROUTE
REPLYs were the reception of ROUTE REPLYs was discussed.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 35

3 - Analysis

Tampering with the address list
When forwarding a packet, a malicious node can choose to remove prior encountered
nodes on the route from the address list or insert other nodes. This would most likely
result in a useless route. This would especially be critical if the packet was a ROUTE
REQUEST, since it eventually would result in a useless route. In order to avoid that
nodes remove other nodes from the address list it would require each node to sign its
own address in the list.

Snooping of source routes
As described in section 2.1.4, DSR has the possibility of snooping routes, which
means that when a node forwards or overhear a packet it can snoop the route and
cache it for later use. If a snooped route contains unknown nodes initial trust
relationships must be established. The use of route snooping will decrease the amount
of ROUTE REQUEST packages that are send, but in some situations it might limit
the number of routes that are discovered to a destination because nodes that has a
route to a destination will not issue new ROUTE REQUESTs to discover new routes
to that destination. Figure 3-1 illustrates how node C might not discover some routes.
However it is likely that the route can be snooped from some other route.

E

F

CB DA

Figure 3-1: If node C snoops the route from D to A, it might never discover the two routes going

through E and F.

Due to the increased overhead that disallowing snooping will cause, it is chosen to
allow route snooping.

Only forwarding the first route request received
As described in section 2.1.4 it is possible to let nodes reply to the first received route
request and discard subsequently received route request with the same unique id. As
Figure 3-2 illustrates this can lead to potential routes being undiscovered. The figure
illustrates a situation where node D has broadcasted a ROUTE REQUEST. Node C
has propagated this to nodes E, B and F. Node B is malicious and its ROUTE
REQUEST is first received at node A. This means that the routes going through E and
F will not be discovered and D will be stuck with a route with a malicious node.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 36

3 - Analysis

E

F

C DA First received
Route Request

B

Figure 3-2: Only forwarding the first received ROUTE REQUEST can result in undiscovered
routes.

It is expected that it is beneficial to let nodes reply to all route requests because it can
increase the number of discovered routes and thereby decrease the probability of only
discovering routes with malicious nodes.

3.2 Extensions to DSR
The above analysis revealed that the use of the DSR acknowledgement mechanism
might not be suitable, since it is easy for malicious nodes to flip the acknowledgement
bit and thereby tangle up the protocol. The only possibility for evolving trust
relationships has this far been on receipt of packages. This is however insufficient,
since a node might never receive packages that was forwarded by a certain route and
therefore not be able to identify bad routes. In order to create a mechanism that can be
used to base trust evolution on extra fields should be added so acknowledgement
could be requested.

The analysis also revealed that the route selection criteria used by DSR should be
altered to trust based instead of using a shortest path heuristic.

3.3 Assumptions made about malicious nodes
In order to have a simple setup as a starting point, the following assumptions will be
made about the malicious nodes in the scenarios.

• Malicious nodes will not forward any packages for other nodes. This behavior
is the most common one used by other people [Buchegger1] doing research in
the same area and therefore it is a natural choice if the results from the
simulations should be comparable.

• Malicious nodes will not return acknowledgements. This assumption is made

to start with a simple scenario. By making this assumption it will be
reasonable to increase trust for all nodes on a route that returned an
acknowledgement. If malicious nodes also returned acknowledgements the
source of an acknowledgement should have its trust value increased. However,
it will also mean that nodes that successfully forward packets to malicious
nodes will have their trust values decreased. Unfortunately time did not allow
evaluation the impact of this assumption had compared to letting malicious
nodes return acknowledgements.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 37

3 - Analysis

The malicious behavior specified above, means that malicious nodes does not forward
route replies, but they do however reply to route replies, meaning that if a malicious
node has a route to a destination it will return it. If the returned route includes the
malicious node a route containing a malicious node is returned. This makes
impossible to avoid routes that do not contain malicious nodes.

Furthermore, one should keep in mind, that good nodes can also drop packages
unintended due to queue overruns, low battery etc, which means that a good node
unintended can exercise malicious behavior.

3.4 Attacks that are not covered by the analysis
There are some attacks against the DSR protocol that are not analyzed in this thesis.
This does however not mean that they does not represent possible problems, but
simply means that there were considered out of the scope of this project. Some of
these attacks are:

• Denial of service attack where a node is bombarded with traffic.

• Traffic analysis, which is not a real attack. Introducing trust based routing

might cause traffic analysis to become a problem since nodes that forward
packages will be preferred. This could be exploited by forwarding all
packages for a node and thereby achieving a high trust value. A node with a
high trust value would most likely be exposed to a high traffic flow that could
be analyzed.

3.5 Prioritization and general assumptions
A prioritization of the solutions is done in order to restrict the design and
implementations. The solutions are prioritized using an estimate of the importance to
the overall goals, of fortifying DSR against the presence of nodes that does not
forward packages, by introducing trust based routing, and the expected complexity
(and the involved expenditure of time) of implementing the solution.

It is chosen to design and implement the following:

• Trust formation mechanisms.
• Methods for updating trust based on experiences
• Methods to handle receipt and time outs of acknowledgements
• Trust based route selection

A solution that implements these areas is found to be sufficient to fortify DSR against
malicious behavior that express it self as nodes dropping packets that they were
supposed to forward. This means that all issues concerning tampering with packet are
not handled as well as issues concerning authentication and confidentiality. Therefore
the solution will build on the assumptions that these issues are handled. As section 2.3
illustrated solutions to handle these issues exists and therefore the assumptions are
considered reasonable.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 38

3 - Analysis

3.6 Summary
This chapter has presented an analysis of the DSR protocol where vulnerabilities has
been identified and discussed. Solutions to handle these vulnerabilities have been
proposed. It has been decided to design a solution that will implement the following:

• Nodes will store trust values of each encountered node that express the nodes
trust. These values will be adjusted based on the experiences that a node has
with other nodes.

• In order to require acknowledgements for received packages an extension to

the existing DSR header will be implemented.

• When nodes receive acknowledgements or data packets they will update trust

values for the nodes on the route, based on some trust updating policy. Nodes
that are encountered for the first time, will have an initial trust value assigned
based on some trust formation strategy.

• If a requested acknowledgement is not received within some timeframe the

nodes on the used route should have their trust values decreased.

• Route selection will be based on some strategy that uses the trust in the nodes

on the route to conduct an evaluation of the entire routes trust value.

• The extension will only seek to deal with malicious behavior that express it

self as nodes dropping packets that they were supposed to forward.

How these task are handled is described in chapter 4. The decision to implement a
solution covering the above tasks have also meant that issues concerning
identification and tampering with packets is not treated further, but is assumed to be
dealt with.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 39

4 - Design

4 Design
This section presents the overall design of the modules and strategies that are going to
be applied to the DSR protocol in order to incorporate trust formation and trust
updating which are necessary to meet the main objective M-O 2. An implementation
of the DSR protocol exist in the Ns-2 simulator that is used for the simulations and
therefore parts of the design will have to be compatible with the existing code. The
chapter also covers design of the different components that are used to incorporate
trust in the DSR protocol. Furthermore, the existing code is analyzed and a UML class
diagram is derived. Finally a description of how the design can be integrated with the
existing code is given. The notations from section 2.4 is used to describe the types of
trust that are used in the different situations. Since the design is object-oriented,
object-oriented notations will be used, which means that functions will be referred to
as methods even though there is a general agreement among C++ programmers that
the word function is used. To keep consistency, method will also be used in chapter 5
that deals with the implementation.

4.1 Identification of components
From the analysis conducted in section 3.1 some major trust related processes are
revealed:

• Initializing trust relationships
• Updating trust values
• Route selection based on trust

These processes provides the foundation for the trust based routing protocol that is
going to be designed and will be implemented in one or more modules. Based on the
analysis, components to manage the following tasks are needed:

• A structure to represent the trust that one node has in another node. It must
also be possible to store the experiences that a node have had with other nodes
since this is required in order to apply a trust evolution function as described
in section 2.4.3.

• A component that determine the degree of trust to unknown nodes when they

are encountered for the first time.

• A component that implements methods to update trust for known nodes.

• A component that evaluates routes according to the trust values of nodes on

the route.

• A component that manages incoming and outgoing acknowledgements.

Further more, a component that can store and manage access to trust values is also
needed. Figure 4-1 illustrates the overall design.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 41

4 - Design

DSR

ACKMonitor RouteSelectorTrustManager

TrustUpdater TrustFormater

T-value

T-value

Figure 4-1: Overall architecture of the trust based extension

4.1.1 Trust Formation
The trust formation component implements methods to assign trust values to nodes
when they are first encountered. Nodes will be encountered from ROUTE REPLYs or
when routes are snooped. When the first routes are discovered all nodes on the route
will be unknown and therefore a default value trust value for unknown nodes needs to
be determined. The value of this parameter is quite important because it determines
how close the node is to achieve maximal trust. In an environment with many
malicious nodes it would be expected that it would be best to assign a low value trust
value, meaning that the node would be initially distrusting and therefore having a low
basic trust. In a situation where the route does not contain known nodes, the initial
trust value will be the nodes basic trust. Because of the expected importance of this
parameter it is estimated from simulations as described in section 6.5.1. If a route
contains known nodes the trust value of these nodes is used to base the assignment of
initial trust. Since the route is later going to be evaluated based on the trust value of
each node, a strategy were the lowest trust value of the known nodes are assigned to
the unknown nodes. The argument for choosing this strategy is, that the route is not
stronger than its weakest link, which is the node with the lowest trust. However,
several other strategies can be thought of for this purpose.
This strategy is described using Marsh’s notation from section 2.4.3 on Equation 4-1.

∀y ¬Kx (y1,y2…yn) ⇒ (Tx(y1,y2…yn) = Tx)

 ∃y Kx(y) ⇒ Tx(¬K(y1,y2…yn)) = Min(Tx(K(y1,y2…yn)))

Equation 4-1

Where y1,y2…yn ∈ Route

4.1.2 Trust updating
The trust updating component implements the functions for updating trust. As
mentioned earlier trust is subjective and depends on a given nodes experience in a
given situation. This means that it is not reasonable to construct a general method for
updating trust values that will be applicable to all applications in all domains. The
function designed here is aims to function in domains with several malicious nodes.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 42

4 - Design

A function for updating trust can depend on several parameters. In the list below some
of the possible parameters are listed.

• Previous trust values.
• Lowest/Highest trust value ever assigned.
• Nr of positive/negative experiences in the past.
• The situation/value of an experience.

Ideally the behavior of the function should depend on the expected trust dynamics in a
given situation. Since the trust values are used to base decision on which route to
choose, only one function is used. Jonker and Treur propose the following trust update
function [Jonker]:

() evdtvdtvevfd ∗−+∗= 1),(

Equation
4-2

 tv: The existing trust value
Where ev: The experience
 d: A constant used to express the inflation of trust

Based on the observation that Jonker and Treur propose the intervals [-1,1], that
interval is used for both experiences and trust values. The experience set will consist
of three experiences that correspond to: Acknowledgement received ok,
Acknowledgement timed out and Data packet received. An acknowledgement
indicates that all nodes on the route could be trusted and therefore a value of 1
(maximum trust) will be assigned to this experience. The opposite counts when an
acknowledgement is not received within the timeframe. This means that it must be
assumed that the packet never reached its destination. Since the cause cannot be
determined a value of –1 is assigned to this experience. The final experience is
receiving a data packet, which means that nodes on the route have forwarded the
package. This is not considered as powerful as an acknowledgement, because an
acknowledgement is a response and confirmation of the trust that a node put in other
nodes, where the receipt of data packet can be seen as a recommendation from the
source to the destination. Therefore this experience will be given a value of 0.7.
Figure 4-2 illustrate the impact that the inflation constant d has on the behavior of the
function.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 43

4 - Design

Trust update function based on Equation 4-2

-1.5

-1

-0.5

0

0.5

1

1.5

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

Sum of experiences

Tr
us

tV
al

ue d =- 0.9

d =- 0.5

Figure 4-2: Trust update function based

The graph illustrates that a high d value will lead to a faster trust evolution towards
maximum (or minimum) trust value. Only full positive experiences with a value of 1
and pure negative experiences with a value of -1 are used and the initial trust is set to
0.5. With a d value of -0.5 maximum trust will be placed in node after only a few
experiences. This corresponds to trust evolving as balanced fast. With a d value of -
0.9 trust will evolve as balanced slow. It is also possible to use one value for d when
for positive experiences and another for negative experiences and thereby let trust
evolve faster in one direction than the other. Based on the fact that a good node can
also drop packages unintended d will be given the value -0.9. This means that good
nodes that accidentally drop packages will not loose trust to fast. At the same time it
means that a node with a high trust value that causes a negative experience will have
its trust value lowered in a perceptible way.

4.1.3 Route selection
The main task of the route selection component is to evaluate routes based on the trust
value of the nodes that constitute the route and selects a route based on this
evaluation. The routes are evaluated and the route with the highest rating should be
used. This means that the best route will be considered as the one that has the highest
trust rating. A good route is considered to be a route that does not contain malicious
nodes. To decide whether one route that results in a packet being delivered is better
than another that achieves the same is difficult. Here metrics such as latency could be
used. It can be concluded that a route that contains a malicious node is not good
because it will always result in a packet drop. As the coming discussions of route
strategies will illustrate, determining the best route can actually lead to a good route
being discarded and a route containing a malicious node being chosen. Defining a
route selection strategy is not an unambiguous task. Nodes are grouped as one
because they are on the same route, but actually they do not have anything in common
that, from a sociological point of view, can substantiate the grouping. This makes it
quite difficult to argue for one routing strategy over another and therefore several
route selection strategies will be proposed and used in the simulations.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 44

4 - Design

Common for all routing strategies is that must not take the destination of the packet
into account when the rating of the route is calculated, because the destination might
be identified as a malicious node and therefore have a low trust value. This is
necessary because the traffic is generated randomly for the simulations, and therefore
malicious nodes will also be the destination of packets. Whether or not a node would
actually send packets to a node that was identified as malicious is not treated here.

Furthermore, all strategies return a maximum rating if the route only consists of two
nodes, since that means that the destination is a neighbour. If a maximum rating is
returned, the route is used without examining further routes. This is actually a
performance improvement compared to the implemented strategy used by standard
DSR in Ns-2, where all routes to a destination is examined even though the
destination is a neighbour.

The designed routing strategies are basic strategies that can be considered archetypes
from which more complex and sophisticated strategies can be derived. It is chosen to
design simple strategies, because it will make it easier to determine the effect and
difference between the strategies.

It is expected that the application of other route strategies than the shortest path used
by DSR, will lead to a higher latency. This increase in latency is the expected prize of
an increase in throughput.

Routeselection strategy 1
The first route selection strategy will be to return the average of all nodes on the route.

()

n

yT
RouteT

n

nx

x

∑
= 1)(

Equation 4-3

Where y1, y2…yn ∈ Route

Using the average presents the issue, illustrated in Table 4-1, that routes containing
nodes with very low trust values might still be rated high.

Route Trust ratings for nodes on the route Rating
1 0.7 0.7 0.5 0.5 0.6
2 1 1 -1 1 0.75

Table 4-1: Evaluation of routes using the average of nodes trust value to evaluate the route

Table 4-1 illustrates an example where two routes are evaluated by route selection
strategy 1. Route consists of four nodes with values between 0.7 and 0.5. With an
initial trust value below 0.5 this would mean that the node evaluating the route have
had positive experiences with all nodes. Route 2 consists of four nodes where three
have maximum trust value and one has minimum trust value. That the node has
minimum value indicates that it is a malicious node. However, as the Rating column
shows route 2 is rated higher than route 1. The example illustrates an extreme case
and it is difficult to predict how often such a situation occurs. By using Equation 4-2
with a negative experience with value –1, the trust values change to the values shown

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 45

4 - Design

in Table 4-2, which results in route 1 having a higher rating than route 2. This
illustrates that the there is a fast response to experiences.

Route Trust ratings for nodes on the route Rating
1 0.7 0.7 0.5 0.5 0.6
2 0.8 0.8 -1 0.8 0.35

Table 4-2: The values from table Table 4-1 after having had a negative experience with value –1
and route 2

Routeselection strategy 2
The second route selection strategy is an extension of the first. In order to favor
shorter routes the average of the trust values, is divided by the number of nodes.

()
2

1)(
n

yT
RouteT

n

nx

x

∑
=

Equation
4-4

Where y1, y2…yn ∈ Route

This strategy will favor shorter routes from longer, as illustrated in Table 4-3.

Route Trust ratings for nodes on the route Rating
1 0.7 0.7 0.7 # 0.23
2 0.7 0.7 0.7 0.7 0.175

Table 4-3: Route selection strategy 2 favor shorter routes

The strategy does still present the issues that strategy 1 has. In a domain where short
routes are more frequent, this strategy might result in a lower latency than strategy 1.

Routeselection strategy 3
Instead of using the trust value of the nodes, routing strategy 3 evaluates the nodes
based on the average value of the past experiences. The size of the experience
window, which is the number of experiences that are remembered, will be set to 5.
This has the advantage that nodes with a high trust value that suddenly starts to drop
packages will be identified faster than by using the trust value. This is illustrated in
Table 4-4.

Experience
nr

Experience
value

Trustvalue calculated based on initial
trust of 0.5 using Equation 4-2

Average of the
experiences

1 1 0.55 1
2 1 0.60 1
3 1 0.64 1
4 -1 0.47 0.5
5 -1 0.32 0.2

Table 4-4: Route selection strategy 3 will detect a good node that starts to drop packets fast

The table illustrates that the use of the average of experiences will identify a good
node that starts to drop packets faster than the use of trust value. After three positive
and to negative the average of the experiences is 0.2 where the trust value of the node,
calculated using Equation 4-2, is 0.32. However, routing strategy 3 requires more

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 46

4 - Design

computations compared to strategy 1 and 2 because it uses the experiences and not
only the trust values.

Routeselection strategy 4
Route selection 4 is applied to strategy 3 but can be applied to all other strategies.
Instead of returning the average a threshold is used. If a node has a value below some
threshold value the route is rated with the lowest possible value. This will have the
advantage that routes with low trust values are not used. It will however also have the
disadvantage that the highest rated route might is discarded in the case where all
routes have a rating below the threshold.

Routeselection strategy 5
This strategy returns the lowest trust value of the nodes on the route and thereby the
route is evaluated based on the least trustworthy node.

()()nxx yyyTRouteT,min)(21=

Equation 4-5

Where y1, y2…yn ∈ Route

This has the advantage that the route with the highest of the lowest trust values is
used. However, it has the disadvantage illustrated in Table 4-5.

Route Trust ratings for nodes on the route Rating
1 -0.3 -0.3 -0.3 -0.3 -0.3
2 1.0 0.9 0.9 -0.35 -0.35

Table 4-5: Example of routing strategy 5

As seen strategy 5 will select route 1 over route 2 even though all nodes on route 1
has low trust values.

4.1.4 Trust management
The trust manager module stores trust information about all known nodes during run
time, and offers methods to query for information about stored trust values. It also
functions as the main interface between the existing implementation of the DSR
protocol and the trust updater and trust formatter module. In a real life scenario it is
likely that nodes will move about in the same environment for some time. This means
that the same nodes can be encountered on a regular basis. For this reason the trust
management module implements IO methods for storing trust values in a persistent
way so they can be loaded again.

4.1.5 Acknowledgement monitoring
As described in section 3.2 it is necessary to use an acknowledgement mechanism to
base trust updating on. In general acknowledgements leads to a packet overhead that
of course should be minimized. One way to minimize the packet overhead is to limit
the amount of acknowledgements send, by using a sliding window mechanism
[Sharp]. To keep it simple it is decided not to use a sliding window mechanism but
instead require acknowledgements for all data packets and not for protocol packets.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 47

4 - Design

The purpose of the acknowledgement mechanism is to use received
acknowledgements or lack of acknowledgements to adjust trust values and not, as
known for many other protocols, to base decisions on retransmission on. Since the
trust values are used to base routing decisions on, and because a node can be part of
many routes it is important that a missing acknowledgement is detected fast.
A short time frame might cause routes that where simply slow, but forwarded data
packets and acknowledgements, to be rated low. On the other hand a large timeframe
might result in a bad route being used several times before it has its trust values
decreased.

An acknowledgement id is stored when the packet is send, and if an
acknowledgement is received within the time frame nodes on the stored route have
their trust values updated. Trust relationship should be formed with any unknown
nodes on the reply route and known nodes on the reply route should also have their
trust values updated. If a requested acknowledgement is not received within some
time frame, the packet is considered dropped. In this case the nodes trust values
should be adjusted in a negative way.
The time it takes for a packet to reach its destination will depend on the length of the
routes.

A B C D

Time from source to destination

Time from from reception to forward
Figure 4-3: Estimation of total timeout value

As Figure 4-3 illustrates the number of links a packet will pass is one less than the
number of nodes on the route. Since the return route of the acknowledgement will
depend on the destinations route selection it is unknown how many nodes it will
include and therefore the double of the length of the outgoing route is used as the ebst
estimate. The following formula for estimating the total time that a node will wait for
an acknowledgement will be used.

