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Preface

This thesis was prepared at the IMSOR Image group of the Institute of Mathe-
matical Modelling (formerly the Institute of Mathematical Statistics and Oper-
ations Research), Technical University of Denmark in partial fulfillment of the
requirements for acquiring the Ph.D. degree in engineering.

The thesis describes different methods that are useful in the analysis of multi-
variate data. Some of the methods focus on spatial data (sampled regularly or
irregularly), others focus on multitemporal data or data from multiple sources.
The latter methods can be used for change detection studies in multivariate, mul-
titemporal data also. The thesis does not intend to cover all aspects of relevant
data analysis techniques in this context. The methods presented have proven
useful in several research programs, primarily in the fields of geologic mapping
and mineral exploration. I see no reason why application of these methods
should not be equally successful in any other field of application where studies
are based on the analysis of collected data. Potential application areas besides
geologic mapping and mineral exploration include monitoring and surveillance
in environmental studies, oceanography, agriculture, forestry, geobotany etc.

Behind many data analysis concepts there is a simple idea. Sometimes this idea
is dressed up or it disappears in long, intricate descriptions. This hasnot been
my intended approach. I hope I have succeeded in giving straight forward and
reasonably concise descriptions of traditional as well as new concepts. I also
hope that the new techniques presented here will stand the test of time, the only
real judge of true essence.

v
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The thesis is fairly application oriented. This tendency might have been even
stronger had the work been carried out in day-to-day contact with experts in
the relevant fields of application be it geology, mineral exploration or other
(earth) sciences. I am convinced that a narrow cooperation between experienced
application experts and data analysts isthe key to success in studies where the
analysis of collected data is important.

Reading this thesis requires a basic knowledge of linear algebra and multivariate
statistics.

Lyngby, October 1994

Allan Aasbjerg Nielsen

Driven by the wish to make this book available on the Internet an unusal 2nd
edition of my thesis has been prepared. In the 2nd edition all photographic illu-
strations and a few sketches have been replaced by PostScript files, and other
linear stretches of imagery in Chapter 3 have been applied. Also, a few minor
misprintings have been corrected.

Lyngby, November 1995
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Summary

This thesis describes different methods that are useful in the analysis of multi-
variate data. Some methods focus on spatial data (sampled regularly or irreg-
ularly), others focus on multitemporal data or data from multiple sources. The
thesis covers selected and not all aspects of relevant data analysis techniques in
this context.

Geostatistics is described in Chapter 1. Tools as the semivariogram, the cross-
semivariogram and different types of kriging are described. As an independent
re-invention 2-D sample semivariograms, cross-semivariograms and cova func-
tions, and modelling of 2-D sample semi-variograms are described. As a new
way of setting up a well-balanced kriging support the Delaunay triangulation
is suggested. Two case studies show the usefulness of 2-D semivariograms of
geochemical data from areas in central Spain (with a geologist’s comment) and
South Greenland, and kriging/cokriging of an undersampled variable in South
Greenland, respectively.

Chapters 2 and 3 deal with various orthogonal transformations. Chapter 2 de-
scribes principal components (PC) analysis and two related spatial extensions,
namely minimum/maximum autocorrelation factors (MAF) and maximum noise
fractions (MNF) analysis. Whereas PCs maximize the variance represented by
each component, MAFs maximize the spatial autocorrelation represented by each
component, and MNFs maximize a measure of signal-to-noise ratio represented
by each component. In the literature MAF/MNF analysis is described for regu-
larly gridded data only. Here, the concepts are extended to irregularly sampled
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data via the Delaunay triangulation. As a link to the methods described in Chap-
ter 1 a new type of kriging based on MAF/MNFs for irregularly spaced data
is suggested. Also, a new way of removing periodic, salt-and-pepper and other
types of noise based on Fourier filtering of MAF/MNFs is suggested. One case
study successfully shows the effect of the MNF Fourier restoration. Another
case shows the superiority of the MAF/MNF analysis over ordinary non-spatial
factor analysis of geochemical data in South Greenland (with a geologist’s com-
ment). Also, two examples of MAF kriging are given.

In Chapter 3 the two-set case is extended to multiset canonical correlations
analysis (MUSECC). Two new applications to change detection studies are de-
scribed: one is a new orthogonal transformation, multivariate alteration detection
(MAD), based on two-set canonical correlations analysis; the other deals with
transformations of minimum similarity canonical variates from a multiset ana-
lysis. The analysis of correlations between variables where observations are
considered as repetitions is termed R-mode analysis. In Q-mode analysis of
correlations between observations, variables are considered as repetitions. Three
case studies show the strength of the methods; one uses SPOT High Resolution
Visible (HRV) multispectral (XS) data covering economically important pineap-
ple and coffee plantations near Thika, Kiambu District, Kenya, the other two
use Landsat Thematic Mapper (TM) data covering forested areas north of Umea˚
in northern Sweden. Here Q-mode performs better than R-mode analysis. The
last case shows that because of the smart extension to univariate differences ob-
tained by MAD analysis, all MAD components—also the high order MADs that
contain information on maximum similarity as opposed to minimum similarity
(i.e. change) contained in the low order MADs—are important in interpreting
multivariate changes. This conclusion is supported by a (not shown) case study
with simulated changes. Also the use of MAFs of MADs is successful. The
absolute values of MADs and MAFs of MADs localize areas where big changes
occur. Use of MAFs of high order multiset Q-mode canonical variates seems
successful. Due to lack of ground truth data it is very hard to determine empir-
ically which of the five multiset methods described is best (if any). Because of
their strong ability to isolate noise both the MAD and the MUSECC techniques
can be used iteratively to remove this noise.

Allan Aasbjerg Nielsen



Resumé

Denne afhandling beskriver forskellige nyttige multivariate dataanalysemetoder.
Nogle metoder fokuserer pa˚ spatielle data (regulært eller irregulært indsamlede),
andre fokuserer pa˚ multitemporale data eller data fra flere kilder. Afhandlingen
omhandler udvalgte og ikke alle aspekter af relevante dataanalyseteknikker i
denne sammenhæng.

Kapitel 1 omhandler geostatistik. Værktøjer som semivariogrammet, kryds-
semivariogrammet og forskellige former for kriging er beskrevet. Som en
uafhængig genopfindelse er 2-D eksperimentelle semivariogrammer, kryds-semi-
variogrammer og cova funktioner samt modellering af 2-D eksperimentelle
semivariogrammer beskrevet. Som en ny ma˚de, hvorpa˚ man kan udvælge vel-
balancerede kriging naboskaber foresla˚s anvendelse af Delaunay triangulering.
To eksempler viser nytten af 2-D semivariogrammer af geokemiske variable
fra det centrale Spanien (med geologkommentar) og Sydgrønland hhv. krig-
ing/cokriging af en undersamplet variabel i Sydgrønland.

Kapitel 2 og 3 omhandler forskellige ortogonale transformationer. Kapitel 2
beskriver principal komponent (PC) analyse og to beslægtede spatielle ud-
videlser, nemlig minimum/maksimum autokorrelationsfaktor- (MAF) og mak-
simum støjfraktionsanalyse (MNF). Hvor PCer maksimerer variansen i hver
komponent, maksimerer MAFer den spatielle autokorrelation i hver komponent,
og MNFer maksimerer et ma˚l for signal-støj forholdet i hver komponent. I litte-
raturen er MAF/MNF analyse kun beskrevet for data indsamlet pa˚ et regulært net.
Her er begreberne via Delaunay trianguleringen udvidet til irregulært indsamlede
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data ogsa˚. I sammenhæng med de i kapitel 1 beskrevne metoder foresla˚s en ny
type kriging baseret pa˚ MAF/MNFer for irregulært indsamlede data. Yderligere
foreslås en ny metode baseret pa˚ Fourier filtrering af MAF/MNFer til fjernelse
af periodisk støj, salt-og-peber støj og andre former for støj. E´ t eksempel viser
med sukces effekten af MNF Fourier restaureringen. Et andet eksempel viser, at
MAF/MNF analyse er almindelig ikke-spatiel faktoranalyse af geokemiske data
i Sydgrønland overlegen (med geologkommentar). Desuden gives to eksempler
på MAF kriging.

I kapitel 3 udvides to-sæt tilfældet til multisæt kanonisk korrelationsanalyse
(MUSECC). To ny anvendelser til forandringsdetektion beskrives: en er en ny
ortogonal transformation, multivariat forandringsdetektion (MAD), baseret pa˚
to-sæt kanonisk korrelationsanalyse; en anden omhandler transformationer af
minimum similaritets kanoniske variable fra multisætanalyse. Analyse af korre-
lationer mellem variable, hvor observationer betragtes som gentagelser, kaldes
R-modus analyse. I Q-modus analyse af korrelationer mellem observationer
betragtes variable som gentagelser. Tre eksempler viser metodernes styrke;
ét anvender SPOT High Resolution Visible (HRV) multispektrale (XS) data,
som dækker økonomisk vigtige ananas- og kaffeplantager nær Thika, Kiambu
District, Kenya, to andre anvender Landsat Thematic Mapper (TM) data fra
skovdækkede omra˚der nord for Umea˚ i det nordlige Sverige. Q-modus ana-
lyse giver her bedre resultater end R-modus. Det sidste eksempel viser, at pa˚
grund af den smarte udvidelse af univariate differenser, der opna˚s med MAD
analyse, er alle MAD komponenter – ogsa˚ højere ordens MADer, som i modsæt-
ning til minimum similaritetsinformationen (altsa˚ forandring) i lavordens MADer
indeholder maksimum similaritetsinformation – vigtige for en tolkning af mul-
tivariate forandringer. Denne konklusion støttes af et (ikke vist) eksempel med
simulerede forandringer. MAFer af MADer kan ogsa˚ bruges med sukces. Den
numeriske værdi af MADer og MAFer af MADer lokaliserer omra˚der, hvor store
forandringer forekommer. Brug af MAFer af højordens multisæt kanoniske vari-
able ser lovende ud. Grundet manglendeground truthinformation er det meget
vanskeligt at bestemme empirisk, hvilken (om nogen) af de fem beskrevne multi-
sætanalyse metoder er bedst. Pa˚ grund af ba˚de MAD og MUSECC teknikkernes
evne til at isolere støj, kan begge anvendes iterativt til fjernelse af denne støj.
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Chapter 1

Geostatistics

The basis of geostatistics is the idea of considering the observed values of a
geochemical, a geophysical or another natural variable at a given set of positions
as a realization of a stochastic process in space. For each positionx in a domain

D there exists a measurable quantityz(x), a so-calledregionalized variable. D

is typically a subset ofR2 or ofR3. z(x) is considered a particular outcome or
realization of arandom variable Z(x). The set of random variablesfZ(x) jx 2

Dg constitutes arandom function. Z(x) has mean value EfZ(x)g = �(x)
and covariance CovfZ(x); Z(x + h)g = C(x;h). If �(x) is constant overD,
i.e. �(x) = �, Z is said to be first order stationary. IfC(x;h) is constant
over D also, i.e.C(x;h) = C(h), Z is said to be second order stationary.
OftenZ(x) is assumed to follow a normal or a lognormal distribution. If more
variables are studied simultaneously, the cross-covariance functionsCij(x;h) =
CovfZi(x); Zj(x+ h)g apply also. This statistical view on natural phenomena
was inspired by work of Georges Matheron in 1962–1963 and is described in
great detail in David (1977) and in Journel & Huijbregts (1978). An introductory
textbook is Clark (1979). David (1988) looks back on ten years of application of
geostatistics. Journel (1989) is a good concise survey of many important topics
in geostatistics. Isaaks & Srivastava (1989) give an excellent practically and
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data analytically oriented introduction to geostatistics. Cressie (1991) gathers a
decade of development in statistics for spatial data. The official journal of the
International Association for Mathematical Geology “Mathematical Geology”
(Ehrlich, ed.) isthe vehicle for publishing of research and applications in the
field of geostatistics.

The application of a stochastic approach to spatial phenomena in e.g. geology and
mining is sometimes questioned. The phenomenum under study is considered
unique and a statistical approach where one considers that unique phenomenum
as a realization or an outcome of an underlying random function seems awk-
ward to some. However, thinking in terms of a data-analytical line of attack, the
samples and the variables available represent one realization. The data material
could be discarded and another set of samples could be collected and maybe
analyzed (e.g. chemically) in a different fashion. This would then constitute
another realization. Even if we just repeat the sampling process and have sam-
ples analyzed by the same laboratory using the same chemical techniques there
would be a natural variation. Also, in terms of the concept of random functions,
one can easily conceive of other areas that are statistically similar to the study
region (e.g. sub-areas within the study region or geographically distant areas
with similar geology). This can also be thought of as another realization of the
same random function.

Point measurements of geochemical, geophysical or other natural variables or
measurements taken over areas or volumes, also known assupports, are in
principle continuous phenomena in space. If “dense” sampling is performed the
continuous nature of the variable in question will be reflected in the covariation
of neighboring samples. If taken further apart from each other there will be
little or no covariation between samples. Whether samples are “dense” depends
on the variable in question and sample sizes. Also, the autocorrelation revealed
will depend on the scale at which one is operating. Different autocorrelation
structures can be present simultaneously at different scales (mineralizations at
the size of a few meters vs. regional variations at the size of several kilometers);
this is referred to asnested structures.
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The classical application of geostatistics is the calculation of ore reserves. An-
other application is the description of the spatial distribution and the interpolation
of natural variables, e.g. geochemical elements, over large areas (in the order of
several kilometers by several kilometers). In general, geostatistical methods are
useful whenever spatial phenomena can be considered as being of probabilistic
nature.

The term “geostatistics” refers to many different techniques where (spatial) sta-
tistical methods are applied in (earth) science(s). It also refers to topics not
mentioned in the following sections (e.g. simulation techniques, relative semi-
variograms, intrinsic random functions, and non-linear estimation techniques
such as disjunctive kriging).

In the following sections I describe the semivariogram, the crossvariogram in-
cluding 1- and 2-D sample versions, regularization and several forms of kriging.
Also, the choice of kriging support is described. The use of the Delaunay tri-
angulation in this context is believed to be new.

1.1 The Semivariogram

Consider two scalar valuesz(x) andz(x + h) measured at two points in space

x and x + h separated byh. z is considered a particular realization of a
random variableZ. The variability is described by theautocovariancefunction
(assuming or imposing first order stationarity)

C(x;h) = Ef[Z(x)� �][Z(x +h)� �]g: (1.1)

The variogram is defined as

2
(x;h) = Ef[Z(x)� Z(x +h)]2g: (1.2)

IMSOR Image Group
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In general the variogram will depend on the location in spacex and on the
displacement vectorh. Note, that the variogram represents a more general
concept than that of the covariance function since the increment processZ(x)�

Z(x + h) may have desired properties which the basic processZ(x) does not
possess. Theintrinsic hypothesis in geostatistics states that the variogram is
independent of the location in space and that it depends on the displacement
vector only, i.e.

2
(x;h) = 2
(h): (1.3)

Second order stationarity ofZ(x) implies the intrinsic hypothesis (but not the
other way around).

Assuming or imposing second order stationarity the autocovariance function and
the semivariogram, 
, are related by


(h) = C(0)� C(h): (1.4)

Note thatC(0) = �2, the variance of the random function.

An estimator for the semivariogram is the mean of the squared differences
between any two measurementsz(xk) andz(xk +h)

ˆ
(h) =
1

2N (h)

N (h)X
k=1

[z(xk)� z(xk +h)]2; (1.5)

whereN (h) is the number of point-pairs separated byh. ˆ
 is called theexper-
imental or sample semivariogram. Similarly we get for theexperimental or
sample autocovariance
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1.1 The Semivariogram 5

ˆC(h) =
1

N (h)

N (h)X
k=1

[z(x)� ¯z][z(x +h)� ¯z]; (1.6)

where ¯z is the estimated mean value ofZ. Averaging over intervals of both
magnitude and argument ofh of ˆC or ˆ
 is often performed. Averaging over
intervals of the magnitude ofh – i.e. creating distance or lag classes – is done
to obtain a sufficiently highN (h) to ensure a small estimation variance (the
estimation variance is proportional to 1=N (h)). Averaging over intervals of the
argument ofh – i.e. creating angular classes – is done to check for anisotropy.

1.1.1 1-D Semivariogram models

In order to be able to define characteristic quantities for the semivariogram
(and in order to apply the semivariogram in kriging, see below) a model is
often assumed. An often used semivariogram model is the spherical model with
nugget effect. A reason for this is the easy interpretability of the parameters.
Assuming isotropy and settingjhj = h the form of this model is


�(h) =

8><
>:

0 if h = 0

C0 +C1

h

3
2

h
R

� 1
2

�
h

R
�3

i

if 0 < h < R

C0 +C1 if h � R ;

(1.7)

whereC0 is thenugget effectandR is therange of influence. C0=(C0 +C1) is
the relative nugget effect andC0 +C1 is thesill (= �2). The nugget effect is a
discontinuity in the autocorrelation function ath = 0 due to both measurement
errors and to micro-variability the structure of which is not available at the scale
of study. This variability thus turns up as noise. The range of influence is the
distance at which covariation between measurements stops; measurements taken
further apart are uncorrelated. The spherical semivariogram model with nugget
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effect can easily be extended to e.g. a double spherical model with nugget effect
to allow for nested structures


�(h) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0 if h = 0

C0 +C1

�

3
2

h
R1

� 1
2

�
h

R1

�3

�

+C2

�

3
2

h
R2

� 1
2

�
h

R2

�3

�

if 0 < h < R1

C0 +C1 +C2

�

3
2

h
R2

� 1
2

�
h

R2

�3

�

if R1 � h < R2

C0 +C1 +C2 if h � R2 ;

(1.8)

whereC0 is the nugget effect andR2 is the range of influence.C0=(C0+C1+C2)
is the relative nugget effect andC0 +C1 + C2 is the sill. Other models for the
semivariogram such as linear, bi-linear and exponential models are often used
also.

The parameters in the above semivariogram models
� can be estimated from the
experimental semivariograms ˆ
 by means of iterative, non-linear least squares
methods. Different weights of the estimated values in the experimental semi-
variogram ˆ
 may be considered. A weighting with the number of point pairs
included in the estimation for each lag distance seems natural. Also, if one is
interested in a good model for small lags a weighting with inverse lag distance
(or similar) seems appropriate.

It might be possible to estimate the above models directly from the data also.

There is an extensive literature on the problems one encounters when estimating
experimental semivariograms on real world data, cf. e.g. Journel & Froidevaux
(1982), Cressie (1985, 1991).
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1.2 The Crossvariogram 7

1.2 The Crossvariogram

What is said above about autocovariance functions and variograms is readily
extended to cross-covariance functions and cross-variograms if more variables
are studied simultaneously.

Consider two scalar valueszi(x) andzj(x+h) measured at two points in space

x andx + h separated byh. zi and zj are considered particular realizations
of random variables. The covariability is described by thecross-covariance
function (again assuming or imposing first order stationarity)

Cij(x;h) = Ef[Zi(x)� �i][Zj(x +h)� �j ]g: (1.9)

The cross-variogram is defined as

2
ij(x;h) = Ef[Zi(x)� Zi(x +h)][Zj (x)� Zj(x +h)]g: (1.10)

It is readily seen that
ij(x;h) = 
ji(x;h). Furthermore we have

2
ij(x;h) = Cij(x;0) +Cij(x +h;0)� [Cij(x;h) +Cji(x;h)]: (1.11)

Similarly to the case of the variogram, we assume (or impose) the intrinsic
hypothesis

2
ij(x;h) = 2
ij (h): (1.12)

Assuming or imposing second order stationarity we get

IMSOR Image Group
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Cij(h) = Cji(�h); (1.13)

2
ij(h) = 2
ij(�h); (1.14)

2
ij(h) = 2Cij(0)� [Cij(h) +Cji(h)]: (1.15)

In generalCij(h) 6= Cij(�h), i.e. the cross-covariance is not symmetric inh,
whereas the cross-variogram is symmetric inh.

