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Abstract

In this paper we introduce an advanced mean field method to correct the inherent bias of conven-

tional subtractive interference cancellation in Code Division Multiple Access (CDMA). In simulations,

we get a performance quite close to that of the individual optimal exponential complexity detector and

significant improvements over current state-of-the-art subtractive interference cancellation in all setups

tested, for example in one case doubling the number of user at a bit error rate of
�������

. To obtain such

a good performance for finite size systems, where the performance is normally degraded by the pres-

ence of suboptimal fix-point solutions, it is crucial to use the method in conjunction with mean field

annealing, i.e. solving the fixed point equations at decreasing temperatures (noise levels). In the limit of

infinite large system size, the new subtractive interference cancellation scheme is expected to be iden-

tical to the individual optimal detector. The computational complexity is cubic in the number of users

whereas conventional (naive mean field) subtractive interference cancellation is quadratic. We also

present a quadratic complexity approximation to our new method that also gives performance improve-

ments, but in addition requires knowledge of the spreading code statistics. The proposed methodology

is quite general and is expected to be applicable to other digital communication problems.

Index Terms

Multiple Access Technique, Subtractive Interference Cancellation, approximation error, bias cor-

rection, Advanced Mean Field Theory, Mean Field Annealing

I. INTRODUCTION

When designing spectral efficient multi access communication systems, multi-access inter-

ference (MAI) is an inherent part one has to cope with. Communication systems are tradi-

tionally designed to keep MAI negligible compared to additive white Gaussian noise and self-

interference, or sufficiently designed such that decoding can be performed reliable by matched

filtration, i.e. treating the MAI as adding to the Gaussian noise. This approach yield low com-

plexity and low cost receivers. Allowing a higher level of interference and adding more com-

plexity in the receiver have the potential of increasing the spectral efficiency. The optimal de-

tectors in Code Division Multiple Access (CDMA) [1], that explicitly model the interference,

unfortunately have an exponential complexity in the number of users [2]. In order to gain over

the matched filter approach, without making use of exponential complex detectors, suboptimal

polynomial time-complexity detectors need to be developed.

Suboptimal multiuser detectors are traditionally separated into two main categories [3]: Lin-

ear Detectors and Subtractive interference cancellation. Interference cancellation has been in-
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troduced in CDMA to mitigate MAI [4], [5] or inter symbol interference [6]. Approximate

combinatorial optimisation methods has been used to approximate the joint optimal detector [7].

Previous to that, CDMA multiuser detection has been mapped to a Hopfield neural network [8].

This is a general method to approximatively solve hard combinatorial problems [9]. In this pa-

per we propose an improved subtractive interference cancellation scheme based upon a so-called

advanced mean field method recently developed within machine learning and statistical physics

[10], [11], [12]. Advanced mean field methods have also been shown to potentially powerful in

blind channel estimation [13], [14]. However, in the following we will only discuss subtractive

interference cancellation.

A. Subtractive Interference Cancellation

Subtractive interference cancellation covers a whole family of multiuser detectors. The canon-

ical form for the fix-point conditions in these detectors are given by�	�
���
���� 
�����
 ��� ����� � ���� "!#!#!" %$ (1)

where � 
 is the received data after the � ’th matched filter, � �
 is the tentative decision estimate

of the � ’th symbol, � � the tentative decisions of all bits arranged in a vector and �&
 is the

reconstructed interference on the � ’th symbol’s decision statistic, 
'�)( � is some tentative decision

function which for binary antipodal symbols has asymptotes * � for (,+ *.- . Let us assume

that the generative model is � 
 �0/ 
2143 
�5768 
:9 
%
 5 / 
 5 1<;=
 , where / 
 , � �>�� "!#!#!? �$ are the $
users symbols, 9 
%
�5 are the users correlation, and ;@
 is additive noise. Then in the absence of

noise, ;A
 �CB , it is obvious that if we set the interference �D
 equal to 3 
 5 68 
@9 
%
�5 / 
�5 , the � th users

decision statistics � 
@�E�"
 �F� 
A�G3 
�5768 
:9 
%
�5 / 
�5 will give the correct answer. This is only correct

if all the symbols / 
�5 , �IHKJ� � are known exactly. One approach is therefore to substitute / 
�5 with

its tentative estimate � 
�5 . Unfortunately, this approach yields a bias in the decision statistics� 
��L3 
 5 68 
 9 
�
�5 � 
�5 [15], since � 
�5 ’s depend on the earlier estimate of � 
 . Consequently, the

decision statistics in the fix-point are biased. We will call the error due to the approximation an

approximation error.

This kind of approximation is in the machine learning and statistical physics literature called

the naive mean-field equations [12]. We used this approximation in subtractive interference can-

cellation in Refs. [14], [16], [17]. In this contribution we derive the naive mean-field equations
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from the so-called Callen identity [18]. However, the main focus of the paper is on advanced

mean-field methods which correct the naive approach by approximately removing the bias.

Within information processing and machine learning the advanced mean field methods have

recently received attention [19], [12], e.g. see Ref. [20] for application to turbo codes. One can

roughly divide the problem classes into two: densely and sparsely connectivity, i.e. whether9 
%
�5 (or the corresponding ‘coupling matrix’) are sparse or not. CDMA fall in the densely

connected category and turbo codes in the sparsely connected. It has recently been shown

that the ’sum-product’ also known as belief propagation algorithm [21] used in the decoding

of turbo-codes [22], [23], [24] is identical to a certain kind of mean field theory derived from

the Bethe free energy [25]. An important advanced mean field method for densely connected

systems, the so-called TAP approach after Thouless, Anderson, and Palmer [26] was originally

introduced for the Sherrington-Kirkpatrick spin-glass model [27], [28]. In this model the corre-

lations 9 
%
 5 � 9 
 5 
 are modelled as Gaussian random variables. More recent work has focussed

on the understanding of the correspondence between the TAP mean field theory and Bethe free

energy approach [29]. In the following we will only discuss properties of the densely connected

models.