() tcLTO *22 −=
Where TO = Total time out value, tc = Time out constant

Equation 4-6

The time the packet will spend on the actual physical wire is considered small
compared to the time it will take for a node to process it and therefore these two times
has been combined to one timeout constant. Since the node will not be in a state
where it is waiting to receive the acknowledgement before it can continue, it is
expected that a relatively high timeout value can be accepted. Simulations used to
estimate an appropriate value for the timeout constant is described in section 6.5.2.

Calculation of the time out value means extra processing. If the system were to be
used on a device where the available CPU where limited, it might be considered to

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 48

4 - Design

cache timeout values for the most common route lengths or simply use a fixed value.
This is however not done in the implementation.

4.1.6 Combining the trust modules
Since most modules need access to the trust values the trust manager module offers
methods that can be accessed by the other modules for this purpose.

TrustValue TrustManager

* 1

ACKMonitor

1

1

1
1

1 1

ACKData

1 *

RouteSelector

1
1

RouteSelectorS1 RouteSelectorS2
TrustFormater

TrustFormater2TrustFormater1

TrustUpdater

TrustUpdater1 TrustUpdater2

Figure 4-4: Class diagram of the trust related modules

It should be possible to change the different strategies by changing a minimum of the
code. The Strategy design pattern [Gamma] is suitable for such designs since its
application makes it possible to change modules/strategies during run time. Therefore
it is used for the TrustUpdater module, the TrustFormation module and for the
RouteSelector module. Decisions of which strategy to use, can be made at run time by
an application that use the protocol, based on analysis of parameters such as the
number of timed out acknowledgement requests (which indicates the number of
dropped packets), often used nodes trust values, etc.
Since no such application is designed for this project the strategies are selected before
a simulation is started.

4.1.7 Existing DSR Implementation in NS-2
As mentioned earlier the Ns-2 simulator is used to simulate the protocol. This
simulator already offers an implementation of the DSR protocol. In order to ease the
implementation of the design, an analysis of the existing DSR implementation is
presented in this section. Since the implementation of the DSR protocol has a
considerable size, the analysis presented here only covers the most basic functionality
and classes. Figure 4-5 is a class diagram of the Ns-2 implementation of DSR that
shows the most relevant classes and their relations.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 49

4 - Design

DSRAgent

+FincRoute()

MobiCacheClass

1 1

Agent

«datatype»
hdr_sr

«datatype»
SRPacket

DSR packets Header information

1 1

RouteCache

1

*

DSRAgent inherit from several other
classes than agent

Figure 4-5:Class diagram of the most relevant classes used in the Ns-2 DSR implementation

Figure 4-6 illustrates the process that takes place when a packet is received. First it is
determined if it is an incoming or outgoing packet. If it is an outgoing packet it needs
a source route to the destination. To obtain a source route the route cache is queried. If
a route is returned the packet is placed in a queue where it waits to be sent of by the
underlying layer (the interface queue). If no route is available in the route cache a
ROUTE REQUEST is broadcasted. If the packet has a source route it means that it
has either reached its destination or it needs to be forwarded. If the packet has reached
its destination its type is determined. There are several possible types of packages but
only the ROUTE REPLY is included in the diagram since it is the most relevant.
When a ROUTE REPLY is received the route is added to the cache.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 50

4 - Design

start

packet received

Send packet

Add route

Error

Send ROUTE
REQUEST

source route
vallid Falsetrue

Outgoing
packet Falsetrue

find route False

True

Packet type

Forward packetDestination False

True

ROUTE REPLY

Handle other
packets

Other packet

Figure 4-6: Illustration of the flow that occurs when a packet is received

The process from Figure 4-6 involves corporation between several classes. The main
branching is performed in the DSRAgent class where the recv() method is called
upon receipt of packages. The packet header is implemented in the hds_sr class and
methods from this class are used to examine if the packet has a route and which type
of packet it is. When the type of the packet is determined a method called handleXXX,
where XXX indicates the type of packet, is called to handle further processing of the
packet. The Mobicache class is used to store routes and offers methods to add and get
routes.

4.1.8 Merging the trust modules with the existing DSR code
The trust extensions interface with DSR in the following situations:

• In order to implement the acknowledgement mechanisms extra fields to
indicate whether the packet is an acknowledgement or an acknowledgement
receipt has to be included in the hdr_sr class.

• When a packet is received and it has been determined that the packet has

reached its final destination the handlePacketReceipt() method in

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 51

4 - Design

DSRAgent is called. Therefore processing of acknowledgement request is
handled here. Further a method for constructing and sending the
acknowledgment packet has to be implemented.

• Every time a route is added to the route cache by a call of the addRoute()

method the TrustManager has to be called to examine the route for previously
un-encountered nodes and form initial trust relationships according to the
strategy implemented in the TrustFormater class.

• When the route cache is queried for routes the findRoute() method in the

MobiCache class is called. This method is altered so the route selection
strategy defined in the RouteSelector class is used. The findRoute()
methods is also used to find routes that are returned as answers to ROUTE
REPLY’s. Introducing trust based route selection to this DSR implementation
therefore has the side effect that a node will return the route it evaluates as the
most trust worthy.

• When a packet is being forwarded the handleForward() method in the

DSRAgent class is called. In this method malicious behavior is implemented to
force packet drops.

Figure 4-7 shows a class diagram of the combined classes.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 52

4 - Design

DSRAgent

+FincRoute()

MobiCacheClass
1

1

Agent
RouteCache

1

*

DSRAgent inherits from several
other classes than agent

TrustValue TrustManager

* 1

ACKMonitor

1

1

1

1

1 1

ACKData

1 *

RouteSelector

1

1

RouteSelectorS1 RouteSelectorS2
TrustFormater

TrustFormater2TrustFormater1

TrustUpdater

TrustUpdater1 TrustUpdater2

1

1

*

*

«datatype»
hdr_sr

«datatype»
SRPacket

 packets Header information

1 1

1

1

Figure 4-7: Class diagram of the combined NS-2 implementation of DSR and the trust classes.

There are three major sequences that involves interaction between several classes:

• Adding a route and initializing trust values
• Processing a received acknowledgement
• Selecting a route

Figure 4-8 illustrates the different methods that are called during the process of adding
a route to the cache. When the DSRAgent discovers a route by either snooping it or
receiving a route reply it calls the addRoute() methods in the route cache to add the
route. After this it calls the initTrustValues() method in the trust manager to
initialize trust values for nodes that are encountered for the first time. The Trust
Manager propagates the call to the TrustFormater. The TrustFormater
successively query the TrustManager for trust values for known nodes. When the
minimum value is found, the TrustFormater successively calls the
createTrustValue() method in TrustManager to create new TrustValue objects.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 53

4 - Design

DSRAgent RouteCache TrustManager TrustFormater

addRoute()

initNewTrustValues()

f ormate()

route-reply

getTrustValue()

createNewTrustValue()

{OR}

route-snooped

Figure 4-8: Sequence diagram describing the process for adding a new route to the route cache

Figure 4-9 illustrates the methods calls that are made when an acknowledgement is
received. The DSRAgent examine the source header to determine if the packet is an
ack. If it is, it calls the handleACKReceived() method in the ACKMonitor. If the
acknowledgement request is registered it means that it has not been removed because
it has timed out and therefore the updateTrust() method in TrustManager class is
called. This method propagates the call to the TrustUpdater class by successively
calling the update()method that updates the trust.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 54

4 - Design

DSRAgent ACKMonitor TrustManager TrustUpdater

handleACKReciev ed()

recv ()

The operations are
only perf ormed,
if the receiv ed
packet is an ack

isRegisterred()

updateTrust()

update()

()

TrustValue

setValue()

()

Figure 4-9: Sequence diagram describing method calls involved when receiving an

acknowledgement

Figure 4-10 illustrates the method calls that are involved when a packet is being send.
DSRAgent calls the findRoute() method in the route cache. To evaluate the routes
the RouteCache calls the evaluatePath() method for each route to the destination.
The RouteSelector then calls the TrustManager to get the TrustValue for the
nodes on the route.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 55

4 - Design

RouteSelectorRouteCacheDSRAgent

ev aluatePath()

f indRoute()

send()

TrustManager

send()

()

()

()

getTrustValue()

TrustValue

getValue()

()

Figure 4-10: Sequence diagram describing route selection

4.2 Summary
This chapter has covered design of modules needed to incorporate trust and trust
based routing in the DSR protocol, which has lead to the fulfillment of the main
objective M-O 2. The following modules has been designed:

• The TrustFormater, that handles assignment of trust to nodes when they are
encountered for the first time.

• The TrustUpdater that increases or decreases nodes trust values based on
different strategies.

• The RouteSelector that will select routes using a trust based evaluation.
• The ACKMonitor that will handle receipt and requests of acknowledgements.
• The TrustManager that stores trust values for nodes and coordinates trust

related processes.

Further, the implementation of the DSR protocol that exists in Ns-2 has been analyzed
and methods where the trust based modules interface with the existing implementation
have been identified.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 56

5 - Implementation and tests

5 Implementation and tests
This chapter covers the implementation of the designed protocol. The protocol builds
on a C++ implementation that is included in the Ns-2 [NS2] simulator and therefore a
small introduction of the Ns-2 simulator is presented in this chapter. The code has
been implemented so it corresponds well to the design described in 4. Therefore it has
been chosen to include specific details in appendices.

The source code for the designed trust classes are included in the appendix P. Several
modifications have been made to existing DSR classes but since full credit cannot be
taken this code it is not included in appendix. However, all related DSR source code is
included on the enclosed CD.

5.1 Introduction to the Ns-2 simulator
This section gives a brief introduction to the Ns-2 simulator. The Ns-2 simulator has
been around since 1989 and several institutions and societies has supported and
contributed to its development. Ns-2 is an event driven simulator targeted especially
at network research. It offers implementations of many famous and less famous
protocols, traffic sources, etc.

5.1.1 Overview of Ns-2
The Ns-2 simulator consists of two major parts:

• An Otcl (Object Oriented Tcl) interpreter
• A C++ library

Implemented protocols can be accessed and used trough OTcl scripts. The OTcl
scripts are used to specify node behavior such as movement and traffic generation. It
is also used to specify simulation details such as simulation time, nr of nodes in
simulation, protocols used for simulation, etc. The use of OTcl has the advantage that
users do not need to know anything about the actual implementation. This makes it
possible to start simulations with a sparse knowledge of Ns-2.

The actual implementation of the simulator and the protocols are done in C++, which
means that changes or extensions to protocol behavior have to be done in the C++
code. Protocols are implemented as agents that can be thought of as part of a device
that is running the protocol. This means that agents of different types can be attached
thereby running one protocol on top of another. For the simulation performed in this
project, a Constant Bit Rate (CBR) traffic generator agent has been attached to a
DSRAgent. The DSRAgent is connected, via a link layer through an interface queue, to
a Medium Access Control (MAC) layer. The link layer is connected to an Address
Resolution Protocol (ARP) that finds hardware addresses that corresponds to a
packets next destination. A more detailed description of the structure of the mobile
node appendix I.

The manuals and tutorials mostly focus of the OTcl part of Ns-2, which means that
parts related to OTcl interaction and set up is well documented. The C++ part of Ns-2
is not similar well documented and often requires examination of the source code to
get information about certain topics.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 57

5 - Implementation and tests

Output is written during simulations to a trace file, which can be processed after
simulation. Appendix N include a small description of this output.

Version of Ns-2 used in this project
The most recent released version of Ns-2 is version 2.26. This version was first used
but after having experienced severe problems with DSR simulations it was discarded.
Searches in the Ns-2 mail archives indicate that wireless simulations on this version
are not recommended [NS2-M1]. Instead version 2.18b has been used.

5.2 Implementation details
The classes are implemented according to the design and reflect the diagram from
Figure 4-7. To construct a dynamic and scalable implementation, Standard Template
Library (STL) types such as maps and lists have been used. Since the implementation
reflects the described design, this section will concern some specific areas of the
implementation. This provides valuable information for anyone who might continue
work on the code and emphasize areas where the implementation could be improved.
Furthermore the code has been commented and based on these comments HTML
documentation has been created with Doxygen [Heesch]. Doxygen is tool, much
similar to the Javadoc, tool that extracts information from source code and generates
HTML output. The generated HTML documentation is included on the enclosed CD.

The following details are included in appendices:

• A discussion of the implementation of the acknowledgement time out
mechanisms. This is included in appendix O.1.

• An explanation of the implementation of malicious behavior. This is included
in appendix O.2.

• A description of the file format that is used when trust values are store
between simulations. This is included in appendix O.3.

5.3 Tests
This section explains the test of the implemented system that has been performed.
The test of the system can be divided in to parts:

• A structural part
• A functional part

Due to the complexity of the system functional test have not been performed for all
methods and classes. Because packets are created outside the DSRAgent class and
pass through the class it is extremely difficult to construct packets and force events,
which is necessary to perform the structural testing. Where it has been found possible
small testIt() methods have been implemented in classes. These methods can be
called at the start of simulations and write output and expected output to the screen.
This output can then be verified. Since some of the test it methods create trust values
they should only be called during testing, not under actual simulations because this
might influence the results.

The functional tests have been performed by writing and verifying output.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 58

5 - Implementation and tests

Several flags have been implemented in the TrustConstants.h file that can be used
to control which output that is written. The functional tests have focuses on verifying
the following:

• That acknowledgements are send and received
• That routes are selected and evaluated
• That trust values are updated
• That malicious nodes drops packets

The output can be generated for verification by using the VERBOSE flags in the
TrustConstants.h file.

5.4 Summary
This chapter has presented a short introduction to the Ns-2 network simulator
explaining the overall architecture of the simulator. Specific details about the
implementation, such as the acknowledgement timeout method and the file format for
saved trust values have been included in appendices. HTML documentation of the
source code have been created using Doxygen and is included on the CD. Further
some of the tests of the system that have been performed have been discussed.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 59

6 - Simulations and Results

6 Simulations and Results
This chapter covers the simulations that have been conducted with the implemented
system to meet the post objective, P-O 1. Randomness of the scenarios that have been
used for the simulations are discussed, to elucidate their expected impact on the
results. Several parameters have been subject to examination and the most important
is accentuated. Finally some of the achieved results are presented, analyzed and
discussed. Details related to the simulation platform is included in appendix L. Instead
of determining the effects of trust based routing by simulations other methods such as
analysis could have been used. However, due to the complex nature of the ad hoc
network, analysis verification has not been considered realistic within the time frame
of this project.

6.1 The randomness of simulations
This section presents a discussion of the randomness of the simulations.
There are two main parts that has an impact of the outcome of the simulations:

• The movement scenario
• The traffic scenario

Ns-2 provides tools to create both of these. To simulate movement the Random
Waypoint model is used. The Random Waypoint model is a commonly used mobility
model for simulations with ad hoc networks. It functions in the way that nodes pick a
random destination towards which they start moving along a straight line with some
maximum speed. When the destination is reached the node waits for a specified time,
the pause time, before it starts moving again. The scenario is generated randomly, but
once it has been generated it is deterministic which means that the topology will
always be the same, with the same scenario. It is clear that the choice of which nodes
should act as malicious is tightly related to the scenario.

To simulate traffic Constant Bit Rate (CBR) traffic scenarios are used. CBR is chosen
over TCP because the protocol is much simpler which makes the results easier to
analyze. Furthermore, it seems to be best practice to use CBR for ad hoc simulations
[Broch1] [Buchegger2]. The traffic scenarios are also generated randomly, but similar
to the movement scenarios they are deterministic once created. The traffic scenarios
specify which nodes should start transmitting to some destination at a specific time.

Simulating random movement and traffic requires several simulations with changing
scenario and traffic files, which is a very time consuming task. Since the objective of
the simulations is to compare the standard DSR and DSR with trust based route
selection, using one scenario is considered satisfying, as long as one protocol does not
gain advantages over the other from the scenario. However, to ensure that the results
are not obtained by using an exaggerated positive scenario, simulations to determine
the impact of using different scenarios are carried out.

Since the outcome of a simulation is the same when the same scenario and same
number of malicious nodes is used only one simulation is conducted with the DSR
protocol. As mentioned in section 4.1.4, trust values are stored between simulations,
which can cause nodes to make different choices of route selection during one

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 61

6 - Simulations and Results

simulation than during the previous simulation. This means that the results can vary
between simulations with trust based route selection. To account for this, five
subsequent simulations are performed and the trust values are stored after each
simulation. When a new simulation batch of five simulations is begun with a different
number of malicious nodes, the trust values are deleted so the nodes start without any
stored trust information.

6.2 Metrics
There are several different metrics that can be applied to measure protocols
performance against. Studies of performance evaluations of protocols for mobile ad
hoc networks indicate that the following metrics is usually used [Broch1],
[Buchegger2].

Throughput, which is the ratio between the number of packets send by the
application layer and the number of packets received at the application layer. This is
calculated by Equation 6-1.

∑
∑= n

n

send

received
Throughput

1

1

Equation 6-1

Path optimality, which is the difference between the number of hops the packet took
and the length of the shortest path.

Routing overhead, which expresses the total number of routing packets that are send.

The throughput is used to compare the standard DSR and DSR fortified with different
trust based routing strategies, because it is a very common metric and because it
expresses how well the protocol is at delivering packets for an overlying (application)
layer, which in the end, is the primary task of the protocol.

Using path optimality in the common way is not considered relevant because trust
based routing is based on the avoidance of malicious nodes, which is expected to lead
to the use of longer routes. Therefore it is not considered a primary objective to select
a short route. Instead a different metric based on how well the routing strategies was
to avoid using routes with malicious nodes is used.

Because the fortified DSR protocol uses the acknowledgement strategy described in
section 4.1.5, all received data packets results in an acknowledgement being send,
which leads to an increased routing overhead. This overhead is not determined
because it was considered of less importance. For every received acknowledgement
request, non-malicious nodes return an acknowledgement. However, as the packet is
received, a possible route to the acknowledgement destination is discovered, which
means that the number of extra routing packets, beside the acknowledgements, might
be as low as zero.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 62

6 - Simulations and Results

Other metrics such as storage complexity, time complexity and packet size have also
been defined [Zou], but have not been used.

6.3 Processing the output
As mentioned the output that is generated is mainly written to the trace file. A trace
file from a simulation can consist of more than 100.000 lines and therefore a parser to
process it is necessary. The code for this parser in written in Java (because it offers
easy IO and string handling) and is placed in appendix P.
The process of handling and processing the data is illustrated in Figure 6-1.

Tracefile txt file

Spreadsheet

cachestatistics

Ns-2 simulator
(C++ code)

java parser

java parser manual

txtfile

manual

Figure 6-1: Data processing of simulation results

Besides the trace file, methods to write data from the cache have been implemented.
This data that relates to the routes that are selected is written to a text file that can be
preprocessed. The processed results are stored in a spreadsheet were they can be
examined further. As mentioned in section 6.1 storing trust values have an impact on
the results, which results in deviations. To account for these deviations, statistical
methods to analyze the results are used. DSR and DSR with trust based route selection
need to be compared to make a statement whether or not they are different.

An often-used method to verify that results can be used to decide that two systems are
different, is by using confidence intervals [Jain]. Confidence intervals for the mean
can be calculated using Equation 6-2.

+−= −−

n
sz

x
n

sz
xCon

*
,

* 2/12/1 αα

Equation 6-2

Where:
quantilezSS

nxCon
−−==

===

−)2/1(deviation, tandard
samplesizemean,interval, Confidence

2/1 αα

A 90% confidence interval has been used for the route selection strategies. This
means that it can be stated with a 90% confidence that the mean lays within the
confidence interval [Jain]. This is used when the throughput of a route selection
strategy has been compared to that of standard DSR.

Due to the size of the trace files, that are the main result of a simulation, they are not
included on the CD. They are stored on a drive at DTU and can be obtained by
contacting the author of this thesis.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 63

6 - Simulations and Results

6.4 Parameters
Several parameter that can be adjusted and thereby influence the outcome of the
simulations exist. This section gives a brief presentation of the most important
parameters. The parameters are presented in tables that also contain information about
the value of the parameter that was used during simulations and whether this value
was fixed or not. The names in the Parameter column in Table 6-1 and Table 6-2
correspond to the name the parameters have in the source code.

6.4.1 Table of standard DSR parameters

Parameter Description Fixed Value
Snoop_source_routes Flag used to indicate if source routes should

be snooped. The possible impact of
snooping source routes is covered in section
3.1.3

Yes False

Reply_only_to_first_
routereq

Flag used to indicate if a node should only
reply to the first route reply it receives. The
expected impact of this parameter is
covered in section 3.1.3

Yes False

Send_grat_replies Flag used to indicate if a node should send
out gratuitous replies to shorten routes. The
expected impact of this parameter is
covered in section 3.1.3

No True/False

Reply_from_cache_on
propagation

Flag used to indicate if a node should, when
receiving a route request, reply with a route
from its cache if possible.

No True/False

Use_ring_search Flag used to indicate if a node should, use
ring search to discover new routes. The
impact of this parameter was discussed in
section 3.1.1.

Yes False

Table 6-1: DSR parameters

Furthermore, several parameters related to route reply timeouts, buffer size, route
cache size, etc. exists. These parameters have just been assigned the default value
from the implementation.

6.4.2 Trust related parameters
This section covers the parameters that are related to the trust based extension. The
parameters can be changed in the TrustConstants.h file. Since they have already been
covered in details in chapter 4, they are only summarized here.

