
Visualization of
Large-Scale Fluid

Thomas Krog

LYNGBY 2003

MASTERS THESIS

IMM-2003-73

IMM

Printed by IMM, DTU

Abstract

In this project a new approximation of the Shallow Water equations is used
to simulate large-scale fluids in real-time. The simulation has been tested
against a Smoothed Particle Hydrodynamics model with reasonable results.
However, artifacts occur when it is tested with bumps on the ground thus
improvements are needed before the approximation can be used as a general
purpose solver of large-scale fluids.

The visualization of the fluid has significant influence on the way a user
experience the fluid. By extending the visualization with flying foam the
average user believes that it is large scale fluid in contrast to a visualization
without foam. The foam has been modelled by transparent billboards and
lines thus it requires a lot of blending to get a smooth transition between
the opaque fluid surface and the transparent foam. Therefore an effective
blending system has been implemented at the boundary of the fluid to save
the pixelshader from a lot of work.

Keywords: Visualization, Real-Time, Fluid Simulation, Shallow Water Equa-
tions, Height maps, Foam Visualization

Preface

A number of people have been helpful in the development of this project.
Thanks to my two supervisors Andreas Bærentzen and Niels Jørgen Chris-
tensen. They have given me fairly free hands in the project, however, they
have been ready to offer advice when it was needed. I also want to thank Per
Slotsbo for many good discussions and brainstormings leading to valuable
solutions in the project. Furthermore, Marinus Rørbæk, Anders Hartung
Christensen and my parents have provided important corrections to the re-
port. Finally, I want to thank the people who have evaluated the realism of
the fluid visualization.

2

Contents

Preface 2

1 Introduction 9
1.1 Objective . 11
1.2 The Readers Prerequisites . 11
1.3 The Structure of the Report 11

I Fluid Dynamics 12

2 Fluid Dynamics Models 13
2.1 Grid Representation . 13
2.2 Smoothed Particle Hydrodynamics 14
2.3 Navier-Stokes Equations . 15

2.3.1 Conservation of Volume 15
2.3.2 Conservation of Momentum 15
2.3.3 Applications . 17

2.4 Height Map . 17
2.4.1 Volume Interpretation 17
2.4.2 Limitations . 18

2.5 Navier-Stokes Equations used on Height Maps 19
2.5.1 The Boundary Algorithm 19
2.5.2 The Height Map Algorithm 21
2.5.3 Discussion . 21

2.6 Volume Conservation is easier in Height Maps 23
2.7 Shallow Water Equations . 23

2.7.1 A Practical Explanation of the SWE 24
2.7.2 Applications . 27

3

2.7.3 The Conservative Equations 27
2.8 Conclusion . 28

3 Non Conservative SWE 29
3.1 The Velocity Representation 29
3.2 Velocity Advection Problems 31

3.2.1 The Term is Too Local 31
3.2.2 The Depths should have Influence 32
3.2.3 The Term is too Global 33
3.2.4 Local Term with Weighted Depths 33

3.3 A Model without VEAT . 36

4 Conservative Shallow Water 38
4.1 The Imperative VEAT . 38

4.1.1 Discharge Conservation 42
4.2 Stability . 42

4.2.1 Discussion . 42

5 The Boundary of the Fluid 43
5.1 Fluid Floating Down a Slope 43

5.1.1 The Fluid will Never Leave a Cell 43
5.1.2 The Boundary Velocity Grows towards Infinity 45

5.2 Determining the Cells Near the Boundary 45
5.3 Invisible Fluid . 46
5.4 Removing Fluid . 46
5.5 Modification of the Volume Advection 47

6 Results 49
6.1 The Breaking Dam Experiment 49
6.2 A Bump Experiment . 49
6.3 Conclusion . 51

II Visualization 54

7 Tessellating the Fluid Surface 55
7.1 Closing the Gap at the Boundary 55
7.2 Smoothing the Boundary in Time 57

7.2.1 A Boundary based on the Fluid Depth 57

4

7.2.2 A Boundary based on the Future 58
7.3 Smoothing the Boundary in Space 59

7.3.1 Obtaining a Horizontal Fluid Surface 59
7.3.2 Smoothing in the xy-plane 60

7.4 Blurring the Boundary . 60
7.4.1 Internal Boundary Blurring 60
7.4.2 External Boundary Blurring 61

8 Flying Particles 63
8.1 Motivation . 63

8.1.1 Controlling the Viscosity 63
8.2 Survey of Models . 64

8.2.1 Particles with mass . 64
8.2.2 Massless Particles . 64

8.3 Particle Spawning . 65
8.3.1 Waterfalls . 65
8.3.2 Accumulation . 68

8.4 Moving the Particles . 69
8.4.1 Performance . 70
8.4.2 Random Generators 71
8.4.3 Bouncing on the Ground 71
8.4.4 Setting up the Network 73

8.5 Visualization . 73
8.5.1 Primitives . 73
8.5.2 Discussion of the Primitives 74
8.5.3 Avoiding Intersections with the Ground 75
8.5.4 Blurring the Boundary 77

9 Foam on the Fluid Surface 79
9.1 Survey of Methods . 79

9.1.1 Flow Visualization . 79
9.1.2 Foam Visualization . 80

9.2 The Basic Idea . 80
9.3 Even Distribution . 82

9.3.1 Removing Surface Particles 82
9.3.2 Adding Surface Particles 83
9.3.3 Fading In and Out . 84

9.4 Calculation of the Foam . 84

5

9.5 Visualization of the Foam . 85
9.6 Smoothing the Texture Boundary 85
9.7 Determining the Size of the Textures 86

III Results 88

10 Implementation 89
10.1 Performance . 89

10.1.1 Removing the Branches 89
10.1.2 Potential Bottlenecks 90

10.2 Render to Texture . 91
10.3 Grid Searching . 91

11 Comparison 93
11.1 Comparison with other Models 93

11.1.1 Comparison with Kass 93
11.1.2 Chens Simulation . 94
11.1.3 Laytons Simulation . 96

11.2 Comparison with real Water 96
11.3 Animation . 96
11.4 Discussion . 99

12 Conclusion 100

A Notation 101
A.1 Symbols . 101
A.2 Abbreviations . 101
A.3 Terms . 102
A.4 Variables and Constants . 102

B Accessories 103

6

List of Figures

2.1 The Relation Between the Cells and the Velocities in 2D . . . 14
2.2 An example of the height map in 1D 18
2.3 Volume Interpretation . 19
2.4 An example of a 2D height map 20
2.5 An example of a Waterfall . 22
2.6 Collision of fluids in a pipeline 24
2.7 An explanation of the Advection 25

3.1 Edge- versus center velocity 30
3.2 Large Depth Difference . 32
3.3 Global Velocity Advection Problem in a Breaking Dam 34
3.4 Local Velocity Advection Problem in a Breaking Dam 35
3.5 Local Velocity Advection Problem (screenshot) 35
3.6 A Waterfall in a Stationary State 36

4.1 Imperative VEAT Solutions 40
4.2 VEAT Solution for Negative Discharge 41

5.1 Fluid Floating Down a Slope 44
5.2 Boundary Determination . 45
5.3 A Lake Removed by the Boundary Behaviour 46

6.1 The breaking dam experiment with imperative VEAT. 50
6.2 A Bump experiment on a height map with imperative VEAT . 52

7.1 Internal Triangles . 56
7.2 Six special cases. 56
7.3 Tessellating three special cases. 56
7.4 Complete Tessellation . 57
7.5 No Time Smoothing . 58

7

7.6 Time Smoothing . 58
7.7 Obtaining a horizontal fluid surface at the boundary. 59
7.8 Smoothing in the xy-plane 60
7.9 Unwanted Transparency. 61
7.10 External Boundary. 61
7.11 Three simple cases for the external boundary. 62
7.12 External boundary on a concave fluid area. 62

8.1 The Top of Various Waterfalls 66
8.2 The Velocity of Foam a Waterfalls 68
8.3 Initial foam velocity when the fluid accumulates 69
8.4 Simplifying the Flying Particle Network 70
8.5 Foam Bouncing . 72
8.6 Foam Bouncing Schematic . 72
8.7 Flying Particle Network for Waterfalls 73
8.8 Foam Intersection Screenshots 76
8.9 Illustration of a Foam Intersection 77
8.10 Bluring the Boundary . 78

9.1 Flow Visualization by Wijk 80
9.2 Texture Copy . 81
9.3 A Waterfall with Surface Particles 82
9.4 External Surface Textures . 86
9.5 Two Layers of Fluid . 87

10.1 Grid Searching . 92

11.1 Comparison with Kass . 94
11.2 Chens Simulation . 95
11.3 Laytons Simulation . 96
11.4 Waterfall from a movie called River Wild. 97
11.5 Imitation of the waterfall from figure 11.4. 97
11.6 Animation . 98

A.1 A Breaking Wave . 102

8

Chapter 1

Introduction

Simulation of 3D fluid is a challenging topic, and it is still an active research
area. Significant progress has been made during the last decade where a
new fluid representation was invented by Monaghan [20] based on smoothed
particle hydrodynamics. Furthermore, improvements have been made for
the traditional grid representation where Foster [9] has developed the most
outstanding improvement.

Such true 3D simulations offer nice realism, since the 3D representation
of the fluid makes it possible to set up realistic models of the fluid dynamics.
The drawback of such models is that they are computationally expensive and
hence interactive simulations in true 3D are only at a preliminary stage, e.g.
IO-Interactive expects to have an interactive simulation ready at the release
of Playstation 3 in 2006. Even when the interactive 3D simulations become
available, the amount of details in the fluid are limited, and hence there are
a number of applications where remarkably more details are needed.

In this project methods are examined to increase the amount of details
in simulation of large-scale fluid in landscapes. The true 3D simulations
tend to waste information along the vertical direction in landscapes, thus
a tremendous amount of information can be saved by assuming that the
velocity at the bottom of the fluid is equal to the velocity at the surface
of the fluid. The methods using this assumption are called single layered
velocity methods (abbreviated SLV methods). The saved information allows
a more detailed representation of the riverside and the shore which makes
the methods convenient for various phenomena such as rivers, lakes, seas and
floodings.

The SLV methods have primarily been used to simulate climatic and tidal

9

phenomena without attention to interactive restrictions. Examples of such
methods are found in [1] and [24] both of which use a set of equations called
the Shallow Water Equations. As regards real-time methods the proportion
is more limited. Kass [15], Layton [2] and Chen [4] are examples of real-time
methods based on SLV. Layton use the Shallow Water Equations to simulate
fluid with a stationary shore. Kass simulates a dynamic shore however a
simplified version of the Shallow Water Equations is used. Chen [4] has
proposed an alternative method to the Shallow Water Equations which is
suitable for small-scale vortices. However, it does not provide a physically
correct simulation of the volume. Therefore it is not well suited for breaking
dams which involve large depth variations. Furthermore it has problems
with waterfalls and rivers as discussed in section 2.5.3. Consequently the
main focus will be kept on the Shallow Water Equations in this project.

The visualization also plays an important role in this project. The volume
of the fluid can easily be visualized using polygons and some standard lighting
from OpenGL [18]. However, a simple animation of the volume does not
provide much information about the flow direction of the fluid. Since the
flow information comes for free from the fluid simulation, it seems natural to
extend the visualization so that this information is visible to the viewer. The
flow is visualized by usage of textures which follow the direction of the flow.
This is a classic problem and various solutions exist. Wijk [29] has developed
a detailed visualization of the flow, however the source images of the water
tend to become noisy. Other solutions like Jobard [3] have been developed
which avoid the noise, however, they are more computationally expensive.
In this project the performance is important whereas the details of the flow
are less important. Consequently a new method is developed which satisfies
these demands.

Furthermore, the clean volume of the fluid tends to be insufficient at wa-
terfalls, thus an additional particle system is used to handle such situations.
In [16] a particle system has been briefly described for oceans, whereas [21]
provides a system of a small-scale.

At the bottom of the waterfalls it is expected that the foam from the
waterfall will start floating in the fluid surface. This is handled effectively
by extending the texture of the fluid surface.

10

1.1 Objective

In this project the objective is to develop an interactive visualization of large-
scale fluid in landscapes. This is a comprehensive task requiring a simulation
of the fluid dynamics before it is possible to do the visualization. In order
to limit the size of the project the numerical solver of the simulation has
been downgraded to keep the focus on the physical equations which are the
foundation of the simulation. The simulation is based on SLV methods, thus
it is not possible to handle breaking waves, however the methods are used to
model rivers, lakes, seas and floodings.

For the visualization the primary task is to visualize the velocity of the
fluid by using suitable textures. Furthermore, the scale of the fluid plays
an important role, thus it is examined how effects like flying foam affect the
scale of the fluid.

In this project no lighting methods are provided since it is a relatively
well solved problem, see [16]. Furthermore, issues about transparent fluid
are omitted.

1.2 The Readers Prerequisites

In order to limit the size of the report it is assumed that the reader has got
a couple of introductory university courses in mathematics and computer
graphics. Appendix A contains a summary of the notation used in the report.

1.3 The Structure of the Report

The simulation of the fluid surface tends to be a rather isolated problem from
the rest of this project. Actually, most of the articles about fluid simulation
in this bibliography do not develop visualization methods. Furthermore,
the interface between the simulation and the visualization is quite clear.
The simulation should determine the movement of the fluid surface and the
velocities of the fluid and hence provide it for the visualization method.
Therefore it seems natural to solve the simulation as an isolated part in this
report. The last part deals with the visualization method which has free
access to the position of the fluid surface and the velocities of the fluid.

11

Part I

Fluid Dynamics

12

Chapter 2

Fluid Dynamics Models

This chapter provides background knowledge of relevant fluid dynamics mod-
els from the literature. In order to simulate a fluid, a data structure is
needed to represent the fluid. The next two sections describe the two most
widespread representations of fluids.

2.1 Grid Representation

The grid representation is the classical way of representing fluid. It is the
most spread representation of fluids and [8] and [25] are examples of projects
using this representation.

Figure 2.1 shows a 2D grid where the velocities are defined between the
cells. For instance ui+1/2,j is the velocity from cell ci,j to ci+1,j . This is
called edge velocities. Alternatively, the velocities could be defined as center
velocities which are velocities at the center of the cells.

Naturally, the 2D grid can be extended to a 3D grid by adding an extra
index to the cells.

The term neighbour cells is defined such that each cell ci,j has four neigh-
bour cells namely ci+1,j, ci−1,j, ci,j+1 and ci,j−1.