Statistical physics for disordered systems makes use of the fact that for certain problems, an

exact analysis is possible for large system sizes $ + - . There are basically two different

but consistent analysis techniques available: one is microscopic corresponding to finding the

low order statistics of the system variables, i.e. for CDMA the expectation values of the user

symbols for given 9 
%
 5 and � 
 . The second way is an average case analysis giving the typical

macroscopic properties of the system, i.e. for CDMA the expected bit error rate averaged over

all realizations of the spreading codes and noise. Clearly, only the first approach is suitable when

designing algorithms whereas the second can give valuable information about average proper-

ties, i.e. the expected performance in a given setting. Among the most prominent techniques

within statistical physics for analysing this type of disordered systems are the replica and cavity

methods [30], which can be used both for analysing static properties (as described above) and

dynamical properties. In this paper we use the cavity method to derive advanced mean field

algorithms for the CDMA problem. A corresponding average case replica analysis of randomly

spread CDMA can be found in Refs. [31], [32]. The Hopfield neural network [33] and the linear
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perceptron with binary weights are closely related to the CDMA model. Average case analysis

and TAP mean field theory for these models can be found in Refs. [30], [34], [11].

In the large system limit, the bias correction of the advanced method becomes deterministic

or identical self-averaging, i.e. in the case of CDMA the value is determined by the statistics

of the correlations rather than the specific realization of the spreading codes. In information

processing applications we deal with finite sized systems where we cannot expect the bias to

be self-averaging. We therefore need the bias correction to adapt to the data at hand. This has

lead to the introduction of the adaptive TAP mean field theory [10], [35], [11]. We rederive the

adaptive TAP mean field based upon Refs. [10], [35], [11]. This leads to fix-point equations

like eq. (1) with an additional set of fix-point equations for the bias corrections. Correcting

the bias of the naive mean field algorithm mitigates the approximation error, but we still have

some residual approximation error. Only in the limit of infinite system size, $ + - , will the

approximation error of the adaptive TAP mean field method vanish and the performance will

coincide with the prediction of average case analysis [10], [11].

In this contribution we also present an effective second order scheme for solving the obtained

fix-point equations. This is important since if one is not careful with assuring good convergence,

the convergence error can overwhelm the approximation error. A third kind of error arises

because the fix-point equations can have multiple solutions. Again, this is an effect of the finite

dimensionality of the system at the loads (users to spreading factor) considered, i.e. for $M+ -
the solution will be unique. In Ref. [17] we made a thorough analysis of the fix-points of

the naive approach. This lead to the use of annealing, i.e. solving the fix-point equations at

decreasing temperatures (noise levels) using at each step the previously found solution as the

initial estimate. Annealing is also a crucial ingredient for obtaining good performance for the

advanced mean field method.

The rest of the paper is organized as follows: in section II, we describe the model. In section

III, we briefly review the optimal detectors. In sections IV-VII, we derive the advanced mean

field detectors and the update and annealing schemes. We present simulations in section VIII

and conclude in section IX.
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II. $ USERS CDMA AWGN MODEL

We will assume a chip and symbol synchronized CDMA model in additive white Gaussian

noise (AWGN), with binary phase shift keying (BPSK) symbols. The $ spreading codes will

we assume binary and random with unit energy and equal spreading factor (SF). We will allow

the users to have different powers. The received base band CDMA signal is then given asN � ; � � OP 
 8=QSR 
"TU
 / 
 � ; � 1WV:X � ; �  (2); is sample index ;,Y<Z B[ #!#!#!� �\.] � �"^ , \.] is the spreading factor, / 
 � ; � is user � ’s ; ’th chip in

the spreading code with unit energy, T?
	Y_Z`� �� #�"^ is the transmitted bit for user � , R 
 the � ’th

users root mean power, X � ; � is the additive white Gaussian noise with zero mean and variance

1, and V is the noise standard deviation. The users’ energy normalisation make us able to define

the � ’th users signal to noise ratio as a[bdc 
 �fe[ghikj g .
Correlating the signal N � ; � with the spreading codes / 
�5 � ; � , � H Y�Z ��l�$m^ , we obtain the con-

ventional detector outputs � 
 5 which are sufficient statistics for the symbol estimation� 
�5 �FnSoqp QP r 8Ss N � ; � / 
�5 � ; � �
OP 
 8=QtR 
"TU
 nuoqp QP r 8Ss / 
�5 � ; � / 
 � ; � 1WV nSovp QP r 8Ss / 
�5 � ; � X � ; � �

OP 
 8=QtR 
"TU
 9 
%
�5w1yx#
�5  
(3)

where 9 
%
 5 � 3 nuoqp Qr 8Ss / 
 5 � ; � / 
 � ; � is the correlation of code / 
 with / 
 5 , and x#
 5 transform to a

Gaussian random variable with zero mean and covariance V i�z 
�
�5 . The above specifies the joint

distribution of the � 
�5 s{ ��|~} �� ��� %�m V i � �} ��� V i ��} p��g:�?��� ��� Qikj g ��| � �G��� �k� � p Q ��| � ����� �v�  (4)

now arranged in vectors with elements ��| � 
�5 ��� 
�5 and ��� � 
�5 � TU
�5 , and matrices ��� � 
%
�5 �� 
�
�5 R 
 , and ��� � 
%
�5 � 9 
�
�5 . We assume perfect channel state knowledge, and we also assume

full code knowledge i.e. the matrices � and � and the noise variance V i are considered deter-

ministic. We thus write the likelihood as { ��|~} � � instead of { ��|~} �� ��� %�m V i � .
III. REVIEW OF OPTIMAL DETECTORS

The objective, given the received data and the channel, commonly are to minimise the ex-

pected bit error rate ( �2��c ) or the probability of error. The expected user averaged ����c is
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defined as ����c � ��'� � � �$ � �=������D� ��¡ ¢&£ (5)

where the expectation ��¤ � �#� �U¡ ¢&£ , is taken with respect to the joint distribution of � and | . The

joint distribution { ��|u �� � is found by the likelihood (4) multiplied by the a priori distribution{ ��|u %� � � { �)|~} � ��{ ��� � .
Under some mild regularity conditions, the expected ����c subject to the constraint ¥¥¥ � �� � 
�5 ¥¥¥ ���

is minimised by ��¦�C§�¨�© � �ª� �#�«¢w¬ �­£ (6)

for any given received data | ; §�¨�© working each element. This estimator is referred the individual

optimal detector [36].