Parameter Description Fixed Value
AVR_ACK_TIMEOUT_VAL Average timeout value for acknowledgment No #
NOACKRECEIVED Value of no acknowledgement received event Yes -1.0
ACKRECEIVED Value of acknowledgement received event Yes 1.0
DATARECEIVED Value of data packet received event Yes 0.7
MAXTRUSTVAL Maximum trust value Yes 1.0
S1_DEFAULTTRUSTVALUE Default trust value when no nodes are known

on the route during trust initialization. (S1
relates to trustformation strategy 1)

No #

Table 6-2: Parameters related to the trust extension.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 64

6 - Simulations and Results

6.4.3 Other parameters
This section summarizes some parameters related to topology, traffic rates etc. These
parameters are all specified in the OTcl script, which is included in appendix P.3.
Most of the values have been assigned based on a decision on what was used in the
documentation and the examples that have been studied [Fall], [Greis], [NSEx].

Parameter Value
Application traffic CBR
Radio Range 250 m
Packet Size 512 bytes
Transmission rate 4 packets/s
Pause time for nodes 60 s
Maximum speed 1 m/s
Simulation time 500 s
Number of nodes 25
Area 1000 m × 1000 m
Available bandwidth 1 Mb/s

Table 6-3: Parameters used to specify node behavior and simulation details

The speed of 1 m/s is chosen because it corresponds to slow walking. The number of
nodes in the network is set to 25, which corresponds to the assumption, pointed out in
section 2.1.4, that DSR operates in a network with a diameter of 5-10 nodes. For a
simulation that last 500 seconds, approximately 30000 CBR packets are send. This
number is considered high enough to eliminate any deviations influence on the results.
A remark needs to be tied to the value of the available bandwidth. It has not been
possible to find available information on the bandwidth of the mobile wireless
networks that are used for the simulations in the documentation of Ns-2 [Fall].
Searches of the ns mail archives indicate that the available bandwidth is 1 Mb/s [NS2-
M2]. With this bandwidth, a packet size of 512 bytes and a transmission rate of 4
packets/s, congestion of the network is not likely to occur.

6.4.4 Malicious nodes
A minimum of 0% and a maximum of 40% malicious nodes have been used. The
same nodes always act as malicious, which means that if node 2 was malicious in a
simulation with three malicious nodes it is also malicious in a simulation with five
malicious nodes. Table 6-4 contain the nodes that were malicious during simulations.
The upper row indicates which nodes were used when the total number of nodes was
varied. If, for instance three malicious nodes were used, node 1,2 and 7 act as
malicious. The nodes that act as malicious have been selected randomly and then kept
fixed for all simulations.

Total nr of
malicious

 3 5 7 10

Node nr 1 2 7 10 16 19 23 13 24 5

Table 6-4: The numbers of the nodes that were malicious during simulations.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 65

6 - Simulations and Results

6.5 Preliminary simulations
This section presents preliminary simulations that have been conducted in order to
make a first fit of certain parameters. The estimation of these parameters has not been
of primary interest, which means that the fitting was simply done by trying different
values and choosing the one which lead to the highest throughput.

6.5.1 Estimation of initial trust
To estimate the optimal value to assign to nodes when they are first encountered some
simulations are performed. Assignment of the initial trust value occurs, as described
in section 4.1.1, when a new route composed of un-encountered nodes is discovered.
Table 6-5 shows the parameters that were used for the simulation.

Trust related
parameters

Value DSR parameters Value

Routing Strategy 1
Average timeout value for
acknowledgment

0.5

Send_gratiuos_replies

True

Malicious nodes 7 Reply_from_cache_on
propagation

True

Table 6-5: Parameters used when estimating the optimal value of initial trust.

The results from the simulation are presented on Figure 6-2. As seen, the highest
throughput just above 48% is achieved when initial trust of -0.4 is used.

Estimate of best initial trust value

0.4

0.42

0.44

0.46

0.48

0.5

Intial trust values

Th
ro

ug
hp

ut
 (%

) Initial trust = 0.6
Initial trust = 0.4
Initial trust = 0.2
Initial trust = 0.0
Initial trust = -0.2
Initial trust = -0.4
Initial trust = -0.6

Figure 6-2: Results from running simulations with different values of initial trust.

The purpose of the simulations was merely to estimate a value of initial trust. The
results indicate that -0.4 results in the highest throughput and therefore this value is
used for the remaining simulations. A value of -0.4 means that the node is initially
distrusting which in a scenario with 28% malicious nodes is considered sensible.

6.5.2 Estimation of acknowledgement time out
The importance of the time that the acknowledgement monitor should wait before
treating an acknowledgement as not received is discussed in section 4.1.5. To estimate
a suitable value for this parameter simulation were carried out using the settings from
Table 6-6.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 66

6 - Simulations and Results

Trust related
parameters

Value DSR parameters Value

Routing Strategy 1

Send_gratiuos_replies True

Malicious nodes

7 Reply_from_cache_on

propagation
True

Table 6-6: Parameters used when estimating acknowledgement time out value

Figure 6-3 below shows the results of the simulation.

Estimate of timeout value

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Timeout value (sec)

Th
ro

ug
hp

ut
 (%

)

Timeout = 0.03 sec
Timeout = 0.07
Timeout = 0.1 sec
Timeout = 0.2 sec
Timeout = 0.3 sec

Figure 6-3: Results from estimation of acknowledgement timeout value

As the figure shows the highest throughput is attained with a timeout value of 0.07
seconds. By using Equation 4-6, this means that for a route of length 4 a node will
wait 0.42 seconds before the request of an acknowledgement is forsaken. Considering
that a transmit ratio of 4 packet/s is used, this means that in the case with a wait time
of 0.42 second only 2 packets can be send by a route before a possible
acknowledgement time out occurs and the routes trust values adjusted. For the
remaining simulations an acknowledgement timeout value of 0.07 seconds has been
used.

6.5.3 Impact of using different scenarios
To investigate the effect of using different scenarios, simulations have been
performed with the parameters listed in Table 6-7. Five different traffic scenarios and
five different movement scenarios were used for the simulations.

Trust related
parameters

Value DSR parameters Value

Routing Strategy 1

Send_gratiuos_replies False
Malicious nodes 7

 Reply_from_cache_on
propagation

False

Table 6-7: Parameters used during simulations with different scenarios.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 67

6 - Simulations and Results

Figure 6-4 displays the results of the simulations.

Comparison of different randomly generated
scenarios (RS1)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Scenarios

Th
ro

ug
hp

ut
 (%

)

Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5

Figure 6-4: Results from different scenarios.

As seen there is a significant difference between the results. The lowest throughput of
approximately 50 % is experienced with scenario 1, and the highest, of approximately
70% with scenario 5, which leads to a difference of more than 20 % between the best
an the worst result. To examine the cause of this significant disparity the nodes
physical position during the simulation is examined. The nodes positions at the start
of the simulation are presented on Figure 6-5 and Figure 6-6. The figures are only
sketches, which means that the scaling does not hold. The area is 1000 m2 and nodes
move with a maximum speed of 1 m/s with a pause time of 60 seconds. The
simulations were run for 500 seconds. This means that a node as the maximum can
have moved 500 m during the simulation. Malicious nodes are marked with red on the
figure.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 68

6 - Simulations and Results

14

12

20

9

1

23

10

7

19

4

15

3 5

8

21

2

16
24

18

17

0

13

6

22
11

Figure 6-5: Nodes position at start of simulation with scenario 1.

As seen on Figure 6-5 the mid section contains three malicious nodes. It is likely that
any packets that are being send across the area in some way is likely to pass over the
mid section. This means that the malicious nodes will most likely be on many of the
routes, which can explain the low throughput. In Figure 6-6 it can be observed that no
malicious nodes are present in the mid sections in scenario 5 and furthermore, all
malicious nodes except one, are located in the rightmost section. This means that
packets send from the leftmost section to the middle section or from the middle
section to the left section is likely to be transported by routes with no malicious nodes.
Further more, packets send from the right section will also be likely to reach their
destination since the risk of encountering a malicious node in the mid or left section is
low. It is clear that the number of nodes that are only one hop away from a malicious
node is larger in scenario 1 than in scenario 5 since the malicious nodes in scenario 5
is placed close to the border of the area. Being one hop away from a malicious node
increases the risk of being part of a route with that node and also increases the risk of
routing over that node. These considerations can also be used to explain the difference
in the throughput for the two scenarios.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 69

6 - Simulations and Results

14

12

20
91

23

10

7

19

4

15

3

5

8

21

2

16

24

18

17

0

13

6

22

11

Figure 6-6: Nodes position at start of simulation with scenario 5

Whether or not it is realistic with a scenario where the nodes are positioned as in
scenario 5 is difficult to make a statement about, but to take a pessimistic view of the
results and consider the worst-case scenario, scenario 1 is used for the simulations.

Simulations with standard DSR are performed with the same scenarios and the results
presented in appendix K. These results show that an increase in throughput of
approximately 20 % could have been achieved by using scenario 5.

6.6 Comparison of Route selection strategies
This section presents and discuss results and simulations related to the comparison of
route selection strategies. The throughput is compared to determine the influence of
the trust based routing compared to standard DSR. The first results were obtained by
simulating with the parameters from Table 6-8.

Trust related
parameters

Value DSR parameters Value

Routing Strategy 1

Send_gratiuos_replies True
Malicious nodes 0-40 %

 Reply_from_cache_on
propagation

True

Table 6-8: Parameters used for first comparison of route selection strategy 1 and standard DSR

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 70

6 - Simulations and Results

The values used for the DSR protocol simulations are presented in Table 6-9. These
values have been used for all simulations, and were chosen simply because they are
default.

DSR parameters Value
Reply_only_to_first_ routerequest False
Send_gratiuos_replies True
Reply_from_cache_on propagation True
Use_ring_search True

Table 6-9: Parameters used for the DSR protocol

The resulting throughput derived from the simulations is presented on Figure 6-7. The
two curves following the RS1 curve are lower and upper confidence intervals.

Comparison of RS1 and standard DSR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.12 0.2 0.28 0.4

Malicious nodes (%)

Th
ro

ug
hp

ut
 (%

)

RS 1

Standard DSR

Confidence mean
upper
Confidence mean
lower

Figure 6-7: Comparison of route selection strategy 1 and standard DSR

The first noticeable thing is that both standard DSR and route selection strategy 1 only
manage to deliver around 72 % of the packets even though no malicious nodes are
present in the scenario. This result is somewhat surprising compared to some of the
results mentioned in section 2.1.6 where DSR is said to deliver as much as 95 % of
the packets [Broch1]. However, Broch et al actually identifies a serious layer
integration problem with the ARP mechanism that, as they state, “would affect any on
demand protocol running on top of an ARP implementation similar to that of BSD
Unix” [Broch1 pp 11]. The problem occurs when a series of packets with a next-hop
destination whose link-layer address is unknown are passed to the ARP. This result in
all packets, but the last added, being dropped by the ARP. Johnson et al implemented
a solution to this problem, but it is considered out of scope of this assignment to
implement a similar solution. The most recent version of the Ns documentation states
that the ARP in Ns-2 is implemented in BSD Unix style [Fall]. This is most likely the
explanation of the low throughput experienced for standard conditions. Due to these
circumstances comparison of throughput might not reveal the full effect of trust based
route selection, because it cannot be determined if the packets dropped by the ARP,
were to be send by route with or without malicious nodes.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 71

6 - Simulations and Results

Further more, these observations indicate that achieving a throughput much above
70% is most likely unrealistic.

As expected the throughput decreases as the number of malicious nodes in the
network increases. As seen the throughput for standard DSR and route selection
strategy 1 approach each other when the number of malicious nodes moves towards
40%. The interval beyond 40 % malicious nodes is not examined because the results
clearly indicate that the effect of trust based routing decreases beyond this point.
With 28 % malicious nodes the throughput is approximately 50 % for route selection
strategy 1, which is a 15% improvement compared to standard DSR.

Figure 6-8 shows the results of simulations with the five different routing strategies
that were covered in section 4.1.3. Route selection strategy 4 used a threshold value of
-0.25. It was chosen to apply -0.25 as threshold value because with an initial value of -
0.4 a value of -0.25 would indicate that the node had been part of a positive
experience or part of a route with a node that had resulted in a positive experience.

Comparison of route selection strategies

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 0.12 0.2 0.28 0.4

Maliciuos nodes (%)

Th
ro

ug
hp

ut
 (%

) RS 1
RS 2
RS 3
RS 4
RS 5
Standard DSR

Figure 6-8: Comparison of different routing strategies.

The figure illustrates that all routing strategies offers a higher throughput than
standard DSR. Especially in the interval 20% - 28% malicious nodes is the difference
markedly. The maximum difference is approximately 15 % between standard DSR
and route selection strategy 1 at a level of 28% of malicious nodes.
Routing strategy 4 performs worse than the other strategies when the percentage of
malicious nodes increases. When the number of malicious nodes increases there is a
higher probability that good nodes will participate in routes with malicious and
thereby be part of a route that drops a packet. This means that good nodes can also
(momentarily) be assigned low trust values. If no routes have nodes without trust
values below the threshold value, the last available route will be selected due to the
way the route selection is implemented, which can result in a route with minimum
trust value being used. As seen the difference between the other routing strategies are
not that significant, but routing strategy 1, 2 and 5, with 1 as the best, seems to
perform slightly better than routing strategy 3. Since routing strategy 3 and 4 are
related it is expected that their performance to some extent are similar.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 72

6 - Simulations and Results

The results are however, so close that the confidence intervals overlap, which means
that it cannot be concluded with a 90% certainty that the mean lies between the
interval. This means that it is with some uncertainty that it, based on these results, can
be concluded that one strategy is better than the other.

There are many other factors besides malicious drops that can cause packets to fail to
reach their destination. One factor is the ARP protocol, which was mentioned earlier.
It has also been observed that are large number of packets are dropped internally in
the node from the Sendbuffer. Data and routing packets are stored in the Sendbuffer if
no route is found to their destination. They are dropped from the buffer after a certain
amount of time or if the buffer is full. Appendix M shows a graph of the drops from
the Sendbuffer, which occurred during simulations with route selection strategy 1.
The results are similar with other routing strategies and for standard DSR. It is
expected that it becomes more difficult to discover routes as the number of malicious
nodes increase, because malicious nodes do not forward any type of packets. This can
explain the increase in sendbuffer drops. However, no good explanation can be given
to why so many packets are dropped when no malicious nodes are present. The
packets drops caused by other factors makes it difficult to analyze the results, because
it cannot be decided whether a packet where to be forwarded over a good route.
Therefore no further results related to comparison of throughput are presented.

6.7 Evolution of trust values
In this section it is investigated how well the nodes identify malicious nodes. This is
done by saving the content of each node’s TrustManager after each simulation. For
these simulations the parameters from Table 6-10 were used.

Trust related
parameters

Value DSR parameters Value

Routing Strategy 1
Malicious nodes 7

Send_gratiuos_replies True

Initial trust 0.5 Reply_from_cache_on
propagation

True

Table 6-10: Parameters used for simulations for analyzing trust values evolution.

Figure 6-9 shows how the nodes trust values evolve. The trust values are calculated as
an average of all the nodes trust values in each node. The figure clearly illustrates that
the seven malicious nodes: 1, 2, 7, 10,16, 19 and 23 all have low trust values and that
the trust value has decreased for each simulation. Node 5, 15 and 24 does also have
relatively low trust values even though they are not malicious. This can, to some
extent, be explained by studying Figure 6-5 that shows the nodes position. It can be
observed that node 15 is positioned in the mid section very close to the malicious
nodes 10 and 23. Node 24 is placed in the upper right section very close to the
malicious nodes 2 and 16. Being close to malicious nodes increases the risk that a
node is on a route with this malicious node, which means that the node can be part of
a negative experience for other nodes. This is believed to be the case for nodes 15 and
24. Node 5 is not, as node 15 and 24, particularly close to any malicious nodes, which
make it a bit more difficult to explain why it has a low trust rating. The explanation
might be sought in the fact that all nodes do not send packets to all nodes. This means

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 73

6 - Simulations and Results

that some nodes do not have experiences with other nodes and that nodes might not be
part of good routes. If traffic for node 3 comes from the rightmost section node 5
might be part of the route. If malicious nodes drops traffic for node 3 and node 5 is
part of the route it will have its trust value decreased. This might be what has caused
node 5’s low trust value. However no empirical data exist to support this hypothesis.

Evolution of trust values

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24

-0.5 0 0.5 1

N
od

e
nr

Trust Value

Simulation 3
Simulation 2
Simulation 1

Figure 6-9: Evolution of trust values

The nodes ability to identify malicious nodes corresponds well to the results that
Keane achieved with his implementation of trust based routing [Keane].

6.8 Malicious packet drops
To determine the amount of packets that are dropped by malicious nodes further
simulations have been carried out. For these simulations the parameters in Table 6-11
have been used.

Trust related
parameters

Value DSR parameters Value

Routing Strategy 1

Send_gratiuos_replies False

Malicious nodes

7 Reply_from_cache_on

propagation
False

Table 6-11: Parameters used for simulations to measure the number of malicious drops

The results from the simulations are presented in Figure 6-10.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 74

6 - Simulations and Results

Comparison of malicious drops

0

10

20

30

40

50

0 0.12 0.2 0.28 0.4

Malicious nodes (%)

M
al

ic
io

us
 d

ro
ps

/T
ot

al

dr
op

pe
d

(%
)

RS1
RS2
RS3
RS4
RS5
Standard DSR

Figure 6-10: Comparison of drops caused by malicious nodes

The graphs express the number of packets dropped by malicious nodes divided by the
total number of packets. Packets dropped by malicious nodes are both data packets
and routing packets where the total number of dropped packets are only routing
packets. This is done because it at the time of simulation was not possible to
differentiate the two. Later measurements have showed that approximately 80% of the
malicious drops are data packets. As the figure illustrates, far less packet drops are
caused by malicious nodes during simulations with the trust based routing strategies,
than with standard DSR. For standard DSR, approximately 47% of the packet drops
are caused by malicious nodes. The lowest result, which is achieved with routing
strategy 2 and 5 are approximately 17%, which results in a difference of 30%. Due to
the possibility of other causes than malicious drops, a linear relation between the
throughput and the percentage of malicious drops cannot be expected.
These results gives a better indication, than the results based on throughput, of the
ability of the trust based strategies to avoid malicious nodes and supports the
conclusion drawn in section 6.7.
There are still some uncertainties related to the results because it cannot be
determined how many packets that were dropped internally.

6.9 Examining the Route Cache
The results presented in section 6.7 showed, by the use of trust values, that nodes
were able to identify malicious nodes. These results were supported by the results
from section 6.8 that showed that fewer packets were dropped by malicious nodes
when trust based routing was used. To dig deeper into the trust based route selection
the route selection it self is examined. One observation mentioned in section 3.1.1, is
that once a route to a destination exist, the node will not actively try to obtain new
routes, before a ROUTE ERROR indicating that the route is broken, is received. This
might result in situations where a node is forced to use a route with malicious nodes.
The extent of this problem is examined by gathering information about all routes that
were available to a destination and the actual route chosen. Based on these results a
metric that expresses how well the strategy selects routes is presented. The route
information is written to a file at run time and preprocessed using a parser. The code
for this parser is included in appendix P.2. The results where created during the same
simulations that the results from section 6.8 and therefore the same parameters from
Table 6-11 were used. However, only results for 28% percent malicious nodes are

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 75

6 - Simulations and Results

presented. As mentioned is section 4.1.7, the same method, findRoutes(), is used for
finding routes for a packet and for finding routes to return as reply to ROUTE
REQUEST’s. To avoid calls to findRoute() that occurs due to ROUTE REQUEST’s
it is chosen to set the Reply_from_cache_on propagation flag to false. The results are
presented in Figure 6-11.

Route selection

86
88
90
92
94
96
98

100

Routing strategies

C
or

re
ct

 C
ho

ic
e RS 1

RS2
RS3
RS4
RS5

Figure 6-11: Comparison of routing strategies based on observation of the cache

The y-axis of the graph shows values calculated by Equation 6-3.

∑ +
=

n

gdg
gC

1

100*

Equation 6-3

 C: Correct choice
Where g: Number of good routes selected
 gd: Number of good routes discarded
 n: number of simulations

The total number of possible good routes that could be selected is the sum of the
number of good routes that were selected and the number of good routes that were
discarded. These results are based on 5 simulations with each strategy (resulting in n
= 5). The formula expresses the percentage of correct routing choices that were made.
The results show that routing strategy 1 and 2 outperforms the others with
approximately 98% good routing choices. Strategy 4 has the lowest results of 90%
good routing choices. These results show that the trust based route selection has a
high percentage of correct route selections.

To examine causes for the relatively high percentage of malicious drops compared to
the above results, it has been investigated how often a node is forced to choose a route
containing malicious nodes. These results are presented in Figure 6-12.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 76

6 - Simulations and Results

Comparison of forced choices

0
5

10
15
20
25
30

Routing Strategies

Fo
rc

ed
 m

al
ic

iu
os

ro

ut
es

RS1
RS2
RS3
RS4
RS5

Figure 6-12: Graph showing how many times a route containing malicious nodes were the only

choice.

The y-value of the graph was calculated using Equation 6-4.

∑=
n

t
fbF

1

100*

Equation 6-4

 F: Percentage of total route choices that were forced to be malicious.
Where fb: Number of bad routes selected with no alternative
 t: Total number of routes selected

The equation expresses how many times a route with malicious nodes was selected
because no alternative route was present. As the graph shows between 18% and 27%
of the routes with malicious nodes where selected because no alternative route were
available.