If 
+

ij (h) denotes the semivariogram forZi(x) +Zj(x), 
i(h) and
j (h) denote
the semivariograms forZi(x) andZj(x) respectively, then


+

ij (h) = 
i(h) + 
j(h) + 2
ij(h): (1.16)

Hence we see that the crossvariogram
ij (h) can be modelled by sums of the
same models that were mentioned for the semivariogram
(h).

An estimator for the crossvariogram is

ˆ
ij (h) =
1

2N (h)

N (h)X
k=1

[zi(xk)� zi(xk +h)][zj(xk)� zj(xk +h)]; (1.17)

whereN (h) is the number of point-pairs separated byh. ˆ
ij is called theex-
perimental or sample crossvariogram. Similarly we get for theexperimental
or sample crosscovariance

ˆCij(h) =
1

N (h)

N (h)X
k=1

[zi(xk)� ¯zi][zj (xk +h)� ¯zj ]; (1.18)
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1.3 The Sample 2-D Crossvariogram 9

where ¯zi is the estimated mean value ofZi.

In practical applications, averaging over intervals of both distance and direction
of h is often applied in 1-D representations ofˆCij or ˆ
ij . This 1-D representation
is often shown for each direction class at a time plottingˆCij or ˆ
ij as a function
of distance classes. To reflect this averaging,�k = f ˆCijg; k = 1;…; n, where

n is the number of 1-D distance and direction classes, can be calculated.

When averaging is performed over sufficiently large areas, the variableszi and

zj need not be sampled in exactly the same locations to estimateˆCij . In case
of such non-corresponding spacing,ˆCij is referred to as acova function, cf.
Herzfeld (1990).

Another estimator for the crossvariogram is

ˆ
ij(h) =
1
2

[ ˆ
+

ij(h) � ˆ
i(h) � ˆ
j (h)]: (1.19)

After separate modelling of ˆ
i, ˆ
j and ˆ
+

ij it is necessary to verify that this
equation holds for the models also.

1.3 The Sample 2-D Crossvariogram

If averaging over the Cartesian coordinates ofh, hx andhy, rather than aver-
aging over the polar coordinates ofh is considered, 2-D representations ofˆCij

or ˆ
ij can be estimated as ordinary image data with pixel sizehx × hy. In
Figure 1.1 this 2-D crossvariogram concept is sketched. For each point in the
data set we consider all points with relative position inside each square, e.g.
the solid one. For all such point pairs we calculateˆCij or ˆ
ij and place the
estimate as a pixel value in the pixel situated as indicated by the solid square.
If i = j the resulting image is the experimental 2-D semivariogram. This 2-D
notion of the crossvariogram, which is also described in GAF, MAYASA, IM-
SOR, & DLR (1993), Conradsen, Nielsen, Windfeld, Ersbøll, Larsen, Hartelius,
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Figure 1.1: Sketch of 2-D semivariogram concept
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& Olsson (1993), Nielsen (1993), is very powerful in revealing the degree and
directions of anisotropy of the variables under study and also in its depiction of
range of influence and nugget effect. The circles in Figure 1.1 are the ordinary
1-D lag limits for averaging in the magnitude ofh.

1.3.1 2-D Semivariogram Models

In this section I introduce several anisotropy models, an elliptic cone model, sin-
gle and multiple elliptic spherical models, all with nugget effect. The multiple
spherical models allow for range and sill anisotropy and for nested or un-nested
spheres. All these models are intended for use with small lags and are not meant
to describe the long range spatial behavior of the phenomena under study. Sim-
ilar models are hinted in Isaaks & Srivastava (1989). The models presented
allow for neither nugget effect anisotropy, periodicity nor non-linear behavior
for jhj ! 0. The parameters in these models can be estimated by means of iter-
ative, non-linear least squares methods from the experimental semivariograms.
It might be possible to estimate them directly from the data also.

An Elliptic Cone Model

The linear model with nugget effect is one of the simplest 1-D semivariogram
models traditionally in use. A natural extension of this model into 2-D is a
cone. If we want the ability to detect range of influence anisotropy (also known
as geometric as opposed to zonal anisotropy) we must apply an elliptic cone. A
sketch of this model is shown in Figure 1.2.

The equation for the elliptic cone is

(

x1

a1
)2 + (

y1

b1
)2 � (


� � c0

c

)2 = 0 (1.20)

wherex1 andy1 are the Cartesian coordinates of the displacement vectorh in
a coordinate system with x- and y-axes parallel to the major and minor axes
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y1

c

x

y

c0

α1

γ∗

b1

x1

a1

Figure 1.2: Sketch of elliptic cone 2-D semivariogram model
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of the elliptic cone. To allow for anisotropy in any direction we introduce new
coordinates corresponding to a rotation through�1 relative to the coordinate
system in which the data are recorded,

x = x1 cos�1 � y1 sin�1 (1.21)

y = x1 sin�1 + y1 cos�1

x1 = x cos�1 + y sin�1 (1.22)

y1 = �x sin�1 + y cos�1:

For the semivariogram model we get


� =

�

0 if h = 0

c0 +

p

(x1

a

)2 + (y1

b

)2 if h > 0
(1.23)

with a = a1=c and b = b1=c. h =

p
x2 + y2 is of course the magnitude of the

displacement vector.c0 is the nugget effect. The range anisotropy ratio isa=b

and the range anisotropy direction is�1. If inspection of the experimental 2-
D semivariogram reveals different range anisotropies at different displacement
distances, this simple model can also be used for instance by omitting obser-
vations with high respectively lowh from the estimation. Alternatively a more
complicated model can be used.

If isotropy can be assumed we simply omit�1 from the model and seta = b.
Thus we get the well known 1-D linear model with nugget effect


�iso =

�

0 if h = 0

c0 + h
a

if h > 0:

(1.24)
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Elliptic Spherical Models

The above elliptic cone model can be extended into a single elliptic spherical
model that allows for ranges of influence and a sill


� =

8>>>>>><
>>>>>>:

0 if h = 0

c0 + c1

�

3
2

q

(x1

a1
)2 + (y1

b1
)2 � 1

2

�q

(x1

a1
)2 + (y1

b1
)2

�3

�

if 0 < (x1

a1
)2 + (y1

b1
)2 < 1

c0 + c1 if ( x1

a1
)2 + (y1

b1
)2 � 1 :

(1.25)

If isotropy can be assumed this model reduces to the well known 1-D single
spherical model with nugget effect.

The above single elliptic spherical model is readily extended into multiple elliptic
spherical models that take different anisotropy directions for the elliptic spheres
into account. This is done by introducing new coordinatesxi and yi rotated
through�i relative tox andy and establishing relations similar to the ones noted
for x1 and y1. These spheres may be nested (as in the 1-D double spherical
model) so that only one sphere is effective in a certain range or they may all
be effective simultaneously (or even combinations hereof). It is probably most
sensible to have nested spheres in the same direction only.

One way of allowing for sill anisotropy, if so wanted, is by letting (i > 0)

ci = ci0 + ci1 cos2(� � �i) (1.26)

= ci0 + ci1(

xi
h

)2

where� is the current angle for each pixel in the experimental 2-D semivar-
iogram and the sill anisotropy direction is�i. This forces the directions for
range and sill anisotropy to be equal. The sill anisotropy ratio is (ci0 + ci1)=ci0.
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ci0 + ci1 and ci0 are the sills reached in the direction of the major and minor
axes respectively.ci1 can of course be negative. If we have nested spheres in
some direction, only the sphere with the longest range should be modeled in
this fashion.

Modeling sill anisotropy in the above fashion causes the semivariogram models
to have “peanut-shaped” contours. Another way of performing this modeling is
to apply additive models where range and sill anisotropies are modeled in sepa-
rate additive terms. This type of modeling allows the sill anisotropy direction
to be independent of the range anisotropy direction.

Figure 1.3 shows examples of the models suggested in the equations in this
section, elliptic cone (top-left with paper in landscape mode), single elliptic
spherical (top-right), single elliptic spherical with sill anisotropy (bottom-left),
and un-nested double elliptic spherical with sill anisotropy for both spheres
(bottom-right). For practical estimation purposes some of these models may
contain too many parameters. The parameter estimation software for these 2-D
models presently needs some further attention.

1.4 Regularization

Another important concept in geostatistics isregularization, i.e. the averaging
of a random function over a domainD. Let x 2 D. The regularized valuēZD

of Z is

¯ZD =
1

jDj
Z

D

Z(x) dx; (1.27)

where jDj is the area (or volume) ofD. Similarly for the moment functions,
e.g.

¯
(A;B) =
1

jAjjBj
Z

A

Z
B


(x� y) dy dx: (1.28)
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Figure 1.3: Examples of 2-D elliptic cone/spherical semivariogram models
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Thus ¯
(A;B) is the regularized semivariogram when one end of the displacement
vectorh = x� y varies inA and the other end ofh varies inB. This integral
can be solved either analytically for certain semivariogram models and supports
of simple geometry or it can be solved numerically.

1.5 Ordinary Kriging

Suppose that the random variableZ(x) is sampled on a number of supports
(could be points)D1;…;DN giving scalar measurementsz(x1);…; z(xN ) con-
sidered as particular realizations ofZD1;…; ZDN

. We now want to estimate

ZD0 on a supportD0 whereZ is not sampled (orZ is sampled on a part ofD0

only). We are looking for a linear, unbiased estimator

ˆZD0 =

NX
i=1

wiZDi

(1.29)

EfZD0 � ˆZD0g = 0: (1.30)

If the mean is constant�(x) = � over the study area, the unbiasedness gives

NX
i=1

wi = 1: (1.31)

Without this non-bias constraint the estimation method is referred to assimple
kriging . The estimation variance (or the mean squared error) is (w0 = �1)

�2

E = Ef(ZD0 � ˆZD0)
2g (1.32)

= VarfZD0 � ˆZD0g

=

NX
i=0

NX
j=0

wiwjC(Di;Dj):
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The ordinary kriging (OK) estimate is defined by the values of the weights

wi that minimize the estimation variance�2

E subject to the above constraint
that the sum of the (ordinary kriging) weights is unity. These weights can be
found by introducing a Lagrangian multiplier and setting each of theN partial
derivatives@[�2

E � 2�(

PN
i=1wi � 1)]=@wi = 0 leading to the (N + 1) × (N + 1)

set of equations

NX
i=1

wiC(Dj ;Di)� � = C(Dj ;D0) ; j = 1;…; N (1.33)

NX
i=1

wi = 1: (1.34)

with the ordinary kriging variance (or the minimum mean squared error)

�2
OK = �

NX
i=1

wiC(Di;D0) + � +C(D0;D0): (1.35)

Of course this can be expressed in terms of the regularized semivariogram also

NX
i=1

wi
(Dj ;Di) + � = 
(Dj ;D0) ; j = 1;…; N (1.36)

NX
i=1

wi = 1: (1.37)

with the (ordinary) kriging variance
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�2
OK =

NX
i=1

wi
(Di;D0) + �� 
(D0;D0): (1.38)

Both kriging systems can be written in matrix form here expressed by means of
the autocovariance functions

Cw = D (1.39)

with

C =

2
6664
C(D1;D1) � � � C(D1;DN ) 1

...
. ..

...
...

C(DN ;D1) � � � C(DN ;DN ) 1
1 � � � 1 0

3
7775 (1.40)

and

wT = [w1;…; wN ;��] (1.41)

and

DT = [C(D1;D0);…; C(DN ;D0); 1]: (1.42)

The autocovariance formulation is sometimes preferred because of programming
efficiency (the largest elements in the symmetric covariance matrixfCijg are
on the diagonal; hence pivoting is not needed for the firstN equations when
solving the system).
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The solution to the kriging system expressed in matrix form by means of the
covariance function is

w = C�1D: (1.43)

Of course, inversion ofC is not needed to solve the system. A preferred way of
solving the kriging system is to factorizeC and solve the system by backward
substitution.

If the supportD0 can be considered as points the kriging performed is referred to
aspoint kriging , otherwise it is referred to asblock kriging or panel kriging.
If block kriging is performedD is replaced by regularized values described in
Section 1.4.

A few remarks on some very important properties of kriging:

• Kriging is an interpolation form that provides us with not only an estimate
based on the covariance structure of the variable in question but it also
provides us with an estimation variance.

• The kriging system has a unique solution if and only if the covariance
matrix fCijg, i; j = 1;…; N is positive definite; this also ensures a non-
negative kriging variance.

• The kriging estimator is a best linear unbiased estimator (BLUE) and it
is also exact, i.e. if the support to be estimated coincides with any of
the supports of the data included in the estimation, kriging provides an
estimator equal to the known measurement and a zero kriging variance.

• The kriging system and the kriging variance depend only on the covari-
ance function (semivariogram) and on the spatial lay-out of the sampled
supports and not on the actual data values. If a covariance function is
known (or assumed) this has important potential for minimizing the esti-
mation variance in experimental design (i.e. in the planning phase of the
spatial lay-out of the sampling scheme).
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• Through the covariance function (semivariogram)D performs a statistical
distance weighting of the data points in the support.C�1 rescales the
weights inD to add to one, and also – again through the covariance
function (semivariogram) –C�1 allows for possible redundancies in the
support, i.e. it attempts to compensate for any possible clustering of the
support points. The power of kriging is due to this combination.

1.6 Universal Kriging

In applications of ordinary kriging the problem of assuming stationarity arises.
Universal kriging (UK) is a technique that allows for some forms of non-
stationarity. The non-stationarity is modelled as a trend in the mean value
described as a linear combination of known functions or as local Taylor expan-
sions.

As in the case of ordinary kriging, suppose that the random variableZ(x) is
sampled on a number of supports (could be points)D1;…;DN giving scalar
measurementsz(x1);…; z(xN ) considered as particular realizations ofZD1;…

; ZDN

. We now want to estimateZD0 on a supportD0 whereZ is not sampled
(or Z is sampled on a part ofD0 only). Again, we are looking for a linear,
unbiased estimator

ˆZD0 =

NX
i=1

wiZDi

(1.44)

EfZD0 � ˆZD0g = 0: (1.45)

As stated the mean is not assumed constant over the study area. Consider a
trend in the mean of the form

�(x) =

LX
`=0

a`f`(x); (1.46)
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wheref` are known functions ofx and a` are unknown parameters to be es-
timated. By conventionf0 = 1: In R2 (such as horizontal space) low order
polynomials are often used forf`(x) = f`(x; y): E.g. in case of a quadratic trend
(L = 5) we get

�(x; y) = a0 + a1x + a2y + a3x

2 + a4y

2 + a5xy: (1.47)

In the case of the stated trend in the mean, the unbiasedness gives

NX
i=1

wif`(Di) = f`(D0) ; ` = 0;…; L; (1.48)

wheref` is the regularized value over the domain in question. The estimation
variance (or the mean squared error) is (w0 = �1)

�2

E = Ef(ZD0 � ˆZD0)
2g (1.49)

= VarfZD0 � ˆZD0g

=

NX
i=0

NX
j=0

wiwjC(Di;Dj):

The universal kriging estimate is defined by the values of the weightswi

that minimize the estimation variance�2

E subject to the constraint above on
the weighted sum of the (universal kriging) weights. These weights can be
found by introducingL Lagrangian multipliers and setting each of theN partial
derivatives@[�2

E � 2�`(

PN
i=1wif`(Di) � f`(D0))]=@wi = 0 leading to the (N +

L + 1) × (N + L + 1) set of equations

NX
i=1

wiC(Dj ;Di)�

LX
`=0

�`f`(Dj) = C(Dj ;D0) ; j = 1;…; N (1.50)
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NX
i=1

wif`(Di) = f`(D0) ; ` = 0;…; L (1.51)

with the universal kriging variance (or the minimum mean squared error)

�2
UK = �

NX
i=1

wiC(Di;D0) +

LX
`=0

�`f`(Dj) +C(D0;D0): (1.52)

Of course this can be expressed in terms of the regularized semivariogram also

NX
i=1

wi
(Dj ;Di) +

LX
`=0

�`f`(Dj) = 
(Dj ;D0) ; j = 1;…; N (1.53)

NX
i=1

wif`(Di) = f`(D0) ; ` = 0;…; L (1.54)

with the (universal) kriging variance

�2
UK =

NX
i=1

wi
(Di;D0) +

LX
`=0

�`f`(Dj)� 
(D0;D0): (1.55)

Both kriging systems can be written in matrix form here expressed by means of
the autocovariance functions

Cw = D (1.56)
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with

C =

2
6666666664
C(D1;D1) � � � C(D1;DN ) f0(D1) � � � fL(D1)

...
. . .

...
...

. . .
...

C(DN ;D1) � � � C(DN ;DN ) f0(DN ) � � � fL(DN )

f0(D1) � � � f0(DN ) 0 � � � 0
...

.. .
...

...
. . .

...

fL(D1) � � � fL(DN ) 0 � � � 0

3
7777777775

(1.57)

and

wT = [w1;…; wN ;��0;…;��L] (1.58)

and

DT = [C(D1;D0);…; C(DN ;D0); f0(D0);…; fL(D0)]: (1.59)

Although some of the symbols from the deduction of the OK system are reused
deducing the UK system, obviously the values they represent need not (and will
indeed not) be the same.

The comments given with the OK system also apply here. Also, it is clear from
the above that there is nothing universal about the universal kriging system of
equations. The equations allow for a pre-defined trend in the mean, nothing
more. Furthermore, we have what Armstrong (1984) calls a “chicken-and-
egg” problem: We need the autocovariance function (or the semivariogram) for
the UK system; if we try to estimate that we need the drift estimated from
the UK system! Setting up iterative schemes to solve this problem has been
reported to fail (Armstrong, 1984). The semivariogram of residuals gives a
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very biased estimate (an underestimate) of the true semivariogram, and it is
extremely difficult to determine either the order of the drift or the type of the
true semivariogram from the semivariogram of residuals. This problem limits
the practical applicability of universal kriging.

Journel & Rossi (1989) report that if kriging is used for interpolation and data
to be included in the kriging system is found in local windows (this is common
practice) ordinary and universal kriging yield the same estimates, using data
with a trend, for both the variable in question and its trend component. This
apparent paradox is understandable when remembering that any type of kriging
with data selected in local windows implies reestimating the mean at each new
location. Modelling the trend matters only when extrapolating. Journel & Rossi
(1989) thus recommend the simpler ordinary kriging scheme for this type of
analysis. This author has good experience with estimating a possible regional
trend before kriging and then adding this trend back again after.

1.7 Cokriging

A possible approach when interpolating multivariate observations iscokriging.
Here one takes the spatial covariation between different variables into account.
Algebraically, cokriging is not different from kriging. Suppose that themulti-
variate random variableZ(x) is sampled on a number of supports (could be
points)D1;…;DN giving scalar measurementszi(x1);…; zi(xN ); i = 1;…;m

wherem is the number of variables sampled. Thezis are considered as partic-
ular realizations ofZD1;…;ZDN

. We now want to estimateZD0 on a support

D0 whereZ is not sampled (orZ is sampled on a part ofD0 only). Again, we
are looking for a linear, unbiased estimator:

ˆZD0 =

NX
i=1

wiZDi

(1.60)
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where the cokriging weightswi are found be solving the following system of
linear equations

2
6664
C11 … C1N I

...
.. .

...
...

CN1 … CNN I

I … I 0
3

7775
2

6664
w1

...

wN
�

3
7775 =

2
6664
C10

...

CN0

I

3
7775 (1.61)

whereCij is the cross-covariance between support pointsi and j, Ci0 is the
cross-covariance between the interpolation point and support pointi, and� is
a Lagrange multiplier.Cij , wi and� arem × m matrices, wherem is the
dimensionality ofZ. I is the unit matrix and0 is the null matrix, both of order

m. If m = 1 the system is similar to the ordinary separate kriging system.

The estimation dispersion is

�2

CK =C00� ��

NX
i=1

wiCi0; (1.62)

whereC00 is the ordinary dispersion matrix ofZ. The diagonal elements of

�2

CK are thecokriging variances of the individual variables.