Alternatively, one can consider the probability of getting one or more bit errors as the objective

function. This probability of error can be written in terms of { � x ���®} � � �¯� � � ��$ � � � �� � as{ � x ��� � �¯� � � � ��$ � � �=�� � � �#�°��¡ ¢&£ ! (7)

It is minimised for any received data | by [37]��¦��±�²�¨¢�³�´ p Qkµ¶Q)· ¸¹ ± � { ���m} | � ! (8)

This is obviously the Maximum A Posterior (MAP) solution, which is identical to maximum

likelihood for uniform prior distribution { ��� � . This detector is referred the joint optimal detector

[36].

For general spreading codes, the above detectors have exponential complexity in the number

of users $ , i.e. to form the average over { ���m} | � we have to go over all � O combinations. We

therefore seek to construct approximative polynomial time complexity detectors. The detectors

we derive in the following are soft symbol estimators, i.e. they give an estimate of the marginal

posterior mean � �'� �#�«¢w¬ �­£ . They are constructed such that we by adjusting a suitable control

parameter, the equivalent of a temperature, can obtain an approximation to either the individual

or joint optimal detector.

IV. APPROXIMATE POLYNOMIAL TIME COMPLEXITY DETECTORS

In this section we derive two approximate detectors. Before the actual derivation we shortly

introduce and motivate the approaches.
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The first detector is the well-known soft-decision feedback subtractive interference cancella-

tion scheme with a º ±­©S»¼� ¤ � non-linearity:

� 
 � º ±�©S»¦½ R 
¾ ½@� 
�� P
�5768 
 9 
%
�5 R 
�5 � 
�5À¿Á¿ (9)

for � �0�� #!#!#!? �$ , where � 
 are the approximate estimate of the posterior mean � T�
 � , i.e. � 
dÂ� T�
 � and V i have been substituted with
¾

so that we can study fix-points at various
¾

and not

only on the generic
¾ � V i which is the noise level. Within statistical physics and machine

learning this fixed-point equation is known as the naive mean field estimate, see e.g. [12]. Why

it is called so will be clear in the following.

It is well-known that fixed-point has a bias [15]. The second advanced mean field approach1

aims at correcting this bias. Under some mild conditions–fulfilled for typical spreading sequences–

this approach will lead to exact results for the means, � 
 � � TU
 � in the limit of infinite system

size, $ + - . We are thus in the paradoxical situation that the NP-hard problem of inferring� T�
 � [2] becomes polynomial for $ + - . For finite system sizes, the bias is only corrected

approximately.

Besides the difficulty with completely correcting the bias, finite size systems also have other

related complexities. Firstly, as already discussed there will be multiple solutions to the fix-point

equations. Secondly, the basic assumption of the mean field theory (naive or adaptive TAP),

namely that all interactions between variables are weak and of the same order, may break down.

For example for finite $ and \Ã] there is a finite probability that when the spreading codes are

selected randomly, two users will be assigned the same code. This makes these users completely

correlated. The breakdown of the theory is usually signalled by the lack of convergence of the

fix-point iteration. In section VII, we discuss how to deal with this situation in practice.

There are a number of ways to derive both the naive and the advanced mean field theory.

One prominent method is to derive the fix-point equations from the saddle-point of a suitable

cost-function known as the mean field free energy, see e.g. [17], [11]. This approach has the

advantage that the problem is formulated as an optimization problem. Here, we will take a

different route and derive the mean field equations starting directly from the definition of the

posterior mean. This derivation will highlight the approximations made. For the naive mean

� Often called the TAP approach after Thouless, Anderson and Palmer [26].
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field theory we use the so-called Callen identity [18] and for advanced mean field theory, the

cavity method [30], [10], [11]. To ease the notation we introduce the following quantities� � 
 � �¾ R 
 � 
�9 
%
 5 � �¾ R 
 � 9 
%
 5 � � 
%
 5 � R 
 5
Assuming equal prior probabilities { � T?
 � � Qi ��Ä h ¡ Q 1 Qi �?Ä h ¡ p Q , we can write

� T�
 �Å� 3 ¢�³�´ p Q ¡ Q)· ¸ T�
 { ��|@} � �3 ¢�³­´ p Q ¡ Q)· ¸ { ��|@} � �� �Æ P¢�³�´ p Q ¡ Q)· ¸
T�
�x ¢DÇDÈ � p��g ¢DÇ ÈÉ ¢  (10)

where Æ � P¢�³�´ p Q ¡ Q)· ¸
x ¢ Ç È � p �g ¢ Ç ÈÉ ¢ (11)

and we have as above set
¾ � V i . Note that we in the second line have divided out all �

independent terms.

a) Naive mean field theory – Callen identity: We can now carry out the summation over

the � th variable

� TU
 �Ê� �Æ P¢&Ë Ä h ³­´ p Q ¡ Q)· ¸ÍÌ �
�'§�ÎÀ©S»Ï½ �� 
�� P
�5768 
 �9 
%
 5 T�
 5 ¿WxDÐ h 57ÑÒ h Ä h 5 È Ó h 5 p��g Ð h 5ÕÔ h 5 57ÑÒ h Ä h 5 ÈÖ h 5 h 5 5 Ä h 5 5  (12)

where �'× T�
 means summation over all variables but the � th. Dividing and multiplying by�'Ø"Ù�§�»	Ú �� 
��W3 
�5768 
 �9 
%
�5ÀT�
�5ÜÛ inside the summation and using

��Ø�Ù�§�»Ï½ �� 
�� P
 5 68 
 �9 
%
�5ÀT�
�5Ý¿yxDÐ h 5 ÑÒ h Ä h 5 ÈÓ h 5 p �g Ð h 5 Ô h 5 5 ÑÒ h Ä h 5 ÈÖ h 5 h 5 5 Ä h 5 5 � PÄ h ³­´ p Q ¡ Q)·
x ¢ Ç È � p �g ¢ Ç ÈÉ ¢  (13)

we arrive at the exact Callen identity

� T�
 �Ê�ßÞ º ±�©S»¦½ R 
¾ ½@� 
�� P
�5768 
 9 
%
�5 R 
�5ÀT�
�5Ý¿Á¿	à ! (14)

Taking the posterior average inside the º ±�©S»¼� ¤ � , we arrive at the approximation for the mean eq.

