Teaching computers to fold proteins
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A new general algorithm for optimization of potential functions for protein folding is introduced.
It is based upon gradient optimization of the thermodynamic stability of native folds of a training set
of proteins with known structure. The iterative update rule contains two thermodynamic averages
which are estimated by (generalized ensemble) Monte Carlo. We test the learning algorithm on
a Lennard-Jones (LJ) force field with a torsional angle degrees-of-freedom and a single-atom side-
chain. In a test with 24 peptides of known structure, none folded correctly with the initial potential
functions, but two-thirds came within 3A to their native fold after optimizing the potential functions.

PACS numbers: 05.10.-a,07.05.Mh,87.15.Aa,87.15.Cc

It is one of the long-standing challenges of science to
simulate protein folding in a computer and predict the
three-dimensional structure — the native fold. According
to Anfinsen’s hypothesis the native fold of a protein is
the one with the lowest free energy [1]. To fold a protein
in silico, it is therefore necessary to have a sufficiently
good description of the energetics of the system. Even
the most sophisticated all-atom potentials [2, 3] and sta-
tistical potential functions [4-6] will not usually give sta-
bility of an experimentally determined native structure.
Furthermore, these potential functions have so many de-
grees of freedom that nano-second time-scale molecular
dynamics simulations require of the order of months on
even the fastest computers. To sample the state space
of a protein in solution with present-day computers it is
therefore necessary to use a simplified description of the
protein and the solvent rather than an all-atom model.
It is virtually impossible to calculate such potential func-
tions from first principles.

In this paper we describe a method to estimate
parametrized potential functions from a training set of
known protein structures. Most previous work on es-
timation of potentials use statistical approaches [4-6],
which are based on static structures. The main new fea-
ture in our approach is that we optimize the potentials
during simulation of the folding process, so as to maxi-
mize the thermodynamic probability of the native folds
of the whole training set. This maximum likelihood esti-
mation procedure, which is essentially Boltzmann learn-
ing [7], can be thought of as iteratively stabilizing the
native structure on the one hand and ’'unlearn’ incor-
rect folds, which traps the protein during folding, on the
other. There exists other approaches that are similar
in spirit, but none which aim directly at optimizing the
thermodynamic stability. Rather, related measures are
optimized such as the normalized difference between the
native energy and the average energy over all alternative
conformations [8-10], the thermodynamic average of the
overlap to the native state in a contact energy model [11-
13] and linear optimization methods for ensuring that the
native state has lowest free energy [14, 15]. The overlap

method is the one closest related to optimizing the ther-
modynamic stability.

In the general setup we have a parameterized energy
function Ey(R,seq) with parameters 6, which give the
energy for an amino acid sequence seq with atomic co-
ordinates R. The probability of finding the ith train-
ing sequence in its native state is given by the Boltz-
mann weighted volume of conformation space compatible
with the native structure divided by the total Boltzmann
weighted volume of conformation space

Plnatfseq, ) = St CPCIEO(R sear) aR
B T T T exp(— BBy (R, seq,)) dR.

where § = 1/kT and the integral in the numerator is
only over the part of conformation space associated with
the native structure. The definition and choice of the
size of the native volume in conformation space should
reflect all expected variability such as the loss of descrip-
tion accuracy due to the crudeness of the protein model,
thermal variability of the native state and the uncertainty
in the determination of the crystal/NMR structure. In
this study we define the native volume as all structures
within a C,, root mean square deviation (RMSD) of 1A
from the crystal structure.

The objective is to maximize the joint probability
Hij\il P(nat;|seq;, §) with respect to the parameters 6,
where N is the number of sequences in the training set.
We choose to perform the maximization by gradient as-
cent 6% := 9°d 1 A@, where

AO = nVezlnP(namseqi,H) (2)
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with 7 being the learning rate, (...) and (...)pa¢, de-
noting Boltzmann averages over the total conformation
space and the part associated with the native structure,
respectively. In neural computation context this is known
as the Boltzmann learning rule [7]. In simulations we per-
form the Boltzmann averages by a (generalized ensemble)
Monte Carlo method.



The above learning rule applies to any differentiable
potential function. The aim is to estimate a potential
that gives a high probability to the correct fold under
the given protein model and with the chosen simulation
method, which of course does not guarantee that the po-
tential is close to the real physics. To demonstrate the
validity of the method we have applied it to a simple force

R;

field. The amino acid unit model has 6 atoms —NC,C"-,
H O
where O and H is introduced to be able to define back-
bone hydrogen bonds and to give a more realistic local
torsion potential. The whole side chain is represented by
R;, so the parameters relating to this is amino acid de-
pendent, whereas the other atoms are treated more con-
ventionally. The conformational degrees of freedom are
the torsional angles ¢ and ¢ (rotation around the NC,
bond and C,C’ bond). The C,R; distance is adaptive
(one parameter for each of the 20 amino acids), whereas
all other bond lengths and angles are fixed to their aver-
age value as given in Ref. [16]. The angle to R; is fixed
to the average value for C,Cpg.