Isaaks & Srivastava (1989) report that using a single non-bias condition (all
weights, primary and secondary, sum to one) rather than the traditionally used

m conditions, where primary weights sum to one and secondary weights sum
to zero (as in Equation 1.61), gives better results because of the lack of inher-
ent negative weights on secondary variables. This cokriging estimator requires
additional information in the form of (sensible) estimates of the mean value of

Z.

In practice, the use of cokriging rather than individual kriging thus using more
computer resources seems valuable only if the primary variable is undersam-
pled compared to other variables with which the primary variable is spatially
correlated.
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1.8 Choice of Kriging Support 27

1.8 Choice of Kriging Support

The support set used to krige to a given point can be chosen in several fashions.
The traditional way is to choose all points within the range of influence no
matter the possible under-representation of certain directions. If this is not
feasible because of the number points involved, a search radius smaller than the
range of influence is often chosen. As a first step to avoid under-representation
of certain directions Conradsen, Ersbøll, Nielsen, Pedersen, Stern, & Windfeld
(1991) suggest to use the same number of support points from each quadrant
in a coordinate system with the kriging point as origin. An elaboration of this
technique is based on the Delaunay triangulation.

1.8.1 Delaunay Triangulation

The Delaunay triangulation partitions the plane into triangles, where the edges
constitute connections between neighboring points. No edges intersect. There
are many possible triangulations in a point-set, but the Lawson criterion (Ripley,
1981) states that the most open triangles, that is, the triangles with the smallest
angle as large as possible, should be chosen. The formal definition of the
triangulation comes from the definition of the dual state, the so-called Voronoi
tessellation.

Given a pointC in the point-setP. Points within the set having a Euclidean
distance toC smaller than to any other point inP constitute the Voronoi polygon
of C. Points equidistant from a pair of points, constitute the polygon boundaries.
Points equidistant from three or more points constitute vertices. The Voronoi
polygons ofP constitute a Voronoi tessellation. The polygons are convex.

The Delaunay triangulation may now be defined in the following way: Two
points are connected with an triangulation edge, if the Voronoi polygons of the
two points have an edge in common.

Figure 1.4 shows a Delaunay triangulation and the dual Voronoi tessellation of
the same point-set. Note that the triangulation edges form a convex hull spanned
by P, and that the points on the edge of the convex hull have open polygons.
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Figure 1.4: Voronoi tessellation (top), Delaunay triangulation (bottom)
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The Delaunay triangulation has the property that the lines drawn from a point
are fairly well distributed in all directions, regardless of the distance to the
neighbors. This property may be used to define a neighborhood hierarchy in
irregularly distributed point-sets. In regular grids, the first order neighborhood
of a point (i; j) consists of the points (i � 1; j); (i; j � 1); (i + 1; j); (i; j + 1),
and the second order neighborhood consists of the first order neighborhood and
the corners (i � 1; j � 1); (i + 1; j � 1); (i + 1; j + 1); (i � 1; j + 1). Increasing
the order is similar to including a set of points in the neighborhood which have
equal Euclidean distances to (i; j) and are well balanced around (i; j). In the
case of irregularly distributed points a similar neighborhood hierarchy may be
defined in the following way: all points connected directly to the center-point
are denoted first order neighbors, points which are connected through first order
neighbors are denoted second order neighbors etc.

When performing interpolation by e.g. kriging the application of the Delaunay
triangulation to set up the interpolation support introduces a problem of estab-
lishing the correct neighborhood for an new point not included in the original
triangulation. This problem is solved in Conradsen, Nielsen, Windfeld, Ersbøll,
Larsen, Hartelius, & Olsson (1993). This application of the Delaunay triangu-
lation in choosing the kriging support set is believed to be new.

1.9 Case Studies

An interesting case is a regional study with nearly 34,000 stream sediments
samples analyzed by ICP for the contents of 26 geochemical elements cover-
ing nearly 10,000 square kilometers given in Conradsen, Nielsen, & Windfeld
(1992). An example on application of geostatistical methods in indoor surface
sampling is Schneider, Petersen, Nielsen, & Windfeld (1990).

1.9.1 2-D Semivariograms

Figures 1.5 and 1.6 show 2-D semivariograms for 2,625 samples analyzed for
the contents of 16 geochemical elements in an area in central Spain (data from
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Figure 1.5: 2-D semivariograms for 16 geochemical elements in central Spain,
21×21 1 km pixels

Figure 1.6: 2-D semivariograms for 16 geochemical elements in central Spain,
81×81 250 m pixels
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Minas de Almade´n y Arrayanes, S. A.). This case is given in GAF, MAYASA,
IMSOR, & DLR (1993) also. In Figure 1.5 there are 21×21 1×1 km2 pixels
and in Figure 1.6 there are 81×81 250×250 m2 pixels. Therefore the degree
of detail revealed is different in the two images. The order is (row-wise from
top-left) Pb, Zn, Cd, Hg, Cu, Ba, Mn, Ni, Co, Cr, Sn, W, Mo, V, Sb and Ag.
Figures 1.7 and 1.8 show the same data as Figure 1.5 as contour plots and
as perspective plots, respectively. These 2-D semivariograms clearly indicate
anisotropies and differences herein. For example, for Mn we see a clear short
range anisotropy in the NNE-SSW direction and a long range anisotropy in the
NW-SE direction; for Ag we see a long range anisotropy in the E-W direction.
In the words of Chief Geologist Dr. Enrique Ortega, MAYASA: “This result
is very interesting because it indicates the spatial behaviour of each element as
characterized by its migration capability. The elements with the highest mobility
or with a uniform distribution over the entire test area, are logically represented
as isotropic. Contrary to this, the fixed and low mobility elements are clearly
anisotropic. The directions of anisotropy are closely related to the directions
of the geological features (mainly faults) revealing their presence, position and
orientation. This is valuable in future explorations campaigns because it provides
information on the orientation of the mineralized structures which could facilitate
location of drill holes. For these reasons MAYASA recommends continued
application of this technique, e.g. on soils geochemistry data.”

Figures 1.9 and 1.10 show 2-D semivariograms for 2,097 stream sediments
samples analyzed by INAA or EDX for the contents of 41 geochemical elements
from South Greenland (the Syduran Project, data from the Geological Survey
of Greenland, GGU). In Figure 1.9 there are 21×21 5×5 km2 pixels, and in
Figure 1.10 there are 31×31 2×2 km2 pixels. Again, the degree of detail revealed
is different in the two images. The order is (row-wise from top-left) Au, Ag,
As, Ba, Br, Ca, Co, Cr, Cs, Cu, Fe, Ga, Hf, K, Mn, Mo, Na, Ni, Pb, Rb, Sb,
Sc, Se, Sr, Nb, Ta, Th, Ti, U, W, Y, Zn, Zr, La, Ce, Nd, Sm, Eu, Tb, Yb
and Lu. Figures 1.11 and 1.12 show the same data as Figure 1.9 as contour
plots and as perspective plots, respectively. In this case there are no formal
comments from geologists but differences in anisotropy structure similar to those
of the above case from central Spain are seen. For example, according to Chief
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Figure 1.7: 2-D semivariograms for 16 geochemical elements in central Spain,
21×21 1 km pixels as contour plots
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Figure 1.8: 2-D semivariograms for 16 geochemical elements in central Spain,
21×21 1 km pixels as perspective plots
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Geologist John Pedersen, Nunaoil, the content of Br in the samples is a question
of distances to the sea only. We see that the 2-D semivariogram for Br depicts
this fact: high autocorrelation between samples is seen along the coast (cf.
Figures 1.15, 1.16, 1.17 or 2.7) where we have low values of the semivariogram.

It is expected that the value of this analysis is similar to that of the above case
from central Spain.

1.9.2 Kriging versus Cokriging

Another case is kriging and cokriging (with Ta and Eu) of Nb from the above
South Greenland study. All three variables are standardized to unit variance
here. This case is given in GAF, MAYASA, IMSOR, & DLR (1993) also.

The performances of the two interpolation methods are examined by “leave-
one-out” crossvalidation: all data points are estimated by leaving out the point
itself and the estimate is then compared with the true value. An undersampled
feature is simulated by replacing the data value with a missing value. After the
estimation, the mean of the kriging variances (estimated from the kriging system)
and the mean of the empirical variances (the mean of the squared differences
between the true and the estimated value) are calculated.

The semivariograms and cross-semivariograms are shown in Figure 1.13.

A number of datasets with varying levels of undersampling in Nb are simulated.
These datasets are interpolated by kriging and cokriging. The results expressed
as the estimation variances and the ratio of the empirical variances of separate
kriging and cokriging as functions of the degree of undersampling are shown
in Figure 1.14. The neighborhood used in the interpolations are the 12 nearest
neighbors.

When the level of undersampling is increased the estimation variance increases,
but the increments are greater in the case of separate kriging than cokriging
which shows that the cross-correlation between the features is indeed utilized.
In the case of 95% undersampling the increment of the empirical cokriging
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Figure 1.9: 2-D semivariograms for 41 geochemical elements in South Green-
land, 21×21 5 km pixels
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Figure 1.10: 2-D semivariograms for 41 geochemical elements in South Green-
land, 31×31 2 km pixels

Allan Aasbjerg Nielsen



1.9 Case Studies 37

Figure 1.11: 2-D semivariograms for 41 geochemical elements in South Green-
land, 21×21 5 km pixels as contour plots
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Figure 1.12: 2-D semivariograms for 41 geochemical elements in South Green-
land, 21×21 5 km pixels as perspective plots
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Figure 1.13: Cross-semivariograms for Nb, Ta and Eu

IMSOR Image Group

40 Chapter 1. Geostatistics

degree of undersampling

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

degree of undersampling

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

degree of undersampling

 

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
1

1.
2

1.
3

Figure 1.14: Estimation variances as functions of undersampling, left: cokriging,
center: separate kriging, right: ratio of empirical variances of separate kriging
and cokriging; square: kriging variance, cross: empirical variance

variance constitutes only 56% of the increment of the empirical separate kriging
variance.

Figure 1.14 also shows that the kriging variance is a reliable estimate of the
estimation variance.

Figures 1.15, 1.16 and 1.17 (north is to the left) show separately kriged Nb
(no undersampling), separately kriged Nb (90% undersampling), and cokriged
Nb (90% undersampling). The area shown is 321×211 km2. The krigings in
the undersampled cases were performed using all first, second, third and fourth
order Delaunay neighbors. It is seen that the structures in the no undersampling
case are best preserved by cokriging.

The results obtained have important practical implications for future mapping
and exploration projects, namely the possibility of saving an important per-
centage of sampling and analysis. This translates directly into mapping and
exploration cost savings.
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Figure 1.15: Separately kriged Nb, no undersampling
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Figure 1.16: Separately kriged Nb, 90% undersampling
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Figure 1.17: Cokriged Nb, 90% undersampling
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Chapter 2

Dimensionality Reduction

When one collects multivariate data in some field of application a redundancy
effect often arises because of covariation between variables. An interesting
issue in reduction of dimensionality of the data is the desire to obtain simplicity
for better understanding, visualizing and interpreting the data on the one hand,
and the desire to retain sufficient detail for adequate representation on the other
hand. E.g. a remote sensing device typically measures the emitted intensity at
a number of discrete wavelengths or wavelength intervals for each element in
a regular grid. This “repetition” of the measurement at different wavelengths
induces a high degree of redundancy in the dataset. This can be used for noise
reduction and data compression.

A traditional method used in this context is the celebrated principal components
transformation. This is a pixel-wise operation that does not take the spatial
nature of image data into account. Also, principal components will not always
produce components that show decreasing image quality with increasing com-
ponent number. It is perfectly imaginable that certain types of noise have higher
variance than certain types of signal components.

First I shall briefly consider the theory of principal components (see also Ander-
son (1984)), following this, two procedures for transformation of multivariate
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data given a spatial grid (images) with the purpose of isolating signal from noise
and data compression. These are the minimum/maximum autocorrelation fac-
tor transformation, which was first described by Switzer & Green (1984) and
the maximum noise fractions transformation which was described by Green,
Berman, Switzer, & Craig (1988). The methods are also described in Conrad-
sen, Nielsen, & Thyrsted (1985), Ersbøll (1989), Conradsen & Ersbøll (1991),
Conradsen, Nielsen, & Nielsen (1991a), Conradsen, Ersbøll, Nielsen, Pedersen,
Stern, & Windfeld (1991), Larsen (1991). Also, an application of MAF/MNFs
to remove periodic noise in hyper-channel airborne scanner data is described.
Finally, a new concept of MAF/MNFs of irregularly spaced data is suggested.
This also gives rise to a new form of kriging, namely maximum autocorrelation
factorial or maximum signal-to-noise factorial kriging.

Non-orthogonal techniques such as projection pursuit (Friedman & Tukey, 1974;
Windfeld, 1992) and non-linear techniques such as generalized principal com-
ponents (Gnanadesikan, 1977) and MAFs by the alternating conditional expec-
tations (ACE) algorithm (Breiman & Friedman, 1985; Windfeld, 1992) are not
considered here.

2.1 Principal Components

Based on a technique described by Pearson in 1901 Hotelling (1933) developed
principal components (PC) analysis. The principal components of a stochas-
tic multivariate variable is a linear transformation which produces uncorrelated
variables of decreasing variance.

The application of this transformation requires knowledge of or an estimate
of the dispersion matrix.The PCs maximize the variance represented by
each component.PC one is the linear combination of the original bands that
explains maximum variance in the original data. A higher order PC is the linear
combination of the original bands that explains maximum variance subject to the
constraint that it is uncorrelated with lower order PCs. PC analysis performs
a pixel-wise operation that does not take the spatial nature of an image into
account.
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Let us consider a multivariate data set ofm bands with grey levelsZi(x); i =
1;…;m; wherex denotes the coordinates of the sample, and the dispersion is
DfZ(x)g = �; whereZT = [Z1(x);…; Zm(x)]. We assume that EfZg = 0:

We are looking for linear combinations ofZ

X(x) = pTZ(x) (2.1)

with maximum variance

VarfX(x)g = pT�p: (2.2)

If p is a solution so iscp wherec is any scalar. We choosep so thatpTp = 1:

Let �1 � �2;� � � � � �m be the eigenvalues andp1;p2;…;pm corresponding
orthogonal eigenvectors of�. Then

Xi(x) = pTi Z(x); i = 1;…;m (2.3)

with variance�i is the i’th principal component.

We see that

X = P TZ with PP T = P TP = I: (2.4)

For the dispersion ofX we get

DfXg = P T�P = � with � =

2
6664
�1 0 � � � 0

0 �2 � � � 0
...

...
. . .

...
0 0 � � � �m

3
7775 : (2.5)
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This means that

� = P�T�P�1 = P�P T = (P�

1
2 )(P�

1
2 )T : (2.6)

If we seek thei variables describing as much as possible of the total variance
of the original variables the solution is the firsti principal components. The
fraction of the total variance described by these is given by

�1 + � � � + �i

�1 + � � � + �i + � � � + �m
: (2.7)

A drawback of principal components analysis is that its results depend on the unit
of measurement of the original variables. This problem can be circumvented
by considering the standardized variables instead, i.e. by performing the PC
transformation on the correlation matrix instead of on the dispersion matrix.

2.2 Min/Max Autocorrelation Factors

As opposed to the principal components transformation the minimum/maximum
autocorrelation factors (MAF) transformation allows for the spatial nature of the
image data. The application of this transformation requires knowledge of or
an estimate of the dispersion matrix and the dispersion matrix of the spatially
shifted image. The MAF transform minimizes the autocorrelation rather than
maximizing the data variance (PC).In reverse order the MAFs maximize the
autocorrelation represented by each component.MAF one is the linear com-
bination of the original bands that contains minimum autocorrelation between
neighboring pixels. A higher order MAF is the linear combination of the orig-
inal bands that contains minimum autocorrelation subject to the constraint that
it is orthogonal to lower order MAFs. The MAF procedure thus constitutes
a (conceptually) more satisfactory way of orthogonalizing image data than PC
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analysis. The MAF transform is equivalent to a transformation of the data to a
coordinate system in which the covariance matrix of the spatially shifted image
data is the identity matrix followed by a principal components transformation.
An important property of the MAF procedure is its invariance to linear trans-
forms, a property not shared by ordinary PC analysis. This means that it doesn’t
matter whether the data have been scaled e.g. to unit variance before the analysis
is performed.

The minimum/maximum autocorrelation factors procedure was suggested by
Switzer & Green (1984). PCs, MAFs and other orthogonal transforms are de-
scribed in Ersbøll (1989), Conradsen & Ersbøll (1991).

Again we consider the random variableZT = [Z1(x);…; Zm(x)] and we assume
that

EfZ(x)g = 0 (2.8)

DfZ(x)g = �: (2.9)

We denote a spatial shift by�T = (�1;�2). The spatial covariance function is
defined by

CovfZ(x);Z(x +�)g = �(�): (2.10)

� has the following properties

�(0) = � (2.11)

�(�)T = �(��): (2.12)

We are interested in the correlations between projections of the variables and
the shifted variables. Therefore we find
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CovfaTZ(x);aTZ(x +�)g = aT�(�)a (2.13)

= (aT�(�)a)T

= aT�(�)Ta

= aT�(��)a

=
1
2

aT (�(�) +�(��))a:

Introducing

�� = DfZ(x)�Z(x +�)g (2.14)

= Ef[Z(x)�Z(x +�)][Z(x)�Z(x +�)]T g;

which considered as a function of� is a multivariate variogram, see Equa-
tion 1.2, we have

�(�) +�(��) = 2���� (2.15)

and thus

CovfaTZ(x);aTZ(x +�)g = aT (��

1
2

��)a (2.16)

wherefore

CorrfaTZ(x);aTZ(x +�)g = 1�

1
2

aT��a

aT�a
: (2.17)
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If we want to minimize that correlation we must maximize the Rayleigh coeffi-
cient

R(a) =

aT��a

aT�a
: (2.18)

Let �1 � � � � � �m be the eigenvalues anda1;…;am corresponding conjugate
eigenvectors of�� with respect to�. Then

Y i(x) = aTi Zi(x) (2.19)

is the i’th minimum/maximum autocorrelation factor or shortly thei’th MAF.

The minimum/maximum autocorrelation factors satisfy

i) CorrfY i(x);Y j(x)g = 0; i 6= j;

ii) CorrfY i(x);Y i(x +�)g = 1� 1
2�i;

iii) CorrfY 1(x);Y 1(x +�)g = infa CorrfaTZ(x);aTZ(x +�)g;

CorrfY m(x);Y m(x +�)g = supa CorrfaTZ(x);aTZ(x +�)g;

CorrfY i(x);Y i(x +�)g = infa2Mi

CorrfaTZ(x);aTZ(x +�)g,

Mi = fa j CorrfaTZ(x);Y j(x)g = 0; j = 1;…; i� 1g:

The reverse numbering of MAFs so that the signal MAF is referred to as MAF1
is often used.

2.2.1 Linear Transformations of MAFs

We now consider the problem of transforming the original variables. If we set

U (x) = TZ(x) (2.20)
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whereT is a transformation matrix, we have that the MAF solution forU is
obtained by investigating

R1(b) =

b
T
T��T
T b

b
T
T�T T b
: (2.21)

The equation for solving the eigenproblem is

T��T
Tvi = �iT�T
Tvi , (2.22)

��(T Tvi) = �i�(T Tvi)

i.e. the eigenvalues are unchanged andT Tvi = ui is an eigenvector for��

with respect to�. We find that the MAFs in the transformed problem are

vTi U (x) = vTi TZ(x) (2.23)

= (T Tvi)

TZ(x)

= uTi Z(x)

= Y i(x):

Therefore the MAF solution is invariant to linear transformations, which can be
useful in computations. Let�1 � � � � � �m be the ordinary eigenvalues and

p1;…;pm corresponding orthonormal eigenvectors of�. If we—inspired by
Equation 2.6—set

T T = P�� 1
2 (2.24)

we have for the dispersion of the transformed variables
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DfU (x)g = DfTZ(x)g = T�T T = �� 1
2P T�P�� 1

2 = I: (2.25)

With this transformation the original generalized eigenproblem is reduced to an
ordinary eigenproblem for

T��T
T = DfTZ(x)� TZ(x +�)g (2.26)

= DfU (x)�U (x +�)g

and the MAF solution can be obtained by solving two ordinary eigenproblems
as follows

• calculate principal components from the usual dispersion matrix�,

• calculate dispersion matrix for shifted principal componentsP T��P ,

• calculate principal components for transformed data corresponding to

��

1
2P T��P�

� 1
2 .