(9). This corresponds to neglecting the fluctuations of the random variable 3 
�5768 
:9 
%
 5 R 
 5 TU
 5 .
Thus the name mean field.
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b) TAP mean field theory – the cavity method: The starting point of the improved mean

field estimate is another similar exact relation for the posterior mean. We introduce the reduced

or cavity average over a posterior where the � th variable is not present:

� !#!#!°� Ë 
 � �Æ 
 P¢&Ë Ä h ³­´ p Q ¡ Q)· ¸ÍÌ �
!#!#! xDÐ h 57ÑÒ h Ä h 5 ÈÓ h 5 p��g Ð h 5ÀÔ h 5 5ÜÑÒ h Ä h 5 ÈÖ h 5 h 5 5 Ä h 5 5 (15)

with normalization constantÆ 
 � P¢&Ë Ä h ³­´ p Q ¡ Q)· ¸ÍÌ �
x Ð h 5 ÑÒ h Ä h 5 È Ó h 5 p��g Ð h 5 Ô h 5 5 ÑÒ h Ä h 5 ÈÖ h 5 h 5 5 Ä h 5 5 ! (16)

The exact relation eq. (12) can now be written as

� T�
 ��� á §�ÎÜ©S»GÚ e hâ Ú&� 
��W3 
�5768 
:9 
%
�5 R 
�5ÀTU
�5ÜÛ:Ûªã Ë 
á Ø�Ù�§�»äÚ e hâ ÚD� 
��W3 
�5768 
:9 
%
 5 R 
 5 TU
 5 Û@Û�ã Ë 
  (17)

where we have used
Æ ��� á Ø�Ù�§�»	Ú �� 
��å3 
�5Ü68 
 �9 
�
�5ÝT�
�57Ûªã Ë 
 Æ 
 .

The TAP approximation corresponds to assuming a simple parametric form for the random

variable æ 
~ç �� 
��y3 
�5)68 
 �9 
%
�5ÀT�
�5 appearing in eq. (17). Before discussing this approximation,

let us introduce æ 
 as a random variable through a Dirac
�
-function:

{ � æ 
 � �èÞ � ½ æ 
�� �� 
�1 P
�5768 
 �9 
%
 5 T�
 5 ¿	à Ë 
 ! (18)

With this definition we can write eq. (17) as

� TU
 �f� PÄ h ³­´ p Q ¡ Q)·�éëê æ 
�TU
 { � T�
  æ 
 � (19)

� æ 
 �f� PÄ h ³­´ p Q ¡ Q)·�é ê æ 
 æ 
 { � T�
  æ 
 � (20)

with the joint distribution being{ � T�
  æ 
 � � { � æ 
 � x Ä h�ì?h��í ê æ 
 { � æ 
 � Ø�Ù�§�»î� æ 
 � ! (21)

The second equality above relates � æ 
 �ï� �� 
ð� 3 
 5 68 
 �9 
�
 5 � TU
 5 � to the average over the cavity

distribution � !"!#!«� Ë 
 appear in { � æ 
 � , eq. (18).

February 19, 2003 DRAFT



11

Up to now everything has been exact. The central assumption in our derivation is that the

terms in the sum 3 
�5768 
 �9 
%
�5ÜT�
�5 are so weakly correlated that they for $ + - sum up to a

Gaussian variable (as a consequence of the central limit theorem), i.e.

{ � æ 
 � Â �ñ ���îò 
 �U��� ½ � � æ 
�� � æ 
 � Ë 
 � i��ò 
 ¿  (22)

where ò 
~ç � æ i
 � Ë 
 � � æ 
 � i Ë 
 is cavity variance of æ 
 . We can now see that if we can determine� æ 
 � Ë 
 and ò 
 we have a closed set of equations for � 
	Â � T�
 � . Inserting the assumption eq.

(22) in eqs. (19) and (20) gives

� T�
 �ó� º ±�©S» Ú � æ 
 � Ë 
 Û (23)� æ 
 �ó� � æ 
 � Ë 
 � ò 
 � T�
 �ô! (24)

We have now almost achieved a closed set of fixed point equation for � T#
 � since we can use eq.

(24) to express � æ 
 � Ë 
 entirely in terms of � �'� and ò 
 . These results show how the advanced

mean field theory corrects the bias of the naive result eq. (9) by introducing a self-coupling� ò 
 � TU
 � inside the non-linearity. What remains to be done is to derive equations for ò 
 , � ��� #!"!#!" �$ . The result we are after–the adaptive TAP equations [10], [11]–can be derived in

number of different ways. Here we use eqs. (23) and (24) and a first order perturbation argument

[38] (also known as linear response theorem [18]) to derive an alternative expression for � æ 
 � Ë 
 .
Demanding consistency between this expression and eq. (24) determines ò 
 . We assume that� T�
�5 � � � T�
�5 � Ë 
 is small for ��J� �IH , i.e. removing the � th user will only induce a small change

in the mean of the other variables. This is a reasonable assumption for normal spreading codes

when $ is even moderately large, say order 10. It is therefore reasonable that we can expand to

first order in eqs. (23) and (24) to get

� TU
 5 � � � TU
 5 � Ë 
 �0�v� � � T�
 5 � i � Ú � æ 
 5 � � � æ 
 5 � Ë 
 � ò 
 5 � � T�
 5 � � � T�
 5 � Ë 
 � Û  (25)

where we have used that õ#ö Ä h 5Ü÷õ#ö ì h 5À÷Ýø h 5 �0� � � TU
�5 � i and assumed that the change in ò 
�5 is negligible;

which is true in the large system limit since ò 
�5 will be self-averaging [11]. Now we can use� æ 
 ��� � � 
���3 
�5)68 
 �9 
%
�5 � T�
�5 � to write