This result indicates that there is a bottleneck for trust based routing when only one
route is available. This corresponds to the observation described in section 3.1.1.
Unfortunaltly, time did not allow further investigation of this area.

6.10 Uncertainties
Due to the large number of variable parameters and the generated output some
uncertainties are related to the results. In this section some of these uncertainties will
be discussed.

The results from section 6.5.3 shows that the deviation in the results obtained from
simulating with different scenarios could be more than 20%. Even though the most
pessimistic scenario was used, an even worse might exist. The opposite is also the
case, as another scenario could lead to better result than the ones achieved with the
best scenario here.

The scenarios only consisted of 25 nodes moving with a maximum speed of 1 m/s.
Fewer nodes would mean less possible routes and in such situations the trust based
route selection strategies might not have the same ability avoid malicious nodes.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 77

6 - Simulations and Results

Using more nodes would mean more possible routes, which could give trust based
routing a greater advantage.

All the parameters were estimated with one scenario and it cannot be excluded that
other scenarios could have resulted in different values. And at the same time it cannot
be ruled out that one trust based routing strategy performs better than others in certain
unforeseen situations.

Only one set of parameters values were used for simulations of standard DSR and
whether better or worse results could have been achieved with other values is not
investigated.

To minimize these uncertainties a larger number of different scenarios should be used
for the simulations, which would lead to a better statistical foundation. This is
however a time consuming task, since one simulation with the used simulation
platform takes approximately 8 minutes, which leads to a minimum of 3 hours to
perform simulations for one routing strategy.

However, it can be stated with 90% certainty, that trust based routing achieves a
higher throughput than DSR under the circumstances that have been simulated.

6.11 Summary
This section presents a summary of the simulations and derived results that have been
discussed in chapter 6. Preliminary simulations have been carried out to determine

• The impact of using different simulation scenarios. The results showed that as
much as 20% deviation between the highest and lowest achieved throughput
was experienced. Based on these results the worst-case scenario was used for
the remaining simulations.

• The Acknowledgement time out value was estimated to 0.07 seconds

• The initial trust value was estimated to –0.4

These values were used for the further simulations. Besides the preliminary
simulations, several other simulations were described and the results analyzed. This
has lead to the following results:

• Both standard DSR and DSR with trust based routing managed to deliver
72% of the packets with no malicious nodes in the network. This result can to
some extent be explained by some integration problems in the existing Ns-2
implementation of DSR.

• All trust based route selection strategies outperformed standard DSR when

malicious nodes were present in the network. The best result was a 15%
increase in throughput, which was achieved with route selection strategy 1.
The throughput for strategy 2 and 5 were close to that of strategy 1, where the
throughput for strategy 3 and 4 were a bit smaller.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 78

6 - Simulations and Results

• Results based on nodes trust values and on the percentage of dropped packets
that were dropped by malicious nodes, clearly indicated that malicious nodes
where identified.

• Simulations that generated output directly from the route cache were

presented. A metric that describes how good a strategy was to select good
routes over routes with malicious nodes were used. The results from these
simulation revealed that route strategy 1 and 2 selected the best possible route
98% times. Routing strategy 4 performed the worse with a correct choice 90%
of the times. From the same simulation results, knowledge about how many
times a route with malicious nodes where the only possible route, where
deduced. These results showed that 18%- 25% of the times a route with
malicious nodes were selected no alternative route was available.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 79

7 - Future Work, Improvements and Perspective

7 Future Work, Improvements and Perspective
Time has, as always been a limiting factor, and several areas and solutions has been
examined in thought but has not been put into practice. This chapter is related to the
future work that could be performed to investigate interesting areas or lead to
clarifications or improvements of the existing work. Furthermore, a perspective of the
achieved results is presented. As the preceding chapter has indicated, the
combinations of the trust related parameters and DSR parameters are almost
infinitive. Whether a perfect combination exists and is still undiscovered and
uncertain. Since the architecture for forming and updating trust is designed and
implemented, it could be used for other purposes than just route selection. However,
the area of using trust relationships, established in one content, in others is still under
investigation, an it is not clear how, and if, trust can be transferred from one content to
another. Therefore only one area for using the existing trust values for other purposes
are proposed.

7.1 Introduction of grudging behavior
The CONFIDANT protocol, described in section 2.3.5, uses a mechanism to detect
malicious behavior and punish these. If a node identifies another node as being
malicious it starts to bear a grudge against that node. The grudge is put into practice as
the node stops forwarding packets for the malicious node. The idea that malicious
behavior has a negative consequence corresponds well to the perception that people
has when other people acts malicious. The protocol has the flaw that once a node is
identified as malicious, there is nothing that can change its evaluation. The trust based
system that has been developed here adjust the trust that one node has in other nodes
based on the events experienced. This means that malicious nodes that start to act
according to protocol have their trust ratings increased, which seams to correspond
better to real life situations where trust can broken, but also re-established. Therefore,
the existing trust components could be used to apply grudging behavior to the
protocol.

7.2 Using a sliding window mechanism for acknowledgements
With the current implementation acknowledgements for all data packets are requested.
This results in an increased packet overhead, which it will be beneficial to decrease.
As mentioned in section 4.1.5, a sliding window mechanism could be used to
minimize the number of requested acknowledgement, which would decrease the
routing overhead.

7.3 Derivation of knowledge by examining received packets
By analyzing the received packets and their source routes much information can be
derived. One problem with the current system is that nodes are punished collective.
This means that good nodes can be identified as malicious if they are on routes with
malicious nodes. The evaluation of packet drops can be made more sophisticated.
Figure 7-1 illustrates a situation that could be used to make a more sophisticated
adjustment of trust values. A first receives a packet from C that has been successfully
forwarded by B. This means that A increases its trust in B. A subsequently sends data
to C but does not receive any acknowledgement. This leads to a strong indication that
C is malicious because B just proved trustworthy. The current result is that both B and

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 81

7 - Future Work, Improvements and Perspective

C have their trust values decreased, but the gained knowledge could be used to only
adjust C’s value. By recognizing such situations the trust updating could be refined.

CBA

CBA

A subsequently send data with acknowledgement
request but does not receive any acknowledgement

A receives data from C forwarded by B1

2

Figure 7-1: A situation where A can derive information from the received packets

7.4 Examining cause and location of packet drops
As the analysis of the simulation results revealed, the throughput is not only affected
by packets dropped by malicious nodes, but also by other factor such as the ARP
implementation. The results indicate that several packets are dropped internally in the
node because no route is found. Therefore it is recommended that further simulations
should be carried out with particular emphasis on examining where and under which
circumstances packets are dropped. Making further differentiates between the causes
for packet drop, such as broken routes, queue overruns or missing routes, will make it
far much easier to evaluate whether or how, the drops can be avoided.
Based on the knowledge gained with DSR and the Ns-2 implementation, especially
the packet buffer in the DSRAgent, the ARP implementation and the methods for
adding and deleting routes from the route cache should be examined. Furthermore, it
should be investigated how nodes can request more routes when only one route with
possible malicious nodes is available.

7.5 Decrease trust over time
Dependent on the size of the scenario, many nodes can be encountered. Some nodes
might be encountered at some point in time, leave the scenario and then never again
be encountered again. Therefore, the storage of trust information for all encountered
nodes could lead to storage of a lot of stale information. The trust update function
from Equation 4-2 involves inflation constant, d, which means that the trust value is
automatically decreased based on this inflation constant. The inflation is based on
events and not on time, meaning that until an event occurs no adjustment of the trust
value occurs. By including some time based adjustment mechanism trust values could
be disposed if they had not been used within some timeframe.

7.6 Perspective
This section present a perspective of the application of trust based routing.

By applying trust based routing to DSR a higher throughput was achieved when
malicious nodes were present in the network. The effect on throughput of trust based

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 82

7 - Future Work, Improvements and Perspective

routing when no malicious node was present seems insignificant. This means that if a
higher throughput is required trust based routing can be recommended.

The increase in throughput does however have a cost on other areas. The mechanism
for evaluating routes is more complicated and requires more computations than the
one used by standard DSR. The increased computations will lead to a higher power
consumption, which can present a problem for mobile devices, and it also means that
the application of trust based routing results in a higher latency than that of standard
DSR. Furthermore, trust values and acknowledgement information is stored during
run time which requires more storage capacity of the device.

Furthermore, trust based routing makes use of acknowledgements to adjust trust
values. This increases transmissions, which increase both routing overhead and power
consumption.

The application of trust based routing have only focused on detection of malicious
behavior that is expressed by nodes not forwarding packets and it does not cover other
areas such as authentication and integrity.

Others, such as the CONFIDANT and the Pathrater - Watchdog mechanism have
achieved better results on throughput with their methods than the results achieved
with trust based routing. These approaches does however use different methods for
identifying malicious nodes which presents some problems, such as collusion
detection, that are not experienced with trust based routing.

7.7 Summary
Based on observations and gained knowledge from working with DSR and Ns-2 the
future improvements and areas for further investigation listed below have been
proposed:

• Using the existing trust values to let nodes bear grudges against nodes
identified as malicious.

• Using a sliding window mechanism to limit the number of acknowledgement

request.
• Creating more sophisticated mechanisms, based on situation recognition, for

trust updating.

• Examining where and under which circumstances packets are dropped by non-

malicious nodes.

Finally, a perspective of trust based routing and its advantages and disadvantages
were presented.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 83

8 - Conclusion

8 Conclusion
This chapter presents the key contributions and conclusion of the M.Sc. Thesis work
that has been carried out in relation to the project ”Secure Routing in Mobile Ad Hoc
Networks”. The project has been carried out in the period 1st of July to 31st of
December 2003 at the Department of Informatics and Mathematics Modelling, at the
Technical University of Denmark, DTU.

The project has focused on routing in mobile wireless ad hoc networks, which are
networks where nodes move around and establish connections with no fixed
infrastructure.
The aim of the project has been to design and implement a system that can be used for
trust based routing.

The stated primary objective is presented below.

 Primary objective: To apply trust based route selection to the Dynamic

Source Routing (DSR) protocol, in order to fortify the protocol and improve
route selection, which can increase throughput in situations where malicious,
nodes are present in the network.

In order to accomplish the primary objective several areas has been examined.

The preliminary objectives for the project have been to examine ad hoc routing
protocols, security in ad hoc networks, trust management systems and the concept of
trust. In order to meet these objectives the following has been covered.

• The four ad hoc routing protocols DSDV, TORA, DSR and AODV have been
examined with special emphasis on the DSR protocol.

• Several security mechanism, that can be used to establish different levels of

security in ad hoc networks have been covered. This investigation revealed
that obtaining security properties such as confidentiality and integrity is
possible, but due to the lack of an existing infra structure in the network, also
difficult. Further, several methods for increasing throughput in ad hoc
networks where malicious nodes refuse to forward packets were described.

• Trust as a concept has been studied and several frameworks that can be used to

express and use trust in a formalized way has been accentuated. Furthermore,
the area of trust management systems has been investigated.

In main objectives have involved analysis of the DSR protocol, design and
implementation of a system that incorporates trust based route selection. They have
been met by covering the following:

• In order to identify weaknesses and situations where trust could be
incorporated to fortify the DSR protocol, the DSR protocol was analyzed. This
analysis revealed several possible vulnerabilities and identified how trust
based route selection can be applied to DSR.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 85

8 - Conclusion

• A mechanism that establish and updates trust relationships are designed. This

mechanism is used to apply trust based route selection to the DSR protocol, to
fortify the protocol against the presence of malicious nodes in the network.
The trust based routing is achieved by experimenting with five different
routing strategies that have been designed and implemented.

• The designed system is implemented in C++ and the components are

integrated with an existing DSR implementation in the network simulator Ns-
2.

To meet the post objective of analyzing the impact that trust based route selection has
and identify areas of improvement, several simulations with the implemented systems
has been carried out using the Ns-2 simulator. The simulations have provided
empirically data about the protocols behavior, which has been analyzed.

The results show that DSR fortified with trust based routing achieves a higher
throughput than standard DSR when malicious nodes are present in the network. The
best results are achieved with a trust based routing strategy that used the average of
the nodes on the routes trust values. With this strategy a 15 % increase in throughput,
compared to standard DSR, was achieved. Moreover, the results clearly indicate that
malicious nodes are identified, which is supported by the fact that far less drops are
caused by malicious nodes. This result corresponds well to results presented by John
Keane.

To investigate how well the trust based routing strategies selects routes without
malicious nodes, further simulations was conducted. The results show that in as much
as 98% of the times, a correct choice is made. These results also reveals that as much
as 28% of the routes that contained malicious nodes, is selected because no alternative
route is present.

Several proposals to improvements and areas of further investigation are suggested
and described. These are listed below:

• Introduction of grudging behavior
• Applying a sliding window mechanism for acknowledgements
• Deriving information from received packets
• Examine cause and location for packet drops further
• Decrease of trust over time

The key contributions to the area of secure routing in ad hoc networks have been:

• Design, application and evaluation of different trust based routing strategies.

• Evaluation of trust based routing with emphasis on: Ability of the to detect

malicious nodes, select correct routes and causes for route selection.

The overall conclusion is that the stated aim has been fulfilled.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 86

8 - Conclusion

Concerning the objectives the conclusion is, that the presented contribution and work
fulfills the stated objectives.

Finally, it is my conclusion, based on the results that others have achieved with the
DSR protocol and the results produced during this project, that the trust based routing
mechanism can be refined which can lead to improvement of the results presented in
this M.Sc. Thesis.

In order to achieve improvements I recommend that focus be placed in the area of
requesting routes when only one route with possible malicious nodes is available in
the cache.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 87

A - Bibliography

A Bibliography

[Anderson] Ross Anderson, Frank Stajano: The Resurrecting
Duckling: Security Issues for Ad Hoc Networks, In
Proceedings of the 7th International Security Protocols
Workshop page 172-194, 1999

[Bajaj] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and
M. Gerla: GloMoSim: A Scalable Network Simulation
Environment, Technical Report 990027, UCLA Computer
Science Department, 1999

[Bertsekas1] Dimitri P. Bertsekas, Robert Gallager: Data Networks
(2nd Edition), Prentice Hall, 1991

[Blaze1] Matt Blaze, Joan Feigenbaum, Jack Lacy: Decentralized
Trust Management, Proceedings IEEE Conference on
Security and Privacy, Oakland CA, 1996

[Blaze2] Matt Blaze: Using the KeyNote Trust Management System,
http://www.crypto.com/trustmgt/kn.html, November 1999,
Updated 1 March 2001, last visited November 2003.

[Blaze3] Matt Blaze, Joan Feigenbaum, Angelos D. Keromytis:
KeyNote: Trust Management for Public-key
Infrastructures, In Proc. Cambridge 1998 Security
Protocols International Workshop, pages 59--63, 1998.

[Broch1] Josh Broch, David B Johnson, David A Maltz, Yih-Chun
Hu, Jorjeta Jetcheva: A Performance Comparison of
Multihop Wireless Ad Hoc Networking Protocols,
Proceeding of the Fourth Annual ACM/IEEE International
Conference on Mobile Computing and Networking
(MobiCom98), 1998

[Buchegger1] Sonja Buchegger, Jean-Yves Le Boudec: Nodes Bearing
Grudges: Toward Routing Security, Fairness and
Robustness in Mobile Ad Hoc Networks, in 10th
Euromicro Workshop on Parallel, Distributed and
Network-based Processing, January 2002

[Buchegger2] Sonja Buchegger, Jean-Yves Le Boudec: Performance
Analysis of the CONFIDANT Protocol Cooperation Of
Nodes – Fairness in Dynamic Ad-Hoc Networks, In
Proceedings of IEEE/ACM Symposium on Mobile Ad
Hoc Networking and Computing
 (MobiHOC), Lausanne, Schwitzerland, June 2002

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 89

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Bertsekas%2C Dimitri P./002-1495786-9612827
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Gallager%2C Robert/002-1495786-9612827

A - Bibliography

[Buttyan]

Levente Buttyan, Jean-Pierre Hubaux, Nuglets: a Virtual
Currency to Stimulate Cooperation in Self-organized
Mobile Ad hoc Networks, Technical Report DSC/2001,
2001

[Corson1] M. Scott Corson, Anthony Ephremides: A Distributed
Routing Algorithm for Mobile Wireless Networks, Journal
of ACM/Baltzer Wireless Networks Vol. 1 no.1, 1995

[Desmedt] Y Desmedt: Treshold Cryptography, European
Transactions on Telecommunication, 1994

[Fall] Kevin Fall, Kannan Varadhan: The ns Manual (formerly
ns Notes and Documentation),
http://www.isi.edu/nsnam/ns/doc/index.html, last visited
11-12-2003

[Gambetta] Diego Gambetta, Can we trust trust?, Trust, Blackwell,
Page 217, 1990

[Gamma] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides (The Gang Of Four): Design Patterns: Elements
of Reusable Object-Oriented Software, Addison Wesley,
1994

[Glom] GloMoSim website,
http://pcl.cs.ucla.edu/projects/GloMoSim/, last visited 12-
12-2003

[Greis] Marc Greis: Tutorial for the simulator “ns”,
http://www.isi.edu/nsnam/ns/tutorial/ns.html, last visited
December 2003

[Guoyou1] Guoyou Ho: Destination-Sequenced Distance Vector
(DSDV) Protocol,

[Heesch] Dimitri van Heesch creator of Doxygen, Doxygen website
: http://www.stack.nl/~dimitri/doxygen/, last visisted 30-
12-2003

[Hu] Yih-Chun Hu, David B. Johnson: Ensuring Cache
Freshness in On-Demand Ad Hoc Routing Protocols,
POMC’02, 2002

[Jain] Raj Jain : The art of computer systems performance
analysis, techniques for experimental design,
measurement, simulation, and modelling, John Wiley and
Sons Inc, 1991

[Johnson1] David B Johnson, David A Maltz, Josh Broch: DSR: The
Dynamic Source Routing Protocol for Multi-Hop Wireless
Ad Hoc Networks, 1994

[Johnson2] David B Johnson, David A Maltz, Yih-Chun Hu, The
Dynamic Source Routing Protocol for Multi-Hop Wireless
Ad Hoc Networks (DSR), RFC Internet Draft, 2003

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 90

http://inrg.csie.ntu.edu.tw/Lecture/A_Distributed_Routing_Algorithm_for_Mobile_Wireless_Networks(transparency).pdf
http://inrg.csie.ntu.edu.tw/Lecture/A_Distributed_Routing_Algorithm_for_Mobile_Wireless_Networks(transparency).pdf
http://www.isi.edu/nsnam/ns/doc/index.html
http://c2.com/cgi/wiki?ErichGamma
http://c2.com/cgi/wiki?RichardHelm
http://c2.com/cgi/wiki?RalphJohnson
http://c2.com/cgi/wiki?JohnVlissides
http://c2.com/cgi/wiki?JohnVlissides
http://pcl.cs.ucla.edu/projects/glomosim/
http://www.isi.edu/nsnam/ns/tutorial/ns.html
mailto:dimitri@stack.nl
mailto:dimitri@stack.nl
http://www.stack.nl/~dimitri/doxygen/

A - Bibliography

[Jonker] Catholijn M. Jonker, Jan Treur: Formal Analysis of
Models for the Dynamics of Trust based on Experience,
Proceedings of the 9th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World : Multi-
Agent System Engineering ({MAAMAW}-99)", volume
1647, pages,221--231, Springer-Verlag: Heidelberg,
Germany",1999

[Keane] John Keane: Trust based Source Routing in Mobile Ad
Hoc Networks, dissertation submitted to the university of
Dublin, 2002

[Kohl] John Kohl, B. Clifford Neuman: The kerberos network
authentication service (V5), Request for Comments
(Proposed Standard) RFC 1510, Internet Engineering Task
Force, September, 1993.

[Marsh] Stephen Paul Marsh, Formalizing Trust as a
Computational Concept, Ph.D. Thesis, Department of
Mathematics and Computer Science, University of
Stirling, 1994

[Marti] Sergio Marti, T.J Giuli, Kevin Lai, Mary Baker:
Mitigating Routing Misbehaviour in Mobile Ad Hoc
Networks, Mobile Computing and Networking pages 255-
265, 2000

[Mcknight] D. Harrison Mcknight, Norman L. Chervany: The
Meaning of Trust, Working paper, Carlson School of
Management, University of Minnesota, 1996

[NS2] S. McCanne, S. Floyd: ns--Network Simulator,
http://www-mash.cs.berkeley.edu/ns/.