The original generalized eigenproblem can be solved by means of Cholesky
factorization of� also.

As far as the practical computation ofˆ�� is concerned Switzer & Green (1984)
recommend the formation of two sets of difference images. The two sets are

Z(x)�Z(x +�h) andZ(x)�Z(x +�v) where�h is a unit horizontal shift
and�v is a unit vertical shift. Calculatê��h

and ˆ��v

and pool them to obtain
ˆ��.

2.3 Maximum Noise Fractions

Principal components do not always produce components of decreasing image
quality. When working with spatial data the maximization of variance across
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bands is not an optimal approach if the issue is this ordering. In this section
we will maximize a measure of image quality, namely a signal-to-noise ratio.
This should ensure achievement of the desired ordering in terms of image qual-
ity. In the previous section another measure of image quality namely spatial
autocorrelation was dealt with.

If we estimate the noise at a pixel site as the difference of the pixel value at
that site and the value of a neighboring pixel, we obtain the same eigenvectors
as in the MAF analysis.

The maximum noise fractions (MNF) transformation can be defined in several
ways. It can be shown that the same set of eigenvectors is obtained by procedures
that maximize the signal-to-noise ratio and the noise fraction. The procedure
was first introduced by Green et al. (1988) where the authors in continuation of
the MAF work by Switzer & Green (1984) choose the latter. Hence the name
maximum noise fractions.

The MNF transformation maximizes the noise content rather than maximizing
the data variance (PC) or minimizing the autocorrelation (MAF). The applica-
tion of this transformation requires knowledge of or an estimate of the signal
and noise dispersion matrices.In reverse order the MNFs maximize the
signal-to-noise ratio represented by each component.MNF one is the linear
combination of the original bands that contains minimum signal-to-noise ratio.
A higher order MNF is the linear combination of the original bands that contains
minimum signal-to-noise ratio subject to the constraint that it is orthogonal to
lower order MNFs. The MNF transform is equivalent to a transformation of
the data to a coordinate system in which the noise covariance matrix is the
identity matrix followed by a principal components transformation. The MNFs
therefore also bear the name noise adjusted principal components (NAPC), cf.
Lee, Woodyatt, & Berman (1990). The MNFs share the MAFs’ property of
invariance to linear transforms.

First we will deduce the maximum noise fraction transformation. We will then
briefly describe methods for estimating the dispersion of the signal and the noise.
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Let us as before consider a multivariate data set ofm bands with grey levels

Zi(x); i = 1;…;m; wherex denotes the coordinates of the sample. We will
assume an additive noise structure

Z(x) = S(x) +N (x); (2.27)

whereZT = [Z1(x);…; Zm(x)], andS(x) andN (x) are the uncorrelated signal
and noise components. We assume that EfZg = 0: Therefore

DfZ(x)g = � = �S +�N ; (2.28)

where�S and�N are the dispersion matrices forS(x) andN (x) respectively.
Note that the techniques described in this section can in principle be applied to
multiplicative noise also by first taking logarithms of the observations.

We define the signal-to-noise ratio of thei’th band as

VarfSi(x)g

VarfNi(x)g
; (2.29)

i.e. the ratio of the signal variance and the noise variance. We define the noise
fraction of thei’th band as

VarfNi(x)g

VarfZi(x)g
; (2.30)

i.e. the ratio of the noise variance and the total variance. We define the maximum
noise fraction transformation as the linear transformations

Yi(x) = aTi Z(x); i = 1;…;m (2.31)
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such that the signal-to-noise ratio forYi(x) is maximum among all linear trans-
forms orthogonal toYj(x); j = 1;…; i � 1. Furthermore we shall assume that
the vectorsai are normed so that

aTi �ai = 1; i = 1;…;m: (2.32)

Maximization of the noise fraction leads to the opposite numbering, namely
a numbering that gives increasing image quality with increasing component
number.

The SNR forYi(x) is

VarfaTi S(x)g

VarfaTi N (x)g

=

aTi �Sai

aTi �Nai

(2.33)

=

aTi (���N )ai

aTi �Nai

=

aTi �ai

aTi �Nai
� 1:

If instead we work on the noise fraction, we get

VarfaTi N (x)g

VarfaTi Z(x)g

=

aTi �Nai

aTi �ai
: (2.34)

In both cases we will find the vectorsai as eigenvectors to the real, symmetric,
generalized eigenproblem

det(�N � ��) = 0: (2.35)
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Thus the SNR forYi(x) is given by

1

�i
� 1; (2.36)

where�i is the eigenvalue of�N with respect to�.

An important characteristic of the MNF transformation which is not shared by
the PC transformation is the invariability to linear scaling (the signal-to-noise
ratio is maximized).

As for the MAFs the reverse numbering of MNFs so that the signal MNF is
referred to as MNF1 is often used.

2.3.1 Estimation of the Noise Covariance Matrix

The central problem in the calculation of the MNF transformation is the es-
timation of the noise with the purpose of generating a dispersion matrix that
approximates�N . In this process we will make use of the spatial characteris-
tics of the image. Five methods are suggested, see also Olsen (1993)

• Simple differencing. The noise is estimated as for MAFs as the difference
between the current and a neighboring pixel. In this case we refer to�N

as��.

• Causal SAR. The noise is estimated as the residual in a simultaneous
autoregressive (SAR) model involving the neighboring pixel to the W,
NW, N and NE of the current pixel.

• Differencing with the local mean. More pixels could be entered in to the
estimation by differencing between the current pixel and the local mean.

• Differencing with local median. Mean filters blur edges and other details.
This could be avoided by using the local median instead of the local mean.

• Quadratic surface. The noise is estimated as the residual from a fitted
quadratic surface in a neighborhood.
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2.3.2 Periodic Noise

As satellite images and images obtained from airborne scanners often are cor-
rupted by striping we will consider methods for eliminating this form of noise.
As periodic noise such as various forms of striping often has a high degree
of spatial correlation, it will often be considered signal by the MAF and MNF
transformations. To some extent the striping will be isolated in some of the fac-
tors. Periodic noise can be removed by Fourier methods. It should be noted that
periodic noise can be very disturbing as the regular pattern catches the viewer’s
eyes.

A “naı̈ve” bandwise Fourier filtering may corrupt significant parts of the relevant
signal. Therefore we shall minimize the amount of filtering by introducing a new
concept, namely to eliminate this noise by filtering out the relevant structures
in the MNF Fourier domain. In order not to create an inverse pattern by setting
the Fourier values to zero we keep the phase and fill the magnitude values by
an iterative algorithm that takes means of the neighboring values. If we want
to remove other types of noise also (e.g. salt-and-pepper noise) we can filter or
skip the MNFs that contain the noise pattern in question before transforming
back from MNF space to the original image space.

2.4 MAF/MNFs of Irregularly Spaced Data

Consider the above formulation of the MAF/MNF problem. For irregularly
spaced data an alternative to the estimate of the noise dispersion�N is �k; k =
1;…; n from the cross-covariance function described in Section 1.2. These�k ’s
arenot dispersion but covariance matrices. Therefore this definition of a noise
dispersion matrix with different data points used in the estimation of� and

�N does not ensure that solutions to the real, symmetric, generalized eigen-
system exist. Another estimate of�N (or rather��) is simply the dispersion
matrix of a new variable consisting of the difference between a data value and
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its nearest neighbor for all variables. This defines a new data analytical con-
cept namely minimum/maximum autocorrelation factors (MAFs) for irregularly
spaced multivariate data.

Analogous to the extension of MAFs into MNFs for gridded data, a more elab-
orate model for�N based on each observation’s neighborhood can be defined.
With gridded data the neighborhood is easily defined. With non-gridded or ir-
regularly spaced data, the Voronoi tessellation of the plane and its dual concept,
the Delaunay triangulation are useful. To each point in the plane we associate
a Voronoi polygon which is the part of the plane that is nearer to that point
than to any other point. From the Voronoi tessellation we can construct the
Delaunay triangulation by joining points with common Voronoi polygon edges.
The Delaunay triangulation is described in Section 1.8.1.

Two ways of estimating�N come directly to mind: the use of the dispersion
matrix of a new variable consisting of the difference between a data value and
the mean or the median of all its, say, first order Delaunay neighbors for all
variables. This defines a new data analytical concept namely maximum noise
fractions (MNFs) for irregularly spaced multivariate data.

Of course, both the MAFs and MNFs defined in this fashion can be extended
to allow for other neighborhoods, e.g. confined by distance and/or direction
constraints.

Grunsky & Agterberg (1988, 1991) circumvent the problem of irregularity of
the sampling pattern by fitting parametric surfaces to observed correlations.
Because of the lack of positive definiteness of the joint correlation structures
this approach seems less satisfactory than the method proposed here.

The MAF/MNFs for irregularly spaced data possess the characteristics that they
are orthogonal and they are ordered by decreasing autocorrelation/signal-to-noise
ratio. Typically, low order factors will contain a lot of signal, high order factors
will contain a lot of noise. The MAF/MNFs thus relate beautifully to the above
interpolation by kriging, Section 1.5. Because the low order MAF/MNFs contain
signal they are expected to have low nugget effects and long ranges of influence.
This tendency is expected to develop towards higher nugget effects and shorter
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ranges of influence as the higher order MAF/MNFs contain increasingly more
noise. As the factors are orthogonal there is no cross-correlation for small lags
(jhj small). I therefore suggest the use of separate (as opposed to co-) kriging
for interpolation purposes and introduce a new data analytic concept: maximum
autocorrelation factorial or maximum signal-to-noise factorial kriging based on
the above new MAF/MNF analysis of non-gridded, multivariate data. In order to
obtain kriged versions of the original data the inverse MAF/MNF transformation
can be applied.

2.5 Case Studies

2.5.1 Noise in Hyperspectral GERIS Data

In this section the above orthogonal transformations are applied to a hyperspec-
tral scene, namely a dataset recorded over central Spain using the Geophysical
Environmental Research Corporation (GER) airborne scanner with the purpose
of isolating signal from noise.

The GER imaging spectrometer (GERIS) actually consists of three spectro-
meters, that view the ground through the same aperture via an optoelectronic
scanning device. The three spectrometers record a total of 63 bands through the
visible, near infrared and short wave-infrared wavelength range between 0.47
and 2.45�m. The spectral resolution in the visible region between 0.47 and
0.84�m is 12.3 nm. In the near infrared region from 1.40 nm to 1.90 nm it is
much broader, around 120 nm. In the short wave-infrared region between 2.00
and 2.45�m the sampling frequency is 16.2 nm.

The scanner uses a rotating mirror perpendicular to the flight direction to scan
a line of 512 pixels with a scan angle of 45� to either side of the flight track.
A flight altitude of 3,000 meters and an aperture setting of 2.5 mrad leads to a
nominal pixel size of 7.5 meters. The recorded data are stored in 16 bits with
a dynamic range of 12 bits. After recording, the dataset is corrected for aircraft
roll by the use of roll data recorded by a gyroscope hard mounted to the scanner
optics.
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Apart from noise introduced by the atmosphere, the instrumentation, and from
quantization and sampling, the GERIS data are corrupted by a heavy two line
and four line banding. This is due to slight differences of the surfaces of
the rotating mirrors in the scanning device. These differences in the optical
properties probably stem from dirt and oil on the surfaces.

PC versus MAF

In Figures 2.1 and 2.2 the 62 principal components and the 62 minimum/maximum
autocorrelation factors are shown. The images are ordered row wise with com-
ponent/factor 1 in the top-left corner (paper in landscape mode). Each subimage
consists of 340×500 7.5×7.5 m2 pixels. Because of the extreme noise content
channel 28 is omitted from the analyses. It is evident that the principal com-
ponents transformation is not capable of producing a natural ordering of image
quality. The minimum/maximum autocorrelation factors do a much better job in
terms of ordering as well as separating signal from noise. One might describe
the MAF transformation as a decomposition of spatial frequency.

MNF/Fourier Noise Filtering

In Figure 2.3 we see the effect of filtering out the peaks in the MNF Fourier
domain that result from the striping. The effect is dramatic in terms of improved
image quality. The line banding causes very distinct peaks in the Fourier domain
as seen in Figure 2.4. Three peaks in each half plane are easily detected. These
peaks are replaced with an iterated local mean.

After filtering of the twenty first maximum noise fraction components (signal)
and replacing the remaining MNFs with their mean value, we transform them
back to the original space. In this fashion we remove all types of noise isolated
in MNF21 through MNF62 including salt-and-pepper noise and a herringbone-
like noise isolated in MNF21. The effect of this on the original channel number
1 can be seen in Figure 2.5. It is evident that a considerable improvement is
obtained.
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Figure 2.1: Principal components of 62 GERIS bands
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Figure 2.2: Minimum/maximum autocorrelation factors of 62 GERIS bands

IMSOR Image Group

64 Chapter 2. Dimensionality Reduction

In order to show the ability of the MNF transformation to concentrate the dis-
criminatory power of the GERIS data in a few components we show in Figure 2.6
an RGB (red-green-blue) and an IHS (intensity-hue-saturation) combination of
the restored MNFs 1, 2 and 3 respectively. As the first of the MNFs often con-
tains most of the topographic features the IHS representation is often a good way
of visualizing the MNF space. The intensity channel is stretched to match a beta
distribution with parameters� = 4:0 and� = 4:0, similar to a Gaussian. The
hue channel is stretched to match a beta distribution with parameters� = 1:0
and� = 1:0, this is histogram equalization. The saturation channel is stretched
to match a beta distribution with parameters� = 2:0 and� = 1:0, which is a
linearly growing distribution.

This case is given in GAF, MAYASA, IMSOR, & DLR (1993), Nielsen & Larsen
(1994) also. Similar noise reduction schemes are used in Conradsen, Nielsen, &
Nielsen (1991a), Berman (1994). An artificial neural network approach to MNF
noise filtering in a multichannel airborne magnetic survey is given in Pendock
& Nielsen (1993).

2.5.2 MAFs and Irregular Sampling

This section deals with MAF/MNFs of irregularly spaced image data and MAF
kriging. The data used are the 2,097 samples of 41 elements from South Green-
land and the 2,625 samples of 16 elements from southern Spain used in the case
studies of Chapter 1 also. Both are stream sediments geochemistry data. These
cases are shown in GAF, MAYASA, IMSOR, & DLR (1993) also.

Figure 2.7 shows a geologic map of South Greenland (from Olesen (1984) who
worked on geochemical data from South Greenland also). Figure 2.8 shows
the sampling pattern in South Greenland with varimax rotated principal factors
1, 2 and 3 as red, green and blue. All images here are shown in landscape
mode. Figure 2.9 shows MNFs 1, 2 and 3 as red, green and blue. Figure 2.10
shows the result of the MAF kriging procedure. MAFs 1, 2 and 3 are shown
as red, green and blue respectively. A comparison of the results in the words
of Senior Geologist Agnete Steenfelt (Geological Survey of Greenland, GGU):
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Figure 2.3: MNF number 4 before (bottom) and after (top) MNF Fourier de-
striping
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Figure 2.4: Fourier spectra of MNF number 4 before (bottom) and after (top)
peak removal
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Figure 2.5: Channel number 1 before (bottom) and after (top) MNF Fourier
destriping
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Figure 2.6: The first three restored MNFs as RGB (bottom) and IHS (top)
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Figure 2.7: Geological map of South Greenland
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Figure 2.8: South Greenland: Varimax rotated factors 1, 2 and 3 as RGB
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Figure 2.9: South Greenland: MNFs 1, 2 and 3 as RGB
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Figure 2.10: South Greenland: MAF kriged factors 1, 2 and 3 as RGB
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Figure 2.11: Southern Spain: MAF kriged factors 1, 2 and 3 as RGB
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“Contrary to results from ordinary non-spatial analysis of the data, this result
clearly distinguishes the major lithotectonic units of South Greenland: northern
Archean craton (dark blue), central Proterozoic unit (red and yellow) domi-
nated by granite batholiths, Proterozoic alkaline intrusive complexes (white and
bright magenta), and southern Proterozoic unit (cyan and green) dominated by
supracrustal rocks and rapakivi granites.” In the geological map in Figure 2.7
the northern Archean craton is denoted “Border Zone” and the southern Protero-
zoic unit is denoted “Migmatite Complex.” The Proterozoic alkaline intrusive
complexes is also referred to as the Gardar intrusions.

Figure 2.11 shows the result of the MAF kriging for the southern Spain area.
Again MAFs 1, 2 and 3 are shown as red, green and blue respectively. In this
case there are no written comments from geologists. However, an oral statement
from Chief Geologist Dr. Enrique Ortega, Minas de Almade´n y Arrayanes, S.
A.(MAYASA), stresses the richness of the geological information about the area
in that image.

In general, it is expected that this new spatial analysis technique will be very
useful in the analysis of irregularly spaced multivariate data irrespective of the
field of application. The technique has been applied successfully to environ-
mental data, namely studies of leachate migration under a landfill and pollution
with organic chemicals under a storage yard in Andersen (1994).
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Chapter 3

Multiset Data Analysis

This chapter deals with a type of methods for multi-source data analysis namely
linear canonical correlations analysis. Two-set canonical correlations analysis
investigates the relationship between two groups of variables. It finds corre-
sponding sets of linear combinations of the original two groups of variables. The
first set of linear combinations are the ones with the largest correlation. This cor-
relation is called the first canonical correlation and the two linear combinations
are called the first canonical variates. The second set of linear combinations
are the ones with the largest correlation subject to the condition that they are
uncorrelated with the first canonical variates. This correlation is called the sec-
ond canonical correlation and the two linear combinations are called the second
canonical variates. Higher order canonical correlations and canonical variates
are defined similarly.

First ordinary two-set canonical analysis is described in two slightly different
ways. One way is the ordinary maximization of the correlation coefficient of
the two transformed sets. The other way is the maximization of the variance of
the sum of the transformed sets under unit variance constraint. An application
of two-set canonical analysis is given with the introduction of a new orthogo-
nal transformation, the multivariate alteration detection (MAD) transformation
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(Conradsen & Nielsen, 1994) that finds linear combinations that give maximal
multivariate differences. The method that maximizes the variance of the sum of
the transformed sets under unit variance constraint is generalized to deal with
more than two sets of variables. It is shown that this approach corresponds to
maximizing the sum of the elements of the dispersion matrix of the transformed
sets. Also, other methods of optimizing characteristics of this dispersion matrix
are studied, namely (including the above method)

• maximization of the sum of the elements,

• maximization of the sum of the squared elements,

• maximization of the largest eigenvalue,

• minimization of the smallest eigenvalue, and

• minimization of the determinant.

These optimizations take place under different constraints, namely

• the projection vectors are unit vectors within each set,

• the sum of the projection vectors is a unit vector,

• the weighted projection vectors are unit vectors within each set, and

• the sum of the weighted projection vectors is a unit vector.

The above methods are used in change detection studies in remote sensing.
Results from such analysis are linear combinations that transform the original
sensor bands into new variables that show decreasing similarity over several
(more than two) points in time. The higher order canonical variates have
minimum similarity and they are therefore measures of change in all bands
simultaneously. This technique is new in truly multi-temporal, multivariate
change detection studies.
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Other multi-source data analysis techniques such as the application of for ex-
ample Mahalanobis’ distance in joint distributions of multiset data to point out
potentially interesting areas based on a training set, see Conradsen, Nielsen, &
Nielsen (1991b), or spatial orthogonalization of joint distributions of multiset
data, see Nielsen (1994a, 1994b), are not dealt with.