Note that the grid does not represent the volume of the fluid, which should
be stored in an extra data structure. For example in [9] they extend the grid
with marker particles which are massless particles following the velocity of
the grid. In this way the particles represent the volume of the fluid.

13

ci+1,j+1

ci+1,j

ci+1,j-1

ci,j

ci,j+1ci-1,j+1

ci-1,j

ci-1,j-1 ci,j-1

vi,j+½

ui+½,jui-½,j

vi,j-½

Figure 2.1: The relation between the cells and the velocities in a 2D grid
with edge velocities.

2.2 Smoothed Particle Hydrodynamics

The Smoothed Particle Hydrodynamics (abbreviated SPH), is a relatively
new representation of fluids, which was first presented by Monaghan in 1994
(see the article in [20])1. The fluid is represented as particles and each of
these contains a velocity. This means that the velocity of the fluid can be
determined at any location as a weighted sum of the nearest particles.

In this method it is considerably easier to add boundaries than it is for
the grids. The boundaries can be represented as a continuous function f(x)
which returns the external force at location x.

One of the drawbacks in this method is that the simulation is slower than
a grid simulation. There are several reasons for this. First of all the particles
are flowing freely between each other, thus it is more time-consuming to find
neighbour particles. Furthermore, it is necessary to calculate the distance
between each pair of neighbour particles which involves a square root.

Another drawback is that the running time is O(n3) in 3D where n−1 is
the distance between two neighbour particles. In other words if the resolution
is doubled along each axis, the running time will be multiplied by eight.

This means that it is difficult to obtain real-time simulations in 3D at
present time.

1The SPH was originally invented by Lucy [17] to simulate gases.

14

2.3 Navier-Stokes Equations

The motion of a fluid can be described by the Navier-Stokes Equations, which
were developed by Navier and Stokes in the 1840s. In order to set up the
equations the velocity of the fluid is described as a vector field w. Now the
equations state the evolution of w in time, when there are two restrictions
namely conservations of volume and momentum. Each of the two restrictions
result in an equation which is described briefly in the next two sections. A
detailed derivation of the equations exists in [23].

2.3.1 Conservation of Volume

The conservation of volume requires that the amount of fluid flowing into
an arbitrary volume of the fluid must be the same as the amount of fluid
floating out of the volume. Formally this requirement can be written as

∇ ·w = 0. (2.1)

2.3.2 Conservation of Momentum

The conservation of momentum is fulfilled iff. (if and only if) each small mass
dm of the fluid obeys Newton’s second law

dFnet = dm
dw

dt
,

where dFnet is the net force affecting the fluid. The force dFnet is composed
by several contributions which are described in the following:

Pressure When there is a difference in pressure between two locations, it
will affect the fluid with a force pointing towards the location with low
pressure. The force becomes

dFp = −dm

ρ
∇p,

where p is a scalar field of the pressure while ρ is the density.

Drag When there is a difference in velocity between two locations, there
will be a force which will smoothen the velocity difference. The force
is determined by

dFd =
dm

Re
∇2w

15

where Re is a constant called the Reynolds number [4]. The constant
is inversely proportional to the viscosity of the fluid. The force dFd is
the only friction force affecting the fluid, thus a high value of Re gives
a turbulent flow while a low value of Re gives a laminar flow.

External External force dFe which affect the fluid. The only external force
in this project is the gravity g.

This completes the list of forces, and hence the net force becomes

dFnet = dFp + dFd + dFe.

By inserting this equation into Newton’s second law we get

dw

dt
=

1

Re
∇2w− 1

ρ
∇p + g (2.2)

The equations (2.1) and (2.2) together form the Navier-Stokes Equations for
a particle in a fluid.

However, in this project we use grids to simulate the fluids. Consequently,
the velocities are at fixed locations, thus we need an additional term to
convert from a particle velocity dw

dt
to a grid velocity ∂w

∂t
as described in

[26]. The convertion from particle velocity to grid velocity can be purely
mathematically derived as

dw

dt
=

∂w

∂t
+ (w · ∇)w.

This term is called the velocity advection term (abbreviated VEAT) since
it transfers the velocity from one grid cell to another. The term will be
explained more thoroughly in section 2.7.1. Note that this is the term which
makes Navier Stokes equations nonlinear. The term can be inserted into
(2.2) and we get

∂w

∂t
=

1

Re
∇2w − 1

ρ
∇p + g − (w · ∇)w (2.3)

which together with (2.1) form the Navier-Stokes equations for fluid in a grid.

16

2.3.3 Applications

There are a large number of simulation models based on the Navier-Stokes
equations. The models described in [9] and [8] are examples of simulations
which produce 3D dynamics of fluid with high realism.

In both articles the Navier-Stokes equations are approximated using a
finite-difference solution. The method converts the partial derivatives to
difference operators as described in [14] e.g. ∂u

∂x
at cell ci,j can be approximated

as
ui+1/2,j − ui−1/2,j

∆x
.

The drawback of such models is that they have got a running time of O(n3)
where n is the number of subintervals along one axis. Thus similarly to SPH
simulations it is difficult to obtain real-time simulations.

2.4 Height Map

In order to avoid the O(n3) running time the SLV methods have been in-
troduced to use a horizontal 2D grid to simulate a 3D volume of fluid with
Navier Stokes equations. Each cell ci,j in the grid is extended with a ground
height bi,j and the height of the fluid surface hi,j. In this way the depth of the
fluid can be determined as di,j = hi,j − bi,j. This extended 2D grid is called
a height map since it represents a volume of the fluid. Figure 2.2 shows an
example of a 1D height map which represents the shape of a ground covered
by some fluid2.

A boundary cell is defined as a cell ci,j for which 0 < di,j while at least
one of its neighbours does not contain any fluid.

The notation d̃i+1/2 indicates that the value does not exist in the height

thus the value is to be approximated e.g. as di+di+1

2
. The notation may be

used on any value in the height map.

2.4.1 Volume Interpretation

Sometimes it is convenient to think of the cells as 3D boxes. Figure 2.3 shows
how a 1D height map can be interpreted to represent a volume of fluid in

2
bi, hi and di contain only one index since it is a 1D grid on figure 2.2.

17

h0

h1

h2

h3

h4

d0 d1

d2

d3

d4

b0

b1

b2 b3

b4

x

z

Figure 2.2: An example of the height map in 1D. The dark shaded shape
is the ground whereas the light shaded shape is the fluid. bi and hi are
the z-coordinates of the vertices on the surface of the ground and the fluid
respectively. di is the depth of the fluid.

3D. Based on this interpretation the volume of cell ci becomes:

di∆x∆y.

2.4.2 Limitations

Unfortunately, the compactness of the height map does not come for free.
Here, is a couple of limitations which should be kept in mind:

• The distance between neighbour vertices on the surface of the ground is
dependent on the slope of the ground. This can be realized by consider-
ing the distance between the vertices at (1, b1) and (2, b2) on figure 2.2.

Consequently, the slope |b1−b2|
∆x

grows when the distance between the
vertices grows and hence the resolution decreases. Less formally the
resolution is too low at the areas with large slope whereas the resolu-
tion is too high at the areas where the ground is horizontal. In many
applications the waterfalls play an important role, thus it is a consider-
able problem that they have got the lowest resolution due to the large
slope. The problem could be solved by a finite volume method as de-
scribed in [5], however in this project we will keep the simple height
map.

• It is not possible to simulate caves or bridges since each cell in the
height map only consists of a single height bi,j for the ground.

18

x

y
z

d0
d1

d2
Dx

Dx

Dy

Dx

Figure 2.3: The figure shows a volume interpretation of a 1D height map.
For the sake of simplicity it is assumed that b0 = b1 = b2.

• No breaking waves appear since the data structure only allows a single
layer of fluid. The data structure could be extended to support multible
layers of fluid, but it would complicate the calculations considerably.
An alternative solution might be to launch particles.

2.5 Navier-Stokes Equations used on Height

Maps

Chen [4] uses a 2D height map to simulate a volume of fluid in O(n2). Here is
a brief algorithm based on Chen’s method which is composed of a boundary
algorithm and an algorithm to determine a height map3. The purpose of the
boundary algorithm is to ensure volume conservation while the height map
algorithm approximates details such as ripples.:

2.5.1 The Boundary Algorithm

The idea behind this algorithm is to determine the movement of the boundary
only by examination of the cells at the boundary:

• Initialization

3In this description some of the data structures have been left out since it is only the
realism of the model which is of interest.

19

ci+1,j+1

ci+1,j

ci+1,j-1

ci,j

ci,j+1ci-1,j+1

ci-1,j

ci-1,j-1 ci,j-1

vi,j+½

ui+½,jui-½,j

vi,j-½

df

x

y

Figure 2.4: An example of the height map in 2D. The shaded shape is the area
covered by fluid. The normalized vector df is orthogonal to the boundary of
the fluid.

First the model should be properly initialized by marking the cells
which are covered by the fluid. Figure 2.4 shows an example of a
height map where ci−1,j−1, ci,j−1, ci+1,j, ci+1,j+1, ci,j+1 and ci−1,j are
the boundary cells. The cell ci,j is not a boundary cell since all its
neighbours are covered by fluid. Furthermore, a non negative flow rate
should be selected for each of the boundary cells. The fluid will contain
a source with a flow rate corresponding to the sum of all the boundary
flow rates. The sum of the boundary flow rates will remain constant
during the simulation. hboundary is defined as the surface height of the
lowest boundary cell.

• For Each Time Step
Examine every boundary cell ci,j in the following way:

if ci,j has neighbour cells outside the fluid and below hboundary then
ci,j should expand the boundary to these neighbours. The flow
rate of ci,j is divided equally to the new boundary cells.

• Increase the boundary height

if no expansion of the boundary has occurred then
hboundary should be increased correspondingly to the sum of all the
boundary flow rates.

20

2.5.2 The Height Map Algorithm

For each time step do the following:

1. Boundary Conditions. The velocities u and v which intersect the
boundary of the fluid should be assigned a scaled value of the flow rate
at the particular boundary cell.

2. Solve Navier-Stokes equations. Use a finite-difference solution of
the Navier-Stokes equations to determine the velocities u and v on the
height map. For each cell the pressure is determined as

p = ε−1

(

∂u

∂x
+

∂v

∂y

)

, (2.4)

where 0 < ε is a very small number introduced. For ε → 0 equation
(2.4) satisfies equation (2.1).

3. Calculate the depths. For each cell the depth

d = hboundary + a1p, (2.5)

is calculated from the pressure and a chosen constant a1 which deter-
mines the height of the waves.

2.5.3 Discussion

There are several advantages with Chen’s method since it solves Navier-
Stokes equations in real-time. This leads to a relatively high realism in the
horizontal plane with vortices and the ability to simulate fluid with various
viscosities.

However, the method also contains a number of problems. Most of the
problems are rather easy to solve, however, in this discussion one serious
problem has been discovered which is not discussed in Chen’s work. The
problem, occurs when Chen’s method is used to simulate a waterfall as shown
on figure 2.5. When the fluid passes the dot-and-dash line, the waterfall
starts. This means that the right most boundary cell will allways have exactly
one neighbour cell which is below hboundary, and hence the boundary will
expand to the right for each time step. Consequently there is no expansion
along the y-axis and therefore the width of the waterfall along the y-axis

21

A012

3

2

1

0

x

y

Figure 2.5: The figure shows an example of a landscape visualized by iso-
curves. The numbers indicate the height of the corresponding curve (the
z-coordinate of the curve). The bullet A is a source, and the shaded shape
indicates the area covered by fluid. When the fluid passes the dot-and-dash
line, a waterfall starts.

becomes zero independent of the flow rate4. This is generally a problem for
such algorithms which only examine the boundary cells.

Furthermore, it is a problem that the boundary expands for every time
step during the waterfall. This implies that the velocity of the boundary
is inversely proportional to ∆t. In other words for ∆t → 0 the boundary
velocity will go towards infinity. Unlike the waterfall width problem this
problem has an easy solution, namely to add an extra variable to every
boundary cell. This variable should keep track of the amount of time until
the cell should expand.

The final problem in this discussion is that the depth d in the height map
may become negative since there is no lower bound of the pressure. The
problem may be solved by substituting 2.5 with

d = f (hboundary + a1p) ,

where f is a suitable monotonous increasing function which is non negative.

In the next section we will examine the Shallow Water equations which
do not have any of the problems in Chen’s method. However, it is at the cost

4The same problem will occur in rivers where the slope never become zero.

22

of an advantage in Chen’s method, namely the ability to set the viscosity of
the fluid.

2.6 Volume Conservation is easier in Height

Maps

Volume conservation is one of the fundamental properties of fluids described
in section 2.3.1. It turns out that the property is quite difficult to obtain in
a general fluid simulation which should handle a situation as shown on figure
2.6. The figure shows two fluids which are moving towards each other with
constant velocity, i.e. there are no external forces like gravity. When the two
fluids collide at the dot-and-dash line, the velocity of the entire fluid must
change immediately in order to obtain incompressible fluid 5. For example
the fluid will shrink if the velocity of the rear of fluid A is constant during
the collision.

In a general fluid simulation like sph. or a grid the incompressibility can
either be obtained by a small time step or by specific algorithms solving a
large set of equations. Both solutions are computationally expensive since
you have to transfer information from the front to the rear of the fluid in
very short time. This is not suitable in a real time simulation.

Luckily the situation shown on figure 2.6 does not occur in a height map.
That is, in a height map obstacle W2 does not exist and hence the fluid can
move upwards. This means that the velocity of the rear of fluid A can be
constant during the collision, while the fluid is incompressible.

2.7 Shallow Water Equations

The Navier-Stokes equations are quite computationally expensive to solve,
thus by assuming that the water is shallow, the equations can be simplified.
Formally, shallow water means that the wave length L is much larger than
the depth d of the fluid. In [26] the fluid is called shallow if 20d < L. Two
important properties can be derived from the shallow water assumption,
namely that the phase velocity (the velocity of a front) becomes

√
gh, and

5Real fluid is slightly compressible, but it is beyond the scope of this analysis since the
difference is not visible.

23

A B

W1

W2

x

z

Figure 2.6: Two fluids A and B are moving toward each other in a 2D pipeline
consisting of the obstacles W1 and W2. After some time the fluids collide at
the dot-and-dash line.

the pressure of the fluid is hydrostatic. These properties lead to

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
= 0 (2.6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
= 0 (2.7)

∂h

∂t
+

∂

∂x

(

u(h− b)
)

+
∂

∂y

(

v(h− b)
)

= 0 (2.8)

which are the Shallow Water equations (abbreviated SWE) in 2D. The equa-
tions use the notation described in section 2.4, and g is the gravity, while t
is the time.