[NS2-M1] NS-2 mail archive
http://mailman.isi.edu/pipermail/ns-users/2003-
May/031977.html, last visisted 12-12-2003

[NS2-M2] NS-2 mail archive
http://mailman.isi.edu/pipermail/ns-users/2003-
November/037234.html, last visisted 17-12-2003

[NSEx] Ns by Example, http://nile.wpi.edu/NS/, last visited
December 2003

[Park1] Vincent D. Park, M. Scott Corson: A Higly Adaptive
Distributed Routing Algorithm for Mobile Wireless
Networks, published in the proceedings of INFOCOM 97,
1997

[Parsec] Parsec language website:
http://pcl.cs.ucla.edu/projects/parsec/, last visited 27-12-
2003

[Perkins1] Charles E. Perkins, Elizabeth M. Royer: Ad-hoc On-
Demand Distance Vector Routing, in MILCOM '97
 panel on Ad Hoc Networks, Nov. 1997

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 91

http://mailman.isi.edu/pipermail/ns-users/2003-May/031977.html
http://mailman.isi.edu/pipermail/ns-users/2003-May/031977.html
http://mailman.isi.edu/pipermail/ns-users/2003-November/037234.html
http://mailman.isi.edu/pipermail/ns-users/2003-November/037234.html
http://nile.wpi.edu/NS/
http://pcl.cs.ucla.edu/projects/parsec/

A - Bibliography

[Perkins2] Charles E. Perkins, Ad Hoc Networking, Addison Wesley
Professional, ISBN: 0-201-30976-9, chapter 8 ,2001

[Seigneur] J. Seigneur, S. Farrell and C. Damsgaard Jensen, E. Gray,
Y. Chen: End-to-end Trust Starts with Recognition,
Proceedings of the First International Conference on
Security in Pervasive Computing, 2003

[Sharp] Robin Sharp: Principles of Protocol Design Draft Second
Edition, DTU-TRYK, Technical University of Denmark,
DTU, 2002

[Siek1] Jeremy G. Siek, Lie-Quan Lee, Andrew Lumsdaine: The
Boost Graph Library: User Guide and Reference Manual
Addison-Wesley, ISBN 0-201-72914-8, 2002

[Weeks] Stephen Weeks: Understanding Trust Management
Systems, In IEEE Symposium on Security and Privacy,
2001

[Yang] Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul
Resnick, Martin Strauss: REFEREE: Trust Management
for Web Applications, Computer Networks and ISDN
Systems Vol 29, 1997

[Yi] Seung Yi, Prasad Naldurg, Robin Kravets: Security-Aware
Ad Hoc Routing for Wireless Networks, Proceedings of the
2001 ACM International Symposium on Mobile ad hoc
networking & computing, 2001

[Zhou] Lidong Zhou, Zygmunt J. Haas: Securing Ad Hoc
Networks, IEEE Network Magazine, vol. 13, no.6,
November/December 1999

[Zou] Xukai Zou, Byrav Ramamurthy, Spyros Magliveras:
Routing Techniques in Wireless Ad Hoc Networks –
Classification and Comparison, Proceedings of the Sixth
World Multiconference on Systemics, Cybernetics, and
Informatics--SCI, July 2002

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 92

B - List of used terms and definitions

B List of used terms and definitions

Ad Hoc network Short for Mobile Wireless Ad Hoc network.

Ad hoc routing protocol A routing protocol designed and aimed especially
at Mobile Wireless Ad Hoc networks.

Collaborative Ad hoc
Network

 An ad hoc network where the nodes does not have
any common task (other than to have their own
packets forwarded) to achieve by forming the
network.

Hop-by-hop routing Routing where only the next hop towards the
destination is known.

Initiator The node that is the source of a message.
Known node A node that has been encountered during

communication.
Malicious node A node that does not act according to protocol, for

instance by dropping packets, forge packets etc.
Message A specific protocol packet.
Mobile device A device, such as cell phones, PDA’s or laptops

that operates on battery power and can be carried
around.

Mobile Wireless Ad
Hoc network

 A network made op of mobile devices that
communicates via wireless communication.

Node A mobile device that is being held by a person or
integrated into another device.

Packet Data that is being transmitted between to nodes. It
can be application data or routing related data.

Proactive/table driven
protocol

 A routing protocol that periodically transmits
routing information.

Reactive/On-demand A routing protocol that only transmits routing
information on demand, when a route is needed.

Source routing Routing where the sender includes the entire route
to the destination in the packet header.

Throughput The number of received application packets
divided by the number of send application packets.

Trusted server A server that can be trusted to distribute
cryptographic keys, certificates etc, and handle
authorization.

Unknown node A node that has not been encountered during
communication.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 93

C - Nomenclature

C Nomenclature

x Mean

2/1 α−z (1-α/2) interval
C Correct choice
Con Confidence interval
d A constant used to express the inflation of trust
E A partially ordered set of experience classes for
ES The set EN of experience sequences
ev The experience
F

 Percentage of total route choices that were
forced to be malicious

fb

 Number of bad routes selected with no
alternative

g Number of good routes selected
gd Number of good routes discarded
N The set of natural numbers
n Sample size/ number of simulations
S Standard deviation
T

 A partially ordered set of trust
qualifications/trust values

t Total number of routes selected
tc Time out constant
TO Total time out value
tv The existing trust value

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 94

D - List of used acronyms

D List of used acronyms

AODV Ad Hoc On Demand Distance Vector
AP Authentication Process
APER A Peer Entity Recognition scheme
API Application Programmer’s Interface
ARP Address Resolution Protocol
CBR Constant Bit Rate
DSR Dynamic Source Routing
DSVD Destination-Sequenced Distance Vector
ER Entity Recognition
MAC Medium Access Control
NS Network Simulator
PKI Public Key Infrastructure
SAR Security Aware Routing
STL Standard Template Library
TORA Temporally Ordered Routing Algorithm
UML Unified Modelling Language

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 95

D - List of used acronyms

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 96

E - Appendices (F – P)

E Appendices (F – P)

F List of figures
Figure 1-1: Mobile wireless ad hoc network ...1
Figure 1-2: Primary objective. ...3
Figure 2-1: Node A transmits a package to node C by routing it through node B.5
Figure 2-2: Unidirectional links, node A can transmit to node B and B to C, but node

C cannot transmit to node B and must use a different route to A.6
Figure 2-3: A simple topology...7
Figure 2-4: The acknowledgement mechanism works like a chain.11
Figure 2-5: Threshold signature, even though server 2 is compromised it is still

possible generate a signature. ..18
Figure 2-6: Comparison of Authentication Process and Entity Recognition...............19
Figure 2-7: Relations between Mcknight et als. Trust Constructs...............................26
Figure 2-8: The cooperation of y in a situation a leads..27
Figure 2-9: Example showing how trust can be derived..27
Figure 2-10: Using the degree of memory based on window n for trust evolution

functions...29
Figure 3-1: If node C snoops the route from D to A, it might never discover the two

routes going through E and F...36
Figure 3-2: Only forwarding the first received ROUTE REQUEST can result in

undiscovered routes. ..37
Figure 4-1: Overall architecture of the trust based extension42
Figure 4-2: Trust update function based ..44
Figure 4-3: Estimation of total timeout value ..48
Figure 4-4: Class diagram of the trust related modules ...49
Figure 4-5:Class diagram of the most relevant classes used in the Ns-2 DSR

implementation ..50
Figure 4-6: Illustration of the flow that occurs when a packet is received51
Figure 4-7: Class diagram of the combined NS-2 implementation of DSR and the trust

classes. ...53
Figure 4-8: Sequence diagram describing the process for adding a new route to the

route cache ...54
Figure 4-9: Sequence diagram describing method calls involved when receiving an

acknowledgement ..55
Figure 4-10: Sequence diagram describing route selection ...56
Figure 6-1: Data processing of simulation results ...63
Figure 6-2: Results from running simulations with different values of initial trust. ...66
Figure 6-3: Results from estimation of acknowledgement timeout value67
Figure 6-4: Results from different scenarios. ..68
Figure 6-5: Nodes position at start of simulation with scenario 1.69
Figure 6-6: Nodes position at start of simulation with scenario 570
Figure 6-7: Comparison of route selection strategy 1 and standard DSR....................71
Figure 6-8: Comparison of different routing strategies. ..72
Figure 6-9: Evolution of trust values ...74
Figure 6-10: Comparison of drops caused by malicious nodes75

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 97

F - List of figures

Figure 6-11: Comparison of routing strategies based on observation of the cache76
Figure 6-12: Graph showing how many times a route containing malicious nodes were

the only choice. ..77
Figure 7-1: A situation where A can derive information from the received packets...82

Appendix Figure 1: Directory structure of enclosed CD ..101
Appendix Figure 2 ..102
Appendix Figure 3 ..104
Appendix Figure 4 ..106
Appendix Figure 5 : Two lines from a trace file...107
Appendix Figure 6: EBNF describing the file format for saved trust information...108

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 98

G - List of tables

G List of tables
Table 2-1: Routing table for H4 node in the DSDV protocol..7
Table 2-2: Fields of the ROUTE REQUEST message. The Italic font are used to

indicate fields used for the more advanced features of DSR.10
Table 2-3: Temporally indexed notation in Marshs framework27
Table 2-4: The four sets of the framework ..28
Table 4-1: Evaluation of routes using the average of nodes trust value to evaluate the

route ...45
Table 4-2: The values from table Table 4-1 after having had a negative experience

with value –1 and route 2...46
Table 4-3: Route selection strategy 2 favor shorter routes ..46
Table 4-4: Route selection strategy 3 will detect a good node that starts to drop

packets fast...46
Table 4-5: Example of routing strategy 5 ..47
Table 6-1: DSR parameters..64
Table 6-2: Parameters related to the trust extension. ...64
Table 6-3: Parameters used to specify node behavior and simulation details65
Table 6-4: The numbers of the nodes that were malicious during simulations.65
Table 6-5: Parameters used when estimating the optimal value of initial trust.66
Table 6-6: Parameters used when estimating acknowledgement time out value.........67
Table 6-7: Parameters used during simulations with different scenarios.67
Table 6-8: Parameters used for first comparison of route selection strategy 1 and

standard DSR ...70
Table 6-9: Parameters used for the DSR protocol ...71
Table 6-10: Parameters used for simulations for analyzing trust values evolution.73
Table 6-11: Parameters used for simulations to measure the number of malicious

drops...74

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 99

H - List of equations

H List of equations
Equation 2-1...29
Equation 2-2...29
Equation 4-1...42
Equation 4-2...43
Equation 4-3...45
Equation 4-4...46
Equation 4-5...47
Equation 4-6...48
Equation 6-1...62
Equation 6-2...63
Equation 6-3...76
Equation 6-4...77

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 100

I - Content of the CD

I Content of the CD
Enclosed with this thesis is a CD containing different material. The screenshot shows
the folder structure of the CD. A readme file with a brief description of the material is
included on the CD.

Appendix Figure 1: Directory structure of enclosed CD

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 101

J - Structure of mobile node in Ns-2

J Structure of mobile node in Ns-2

MAC

LL

IFQ

Radio Propagation
Model

ARP

PHY

CHANNEL

DSR AGENT
E

Upper Layer
(CBR)Node

MobileNode

C: Classifier LL: Link Layer IFQ: Interface
Queue ARP: Address Resolution MAC: Medium Access Control PHY : Network Interface

Appendix Figure 2

The structure of the mobile node implementation in Ns-2 is quite complex and is
described to some details in the Ns manual [Fall]. Because simulations results have

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 102

J - Structure of mobile node in Ns-2

turned out to be influenced by this implementation an ultra brief description is given
here.

As seen the DSRAgent is only one part of the mobile node.

The link-layer is responsible for simulating the data link protocols. An important task
for the link layer is adding a MAC destination address in the MAC header of the
packet.

The link-layer is connected to an Address Resolution Protocol (ARP) module. The
ARP is responsible for finding the hardware address that corresponds to a packets
next destination. Once the hardware address of a packet's next hop is known, the
packet is inserted into the interface queue.

To bind the link-layer and the MAC layer an interface queue is used. This queue gives
priority to routing packets.
As seen both incoming and outgoing packets pass through the interface queue.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 103

K - Result from simulating DSR with different scenarios

K Result from simulating DSR with different scenarios

Comparison of scenarios (standard DSR)

0

0.1

0.2

0.3

0.4

0.5

0.6

scenarios

Th
ro

ug
hp

u
t(%

) Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5

Appendix Figure 3

Seven malicious nodes where used for these simulations.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 104

L - Simulation platform

L Simulation platform
All simulations have been performed on a PC that used an Intel Pentium III 1150
MHz processor and had 256 MB RAM. The operating system was a Linux Red Hat
version 7.2. This equipment was used because it was what DTU provided. Ns-2
version 2.18b was used for simulations and the g++ compiler version 2.96 was used to
compile Ns-2 and the trust related extension.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 105

M - Sendbuffer drops during simulation with RS1

M Sendbuffer drops during simulation with RS1

SendBuffer drops - RS1

0
2000
4000
6000

8000
10000
12000

0 0.12 0.2 0.28 0.4

Malicious nodes (%)

Se
nd

B
uf

fe
r d

ro
ps

RS1

Appendix Figure 4

The figure presents the number of packets that are dropped internally from the
sendbuffer. Packets are dropped for two reasons: The buffer is full or no route is
found within a specified timeframe.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 106

N - Output from simulations

N Output from simulations
While a simulation is running, output is written to a trace file. This trace file holds
information about sent, received, forwarded or dropped packets. It is possible to
specify the levels of trace that one wish to trace, for instance MAC level or Routing
level. To give the reader an idea of the level of details that are contained in the trace
file, the figure shows to lines from the trace file.

r 7.550313772 _8_ AGT --- 16 cbr 556 [a2 8 7 800] ------- [7:1 8:1 32 8] [5] 1 1
s 7.770552227 _7_ AGT --- 18 cbr 512 [0 0 0 0] ------- [7:1 8:1 32 0] [6] 0 1

Appendix Figure 5 : Two lines from a trace file

The first line describes a packet being received at time 7.550313772 at agent 8. The
packet is a CBR packet. The trace file also contains information about the route the
packet was sent by, IP headers and packet size. Several explanations of the trace file
format exist on the Internet [Fall]. In order to register malicious drops and other self
defined events the method exttrace() has been implemented and used to write to
the trace file.

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 107

O - Implementation details

O Implementation details

O.1 Scanning for timed out acknowledgements
The method scanForOldACKs() is used to examine the map that contains all
transmitted acknowledgement requests. At this point this method is called every time
a new acknowledgement is requested. This ensures that a bad route is never picked
because the trust in the nodes has not been updated due to a timed out
acknowledgement. This can however also result in unessesary computations. The
minimum time out value for an acknowledgement is in the case where the route is of
length two, meaning that the node is a neighbour. This value can be determined by
Equation 4-6. If a node is generating a lot of traffic it might be beneficial to run the
scanForOldACKs() method in a separate thread that is activated according to the
minimum timeout value determined by Equation 4-6. It should be noticed that
acknowledgements are required from neighbours due to the malicious behavior
described in section 3.3 were malicious nodes does not return acknowledgements. .

O.2 Malicious behavior
When a DSRAgent is created from the OTcl script it is not assigned an id in its
constructor. This first happens when the command() method is called. These ids are
integers between 0 and the number of nodes minus one. The ids are used to determine
whether or not a node should act as malicious. In the current implementation the
malicious nodes are hard coded in the method initEvilNodes(). If the id of a node
is contained in an array in the method initEvilNodes(), true will be returned and
stored in a class variable. Ideally, the ids for the nodes that should carry out malicious
behavior should be provided through the OTcl script so compilation of C++ code
could be avoided. Several examples exist on how to bind a method or a variable from
OTcl to C++ [Fall] but none of them seems to work for mobile nodes because mobile
nodes in Ns-2 consist of several different objects.

O.3 File format
The content of the TrustManager can be saved after each simulation by calling the
save() method. For easiness the content is saved in a binary format. This makes it
easy to read from a programming point of view but difficult to read with human eyes.
Therefore the EBNF for the format is presented in Appendix Figure 6 here in case
anyone should want to port it to other applications.

 <Nodes>::= {<Node>}

<Node>::<Nodeid><TrustValue><NrOfExperiences>{<Experience>}
<Nodeid>::= integer
<TrustValue>::= double
<NrOfExperiences>::= integer
<Experience>::= double

Appendix Figure 6: EBNF describing the file format for saved trust information

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 108

P - Source code

P Source code

P.1 DSRParser.java
import java.io.*;
import java.util.StringTokenizer;
//By Lennart Conrad
//Used to parse Trace files
public class DSRParser
{

 public DSRParser(){}

 /*
 ** THe methods reads from the file given as argument
 ** Only the first parameter in every line is parsed- the rest is ignored
 */
 public void read(String filename)
 {
 try
 {
 FileReader in = new FileReader(filename);
 BufferedReader reader = new BufferedReader(in);
 String line ="";
 int i = 0;//nr of lines
 int r =0;//received
 int EDATA = 0;//evil drop of data
 int ED = 0;//evil drop
 int EAD = 0;//evil drop of ack
 int D = 0;//drop old format
 int d = 0;//new format
 int Ssb = 0; //send buffer drop

 int f = 0;//forward
 int SF = 0;//forwarded in DSR forward

 int AS= 0;//ack send
 int SO=0;//DSR send
 int s = 0;//send
 int S = 0;//Send DSR

 int others = 0;//others
 int colerrors =0;//do we read more than the first col?

 while(line != null)
 {
 line = reader.readLine();
 if(line != null)
 {
 StringTokenizer st = new StringTokenizer(line);
 int col = 0;
 while (st.hasMoreTokens())
 {
 col++;//make sure we only read the first column
 String value =st.nextToken();
 if(value.equals("D"))//old format D
 {
 //several drops can occur when the simulation
ends and these are not counted
 D++;
 while (st.hasMoreTokens())
 {
 value =st.nextToken();

 if(value.equals("END"))//END of simulation
 {
 D--
;//count 1 down

 break;

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 109

P - Source code

 }

 }
 }
 else if(value.equals("d"))//new format d
 {
 d++;
 }
 else if(value.equals("EAD"))//new
format d
 {
 EAD++;
 }
 else if(value.equals("EDATA"))
 {
 EDATA++;
 }

 else if(value.equals("ED"))
 {
 ED++;
 }
 else if(value.equals("Ssb"))
 {
 Ssb++;
 }

 else if(value.equals("SO"))//new
format d
 {
 SO++;
 }
 else if(value.equals("AS"))
 {
 AS++;
 }
 else if(value.equals("s"))
 {
 s++;
 }
 else if(value.equals("S"))
 {
 S++;
 }
 else if(value.equals("r"))
 {
 r++;
 }
 else if(value.equals("f"))
 {
 f++;
 }
 else if(value.equals("SF"))
 {
 SF++;
 }

 else
 {
 break;//we only read the first column
 }
 //tjeck column
 if(col > 1)
 {
 colerrors++;
 }
 }
 i++;//we read 1 more line
 }
 }
 System.out.println("Read: "+i+" lines");
 System.out.println("D (old format): "+D+" ");
 System.out.println("s: "+s+" ");
 System.out.println("r: "+r+" ");
 System.out.println("ED: "+ED+" ");
 System.out.println("EAD: "+EAD+" ");
 System.out.println("AS: "+AS+" ");

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 110

P - Source code

 System.out.println("Ssb: "+Ssb+" ");
 System.out.println("SO: "+SO+" ");
 System.out.println("f: "+f+" ");
 System.out.println("d (new format): "+d+" ");
 System.out.println("EDATA: "+EDATA+" ");

 //total send (DSR)
 int ts = SO +AS+s;
 System.out.println("Total number of send(SO+AS+s): "+ ts);
 //total dropped
 int td = EAD+d+D+ED+Ssb;
 System.out.println("Total number of dropped(EAD+d+D+ed): "+
td);
 //total received
 System.out.println("Total number of received(r): "+ r);
 //s -(r+d)
 System.out.println("(Send - (dropped + received)): "+ (ts-
(td+r)));
 //total forwarded
 int tf = f+SF;
 System.out.println("Forwarded: (f +SF) "+ (tf));

 int intr = td+r+ts+tf;
 System.out.println("Read: "+i+" lines, and identified: " +(intr)
+ "interresting tokens");
 System.out.println("Column errors: "+colerrors);

 double percent = ((s-r)*100)/s;
 System.out.println("Percentage dropped of send: "+percent+" ");
 }
 catch(IOException ie)
 {
 System.out.println("Usage: DSRParser filename");
 //System.out.println(ie.getMessage());
 }

 }
 public static void main(String args[])
 {
 System.out.println("DSRParser!");
 String file = args[0];
 DSRParser dsr = new DSRParser();
 dsr.read(file);
 }
}

P.2 RouteParser.java
import java.io.*;
import java.util.StringTokenizer;
import java.util.Stack;
import java.util.Iterator;

/*
** By Lennart Conrad
** used to parse information written from Mobicahce.
** This is used to see which routes are picked, and when bad routes are picked
*/

public class RouteParser
{
 int NR_OF_NODES = 25;//specify according to scenario
 int NROFEVILNODES; cd ..//specify according to scenario
 Stack stack = new Stack();
 public RouteParser(int a)
 {
 NROFEVILNODES = a;
 }

 /*

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 111

P - Source code

 ** The methods reads from the file given as argument

 ** Only the first parameter in every line is parsed- the rest is ignored
 */
 public void read(String filename)
 {
 try
 {
 FileReader in = new FileReader(filename);
 BufferedReader reader = new BufferedReader(in);
 String line ="";

 int linenumber = 0;
 int ok = 0;
 int notok = 0;
 int good_discarded = 0;
 int[] nodes= new int[NR_OF_NODES];
 int[] discarded= new int[NR_OF_NODES];
 String[] parsedline;
 //Arrays.fill(nodes,0);
 while(line != null)
 {
 line = reader.readLine();

 if(line != null)
 {
 parsedline = line.split(" ");
 StringTokenizer st = new
StringTokenizer(line);
 int col = 0;
 while (st.hasMoreTokens())
 {
 String value =st.nextToken();
 if(value.equals("NotOk:"))//
 {
 String id =st.nextToken();
 int nid =
Integer.parseInt(id);
 nodes[nid] = nodes[nid]
+1;
 notok++;
 //now go through the stack
and detrmine if good routes were discarded
 Iterator it = stack.iterator();
 while(it.hasNext())
 {
 String[] l =
(String[])it.next();
 boolean hasevil =
false;

 if(!l[1].equals(id))
 {
 break;
 }
 for(int e = 4;e
<l.length;e++)
 {
 if(l[e].equals("]"))//We are done with the nodes on the
route
 {

if(!hasevil)//this route actually was OK!