3.1 Two-set Canonical Correlations

Canonical correlations analysis was first introduced by Hotelling (1936) to ana-
lyze linear relations between two sets of variables. The technique is described in
most standard textbooks on multivariate statistics, e.g. Cooley & Lohnes (1971),
Anderson (1984). Work on non-linear canonical correlations analysis comprise
van der Burg & de Leeuw (1983), Breiman & Friedman (1985), Buja (1990),
Shi & Taam (1992), Windfeld (1992). This type of analysis will not be pursued
here.

We consider ap + q dimensional random variable (p � q) ideally following a
Gaussian distribution split into two groups of dimensionsp andq respectively

�
X

Y

�
2 N (�;�) = N
��

�1

�2

�
;
�

�11 �12

�21 �22

��

(3.1)

and we assume that�11 and�22 (and�) are non-singular. Also, we assume
that EfXg = EfY g = 0:

We are searching for linear combinations ofX andY

U = aTX; VfUg = aT�11a (3.2)

V = bTY ; VfV g = bT�22b (3.3)
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with maximum correlation

� = CorrfU ;V g =
CovfU ;V gp

VfUg VfV g

=

aT�12bp
aT�11a b
T�22b
: (3.4)

If (a; b) is a solution so is (c1a; c2b) whereci is any scalar. We choose (a; b)
so that VfUg = VfV g = 1, introduce Lagrange multipliers�=2 and�=2 and
maximize

F = aT�12b�
�

2
(aT�11a� 1)�

�

2
(bT�22b� 1): (3.5)

By setting @F=@b = 0 and @F=@a = 0, and inserting the results into the
expression for� we get

�2 =

aT�12�
�1

22 �21a

aT�11a

=

bT�21�
�1

11 �12b

bT�22b

(3.6)

or

�12�
�1

22 �21a = �2�11a (3.7)

�21�
�1

11 �12b = �2�22b (3.8)

i.e. we find the desired projections forX by considering the conjugate eigenvec-
torsa1;…;ap corresponding to the eigenvalues�2

1 � � � � � �2

p of �12�
�1

22 �21

with respect to�11: Similarly, we find the desired projections forY by con-
sidering the conjugate eigenvectorsb1;…; bp of �21�

�1
11 �12 with respect to

�22 corresponding to thesameeigenvalues�2

i . If p = q this will be all the
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eigenvalues and -vectors of�21�
�1

11 �12: If q > p the last eigenvalue will be 0
with multiplicity q � p:

Another way of maximizing the above� with VfUg = VfV g = 1, consists of
maximizing the variance of the sum of the linear combinations of the two sets
of variables, i.e. maximize

V = VfaTX + bTY g = aT�11a + bT�22b + 2aT�12b = 2(1 +�): (3.9)

Again, we introduce Lagrange multipliers�1 and�2 and maximize

F = aT�11a + bT�22b + 2aT�12b� (3.10)

�1(aT�11a� 1)� �2(bT�22b� 1)

without constraints. Again, by setting@F=@b = 0 and@F=@a = 0, and inserting
the results into the expression forV we get

�11a +�12b = �1�11a (3.11)

�22b +�21a = �2�22b: (3.12)

As aT�12b = (aT�12b)T = bT�21a we see that�1 = �2 = �. Also, it is
obvious that

a =
1

�� 1

��1
11 �12b (3.13)

b =
1

�� 1

��1
22 �21a: (3.14)
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The eigensystem written in this fashion is the same as the above eigensystem
(Equations 3.7 and 3.8) with�2 = (� � 1)2.

Letting �ij be the Kronecker delta (�ij = 1 for i = j, �ij = 0 otherwise) we have

CorrfaTi X;aTj Xg = aTi �11aj = �ij (3.15)

CorrfbTi Y ; bTj Y g = bTi �22bj = �ij (3.16)

CorrfaTi X; bTj Y g = aTi �12bj =
1

�j
aTi �12�
�1

22 �21aj = �j�ij : (3.17)

We are now able to introduce thecanonical variates

U i = aTi X; i = 1;…; p (3.18)

V i = bTi Y ; i = 1;…; p (3.19)

and with an obvious choice of notation

U = ATX and V = BTY ; (3.20)

where
A = [a1;…;ap] is p × p (3.21)

B = [b1;…; bp] is q × p: (3.22)
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To facilitate interpretation we calculate the covariance between the original vari-
ables and the transformed variables

CovfX;ATXg = �11A and CovfY ;BTY g = �22B (3.23)

CovfX;BTY g = �12B and CovfY ;ATXg = �21A: (3.24)

Because we are constructing new variables with maximum correlation there will
be some redundancy in the transformed data. Canonical redundancy analysis is
described in Appendix A.

An Interpretation of Canonical Variates

Consider a regression̂X of X based onY respectively ˆY of Y based onX

ˆX = �12�
�1

22 Y (3.25)

ˆY = �21�
�1

11 X (3.26)

For the dispersions we get

Df ˆXg = �12�
�1

22 �21 (3.27)

Df ˆY g = �21�
�1

11 �12 (3.28)

Linear combinationsaT ˆX respectivelybT ˆY that maximizeVarfaT ˆXg

VarfaTXg

respec-

tively VarfbT ˆY g

VarfbTY g

fulfill
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aT�12�
�1
22 �21a

aT��1
11 a

= �2 (3.29)

bT�21�
�1

11 �12b

bT��1
22 b

= �2: (3.30)

As these Rayleigh coefficients are identical to the defining Equations 3.7 and
3.8 above, the canonical variates can be interpreted as being new variables that
maximize the ratio of the variances between linear combinations of predicted
values of one set of variables from the other set of variables and the same linear
combinations of the actual values of the one set of variables.

We also see that canonical correlation analysis can be considered as a type of
regression analysis with several independent as well as dependent variables.

3.1.1 MAD Transformation

The above technique is used by Conradsen & Nielsen (1994) to find linear
combinations that give maximal multivariate differences. The name chosen
for the transformation, multivariate alteration detection (MAD), is due to the
application in change detection in remote sensing (and the flashy acronym).
Although it is presented here as an change detection technique in remote sensing,
the technique applies to non-spatial multivariate differences also. The MAD
transformation was first sketched in Conradsen & Nielsen (1991). Shettigara
& McGilchrist (1989) use a hybrid canonical correlation/principal components
technique to enhance uncorrelated parts of Landsat TM equivalents of ATM data
in a gold exploration study. Change detection techniques based on canonical
variates are also described in Hanaizumi & Fujimura (1992), Hanaizumi, Chino,
& Fujimura (1994).

As opposed to traditional univariate change detection schemes the MAD scheme
transforms two sets of multivariate observations (e.g. two multispectral satellite
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images covering the same geographical area acquired at different points in time)
into a difference between two linear combinations of the original variables ex-
plaining maximal change (i.e. the difference explaining maximal variance) in all
variables simultaneously.

When analyzing changes in panchromatic images taken at different points in
time it is customary to analyze the difference between two images, possibly after
some normalization. The idea is of course that areas with no or little changes
come out with zero or low absolute values and areas with large changes come
out with large absolute values in the difference image.

If we have two multivariate images with demeaned outcomes at a given pixel
written as vectors

X =

2
64
X1

...

Xk

3
75 resp. Y =

2
64
Y1

...

Yk
3

75 (3.31)

wherek is the number of spectral bands, then a simple change detection trans-
formation is

X � Y =

2
64
X1� Y1

...

Xk � Yk
3

75 : (3.32)

If our image data has more than three channels it is difficult to visualize changes
in all channels simultaneously. To overcome this problem and to concentrate
information on change, linear transformations of the image data that optimize
some design criterion can be considered. A linear transformation that will max-
imize a measure of change in the simple multispectral difference image is one
that maximizes deviations from no change, e.g. the variance
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Vfv1(X1 � Y1) + � � � + vk(Xk � Yk)g = VfvT (X � Y )g: (3.33)

A multiplication of vectorv with a constantc will multiply the variance with

c2. Therefore we must put a restriction onv. A natural restriction is request-
ing that v is a unit vector,vTv = 1. This then amounts to finding principal
components of the simple difference images. A disadvantage of this technique
is that principal components are sensitive to the scale at which the individual
variables are measured. Therefore they depend on for instance gain settings of
a measuring device. A more versatile measure of change that allows different
coefficients forX andY and different number of spectral bands in the two sets,

p andq respectively, are linear combinations

aTX = a1X1 + � � � + apXp (3.34)

bTY = b1Y1 + � � � + bqYq (3.35)

and the difference between them

aTX � bTY : (3.36)

This measure also accounts for situations where the spectral bands are not the
same but cover different spectral regions, for instance if one set of data comes
from Landsat Thematic Mapper and the other set comes from SPOT High Res-
olution Visible. In this case one must be more cautious when interpreting the
multivariate difference as multivariate change. In principle, any choice ofa and

b will give a measure of change. One could use principal components analysis
onX to find an optimala and onY to find an optimalb (independent ofa).
An improvement of this technique is to use principal components analysis on

X andY considered asonevariable, cf. Fung & LeDrew (1987).
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The Fung & LeDrew (1987) approach does not guarantee an optimal separation
of X andY . It definesa andb simultaneously but the design criterion is not
necessarily the one we want (for example, bands are treated similarly whether
or not they come from different points in time). A potentially better approach
is to define an optimal set ofa andb simultaneously in the fashion described
below. Again, let us maximize the variance, this time VfaTX � bTY g. A
multiplication ofa andb with a constantc will multiply the variance withc2.
Therefore we must put some restrictions ona andb, and natural restrictions in
this case are requesting unit variance ofaTX andbTY .

The criterion then is

maximize VfaTX � bTY g (3.37)

subject to the constraints

VfaTXg = VfbTY g = 1: (3.38)

Under these constraints we have

VfaTX � bTY g = VfaTXg + VfbTY g � 2CovfaTX; bTY g

= 2(1� CorrfaTX; bTY g): (3.39)

As we are talking difference (or change) detection here, we shall request that

aTX andbTY are positively correlated, i.e. CorrfaTX; bTY g � 0. Therefore,
determining the difference between linear combinations with maximum variance
corresponds to determining linear combinations with minimum correlation (� 0).
We assume thata andb are chosen so that the correlation betweenaTX and

bTY is positive. Positive correlation may simply be obtained by a change of
sign if necessary.
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The main idea behind the MAD transformation is now that as corresponding
pairs of canonical variates are linear combinations of the original variables or-
dered by correlation or similarity between pairs, it seems natural to base a change
detection scheme on differences between pairs of variates that show minimum
similarity, i.e. the higher order canonical variates.

The main mathematical idea is to modify the theory used in defining canonical
variates. This could be viewed as a time analog to the introduction of mini-
mum/maximum autocorrelation factors in the spatial domain, cf. Section 2.2.

We define themultivariate alteration detection (MAD) transformation as

�
X

Y

�
!

2
64
aTpX � bTp Y

...

aT1 X � bT1 Y

3
75 ; (3.40)

whereai and bi are defined as in Section 3.1, i.e.ai and bi are the defining
coefficients from a standard canonical correlations analysis. The MAD transfor-
mation has the very important property that if we consider linear combinations
of two sets ofp resp.q (p � q) variables that are positively correlated then the

p’th difference shows maximum variance among such variables. The (p� j)’th
difference shows maximum variance subject to the constraint that this differ-
ence is uncorrelated with the previousj ones. In this way we may sequentially
extract uncorrelated difference images where each new image shows maximum
difference (change) under the constraint of being uncorrelated with the previous
ones.

If p < q then the projection ofY on the eigenvectors corresponding to the
eigenvalues 0 will be independent ofX. That part may of course be considered
the extreme case of multivariate change detection.

The MAD transformation is objective in the sense that given the same geo-
graphical areas and variables there is full reproducibility and repeatability of the
numerical results. If an initial MAD analysis to find areas of maximum change
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in all spectral bands simultaneously is performed, the areas located will always
be the same. The analyst can control the method if used in a more directed
fashion in that she or he can choose spatial and/or spectral subsets on which the
analysis should be performed.

To facilitate interpretation we calculate the covariance between the original vari-
ables and the transformed variables

CovfX;ATX �BTY g = �11A��12B (3.41)

CovfY ;ATX �BTY g = �21A��22B: (3.42)

The multivariate alteration detection (MAD) transformation gives an optimal (in
the sense of maximal variance) detection of alterations (differences, changes)
from one scene to the other in all spectral channels simultaneously. The trans-
formation is invariant to linear scaling. It also provides a statistical analysis and
it offers an interpretation of the nature of the alterations. The MAD transfor-
mation can be used iteratively. First, it can be used to detect outliers (such as
drop-outs) and in a second iteration, it can be used to perform the actual change
detection after appropriate action on the outliers.

Irrespective of the application in question and the individual analyst’s favorite
change detection scheme, the absolute value of the first MAD component will
always outline the areas with the largest overall changes in all channels simul-
taneously. The correlations between the original image channels and the MADs
form a basis for interpretation of the MADs. Based on the absolute values of
the MADs and the interpretation, a more physically oriented change study can
be performed if so desired.

We conclude that the MAD transformation is a useful supplement to univariate
and existing multivariate change detection schemes. The MAD technique is
believed to be useful with multichannel data in monitoring and surveillance in
environmental studies, oceanography, agriculture, geobotany etc. For an oceano-
graphic application of the MAD transformation suggested here, cf. Simpson
(1994).
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3.2 Multiset Canonical Correlations

Generalized or multiset canonical correlations analysis is a technique for ana-
lyzing linear relations between more (than two) sets of variables. Earlier work
in this field comprise Vinograde (1950), Steel (1951), Horst (1961), Kettenring
(1971). Royer & Mallet (1982) give an interesting example using satellite data
and two types of geochemical data.

We consider anm = m1 +m2 + � � �+mn dimensional random variableX ideally
following a Gaussian distribution split inton groups of dimensionsm1, m2 to

mn (m1 � m2 � � � � � mn) respectively

X =

2
6664
X1

X2
...

Xn

3
7775 2 N (�;�) = (3.43)

N
0

BBB@
2

6664
�1

�2
...

�n
3

7775 ;
2

6664
�11 �12 � � � �1n

�21 �22 � � � �2n

...
...

. . .
...

�n1 �n2 � � � �nn

3
7775

1
CCCA

and we assume that the appropriate dispersion matrices are non-singular (de-
pending on the constraints given below). Also, we assume that�i = 0: Of
course�ij = �T

ji:

An obvious extension from the two-set case is to search for linear combinations

UT = [UT
1 ;U

T

2 ;…;UT
n ] of XT = [XT

1 ;X
T

2 ;…;XT
n ]

U 1 = aT1 X1; VfU 1g = aT1 �11a1 (3.44)

U 2 = aT2 X2; VfU 2g = aT2 �22a2 (3.45)
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...

Un = aTnXn; VfUng = aTn�nnan (3.46)

with maximum variance

V = VfaTXg = aT�a (3.47)

whereaT = [aT1 ;a
T

2 ;…;aTn ]: Another way of expressing this variance is of
course

V = Vf
nX

i=1

aTi Xig (3.48)

= VfaT1 X1 + aT2 X2 + � � � + aTnXng

=

nX
i=1

nX
j=1

aTi �ijaj :

We see that maximizing the above variance corresponds to maximizing the sum
of the elements in the covariance matrix of the transformed variables

�U =

2
6664
aT1 �11a1 aT1 �12a2 � � � aT1 �1nan

aT2 �21a1 aT2 �22a2 � � � aT2 �2nan

...
...

. . .
...

aTn�n1a1 aTn�n2a2 � � � aTn�nnan
3

7775 : (3.49)

The sum of covariances is only one of several natural and sensible measures to
optimize. A list of measures including the above is

1. maximize sum of elements (V =

Pn
i=1

Pn
j=1a
T

i �ijaj ),
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2. maximize sum of squared elements (W =

Pn
i=1

Pn
j=1(a
T

i �ijaj )2),

3. maximize largest eigenvalue (�1),

4. minimize smallest eigenvalue (�n) and

5. minimize determinant (det�U =

Qn
i=1�i).

Kettenring (1971) lists all these possibilities and solves the problems involved;
he names them 1. Sumcor, 2. Ssqcor, 4. Maxvar, 3. Minvar and 5. Genvar.

Several natural constraints under which to carry out the optimizations come to
mind

1. aTi ai = 1;

2. aTa =

Pn
i=1a
T

i ai = 1;

3. aTi �iiai = 1; or

4. aT�Da =

Pn
i=1a
T

i �iiai = tr �U = 1

with

�D =

2
6664
�11 0 � � � 0

0 �22 � � � 0

...
...

. ..
...

0 0 � � � �nn

3
7775 : (3.50)

In the two-set case all the above methods with constraints 3 and 4 reduce to the
standard Hotelling case described in Section 3.1.

Horst (1961) examines the Sumcor method and Kettenring (1971) examines all
the above methods using constraint 3.
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3.2.1 Maximize Sum of Covariances

To maximize the sum of covariances under constraints we use a Lagrange mul-
tiplier technique. The four above constraints are examined.

Constraint 1: aTi ai � 1 = 0

Introduce

F = V �

nX
i=1

�i(a
T

i ai � 1): (3.51)

By setting@F=@ai = 0 we get

nX
j=1

�ijaj = �iai; i = 1;…; n (3.52)

or

2
6664
�11 �12 � � � �1n

�21 �22 � � � �2n

...
...

.. .
...

�n1 �n2 � � � �nn

3
7775

2
6664
a1

a2
...

an
3

7775 =

2
6664
�1a1

�2a2
...

�nan
3

7775 : (3.53)

This is not a normal eigensystem.
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Constraint 2: aTa� 1 =

Pn
i=1a
T

i ai � 1 = 0

Introduce

F = V � �(

nX
i=1

aTi ai � 1): (3.54)

By setting@F=@ai = 0 we get

nX
j=1

�ijaj = �ai; i = 1;…; n (3.55)

or

2
6664
�11 �12 � � � �1n

�21 �22 � � � �2n

...
...

. . .
...

�n1 �n2 � � � �nn

3
7775

2
6664
a1

a2
...

an
3

7775 = �
2

6664
a1

a2
...

an
3

7775 : (3.56)

This is a normal real, symmetric eigensystem. It corresponds to principal com-
ponents analysis ofX.

Constraint 3: aTi �iiai � 1 = 0

Introduce

F = V �

nX
i=1

�i(a
T

i �iiai � 1): (3.57)
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By setting@F=@ai = 0 we get

nX
j=1

�ijaj = �i�iiai; i = 1;…; n (3.58)

or

2
6664
�11 �12 � � � �1n

�21 �22 � � � �2n

...
...

.. .
...

�n1 �n2 � � � �nn

3
7775

2
6664
a1

a2
...

an
3

7775 = (3.59)

2
6664
�1�11 0 � � � 0

0 �2�22 � � � 0

...
...

.. .
...

0 0 � � � �n�nn

3
7775

2
6664
a1

a2
...

an
3

7775 :

This is not a normal generalized eigensystem.

Constraint 4: aT�Da� 1 =

Pn
i=1a
T

i �iiai � 1 = 0

Introduce

F = V � �(

nX
i=1

aTi �iiai � 1): (3.60)

By setting@F=@ai = 0 we get

nX
j=1

�ijaj = ��iiai; i = 1;…; n (3.61)
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or

2
6664
�11 �12 � � � �1n

�21 �22 � � � �2n

...
...

. . .
...

�n1 �n2 � � � �nn

3
7775

2
6664
a1

a2
...

an
3

7775 = (3.62)

�
2

6664
�11 0 � � � 0

0 �22 � � � 0

...
...

. . .
...

0 0 � � � �nn

3
7775

2
6664
a1

a2
...

an
3

7775 :

This is a normal real, symmetric, generalized eigensystem, i.e. we find the
desired projections forXi by computing the conjugate eigenvectorsai1;ai2;…

;aim1 corresponding to the firstm1 = min(m1;m2;…;mn) eigenvalues�1 �

�2 � � � � � �m1 of the above eigensystem. In this case we assume that�11,

�22 to �nn (and�) are non-singular.