� æ 
�5 � � � æ 
�5 � Ë 
 � � �9 
�5°
 � T�
 � � P
 5 5 68 
 �9 
�5°
�5 5 � � T�
�5 5 � � � TU
�5 5 � Ë 
 � ! (26)
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Taking together eqs. (25) and (26) and rearranging givesP 
 5 5úù �9 
�5°
�5 5û1 � 
%
�5 ��ò 
�1 �� � � T�
�5 � i ��ü � � T�
�5 5 � � � T�
�5 5 � Ë 
 � � � �9 
�5 
 � T�
 � (27)

Eq. (25) is therefore a linearised equation for the change in the means. Introducingý 
 �Fò 
�1 �� � � T�
 � i (28)

and the diagonal matrix þ ��ÿSÎ7±­¨t� ý Q  "!#!#!" ý O � we can write the solution as

� T�
�5 � � � T�
�5 � Ë 
 � P 
�5 5�� � þ Ë 
 1 ��GË 
 � p Q�� 
 5 
 5 5 �9 
�5 5«
 � T�
 �ô (29)

where þ Ë 
 is the matrix þ with the � th row and column removed. Note that it is a direct

consequence of the linear response assumption that the induced change will be proportional to

the mean itself, i.e. � T?
 � . We can now use this result to get an estimate of � æ 
 � � � æ 
 � Ë 

� æ 
 � � � æ 
 � Ë 
 � � �9 
%
 � TU
 � � P
�5768 
 �9 
%
�5 � � TU
�5 � � � TU
�5 � Ë 
 �� � �9 
%
 � TU
 � � P
�5 ¡ 
�5 5768 
 �9 
%
�5 � � þ Ë 
Ê1 �� Ë 
 � p Q � 
�5 
�5 5 �9 
�5 5°
 � T�
 �

� ���� ý 
�� �� Ú þ 1 �� Û p Q	� 
�


���
 � TU
 � (30)

In the last line we have used a matrix identity for the partitioned inverse:�Z � p Q ^ 
%
 � R 
%
�� P
�5 ¡ 
�5 5)68 
 R 
%
�5�� ��� Ë 
 � p Q	� 
�5°
�5 5 R 
�5 5 
 ! (31)

Demanding self-consistency between eqs. (24) and (30) implies that

ò 
 � ý 
�� �� Ú þ 1 �� Û p Q � 
�
 (32)

which is the adaptive TAP expression for ò 
 [10], [11]. We now have a set of fixed point

equations for the approximate means � 
 Â � T�
 � and the ò 
 s which can summarised as follows
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in terms of the original variables

� 
 � º ±�©[» ½ R 
¾ ½ � 
�� P
 5 68 
 � 9 
%
�5S� � 
�
�5 � R 
�5 � 
�5 ¿ � ò 
 � 
 ¿ (33)

ò 
 � ý 
�� �� � þ 1 �Ï��� ��� � ��� ¾ � p Q � 
%
 (34)ý 
 � ò 
�1 �� � � i
 ! (35)

We immediately observe that whereas the naive mean field theory has a computational com-

plexity of � ��$ i � , the matrix inversion in eq. (34) makes the computational complexity of the

advanced equations � ��$�� � . In section VI we shall see how the expression for ò 
 can simplified

to give the for finite systems less accurate so-called self-averaging TAP equations that are only

of � ��$ i � . In the next section we describe an effective second order belief propagation method

for solving the adaptive TAP eqs. (33)-(35). We finish the theoretical treatment in section VII

with a short discussion of mean field annealing.

V. SECOND ORDER FIXED POINTS DYNAMICS

The non-linear mean field fixed point equations have to be solved by iteration. We thus have

to introduce update rules (or dynamics) with good convergence properties. For the naive mean

field eqs. (9) we are in the lucky situation that there are no self-couplings, i.e. in the equation

for � 
 , � 
 does not appear on the right hand side inside the non-linearity. Updating with eq.

(9) sequentially corresponds to a coordinate descent minimisation of the cost function, the free

energy, and are thus guaranteed to bring us to a local minimum [17]. The situation is different

for the advanced method because we have self-couplings which is known to complicate the

convergence of the iterative procedure. However, they are also necessary ingredients for coping

with the bias otherwise present. The matrix inversion in eq. (34) also represent a computational

demanding task. In the following we will derive a second order belief propagation method which

tries to get an unbiased estimate of the mean cavity field � æ 
 � Ë 
 in each update step [39], [35].

It will have good convergence properties and the Hessian matrix–also appearing in eq. (34)–can

be computed effectively both for parallel and sequential updates.

The idea is as follows: We decompose the update in three steps. In step 1 we use a linearised

version of eq. (33) to get an intermediate prediction for ������� � in terms of the previous values
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14���	 "! and ò#�	 "!
 . This expression will be derived below. Secondly, we use eqs. (34) and (35) to

update ò 
 in terms of ���	 "! and ò$�	 "!
 . Thirdly, we use eq. (33) with inserted ������� � and ò$�����
 on

the right hand side to get � �%�&�
 :� �����
 ' � º ±�©S» Ú � æ 
 � ����� �Ë 
 Û (36)

� æ 
 � ����� �Ë 
 � �� 
�� P
�5)68 
 Ú �9 
%
�5û1 ò �����
 � 
%
�5ÜÛ � ����� �
�5 !
By solving for the intermediate value � æ 
 � ����� �Ë 
 , we aim in each update step at getting the value

as unbiased as possible, i.e. we try to remove the influence of � �	 "!
 dynamically. Next we will

show how to obtain the linearised solution ������� � . We can linearise eq. (33) around the previous

update � �	 "!
 � º ±�©S»GÚ � æ 
 � �	 "! �Ë 
 Û (37)

which gives the following linear equation for � ����� �
� ����� �
 � � �	 "!
 � �v� � � � �	 "!
 � i � ½ � � 
�� P
�5)68 
 Ú �9 
%
�5û1 ò �	 "!
 � 
%
�5ÀÛ � ����� �
�5 � � æ 
 � �	 "! �Ë 
 ¿ (38)

The solution for ������� � can written in of terms of the vector ( with components) 
 ç � �	 "!
 1 �v� � � � �	 "!
 � i � � �� 
�� � æ 
 � �	 "! �Ë 
 �� 1 �q� � � � �	 "!
 � i � ò �	 "!
 (39)

and
ý �	 "!ð� �*�S�q� � � � �	 "!
 � i � 1 ò+�	 "!
 as

� ����� � � Ú þ �	 "! 1 �� Û p Q þ �	 "! ( ! (40)

We now see that it is the same inverse matrix that appears here and in the expression for ò 
 , eq.