 {
 discarded[nid]=discarded[nid]+1; //register who discards
good routes

 good_discarded++;

 //write the one used

 System.out.print("Used: ");

 for(int kk = 0;kk<parsedline.length;kk++)//see which we didn't use

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 112

P - Source code

 {
 System.out.print(parsedline[kk]+" ");

 }

 System.out.println(" ");

 System.out.print("Discarded: ");

 //write the one we discarded

 for(int k = 0;k<l.length;k++)//see which we didn't use

 {
 System.out.print(l[k]+" ");

 }

 System.out.println(" ");

 }

 break;
 }
 else
 {

 int nodeid = Integer.parseInt(l[e]);

 if(isUsingEvil(nodeid))

 {

 hasevil = true;

 }
 }
 }
 }
 //clear stack
 stack.clear();
 }
 else if(value.equals("Ok:"))//clear stack
 {
 stack.clear();
 ok++;
 }
 else if(value.equals("Node:"))
 {
 stack.push(parsedline);//save it

 }

 else
 {
 break;//we only read the first column
 }

 }

 }
 linenumber++;
 }
 System.out.println("Good routes picked: "+ok);
 System.out.println("Bad routes picked: "+notok);
 System.out.println("Total number good routes that was discarded:
"+good_discarded);
 System.out.println("Total number of routes: "+(notok+ok));
 for(int j = 0;j <nodes.length;j++)
 {
 System.out.println("Node: "+j+" picked: "+nodes[j]+ " bad routes and discarded:
"+discarded[j]+"good ones");
 }

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 113

P - Source code

 }
 catch(IOException ie)
 {
 System.out.println("Usage: RouteParser -nrofevilnodes -
filename");
 //System.out.println(ie.getMessage());
 }

 }

 boolean isUsingEvil(int id)
 {
 //evil nodes id are in this array
 //for now they are hardcoded but they should be read from a file
 int evilnodes[] = {1,2,7,10,16,19,23};//,13,24,5};//max of 10
 //rmnsaddr_t evilnodes[] = {14,12,20,18,11,3,19,22,13,5};
 for(int i = 0; i<NROFEVILNODES;i++)
 {
 if(id == evilnodes[i])
 {
 return true;
 }
 }
 return false;
}

 public static void main(String args[])
 {
 System.out.println("RouteParser!");
 int nrofevil = Integer.parseInt(args[0]);
 System.out.println(nrofevil);
 String file = args[1];
 RouteParser parser = new RouteParser(nrofevil);
 parser.read(file);
 }
}

P.3 Otcl script
#LC tcl file for trust simulations with DSR

==
Define options
==
set val(chan) Channel/WirelessChannel ;# channel type
set val(prop) Propagation/TwoRayGround ;# radio-propagation model
set val(netif) Phy/WirelessPhy ;# network interface type
set val(mac) Mac/802_11 ;# MAC type
set val(ifq) Queue/DropTail/PriQueue ;# interface queue type
set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model
set val(ifqlen) 1000 ;# max packet in ifq
set val(rp) DSR ;# routing protocol
set val(seed) 1.0 ;#

#LC remember to set nodes correct
---------------- simulation with 4 nodes, ex 1 ------------------
#set val(nn) 4 ;# number of mobilenodes
#set val(x) 1000
;# X dimension of the topography
#set val(y) 1000 ;# Y dimension of the
topography
#The cbr pattern is defined in this file and assiociated with cb
#set val(cp) "/home/s973586/ns-allinone-2.1b8/ns-
2.1b8/tcl/ex/lcsims/4nodes/cbr-lc-4nodes";
#The scenario (nodes movement and connections) is defined in this file and assiociated
with sc
#set val(sc) "/home/s973586/ns-allinone-2.1b8/ns-
2.1b8/tcl/ex/lcsims/4nodes/scen-lc-4nodes";

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 114

P - Source code

#LC remember to set nodes correct
------------------- simulation with 25 nodes -------------------------------
set val(nn) 25 ;# number of mobilenodes
set val(x) 1000
;# X dimension of the topography
set val(y) 1000 ;# Y dimension of the topography
#The cbr pattern is defined in this file and assiociated with cb
#20 connections
set val(cp) "/home/s973586/ns-allinone-2.1b8/ns-
2.1b8/tcl/ex/lcsims/25nodes/cbr-lc-25";
#50 connections
#set val(cp) "/home/s973586/ns-allinone-2.1b8/ns-
2.1b8/tcl/ex/lcsims/25nodes/cbr-lc-25-50con";

#The scenario (nodes movement and connections) is defined in this file and assiociated
with sc
#set val(sc) "/home/s973586/ns-allinone-2.1b8/ns-
2.1b8/tcl/ex/lcsims/25nodes/scen-lc-25-ex1";
#set val(sc) "/home/s973586/ns-allinone-2.1b8/ns-
2.1b8/tcl/ex/lcsims/25nodes/scen-lc-25-ex2";
#set val(sc) "/home/s973586/ns-allinone-2.1b8/ns-
2.1b8/tcl/ex/lcsims/25nodes/scen-lc-25-ex3";
#set val(sc) "/home/s973586/ns-allinone-2.1b8/ns-
2.1b8/tcl/ex/lcsims/25nodes/scen-lc-25-ex4";
#set val(sc) "/home/s973586/ns-allinone-2.1b8/ns-
2.1b8/tcl/ex/lcsims/25nodes/scen-lc-25-ex5";

#slow movement 1 m/s pause 60s
set val(sc) "/home/s973586/ns-allinone-2.1b8/ns-
2.1b8/tcl/ex/lcsims/25nodes/scen-lc-25-p60-m1.0";

#no movement
#set val(sc) "/home/s973586/ns-allinone-2.1b8/ns-
2.1b8/tcl/ex/lcsims/25nodes/scen-lc-25-nomove";
set val(stop) 500.0 ;# simulation time

==

Agent/Null set sport_ 0
Agent/Null set dport_ 0

Agent/CBR set sport_ 0
Agent/CBR set dport_ 0

unity gain, omni-directional antennas
set up the antennas to be centered in the node and 1.5 meters above it
Antenna/OmniAntenna set X_ 0
Antenna/OmniAntenna set Y_ 0
Antenna/OmniAntenna set Z_ 1.5
Antenna/OmniAntenna set Gt_ 1.0
Antenna/OmniAntenna set Gr_ 1.0

the above parameters result in a nominal range of 250m
set nominal_range 250.0
set configured_range -1.0
set configured_raw_bitrate -1.0

==
Main Program
==

#Create a simulator object
set ns_ [new Simulator]

#Open the trace file
set tracefd [open lc-out-tdsr.tr w]
$ns_ trace-all $tracefd
#$ns_ use-newtrace

set the new channel interface.
#set chan [new $val(chan)]

#Open the nam file
set namtrace [open lcout.nam w]
$ns_ namtrace-all-wireless $namtrace 1000 1000

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 115

P - Source code

#Set up topography object to keep track of movement of nodes
set topo [new Topography]

#Provide topography object with coordinates
$topo load_flatgrid $val(x) $val(y)

Create God
create-god $val(nn)

#Configure the nodes
 $ns_ node-config -adhocRouting $val(rp) \
 -llType $val(ll) \
 -macType $val(mac) \
 -ifqType $val(ifq) \
 -ifqLen $val(ifqlen) \
 -antType $val(ant) \
 -propType $val(prop) \
 -phyType $val(netif) \
 -channelType $val(chan)\
 -topoInstance $topo \
 -agentTrace ON \
 -routerTrace OFF \
 -macTrace OFF \
 -movementTrace ON
 #-channel $chan

#Create the specified number of mobilenodes [$val(nn)] and "attach" them
#to the channel.

 for {set i 0} {$i < $val(nn) } {incr i} {
 puts "i: $i"
 set node_($i) [$ns_ node]

 $node_($i) random-motion 0 ;# disable random motion
 }

#Define node movement model

puts "Loading connection pattern..."
source $val(cp)

#Define traffic model
puts "Loading scenario file..."
source $val(sc)

Define node initial position in nam
for {set i 0} {$i < $val(nn)} {incr i} {

 # 15 defines the node size in nam, must adjust it according to your scenario
 # The function must be called after mobility model is defined

 $ns_ initial_node_pos $node_($i) 35
}

#Tell nodes when the simulation ends
for {set i 0} {$i < $val(nn) } {incr i} {
 $ns_ at $val(stop).0 "$node_($i) reset";
}

$ns_ at $val(stop).0002 "puts \"NS EXITING...\" ; $ns_ halt"

puts $tracefd "Lennart Wrote this!"
puts $tracefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp $val(rp)"
puts $tracefd "M 0.0 sc $val(sc) cp $val(cp) seed $val(seed)"
puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)"

puts "Starting Simulation..."

$ns_ run

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 116

P - Source code

P.4 TrustManager (.h and .cc)
#ifndef TRUSTMANAGER_H
#define TRUSTMANAGER_H
#include <fstream.h>
#include <string>
#include <map>
#include "TrustValue.h"
#include "TrustUpdater.h"
#include "TrustFormater.h"
#include "TrustConstants.h"
//NS2 includes
#include "path.h"

/*
** By Lennart Conrad, 12-10-2003
** This class is used to store trustinformation about all known nodes
*/
class TrustFormater;

class TrustManager
{
 public:
 //constructor
 TrustManager();
 TrustManager(nsaddr_t id);//create a TM for the node with id
 //methods
 map<nsaddr_t,TrustValue*>& getTrustValues(void);
 TrustValue* getTrustValue(const nsaddr_t nid);
 void addTrustValue(nsaddr_t, TrustValue*);
 void createTrustValue(nsaddr_t, double);
 nsaddr_t getId();
 void setId(nsaddr_t n);//setter for id for this manager
 bool isKnown(nsaddr_t);
 void initNewTrustValues(Path& replyroute,nsaddr_t src);
 void initNewTrustValues(nsaddr_t replyroute[],int route_len, nsaddr_t src);
 double getTrustValueForNode(const nsaddr_t nid);

 //formate trust
 double formate();
 //update trust
 //double update(TrustValue*);
 void updateTrust(nsaddr_t nid, double event);//for one
 //for all known in route
 void updateTrustForKnownNodes(list<nsaddr_t>&,double event);
 void updateTrustForNodes(Path& path, double event);
 //TrustFormation
 TrustFormater* getTrustFormater();
 void setTrustFormater(TrustFormater*);
 //TrustUpdater
 TrustUpdater* getTrustUpdater();
 void setTrustUpdater(TrustUpdater*);
 //IO
 void toPrint(void);
 bool writeToFile(void);
 bool readFromFile(void);
 void closeRFile(void);//close file after read
 void closeWFile(void);//close file after write
 bool openRFile(int id);//for reading on start up
 bool openWFile(int id);//for writing
 //(de) serializing
 bool load(int id);//for loading
 bool save(int id);//for saving
 //testing
 void testIO();//writes some testinfo to file
 void testIt();
 private:
 map<nsaddr_t,TrustValue*> tvalues;//holds trust info for all known nodes
 nsaddr_t name;//id for this node
 ofstream outfile;//for writing
 ifstream infile; //for reading
 TrustUpdater* trustupdater;//the calcultare for updating trust
 TrustFormater* trustformater;//used when nodes are first encountered
 FILE* fdata;
};
//Do Not forget the trailing semi-colon

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 117

P - Source code

#endif //TRUSTMANAGER_H

#include "TrustManager.h"
#include <string>
#include <iostream>
#include <sstream>

TrustManager::TrustManager()
{}

TrustManager::TrustManager(nsaddr_t n)
{
 this->name = n;
}
//getter for name (id)
nsaddr_t TrustManager::getId()
{
 return this->name;
}

//setter for id
void TrustManager::setId(nsaddr_t n)
{
 this->name = n;
}

//updates trust for all known nodes in the path according to the eventtype
void TrustManager::updateTrustForKnownNodes(list<nsaddr_t>& known_route, double event)
{
 //just go through and call updatetrust for the nodes we know
 list<nsaddr_t>::iterator i;
 for(i=known_route.begin(); i != known_route.end(); ++i)
 {
 //cerr <<"updating trust TM"<<endl;
 this->updateTrust(*i, event);
 }
 //cerr <<"Finished updating trust TM"<<endl;
}

//updates trust for all nodes in the path according to the eventtype
void TrustManager::updateTrustForNodes(Path& path, double event)
{
 //just go through and call updatetrust for the nodes we know

 //NOTE ! it is important that i = 1 because evil nodes send
 // data packets as well
 for(int i=1; i <path.length() ; i++)
 {
 //cerr <<"updating trust TM"<<endl;
 int id = path[i].getNSAddr_t();
 //evil nodes id are in this array
 //for now they are hardcoded but they should be read from a file
 nsaddr_t evilnodes[] = {1,2,7,10,16,19,23,13,24,5};//max of 10
 //rmnsaddr_t evilnodes[] = {14,12,20,18,11,3,19,22,13,5};
 for(int j = 0; j<NROFEVILNODES;j++)
 {
 if(id == evilnodes[j] && i <path.length()-1)
 {
 //cerr<< "We are updating trust for a evil node:"<<id <<endl;
 }
 }

 this->updateTrust(id, event);

 }
 if(TRUSTVALUEUPDATEVERBOSE)//testing
 cout <<"Node: "<<this->name<<"Finished updating for route: "<<path.dump()<<endl;
}

//updates trust for the node with id according to the eventtype
void TrustManager::updateTrust(nsaddr_t nid, double event)
{

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 118

P - Source code

 //get the new value from the trustupdater
 if(isKnown(nid))
 {
 if(TRUSTVALUEUPDATEVERBOSE)//testing

cerr << "Node" << this->name <<"is updating trust
for.......................:"<<nid <<endl;

 //this->update(getTrustValue(nid), event);
 if(nid == this->name)//Always assign max trust to ourselves
 {
 double res = this->trustupdater->update(getTrustValue(nid), 1.0);
 }
 else
 {
 double res = this->trustupdater->update(getTrustValue(nid), event);
 }
 //cerr << "REs "<<res <<endl;

 }
 else
 {
 //cerr << "a node was not known in TrustManager::updateTrust" << endl;
 //establis trust with some standard value
 //cerr << "Node" << this->name <<"is establishing trust for node:"<<nid <<endl;
 cerr << "valie of: S1_DEFAULTTRUSTVALUE" <<S1_DEFAULTTRUSTVALUE<<endl;
 this->createTrustValue(nid,S1_DEFAULTTRUSTVALUE);
 }
}

//Trustformater getter
TrustFormater* TrustManager::getTrustFormater()
{
 return this->trustformater;
}

//TrustFormater setter
void TrustManager::setTrustFormater(TrustFormater* tm)
{
 this->trustformater = tm;
}

//TrustUpdater getter
TrustUpdater* TrustManager::getTrustUpdater()
{
 return this->trustupdater;
}

//TrustUpdater setter
void TrustManager::setTrustUpdater(TrustUpdater* tu)
{
 this->trustupdater = tu;
}

//returns all trustvalues
map<nsaddr_t,TrustValue*>& TrustManager::getTrustValues()
{
 return tvalues;
}

//return the value from trustvalue for a node with id = nid
double TrustManager::getTrustValueForNode(const nsaddr_t nid)
{
 //LC This should not happen but i does!
 map<nsaddr_t,TrustValue*>::iterator it;
 if(!isKnown(nid)) //if(it == tvalues.end())
 {
 cerr <<"Error gettrustValueForNode()"<<endl;
 cerr << "Node: "<<this->name << " does not have any trust value for
"<<nid<<endl;
 return 0.0;
 }
 else
 {
 return tvalues[nid]->getValue();
 }
 //return ((double)rand()/(double)RAND_MAX+1);

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 119

P - Source code

}

//return the trustvalue for a node with id = nid
TrustValue* TrustManager::getTrustValue(const nsaddr_t nid)
{
 //LC This should not happen but i does!
 //map<nsaddr_t,TrustValue*>::iterator it;

 if(!isKnown(nid)) //it == tvalues.end())
 {
 //cerr <<"ERROR getTrustValue "<<endl;
 //cerr << "Node: "<<this->name << " does not have any trust value for
"<<nid<<endl;
 //this happens when node X gets a route with node X (itself)therefore we assign
a high trustvalue
 tvalues[nid] = new TrustValue(nid,0.9); //we have to create it!
 //cerr << "But now it has the value " << tvalues[nid]->getValue()<<endl;
 }
 return tvalues[nid];
}

//adds a the trutsvalue tval wwith the key id- WE NEED IT FOR LOADING!
void TrustManager::addTrustValue(nsaddr_t id, TrustValue* tval)
{
 if(!isKnown(id))
 {
 tvalues[id] = tval;
 }
 //LC : note could be a possible memory leak since the arg TrustValue* is not deleted
 //if the value allready exist
}
//creates and adds a new TrustValue to this trustmanager
void TrustManager::createTrustValue(nsaddr_t id, double tval)
{
 if(!isKnown(id))
 {
 tvalues[id] = new TrustValue(id,tval);
 }
}

//prints the cotent of the Trustmanager
void TrustManager::toPrint()
{
 map<nsaddr_t,TrustValue*>::iterator it;
 cout << "The TrustManager contains:\n" << endl;
 for(it = tvalues.begin();it!= tvalues.end();it++)
 {
 (it->second)->toPrint();
 }
}

//Saves all data so it can be loaded again later
bool TrustManager::save(nsaddr_t id)
{
 ostringstream ss;
 //create file name
 ss << id << ".dtmf";
 cout << "and the number was" << ss.str() << endl;
 //open the file, if it allredy exists it is deleted
 cout << "Opening file: " << ss.str() <<" for writing..............." << endl;
 fdata = fopen(ss.str().c_str(),"w");
 //did it open ok
 int nroftrustdata;
 if(fdata == NULL)//error on opening file
 {
 cout << "Error on opening file: " << ss.str() <<".dtmf in save()" << endl;
 return false;
 }
 else//ok
 {
 cout << "File: " << ss.str() <<" opened for writing by save" << endl;
 nroftrustdata = tvalues.size();//nr of stored trustvalues
 fwrite(&nroftrustdata,sizeof(nroftrustdata),1,fdata);
 //go through the map and let tvalues store them selves
 map<nsaddr_t,TrustValue*>::iterator it;
 //go through the manager an let the TrustValues handle IO

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 120

P - Source code

 for(it = tvalues.begin();it!=tvalues.end();it++)
 {
 (it->second)->save(fdata);
 }

 }
 fclose(fdata);
 cout << "Saved ok with"<< nroftrustdata <<"nodes saved" << endl;
 return true;
}

//load trustvalues
bool TrustManager::load(nsaddr_t id)
{
 ostringstream ss;
 //create file name
 ss << id << ".dtmf";
 cout << "and the number was" << ss.str() << endl;
 //open the file, if it allredy exists it is deleted
 cout << "Opening file: " << ss.str() <<" for loading..............." << endl;
 fdata = fopen(ss.str().c_str(),"r");
 //did it open ok
 if(fdata == NULL)//error on opening file
 {
 cout << "Error on opening file: " << ss.str() <<".dtmf in TrustManager::load()"
<< endl;
 return false;
 }
 else//ok
 {
 cout << "File: " << ss.str() <<" opened for loading by TrustManager::load()"
<< endl;
 int nroftrustdata;
 fread(&nroftrustdata,sizeof(int),1,fdata);//nr of stored trustvalues
 cout << "Load contains: " << nroftrustdata <<" Trustvalues,
TrustManager::load()" << endl;
 //go through the map and let tvalues store them selves
 //go through the manager an let the TrustValues handle IO
 for(int i =0;i < nroftrustdata;i++)
 {
 TrustValue* v = new TrustValue();
 //let it load it self
 v->load(fdata);
 //store it
 addTrustValue(v->getId(), v);
 }
 }
 fclose(fdata);

 //test by printing content
 //this->toPrint();

 return true;
}

//open a . tmf file for the node to write trust info to
bool TrustManager::openWFile(nsaddr_t id)
{
 ostringstream ss;
 //create file name
 ss << id << ".tmf";
 cout << "and the number was" << ss.str() << endl;
 //open the file, if it allredy exists it is deleted
 cout << "Opening file: " << ss.str() <<" for writing..............." << endl;
 outfile.open(ss.str().c_str(),ios::out | ios::app | ios::trunc);
 //did it open ok
 if(!outfile.is_open())
 {
 cout << "Error on opening file: " << ss.str() <<".tmf" << endl;
 return false;
 }
 cout << "File: " << ss.str() <<" opened for writing" << endl;

 return true;
}

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 121

P - Source code

//open a . tmf file for the node to Read trust info from
bool TrustManager::openRFile(nsaddr_t id)
{
 ostringstream ss;
 //create file name
 ss << id << ".tmf";
 //open the file
 ifstream infile;
 //char buf[100];
 infile.open(ss.str().c_str());
 //read everything
 if(!infile.is_open())
 {
 cout << "Error: file:" << id << ".tmf could not be opened" << endl;
 return false;
 }
 cout << "Infile" << id << ".tmf opened ok!" << endl;
 return true;
}