Letting �ij be the Kronecker delta (�ij = 1 for i = j, �ij = 0 otherwise) we have

nX
i=1

CovfaTikXi;a
T

ilXig =

nX
i=1

aTik�iiail = �kl; (3.63)

k = 1;…;mi and l = 1;…;mj

CovfaTikXi;a
T

jkXjg = aTik�ijajk: (3.64)

We are now able to define thegeneralized canonical variates

U 1k = aT1kX1; k = 1; 2;…;m1 (3.65)

U 2k = aT2kX2; k = 1; 2;…;m1 (3.66)
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...

Unk = aTnkXn; k = 1; 2;…;m1 (3.67)

and with an obvious choice of notation

W 1 = AT

1 X1 (3.68)

W 2 = AT

2 X2 (3.69)

...

W n = AT
nXn (3.70)

where

A1 = [a11;a12;…;a1m1] is m1 × m1 (3.71)

A2 = [a21;a22;…;a2m1] is m2 × m1 (3.72)

...

An = [an1;an2;…;anm1] is mn × m1: (3.73)

To facilitate interpretation we calculate the covariance between the original vari-
ables and the transformed variables

CovfXi;A
T

j Xjg = �ijAj : (3.74)
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With constraint 4 ifn = 2 we get

�
�11 �12

�21 �22

� �
a1

a2

�

= �
�

�11 0

0 �22

� �
a1

a2

�
: (3.75)

This leads to

�12�
�1

22 �21 = (�� 1)2�11a1 (3.76)

�21�
�1

11 �12 = (�� 1)2�22a2 (3.77)

which is the ordinary expression for canonical correlations analysis of two sets
of variables.

As with the derivation of the eigensystem for canonical correlations analysis for

n = 2 given in Section 3.1, it is easily shown that constraint 3 leads to the same
eigensystem as constraint 4. Using the fact that whenaT1 �11a1 = aT2 �22a2 = 1;

aT1 �12a2 = (aT1 �12a2)T = aT2 �21a1 shows that�1 = �2:

3.2.2 Maximize Sum of Squared Covariances

To maximize the sum of squared covariances under constraints we use a La-
grange multiplier technique as in the previous section. Also, the same four
constraints are examined. This treatment is given in Appendix B.

3.2.3 Maximize Largest Eigenvalue

Because�ii is positive definite it can be Cholesky factorized

�ii = CiC
T

i ; (3.78)
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whereCi is lower triangular. Hence,

C�1

i �iiC
�T

i = I: (3.79)

Instead of studyingX we study a new variableY T = [Y T

1 ;Y
T

2 ;…;Y T
n ] which

we shall define shortly. We rewrite

U i = aTi Xi with VarfU ig = aTi �iiai (3.80)

to

U i = aTi CiC
�1

i Xi with VarfU ig = aTi CiC
T

i ai (3.81)

U i = (CT
i ai)

TC�1

i Xi with VarfU ig = (CT
i ai)

TCT
i ai (3.82)

U i = bTi Y i with VarfU ig = bTi bi (3.83)

where

Y i = C�1

i Xi and bi = CT
i ai: (3.84)

For the covariance we get

CovfY i;Y jg = C�1

i �ijC
�T

j (3.85)

and for the dispersion ofY
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�Y =

2
6664

I C

�1
1 �12C

�T

2 � � � C

�1
1 �1nC

�T

n

C

�1
2 �21C

�T

1 I � � � C

�1
2 �2nC

�T

n

...
...

.. .
...

C

�1

n �n1C
�T

1 C

�1

n �n2C
�T

2 � � � I

3
7775 : (3.86)

Because of the diagonal block structure of�D (Equation 3.50) this can be
written in a more compact form. The eigenproblem

�a = ��Da (3.87)

can be written as

�a = �(CDC
T

D)a (3.88)

whereCDC
T

D is the Cholesky decomposition of�D . We rewrite

C�1

D �C�T
D (CT
Da) = �(CT
Da) (3.89)

�Y b = �b

where

�Y = C�1

D �C�T
D and (3.90)

a = C�T
D b:

Hence the eigenvalues of�Y are equal to the eigenvalues of� with respect to

�D and the eigenvectors are related as indicated.

According to Kettenring (1971) results from this method with the above con-
straint 3 (aTi �iiai � 1 = 0) can be obtained by a single eigenanalysis of�Y .
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3.2.4 Minimize Smallest Eigenvalue

As in the previous section the original variables are sphered and according to
Kettenring (1971) results with the above constraint 3 (aTi �iiai� 1 = 0) can be
obtained by a single eigenanalysis of�Y .

3.2.5 Minimize Determinant

An important result in this connection is that because�U is positive definite it
can be Cholesky factorized

�U = CCT ; (3.91)

whereC is lower triangular. Hence, the eigenvalues ofC are the diagonal
elementscii and

det�U = (

nY
i=1

cii)2: (3.92)

The above result is used in an iterative solution of the problem.

3.3 Case Studies

3.3.1 SPOT HRV Data in Agriculture (MAD)

Two 512×512 SPOT High Resolution Visible (HRV) multispectral (XS) sub-
scenes from 5 February 1987 and 12 February 1989 are used to test the pro-
cedure. The selected study area contains economically important coffee and
pineapple fields near Thika, Kiambu District, Kenya. The analysis takes place
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on raw data (no atmospheric correction). This case is shown in Conradsen &
Nielsen (1994) also. Simpson (1994) very successfully uses the MAD transfor-
mation on two channels of pre-processed NOAA AVHRR data (noise reduction
in channel 3, correction for atmospheric water vapor attenuation, and cloud-
and land-masking) in a more physically oriented study with good sea-truth data
where principal components analysis of simple difference images fail. Because
of its ability to detect change in many channels simultaneously, the MAD trans-
formation is expected to be even more useful when applied to image data with
more than three channels. This is supported by limited experience with Landsat
TM data, see Section 3.3.3.

This case study is intended as an illustrative example showing how calculations
are performed and how an interpretation of the canonical and MAD variates can
be carried out. The case study is not meant as a careful assessment of the actual
changes that occurred in the study area chosen.

Data and Univariate Change Detection

In Figures 3.2 and 3.3 we show false color composites of the multispectral SPOT
HRV scenes acquired on 5 Feb 1987 and 12 Feb 1989, © SPOT Image Copyright
1987 and 1989 CNES. The area is dominated by large pineapple fields to the
northeast and small coffee fields to the northwest. To the south is the town of
Thika. This is sketched in Figure 3.1 which also shows the positions of fields
with pineapple in different phenological stages.

Pineapple is a triennial crop and therefore we observe changes from one year to
another. In Figure 3.4 we show the simple change detection image (differences
between bands 3, bands 2 and bands 1 in red, green and blue). The major
differences are due to the changes primarily in the pineapple fields. Since the
changes are connected to change in vegetation, it seems natural to study the
change using the normalized difference vegetation index

NDVI =
NIR–R

NIR+R+1
(3.93)
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Figure 3.1: Sketch of areas of interest
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Figure 3.2: False color composite of SPOT HRV XS, 5 Feb 1987
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Figure 3.3: False color composite of SPOT HRV XS, 12 Feb 1989

IMSOR Image Group

104 Chapter 3. Multiset Data Analysis

Figure 3.4: False color composite of simple difference image
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Figure 3.5: 1989 NDVI as red and 1987 NDVI as cyan
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where NIR is the near-infrared channel (XS3) and R is the red channel (XS2).
The philosophy behind the NDVI is that healthy green matter reflects the near-
infrared light strongly and absorbs the red light. Therefore the NDVI will be
large in vegetated areas and small in non-vegetated areas. An interesting study
on NDVI change detection based on NOAA AVHRR decade (10 day) GAC data
from Sudan covering a period of nearly 7 years was presented as a video by
Stern (1990). In Figure 3.5 we show the 1989 NDVI as red and 1987 NDVI
as cyan (causing no change to be represented by a grey scale). This image
enhances the differences between fields in a much clearer way than the simple
change detection image. This enhancement is not necessarily due to changes
from 1987 to 1989 but may also be explained by differences between, say, crops
with no seasonal change at all.

Multivariate Change Detection

In Figures 3.6 and 3.3 we show the canonical variates for the 1987 and the 1989
data (CV3, 2 and 1 in red, green and blue). In Figure 3.8 we show all three
MADs (MAD1, 2 and 3 in red, green and blue). Areas with very high and very
low values in MAD1 are the areas of maximal change, and the sign of MAD1
indicates the “direction” of change. Note that as with any technique based
on eigenanalysis of covariance structures the sign of the transformed variables
is arbitrary. An inspection of this image and a comparison with the simple
change detection image shows that there is a much better distinction between
different types of changes. In the simple change detection image red and cyan
are dominating but in the MAD image we see that a much better discrimination
has been achieved. In Figure 3.9 we show the absolute value of MAD1 with
high values shown in red. This image outlines the areas where large changes
occurred irrespective of the nature of the change (irrespective of change e.g. from
vegetated to bare soil orvice versa, and irrespective of dominating wavelength
of change).

Below we give an interpretation of the numerical results from the computations
of the MADs and a brief discussion. We discuss (1) correlations between original
variables, (2) canonical correlations which are measures of similarity between
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Figure 3.6: Canonical variates of SPOT HRV XS, 5 Feb 1987
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Figure 3.7: Canonical variates of SPOT HRV XS, 12 Feb 1989
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Figure 3.8: MAD1, 2 and 3 in red, green and blue
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Figure 3.9: Absolute value of MAD1, high values in red
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1987 1989
Mean Std Dev Mean Std Dev

XS1 45.00 5.40 32.27 4.79
XS2 36.86 7.12 22.88 4.87
XS3 74.15 12.55 62.33 10.66

Table 3.1: Simple statistics for 1987 and 1989 SPOT HRV XS data

the linear combinations found, (3) correlations between canonical variates and
original variables in order to facilitate interpretation of the canonical variates, (4)
correlations between MAD variates and original variables in order to facilitate
interpretation of the MAD variates, (5) degrees of redundancy between the two
sets of canonical variates, i.e. how much variance in either original data set
is explained by the canonical variates, and (6) squared multiple correlations
between one set of data and the canonical variates of the opposite set of data.
Measures (5) and (6) assess other degrees of overlap or redundancy between the
two sets of data than the canonical correlations themselves.

Basic Statistics In any interpretation of statistical analysis of multivariate data
it is of course important to look at the basic statistics such as means, standard
deviations and correlations. The means and standard deviations are shown in
Table 3.1.

The values from 1989 are considerably lower than the values from 1987. Whether
this is due to calibration problems in the sensors or to actual changes in albedo
is not known.

The correlations among the original variables are shown in Table 3.2.

Despite the differences in means and standard deviations it is noted that the
correlation structure is remarkably similar in the two years considered. The
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1987 1989
XS1 XS2 XS3 XS1 XS2 XS3

XS1 1.0000 0.9057 –0.3336 0.5116 0.3955 –0.0082
1987 XS2 0.9057 1.0000 –0.4196 0.4352 0.4140 –0.0381

XS3 –0.3336 –0.4196 1.0000 –0.3477 –0.2644 0.2492
XS1 0.5116 0.4352 –0.3477 1.0000 0.8866 –0.2609

1989 XS2 0.3955 0.4140 –0.2644 0.8866 1.0000 –0.4191
XS3 –0.0082 –0.0381 0.2492 –0.2609 –0.4191 1.0000

Table 3.2: Correlations among original variables

Squared
Canonical Canonical

Correlation (�) Correlation (�2)
1 0.6505 0.4232
2 0.4024 0.1619
3 0.2403 0.0577

Table 3.3: Canonical correlations

crosscorrelations between years are less similar and decreasing with increas-
ing wavelength, in this case indicating that changes in vegetation are the most
important ones.

Canonical Correlation Analysis The magnitude of the canonical correlation
coefficients shown in Table 3.3 can be used in assessing the degree of change
in the bi-temporal imagery.

We see from the canonical correlations that only 6% of the variation in canonical
variate 3 from one year may be explained by the variation in the other canonical
variate 3. This indicates a considerable degree of change. For canonical variates
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1987 1989
CV1 CV2 CV3 CV1 CV2 CV3

XS1 0.3487 –0.1272 0.2370 0.4269 –0.1702 0.0887
XS2 –0.2154 0.2374 –0.1323 –0.3103 0.3669 –0.0909
XS3 –0.0473 0.0325 0.0672 –0.0245 0.0603 0.0850

Table 3.4: Raw canonical coefficients

2 the number is 16%, still a rather small number. Finally, canonical variates 1
show a common predictability of 42%.

The raw canonical coefficients are shown in Table 3.4. Thus the canonical
variates for the 1987 XS data are

2
4 CV1

CV2
CV3

3
5 =

2
4 0:3487 �0:2154 �0:0473

�0:1272 0:2374 0:0325
0:2370 �0:1323 0:0672

3
5

2
4 XS1� 45:00

XS2� 36:86
XS3� 74:15

3
5

and the canonical variates for the 1989 XS data are

2
4 CV1

CV2
CV3

3
5 =

2
4 0:4269 �0:3103 �0:0245

�0:1702 0:3669 0:0603
0:0887 �0:0909 0:0850

3
5

2
4 XS1� 32:27

XS2� 22:88
XS3� 62:33

3
5 :

The coefficients for computing the canonical variates are hard to interpret di-
rectly. The correlations between the original variables and the canonical variates
are better for interpretation, cf. below.

Canonical Structure The correlations between the original variables and the
canonical variables may be used in the interpretation of the canonical variables.
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1987 1989
CV1 CV2 CV3 CV1 CV2 CV3

XS1 0.6915 0.7078 0.1442 0.4499 0.2848 0.0347
1987 XS2 0.4206 0.8967 –0.1377 0.2736 0.3609 –0.0331

XS3 –0.5784 –0.0719 0.8126 –0.3763 –0.0289 0.1952
XS1 0.5021 0.2423 –0.0491 0.7718 0.6021 –0.2045

1989 XS2 0.2667 0.3201 –0.1072 0.4099 0.7955 –0.4462
XS3 –0.1050 0.0429 0.2357 –0.1613 0.1067 0.9811

Table 3.5: Correlations between original variables and canonical variables

The correlations between original variables and canonical variables are shown
in Table 3.5.

In both years we see that canonical variate 2 is strongly correlated with the visible
channels, i.e. MAD2 measures changes in the visible part of the spectrum. In
both years canonical variate 3 is positively correlated with the near-infrared
channel and negatively correlated with or at least almost not correlated with the
visible channels. This conforms with a vegetation index. Therefore, in this case
MAD1 measures vegetation changes. A similar pattern but with less emphasis
on the near-infrared channel is seen for canonical variates 1 and MAD3.

MAD Structure In order to interpret the MADs we give the correlations be-
tween the original variables and the MADs. These values will not be supplied
by a canned canonical correlations computer program. The values are computed
by means of the expressions given in Equations 3.41 and 3.42. It is easier—
and more CPU time consuming—to use an ordinary correlation program on the
estimated MAD image. The correlations between original variables and MADs
are shown in Table 3.6.

The most dominant correlations are MAD1 with 1987 XS3 (–0.50) and with
1989 XS3 (0.60). Pixels showing extreme values of MAD1 will predominantly
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MAD1 MAD2 MAD3
XS1 –0.0889 –0.3868 –0.2890

1987 XS2 0.0849 –0.4901 –0.1757
XS3 –0.5008 0.0393 0.2418
XS1 –0.1260 0.3292 0.3227

1989 XS2 –0.2750 0.4349 0.1714
XS3 0.6047 0.0583 –0.0674

Table 3.6: Correlations between original variables and MADs

have high values of 1987 XS3 and low values of 1989 XS3 orvice versa. Thus
MAD1 basically describes changes in XS3, the photo-infrared channel, which
again is strongly related to vegetation. Areas showing extreme values in MAD1
will then most likely have very different vegetation cover in 1987 and 1989.
Changes orthogonal to (i.e. uncorrelated with) these changes are described by
MAD2 and MAD3. Similar considerations on magnitudes of correlations show
that MAD2 and MAD3 describe changes in the shorter wavelengths, MAD2
with the emphasis on XS2 and MAD3 with the emphasis on XS1.

At this point it should be emphasized again that the analysis presented is scene
dependent. In other scenes the interpretations of the MADs will very likely
be different. Where a technique as the NDVI change detection “looks for”
changes in vegetation cover the present method detects general alterations in
the scene no matter the source of the alteration. Once established the MADs
may be interpreted by means of the correlations between the original and the
transformed variables as presented above.

To illustrate the concept further we shall examine the pineapple fields north of
Thika somewhat closer. In Figure 3.1 some pineapple fields are outlined along
with the center of Thika. In Table 3.7 we have indicated the relative level of
the three MAD variables mapped as red, green and blue in Figure 3.8.

First we consider area 3, bare soil in 1987 and healthy pineapple in 1989. This
is an area that shows extreme deviation between the two scenes. The area is
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Channel Red Green Blue
Area MAD1 MAD2 MAD3 MAD

1 High High High Light Gray
2 Low High High Cyan
3 High Low Low Red

Town Low High Low Green

Table 3.7: Levels of MADs in three pineapple areas and in the town

strongly outlined in all change schemes used, a.o. simple difference change de-
tection, NDVI change detection, decorrelated simple difference change detection
(not shown), principle components and rotated factors of simple difference im-
ages (not shown) and MAD. Area 2 shows the opposite pattern, pineapple in
1987 and bare soil in 1989. The values related with these patterns are consistent
with the general interpretation of the MADs given before. Area 1 is covered
with pineapple in different phenological stages in 1987 and 1989. The alter-
ations are strongly related to vegetation change and are therefore clearly visible
in the NDVI change image. In the NDVI change image we see a totally black
area in the center of Thika. This is very consistent with the notion of a vege-
tation index. In the same area the MAD change image reveals a considerable
alteration. No information is available to us on the probable causes for these
changes and we shall not speculate on their nature. Whatever the causes, the
differences described illustrate the fact that the MADs may be used in general
detection of alterations irrespective of the nature of the alterations.

As a concluding remark we therefore suggest the usage of the MAD transfor-
mation in the analysis of multispectral, bi-temporal imagery. The MADs give
an optimal (in the sense of maximal variance) detection of alterations from one
scene to the other, and also it provides a statistical analysis and interpretation
of the nature of the alterations.
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1987 Canonical Variables 1989 Canonical Variables
Cumulative Cumulative

Proportion Proportion �2 Proportion Proportion
CV1 0.3299 0.3299 0.4232 0.1396 0.1396
CV2 0.4368 0.7667 0.1619 0.0707 0.2103
CV3 0.2333 1.0000 0.0577 0.0135 0.2238

Table 3.8: Variance of 1987 XS explained by the individual canonical variates
for 1987 and 1989

1989 Canonical Variables 1987 Canonical Variables
Cumulative Cumulative

Proportion Proportion �2 Proportion Proportion
CV1 0.2632 0.2632 0.4232 0.1114 0.1114
CV2 0.3356 0.5988 0.1619 0.0543 0.1658
CV3 0.4012 1.0000 0.0577 0.0232 0.1889

Table 3.9: Variance of 1989 XS explained by the individual canonical variates
for 1989 and 1987

Canonical Redundancy Analysis A more detailed assessment of the degree
of change may be obtained from a deeper study of the correlations between
the variates involved. The standardized variance of 1987 XS explained by the
individual canonical variates for 1987 and 1989 are shown in Table 3.8.

The standardized variance of 1989 XS explained by the individual canonical
variates for 1989 and 1987 are shown in Table 3.9.