Equation (2.6) and (2.7) are derived from equation (2.3) and the equations
are still nonlinear due to the velocity advection term

(w · ∇)w =

([

u
v

]

· ∇
)[

u
v

]

=

[

u∂u
∂x

+ v ∂u
∂y

u∂v
∂x

+ v ∂v
∂y

]

which is written as the general left-hand side in (2.3) while it is written as
the specific 2D right-hand side in (2.6) and (2.7).

2.7.1 A Practical Explanation of the SWE

The SWE might be a bit hard to understand, thus in this section we will
provide a more practical approach to the equations in 1D:

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0 (2.9)

∂h

∂t
+

∂

∂x

(

u(h− b)
)

= 0 (2.10)

24

Figure 2.7: The figure shows how the hatched volume is moved from ci to ci+1

during a time step. emove denotes the volume which is obtained by extrusion
of the hatched area along the y-axis by distance ∆y.

25

We will explain the equations using the volume interpretation from section
2.4.1. Figure 2.7A shows two cells from the xz-plane of figure 2.3 at time
t = t0. The fluid which is inside cell ci at time t = 0 is colored gray. All
velocities are positive facing towards right, thus after some time ∆t, some of
the gray fluid has moved into cell ci+1. The state after the movement has
been shown on figure 2.7B at time t = t0 + ∆t. The hatched area represents
the volume of fluid, which has moved from ci to ci+1 during the time step.
This volume becomes

emove = ui+1/2d̃i+1/2∆t∆y, (2.11)

since ui+1/2∆t is the distance covered by the fluid during the time step. Sim-
ilarly the volume transferred from ci−1 to ci is ui−1/2di−1/2∆t∆y. The change
in volume at ci becomes the difference between the two volume transfers just
determined:

(

ui−1/2d̃i−1/2 − ui+1/2d̃i+1/2

)

∆t∆y.

This corresponds to an approximation of the volume advection term

∂h

∂t
= − ∂

∂x

(

ud
)

from equation (2.10).
Now we will explain the VEAT which occurs whenever there is a velocity

difference ∂u
∂x

between cell ci and ci+1. Consider a situation where

0 < ũi < ũi+1.

This means that emove will have a lower velocity than the rest of the volume
at cell ci+1. Therefore ũi+1 should lose velocity which is proportional to
emove

∂u
∂x

. From equation (2.11) we see that emove is proportional to ui+1/2,
thus the velocity loss becomes

u
∂u

∂x

which is the VEAT.
Finally the gravity term states that a height difference ∂h

∂x
affects the fluid

by a force from the high area towards the low area.

26

2.7.2 Applications

The SWE have a wide number of applications ranging from prediction of
flooding [13] to real-time simulations like Kass [15] and Layton [2]. Kass
simulated the equations without the velocity advection term, thus the equa-
tions become linear. Layton implements the full SWE, however the boundary
conditions are simplified so that the height of the ground under the fluid is
constant6. In other words the boundary cells remain static during the simu-
lation. Consequently, none of them have solved the nonlinear shallow water
equations with a free boundary.

One of the problems with the velocity advection term is that it tends
to make errors when

∣

∣

∣

∂(h−b)
∂x

∣

∣

∣ is large since it transfers velocities without
weighting the depths. This means that a small depth can affect a large depth
in the same manner as if the depths were equal. The problem is handled in
3.2.2.

The next section describes a modification of the SWE so that the velocity
advection term is weighting the depths.

2.7.3 The Conservative Equations

The shallow water equations exist in an alternative form called the conserva-
tive form since it conserves the momentum. In this form no velocities u and
v are stored in the height map. Instead the velocities have been substituted
with discarges U and V defined as:

U = ud, V = vd. (2.12)

Most of the articles test their solvers against analytic solutions (examples
are [24] and [10]). However, the analytic solutions have only been derived
for very simple initial conditions like the breaking dam experiment. Conse-
quently, no articles have been found where the solvers are tested on complex
topology. For example a situation where the fluid passes a bed with high
slope.

In order to handle discontinuities such as the front of the breaking dam,
the Riemann solver developed in [27] is typically used. The book [28] contains
a thorough describtion of SWE and Riemann solvers.

6The boundary restriction is not explicitly stated in the report but all the tests have
got this restriction.

27

2.8 Conclusion

In this chapter we have discussed various methods to simulate fluid with
extended focus on the height map methods with running time O(n2). The
height map methods we have found fall into three groups:

• A 2D solution of Navier-Stokes Equations where the pressures are used
to determine the depth of the fluid. We have found some problems
with waterfalls which were not discussed in Chen’s report.

• A couple of implementations of the non conservative shallow water
equations have been developed. These implementations run in real time
however the boundary problems have not been solved for the complete
SWE.

• A solution to the conservative shallow water equations. This method
is primarily used to simulate large-scale clima and environmental evo-
lution thus no articles has been found for real-time simulation.

The problems with Chen’s method makes it unqualified as general purpose
solver in landscapes. It might be possible to use Chen’s method to increase
the amount of details on the surface of the fluid simulated by SWE. However,
this task is rather comprehensive thus in the next chapters we will only
examine SWE.

28

Chapter 3

Non Conservative SWE

First we will examine the possibilities in the non conservative version of
SWE described in section 2.7. The height map from section 2.4 is used as
representation of the fluid. In order to simplify the examination we will
consider the 1D version of the SWE:

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0 (3.1)

∂h

∂t
+

∂

∂x

(

ud
)

= 0 (3.2)

Before we can solve these equations, we need to decide whether to use center
velocities or edge velocities from section 2.1.

3.1 The Velocity Representation

The velocity representation settles whether equation (3.1) is evaluated at
an edge or at the center of a cell. For instance if it is center velocities we
want to determine

〈

∂u
∂t

〉

i
while it is

〈

∂u
∂t

〉

i+1/2
for edge velocities where i ∈ Z.

Equation (3.2) is always evaluated at the center of the cells, since that is
where the height are.

Whether to choose center velocities or edge velocities is primarily a mat-
ter of simplification in connection with the finite difference operators. For
example the gravity term g ∂h

∂x
from equation (3.1) becomes

〈

g
∂h

∂x

〉

i+1/2

= g
hi+1 − hi

∆x
(3.3)

29

h0

h1

h2

x

z
C

E

A

Figure 3.1: The figure shows that the gravity on the edge velocity v1+1/2 is
determined directly by slope E. However, the center velocity v1 is determined
by slope C which is the average of slope A and E.

using the finite difference operator on edge velocities. However, for center
velocities the term becomes

〈

g
∂h

∂x

〉

i

= g
hi+1 − hi−1

2∆x
(3.4)

which involves the average of the two nearest edges to cell ci,j along the x-
axis. Figure 3.1 shows a 1D height map, where the edge velocities operates
directly on the slopes of the edges, whereas the center velocities operates on
averages of the slopes.

Another way to compare the two solutions, is to consider the distance
from the position at which the approximation takes place to the position
of the values in the height map which are used in the approximation. This
distance is defined as the approximation distance. For example in equation
(3.3) the approximation takes place at index i+1/2, thus the distance to the
position of the values used in the height map becomes ∆x/2. However, for
the center velocity the distance becomes ∆x. In the differential equations
this distance goes towards zero, thus equation (3.3) is prefered since it has a
smaller distance than equation (3.4).

For the volume advection term (abbreviated voat.) ∂
∂x

(

ud
)

with center
velocity the approximation becomes:

〈

∂

∂x

(

ud
)

〉

i

=
ui+1di+1 − ui−1di−1

2∆x

thus the approximation distance is ∆x. However, for the edge velocity the
approximation becomes:

〈

∂

∂x

(

ud
)

〉

i

=
ui+1/2(di + di+1)− ui−1/2(di−1 + di)

2∆x

30

thus the approximation distance is ∆x/2 for the velocity while it is still ∆x
for the depths.

For the velocity advection term (abbreviated VEAT) along the x-axis
there is no numerical difference since the center velocity gives:

〈

u
∂u

∂x

〉

i

= ui
ui+1 − ui−1

2∆x

whereas the edge velocity gives:

〈

u
∂u

∂x

〉

i+1/2

= ui+1/2

ui+3/2 − ui−1/2

2∆x
. (3.5)

We conclude that the gravity term is best approximated with the edge ve-
locities. For the two advection terms the difference between the two velocity
approximations is small. Therefore the edge velocity approximation is cho-
sen. We can now insert the approximated terms into equation (3.1) and
equation (3.2) to get:

〈

∂u

∂t

〉

i+1/2

= −ui+1/2

ui+3/2 − ui−1/2

2∆x
− g

hi+1 − hi

∆x
(3.6)

〈

∂h

∂t

〉

i

= −ui+1/2(di + di+1)− ui−1/2(di−1 + di)

2∆x
(3.7)

These equations can be applied in an ODE solver like Eulers-method. How-
ever, there are certain problems with these equations which have already
been pointed out briefly in section 2.7.2.

3.2 Velocity Advection Problems

The VEAT causes problems which are to be examined. For simplicity we
consider equation (3.6) without the gravity.

3.2.1 The Term is Too Local

The first problem occurs when there is an edge ui+1/2 with zero velocity. Since
ui+1/2 is one of the factors in the VEAT, the right-hand side in equation (3.6)
gives zero. Consequently, ui+1/2 will continue to be zero forever. Clearly this

31

h0

h2

h3
h4

x

z
h1

h5

h6 h7

Figure 3.2: A small drop of fluid at h2 floats to the right while the large drop
of fluid at h5 floats to the left. The two drops has equal absolute velocity
thus u1+1/2 = u2+1/2 = −u4+1/2 = −u5+1/2.

is not realistic since ui+1/2 should change if fluid is approaching the edge.
The problem is that the ui+1/2 is too local thus the problem can be solved
by substituting this factor with the average of the two neighbour velocities.
After this modification equation (3.6) becomes:

〈

∂u

∂t

〉

i+1/2

= −
u2

i+3/2 − u2
i−1/2

4∆x
− g

hi+1 − hi

∆x
(3.8)

3.2.2 The Depths should have Influence

The next problem occurs when there are large variations in the depths. For
example figure 3.2 shows a situation where two drops of fluids collide between
h3 and h4. The two drops have the same absolute velocity, thus we would
expect the fluid to move to the left after the collision since the right most
drop has the largest volume. However, this does not occur because the VEAT
does not contain any depths. In the concrete example u3+1/2 continues to be
zero forever since all the velocities continue to be symmetric around u3+1/2.

The most obvious solution would be to weight the velocities involved in
the VEAT. Then the term becomes

〈

u
∂u

∂x

〉

i+1/2

=
di+3/2u

2
i+3/2 − di−1/2u

2
i−1/2

2∆x(di+3/2 + di−1/2)
, (3.9)

where the depths are the average of the two nearest depths. After this
modification the fluid on figure 3.2 will move to the left after the collision.

32

3.2.3 The Term is too Global

While the solution proposed in section 3.2.1 solves a problem, it creates a
new problem. The problem is perhaps best described by an example like the
breaking dam experiment shown at figure 3.3. In this example equation (3.1)
is considered with the gravity term and the updated VEAT from equation
(3.9).

We will now examine the course of u3+1/2 which is determined by
〈

∂u

∂t

〉

3+1/2

= −
〈

u
∂u

∂x

〉

3+1/2

−
〈

g
∂h

∂x

〉

3+1/2

. (3.10)

When the breaking dam starts at figure 3.3A, the only velocity that will
become different from zero in the first time step is u4+1/2. Quickly the velocity
u4+1/2 will increase due to the gravity. The rest of the velocities are relatively
low compared with u4+1/2 thus we have that

〈

u
∂u

∂x

〉

3+1/2

=
d4+1/2u

2
4+1/2 − d2+1/2u

2
2+1/2

2∆x(d4+1/2 + d2+1/2)
> 0 (3.11)

and since this term occurs with negative sign in (3.10) we have that u3+1/2 will
become negative since the gravity term is relatively small in (3.10). Therefore
we get the situation shown at figure 3.3B. Clearly this behaviour is different
from a real breaking dam, and it is also different from the analytic solution
of SWE. The problem is that equation (3.11) is too global. The equation
approximates the value u3+1/2 by the average of the two neighbours and due
to the large value of u4+1/2 the approximation becomes positive even though
the value of u3+1/2 is negative.

3.2.4 Local Term with Weighted Depths

In this section we will go back to the original local VEAT from equation (3.5)
and extend it with the weighted depths described in section 3.2.2. Conse-
quently, the extended VEAT becomes1:

〈

u
∂u

∂x

〉

i+1/2

= ui+1/2

d̃i+3/2ui+3/2 − d̃i−1/2ui−1/2

2∆x(d̃i+3/2 + d̃i−1/2)
, (3.12)

1The tilde in equation (3.12) indicates that the corresponding value does not exist in
the height map, thus it should be approximated from the neighbours.

33

x

z

B
h0 h1 h2 h3 h4

x

z
h5

h6

A

h6

h0 h1 h2

h3

h4

h5

Figure 3.3: The figure shows a breaking dam experiment for the global
VEAT. Figure A shows the initial state of the experiment while figure B
shows the fluid after some time.

Since it is a local VEAT it has the problem described in section 3.2.1.
Anyway, to complete our investigation of the various methods we will test

the solution on the breaking dam problem. The result of the simulation is
shown on figure 3.5 while figure 3.4 shows a schematic version. We observe
that u4+1/2 becomes so high that h4 < h5, and it starts a short wave on
figure 3.4B. Further tests on various height map resolutions show that this
wave has a wavelength which is 2∆x. Naturally the wavelengths should be
independent on ∆x, thus we should strive to avoid these kinds of waves.
Figure 3.5 shows how the wave remains unchanged on the front of the fluid.

So why do these artificial short waves occur? Well here is a hypothesis:

The short waves are created by the high value of u4+1/2 in the start of
the simulation. The high value of u4+1/2 should imply that the VEAT should
transfer it to the right. However, this does not happen due to the small dif-
ference between u3+1/2 and u5+1/2.

In the next chapter we will propose a new model of the VEAT term
which will transfer the velocity away from u4+1/2 even if u3+1/2 and u5+1/2

were equal. However we will first finish the discussion of the non conservative
SWE by considering a model without the VEAT.

34

h0 h1
h2

h3

h4

x

z

h5

h6

B
h0 h1 h2 h3 h4

x

z

h5

h6

A

Figure 3.4: The figure shows a breaking dam experiment for the local VEAT
Figure A shows the initial state of the experiment while figure B shows the
fluid after some time.