//closes the in file
void TrustManager::closeRFile()
{
 infile.close();
}

//closes the outfile
void TrustManager::closeWFile()
{
 outfile.close();
}
//Writes the content of the trust manager to a file
bool TrustManager::writeToFile()
{
 //we better check that it's opened
 if(!outfile.is_open())
 {
 cerr << "Out file is not opened" << endl;
 return false;
 }
 else
 {
 map<nsaddr_t,TrustValue*>::iterator it;
 outfile << "Trustmanager for Node:" << name <<"\n";
 //go through the manager an let the TrustValues handle IO
 for(it = tvalues.begin();it!=tvalues.end();it++)
 {
 (it->second)->writeToFile(outfile);
 }
 //the file is NOT closed - remember to call closeWFile() !
 }
 return true;
}

bool TrustManager::readFromFile()
{
 //better tjeck that it is open
 char buf[100];
 if(infile.is_open())
 {
 cout << "File not opened" << endl;
 }
 else
 {
 //read everything
 while(!infile.eof())
 {
 infile.read(buf,10);
 cout << "Read from infile"<< buf <<endl;
 }

 }
 return true;
}

//initialises trust values for unkown nodes by examining the entire path
//call with Path

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 122

P - Source code

void TrustManager::initNewTrustValues(Path& replyroute,nsaddr_t src)
{
 //cout << "TrustManager::initNewTrustValues..........." <<endl;
 this->trustformater->initNewTrustValues(replyroute,src);
 //cout << "TrustManager::initNewTrustValues Survided" <<endl;
}

//initialises trust values for unkown nodes by examining the entire path
// call with array
void TrustManager::initNewTrustValues(nsaddr_t replyroute[],int route_len, nsaddr_t
src)
{
 //cout << "TrustManager::initNewTrustValues..........." <<endl;
 this->trustformater->initNewTrustValues(replyroute,route_len,src);
 //cout << "TrustManager::initNewTrustValues Survided" <<endl;
}

//does this entry exist -> the node is known
bool TrustManager::isKnown(nsaddr_t id)
{
 map<nsaddr_t,TrustValue*>::iterator it;
 it = tvalues.find(id);//if id doesn't exist it returns iterator to the end
 return(!(it == tvalues.end()));
}

//for internal testing
void TrustManager::testIt()
{
 cout << "Trustmanager testIt() called" << endl;
}

//writes some testinfo to file
void TrustManager::testIO()
{
 //we better check that it's opened
 if(!outfile.is_open())
 {
 cerr << "Out file is not opened (testIO())" << endl;
 }
 else
 {

 cout << "Trustmanager for Node:" << name <<"created!\n" << endl;
 outfile << "Trustmanager for Node:" << name <<"created!\n";
 outfile << "Trustmanager for Node:" << name <<"created!\n";
 outfile << "Trustmanager for Node:" << name <<"created!\n";
 closeWFile();
 }
}

P.5 TrustFormater (.h and .cc)
#ifndef TRUSTFORMATER_H
#define TRUSTFORMATER_H
#include "TrustValue.h"
#include "TrustManager.h"
#include "TrustConstants.h"

/*
** By Lennart Conrad 12-10-2003
** The TrustFormater class is an abstract class.
** implementation are found in TrustFormater.cpp
**
*/

class TrustManager;// we need this declaration here

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 123

P - Source code

class TrustFormater
{
 public:
 //Constructor
 //TrustFormater();
 //methods
 //first argument is the trustValue that needs updating and holds data, secodn is the
experience value
 //virtual double update(TrustValue&, double)=0;//abstract methods
 virtual void initNewTrustValues(const Path& replyroute,const nsaddr_t src) = 0;
 virtual void initNewTrustValues(const nsaddr_t replyroute[],const int route_len,
const nsaddr_t src) = 0 ;

 //fields
 TrustManager* trustmanager;
};

//implementing class - strategy 1
class TrustFormaterS1 : public TrustFormater
{
 public:
 //Constructor
 TrustFormaterS1();
 TrustFormaterS1(TrustManager*);
 //methods
 void initNewTrustValues(const Path& replyroute,const nsaddr_t src);
 void initNewTrustValues(const nsaddr_t replyroute[],const int route_len, const
nsaddr_t src);
 //fields
};

//implementing class - strategy 2
class TrustFormaterS2 : public TrustFormater
{
 public:
 //Constructor
 TrustFormaterS2();
 TrustFormaterS2(TrustManager*);
 //methods
 void initNewTrustValues(const Path& replyroute,const nsaddr_t src);
 void initNewTrustValues(const nsaddr_t replyroute[],const int route_len, const
nsaddr_t src);

 //fields
};

#endif //TRUSTFORMATER_H

#include "TrustFormater.h"
#include "TrustValue.h"
#include "TrustConstants.h"

//----------- Strategy 1 ------------------------
TrustFormaterS1::TrustFormaterS1()
{}

//we need to be able to reference trustmanager to getinfo on known nodes
TrustFormaterS1::TrustFormaterS1(TrustManager* tm)
{
 this->trustmanager = tm;
}

//initializes trust for unknown nodes from known nodes (Call with nsaddr_t[])
void TrustFormaterS1::initNewTrustValues(const nsaddr_t replyroute[],const int
route_len, const nsaddr_t src)
{}

//initializes trust for unknown nodes from known nodes (Call with Path)
void TrustFormaterS1::initNewTrustValues(const Path& replyroute, const nsaddr_t src)
{

 //cout << "TrustFormater Called" << endl;
 //This is how is done:
 //1 go through the nodes and indentify the known ones ->
 //put the unknown in one list and the known in anoter
 //2 find min value of known nodes trust values

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 124

P - Source code

 //3 create new Trustvalues with the minimum value
 list<nsaddr_t> known;
 list<nsaddr_t> unknown;
 //cout << "DId 2 list" << endl;
 //1 find known/unknown
 for(int i =0;i < replyroute.length();i++)//1
 {
 //cout << "loop 1" << endl;
 nsaddr_t id = replyroute[i].getNSAddr_t();
 //cout << "loop 2" << endl;
 if(trustmanager->isKnown(id))//we know it
 {
 //cout << "loop 3" << endl;
 known.push_front(id);
 }
 else//we don't know it
 {
 unknown.push_front(id);
 //cout << "loop 4" << endl;
 }
 }
 //cout << "FINISHED DOING TrustFormation Part 1" << endl;

 //2. find minimum tval of know nodes
 list<nsaddr_t>::iterator it;
 double ghost = 1000.0;//A very high value
 double min = ghost;

 for(it = known.begin(); it != known.end(); it++)
 {
 int nid = *it;
 if(trustmanager->getTrustValue(nid)->getValue() < min)
 {
 min = trustmanager->getTrustValue(nid)->getValue();
 }
 }
 //cout << "FINISHED DOING TrustFormation Part 2" << endl;
 //tjeck if min was ever set
 if(min == ghost)
 {
 //cerr << "valie of: S1_DEFAULTTRUSTVALUE in trustformater"
<<S1_DEFAULTTRUSTVALUE<<endl;
 min = S1_DEFAULTTRUSTVALUE; //if we dont know anybody it should be set
to some standard val
 }

 //3 now create new Trustvalues
 //list<nsaddr_t>::iterator uit;

 for(it = unknown.begin(); it != unknown.end(); it++)
 {
 trustmanager->createTrustValue(*it, min);
 }
 //cout << "FINISHED DOING TrustFormation Part 3" << endl;
}

//------------ Strategy 2 ------------------------
TrustFormaterS2::TrustFormaterS2()
{}

TrustFormaterS2::TrustFormaterS2(TrustManager* tm)
{
 this->trustmanager = tm;
}

//initializes trust for unknown nodes from known nodes (Call with nsaddr_t[])
void TrustFormaterS2::initNewTrustValues(const nsaddr_t replyroute[],const int
route_len, const nsaddr_t src)
{}

//initializes trust for unknown nodes from known nodes (Call with Path)

/* strategy 2 - assign the average trust of the route*/
void TrustFormaterS2::initNewTrustValues(const Path& replyroute,const nsaddr_t src)
{
 //cout << "TrustFormater Called" << endl;

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 125

P - Source code

 //This is how is done:
 //1 go through the nodes and indentify the known ones ->
 //put the unknown in one list and the known in anoter
 //2 find min value of known nodes trust values
 //3 create new Trustvalues with the minimum value
 list<nsaddr_t> known;
 list<nsaddr_t> unknown;
 //cout << "DId 2 list" << endl;
 //1 find known/unknown
 for(int i =0;i < replyroute.length();i++)//1
 {
 //cout << "loop 1" << endl;
 nsaddr_t id = replyroute[i].getNSAddr_t();
 //cout << "loop 2" << endl;
 if(trustmanager->isKnown(id))//we know it
 {
 //cout << "loop 3" << endl;
 known.push_front(id);
 }
 else//we don't know it
 {
 unknown.push_front(id);
 //cout << "loop 4" << endl;
 }
 }
 //cout << "FINISHED DOING TrustFormation Part 1" << endl;

 //2. find minimum tval of know nodes
 list<nsaddr_t>::iterator it;
 double ghost = 1000.0;//A very high value
 double average = ghost;

 for(it = known.begin(); it != known.end(); it++)
 {
 int nid = *it;
 average = average + trustmanager->getTrustValue(nid)->getValue();
 }
 //cout << "FINISHED DOING TrustFormation Part 2" << endl;
 //tjeck if min was ever set
 if(average == ghost)
 {
 //cerr << "valie of: S2_DEFAULTTRUSTVALUE in trustformater"
<<S2_DEFAULTTRUSTVALUE<<endl;
 average = S2_DEFAULTTRUSTVALUE; //if we dont know anybody it should be set
to some standard val
 }
 else
 {
 average = average/known.size();
 }
 //3 now create new Trustvalues
 //list<nsaddr_t>::iterator uit;

 for(it = unknown.begin(); it != unknown.end(); it++)
 {
 trustmanager->createTrustValue(*it, average);
 }
 //cout << "FINISHED DOING TrustFormation Part 3" << endl;

}

P.6 TrustUpdater (.h and .cc)
#ifndef TRUSTUPDATER_H
#define TRUSTUPDATER_H
#include "TrustValue.h"
/*
** By Lennart Conrad 12-10-2003
** The TrustUpdater class is an abstract class.
** Subclasses implementing different strategies should impmement the calculate()
methods
** implementation are found in TrustUpdater.cpp
**
*/
class TrustUpdater
{

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 126

P - Source code

 public:
 //Constructor
 //TrustUpdater();
 //methods
 //first argument is the trustValue that needs updating and holds data, secodn is the
experience value
 virtual double update(TrustValue*, double)=0;//abstract methods
};
//implementing class - strategy 1
class TrustUpdaterS1 : public TrustUpdater
{
 public:
 //Constructor
 TrustUpdaterS1();
 //methods
 double update(TrustValue*,double);
};
//implementing class - strategy 2
class TrustUpdaterS2 : public TrustUpdater
{
 public:
 //Constructor
 TrustUpdaterS2();
 //methods
 double update(TrustValue*,double);

};
#endif //TRUSTUPDATER_H

#include "TrustUpdater.h"
#include "TrustValue.h"

TrustUpdaterS1::TrustUpdaterS1()
{}

TrustUpdaterS2::TrustUpdaterS2()
{}

double TrustUpdaterS1::update(TrustValue* tval, double exp)
{
 //parameters
 double dpos = 0.9; //positive inflation
 double dneg = 0.9; //negative inflation
 double ret;
 //update trustvalue + nr of experiences
 if(exp == ACKRECEIVED)//positive experineces
 {
 ret = (dpos*tval->getValue() + (1.0 - dpos)*exp);
 //assign the new value
 tval->setValue(ret);
 tval->addExperience(exp);
 //cerr << "Trust increased: " << ret << endl;
 }
 else if(exp == DATAPACKETRECEIVED)//
 {
 ret = (dpos*tval->getValue() + (1.0 - dpos)*exp);
 //assign the new value
 tval->setValue(ret);
 tval->addExperience(exp);
 //cerr << "Trust increased: " << ret << endl;

 /*LC debug/analysis - to see if we are giving trust to evil nodes*/

 //evil nodes id are in this array
 //for now they are hardcoded but they should be read from a file
 /*nsaddr_t evilnodes[] = {1,2,7,10,16,19,23,13,24,5};//max of 10
 //rmnsaddr_t evilnodes[] = {14,12,20,18,11,3,19,22,13,5};
 for(int i = 0; i<NROFEVILNODES;i++)
 {
 if(tval->getId() == evilnodes[i])
 {
 cerr<< "We are updating trust for a evil node!" <<endl;
 }
 } */
 }
 else//NOACKRECEIVED

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 127

P - Source code

 {
 //cout << "tval->getValue():"<< tval->getValue() << endl;
 ret = (dneg*tval->getValue() + (1.0 - dneg)*exp);
 tval->setValue(ret);
 tval->addExperience(exp);
 //cerr << "Trust decreased: " << ret << endl;
 }
 return ret;//if somebody wants to see the updated value
}

double TrustUpdaterS2::update(TrustValue* tval, double exp)
{

 //parameters
 double dpos = 0.9; //positive inflation
 double dneg = 0.9; //negative inflation
 double ret;
 double retexp;

 //update trustvalue + nr of experiences
 if(exp == ACKRECEIVED)//positive experineces
 {
 ret = (dpos*tval->getValue() + (1.0 - dpos)*exp);
 retexp = tval->getAverageOfExperiences();
 ret = (ret + retexp)/2.0;
 //assign the new value
 tval->setValue(ret);
 tval->addExperience(exp);
 //cerr << "Trust increased: " << ret << endl;
 }
 else if(exp == DATAPACKETRECEIVED)//
 {
 ret = (dpos*tval->getValue() + (1.0 - dpos)*exp);
 retexp = tval->getAverageOfExperiences();
 ret = (ret + retexp)/2.0;
 //assign the new value
 tval->setValue(ret);
 tval->addExperience(exp);
 //cerr << "Trust increased: " << ret << endl;
 }
 else//NOACKRECEIVED
 {
 //cout << "tval->getValue():"<< tval->getValue() << endl;
 ret = (dneg*tval->getValue() + (1.0 - dneg)*exp);
 retexp = tval->getAverageOfExperiences();
 ret = (ret + retexp)/2.0;
 tval->setValue(ret);
 tval->addExperience(exp);
 //cerr << "Trust decreased: " << ret << endl;

 }
 return ret;//if somebody wants to see the updated value
}

P.7 ACKMonitor (.h and .cc)
#ifndef ACKMONITOR_H
#define ACKMONITOR_H
#include <map>
#include <list>
#include "TrustManager.h"
//NS2 includes
#include "path.h"
#include <scheduler.h>
#include "TrustConstants.h"
using namespace std;
/*
** Created by Lennart Conrad 23-10-2003
** These classes are used to handle acknowledgments
** in the trust extensions to DSR
**
*/

//class used to store data about a send ACK
class ACKData
{

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 128

P - Source code

 public:
 ACKData();
 ACKData(double ackid,nsaddr_t route[],int routel, Time send_at);
 //fields
 double ackid;
 list<nsaddr_t> route;//all ids on the route
 Time sendat;//time we send this ACK
 //methods
 inline double getACKId() { return ackid; }
 inline Time getTime() { return sendat; }
 inline int getLength() {return route.size(); }

};

class ACKMonitor
{
 public:
 //Constructor
 ACKMonitor();
 ACKMonitor(TrustManager*);

 //Destructor
 ~ACKMonitor();
 ACKData* getACK(double ackid);
 void setTrustManager(TrustManager*);
 void addACK(double ackid,nsaddr_t route[],int routelen, Time send_at);
 //Returns True if we have the ACK reqisterred
 bool isACKRegistered(double ackid);
 void removeACK(double id);
 void handleACKReceived(double ackid,nsaddr_t returnroute[],int rl, Time rec_at,
nsaddr_t from);
 void scanForOldACKs();
 //for testing
 void terminate();
 void testIt();
 //fields
 private:
 map<double,ACKData*> acks;//holds all ACKData
 TrustManager* trust_manager;
 //testing

 //these are just for statistics on how many acks are recieved/send etc
 int ack_time_out;
 int ack_rec_ok;
 int ack_add;
 int dup_add_ack;
 int ack_to_late;
};
 //Do Not forget the trailing semi-colon
#endif //ACKMONITOR_H

#ifndef ACKMONITOR_H
#define ACKMONITOR_H
#include <map>
#include <list>
#include "TrustManager.h"
//NS2 includes
#include "path.h"
#include <scheduler.h>
#include "TrustConstants.h"
using namespace std;
/*
** Created by Lennart Conrad 23-10-2003
** These classes are used to handle acknowledgments
** in the trust extensions to DSR
**
*/

//class used to store data about a send ACK
class ACKData
{
 public:
 ACKData();
 ACKData(double ackid,nsaddr_t route[],int routel, Time send_at);
 //fields

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 129

P - Source code

 double ackid;
 list<nsaddr_t> route;//all ids on the route
 Time sendat;//time we send this ACK
 //methods
 inline double getACKId() { return ackid; }
 inline Time getTime() { return sendat; }
 inline int getLength() {return route.size(); }

};

class ACKMonitor
{
 public:
 //Constructor
 ACKMonitor();
 ACKMonitor(TrustManager*);

 //Destructor
 ~ACKMonitor();
 ACKData* getACK(double ackid);
 void setTrustManager(TrustManager*);
 void addACK(double ackid,nsaddr_t route[],int routelen, Time send_at);
 //Returns True if we have the ACK reqisterred
 bool isACKRegistered(double ackid);
 void removeACK(double id);
 void handleACKReceived(double ackid,nsaddr_t returnroute[],int rl, Time rec_at,
nsaddr_t from);
 void scanForOldACKs();
 //for testing
 void terminate();
 void testIt();
 //fields
 private:
 map<double,ACKData*> acks;//holds all ACKData
 TrustManager* trust_manager;
 //testing

 //these are just for statistics on how many acks are recieved/send etc
 int ack_time_out;
 int ack_rec_ok;
 int ack_add;
 int dup_add_ack;
 int ack_to_late;
};
 //Do Not forget the trailing semi-colon
#endif //ACKMONITOR_H

P.8 RouteSelector (.h and .cc)
#ifndef ROUTESELECTOR_H
#define ROUTESELECTOR_H
#include "TrustManager.h"
//NS2 includes
#include "path.h"
//#include <scheduler.h>

using namespace std;
/*
** Created by Lennart Conrad 30-10-2003
** These classes are used to handle route selection
** in the trust extensions to DSR
**
*/
class RouteSelector
{

 public:
 TrustManager* trust_manager;
 //methods
 double virtual evaluateRoute(Path&,int&) = 0;
 void virtual setTrustManager(TrustManager* tm)=0;
 void virtual testIt()=0;

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 130

P - Source code

};

class RouteSelectorS1 : public RouteSelector
{
 public:
 //Constructor
 RouteSelectorS1();
 RouteSelectorS1(TrustManager*);
 //Destructor
 ~RouteSelectorS1();
 //methods
 double evaluateRoute(Path&,int&);
 void setTrustManager(TrustManager* tm);
 void testIt();
};

class RouteSelectorS2 : public RouteSelector
{
 public:
 //Constructor
 RouteSelectorS2();
 RouteSelectorS2(TrustManager*);
 //Destructor
 ~RouteSelectorS2();
 //methods
 double evaluateRoute(Path&,int&);
 void setTrustManager(TrustManager* tm);
 void testIt();
};

class RouteSelectorS3 : public RouteSelector
{
 public:
 //Constructor
 RouteSelectorS3();
 RouteSelectorS3(TrustManager*);
 //Destructor
 ~RouteSelectorS3();
 //methods
 double evaluateRoute(Path&,int&);
 void setTrustManager(TrustManager* tm);
 void testIt();
};

class RouteSelectorS4 : public RouteSelector
{
 public:
 //Constructor
 RouteSelectorS4();
 RouteSelectorS4(TrustManager*);
 //Destructor
 ~RouteSelectorS4();
 //methods
 double evaluateRoute(Path&,int&);
 void setTrustManager(TrustManager* tm);
 void testIt();
};

class RouteSelectorS5 : public RouteSelector
{
 public:
 //Constructor
 RouteSelectorS5();
 RouteSelectorS5(TrustManager*);
 //Destructor
 ~RouteSelectorS5();
 //methods
 double evaluateRoute(Path&,int&);
 void setTrustManager(TrustManager* tm);
 void testIt();
};

 //Do Not forget the trailing semi-colon
#endif //ROUTESELECTOR_H

#include <iostream.h>

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 131

P - Source code

#include <stdio.h>
#include <string>
#include <map>
#include <sstream>//for double to string
#include "RouteSelector.h"
#include "TrustConstants.h"

using namespace std;

ofstream routefile("routestat.txt");
//------------ Route selection strategy 1 -----------------/
//Constructor
RouteSelectorS1::RouteSelectorS1(){}