The squared multiple correlations (R2) between 1987 XS and the firstM canon-
ical variates of 1989 XS, and squared multiple correlations (R2) between 1989
XS and the firstM canonical variates of 1987 XS are shown in Table 3.10.
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R2(1987 XS, 1989 CAN) R2(1989 XS, 1987 CAN)

M 1 2 3 1 2 3
XS1 0.2024 0.2835 0.2847 0.2521 0.3108 0.3132
XS2 0.0749 0.2051 0.2062 0.0711 0.1736 0.1851
XS3 0.1416 0.1424 0.1805 0.0110 0.0129 0.0684

Table 3.10: Squared multiple correlations (R2) between 1987 (1989) XS and
the firstM canonical variates of 1989 (1987) XS

The canonical redundancy analysis confirms that we have considerable changes
between the two years. The degrees of explanation of one set of original
variables by the opposite canonical variates range from 1% to 14%, very low
numbers. Similarly, we see from the squared multiple correlations between the
original 1987 variables and the firstM 1989 canonical variates and the squared
multiple correlations between the original 1989 variables and the firstM 1987
canonical variates that the degree of explanation is poorest in the near-infrared
band, again indicating that vegetation changes are dominating.

Geometric Illustration of Canonical Variates

To hopefully give a better feel for what canonical variates are and to illustrate
geometrically the solution to the real, symmetric, generalized (RSG) eigenprob-
lem involved in finding them, two bivariate sets of data were generated. The
data consist of every 50’th row and every 50’th column of the image data an-
alyzed above. The first set of variables are bands 1 and 2 from the 1987 data
and the second set of variables are bands 2 and 3 from the 1989 data. The 1987
(1989) data are estimated from the 1989 (1987) data by regression.

The two top plots in Figure 3.10 show scatterplots and ellipses corresponding
to �2

0:95(2) = 5:991 contours for the 1987 and 1989 data. These contour el-
lipses are (top-left)aT ˆ��1

11 a = 5:991 (for the data) andaT ( ˆ�12 ˆ��1
22

ˆ�21)�1a =
5:991 (for the regressions), and (top-right)bT ˆ��1

22 b = 5:991 (for the data) and
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Figure 3.10: Canonical variates geometrically

bT ( ˆ�21 ˆ��1
11

ˆ�12)�1b = 5:991 (for the regressions). The open circles symbolize
observations and the crosses symbolize regressions made from the opposite set
of variables.

The two bottom plots show the solution to the eigenproblem. The ellipses shown
are contours for (bottom-left)aT ˆ�11a = 1,aT ˆ�12 ˆ��1

22
ˆ�21a = 1,aT ˆ�12 ˆ��1

22
ˆ�21a =

�2
1 andaT ˆ�12 ˆ��1

22
ˆ�21a = �2

2, and (bottom-right)bT ˆ�22b = 1, bT ˆ�21 ˆ��1
11

ˆ�12b =
1, bT ˆ�21 ˆ��1

11
ˆ�12b = �2

1 and bT ˆ�21 ˆ��1
11

ˆ�12b = �2
2. In the bottom-right plot the

contour lines are identified; hereN means the matrix in the numerator of the
Rayleigh coefficient identifying the canonical correlation problem andD means
the matrix in the denominator. In this case�2

1 = 0:2730 and�2
2 = 0:05147

corresponding to canonical correlations 0:5199 and 0:2269.
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In the two bottom plots the eigenvectors to the canonical correlation problem
are vectors with end points in the center of the ellipses and the points where the
ellipses have a common tangent (indicated with short lines). The square root of
the eigenvalues (the canonical correlations)�i are the ratios of the the lengths of
the major (or minor) axes in the ellipses corresponding toaT ˆ�12 ˆ��1

22
ˆ�21a = 1

andaT ˆ�12 ˆ��1
22

ˆ�21a = �2

i

(bottom-left). The same is true forbT ˆ�21 ˆ��1
11

ˆ�12b = 1
andbT ˆ�21 ˆ��1

11
ˆ�12b = �2

i

(bottom-right). The major axes ofaT ˆ�12 ˆ��1
22

ˆ�21a and

bT ˆ�21 ˆ��1
11

ˆ�12b (the matrices in the numerators of the Rayleigh coefficient) are
indicated with long lines.

3.3.2 Landsat TM Data in Forestry (MUSECC)

The applicability of multiset canonical correlations analysis to multivariate and
truly multitemporal change detection studies is demonstrated in a case study
using Landsat-5 Thematic Mapper (TM) data covering a small forested area
approximately 20 kilometers north of Umea˚ in northern Sweden (data from the
Swedish Space Corporation). The data consist of six times six spectral bands
with 512×512 20 meter pixels rectified to the Swedish national grid from the
summers 1984–89. The acquisition dates are 1 August 1984, 26 June 1985, 6
June 1986, 12 August 1987, 27 June 1988 and 21 June 1989. Results from
such analyses are linear combinations that transform the original bands into new
variables that show decreasing similarity over six points in time. The minimum
similarity variables are measures of change in all bands simultaneously. This
analysis of correlations between variables where observations are considered as
repetitions is termed R-mode analysis. In this case, in R-mode analysis we
consider Landsat TM bands 1, 2, 3, 4, 5 and 7 for each of the years 1984–1989
as one set of variables. In Q-mode analysis of correlations between observations
where variables are considered as repetitions we consider TM bands 1 for all
years 1984–1989 as one set of variables, TM bands 2 for all years 1984–1989
as another set of variables, etc. For a sketch of R- and Q-mode analysis set-up
see Figures 3.11 and 3.12. In both figures the sets of variables indicated on the
top are transformed into new variables on the bottom.
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Figure 3.11: Sketch of R-mode multiset canonical correlations analysis
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Figure 3.12: Sketch of Q-mode multiset canonical correlations analysis
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Figure 3.13: Order of variables in following images, left: False color and R-
mode, right: Q-mode

This case study is described in lesser detail than the above MAD analysis of
SPOT HRV XS data. As with the above MAD analysis case, this case is intended
as an illustrative example showing how calculations are performed and how an
interpretation of the canonical variates can be carried out. The case study is not
meant as a careful assessment of the actual changes that occurred in the study
area chosen.

Figures 3.14 to 3.24 are to be viewed with the paper in landscape mode. The
order of the variables is shown in Figure 3.13.

Figure 3.14 shows Landsat TM channels 4, 5 and 3 as red, green and blue
respectively.

Figure 3.15 shows R-mode canonical variates 1, 2 and 3 as red, green and blue
respectively. We see that we have indeed obtained a high degree of similarity
over years. Figure 3.16 shows R-mode canonical variates 6, 5 and 4 as red,
green and blue respectively. This is the RGB combination that shows minimum
similarity over years. We see that noise (striping and drop-outs) is depicted well
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Figure 3.14: Landsat TM channels 4, 5 and 3 as red, green and blue
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as is to be expected: if data from one year is noisy and data from another year
is not then certainly the largest difference could be that noise. As for the MAD
transformation (see Section 3.1.1) this observation inspires an iterative use of
the procedure: first identify noise, restore data or exclude areas with noise from
further analysis, and carry out the analysis once more.

The minimum similarity variables are measures of change in all bands simul-
taneously. To find areas of minimum similarity with high autocorrelation we
use the absolute value of minimum/maximum autocorrelation factors (Switzer
& Green (1984) and Section 2.2) of the highest order canonical variates. Fig-
ures 3.17, 3.18, 3.19 and 3.20 show R-mode canonical variates 6, their absolute
values, their MAFs and absolute values of their MAFs. Figures 3.21, 3.22,
3.23 and 3.24 show Q-mode canonical variates 6, their absolute values, their
MAFs and absolute values of their MAFs. In the Q-mode case MAF analysis
concentrates the information in two components. Q-mode analysis also reveals
that striping and drop-outs occur basically in bands 1, 2 and 3. Another good
impression of overall change that includes lower order CVs also, is achieved
by inspecting (absolute values of) MAFs of Q-mode canonical variates (CVs) 5
and 6 (not shown).

Correlations between R-mode CVs 6 and the original data given in Figure 3.26
show that changes over years are associated with TM bands 1 especially from
1984 to 1987. This is probably because of differences in atmospheric conditions.
Therefore analysis of atmospherically corrected data would be interesting. Cor-
relations between Q-mode CVs 6 and the original variables given in Figure 3.28,
for TM bands 1, 2, 3, 5 and 7 reveal a pattern of positive correlation with 1984,
negative correlation with 1985, and again positive correlation with 1986 (but not
as high as with 1984) combined with (nearly) no correlation with 1987, 1988
and 1989. Q-mode CV6 for TM4 is positively correlated with TM4 in 1984,
1985 and 1986, uncorrelated with TM4 in 1987, and negatively correlated with
TM4 in 1988 and 1989. This could indicate that vegetation related changes
occurred from 1986 to 1988. Correlations between Q-mode CVs 1 and TM4
given in Figure 3.27 are (except for TM4 CV1) lower than correlations between
Q-mode CVs 1 and the other bands. Again, this indicates changes that are
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Figure 3.15: R-mode canonical variates 1, 2 and 3 as red, green and blue
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Figure 3.16: R-mode canonical variates 6, 5 and 4 as red, green and blue
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Figure 3.17: R-mode canonical variates 6
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Figure 3.18: Absolute values of R-mode canonical variates 6
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Figure 3.19: MAFs of R-mode canonical variates 6
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Figure 3.20: Absolute values of MAFs of R-mode canonical variates 6
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Figure 3.21: Q-mode canonical variates 6
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Figure 3.22: Absolute values of Q-mode canonical variates 6
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Figure 3.23: MAFs of Q-mode canonical variates 6
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Figure 3.24: Absolute values of MAFs of Q-mode canonical variates 6

IMSOR Image Group

136 Chapter 3. Multiset Data Analysis

related with TM4, possibly vegetation changes. For completeness Figure 3.25
gives correlations between R-mode CVs 1 and the original data.

For reasons given in the above paragraph Section 3.3.3 contains a brief report
on a MAD analysis of the bi-temporal data from 1986 and 1988.

Figure 3.29 shows the sum of the absolute values of MAFs 1 and 2 of the Q-mode
canonical variates 6. The dark areas in this one image are areas of maximum
change in all years and all bands regardless of what caused the change and
regardless of the “direction” of change.

The following comparisons between R- and Q-mode canonical variates of the
above data all refer to constraint and orthogonality criteriona

T
i

�iiai = 1;

i.e. each canonical variate has unit variance (constraint 3 above). Table 3.11
shows correlations between R-mode canonical variates 1 (�U ) for all methods
investigated. The same correlations for Q-mode analysis is shown in Table 3.12.
Again, we see a special behavior for TM4 indicating vegetation changes.

In these comparisons, Sumcor, Ssqcor and Maxvar seem to perform much in
the same fashion. Minvar and Genvar seem to perform differently and not in
the same fashion. Gnanadesikan (1977) observes a similar different behavior
for Minvar. This is understandable when contemplating the design criteria be-
hind the individual methods. Sumcor and Ssqcor both focus on all correlations
between CVs. Maxvar maximizes the largest eigenvalue, again a focus on all
elements in�U . Minvar relies heavily on the smallest eigenvalue, whereas
Genvar minimizes the determinant of�U and therefore relies on several small
eigenvalues. Due to lack of ground truth data it has not been possible to de-
termine empirically which of the five methods (if any) perform best in this
context.

Tables 3.13 and 3.14 show comparisons of the actual values of the optimization
criteria for the five methods discussed for R- and Q-mode canonical variates 1.
The optimization criteria are not contradicted, e.g. for Minvar�min is smaller
than for the other methods. Also in this comparison, Sumcor, Ssqcor and Maxvar
seem to perform much in the same fashion, and Minvar and Genvar seem to
perform differently and not in the same fashion.
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Figure 3.25: Correlations between R-mode CVs 1 and original data
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Figure 3.26: Correlations between R-mode CVs 6 and original data
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Figure 3.27: Correlations between Q-mode CVs 1 and original data
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Figure 3.28: Correlations between Q-mode CVs 6 and original data
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Sumcor
1.0000 0.9114 0.8534 0.8768 0.8893 0.8852
0.9114 1.0000 0.9327 0.9248 0.8939 0.9037
0.8534 0.9327 1.0000 0.9202 0.8861 0.9048
0.8768 0.9248 0.9202 1.0000 0.8868 0.9127
0.8893 0.8939 0.8861 0.8868 1.0000 0.9544
0.8852 0.9037 0.9048 0.9127 0.9544 1.0000

Ssqcor
1.0000 0.9114 0.8532 0.8765 0.8893 0.8851
0.9114 1.0000 0.9330 0.9250 0.8939 0.9038
0.8532 0.9330 1.0000 0.9204 0.8860 0.9049
0.8765 0.9250 0.9204 1.0000 0.8867 0.9126
0.8893 0.8939 0.8860 0.8867 1.0000 0.9545
0.8851 0.9038 0.9049 0.9126 0.9545 1.0000

Maxvar
1.0000 0.9114 0.8534 0.8767 0.8893 0.8852
0.9114 1.0000 0.9328 0.9249 0.8939 0.9037
0.8534 0.9328 1.0000 0.9202 0.8860 0.9048
0.8767 0.9249 0.9202 1.0000 0.8867 0.9127
0.8893 0.8939 0.8860 0.8867 1.0000 0.9544
0.8852 0.9037 0.9048 0.9127 0.9544 1.0000

Minvar
1.0000 0.8334 0.7259 0.7709 0.7651 0.7797
0.8334 1.0000 0.9195 0.9027 0.8472 0.8709
0.7259 0.9195 1.0000 0.8595 0.7692 0.8246
0.7709 0.9027 0.8595 1.0000 0.8667 0.9023
0.7651 0.8472 0.7692 0.8667 1.0000 0.9564
0.7797 0.8709 0.8246 0.9023 0.9564 1.0000

Genvar
1.0000 0.9067 0.8390 0.8645 0.8896 0.8792
0.9067 1.0000 0.9412 0.9276 0.8903 0.9022
0.8390 0.9412 1.0000 0.9241 0.8772 0.9031
0.8645 0.9276 0.9241 1.0000 0.8795 0.9076
0.8896 0.8903 0.8772 0.8795 1.0000 0.9577
0.8792 0.9022 0.9031 0.9076 0.9577 1.0000

Table 3.11: Correlations between R-mode canonical variates 1 for all five meth-
ods
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Sumcor
1.0000 0.9420 0.9548 0.6414 0.8919 0.9275
0.9420 1.0000 0.9531 0.7571 0.9059 0.9021
0.9548 0.9531 1.0000 0.6989 0.9038 0.9219
0.6414 0.7571 0.6989 1.0000 0.7366 0.6392
0.8919 0.9059 0.9038 0.7366 1.0000 0.9673
0.9275 0.9021 0.9219 0.6392 0.9673 1.0000

Ssqcor
1.0000 0.9442 0.9574 0.6385 0.8935 0.9301
0.9442 1.0000 0.9547 0.7547 0.9064 0.9038
0.9574 0.9547 1.0000 0.6942 0.9049 0.9241
0.6385 0.7547 0.6942 1.0000 0.7326 0.6337
0.8935 0.9064 0.9049 0.7326 1.0000 0.9678
0.9301 0.9038 0.9241 0.6337 0.9678 1.0000

Maxvar
1.0000 0.9437 0.9566 0.6396 0.8931 0.9293
0.9437 1.0000 0.9543 0.7549 0.9064 0.9034
0.9566 0.9543 1.0000 0.6958 0.9047 0.9235
0.6396 0.7549 0.6958 1.0000 0.7333 0.6358
0.8931 0.9064 0.9047 0.7333 1.0000 0.9677
0.9293 0.9034 0.9235 0.6358 0.9677 1.0000

Minvar
1.0000 0.9451 0.8939 0.4978 0.8767 0.9316
0.9451 1.0000 0.8535 0.6725 0.8988 0.9055
0.8939 0.8535 1.0000 0.3950 0.7683 0.8438
0.4978 0.6725 0.3950 1.0000 0.6609 0.5046
0.8767 0.8988 0.7683 0.6609 1.0000 0.9666
0.9316 0.9055 0.8438 0.5046 0.9666 1.0000

Genvar
1.0000 0.9488 0.9666 0.5350 0.8903 0.9369
0.9488 1.0000 0.9566 0.6985 0.9036 0.9058
0.9666 0.9566 1.0000 0.5687 0.8953 0.9302
0.5350 0.6985 0.5687 1.0000 0.6778 0.5261
0.8903 0.9036 0.8953 0.6778 1.0000 0.9676
0.9369 0.9058 0.9302 0.5261 0.9676 1.0000

Table 3.12: Correlations between Q-mode canonical variates 1 for all five meth-
ods
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Figure 3.29: Sum of absolute value of MAFs 1 and 2 of Q-mode CVs 6

PP
�Uij

PP

(�Uij)2

�max �min det�U

Sumcor 33.0725 30.4481 5.5125 0.0415 2.3488 10�5

Ssqcor 33.0724 30.4482 5.5125 0.0414 2.3347 10�5

Maxvar 33.0725 30.4482 5.5125 0.0415 2.3448 10�5

Minvar 31.1882 27.2723 5.2038 0.0336 1.0191 10�4

Genvar 32.9787 30.2877 5.4971 0.0371 2.0069 10�5

Table 3.13: Optimization criteria for all five methods, R-mode

IMSOR Image Group

144 Chapter 3. Multiset Data Analysis

PP
�Uij

PP

(�Uij)2

�max �min det�U

Sumcor 31.4870 28.0484 5.2730 0.0177 1.2683 10�5

Ssqcor 31.4812 28.0566 5.2732 0.0167 1.0872 10�5

Maxvar 31.4842 28.0562 5.2734 0.0171 1.1480 10�5

Minvar 29.2292 24.9382 4.9373 0.0073 1.6008 10�5

Genvar 30.6156 26.9877 5.1558 0.0078 3.4272 10�6

Table 3.14: Optimization criteria for all five methods, Q-mode

3.3.3 Landsat TM Data in Forestry (MAD revisited)

The correlation structures shown in Figure 3.28 and described in page 125
indicate that vegetation related changes occurred from 1986 to 1988. Therefore
this section gives a brief report of a MAD analysis of the Landsat TM data from
6 June 1986 and 27 June 1988. Figure 3.30 shows all six MADs (view with
paper in landscape mode, row-wise from top-left is MAD1, MAD2, etc.). Again,
we see that noise is a major difference between the two points in time but also
the areas we have seen in the above multiset analysis stand out clearly in this
analysis. This is also evident in the absolute values of the MADs, Figure 3.31.

Correlations between the MADs and the original variables given in Table 3.15
are generally quite low. However, the pattern revealed shows that MAD1 is as-
sociated with TM1, i.e. probably differences in atmospheric conditions. MAD4
is positively correlated with 1986 TM4 and negatively correlated with 1986
TM1, 2 and 3. The opposite correlation structure is true for MAD4 and the
1988 data. Therefore MAD4 is a sort of vegetation index change detector. With
reverse signs for the correlations this is true for MAD5 also. MAD6 is a change
detector of the (weighted) overall level.

A MAF transformation of the MADs is shown in Figure 3.32 and the correlations
between the MADs and their MAFs are shown in Table 3.16. We see that
low order MAFs (signal) are associated with high order MADs, i.e. maximum
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Figure 3.30: MADs of TM bands from 1986 and 1988
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Figure 3.31: Absolute values of MADs of TM bands from 1986 and 1988
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MAD1 MAD2 MAD3 MAD4 MAD5 MAD6
Can.corr. 0.0464 0.0978 0.3199 0.5957 0.7255 0.8966
1986 TM1 0.2583 –0.0010 –0.0789 –0.0759 0.1078 0.1941
1986 TM2 –0.0389 0.1994 –0.1150 –0.0512 0.0313 0.2096
1986 TM3 –0.0280 0.0202 0.0634 –0.0896 0.1008 0.2123
1986 TM4 0.0061 0.0781 –0.0103 0.1105 –0.2109 0.1764
1986 TM5 –0.0167 0.0355 –0.0431 0.1380 0.1089 0.2047
1986 TM7 –0.0592 –0.0676 –0.1041 0.0638 0.1493 0.1993
1988 TM1 –0.1453 0.0239 0.0778 0.1197 –0.1621 –0.1867
1988 TM2 0.0986 –0.0480 0.0399 0.1069 –0.0978 –0.2089
1988 TM3 0.0068 0.0922 –0.0676 0.1583 –0.1567 –0.1854
1988 TM4 –0.0089 –0.0218 –0.0211 –0.1216 0.1930 –0.1838
1988 TM5 0.0122 0.0567 –0.0765 –0.0662 –0.1588 –0.1995
1988 TM7 0.0390 0.1630 0.0069 0.0072 –0.2069 –0.1798

Table 3.15: Correlations between MADs and original variables
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MAF1 MAF2 MAF3 MAF4 MAF5 MAF6
Autocorr. 0.9130 0.8769 0.6822 0.5402 0.4770 0.4696
MAD1 0.0403 –0.0784 –0.1402 –0.1820 0.2033 0.9477
MAD2 0.2501 –0.1095 –0.2162 0.7958 0.4954 –0.0051
MAD3 0.0331 0.0074 –0.0456 0.4942 –0.8262 0.2646
MAD4 0.4769 0.1545 0.8523 0.0701 0.0540 0.1205
MAD5 –0.7485 0.4915 0.2780 0.2759 0.1661 0.1309
MAD6 0.3834 0.8464 –0.3576 –0.0913 –0.0162 –0.0133

Table 3.16: Correlations between MAFs of MADs and MADs

similarity CVs andvice versa. Absolute values of the MAFs are shown in
Figure 3.33.