Figure 3.5: The figure shows two states from the breaking dam experiment
described schematically on figure 3.4. The left and right images show the
state at time t = 2.5s and t = 7.5s respectively.

35

h0 h2

h3

h4

x

z

h1

h5 h6

h7

Figure 3.6: The figure shows a waterfall at u3+1/2 which has reached a sta-
tionary state. There is a source at h1 and a mouth at h6. The source and
the mouth has the same flow rate which remains constant. After an amount
of time the fluid will reach a stationary state as shown on the figure.

3.3 A Model without VEAT

Due to the VEAT problems we will now consider a model without the VEAT
as it has been done by Kass [15]. The missing VEAT implies a couple of
artifacts which are to be described.

The worst artifact we have found occurs when the model is used to simu-
late a waterfall. Figure 3.6 shows an example of a waterfall which has reached
a stationary state due to the source and the mouth. However, this does not
happen when the VEAT is missing since u3+1/2 increases forever due to the
gravity term. In other words the velocity u3+1/2 goes towards infinity since
the VEAT does not transfer the slow velocity at u2+1/2 into u3+1/2.

In order to avoid this problem we introduce an artificial resistance term

aru
3

so that we obtain the stationary state at figure 3.6. The high power has been
chosen so that the term does not remove the waves with low velocity, thus
the term is not meant to be a realistic term.

Furthermore, there are still a couple of small waves with wavelength 2∆x
at the front of a breaking dam. These waves are so small that we can remove
them by introducing an artificial pressure term so that the modified SWE
become:

p = gh + ap
∂h

∂t
(3.13)

∂u

∂t
+ u

∂u

∂x
+

∂p

∂x
+ aru

3 = 0 (3.14)

36

∂h

∂t
+

∂

∂x

(

ud
)

= 0 (3.15)

For zero gravity equation (3.13) states that the pressure is high at the areas
where the fluid accumulates.

We will not go into a long discussion about this model since it is based
on artificial terms.

37

Chapter 4

Conservative Shallow Water

In this chapter we will come up with a new model of the VEAT, in a height
map based on the conservative form of the SWE described in section 2.7.3.
Consequently, the velocities in the height map have been substituted with
discharges U and V defined by equation (2.12) which is repeated below:

U = ud, V = vd (4.1)

The conservative form of SWE is obtained by inserting the discarge definition
into the SWE from equation (3.1) and (3.2):

∂U

∂t
+ u

∂U

∂x
+ gd

∂h

∂x
= 0 (4.2)

∂h

∂t
+

∂U

∂x
= 0 (4.3)

These equations could be solved in a similar way as it has been done in
section 3.1. However, this will lead to problems similar to the ones described
in 3.2. In order to solve the problems we will develop a new VEAT.

4.1 The Imperative VEAT

We will now describe a new way to determine the VEAT based on the prin-
ciple from section 2.7.1, where the volume transferred from ci to ci+1 was
determined in equation (2.11) for velocities1. This equation can be converted

1The method is called imperative since for each pair of neighbour cells ci and ci+1 it
applies changes to the discharges in an imperative manner corresponding to the discharge
transfered in the volume from ci to ci+1.

38

Algorithm 1

1. Determine qtotal from the discharges in the height map.

2. Use equation (4.6) to determine qmove.

3. Apply qmove to the discharges in the height map.

into discharges and the transferred volume becomes

emove = Ui+1/2∆t∆y, (4.4)

when 0 < Ui+1/2. The transfer of emove transfers discharge from ci to ci+1

thus it is the purpose of the VEAT to determine how this transfer affects
the discharges in the height map. The discharge contained in emove can be
determined by assuming that the discharge is distributed even inside ci:

qmove

emove

=
qtotal

etotal

, (4.5)

where qmove is the discharge in emove, while qtotal and etotal are the discharge
and the volume respectively of the entire cell ci. The volume etotal has been
determined in section 2.4.1 thus by inserting equation (4.4) into (4.5) we get

qmove = qtotal

Ui+1/2∆t

di∆x
. (4.6)

We can now describe the structure of the imperative VEAT algorithm which
is shown in algorithm 1.

Step 2 is straightforward, while there are various solutions to step 1 and
3. We have found four solutions to step 3 as shown on figure 4.1. Each arrow
indicate that a discharge qmove is transferred from the rear to the front of
the arrow. In step 1 qtotal is determined from the rear of the arrow. This is
necessary to avoid situations where we remove discharge from areas without
discharge.

Solution A and B look promising since they are symmetric around the
transfer from ci to ci+1. However, both of them have got the problem that
they are too global, thus they generate short waves with wavelength 2∆x.

Solution C has problems when the gravity is zero, since the discharge
cannot move into areas with zero discharge.

39

ci ci+1ci-1
Ui+½Ui-½ ci+2

Ui+3/2

½qmove ½qmove

A

ci ci+1ci-1
Ui+½Ui-½ ci+2

Ui+3/2

½qmove

B

ci ci+1ci-1
Ui+½Ui-½ ci+2

Ui+3/2

qmove

C

ci ci+1ci-1
Ui+½Ui-½ ci+2

Ui+3/2

D

qmove

Figure 4.1: The figure shows four solutions to the VEAT. The arrows show
how the discharge is transferred. For example qmove is removed from Ui−1/2

and added to Ui+1/2 in solution C.

40

Algorithm 2 This is a specific imperative algorithm to determine the VEAT
For simplicity it will only consider the situation where 0 < Ui+1/2. Note that
we change the values of ∆Ui+1/2 during the algorithm, thus it works in an
imperative way in contrast to the traditional VEAT.

1. For each discharge Ui+1/2 set ∆Ui+1/2 ← 0

2. For each discharge Ui+1/2 do the following steps:

(a) qtotal ← Un
i+1/2

(b) Use equation (4.6) to determine qmove.

(c) ∆Ui+1/2 ← ∆Ui+1/2 − qmove

∆Ui+3/2 ← ∆Ui+3/2 + qmove

3. Now ∆Ui+1/2 holds the change caused by the VEAT on Ui+1/2 thus we
can add the term to the SWE.

ci ci+1ci-1
Ui+½Ui-½ ci+2

Ui+3/2

qmove

Figure 4.2: The figure shows how the VEAT is handled when Ui+1/2 < 0.

Instead we will choose solution D and make the assumption that the
discharges can be displaced so that Ui+1/2 is the discharge at cell ci while
Ui+3/2 is the discharge at cell ci+1. Furthermore, we will add an extra variable
∆Ui+1/2 for each discharge Ui+1/2 in the height map 2. This is enough to
describe a specific algorithm to calculate the VEAT as shown in algorithm
2.

Until now we have only considered the situation where 0 < Ui+1/2, thus
we need to consider the situation where Ui+1/2 < 0 which should be handled
as shown on figure 4.2. When qmove is determined remember that etotal should
refer to the volume of cell ci+1 since it is the source cell.

2Note that the new variable ~Ui+1/2 is just a temporary in each time step so we do not
need to extend the representation of the fluid.

41

4.1.1 Discharge Conservation

An important property of the imperative VEAT is that the sum of all dis-
charges remain constant during the VEAT. This is easy to prove since each
time we modify ∆U we add qmove to one variable ∆Ui and subtracts qmove

from another variable ∆Uj. Consequently, the sum of all the ∆U ’s remains
zero.

4.2 Stability

A stability analysis is beyond the scope of this report. Instead we will briefly
describe the problems with the Euler-method used in this project.

The main problem with the Euler-solver is the restrictions on the size
of the time step. For instance if the time step is too large the gravity will
overreact such that

∆ui+1/2

ui+1/2

< −2, where ∆ui+1/2 = ∆t

〈

∂u

∂t

〉

i+1/2

is satisfied the method will diverge.

4.2.1 Discussion

The Euler-method has primarily been chosen such that we could keep the
focus on the SWE and the visualization of the fluid.

However the Euler-method still has its applications in large-scale land-
scapes where ∆x is so large that u∆t < ∆x.

The simulation could be improved by substituting the Euler-method with
an implicit method as described in [15] and [2]. In this way larger time steps
could be used. However the visualization will not remain smooth in time,
thus it will be necessary to interpolate between the frames determined by
the numerical method. This is beyond the scope of this project since the
interpolation method is quite comprehensive to implement at the boundary
of the fluid where horizontal interpolation is necessary.

42

Chapter 5

The Boundary of the Fluid

The general physical model assumes that the fluid fills each grid cell homo-
geneously. However this is not the case for the cells which have empty cells
as neighbours thus we will develop a new model for the boundary.

Formally we will define the boundary of the fluid as the set of cells ci

which have a neighbour cell cj such that

0 < di

∧

dj = 0

is satisfied.
The following sections describe the various boundary problems and some

of their possible solutions.

5.1 Fluid Floating Down a Slope

Most of the boundary problems can be illustrated by the situation shown at
figure 5.1. The figure shows a drop of fluid floating down a slope. If one of
the general fluid simulations from chapter 3 and 4 is used to simulate the
situation two problems will occur:

5.1.1 The Fluid will Never Leave a Cell

The first problem occurs due to the assumption that the fluid fills the cells
homogeneously. Therefore it is not possible to transfer all the fluid in one cell
to another cell since it implies that the velocity of the fluid grows towards
infinity for ∆t→ 0. Consequently the fluid will never leave a cell.

43

di

x

z

dr(0)

di

x

z

dr(1)

di

x

z

dr(2)

frame 0:

frame 1:

frame 2:

Figure 5.1: The figure shows 3 successive frames of a drop of fluid floating
down a slope. The fluid is simulated by the general physical model without
any considerations of the boundary. Cell i is the leftmost cell while cell r(n)
is the rightmost cell at frame n.

44

dk

x

z

dk+1

dk-1

Figure 5.2: An example where the fluid should disappear from cell dk which
is not a boundary cell.

5.1.2 The Boundary Velocity Grows towards Infinity

Consider the rightmost cell dr(n) of the fluid on figure 5.1. Due to the gravity
the velocity vr(n)+1/2 is positive and therefore an amount of fluid is transfered
from dr(n) to dr(n)+1. This means that for each time step the fluid enters a new
cell. Consequently the velocity of the boundary of the fluid grows towards
infinity for ∆t→ 0.

5.2 Determining the Cells Near the Bound-

ary

In order to solve the boundary problems we will modify the general fluid sim-
ulation such that an alternative behavior is used for the boundary behaviour
cells (abbreviated bb. cells) while the general fluid simulation keeps running
unchanged for the rest of the cells.

In order to apply the boundary behaviour it is necessary to find a suitable
definition of the bb. cells. The bb. cells might be defined such that they
are equal to the boundary cells. The problem with this solution is that
cells which are about to become boundary cells do not necessarily get the
boundary behaviour. For instance consider the situation shown at figure 5.2.
Here the fluid should disappear from cell k due the gravity. This does not
happen since k does not have any neighbour without fluid.

Instead the bb. cells are defined as the cells i for which the depth is below
a given threshold di < α. In this way the depth of the fluid in cell k on figure
5.2 will get below α after some time and the boundary behaviour will ensure
that the fluid disappears from the cell.

45

di

x

z

a

di-1

Figure 5.3: The figure shows a lake where the slope of the ground is smaller
than α. This means that the depth of the rightmost cell i is smaller than α
and hence the lake is removed after some time. Note that the value of α is
relatively large on the figure to avoid that the lines huddle together. In the
real simulation α = ∆x

10
.

5.3 Invisible Fluid

The boundary problems could be solved by making the fluid invisible as soon
as the depth gets below the threshold α. However this solution introduces a
new problem namely that the volume conservation is broken. For example all
the fluid on figure 5.1 will disappear after some time, and if there is a valley
at the bottom of the slope the fluid will accumulate in a lake and hence it
will reappear.

5.4 Removing Fluid

It is possible to avoid that the fluid reappears by removing fluid with a
depth below α. But again the volume conservation is seriously broken since
the simulation will remove all lakes for which the slope of the ground is below
α no matter how large the lake is. For example consider the lake shown on
figure 5.3. Since the slope of the ground to the right is below α, there will
always be a cell i for which di < α. When the fluid is removed from i the
fluid in the lake will float into cell i and it will be emptied again. This will
continue until di−1 < α, which implies that both cell i and ci−1 is emptied.
The process continues until the entire lake is empty.

46

Algorithm 3 (Boundary Behaviour) This algorithm describes how a
depth is transfered from cell ci to cj, when ci is a bb. cell. Let f be the
(positive) depth which is transfered from ci to cj without the boundary algo-
rithm. We will now describe how the bb. changes q such that we avoid the
problems described in section 5.1.

1. In order to avoid that the velocity increases at cells without fluid we
set the velocity to zero:
u(i+j)/2 ← 0

2. if dj = 0 then
q ← 0

else
q ← max(min(di,

hi−hj

2
), 0)

5.5 Modification of the Volume Advection

In order to ensure the volume conservation, we have chosen to search for
a proper modification of the volume advection term. The modification has
been shown in algorithm 3. The statement q ← 0 in step 2 ensures that the
fluid will not float into an empty cell, such that we avoid infinite velocity at
the front of the fluid on figure 5.1. The other part of the branch ensure that
the rear of the fluid is horizontal. This is important in lakes which contain a
mouth.

There is still one problem with the proposed algorithm. The problem
occurs if the drop on figure 5.1 has a volume which is smaller than α∆x∆y.
In this case the fluid will not float down the slope since the first part of the
branch in step 2 will be executed each time. Clearly we cannot remove the
fluid since it will lead to the problems described in section 5.4.

Instead we will extend each cell ci with a variable ri which denotes the
time elapsed since it was an empty cell. When ri gets greater than a constant
adropt we will allow the small drops to enter a new cell. This extension is
implemented in algorithm 4.

47

Algorithm 4 (Boundary Behaviour with Small Drops)
This algorithm is an extension to algorithm 3 such that it will handle small
drops of fluid.

1. u(i+j)/2 ← 0

2. if dj = 0 ∧ ri < adropt then
q ← 0

else
q ← max(min(di,

hi−hj

2
), 0)

48

Chapter 6

Results

6.1 The Breaking Dam Experiment

Figure 6.1 shows a breaking dam experiment, which compares a 1D height
map with a SPH simulation from [22]. The 1D height map consists of 300
cells and uses the imperative VEAT from section 4.1. The SPH simulation
uses 11250 particles thus the height map runs 103 to 104 times faster than
the SPH simulation1.

Generally the shape of the two fluids match reasonably well when we take
into consideration that SPH has running time O(n2) while the height map
has running time O(n). The main problem with the height map is that the
acceleration is too low thus the height map looks as if it models fluid with
high resistance. Section 8.1.1 discuss some of the practical consequences of
this problem.