RouteSelectorS1::RouteSelectorS1(TrustManager* tm)
{
 this->trust_manager = tm;
}

//Destructor
RouteSelectorS1::~RouteSelectorS1(){}

//setter for Trustmanager
void RouteSelectorS1::setTrustManager(TrustManager* tm)
{
 this->trust_manager = tm;
}

//returns the calculated trust of the route
//Strategy 1: average of all trust/nr of nodes in path
double RouteSelectorS1::evaluateRoute(Path& route,int& stopat)
{
 //routefile << "Node :"<<trust_manager->getId() <<"wrote to file\n";
 double result = 0.0;
 double total_trust =0.0;
 double average_trust = 0.0;
 int total_nr_of_nodes=0;
 double temp =0.0;
 //the route might be A->B->C->D->E even though e only want to use
 //A->B->C, the stopat arg tells us were the destination is-so we shorten the route
to this point
 //route.removeSection(stopat,route.length());
 route.setLength(stopat+1);

 //the sender is always the first in the ID[] but we take it with anyway

 for(int i =0; i < stopat;i++)
 {

 if(stopat == 1)//dest is next to us
 {
 //cerr << "destination is next hop"<<endl;
 return MAXTRUSTVAL;
 }

 //LC this should NEVER happen
 if(route.length() < stopat)
 {
 cerr<<"\n The biggest error in the hole world ever has ocurred\n "<<endl;
 cout<<"\n The biggest error in the hole world ever has ocurred\n "<<endl;
 return -1.0;
 }

 if(trust_manager->isKnown(route[i].getNSAddr_t()))//we know it
 {
 //should maybe consult a policy before we add the value?
 //int h = route[i].getNSAddr_t();
 //cerr << "DOING IT\n" <<endl;
 //temp = ((double)rand()/(double)RAND_MAX+1);//LC debugtrust_manager-
>getTrustValue(route[i].getNSAddr_t())->getValue();
 //temp = trust_manager->getTrustValueForNode(route[i].getNSAddr_t());
 temp = trust_manager->getTrustValue(route[i].getNSAddr_t())->getValue();
 //cerr << "The value of the temp variable is :" << temp << endl;
 total_trust = total_trust + temp;
 //cerr << "DID IT\n" <<endl;
 total_nr_of_nodes++;

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 132

P - Source code

 }
 else//should not happen but if it does we create it
 {
 cerr << "Node: "<< route[i].getNSAddr_t() <<" unknown in path in
RouteSelectorS1::evaluateRoute" <<endl;
 trust_manager->createTrustValue(route[i].getNSAddr_t(),DEFAULTUNKNOWNVAL);
 temp = trust_manager->getTrustValue(route[i].getNSAddr_t())->getValue();
 total_trust = total_trust + temp;
 total_nr_of_nodes++;
 }

 }
 //now do the heuristic
 average_trust = total_trust/total_nr_of_nodes;
 result = average_trust;//total_nr_of_nodes;//maybe divide here
 if(RSVERBOSE)
 cerr << "route selector S1 calculated a route to the value: "<<result<<"and the
lenght of the route was:"<<stopat<<endl;
 return result;
}

//used for testing
void RouteSelectorS1::testIt()
{

 cout << "Testing RouteSelector S1" << endl;
 cout << "Testing Call to Trust Manager testIO()" << endl;
 trust_manager->testIt();
}

//------------ Route selection strategy 2 -----------------/

//Constructor
RouteSelectorS2::RouteSelectorS2(){}

RouteSelectorS2::RouteSelectorS2(TrustManager* tm)
{
 this->trust_manager = tm;
}

//Destructor
RouteSelectorS2::~RouteSelectorS2(){}

//setter for Trustmanager
void RouteSelectorS2::setTrustManager(TrustManager* tm)
{
 this->trust_manager = tm;
}

//Strategy 2: average trust/nr_of_nodes -> shorter routes are favoured
double RouteSelectorS2::evaluateRoute(Path& route,int& stopat)
{
 double result = 0.0;
 double total_trust =0.0;
 double average_trust = 0.0;
 int total_nr_of_nodes=0;
 double temp =0.0;
 //the route might be A->B->C->D->E even though e only want to use
 //A->B->C, the stopat arg tells us were the destination is-so we shorten the route
to this point
 //route.removeSection(stopat,route.length());
 route.setLength(stopat+1);
 //the sender is always the first in the ID[] but we take it with anyway

 for(int i =0; i < stopat;i++)
 {

 if(stopat == 1)//dest is next to us
 {
 //cerr << "destination is next hop"<<endl;
 return MAXTRUSTVAL;
 }

 //LC this should NEVER happen
 if(route.length() < stopat)
 {
 cerr<<"\n The biggest error in the hole world ever has ocurred\n "<<endl;

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 133

P - Source code

 cout<<"\n The biggest error in the hole world ever has ocurred\n "<<endl;
 return -1.0;
 }

 if(trust_manager->isKnown(route[i].getNSAddr_t()))//we know it
 {
 //should maybe consult a policy before we add the value?
 //int h = route[i].getNSAddr_t();
 //cerr << "DOING IT\n" <<endl;
 //temp = ((double)rand()/(double)RAND_MAX+1);//LC
debugtrust_manager->getTrustValue(route[i].getNSAddr_t())->getValue();
 //temp = trust_manager-
>getTrustValueForNode(route[i].getNSAddr_t());
 temp = trust_manager->getTrustValue(route[i].getNSAddr_t())-
>getValue();
 //cerr << "The value of the temp variable is :" << temp << endl;
 total_trust = total_trust + temp;
 //cerr << "DID IT\n" <<endl;
 total_nr_of_nodes++;
 }
 else//should not happen but if it does we create it
 {
 cerr << "Node: "<< route[i].getNSAddr_t() <<" unknown in path in
RouteSelectorS2::evaluateRoute" <<endl;
 trust_manager->createTrustValue(route[i].getNSAddr_t(),DEFAULTUNKNOWNVAL);
 temp = trust_manager->getTrustValue(route[i].getNSAddr_t())->getValue();
 total_trust = total_trust + temp;
 total_nr_of_nodes++;
 }

 }
 //now do the heuristic
 average_trust = total_trust/total_nr_of_nodes;
 result = average_trust/total_nr_of_nodes;//maybe divide here
 if(RSVERBOSE)
 cerr << "route selector S2 calculated a route to the value: "<<result<<"and the
lenght of the route was:"<<stopat<<endl;
 return result;
}

//used for testing
void RouteSelectorS2::testIt()
{

 cout << "Testing RouteSelector S2" << endl;
 cout << "Testing Call to Trust Manager testIO()" << endl;
 trust_manager->testIt();

}

//------------ Route selection strategy 3 -----------------/

//Constructor using the average of the experiences and Not trust values
RouteSelectorS3::RouteSelectorS3(){}

RouteSelectorS3::RouteSelectorS3(TrustManager* tm)
{
 this->trust_manager = tm;
}

//Destructor
RouteSelectorS3::~RouteSelectorS3(){}

//setter for Trustmanager
void RouteSelectorS3::setTrustManager(TrustManager* tm)
{
 this->trust_manager = tm;
}

//Strategy 3: buidl on the number of experiences
double RouteSelectorS3::evaluateRoute(Path& route,int& stopat)
{
 double result = 0.0;
 double total_trust =0.0;
 double average_trust = 0.0;
 int total_nr_of_nodes=0;

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 134

P - Source code

 double temp= 0.0;
 //the route might be A->B->C->D->E even though e only want to use
 //A->B->C, the stopat arg tells us were the destination is-so we shorten the route
to this point
 //route.removeSection(stopat,route.length());
 route.setLength(stopat+1);

 //the sender is always the first in the ID[] but we take it with anyway

 for(int i =0; i < stopat+1;i++)
 {
 //LC this should NEVER happen
 if(route.length() < stopat)
 {
 cerr<<"\n The biggest error in the hole world ever has ocurred\n
"<<endl;
 cout<<"\n The biggest error in the hole world ever has ocurred\n
"<<endl;
 return -1.0;
 }
 if(stopat == 1)
 {
 //cerr << "destination is next hop"<<endl;
 return MAXTRUSTVAL;
 }

 if(trust_manager->isKnown(route[i].getNSAddr_t()))//we know it
 {
 //should maybe consult a policy before we add the value?

 temp = trust_manager->getTrustValue(route[i].getNSAddr_t())-
>getAverageOfExperiences();
 //cerr << "The value of the temp variable is :" << temp << endl;
 total_trust = total_trust + temp;
 //cerr << "DID IT\n" <<endl;
 total_nr_of_nodes++;
 }
 else//should not happen but if it does we create it
 {
 cerr << "Node: "<< route[i].getNSAddr_t() <<" unknown in path in
RouteSelectorS3::evaluateRoute" <<endl;
 trust_manager-
>createTrustValue(route[i].getNSAddr_t(),DEFAULTUNKNOWNVAL);
 temp = trust_manager->getTrustValue(route[i].getNSAddr_t())-
>getAverageOfExperiences();
 total_trust = total_trust + temp;
 total_nr_of_nodes++;
 }

 }
 //now do the heuristic

 average_trust = total_trust/total_nr_of_nodes;
 result = average_trust;
 if(RSVERBOSE)
 cerr << "route selector S3 calculated a route to the value: "<<result<<"and the
lenght of the route was:"<<stopat<<endl;
 return result;
}

//used for testing
void RouteSelectorS3::testIt()
{

 cout << "Testing RouteSelector S3" << endl;
 cout << "Testing Call to Trust Manager testIO()" << endl;
 trust_manager->testIt();

}

//------------ Route selection strategy 4 -----------------/

//Constructor using the average of the experiences and Not trust values
RouteSelectorS4::RouteSelectorS4(){}

RouteSelectorS4::RouteSelectorS4(TrustManager* tm)
{

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 135

P - Source code

 this->trust_manager = tm;
}

//Destructor
RouteSelectorS4::~RouteSelectorS4(){}

//setter for Trustmanager
void RouteSelectorS4::setTrustManager(TrustManager* tm)
{
 this->trust_manager = tm;
}

//Strategy 4: buidl on the number of experiences using a policy
double RouteSelectorS4::evaluateRoute(Path& route,int& stopat)
{
 double result = 0.0;
 double total_trust =0.0;
 double average_trust = 0.0;
 int total_nr_of_nodes=0;
 double temp=0.0;
 //the route might be A->B->C->D->E even though e only want to use
 //A->B->C, the stopat arg tells us were the destination is-so we shorten the route
to this point
 //route.removeSection(stopat,route.length());
 route.setLength(stopat+1);

 //the sender is always the first in the ID[] but we take it with anyway

 for(int i =0; i < stopat;i++)
 {
 if(stopat == 1)//dest is next to us
 {
 //cerr << "destination is next hop"<<endl;
 return MAXTRUSTVAL;
 }

 //LC this should NEVER happen

 if(route.length() < stopat)
 {
 cerr<<"\n The biggest error in the hole world ever has ocurred\n "<<endl;
 cout<<"\n The biggest error in the hole world ever has
ocurred\n "<<endl;
 return -1.0;
 }

 if(trust_manager->isKnown(route[i].getNSAddr_t()))//we know it
 {
 //should maybe consult a policy before we add the value?

 temp = trust_manager->getTrustValue(route[i].getNSAddr_t())-
>getAverageOfExperiences();
 //cerr << "The value of the temp variable is :" << temp << endl;
 //POLICY if trust < -0.25 return -1
 if(temp < -0.25)
 {
 return -1.0;
 }
 total_trust = total_trust + temp;
 //cerr << "DID IT\n" <<endl;
 total_nr_of_nodes++;
 }
 else//should not happen but if it does we create it
 {
 cerr << "Node: "<< route[i].getNSAddr_t() <<" unknown in path in
RouteSelectorS4::evaluateRoute" <<endl;
 trust_manager-
>createTrustValue(route[i].getNSAddr_t(),DEFAULTUNKNOWNVAL);
 temp = trust_manager->getTrustValue(route[i].getNSAddr_t())-
>getAverageOfExperiences();
 //POLICY if trust < -0.25 return -1
 if(temp < -0.25)
 {
 return -1.0;
 }

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 136

P - Source code

 total_trust = total_trust + temp;
 total_nr_of_nodes++;
 }

 }
 //now do the heuristic

 average_trust = total_trust/total_nr_of_nodes;
 result = average_trust;

 if(RSVERBOSE)
 cerr << "route selector S4 calculated a route to the value: "<<result<<"and the
lenght of the route was:"<<stopat<<endl;
 return result;
}

//used for testing
void RouteSelectorS4::testIt()
{

 cout << "Testing RouteSelector S4" << endl;
 cout << "Testing Call to Trust Manager testIO()" << endl;
 trust_manager->testIt();

}

//------------ Route selection strategy 5 return minimum of trust values -------------
----/

//Constructor using the average of the experiences and Not trust values
RouteSelectorS5::RouteSelectorS5(){}

RouteSelectorS5::RouteSelectorS5(TrustManager* tm)
{
 this->trust_manager = tm;
}

//Destructor
RouteSelectorS5::~RouteSelectorS5(){}

//setter for Trustmanager
void RouteSelectorS5::setTrustManager(TrustManager* tm)
{
 this->trust_manager = tm;
}

//Strategy 5: Return the lowest trust value of the route
double RouteSelectorS5::evaluateRoute(Path& route,int& stopat)
{
 double result = 0.0;
 double temp=0.0;
 int lowestid;
 double minimum;
 int firsttime = 1;
 //the route might be A->B->C->D->E even though e only want to use
 //A->B->C, the stopat arg tells us were the destination is-so we shorten the route
to this point
 //route.removeSection(stopat,route.length());
 route.setLength(stopat+1);

 //the sender is always the first in the ID[] but we take it with anyway
 //cerr<<"Node : "<< route[0].getNSAddr_t()<<"is evaluating"<< route.dump()
<<"with stopat: "<<stopat<<endl;
 for(int i =0; i < stopat;i++)
 {
 //LC this should NEVER happen
 /*if(route.length() < stopat)
 {
 cerr<<"\n The biggest error in the hole world ever has ocurred\n "<<endl;
 cout<<"\n The biggest error in the hole world ever has
ocurred\n "<<endl;
 return -1.0;
 } */

 if(stopat == 1)
 {

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 137

P - Source code

 //cerr << "destination is next hop"<<endl;
 return MAXTRUSTVAL;
 }
 if(trust_manager->isKnown(route[i].getNSAddr_t()))//we know it
 {
 //should maybe consult a policy before we add the value?
 if(firsttime)
 {
 minimum = trust_manager-
>getTrustValue(route[i].getNSAddr_t())->getValue();
 firsttime = 0;
 lowestid = route[i].getNSAddr_t();
 }
 else
 {
 temp = trust_manager-
>getTrustValue(route[i].getNSAddr_t())->getValue();
 if(temp < minimum)
 {
 minimum = temp;
 lowestid = route[i].getNSAddr_t();
 }
 }
 }
 else//should not happen but if it does we create it
 {
 cerr << "Node: "<< route[i].getNSAddr_t() <<" unknown in path in
RouteSelectorS5::evaluateRoute" <<endl;
 trust_manager-
>createTrustValue(route[i].getNSAddr_t(),DEFAULTUNKNOWNVAL);
 if(firsttime)
 {
 minimum = trust_manager-
>getTrustValue(route[i].getNSAddr_t())->getValue();
 firsttime = 0;
 }
 else
 {
 temp = trust_manager-
>getTrustValue(route[i].getNSAddr_t())->getValue();
 if(temp < minimum)
 {
 minimum = temp;
 }
 }
 }

 }
 if(RSVERBOSE) cerr << "RS 5 returning:"<<minimum<<"from node with
id"<<lowestid<<endl; ;
 return minimum;
}

//used for testing
void RouteSelectorS5::testIt()
{

 cout << "Testing RouteSelector S4" << endl;
 cout << "Testing Call to Trust Manager testIO()" << endl;
 trust_manager->testIt();

}

P.9 TrustConstants.h
/* -*- c++ -*-
 TrustConstants.h
 Constants used in trust, adjustment here makes it easier to change
 settings of simulation

*/

#ifndef TRUSTCONSTANTS_H
#define TRUSTCONSTANTS_H

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 138

P - Source code

#include "path.h"
//LC use these constants to define evil behaviuor
#define NROFEVILNODES 10 //max 10

/*Acknowledgements */
#define AVR_ACK_TIME_OUT_VAL 0.07 //ACK time out in seconds - measured!
#define MAXWAIT 0.01 //what is the max
wait we will add to the average

/*events -meaning packets received */

#define ACKRECEIVED 1.0 //ack received
#define NOACKRECEIVED -1.0 //acktimed out
#define DATAPACKETRECEIVED 0.7 //data from someboby else
#define MAXTRUSTVAL 1.0 //the max trust value
/*used to give when no nodes in a route is known - trustformater*/
#define S1_DEFAULTTRUSTVALUE -0.4//the default trustval for s1 - estimated
#define S2_DEFAULTTRUSTVALUE -0.4 //for strategy 2
/*used when node is unknown is routeselector*/
#define DEFAULTUNKNOWNVAL -0.4 //the value we give to nodes that are unknown
during route selection (determined by experiments)

#define NOEXPERIENCES -0.4 //if we ask for the average of experiences and there are no
experinces (RS3)
#define MAX_NR_OF_EXP 5 //the number of experinces we store

#define USEROUTESELECTOR 4 //which routeselection to use

//verbose flags for viewing diffent output

#define RSVERBOSE 0 //1 debug routeselector
#define ACKVERBOSE 0
#define TRUSTVALUEUPDATEVERBOSE 0
#define MALICIOUSDROPVERBOSE 0

#endif // TRUSTCONSTANTS_H

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 139

P - Source code

M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks by Lennart Conrad 2003 140

	Introduction
	Motivation
	Aim and Objectives
	Preliminary objectives
	Main objectives
	Post objective

	Report Roadmap

	State of the art
	Introduction to Ad Hoc Networks and Routing
	Routing protocols
	Proactive vs. Reactive
	Source routing vs. Hop-by-hop routing

	The Destination-Sequenced Distance Vector (DSDV) Protocol
	Assumptions
	Mode of operation

	The Temporally-Ordered Routing Algorithm (TORA)
	Assumptions
	Mode of operation

	The Dynamic Source Route (DSR) Protocol
	Assumptions
	Mode of operation
	Route Discovery
	Route Maintenance

	Additional features in DSR
	
	Caching of Overheard Route Information
	Replying to Route Request Using Cached Routes
	Avoiding Storms of Route Reply
	Hop Limits on ROUTE REQUEST Messages
	Salvaging Packets
	Automatic Route Shortening

	The Ad-Hoc On Demand Distance Vector (AODV) Protocol
	Assumptions
	Mode of operation

	Comparison of Ad Hoc Routing Protocols
	Summary

	Trust Management Systems
	PolicyMaker
	KeyNote
	REFEREE
	Summary

	Security In Ad-Hoc Networks
	Zhou et al Key Management Service
	The Security Aware Ad-Hoc Routing Protocol (SAR)
	Entity Recognition
	Entity Recognition
	A Peer Entity Recognition scheme (APER)

	The Watchdog – Pathrater approach
	The CONFIDANT protocol
	Nuglets
	Trust based routing
	Summary

	Trust
	Definitions of trust
	Different categories of trust
	Frameworks for Working with Trust
	Marsh’s Framework
	Jonker and Treurs Framework

	Summary

	Subjective evaluation of methods and techniques

	Analysis
	Analysis of DSR
	Sending of packets
	Using ring search to discover routes
	Selection of the “best” route
	The use of DSR acknowledgement mechanism

	Receiving packets
	Forming trust relationships and updating trust
	ROUTE ERRORs
	ROUTE REPLYs

	Forwarding of packets
	Drop of forwarding packet
	Tampering with ROUTE REQUESTs
	Tampering with the address list
	Snooping of source routes
	Only forwarding the first route request received

	Extensions to DSR
	Assumptions made about malicious nodes
	Attacks that are not covered by the analysis
	Prioritization and general assumptions
	Summary

	Design
	Identification of components
	Trust Formation
	Trust updating
	Route selection
	Routeselection strategy 1
	Routeselection strategy 2
	Routeselection strategy 3
	Routeselection strategy 4
	Routeselection strategy 5

	Trust management
	Acknowledgement monitoring
	Combining the trust modules
	Existing DSR Implementation in NS-2
	Merging the trust modules with the existing DSR code

	Summary

	Implementation and tests
	Introduction to the Ns-2 simulator
	Overview of Ns-2

	Implementation details
	Tests
	Summary

	Simulations and Results
	The randomness of simulations
	Metrics
	Processing the output
	Parameters
	Table of standard DSR parameters
	Trust related parameters
	Other parameters
	Malicious nodes

	Preliminary simulations
	Estimation of initial trust
	Estimation of acknowledgement time out
	Impact of using different scenarios

	Comparison of Route selection strategies
	Evolution of trust values
	Malicious packet drops
	Examining the Route Cache
	Uncertainties
	Summary

	Future Work, Improvements and Perspective
	Introduction of grudging behavior
	Using a sliding window mechanism for acknowledgements
	Derivation of knowledge by examining received packets
	Examining cause and location of packet drops
	Decrease trust over time
	Perspective
	Summary

	Conclusion