The energy is a generalization of the one proposed in
Ref. [17] which in turn is inspired by the classical force
fields. The energy is split into local and non-local terms
FE = Fiocalt+ Fron—local. The local interactions are mainly
introduced to model local steric constraints and the non-
local consists of three types of terms introduced to model
pairwise interactions, hydrophobic, surface and related
effects (hp) and hydrogen bonding (hb): Enon—local =
Enp + By

The local energy contains two types of terms
Blocal = 23 ;(1 + cos3¢;) + > ,(1 + cos3¢y) +
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are over the individual amino acids. The first two terms —
which are probably not so important — introduce a three
fold symmetry and has two parameters independent of
the side chains. The last term is mainly introduced to
model steric constraints, and the sum over X, Y runs over
a restricted set of pairs of local atoms in amino acid i,
i+ 1 and ¢ + 2 (with terms set to zero when ¢ + 1 or
1 + 2 are larger than the length of the protein). The
following atom pairs are included: H(i)R(i), R(i)O(7),
H)H(i+1), O()H(i + 2) and O(:)O(i + 1). Only the
first two pairs depend on the amino acid side chain, so
this introduces a total of 2*(20+20+24-24-2)=92 param-
eters.

. The sums on i

Hydrogen bonding is only considered for back-
bone NH and C’'O pairs. The hydrogen bond en-
ergy contains both angle dependence and a 12-10
Lennard-Jones potential with two adjustable parameters

12 10
Ehb = €hp Z” uij {5 (:};g) — 6 (:If}l’o) }, Where uij =
ij ij
cos? ONHO cos? 9110 for m/2 < GNHO 9HOC" < 37/2

and zero otherwise, rg O is the distance between H (i)

and O(j), Hf}]HO is the N(i)H(i)O(j) angle and 9500/
the H(#)O(j)C'(j) angle.

The hydrophobic interaction Ey,;, consists of two types
of terms. The first one is a pure radial 12-6 Lennard
Jones potential that should take into account all non-
local, hydrophobic and other forces between the ith
amino acid a; and the jth a;. Both C,C, and RR
interactions are included. The C,C, interaction, i.e.

o 12 o 6
Zi>j €*(ai,a;) {(%{”)) -2 (%ozaj)) }, where 7,
is the Cy (1)Cq(j) distance, is mainly introduced to model
steric constraints. The second type of term, which plays a

minor role, is a surface energy term inspired by Refs. [1§]
SSurf0_ R
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f(z) = 0.5(1 + tanh(z)) € [0,1] is a sigmoid non-
linearity. The surface energy term is chosen such that
et = ewf(q,) is the energy change induced by taking
side chain a; from being completely exposed to solvent
to being completely buried. The inner sum counts the
number of neighboring amino-acids and the adjustable
parameters s;, b;, afurf’o, o' set the relevant scale and
bias for burial of each amino acid. The total number
of adjustable parameters for the hydrophobic energy is
2*2*(20*19/24-20)=840 for Lennard Jones and 5%20=100
for surface.

The temperature scale is arbitrary since the Boltzmann
weight only depends upon the product SE and the scale
of F is set during training. In the test below we choose
the folding ’'temperature’ 1/8¢1q = 0.1 for all training
examples and set the initial parameter values to be on
the same scale. The initial values are chosen such that
all amino-acids have the same parameter values, except
for different surface energy terms (¢5"(aa;)).

To get the learning algorithm eq. (2) to work properly
we need reliable estimates of thermodynamic averages.
To achieve this we use parallel tempering [19], where the
system is simulated independently at a number Niemp of
different temperatures. In this study Niemp = 15 rang-
ing from Tiin = 0.1 to Thax = 0.8 with equal spac-
ing on a log-scale. Once every cycle, where a cycle
consists of Ncons elementary conformation updates, the
temperature of two random systems (adjacent in tem-
perature) are exchanged with the Metropolis probabil-
ity P(accept) = min(1,exp(ABAE)) where AE and AfS
are the energy and inverse temperature difference be-
tween the two systems respectively. In our case we use
Necont = 40 of which one quarter are pivot moves (rotation
around a random torsional angle) and the rest are 'local’
moves which is defined as choosing two torsional angles
next to the same peptide bond (i.e. ¥; and ¢;4+1) and ro-
tate them opposite angles. We collect statistics for 104
cycles between each update of the adjustable parameters.
We choose the folding temperature to be the minimum
temperature Tt,1q = Tmin and thus only use the statistics
for this temperature to update the parameters. To en-
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sure sampling of the native conformations, a number of
the Niemp systems are initialized in the native state. The
remaining systems are initialized in different low energy
states found in the previous update to ensure fast focus
on relevant regions of conformation space. Subsequent
long runs starting from coil confirm that this procedure
is sufficiently close to generate equilibrated samples. As
an alternative to the batch update rule eq. (2), one can
use an online version where the parameters are updated
using a single training example at a time. In this study,
we use an intermediate approach, where we update the
parameters using three batches each with one third of the
example. The results presented below are obtained using
approximately 500 parameter updates. The training set
consists of a small set of 24 protein fragments (or pep-
tides) of length 11-14 of mainly a-helices and 3-turns[22].
They have been suggested to adopt their native structure
even as fragments [21]. Running the training on 8 pro-
cessors on a Silicon Graphics Origin 3000 computer, 500
parameter updates take approximately 2 CPU weeks.