(32)2. We now have all the ingredients in the belief propagation algorithm: eq. (40) for �,����� � ,
eqs. (34) and (35) for ò 
 and finally eq. (36) for � �����
 . In the following we will limit ourselves

to look at the sequential version of the algorithm and give a computationally effective recipe.

The parallel version follows straightforwardly from the derived equations. The main problem is

that after we have updated � 
 and ò 
 we have to recompute Ú þ 1 �� Û p Q , i.e. naively an � ��$ � �
operation in every step. However, when we make the update, we only change one element ing This matrix plays a special role since it is the advanced mean field (linear response) estimate of the covariance of the variables-/. h . h103254 -/. h 2 -6. h107298,:<;	=?>�@ACB Ì ��D h hE0 [10], [11].
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15þ 1 �� namely the � �  �S� th element because we change
ý 
 � �*�S�v� � � i
 � 1 ò 
 . We make

use of the Sherman-Woodbury formula to reduce this step to � ��$ i � . For that we introduce the

following matrices F ç ÚHG 1 �� p Q Û p Q (41)G ç þ p Q (42)

which can be updated using the Sherman-Woodbury formula when we change I 
 � �*� ý 
 by

ê I � I �����
 � I �	 "!
 F ����� � F � ê I� 1 ê IKJ 
�

FML 
 � FML 
 � �  (43)

where

L 
 is the � th unit vector. It is easy to show that �1N � �%�&� � � � | � ���������� � � � | �
F ( ,������� � � ( � G	� �EN � �%�&� � � � | � and ò 
 � J 
%
 �S� I 
 J 
%
�� � � .

So far we have not discussed how to initialise the algorithm. A natural initialisation is G ' �O
. This gives the following simple initialization for

F
� ÚPG 1 �� p Q Û p Q � �� so that we

completely avoid explicit matrix inversion. Pseudo-code for the algorithm is given in table I.3

As an additional measure to ensure numerical stability,

F
(and ) 
 ) are not updated when this will

lead to negative diagonal elements in

F
. The reason is in turn will introduce negative ò 
 s and

since ò 
 is a variance (of the cavity field) it must by construction of the theory be non-negative.

This update scheme has a natural interpretation in terms of propagating beliefs for � 
 andò 
 . As a second order method it is closely related to the Newton method. But in practice it

turns out that it is more stable than the Newton method. This can be attributed to two facts: 1.

it is more conservative–by linearizing around the previous update–and 2. it uses the contractive

non-linearity º ±�©[»¼� ¤ � directly which keeps the values of � 
~YåZ`� ��l#�"^ .
VI. LARGE SYSTEM APPROXIMATION USING SPREADING CODE STATISTICS

The advanced mean field method described above is a relatively recent development [10],

[11]. The original TAP approach [26], [30] is derived for the case of large system size with

known distribution of the randomness. In the CDMA MUD context, the randomness lies in theQ
Matlab implementations of both this and normal sequential iteration scheme are available from

http://isp.imm.dtu.dk/staff/winther/.
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16RTS �FB[!VU ; RXW �CB�!6Y ; ( �F��Z"��Z [ ; \ � \ Z"�%Z [ ;

F ' � Qâ �Ï��� ��� � � ; G ' � O
;

do

Cycle over random variable indices � YåZ �� �$m^� æ 
 � � ' � R 
 � 
 � ¾ �W3 
�5 J 
%
 5 ) 
 5 ;� �
 ' � ) 
�� I 
 � � æ 
 � � � R 
 � 
 � ¾ � ;ò 
 ' � R5W ] h h^ h ] h h p Q 1 �v� � RXWK� ò 
 ;� æ 
 � �Ë 
 ' � � æ 
 � � � ò 
 � �
 ;� 
 ' � RTS º ±�©[»î� � æ 
 � �Ë 
 � 1 �v� � RTS��v� 
 ;) 
 ' � S h`_ � Q p S gh £7� e h Ó h`a â p ö ì h ÷7bø h £Q _ � Q p S gh £ W h ;I �	 "!c ' � I c ; I c ' � Q p S ghQ _ � Q p S gh £ W h ; ê I ' � I 
�� I �	 "!
 ;
F ' � F � d ^Q _ d ^9e h h

FfL 
 � FfL 
 �k� ;

end // Cycle over random variable indices � YåZ �� �$m^
while ¹ ± �
 ³�´ Q ¡ O · �U} � �hg _ Q £
 � � �VgÝ£
 }9ikj º Ù5l

TABLE I

PSEUDO-CODE FOR THE SEQUENTIAL BELIEF PROPAGATION ALGORITHM. NOTE THAT LEARNING RATES ARE

INTRODUCED IN THE m AND n UPDATES TO MAKE THE CODE MORE NUMERICALLY STABLE.

spreading codes / 
 � ; � . For random binary spreading codes /Á� * �*� ñ \.] , { � / � � Qi ��o ¡ Q a	p n o 1Qi ��o ¡ p Q a	p n o and equal powers R 
 � R in the limit of infinite system size, $ + - , ò 
 eq. (34)

will become what is called ’self-averaging’. This means that for equal power R 
 � R , ò 
 �0ò
independent of the specific realisation of the randomness, i.e. the specific choice of spreading

code. The self-averaging value ò �rqts Z ò 
 ^ , where qus Z ¤ ^ denotes an average with respect to the

spreading code distribution, can be obtained from eq. (34). A detailed calculation is given in

Ref. [11]. Here we will only briefly sketch the derivation and give the final result. To computeò , we write � � þ 1 �� � p Q � 
%
 as� Ú þ 1 �� Û p Q � 
�
 � vv ý 
 lÀ©�ÿ � º � þ 1 �� � (44)
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and replace the right hand side by its average. Rather than averaging lÜ©�ÿ � º � þ 1 �� � , we average

ÿ � º p��g � þ 1 �� � � é ê5w� �&� � O a i x p��g%x�y �6z _ ÈÉ £ x (45)

which is equivalent for $ + - [11]. The final result is

ò¯� $\.] ù R i¾ ü i �v� ��{ �� 1 OnSo e gâ �q� ��{ � (46)

with { � QO 3 
 � i
 and we have to assume equal powers R i
 � R i . This result is almost

identical to the closely related models: the Hopfield neural network and the linear perceptron

with binary weights [11]. In practical situations for systems of even a moderately large size,

say $ � � �q�DB�B � , ò 
 is not close to being self-averaging [10], [11]. However, using the self-

averaging expression eq. (46) can still give improvements over naive mean field theory without

going beyond � ��$ i � complexity.