6.2 A Bump Experiment

We shall now extend the breaking dam experiment from section 6.1 with a
small bump. Figure 6.2 shows the extended experiment. The fluid hits the
bump at t = 15 s and at t = 17 s we observe how the SPH particles fly in
the air. Naturally the basic height map does not have this ability, however
in chapter 8 the height map will be extended with flying particles.

1None of the two implementations has been optimized for speed thus it is only a rough
estimate.

49

Figure 6.1: The figure shows four frames from a comparison between the SPH
simulation from [22] and the 1D height map using the imperative VEAT from
section 4.1. The tiny black dots are the sph particles while the light shaded
shape is the height map.

50

At 20 s < t < 35 s the surface of the height map is not as smooth as
the SPH The reason is that the fluid in the height map passes the bump
almost unaffected. We observe that the fluid changes direction with almost
90 degrees without loss of velocity. This is not the case in the SPH where
the velocity of the fluid to the left of the bump is zero at the bottom. In this
way the fluid at the bottom actually works as a smoothing extension to the
bump. This means that the SPH particles at the top has a smooth curve as
if they were passing a smooth bump. It might be possible to approximate
this behaviour in the height map by extending each cell with an extra depth
which keeps track of the amount of still fluid at the bottom.

At 75 s the fluid becomes horizontal however the fluid keeps floating from
left to right.

At 75 s < t < 180 s the velocity of the fluid decreases and hence the
VEAT gets smaller influence. This implies that the gravity will get a more
local influence and therefore the fluid starts accumulating to the left of the
bump. The opposite effect occurs at the right of the bump where the gravity
causes the fluid to increase velocity.

We observe the large slope of the fluid surface at the right side of the
bump. This is an artifact since we would expect the fluid above the bump
to flow to the right like a breaking dam. Therefore we cannot use the height
map as a general purpose fluid simulation.

It should be notified that we have not read any other articles about SWE
which contain test results on a rough bed. The only tests we have seen for
height maps with rough bed are developed by Kass [15] but the method does
not include the VEAT. Chen also shows a test on a rough bed but the test
includes a source so we do not get the situation with low velocity at the left
side of the bump and high velocity at the right side of the bump. Therefore
the VEAT does not cause problems.

6.3 Conclusion

We conclude that the VEAT is fairly problematic to approximate by the fi-
nite difference method from section 3.2. Instead we developed an imperative
VEAT with discharge conservation, which handles the breaking dam experi-
ment quite well since the deviation to the SPH simulation is small. However
the height map has fundamental problems as soon as a small bump is added
to the ground. Consequently we have not been able to develop a general

51

Figure 6.2: The figure shows seven frames from a breaking dam experiment
which is an extension to the experiment from figure 6.1. Therefore the first
frame at t = 15 s corresponds to the last frame from figure 6.1. The experi-
ment has been extended with a small bump which has just been reached by
the fluid at t = 15 s. At the three last frames we have zoomed such that
everything has been scaled by a factor 2 along each axis. The tiny black dots
are the sph particles while the light shaded shape is the height map.

52

purpose height map with a VEAT.
It should be notified that we have not read any other articles about SWE

which contain test results on a rough bed.
Instead we use a non conservative method without the VEAT as described

in section 3.3 which corresponds to the model from Kass extended with an
artificial resistance and a pressure term.

Finally we have developed a boundary algorithm in chapter 5 which con-
serves the volume of the fluid.

53

Part II

Visualization

We will now develop a visualization of the fluid simulation from the previous
part. In the first chapter we approximate the Geometry of the Fluid Surface
by a set of triangles so that we can render the surface with OpenGL. In the
next chapter we extend the visualization with Flying Particles to model foam.
The last chapter describes how to apply a texture to the fluid surface so that
we get Foam on the Fluid Surface. The texture is also used to visualize the
velocity of the fluid since the surface foam should float with the velocity of
the fluid.

54

Chapter 7

Tessellating the Fluid Surface

In this chapter we will determine how to transform the fluid surface from the
height map into triangles, so that we can render the surface by OpenGL. Ev-
ery cell ci,j which is inside the fluid has a well-defined point [i∆x, j∆y, hi,j]

T

in the fluid surface. Therefore it is easy to determine the triangles which are
inside the fluid. Figure 7.1A shows how the surface from a 2D height map
is divided into triangles. However we need to determine the triangles at the
boundary or else there will be a gap between the fluid surface and the surface
of the ground. The gap is shown more clearly at figure 7.1B which represents
a 1D height map.

Four cells are defined to be a square iff. each of the cells has exactly two
of the other cells as neighbours. The four cells marked with crosses on figure
7.1A form a square.

7.1 Closing the Gap at the Boundary

We will now describe how to close the gap between the fluid surface and
the ground at the squares which are at the boundary of the fluid. Each cell
can either be inside the fluid or outside the fluid thus there are 16 different
squares to handle. The 16 cases can be formed by rotations of the 6 squares
shown on figure 7.2. The bullets indicates cells which are inside the fluid
whereas the circles indicate cells which are outside the fluid.

The situation on figure 7.2E is handled on figure 7.1A and at figure 7.2F
all cells are outside the fluid thus no triangles should be drawed. At figure
7.2D there is no connection between the cells which are inside the fluid thus

55

x

y

{
{

gap

gap

x

z

A B

Figure 7.1: Internal triangles. Figure A shows a 2D height map whereas
figure B shows a 1D height map

A B C D E F

Figure 7.2: Six special cases.

the situation is handled by using the situation on figure 7.2A twice.
Consequently there are three special cases which must be solved. Figure

7.3 shows how the three situations are tessellated. Each asterisk is placed at
the midpoint between the two nearest cells. The three special cases makes
it possible to tessellate any fluid boundary, for instance figure 7.4 shows an
example where the gaps have been closed.

Even though the gaps have been closed the boundary is still fairly rough.
The boundary of the fluid is the area where users typically spot the dis-

A B C

*

*

*

*

*

*

Figure 7.3: Tessellating three special cases.

56

x

y

x

z

A B

Figure 7.4: Complete tessellation. Figure A shows a 2D height map whereas
figure B shows a 1D height map

cretization of the fluid. Since the number of boundary vertices is O(n) while
the total number of vertices is O(n2) it is typically more effective to smooth
the boundary rather than increasing the resolution of the height map. In the
next sections we will smooth the boundary in time and space, by carefully
placing the asterisks on figure 7.3.

Note that the smoothing algorithm can be described without considering
the three special cases from figure 7.3. We simply write an algorithm to
place the boundary/asterisk between a cell which is inside the fluid and a
neighbour cell which is outside the fluid.

7.2 Smoothing the Boundary in Time

The boundary of the fluid does not have a smooth movement as shown on
figure 7.5. From t = 0 to t = 2∆t the boundary remains stationary a
discontinuity happens from t = 2∆t to t = 3∆t. Instead we want to obtain
a smooth movement as shown on figure 7.6.

7.2.1 A Boundary based on the Fluid Depth

A possible solution is to interpolate the boundary from the depth of the
nearest cell. For instance at time t = 2∆t we could use d1 to determine the
boundary between c1 and c2 as

∆x + a0d1,

57

x

z

c0 c1 c2 c3

t = 0

x

z

c0 c1 c2 c3

t = Dt

x

z

c0 c1 c2 c3

t = 2Dt

x

z

c0 c1 c2 c3

t = 3Dt

Figure 7.5: The figure shows a drop of fluid moving from left to right without
time smoothing.

x

z

c0 c1 c2 c3

t = 0

x

z

c0 c1 c2 c3

t = Dt

x

z

c0 c1 c2 c3

t = 2Dt

x

z

c0 c1 c2 c3

t = 3Dt

Figure 7.6: The figure shows a drop of fluid moving from left to right with
time smoothing.

where a0 is a constant. In this way the boundary moves to the right when
the depth increases. The problem with this solution is that ∂d

∂t
is changing

quite much at the boundary. This means that the boundary velocity will not
be constant, e.g. on figure 7.6 at time t = ∆t the boundary velocity is almost
zero, whereas at t = 2∆t the boundary velocity is relatively high.

7.2.2 A Boundary based on the Future

Instead we use a solution where the fluid simulation is afuture frames ahead
of the visualization1. In this way we can determine when the fluid boundary
passes a given cell in the future. Furthermore the position of the boundary
is stored in a variable mi+1/2 which denotes the distance from the boundary
to ci (assumed that there is a boundary between ci and ci+1).

We will now describe the boundary algorithm by the example shown
on figure 7.6 at time t = 0. The algorithm should move the boundary so
that we reach the situation shown on figure 7.6 at time t = ∆t. Since the
fluid simulation is afuture frames ahead of the visualization we know that the
boundary of the fluid will pass c2 at time t = 2∆t. By assuming that the
boundary moves with constant velocity to c2 we can determine the velocity
of the boundary and upate mi+1/2 correspondingly.

1The constant afuture should be chosen so large that the velocity ∆x
afuture∆t is so small

that it appears stationary for the viewer.

58

x

z

A

x

z

B

h0 h1 h2 h3 h4
h0 h1 h2 h3 h4

m3+½

mtarget

{

{

Figure 7.7: Obtaining a horizontal fluid surface at the boundary.

We have now described the position of the boundary when it is in motion,
however, we need to describe to determine the position when the boundary
does not pass any cells during the next afuture frames.

7.3 Smoothing the Boundary in Space

In this section we will described an algorithm which supports the algorithm
from section 7.2.2 when the fluid boundary does not pass any cells during
the next afuture frames.

7.3.1 Obtaining a Horizontal Fluid Surface

This algorithm moves the fluid boundary to make the fluid surface as hori-
zontal as possible at the boundary. For instance at figure 7.7A the algorithm
will move the boundary towards the situation shown on figure 7.7B. The
distance between the right boundary and c3 at figure 7.7B is determined as

mtarget = d3
∆x

b4 − b3
.

This means that the boundary distance m3+1/2 on figure 7.7A should move
towards mtarget.

The algorithm works well for lakes, however, in waterfalls a situation may
occur where b4 < h3 (think of figure 7.7A as the cross section of a waterfall
in a 2D height map). In this case we handle the situation as if b4 = h3 thus
mtarget becomes ∆x. This implies that we get an angular boundary in the xy-
plane as shown on figure 7.4. Therefore we will develop an extra smoothing
algorithm in the next section.

59

x

y

A

B

Figure 7.8: Smoothing in the xy-plane

7.3.2 Smoothing in the xy-plane

This algorithm is used after the algorithm in section 7.3.1 to ensure that
the boundary is sufficiently smooth in the xy-plane. The algorithm uses a
standard smoothing approach. It moves each vertex B in the boundary curve
towards the average A of the two neighbour vertices as shown on figure 7.8.
If the distance between A and B is below a given threshold asmoothness no
smoothing is done. In this way we keep some of the details in the boundary
while we remove the sharp edges.

7.4 Blurring the Boundary

The primary purpose of this section is to obtain a smoother transition be-
tween the fluid surface and the flying foam described in chapter 8. Figure
8.10 on page 78 shows the advantage of the blurring. A secondary purpose
is to antialiase the boundary of the fluid.

7.4.1 Internal Boundary Blurring

The boundary could be blurred by making all the vertices on the boundary
curve transparent. In other words all the asterisks on figure 7.3 become
transparent. This is very easy to implement, however, there are several
problems with the solution.

The worst problem is shown on figure 7.9 where the fluid is almost com-
pletely transparent at the dot-and-dash line even though it should be almost

60

x

z

h0 h1 h2 h3 h4

Figure 7.9: Unwanted Transparency.

x

z

h0 h1 h2 h3 h4

BA

C
D

C

D

x

y

Figure 7.10: External Boundary.

opaque for the viewer. Naturally this is unrealistic due to the reflection and
the loss of light from the long distance inside the fluid2.

7.4.2 External Boundary Blurring

The external boundary blurring is more comprehensive to implement, since
it adds an extra layer of triangles to the fluid surface as shown on figure 7.10.
Figure 7.10A shows a 2D height map where the original fluid is light shaded
whereas the external boundary is dark shaded. Figure 7.10B shows a 1D
height map where the external boundary is opaque at position C, whereas
it is completely transparent at position D. The thickness of the boundary is
defined as the distance between C and D. To simplify the implementation
of the boundary the thickness should be smaller than min(∆x, ∆y).

The implementation is simple as long as there is no cell between C and
D. Figure 7.11 shows how to handle the three special cases from figure 7.3
when there is no cell between C and D.

2Recall that the goal in this project is to visualize large-scale fluid thus the distance
under the fluid is expected to be relatively long

61

A B C

Figure 7.11: Three simple cases for the external boundary.

}a b

Figure 7.12: External boundary on a concave fluid area.

The algorithm gets more tricky when there is a cell between C and D, es-
pecially when the fluid area is concave as shown on figure 7.12. The problem
is how to find and draw the square which does not contain any cells which are
inside the fluid (the upper right square). It is inefficient to search through
all the squares in the height map, since you need to examine all neighbour
squares for each cell. It would be smarter to draw the upper right square
when you are about to draw the three other squares on the figure. However,
it is very difficult to divide the square between the three other squares on
the figure, since the division depends on whether the fluid area is concave or
convex. Therefore we introduce an extra grid at which we can register the
external squares which should be drawn. The grid ensures that no square is
drawn twice. In order to draw the upper-right square we need to determine
the distance b. b should be the “remaining thickness of the external bound-
ary” thus b is equal to the thickness minus the shortest distance from a to
the fluid surface.

The thickness of the boundary should be dependent on the amount of
foam in the particular area. In areas without foam the external boundary
should just be used for antialiasing thus the thickness should be small. For
simplicity we use the boundary velocity qv to determine the amount of foam
thus the thickness becomes

min (aminThickness + qvavfactor, min (∆x, ∆y)) .

62

Chapter 8

Flying Particles

The height map has certain limitations, of which some have been pointed out
in section 2.4.2. A considerable limitation is that the height map can only
represent objects which have a clear boundary, thus the height map cannot
model foam flying in the air.

8.1 Motivation

The primary reason why we decided to develop flying foam is that we want
to obtain a better control of the viscosity and the scale of the fluid.

8.1.1 Controlling the Viscosity

The fluid simulation has been tested on a number of people and many of
them say that the fluid has a high viscosity. This is a serious problem since
we cannot change the viscosity of the physical model. We will now make a
hypothesis why users experience a high viscosity.