Table 3.17 shows correlations between MAFs of MADs and the original TM
bands. MAF1 is positively correlated with 1986 TM4 and negatively correlated
with 1986 TM1 and 3. The opposite correlation structure is true for MAF1 and
the 1988 data. Therefore MAF1 is a sort of vegetation index change detector
and it concentrates the information from MADs 4 and 5. MAF2 is a change
detector of the weighted mean of all bands except TM4, i.e. a change detector
of the non-vegetation related level. MAF6 measures change in TM1 which is
likely to represent changes in atmospheric conditions. We see that the MAF
analysis of the MADs has isolated the changes related to TM1 (presumably
atmospheric conditions) and changes related to TM4 (presumably vegetation) in
each end of the autocorrelation “spectrum”.

Figure 3.34 shows the sum of the absolute values of MAFs 1 and 2 of MADs.
This one graytone image shows the location and strength of most of the changes
in the area. Figure 3.35 shows MAFs 1, 2 and 3 of MADs as red, green and
blue. Figure 3.36 shows the absolute values of MAFs 1, 2 and 3 of MADs as
red, green and blue. This image beautifully depicts locations and strength of
change. Different types of change are indicated by different colors. The noise
related changes are isolated in the higher order MAFs of MADs.
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MAF1 MAF2 MAF3 MAF4 MAF5 MAF6
Autocorr. 0.9130 0.8769 0.6822 0.5402 0.4770 0.4696
1986 TM1 –0.0349 0.1848 –0.1365 –0.0801 0.1278 0.2263
1986 TM2 0.0771 0.1653 –0.1423 0.0949 0.1849 –0.0731
1986 TM3 –0.0307 0.2159 –0.1276 0.0547 –0.0396 –0.0103
1986 TM4 0.2976 0.0536 –0.0448 –0.0105 0.0166 –0.0140
1986 TM5 0.0696 0.2452 0.0713 0.0310 0.0720 0.0007
1986 TM7 –0.0277 0.2632 0.0522 –0.0670 0.0655 –0.0587
1988 TM1 0.1095 –0.2099 0.1354 0.0646 –0.0994 –0.1215
1988 TM2 0.0374 –0.2105 0.1334 –0.0368 –0.0438 0.1071
1988 TM3 0.1428 –0.2206 0.1398 0.0236 0.0884 –0.0109
1988 TM4 –0.2794 –0.0765 0.0227 0.0353 0.0333 –0.0009
1988 TM5 0.0229 –0.2649 –0.0397 –0.0251 0.0671 –0.0351
1988 TM7 0.1319 –0.2737 –0.0281 0.0858 0.0519 0.0141

Table 3.17: Correlations between MAFs of MADs and original variables
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Figure 3.32: MAFs of MADs of TM bands from 1986 and 1988
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Figure 3.33: Absolute values of MAFs of MADs of TM bands from 1986 and
1988
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Figure 3.34: Sum of absolute values of MAFs 1 and 2 of MADs of TM bands
from 1986 and 1988
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Figure 3.35: MAFs 1, 2 and 3 of MADs of TM bands from 1986 and 1988 as
RGB
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Figure 3.36: Absolute values of MAFs 1, 2 and 3 of MADs of TM bands from
1986 and 1988 as RGB
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This case study shows that because of the smart extension to univariate differ-
ences obtained by MAD analysis, all MAD components—also the high order
MADs that contain information on maximum similarity as opposed to informa-
tion on minimum similarity (i.e. change) contained in the low order MADs—are
important in interpreting multivariate changes. This conclusion is supported by
a case with simulated changes not shown here.
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Appendix A

Redundancy Analysis

This appendix describes some further ways of analyzing the degree of overlap
between the ordinary two-set canonical variates (cf. Section 3.1). In order to
clarify matters let us recall a fundamental property of the correlation coefficient

�, namely that the squared correlation between two variables equals the fraction
of the variation in one variableY that may be explained by an affine expression
in the other variableX. If we call this predicted valuêY we have

Varf ˆY g = �2

Y X VarfY g: (A.1)

If the correlation equals 1 we have the same variance of the predicted value as
of the original, i.e. we can make a perfect prediction ofY based onX. If on
the other hand the correlation equals 0 the predictorX contains no information
on Y .

If we havek predictorsX1;…; Xk the expression is still valid if we replace the
correlation with the multiple correlation coefficient

Varf ˆY g = �2

Y jX1;…;Xk

VarfY g: (A.2)
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The squared multiple correlation coefficient is thus the degree of variation inY

that can be explained byX1;…; Xk.

After these more general remarks we shall investigate some properties of the
correlation structure of canonical variates. From the definitions we get

CovfX;Ug = CovfX;A0Xg = �11A (A.3)

CovfX;V g = CovfX;B0Y g = �12B (A.4)

CovfY ;V g = CovfY ;B0Y g =�22B (A.5)

CovfY ;Ug = CovfY ;A0Xg = �21A (A.6)

We shall for simplicity and without lack of generality assume that theX ’s an
theY ’s are standardized, i.e. they have variance 1. Then the above matrices are
correlation matrices.

The expression

fj =
1

p

pX
i=1

[CorrfXi; Ujg]2 =
1

p
a0j�11�11aj (A.7)

equals the fraction of the (standardized) variance of the originalX variables
that are explained by canonical variateUj . It follows that

pX
j=1

fj =
pX

j=1

1

p
a0j�11�11aj =

1

p

tr (A0�11�11A); (A.8)

where tr denotes the trace of a matrix. FromA0�11A = I we obtainA0 =

A�1�11 and therefore
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pX
j=1

fj =
1

p

tr (A�1�11A) =
1

p
tr (�11AA

�1) = 1: (A.9)

This corresponds to the fact that all of the variation in the original variables

X1;…; Xp may be explained by the whole set of canonical variatesU1;…; Up.

If we multiply fj with the j’th squared canonical correlation�j we obtain the
so called redundancy factorRj. It may be instructive to note that

Rj = �jfj

= �j

1

p
a0j�11�11aj

=
1

�j

1

p
a0j�12�
�1

22 �21�12�
�1

22 �21aj

=
1

p
b0j�21�12bj

=
1

p

pX
i=1

[CorrfXi; Vjg]
2 (A.10)

Introducing the mnemotechnical expressionsCV Xi for Ui andCV Yi for Vi

and we obtain

Rj =
1

p

cancor2j
pX

i=1

[CorrfXi; CV Xjg]2

=
1

p

pX
i=1

[CorrfXi; CV Yjg]2: (A.11)

The squared canonical correlation is the shared variability between the two sets
of canonical variates. Consequently we have the following interpretation of the
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redundancy factor of the first set of variables given the availability of the second
set of variables:Rj expresses the amount of variation in the original variables
that is explained by thej’th canonical variate adjusted with the shared variation
between thej’th canonical variates. This equals the amount of variation of
variation explained by the oppositej’th canonical variate.

Related to these considerations are properties of multiple squared correlations
between the original variables and the set of opposite canonical variates. If�0i

denotes thei’th row in �12 the squared multiple correlation betweenXi and

CV Y1;…; CV Yk is

�XijCV Y1;…;CV Yk = �0i [b1; � � � ; bk ]

2
64
b01

...

b
0

k

3
75�i

=

kX
j=1

[�ibj ]2

=

kX
j=1

[CorrfXi; CV Yjg]2; (A.12)

a quantity that is also useful in assessing overlap between the two sets of vari-
ables.
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Appendix B

Multiset Canonical
Correlations

Multiset canonical correlations analysis is dealt with in Section 3.2. This ap-
pendix deals with the maximization of the sum of squared covariances of the
transformed variables only.

B.1 Maximize Sum of Squared Covariances

To maximize the sum of squared covariances under constraints in the multiset
canonical correlations analysis problem we use a Lagrange multiplier technique
as in Section 3.2.1. The same four constraints are examined.

Constraint 1: aTi ai � 1 = 0

Introduce

161
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F = W � 2

nX
i=1

�i(a
T

i ai � 1): (B.1)

By setting@F=@ai = 0 we get

nX
j=1

(aTi �ijaj )�ijaj = �iai; i = 1;…; n (B.2)

or

2
6664
�11�11 �12�12 � � � �1n�1n

�21�21 �22�22 � � � �2n�2n

...
...

. . .
...

�n1�n1 �n2�n2 � � � �nn�nn

3
7775

2
6664
a1

a2
...

an
3

7775 =

2
6664
�1a1

�2a2
...

�nan
3

7775 (B.3)

with �ij = aTi �ijaj (in this case�ij is not a correlation). This is not a normal
eigensystem.

Constraint 2: aTa� 1 =

Pn
i=1a
T

i ai � 1 = 0

Introduce
F = W � 2�(

nX
i=1

aTi ai � 1): (B.4)

By setting@F=@ai = 0 we get
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nX
j=1

(aTi �ijaj )�ijaj = �ai; i = 1;…; n (B.5)

or

2
6664
�11�11 �12�12 � � � �1n�1n

�21�21 �22�22 � � � �2n�2n

...
...

.. .
...

�n1�n1 �n2�n2 � � � �nn�nn

3
7775

2
6664
a1

a2
...

an
3

7775 = �
2

6664
a1

a2
...

an
3

7775 (B.6)

with �ij = aTi �ijaj (in this case�ij is not a correlation). This is not a normal
eigensystem as�ij depends on�i so the matrix on the left-hand-side is not
constant.

Constraint 3: aTi �iiai � 1 = 0

Introduce

F = W � 2

nX
i=1

�i(a
T

i �iiai � 1): (B.7)

By setting@F=@ai = 0 we get

nX
j=1

(aTi �ijaj )�ijaj = �i�iiai; i = 1;…; n (B.8)

or
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2
6664
�11�11 �12�12 � � � �1n�1n

�21�21 �22�22 � � � �2n�2n

...
...

. . .
...

�n1�n1 �n2�n2 � � � �nn�nn

3
7775

2
6664
a1

a2
...

an
3

7775 = (B.9)

2
6664
�1�11 0 � � � 0

0 �2�22 � � � 0

...
...

. . .
...

0 0 � � � �n�nn

3
7775

2
6664
a1

a2
...

an
3

7775

with �ij = aTi �ijaj (in this case�ij is a correlation). This is not a normal
generalized eigensystem.

Constraint 4: aT�Da� 1 =

Pn
i=1a
T

i �iiai � 1 = 0

Introduce

F = W � 2�(

nX
i=1

aTi �iiai � 1): (B.10)

By setting@F=@ai = 0 we get

nX
j=1

(aTi �ijaj )�ijaj = ��iiai; i = 1;…; n (B.11)

or
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2
6664
�11�11 �12�12 � � � �1n�1n

�21�21 �22�22 � � � �2n�2n

...
...

.. .
...

�n1�n1 �n2�n2 � � � �nn�nn

3
7775

2
6664
a1

a2
...

an
3

7775 = (B.12)

�
2

6664
�11 0 � � � 0

0 �22 � � � 0

...
...

. ..
...

0 0 � � � �nn

3
7775

2
6664
a1

a2
...

an
3

7775

with �ij = aTi �ijaj (in this case�ij is not a correlation). This is not a normal
generalized eigensystem as�ij depends on�k so the matrix on the left-hand-side
is not constant.

Other Natural Constraints

Other natural constraints in this case are

1. (aTi ai)
2 = 1;

2.

Pn
i=1(a
T

i ai)
2 = 1;

3. (aTi �iiai)2 = 1; or

4.

Pn
i=1(a
T

i �iiai)2 = 1

All of these constraints lead to non-ordinary eigenvalue-type systems of this
shape

2
6664
�11�11 �12�12 � � � �1n�1n

�21�21 �22�22 � � � �2n�2n

...
...

.. .
...

�n1�n1 �n2�n2 � � � �nn�nn

3
7775

2
6664
a1

a2
...

an
3

7775 = (B.13)
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2
6664
�1�11�11 0 � � � 0

0 �2�22�22 � � � 0

...
...

. ..
...

0 0 � � � �n�nn�nn

3
7775

2
6664
a1

a2
...

an
3

7775

with �ij = aTi �ijaj .
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Appendix C

Computer Implementations

The construction and maintenance of a large toolbox of computer programs for
(non-trivial) analysis of (spatial, multivariate, and multi-temporal) data is a never
ending task. In the early and in the mid-1980s the software development in the
IMSOR Image Group took place in a local environment, the Picture Processing
System (PPS), developed by Jan Gunulf, Gert Nilsson and Bjarne Kjær Ersbøll
under Knut Conradsen’s supervision. Programs were written in Fortran and run
on (then) large IBM main frames such as systems 360 and 370, later on systems
3081 running MVS/TSO under OS and 3033 running CMS under VM.

In 1985 a dedicated image processor, a GOP-300 from ContextVision AB, Swe-
den, was purchased. This engine was equipped with a powerful software package
and also the group wrote its own software for the GOP. Bjarne Kjær Ersbøll and
under his supervision Jan Pedersen were instrumental in this effort. The GOP
has later been updated and it is still a strong machine.

To be compatible with some of our partners in large research projects, an
ERDAS/PC system (updated in 1991, ERDAS (1990)) was purchased in 1988.
I wrote a selection of computer programs (in Fortran, Nielsen (1990)) for the
ERDAS/PC system running under DOS.
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Presently our software development takes place on a network of UNIX worksta-
tions comprising HP 9000/7xx, Sun SPARC IPC, Sun SPARC 10, IBM RS/6000,
Sony NeWS, SiliconGraphics Indigo 2, and powerful PCs (486s and Pentiums)
running Linux. We are basing our toolbox of computer programs on the C
programming language, the X Window System and the HIPS image process-
ing system (Cohen & Landy, 1991; Landy, 1991). The HIPS system at IMM
including the developments of the group itself (Nielsen, 1991), is maintained
by Jens Michael Carstensen and myself. We intend to update a description of
this software regularly and to make the description (along with a lot of other
information from IMM, for instance this thesis) available on the World Wide
Web via Mosaic.

The remainder of this appendix describes HIPS software developed at IMM that
relates directly to the work described in this thesis.

C.1 Geostatistics

Based on Lee & Schachter (1980) Kristian Windfeld wrotedelaunay to es-
tablish a Delaunay triangulation of a set of irregularly spaced points in 2-D.

On my initiative and under my supervision Karsten Hartelius wrotecrossv to
estimate 1- and 2-D cross-variograms, cross-covariance and cova functions, and
cokrig to perform point cokriging. On my initiative and under my supervision
Henrik Juul Hansen wrotekrig to perform point and block (simple, ordinary
and universal) kriging.cokrig andkrig perform other types of interpolation
also (such as inverse distance and inverse distance squared) and they provide
different local characteristics such as local variance. Also,cokrig andkrig
are prepared for ancillary data such as digital elevation models, geological maps
or maps of catchment areas. This type of information can then be included in
the search for neighbors in the estimation process.

Also, additional formatting and plotting software (in S-PLUS, Statitistcal Sci-
ences (1993)), and software to estimate 1- and 2-D semivariogram models (in
SAS, SAS Institute (1990)) was written.
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C.2 Dimensionality Reduction

On my initiative and under my supervision, several methods for orthogonal-
ization and dimensionality reduction are implemented in a computer program,
maf programmed by Rasmus Larsen.maf finds principal components, (ro-
tated) principal factors, minimum/maximum autocorrelation factors, maximum
noise fractions, (multiset) canonical variates (cf. Chapter 3) and linear combina-
tions that give maximal multivariate differences of two sets of variables (MAD,
Conradsen & Nielsen (1994), cf. Section 3.1.1).

Based on the Delaunay triangulationsigma n (written with Karsten Hartelius)
finds an estimate of the noise dispersion matrix as described above.

C.3 Multiset Data Analysis

On my initiative and under my supervision, the traditional method for per-
forming two-set canonical correlations analysis is implemented in two computer
programs,maf programmed by Rasmus Larsen andcancorr programmed by
Anders Rosholm.maf also finds principal components, (rotated) principal fac-
tors, minimum/maximum autocorrelation factors, and linear combinations that
give maximal multivariate differences (MAD, Conradsen & Nielsen (1994), see
Section 3.1.1).

Also on my initiative and under my supervision, the multiset canonical correla-
tions analysis methods of maximizing the sum of covariances under constraints
2 (

P
aTi ai = 1) and 4 (

P
aTi �iiai = 1) are implemented inmaf .

All covariance matrices are found by the method of provisional means (Dixon,
1985). To find inverse covariance matrices, LINPACK routinesdpofa and
dpodi are used (Dongarra, Bunch, Moler, & Stewart, 1979)

• dpofa performs a Cholesky factorization of a positive definite matrix,

� = LLT . L is lower triangular.
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• dpodi uses the Cholesky factorization to find the determinant and/or the
inverse of�.

To solve the real, symmetric, generalized eigenproblem (RSG), EISPACK rou-
tines are used (Wilkinson & Reinsch, 1971; Garbow, Dongarra, Boyle, & Moler,
1977). The recommended EISPACK path to find all eigenvalues with all corre-
sponding eigenvectors is to use routinesreduc , tred2 , tql2 and rebak

• reduc reduces the real, symmetric, generalized eigenproblemAx =

�Bx whereB is positive definite, to the standard real, symmetric eigen-
problemCy = �y using Cholesky factorization ofB = LLT . L is lower
triangular. Output isC = L�1AL�T with the same eigenvalues as the
original RSG (eigenvectorsx = L�Ty can be found byrebak ).

• tred2 reduces a real, symmetric matrix (in casuC = L�1AL�T ) to
a real, symmetric, tridiagonal matrix (with same eigenvalues) using the
Householder method in which a series of orthogonal similarity transfor-
mations are accumulated.

• tql2 determines eigenvalues and -vectors of a real, symmetric, tridiag-
onal matrix; the eigenvalues are computed by means of the QL algorithm
(with shifting to accelerate convergence) which in turn involves succes-
sive orthogonal similarity transformations, resulting in convergence to a
diagonal matrix; the eigenvectors are computed from the accumulated QL
transformations.

• rebak forms eigenvectors of the RSG from the eigenvectors of the de-
rived symmetric matrix (fromreduc , x = L�Ty).

To solve the real, symmetric eigenproblem (RS), onlytred2 and tql2 are
used. Good general descriptions of the methods used in the above computer
programs are given in e.g. Strang (1980), Hansen (1987) and Press, Teukolsky,
Vetterling, & Flannery (1992).

The remaining optimization problems described above (in fact all of them, in-
cluding the eigenvalue problems) are solved by means of the GAMS (General
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AlgebraicModelingSystem) (Brooke, Kendrick, & Meeraus, 1992) NLP solver
CONOPT (Drud, 1985). A computer programmusecc that writes the needed
GAMS code, calls GAMS, reads GAMS output and performs the remaining ana-
lysis is implemented. The generic GAMS code was written by Dr. Arne Drud.
Much of the remainder code formusecc comes frommaf . The optimization
problems involved could be solved by means of other algorithms also.
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