VII. MEAN FIELD ANNEALING

Annealing was introduced in the context of optimisation with simulated annealing [40]. Soon

thereafter annealing was used in conjunction with mean field theory, see e.g. [9]. In mean

field theory, annealing amounts to repeatedly solving the mean field equations and lowering the

temperature using the old solution as the starting guess. It was first suggested to use annealing

in the CDMA context by Ref. [32]. The first numerical results was presented in Ref. [16] and

extensive numerical results and a thorough theoretical analysis can be found in Ref. [17].

In Ref. [17], we carried out an extensive analysis of the bifurcation properties of the fixed

point solution for the naive equations (9) and derived an upper bound for the critical temperature¾ ] above which the solution space is convex and the solution thus unique. A similar analysis

is more complicated for the advanced equations (33), but we can use the same bound for
¾ ]

since the subtractive reaction term in eq. (33) implies that the critical temperature is lower than

for the naive theory:
¾ �H|~}] � ¾ ����Z ���] . The bound for the critical temperature is:

¾ ����Z ���] ��v� ���5� Z"� � R i� �1� � R i� �1� , where R � �1� � ¹ ± � c R c is the maximal power and ��� Z"� is the minimal

eigenvalue of � (which is lower bounded by zero).

The bifurcation analysis also showed that it is the high
¾

convex solution that is the rele-

vant solution to track [17]. Using
¾ ] (or its upper bound) as the starting temperature therefore
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guarantees that at least the initial solution is in same convex subspace as the solution we are

after. Tracking the solution carefully with annealing will lead us to the optimal solution for

the approximation scheme used. The remaining excess error compared to the exact exponential

complexity solution will be due to the approximation error.

The number of local minima will decrease with increasing system size and noise level. How-

ever, as already shown in Ref. [16], [17], for realistic system sizes $ � � �q�DB � �DB i � , order one

loads and a[bðc s, the existence of local minima seriously affect the performance if the fixed point

equations are iterated directly at
¾ � V i . With annealing we can track the optimal solution from

a high temperature
¾ � R i� �1� down to the noise level

¾ � V i (or down to
¾ �FB if we are after

hard estimates).

The basic underlying assumption of mean field theory (both naive and adaptive TAP) is that

of weak correlations between variables, i.e. such that we can apply the law of large number and

the central limit theorem. However, for small system sizes and low temperatures this assumption

can break down, e.g. there is a finite probability that two spreading codes are selected co-linear

which makes the associated variables completely correlated. The breakdown of the theory is

usually indicated by the lack of convergence. When a convergence failure is observed we use

the solution at the previous temperature as our final estimate. In the setup described below with$ ��� and \ ]�� �H� , the fraction of runs where we encounter non-convergence is between

0.0 % – 0.8 % (highest for intermediate a[bdc s). The non-convergence typically occurs close to¾ � V i , i.e. at the lowest or second lowest temperature.

VIII. MONTE CARLO SIMULATIONS

We have made Monte Carlo studies in order to compare the performance of the naive and

advanced mean field algorithms. All bit error rate ( ����c ) points were simulated until $��å�DB�B
bit errors were seen. This approximately corresponds to $���Y�B independent errors (since errors

tends to occur in pairs) giving for $M��� around Y5� of error in the ����c -estimates. The spread-

ing codes are random vectors with components * �*� ñ \.] . We anneal using 10 logarithmic equal

spaced temperatures between R i and V i . We did not make any effort to optimize the annealing

scheme. Less temperatures, e.g. the half and/or a linear temperature scale can probably be used

with similar performance. We use sequential update of the naive mean field eqs. (9) and the

belief propagation approach summarized in table I for the adaptive TAP eqs. (33)–(35). For the
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self–averaging TAP eqs. (33),(46), we also use a sequential update, updating ò before � 
 . For

adaptive TAP we use minimum 3 and maximum 100 iterations at each temperature. The aver-

age number of iterations is between 5 and 8 (highest for the lowest a[bðc s) with a residual error

tolerance of �DB p�� on the summed squared deviation of eq. (33).

In figure 1, we plot the ����c versus the signal-to-noise ratio a[bðc � R i ��� V i (with unit power

R 
 � R �¯� ) for a system of size $M��� and \Ã]'���H� , i.e. load one half. This setup, identical to

the one used in Ref. [41], has a low a[bðc regime where the performance is limited by the noise

and an asymptotic regime where the performance is strongly limited by interference even for the

individual optimal detector. This setup is very difficult as indicated by the very poor performance

of the conventional matched filter receiver and by normal interference cancellation with º ±­©S»¼� ¤ �
tentative decision, i.e. naive mean field without annealing. It can be seen that both the naive

and TAP theories, are very close to the optimal curve (found by calculating the posterior symbol

marginals exactly) for small a[bdc s and large a[bdc s. In the latter limit the fundamental �2��c -

floor is very close to the theoretically predicted Y�!V�5� ¤ �DB p�� [41] which reflect that there is a finite

probability for choosing co-linear spreading codes. In the intermediate a[bðc region, adaptive

TAP outperforms the naive and self-averaging TAP approach, e.g. for ����c � �DB p9� there is

approximately a 2 dB’s a[bdc gain compared to naive mean field annealing. The self-averaging

theory gives a performance in between these two.