In the breaking dam experiment the user observes that the fluid starts
accelerating as it should. However, after a very short time the acceleration
becomes zero thus the user believes that there is a high resistance. The
user knows that there are two cases in the real world where such a situation
occurs:

• A fluid with low viscosity moving at large-scale with high velocity on a
rough bed. In this case it is the rough bed and the high velocity which
have caused the high resistance.

63

• A fluid with high viscosity moving at small-scale with low velocity. In
this case it is the high viscosity which makes the high resistance.

The user observes that the surface of the fluid is rather calm and smooth,
thus it can only be the latter situation which has occured.

Therefore we will implement foam so that the user does not think the
fluid has a smooth surface. If the hypothesis is true the user should believe
that the fluid moves faster, and hence it has a lower viscosity.

8.2 Survey of Models

Usually particles are used to model foam flying in the air. We can divide the
particle methods into two groups, those with mass and those without. The
next two sections describe the two groups.

8.2.1 Particles with mass

When the particles have a mass, they affect the original height map since
each time a particle is created, an amount of mass is removed from the height
map. In [21] and [12] a height map is used in combination with particles with
mass. The method described in [21] converts mass from the height map to
foam particles when the z-velocity gets above a given threshold. We will
use a similar approach in this project, however the method cannot handle
waterfalls since the z-velocity is negative thus we need to extend the model.

The method in [12] is quite different since it uses the particles to model
fluid with a clear boundary, which is visualized by marching cubes. The
method converts the mass from the height map into particles when the speed
|w| gets above a given threshold.

8.2.2 Massless Particles

The massless particles do not affect the fluid in the height map. A brief
description of foam particles exists in [16]. In this article the particles are
spawned when the fluid collides with obstacles. The particles are created in
the surface of the water, and hence the velocity is equal to the velocity in
the water surface.

64

8.3 Particle Spawning

In this project we will use particles to model the foam. First we will discuss
where the foam occurs in real fluid, and then where we should spawn the
foam particles.

8.3.1 Waterfalls

The amount of foam in waterfalls is very dependent on the velocity and the
bed. Figure 8.1 shows the top of four different waterfalls. Image A shows a
small-scale waterfall where no foam is spawned due to the low velocity and
the smooth bed. Images B and C show waterfalls where foam is spawned
but the boundary remains fairly clear at the top of the waterfall. At image
D a large amount of foam is spawned at the top of the waterfall and hence
there is no clear boundary.

It is beyond the scope of this project to develop an extensive physical
analysis of the foam spawning criterion at waterfalls. Instead we will combine
our intuition with figure 8.1 to obtain a relatively simple spawning criterion.
The foam spawning density fwdensity should be a monotonous function of the
velocity |w|, and the curvature of the fluid surface ∇2h, therefore we have
chosen the formula:

fwdensity = aroughness|w|av

(

∇2h
)ac

. (8.1)

The extra powers av and ac are used to control the influence of velocity and
the curvature respectively. The constant aroughness is included so that we can
approximate bumps which are smaller than the resolution grid. Naturally,
we could have modelled this roughness in the grid, but it would require a
much higher grid resolution, and hence decrease the running time.

For each time step we will spawn particles corresponding to the density
from equation (8.1) at each cell. According to the volume interpretation from
section 2.4.1 each cell represents an area ∆x∆y so during a time step ∆t, we
should spawn

λwaterfall = aroughness|w|av

(

∇2h
)ac

∆x∆y∆t, (8.2)

particles on average.
It is assumed that the spawning of a particle does not influence the way

particles are spawned in the future. Consequently, the spawning of the par-
ticles follows a poisson distribution with parameter λ as described in [6].

65

Figure 8.1: The figure shows the top of four waterfalls.

66

Formally, the number of particles X spawned at a cell during a time step
becomes X ∈ P (λ).

For each cell ci we extract a sample X from the poisson distribution and
spawn X particles at the cell. This completes the algorithm which determines
the number of spawned particles per time step.

Now we should determine the initial position and velocity of the particles.
Clearly, we need some random generators so that the particles can be spawned
at any point in the landscape. In this section we will just determine the
average position and velocity of the particles, and then we will include some
random generators in section 8.4.2. The initial position is directly retrieved
from the position of the fluid surface at the cell, whereas the initial velocity
demands more attention.

The Initial Velocity of the Particles

The horizontal components of the particle velocity wf are directly retrieved
from u and v in the height map. The vertical component of the velocity is
obtained by an equation which states that the velocity should have the same
direction as the fluid which is floating into ci.

Figure 8.2A shows the principle in a 1D height map where 0 < ũi, thus
wf should be parallel to the fluid surface from hi−1 to hi. At figure 8.2B ũi is
negative, thus wf should be parallel to the fluid surface from hi+1 to hi. In
general we can use the sign sgn(ũi) of the fluid velocity to determine which
surface wf should be parallel to. This means that wf should be parallel to
the fluid surface from hi−sgn(ũi) to hi in general, thus formally the velocity
becomes:

wf =

[

ũi
|ũi|
∆x

(

hi − hi−sgn(ũi)

)

]

. (8.3)

In a 2D height map we apply equation (8.3) along the x- and y-axis. The
particle velocity is determined as the sum of the two contributions:

wf =

ũi,j

0
|ũi,j |

∆x

(

hi,j − hi−sgn(ũi,j),j

)

+

0
ṽi,j

|ṽi,j |

∆y

(

hi,j − hi,j−sgn(ṽi,j)

)

, (8.4)

where the first term comes from equation (8.3) along the x-axis whereas the
second term comes from the y-axis.

67

hi

hi-1

hi+1

wf

hi

hi-1

hi+1

wfB

x

z

x

z

A

Figure 8.2: The figure shows the initial velocity of the foam particles at
a waterfall. The dot-and-dash line denotes the initial velocity wf of the
foam. Figure A shows the situation when 0 < ũi whereas figure B shows the
situation when ũi < 0.

8.3.2 Accumulation

When the fluid collides into another drop of fluid we would expect foam to
occur as it is described in [21]. The fluid will accumulate at the collision
point and hence the z-velocity will increase. Consequently the density of the
foam becomes:

fadensity = aafoam

(

∂h

∂t

)aa

. (8.5)

Similarly to equation (8.2) we get that

λaccumulation = aafoam

(

∂h

∂t

)aa

∆x∆y∆t, (8.6)

particles are spawned on average when the fluid accumulates. The spawn-
ing of the particles follows the poisson distribution simlarly to the waterfall
particles described in section 8.3.1.

The Initial Velocity of the Particles

The initial velocity w is assumed to be parallel to the normal vector of
the fluid surface when we are considering a coordinate system which has the
horizontal velocity of the fluid. The situation is shown in figure 8.3. Formally
the initial velocity becomes

w =
∂h

∂t
n +

u
v
0

 ,

where n is the normal vector of the fluid surface.

68

hihi-1

hi+1

x

z

w

Figure 8.3: The figure shows a situation where the fluid accumulates at hi.
Consequently, foam particles are spawned with w as the initial velocity.

8.4 Moving the Particles

The movement of the particles is affected by various factors such as gravity,
air resistance, buoyancy, the ground and several random generators. These
factors can be combined in various ways, thus it seems convenient to develop
a network of these factors. Each vertex in the network corresponds to a factor
and the flying particles are transferred from vertex to vertex1. In order to
archieve this, each vertex must implement the abstract class:

class FlyingParticleReceiver{

public:

virtual ~FlyingParticleReceiver(){}

virtual void receive(const FlyingParticle& fp) = 0;

};

Each edge in the network is a pointer to a FlyingParticleReceiver and
the particles are transferred between the vertices by using the pure virtual
function FlyingParticleReceiver::receive.

Figure 8.4A shows an example of a network. The vertex ParticleContainer

contains all the flying particles which are in the visualization. For each
time step all the particles inside ParticleContainer are sent through the
loop inside the dot-and-dashed rectangle. The three vertices AirResistance,
Buoyancy and Gravity apply forces to the flying particle, thus the resulting
force becomes:

Fres = Fbuoyancy + G− aair
w3

|w| (8.7)

1In this section “vertex” is the term from graph terminology, however, in the rest of
the report it refers to an OpenGL vertex.

69

WaterfallSpawner

Destroy

ParticleContainer

MoveGroundCollision Gravity

BuoyancyAirResistance

true

false

WaterfallSpawner

Destroy

ParticleMoveCnt

A B

Figure 8.4: Simplifying the Flying Particle Network

where Fbuoyancy is the buoyancy force, G is the gravity, w is the velocity of
the particle and aair is the air resistance2. The air resistance term builds
on the assumption that the surrounding air is turbulent, however, for low
velocities the air is laminar, and hence the term becomes aairw. According
to [11] the max velocity of a falling raindrop causes turbulent air, thus the
term in equation (8.7) is the most realistic.

After the force determination the particles arrive at the Move vertex where
the Euler method is used to update the velocity and the position of the par-
ticles. Afterwards the particles arrive at GroundCollision, which determine
whether the particles have collided with the ground. If the particles have col-
lided they are destroyed, otherwise they are stored in ParticleContainer

ready for the next time step.

8.4.1 Performance

For each time step all particles are transferred through the loop inside the
dot-and-dashed rectangle. This means that for each time step the number of
virtual function calls is proportional to the number of particles. It may cause
a bottleneck in the simulation, thus the vertices inside the dot-and-dashed
rectangle are merged into a single vertex called ParticleMoveCnt. In this
way the number of virtual function calls is proportional to the number of
spawnings in a time step, and hence it is not expected to give a measurable
difference in the running time.

2The term aair is composed by several constants as described in [11], however, we will
not go into a deep discussion about resistance in this project.

70

8.4.2 Random Generators

The solution shown at figure 8.4B does not allow a cell to spawn multiple
particles in a time step since all the particles follow the same path. Therefore
it is necessary to use a random generator which affects the initial velocity
of a particle. In this project a simple uniform distribution has been added
to each of the coordinates in the particle velocity. Alternatively, a spherical
distribution could be used. However, it has been chosen to skip the extra
distribution since there are much larger errors in the simulation of the fluid.

Furtheremore, we will add a uniform distribution to the x- and y-coordinates
of the particle position. In this way the particles spawn homogeneously in
the landscape. The random generators for the velocity and the position are
added as vertices RandomVelocity and RandomPosition respectively to the
network.

8.4.3 Bouncing on the Ground

The random generators can be applied to figure 8.4B, and thereby we get a
waterfall as shown on figure 8.5A. The particles are visualized by billboards
parallel to the view plan as described in section 8.5.1. We observe that there
is no foam at the bottom of the waterfall. This is undesirable since in a real
waterfall the highest foam density appears at the bottom. Consequently,
the particles should bounce when they hit the ground. Figure 8.5B shows a
reflective bouncing whereas figure 8.5C shows a bouncing where the velocity
of the outgoing particle is parallel to the normal of the fluid surface.

The reflective bouncing tends to develop outgoing particle velocities which
are almost parallel to the fluid surface as shown on figure 8.6A, where the
dot-and-dashed curve is the path of the particle whereas the other curve is
the fluid surface. Therefore the particles are quickly destroyed and hence we
get a poor visual realism. Naturally, the bouncing along the normal does
not suffer from this problem as shown on figure 8.6B. However, we have to
set a threshold of the dot product between the fluid surface normal and the
incoming particle velocity to avoid a situation as shown on figure 8.6C. In
other words, when the dot product gets below the threshold we do not launch
an outgoing particle. Similarly, we do not launch the outgoing particle if the
velocity gets below a threshold. Finally, a resistance factor is multiplied to
the outgoing velocity so that we avoid infinity bouncing.

71

Figure 8.5: Foam bouncing comparison. Figure A does not contain any
bouncing, whereas figure B and C shows reflective- and normal-bouncing
respectively.

x

z

x

z

n

x

z

nA B C

Figure 8.6: Foam Bouncing Schematic

72

WaterfallSpawner

ParticleMoveCnt

direct

RandomPosition RandomVelocity

BounceAlongNormal

FluidSurface

RandomVelocity

along normal

Figure 8.7: Flying Particle Network for Waterfalls

8.4.4 Setting up the Network

We have now described the most important factors in the network, and hence
we are ready to set up the network. Each time a particle hits the fluid surface
the particle is sent to a vertex called FluidSurface, which is used to spawn
foam floating in the fluid surface as described in chapter 9. The network
for the waterfalls is shown on figure 8.7. The edge which is labelled direct
sends particles which are equal to the ones sent from ParticleMoveCnt. The
network contains two random generators for the velocity. This is necessary
since the particles should be more random at the bouncing than at the top of
the waterfall. A similar network can be developed for AccumulationSpawner.

8.5 Visualization

When the flying particles are visualized it is crucial that the particles are
merged with the height map so that the viewer does not experience a sharp
contrast between them.

8.5.1 Primitives

The flying particles can be visualized in various ways. In this project five
different primitives have been tried.

73

Points

The simplest way to visualize particles is obtained by using points. The
points tend to give a noisy look when the density of the points is high since
it is difficult to follow the movement of a single point.

Lines Parallel to the Velocity

Small drops of fluid can be visualized by lines, which are parallel to the veloc-
ity. The rear of the lines is made transparent to obtain a rough approximation
of a drop.

Lines tend to provide a more clean structure than the points, since the
lines display the direction of the velocity, and hence it is easier to follow the
movement of a single particle.

Billboards Parallel to the view plane

Continuous foam can be visualized by billboards, which are quads with trans-
parent foam textures. Each billboard represents a flying particle, thus the
billboard is placed so that the particle is at the center of the billboard. Fur-
thermore, each billboard is parallel to the view plane.

Billboards Parallel to the Velocity

The billboards can also be used to obtain a surface which might be convenient
at waterfalls. The billboards should be spanned by the velocity and a vector
which is orthogonal to the velocity and the z-axis. In this way the normal of
the billboard can be used for lighting calculations.

Textures on the Fluid Surface

The flying particles can also be used to affect the color of the fluid surface
at the (x,y) position of the particle. This is simple and robust to implement
but it does not provide the spatial properties like the other primitives.

8.5.2 Discussion of the Primitives

At waterfalls the foam tends to be more cloudy, and hence the foam becomes
too flat if it is rendered as a texture on the surface of the fluid. The bill-
boards parallel to the velocity are convenient for waterfalls with low velocity,

74

however, they are comprehensive to implement since the billboard should be
parallel to the surface of the fluid at the take-off. Instead we have chosen
to use a combination of lines and billboards parallel to the view plane. The
billboards removes the high contrast between the lines and the fluid.

There are still a couple of important issues which we have not dealt with.
We do not sort the billboards and render them from back to front. This is
expected to increase the depth feeling. Furthermore, we should render fewer
lines when the camera zooms out, or else the density of the lines will change
on the screen.