We tested the final potential by initializing the 24
training sequences in random coil. After an initial equi-
libration, conformations were saved with fixed intervals
at the folding temperature Ti,q = 0.1 in a long test run.
These sampled conformations are called decoys below.
Some results from the test run are shown in Figure 1.
The decoys are clustered by introducing a RMSD cut-
off of 0.5 A and assigning as the first cluster center the
decoy with the most neighbors within the cut-off. The
clustering is not very sensitive to the specific choice of
the cut-off. We remove these decoys and repeat the pro-
cedure until all decoys have been assigned to a cluster.
The number of decoys in the cluster is directly related
to the free energy F'(clus ¢) = —T ln P(clus i), where the
probability P(clus ¢) of cluster 4 is the number of decoys
in cluster 7 divided by the total number of decoys. The
decoy plots reveal a complex free energy landscape with
competing minima. In a few cases free energy minima
both with small and large RMSD to the native fold ex-
ist simultaneously. In the subsequent analysis the cluster
center of the cluster with the lowest free energy was cho-
sen as the predicted fold.

The performance on the training set is summarized in
Figure 2. The trained potential is compared to the ini-
tial essentially homo-polymer potential and the results
of folding with an all-atom potential from [20]. A clear
improvement over the initial potential is seen, indicating
that the training process actually works. The results are
also comparable to the all-atom potential, which shows
that our approach is comparable to an all-atom poten-
tial that requires many human expert man hours to de-
rive. Probing the significance of the folding tempera-
ture by performing the test run at a lower temperature
T = 0.025 < Tto1q shows that the overall performance—
in terms of RMSD for the largest cluster—is significantly
worse.
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FIG. 1: Color online. Decoy plots — energy versus RMSD (A)
Cluster RMSD cut-off is 0.5 A. Cluster centers are marked
with a circle. Blue codes for the largest cluster.

FIG. 2: The RMSD histogram for the minimum free energy
conformations for the 24 peptides after training (black), the
results for an all-atom potential [20] (hatched) and prior to
training (gray).

To get an understanding of the successes and failures
of the potential we have visualized low energy structures
(see fig. 3) and made Ramachandran plots for the amino
acids. The successful predictions are very native-like
making the same hydrogen bonds as the native struc-
ture. However, some of the side chains are very close
together. Although a side chain should be regarded as
‘effective’ with degrees of freedom averaged out and not
as an atom, the small distance means that the character-
istic separation in the Lennard Jones potential is small
and will be sensitive to small changes in the distance
between the side chains. The structure for some of the
failures are not 'protein-like’ and some of the amino acids
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FIG. 3: Color online. Representative decoys from the lowest
free energy cluster for four peptides from top left to right
(ID, RMSD from native, native structure type): 5CYT 88-
101, 1.04A, a-helix; 2MHR 67-78, 4.74A, a-helix; 211B 69-82,
4.4A, B-turn and 211B 103-112, 1.63A, S-turn .

211B(69-82)

are not reproducing the Ramachandran behavior found
for real proteins.

These findings show that the principle works, however,
it is clear that the potential function model can be im-
proved in many ways. One of the great advantages of the
method is that many terms can be added and if they do
not work well their weight would end up being very low.
However, it should be kept in mind that the better the
starting point, the more likely it is to reach a reasonable
parameter set. The test suggests that the representation
of side chains in the potential with just one pseudo-atom
and a fixed angle is too crude. One remedy is to make
the side chain model more realistic, e.g. by introducing
an explicit Cz atom. This would probably make the Ra-
machandran behavior ’protein-like’ and remove some of
the false minima the model is currently struggling with.
It is also possible to go in the opposite direction and use a
more restricted conformational search space, e.g. by only
sampling experimentally observed Ramachandran angles
or using an I-Sites library to generate conformations [18].
The two different views are complementary and the re-
sults of the CASP exercise has shown that it is important
to pursue both to generate good ab initio predictions [18§].

The ultimate goal of optimizing potentials is to obtain

reasonable predictions for sequences not in the training
set (generalization). Preliminary runs on such test se-
quences show poor generalization, which is primarily a
result of the small training set. It is therefore important
to now scale up to a more realistic size using more and
longer sequences. We are currently working on ways to
speed up the whole process to achieve this goal.

More details about parameter settings, data sets and
results can be found at www.imm.dtu.dk/~owi/.
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