In figures 2 and 3, we compare the exact decision statistics º ±�©S» p Q � T�
 � ��������[ with respectively

the decision statistics of TAP º ±�©[» p Q � T�
 � �H|~} and naive mean field theory º ±�©S»~� Q � T�
 � ����Z ��� . From

the figures it can clearly be seen that adaptive TAP approximately corrects the bias of the naive

approach, i.e. we get clouds on both sides of the diagonal for both signs of the decision statistics

rather than just on the one side. For larger systems (not shown) the agreement between adaptive

TAP and the exact result improves.

Figure 4 shows the performance as a function of detection temperature
¾

. This type of plot

can indicate how to determine what temperature we need to anneal in order to obtain a given

performance. Note that especially for high a�bdc s, the curve levels off at a temperature much

higher than the Bayes temperature V i . In some case we even observe a small decrease in per-

formance when lowering the temperature. If significant, this can be attributed to rare numerical

instabilities at very low temperatures.

Figure 5 shows the result of running with a setup similar to the one in used Ref. [42]. For
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constant a[bdc ���DB ê9� and \Ã]ª����B , we have tested a range of loads $��"\Ã] . In this case the per-

formance improvement (in ����c ) is even more pronounced with a gain factor of approximately

5/10 compared to naive mean field annealing/linear minimum mean squared error (MMSE) over

the whole range of loads used. At a target �2��c of �DB p i we can double the number of users com-

pared to the method proposed in Ref. [42] and compared to conventional hard serial interference

cancellation we get 10 times more users.

IX. CONCLUSION

In this paper we have proposed a new algorithm for subtractive interference cancellation in

Code Division Multiple Access (CDMA) which is based upon the adaptive TAP mean field ap-

proach recently developed in machine learning/statistical mechanics [10], [11]. With the adap-

tive TAP mean field approach we can approximately remove the bias of the conventional (naive

mean field) subtractive interference cancellation approach. The approximation is expected to

become better with increasing system size and exact in the infinite large system limit, such that

this detector in this limit will be identical to the individual optimal detector [10], [11], [30], see

also Ref. [32] for an average case analysis of this scenario.

In the simulation studies we compare the mean field approaches and find a significant perfor-

mance improvement in the regimes where the conventional naive mean field approach deviates

from the optimal. We have observed performance improvements in bit error rate of up to a fac-

tor 5 over naive mean field theory and a factor of 10 for minimum mean squared error (MMSE)

for a whole range of loads $��"\Ã] . For both mean field approaches we use mean field anneal-

ing to avoid getting trapped in local minima. This has previously been shown to be crucial for

obtaining good performance for small to medium sized systems [16], [17].

The computational complexity of the new scheme is � ��$�� � whereas the conventional scales

as � ��$ i � . In this paper we have proposed an effective second order belief propagation approach

to solving the mean field equations which partly compensates for the increased complexity.

However, it is of interest to come up with schemes that have a lower computational complexity

while retaining at least a part of the bias correction. A good candidate for this is the self-

averaging TAP mean field theory. This method uses knowledge of the statistics of the spreading

codes and assumes equal powers of all users to simplify the bias correction term. It is expected

to become exact in the infinite large system limit, see Ref. [11] and references therein. We have
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tested the self–averaging TAP theory using a conventional sequential update scheme and found

a performance that lies in between that of adaptive TAP and naive mean field. This shows that in

the ideal situation where the a priori assumptions hold, we can cancel some of the bias without

going beyond � ��$ i � complexity.

It is of practical interest to develop belief propagation type algorithms which scales as � ��$ i �
rather than � ��$�� � . Recently, Refs. [43], [44] have proposed and analysed � ��$ i � CDMA-

algorithms which incorporates a bias correction term. The starting point of the derivation of

these algorithm is Pearl’s belief propagation algorithm which should work well for sparsely

connected systems, i.e. the opposite situation as the CDMA-setup. The algorithm furthermore

makes use of the knowledge of the spreading code statistics. So far these algorithms have only

been applied to large systems. It is important to investigate the connection to our approach and

compare performance for realistic sized systems. The adaptive TAP approach is expected to

be quite robust against violations of the basic channel and spreading code properties since it is

designed to adapt to the data at hand. The self–averaging approaches on the other hand will not

be as robust. Exactly how robust they are remains to be tested empirically. As a preliminary test

of this we tried a self-averaging term corresponding to the user correlations being finite variance

i.i.d. variables, i.e. equivalent to the SK-spin glass model, but the results were worse than not

using any correction, indicating that the self-averaging method is sensitive to the actual statistics

of the user correlations.
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Fig. 1. User averaged bit error rate ¨ª©9« , for ¬®­°¯ and ± o ­³²	´ against signal-to-noise ratio µ·¶¸«¹­³²�º`»<¼ g . Results for

following approaches are shown: adaptive TAP, self-averaging TAP, naive mean field annealing together with the single user

bound, exact MMSE, predicted ¨~©�« -floor, conventional matched filter, and conventional serial interference cancellation with½¤¾`¿ÁÀXÂÄÃ Å
soft tentative decision, i.e. identical to naive mean field without annealing.
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Fig. 2. Samples of exact versus adaptive TAP estimate of the final decision statistic
½¤¾<¿�À Ì � -/. h 2 for µ·¶¸«?­ÔÓ%Õ×Ö .
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Fig. 3. Samples of exact versus the naive estimate of the final decision statistic
½¤¾<¿�À Ì � -/. h 2 for µ×¶¸«?­ÔÓ%Õ×Ö .
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Fig. 4. ¨ª©9« performance of adaptive TAP versus decoding temperature Ý for a range of different µ·¶Þ« s starting from 4 for

the top curve and increasing in steps of one to 14 at the bottom. Crosses indicates the temperatures used. The first temperature

is 1 corresponding to ß g ­¹² and the final temperature is ¼ g .
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Fig. 5. ¨ª©9« versus the number of users ¬ for spreading factor ± o ­°»`à at µ×¶¸«á­f²	à dB. The curves from the bottom are

adaptive TAP mean field annealing (full line), naive mean field annealing (full line with circles), linear MMSE (dashed line),

hard serial IC (full line with triangles) and matched filter (dashed–dotted).
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