8.5.3 Avoiding Intersections with the Ground

A considerable problem with the billboards is that they might intersect the
ground as shown on figure 8.8A and 8.8B. For instance there is a sharp
contrast between the foam and the ground at the right side of figure 8.8B.
Such artifacts look disturbing especially when the foam is moving, thus we
should strive to avoid them.

There are various ways to avoid the intersections. The intersection could
be avoided by raising the billboard vertices which are below the surface of the
ground. However, this solution raises the center of the billboard, and hence
the density of the foam at the boundary of the fluid decreases. Figure 8.8D
shows the raised billboards, and we observe that the density of the foam is
lower than the density at 8.8A. Consequently, the boundary of the fluid at
figure 8.8D has a higher contrast than the boundary at figure 8.8A.

In fact, the foam at figure 8.8A also has too low density at the boundary of
the fluid, since the foam below the ground is not drawn. Figure 8.9 illustrates
the problem for a flying particle E. The light shaded area shows the real
amount of foam which the billboard should approximate. For camera C1 the
foam will stop at line I due to the intersection with the ground. In order to
approximate the light shaded shape the foam should stop at R. The problem
can be solved in two ways:

• By drawing the billboard so that it passes the depth test. However, it
should not pass the depth test for camera C2, thus it is necessary to
displace the depth values by using glPolygonOffset from [18]. The
solution is shown on figure 8.8C. In this solution thin walls on the
ground become transparent. Naturally, the problem could be solved
by drawing the entire scene from back to front, however, this is a quite

75

Figure 8.8: Figure A and B show the intersections between the foam and
the ground. Figure C shows foam without the depth test whereas figure D
shows foam which has been raised.

76

x

z

C1

C2

I

R

E

Figure 8.9: Illustration of a Foam Intersection

comprehensive solution which we will skip.

• By drawing the remaining part of the billboard on the ground. In order
to draw on the ground it is necessary to add a vertex each time a cell in
the height map is passed. The x-axis of the texture coordinate system
is defined by the intersection between the billboard and the ground.

Determining the Alpha Value

The gauss function gives a smooth foam. However, the average value of
the alpha channel is rather low, thus many blendings are needed to reach a
realistic density of the foam. Instead the function 1 − x2 could be used to
reach the same density with fewer blendings.

8.5.4 Blurring the Boundary

At the front of a boundary there is a lot of foam, and hence it is important
that the boundary of the fluid is completely blurred. It is fairly computa-
tionaly expensive to ensure that the sharp boundary is completely hidden by
the foam without reducing the realism of the foam. Furthermore, it is diffi-
cult to draw the billboards correctly without artifacts from the depth test.
Therefore we have developed a blurred boundary as described in section 7.4.
Figure 8.10A shows the fluid without blurring. We observe the contrast be-
tween the fluid and the foam which is not apparent at figure 8.10B where the
boundary has been blurred.

77

Figure 8.10: Bluring the Boundary

78

Chapter 9

Foam on the Fluid Surface

The flying particles clearly show the direction of the flow at the waterfalls.
However, there are still large parts of the fluid surface where the direction of
the flow is invisible. Furthermore, there is no foam floating away from the
waterfalls, thus there is a sharp contrast between the flying particles and the
surface of the fluid. In this chapter we will develop a solution to the two
problems.

9.1 Survey of Methods

The foam and flow could be visualized by billboards floating on the fluid
surface. However, it is difficult to place a billboard on the surface, and it is
ineffecient due to the large number of vertices.

Instead we will visualize the foam and the flow by applying a texture to
the fluid surface. We have not found any articles which solve both problems
at the same time. Therefore the next two sections describe how the two
problems have been solved separately.

9.1.1 Flow Visualization

Flow visualization is a classic problem, and hence various solutions have been
implemented. The solutions we have found (see fx. [29], [19] and [3]) give
a very detailed visualization of the flow. In order to obtain the detailed
flow, the textures are manipulated quite a lot so it is not possible to include
images of foam and fluid since they will be too distorted. Figure 9.1 shows

79

Figure 9.1: The figure shows a flow visualization from [29]. The box indicates
the center of a vortex.

an example of a distorted flow visualization from [29] where it is dificult to
add images which remain clear.

Instead we will use a method where the foam and fluid images are better
preserved.

9.1.2 Foam Visualization

The visualization of foam at a surface is a more specific problem, thus we
have only found a single article [16] on the topic. This article describes how
to visualize foam in deep water by using a height map. For each cell there
is a scalar f ∈ [0, 1] which determines the amount of foam at the cell. For
f = 0 there is no foam and for f = 1 there is the maximum amount of
foam. In this way f is used as an alpha value of a foam texture on the fluid
surface. The solution is effective, and the foam looks realistic since you can
precalculate a foam texture.

In spite of this the solution cannot be directly implemented in this project,
since the foam does not follow the flow in the height map. Consequently, we
will extend the principle in this project.

9.2 The Basic Idea

In this section we will provide a survey of the method which is used to
visualize the foam floating on the fluid surface. The foam is visualized by

80

x

y

A

B

C

S

Figure 9.2: The figure shows three surface particles A, B and C, each of
which is associated with texture. The textures are shown as squares with
a dot-and-dash outline. The squares are placed so that the corresponding
particle is at the center of the square, thus the figure shows how the textures
are copied into texture S.

one large texture S covering the entire fluid surface in the height map. It is
now the task to develop a method which determines S at each frame.

In order to obtain clear images of foam and fluid in S, we will use particles
floating on the fluid surface. Each surface particle A is associated to a texture
TA thus basically we can obtain S by copying all the particle textures into
S. Figure 9.2 shows an example where the textures from three particles A,
B and C are copied into S. For each frame each particle is moved with the
velocity, which is in the height map at the position of the particle.

Each time a flying particle hits the surface of the fluid an amount of foam
is assigned to the textures of the nearby surface particles. If a surface particle
does not receive any foam during a time step, it will lose a small amount of
foam so that the foam slowly fades away.

Figure 9.3 shows a waterfall with three surface particles A, B and C at
the bottom. The flying particle F will assign foam to the nearest surface
particle A and B. Surface particle C is relatively far away from F so it will
not receive any foam from F . Instead C will lose a small amount of foam in
every frame.

Clearly, there are lots of issues which are not handled in the brief al-
gorithm just described, thus the next sections describe improvements and
deepenings to the algorithm.

81

x

z
FA B C

Figure 9.3: The figure shows a waterfall with surface particles at the bottom.
The dot-and-dash curve shows the path of the flying particle F which has
just hit the surface of the fluid. A, B and C are surface particles.

9.3 Even Distribution

It is important that the surface particles are evenly distributed in the fluid.
If the particles huddle together we will copy more textures than necessary at
the areas with high particle density while there might be areas in S which
do not receive any texture information.

The problem will especially occur when there are sources and mouths
since all the surface particles will float away from the source and huddle
together at the mouths.

Consequently, we need an algorithm which removes the particles from
areas with high density and inserts them at areas with low density. In order
to determine the areas with low density we introduce a new 2D grid G which
keeps track of the number of particles which are inside each cell in the grid.
Now we can choose an interval of acceptable densities thus if the number of
surface particles in a cell exceeds amaxsp we will remove particles, whereas we
will add particles if the count gets less than aminsp. Algorithm 5 describes
the principle.

9.3.1 Removing Surface Particles

In order to remove the particles from a cell C we need to get access to the
particles inside C. We could search through all the surface particles in the
fluid, but this operation is needed quite often thus it turns out to become
a bottleneck which is increasing the overall running time. The problem is

82

Algorithm 5 (Adjust Closeness)

1. for each cell C ∈ G do

if C has more than amaxsp particles then
remove particles from C as described in section 9.3.1.

else if C has less than aminsp particles then
add particles to C as described in section 9.3.2.

solved by extending the data structure with an auxilary 2D grid Gsearch as
described in section 10.3.

The grid Gsearch is also used to find the distance to the nearest particle.
This means that for a particle A we can define a function fdist so that fdist(A)
returns the distance to the nearest particle.

Each time we remove a particle from a cell we should choose the particle
carefully since it is a complete waste of resources if two particles have exactly
the same position. Consequently, we should remove the particle A which has
the smallest value of fdist(A).

9.3.2 Adding Surface Particles

The objective for this method is very similar to the objective of the removal
method. In this method we shall avoid that we insert a particle close to an
existing particle. Therefore we will insert the particle A at aattempts random
positions and choose the position which has the largest value of fdist(A).

Note that if the first position is outside the fluid we will abandon the
insertion immediately even though there might be some fluid in the cell. This
is done since we do not want to waste time on the possibly large amount of
cells which are outside the fluid. Remember that this method is executed
every frame, thus if there is any fluid inside a cell we will soon find it with the
random insertions. It could be done more effectively, but it does not cause
a bottleneck since the number of cells in G is considerably smaller than the
number of cells in the height map. Consequently, we will use this method
since it is simple to implement.

83

9.3.3 Fading In and Out

Each time a surface particle A is added, the corresponding texture TA will
pop up in S. Similarly, the texture will pop away when A is removed. This
looks very disturbing for the viewer thus we need to fade in and out when
the particles are added and removed.

This is done by extending the data structure with an alpha value for each
particle. When a particle is inserted the alpha value is initialized to zero and
then the alpha value is increased by a small value every frame. Similarly,
when a particle is removed it is kept in the data structure until the alpha
value has been decreased to zero.

Should the fading particles be counted by the cells in G? Well, they
should predict the future, thus the particles which are fading in should count
and the particles which are fading out should not count. Any other choice
will imply a wrong behaviour in algorithm 5.

9.4 Calculation of the Foam

In order to represent the amount of foam in a surface particle the data struc-
ture is extended so that each surface particle A contains a scalar fA which
denotes the amount of foam in the particle similar to the method from section
9.1.2.

When a flying particle hits the surface of the fluid, the nearest surface
particles should receive an amount of foam. We will use Gsearch to quickly
find the nearest surface particles. This means that the maximum interaction
radius for a flying particle is the width of a cell from G. Our tests show
that it gives a reasonable distribution to the surface particles. However, if
for some reason it should be necessary with a longer interaction radius r it
is necessary to have an extra grid with cell width r.

It seems reasonable that the amount of foam transferred from a flying
particle to a surface particle should be a function ffoam of the distance between
the two particles. The gauss function

fgauss(s) = a1e
−s2

(9.1)

has been tested with good results.
When a new particle B is added as described in section 9.3.2, fB is ini-

tialized to a weighted sum of the amount of foam in the nearest particles.

84

This ends the description of the simulation of the surface particles. In
the next sections we will describe how to visualize the particles.

9.5 Visualization of the Foam

We will now describe how the amount of foam fA can be used to determine
the texture TA of a surface particle A.

The idea is that we load a number of external images and each of these
images I is associated to a scalar sI . Each image I specifies how TA should
look if fA = sI .

In general fA does not match any of the values from the images thus we
will find the two neighbouring images above and below fA and do a linear
interpolation.

More precisely TA can be determined by finding the external image E
which has the smallest value sE so that fA < sE. Furthermore, we find the
exernal image D which has the largest value sD so that sD < fA. Now by
interpreting the images as matrices we can determine

TA =
sE − fA

sE − sD

D +
fA − sD

sE − sD

E

by linear interpolation between D and E.
In this project we have used three external foam images as shown on

figure 9.4.

9.6 Smoothing the Texture Boundary

Until now we have described that the texture TA of each surface particle A
should be copied to S. However, this will leave a sharp edge in S at the
boundary of TA. Therefore we need to smoothen the boundary by making
TA transparent. Due to the spherical nature of the particles it makes sense
to let the alpha value of a texel be function fsp of the distance to the center
of the texture. Again the gauss function fgauss from equation (9.1) could be
used.

However, the average alpha value in the texture is fairly low, thus we
need many overlapping textures in S to get an acceptable density. Instead

85

Figure 9.4: The figure shows the three external images which have been used
for the surface particles in this project.

it is more effective to choose

fpoly(s) = 1− s2

r2

as the alpha function since it has a higher average. The drawback of this
function is that the boundary of the texture is slightly visible due to the
larger “alpha slope”. A proper function can be found by making a linear
interpolation between fpoly and fgauss.

9.7 Determining the Size of the Textures

The size of the textures plays an important role. In other words how much
space should a surface particle occupy in world coordinates.

The disadvantage of a large texture is that the flow at the boundary of
the texture might be quite different from the flow at the center. Therefore
the boundary might not move with the velocity which is in the height map
at the corresponding position. Figure 9.5 shows a situation with two surface
particles A and B. A moves upwards whereas B moves downwards thus
at position C we observe a texture which is moving upwards and a texture
which is moving downwards. Naturally, this is not the flow in the height
map, however the situation with two layers of fluid does occur in the real
world, thus it is not a fatal problem.

86

x

y

A

BC

S

Figure 9.5: The figure shows two surface particles A and B. Due to the
velocity in the height map A moves upward whereas B moves downward.
Therefore the texture S will move with two different velocities at position C.

The problem with multiple layers of velocities can be reduced by using
smaller textures. In this way we will get a more detailed and precise visual-
ization of the flow in the height map. The disadvantage with this approach
is that the particles cannot contain much image information, and hence S
tends to become noisy and foamy even if we wish to visualize laminar fluid.

Based on experiments we have found that a side length at 20∆x of TA

gives a good balance between image quality and flow details.

87

Part III

Results

88

Chapter 10

Implementation

This chapter provides a discussion of various implementation issues which
deserved extra attention.

10.1 Performance

Currently the simulation runs in real-time 20 fps in a 50x100 grid on a tbird
1.33 Ghz with a Radeon 9600 Pro graphics card. In this project the main
focus has been kept on effective algorithms and improvements to the realism
of the fluid. Therefore important issues such as cache performance, size in
memory and branches in the inner loops have not been addressed. Conse-
quently we expect that the running time can be improved significantly.

10.1.1 Removing the Branches

Currently there are three branches in the inner loop of the fluid simulation
at each volume transfer between two neighbour cells ci and ci+1:

• Is the velocity positive?
This branch is required by the imperative VEAT from section 4.1. The
algorithm needs a pointer to the source cell (where the depth decreases)
and a pointer to the target cell (where the depth increases). The branch
can be removed by extracting the sign bit s from the velocity as de-
scribed in [7] using a bitwise and1. Then we can retrieve the source

1Note that this is not a portable solution since it deals with the internal floating point
representation.

89

and the target from ci+s and ci+1−s respectively.

• Is the transfer stable?
This branch can be moved out of the inner loop in this way:

bool stable = true;

for(each cell){

get(i).v = ...;

stable = stable && eMath::abs(get(i).v) < maxVelocity;

}

if(!stable)

ensureStability();

• Is it a boundary behaviour cell?
In order to remove this branch we exploit the fact that the number
of boundary behaviour cells is an order of magnitude smaller than the
total number of cells. Consequently we store pointers to the boundary
behaviour cells in a stack and executes these cell transfers after the
original transfer loop has finished. The pointers are pushed on the
stack in this way2:

int ds = applyBoundaryBehaviour ? 1 : 0; // delta stack size

stack[stackSize] = p; // p is a pointer to the cell

stackSize += ds;

10.1.2 Potential Bottlenecks

There are a couple of functions which are not primary bottlenecks at the
moment however they might become bottlenecks if we succed to remove the
current bottlenecks. Therefore we will briefly describe how to remove these
bottlenecks.

Foam to Surface Particles

Each time a flying particle hits the surface we need to find the nearest surface
particles. Since the number of flying particles is large you will probably not

2We expect that the compiler is able to remove the branch of the delta stack size by
using bitwise operations.

90

notice any difference if it is only a small fraction 1
a

of the flying particles
which apply foam to the surface particles. Each of these particles should
apply a times the original amount of foam to get the same amount of foam
in average.

Spawning Particles

In the future we might increase the realism of the spawnings and hence
increase the computational cost. Therefore it might be considerable only to
update the spawning density for a small fraction of cells. Naturally we should
not update the same cells every frame. Instead every cell should be updated
with the same frequency.

10.2 Render to Texture

In chapter 9 we render small into one large texture which is used as texture
for the entire fluid surface. There are various ways to render to a texture
with the current graphic hardware. When the target texture has low resolu-
tion glCopyTexSubImage from [18] tends to be most effective while for high
resolution it is most effective to render into a pbuffer as described in [30].
Naturally the exact resolution where the two solutions has the same running
time depends on the hardware which is used. However in this project there is
only a single target texture, which should cover the entire fluid surface thus
we will use the pbuffer.

It was a bit problematic to find an implementation of the pbuffer which is
compatible with both Nvidia and ATI. ATI has developed an implementation
where the function call

wglGetProcAddress("wglMakeContextCurrentARB")

returns an error on the cards from Nvidia. Luckily the implementation from
Nvidia is compatible with the cards from ATI.

10.3 Grid Searching

In chapter 9 we have used the grid from [22] to search for the particles which
are inside a specified circle with radius r. The grid is defined so that the
distance between two neighbour cells is equal to r as shown on figure 10.1.

91

y

x

{r

Figure 10.1: Grid Searching

In this way we can find the particles inside the circle by examining nine
cells in the grid. Figure 10.1 shows an example where we find the particles
inside a circle by examining the nine light shaded cells. By assuming that the
particles are spread randomly in the grid the search operation has a constant
running time in average.

92

Chapter 11

Comparison

The imperative velocity advection term works well for the breaking dam ex-
periment, however there are problems when the bed slope varies as described
in section 6.2. Anyway no other test results have been found in the literature
where a true SWE simulation handles a bed slope that varies significantly
compared to the depth of the fluid.

Some of the comparisons where we test the motion of the fluid are most
suitable at the presentation thus they are not showed in the report.

All the tests in this chapter uses the model without the VEAT.

11.1 Comparison with other Models

Generally it has been difficult to make comparisons with the other models
thus we have only provided a single comparison.

11.1.1 Comparison with Kass

Figure 11.1 shows a comparison between the model from this project with
the model from [15]. Figure 11.1A shows a test from Kass where the fluid is
sent from a source on a mountain. The fluid is transparent and there is no
reflections from the lighting thus it is difficult to see the surface of the fluid.

The three other images show the simulation from this project where we
have tried to imitate the landscape from Kass. Figure 11.1B shows the
simulation with foam1. The foam at the waterfall works reasonably well

1Keep in mind that it is much more difficult to see the structure of foam on a still

93

Figure 11.1: Comparison with Kass

whereas the low depth at the front of the flooding implies a lack of flying
foam at the front. Figure 11.1C shows the simulation without foam thus the
textures becomes equal to the images shown on figure 9.4. The last image
11.1D shows the simulation with OpenGL lighting.

11.1.2 Chens Simulation

Figure 11.2 shows the results from Chen [4]. The main focus in Chens work
has been kept on boats and dams affecting the fluid neither of which have
been considered in this project. The animation of the flooding has too low
resolution to get a reasonable comparison with this project.

image than on in animation.

94

Figure 11.2: Chens Simulation

95

Figure 11.3: Laytons Simulation

11.1.3 Laytons Simulation

Figure 11.3 shows the results from Layton [2]. Various animations have been
provided, however new waves are inserted during the animation thus it is
difficult to imitate the animation.

11.2 Comparison with real Water

Figure 11.4 shows a waterfall from the movie called River Wild. The waterfall
has been imitated by the fluid simulation in this project on figure 11.5. There
are a number of artifacts at the imitated waterfall. The boundary of the
waterfall tends to be too smooth and calm thus we need to spawn more foam
at the boundary. Furthermore, the colors of the fluid does not match but it
can be solved by changing the textures.

11.3 Animation

Figure 11.6 shows an animation of a waterfall and a flooding created by a
source at the top of the mountain. At time t = 9s there is insufficient foam
at the front of the flooding. However, at time t = 11s there is plenty of foam
at the front of the flooding, thus amount of foam seems to be dependent on
the slope of the ground. At time t = 23s there is a close-up of the waterfall
which looks fairly plausible. The last two images shows how a lake has been
created where foam is coming from the waterfall.

96

Figure 11.4: Waterfall from a movie called River Wild.

Figure 11.5: Imitation of the waterfall from figure 11.4.

97

Figure 11.6: Animation

98

11.4 Discussion

During the tests we have found that there is insuficient foam at the front of
a flooding when the fluid is flowing down a slope. The reason is that the
fluid is shallow at the waterfall and since the total amount of accumulation
spawned during a flooding in a cell is proportional to the depth we get less
foam. We have considered alternatively spawning criterions based on the
velocity of the fluid, however, two much foam is spawned if a small drop of
fluid is flowing down a slope.

Furthermore the amount of foam tends to be insuficient at boundary of
a waterfall thus the viewer experience a calm boundary at the waterfall. We
might consider to spawn additional foam at the boundary of the waterfall
due to the friction with the rough landscape.

99

Chapter 12

Conclusion

We have developed a new solution to the SWE using an imperative VEAT
approximation. Comparisons with SPH have shown that the solution gives
reasonably realistic results for the breaking dam experiment. However, there
are artifacts in the bump experiment since the slope of the fluid surface is
too large after the bump. It has not been possible to find a solution which
includes the VEAT and solves the bump experiment. In order to handle
the bump experiment we have developed an alternative solution which omits
the VEAT as it has been done in [15]. The solution in [15] cannot handle
waterfalls, thus an artificial resistance term has been added to our model.

The fluid tends to have a high viscosity if a simple visualization of the
fluid surface is used. By extending the visualization with flying foam we
have found that it is possible to convince the average viewer that the fluid
has a low viscosity since it is believed to be moving with high velocity at
large-scale.

The foam has a sharp contrast to the fluid surface which is not wanted,
therefore a texture has been added to the fluid surface which matches the
foam color. Furthermore, an extra transparent boundary layer has been
added to blur the fluid boundary so that it looks like foam when it is needed.

The fluid simulation performs well in the comparisons with Kass [15] and
the movie River Wild, however, the density of the flying particles is too low
at the boundary of the waterfalls and at the front of floodings. It will require
a more carefull analysis of the particle spawning to solve these problems.

The performance of the algorithms which are used seems to be effective.
Currently the simulation runs real-time at a resolution of 50x100 cells and
there are a lot of optimizations which have not been applied yet.

100

Appendix A

Notation

In this project a right-handed coordinate system has been used. The gravity
is facing towards the negative direction of the z-axis.

Many problems can be described in one dimension thus whenever it is
posible we will show 1D describtions even though it is implemented in 2D.

A.1 Symbols

h̃i+1/2

Indicates that hi+1/2 does not directly exists in the

height map. It could be approximated as hi+hi+1

2
.

〈

∂h
∂x

〉

i+1/2

Denotes the approximation of ∂h
∂x

. E.g. the fraction

could be approximated as hi+1−hi

∆x
by using finite differ-

ence operators.

A.2 Abbreviations

iff. IF and only iF
NSE Navier Stokes Equations
SLV Single Layered Velocity
SPH Smoothed Particle Hydrodynamics
SWE Shallow Water Equations
VEAT VElocity Advection Term

101

x

z

A

Figure A.1: An example of a breaking wave. The wave is said to be breaking
since there is a point A in the air for which there is fluid above.

A.3 Terms

boundary cell Defined in section 2.4.
breaking wave figure A.1 shows an example of a breaking wave.
neighbour cell Each cell ci,j has four neighbour cells ci−1,j, ci+1,j, ci,j−1, ci,j+1.

A.4 Variables and Constants

Here is the most frequently used symbols used in the report:

a a constant
b height of the bed (ground height)
c a cell
d depth of the fluid
F a force
g gravity scalar
g gravity vector along the negative z-axis
h height of the fluid surface
i integer index along the x-axis
j extra integer index
k extra integer index
p pressure
r the time that has elapsed since d = 0
t time
u velocity along the x-axis
v velocity along the y-axis
U discharge along the x-axis
V discharge along the y-axis
w velocity vector (the dimension depends on the situation)

102

Appendix B

Accessories

The enclosed CD-ROM contains the source code and a compiled version of
the simulation program in the bin directory1. You can start the program
called “flood3d.exe”. When the program has finished loading, a demo will
run automatically in approximately 2 minutes.

The homepage www.student.dtu.dk/~s973526 will contain updates of
the simulation program.

1The program requires a windows operating system, and it is recommended at least to
use a tbird 1 ghz cpu with a geforce 2 graphics card or correspondingly from Intel or ATI.

103

Bibliography

[1] A. Zanni A. Valiani, V. Caleffi. Finite volume scheme for 2d shallow-
water equations application to a flood event in the toce river. CADAM,
1999.

[2] Michiel van de Panne Anita T. Layton. A numerically efficient and stable
algorithm for animating water waves. the Visual Computer, 18(1):41–53,
2002.

[3] Gordon Erlebacher Bruno Jobard and M.Ỹousuff Hussaini. Lagrangian-
eulerian advection of noise and dye textures for unsteady flow visualiza-
tion. Transaction on Visualization and Computer Graphics, 8(3), 2002.

[4] Jim X. Chen. Physically-based modeling and real-time simulation of
fluids. PhD thesis, University of Central Florida, 1995.

[5] S. Chippada, C. Dawson, M. Mart’inez, and M. Wheeler. A godunov-
type finite volume method for the system of shallow water equations,
1997.

[6] Knut Conradsen. En Introduktion til Statistik. seventh edition, 1999.

[7] Mark Deloura. Game Programming Gems 2. Charles River Media,
Hingham, Massachusetts, first edition, 2001.

[8] Nick Foster and Ronald Fedkiw. Practical animation of liquids. Pro-
ceedings of the 2001 conference on Computer Graphics, pages 23–30,
2001.

[9] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graph-
ical Models and Image Processing, 58(5):471–483, 1996.

104

[10] J.-F. Gerbeau and B. Perthame. Derivation of viscous saint-venant sys-
tem for laminar shallow water; numerical validation. Discrete and Con-
tinuous Dynamical Systems-Series B, 1(1):89–102, 2001.

[11] Erik Both Gunnar Christiansen and Preben Østergaard Srensen.
Mekanik. Institut for Fysik, Building 307, Technical University of Den-
mark, second edition, 1997.

[12] Mark Hall. Combining particles and waves for fluid animation, 1992.

[13] R. Harpin J. Qin I. D. Cluckie, R. J. Griffith and J. M. Wicks. Fore-
casting extreme water levels in estuaries for flood warning. R&D Project
Record, 2000.

[14] Arieh Iserles. A First Course in the Numerical Analysis of Differential
Equations. Cambridge, Cambridge, United Kingdom, first edition, 1996.

[15] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for com-
puter graphics. In Proceedings of the 17th annual conference on Com-
puter graphics and interactive techniques, pages 49–57. ACM Press,
1990.

[16] Robert Golias Lasse Staff Jensen. Deep-water animation and rendering.
Gamasutra, 26 2001.

[17] L. B. Lucy. A numerical approach to the testing of the fission hypothesis.
The Astronomical Journal, 82(12):1013–1024, 1977.

[18] Tom Davis Mason Woo, Jackie Neider and Dave Shreiner. OpenGL
Programming Guide. Addison Wesley, Reading, Massachusetts, third
edition, 1999.

[19] Nelson Max and Barry Becker. Flow visualization using moving tex-
tures. Proceedings of the ICASW/LaRC Symposium on Visualizing
Time-Varying Data, 1995. Livermore, California.

[20] J. J. Monaghan. Simulating free-surface flows with sph. Journal of
Computational Physics, 110:399–406, 1994.

[21] J. F. O’Brien and J. K. Hodgins. Dynamic simulation of splashing fluids.
In Computer Animation ’95, pages 198–205, 1995.

105

[22] Per Slotsbo, Thomas Krog. Forbedret vandsimulation med sph, 2002.

[23] Allan J. Acosta Rolf H. Sabersky and Edward G. Hauptmann. Fluid
Flow - A First Course in Fluid Mechanics. The Macmillan Company,
New York, second edition, 1971.

[24] Dirk Schwanenberg and J. Köngeter. A discontinuous galerkin method
for the shallow water equations with source terms. Discontinuous
Galerkin Methods, pages 419–424, 2000.

[25] Jos Stam. Real-time fluid dynamics for games. Proceedings of the Game
Developer Conference, 2003.

[26] IB A. Svendsen and Ivar G. Jonsson. Hydrodynamics of Coastal Regions.
Den Private Ingeniœrfond, Lyngby, Denmark, first edition, 1976.

[27] Eleuterio F. Toro. Riemann problems and the waf method for solving the
two-dimensional shallow water equations. Philosophical Transactions,
338:43–68, 1992.

[28] Eleuterio F. Toro. Shock-Capturing Methods for Free-Surface Shallow
Flows. John Wiley & Sons, Ltd, Chichester, England, first edition,
2001.

[29] Jarke van Wijk. Image based flow visualization. SIGGRAPH, 2002.

[30] Chris Wynn. Opengl render-to-texture. Nvidia, 2002.

106

