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This paper describes the application of temporal maximum autocorrelation factor analysis to 
global monthly mean values of 1996-1997 sea surface temperature (SST) and sea surface 
height (SSH) data.  This type of analysis can be considered as an extension of traditional 
empirical orthogonal function (EOF) analysis, which provides a non-temporal analysis of one 
variable over time.  The temporal extension proves its strength in separating the signals at 
different periods in an analysis of relevant oceanographic properties related to one of the 
largest El Niño events ever recorded. 

1 Introduction 

Empirical orthogonal functions (EOF) [5,10] analysis is often used in 
oceanography and other geophysical sciences to analyse temporal sequences of 
scalar (image) data.  This paper deals with an extension of the EOF method, by 
applying maximum autocorrelation factor (MAF) analysis to two temporal 
sequences of scalar image data, namely global sea surface temperature (SST) and 
global sea surface height (SSH) one at a time.  This type of analysis is typically 
carried out to maximise spatial autocorrelation.  Here we maximise temporal 
autocorrelation.  The data used to illustrate the analysis carried out come from the 
Ocean Pathfinder programmes set up by NASA/NOAA [7,9].  The data chosen 
represent relevant oceanographic properties related to one of the largest El Niño 
events ever recorded. 

El Niño is a large-scale warm ocean event in the Pacific off the coast of Peru 
and Ecuador caused by eastward drifting toward the west coast of South America of 
the pool of warm waters normally residing in the western part of the Pacific.  This 
event is not local but may influence weather conditions world-wide.  This disruption 
of normal climate may have drastic socio-economic consequences [6].  The strength 
and frequency of El Niño events may be influenced by human activities. 
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2 Method 

EOF analysis is a name often used in geophysical data processing for principal 
component analysis (PCA) [4,1].  Often the usual PCA assumption on variables 
with mean zero is replaced by an assumption of temporal means of zero.  PCA finds 
linear combinations (called principal components, PCs) of the original data that 
maximise variance.  PC1 contains maximum variance.  Higher order PCs contain 
maximum variance subject to orthogonality or uncorrelatedness with lower order 
PCs.  Maximum autocorrelation factor (MAF) analysis [11,2] finds linear 
combinations of the zero mean original variables that maximise autocorrelation 
between neighbouring observations.  MAF1 is a linear combination of the original 
data that have maximum autocorrelation.  Higher order MAFs have maximum 
autocorrelation subject to orthogonality or uncorrelatedness with lower order MAFs.  
Often the spatial autocorrelation is maximised, here we maximise the temporal 
autocorrelation.  The temporal MAF (T-mode MAF or T-MAF) analysis is carried 
out first on the SST and then on the SSH data. 

Linear combinations XaT  with maximum (auto)covariance between a (zero 
mean) signal )(tX  and a temporally shifted version of the same signal )( ∆+tX  

are obtained by finding coefficients a  that maximise aaT )(∆Γ  where )(∆Γ  is the 
covariance between )(tX  and )( ∆+tX .  Introducing Σ  as the dispersion matrix of 
the original variables )(tX  and ∆Σ  as the dispersion matrix of the difference 
between the original and the temporally shifted variables )()( ∆+− tXtX , we get 

for the autocovariance aaT )21( ∆Σ−Σ  and hence for the autocorrelation 

aaaa TT ΣΣ− ∆ 21 .  Therefore the desired linear combinations are obtained by 
solving the generalised eigenvalue problem 

 
aa ∆Σ=Σ λ  

 
where a  are (conjugate eigen-) vectors containing the desired weights to construct 
the variables.  λ  is the eigenvalue and )2(11 λ−  is the autocorrelation. 

The results from the analysis depend on ∆ ; here ∆  is one month. 

3 Data and results 

The data used are global monthly mean values of 1996-1997 SST data from the 
NOAA/NASA Oceans Pathfinder AVHRR SST database [9] and global monthly 
mean values of 1996-1997 SSH data from the NASA/GSFC Ocean Altimeter 
Pathfinder database [7].  The SSH data are interpolated point observations from the 
TOPEX/Poseidon radar altimeter mission.  The SST data come as 360 rows by 720 
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columns half degree data starting at 180° longitude, the SSH data come as 179 rows 
by 360 columns one degree data starting at 0° longitude.  The SST data have been 
resampled to the SSH grid.  The AVHRR instrument is influenced by cloud 
coverage whereas the radar altimeter provides uninterrupted data.  Statistics for the 
SST analysis are calculated where SST have non-missing values for all 24 months 
and similarly for SSH. 

Figure 1 shows the first six SST T-MAFs.  The T-MAFs are stretched linearly 
from mean ± three standard deviations, the pseudo-colour scale goes from blue 
(minimum) over cyan, green, yellow to red (maximum).  Figure 2 shows the first six 
SSH T-MAFs (same stretch and colouring). 

 
 

 
Figure 1.  SST T-MAFs 1-6 row-wise. 

Figure 3 shows the SST T-MAF autocorrelations (in black), and the 
correlations between the original data and the first six SST T-MAFs for both SST 
and SSH (correlations with T-MAFs 1-6 are shown in red, green, blue, cyan, 
magenta and yellow, respectively). 

Figure 4 shows the SSH T-MAF autocorrelations (in black), and the 
correlations between the original data and the first six SST T-MAFs for both SST 
and SSH (correlations with T-MAFs 1-6 are shown in red, green, blue, cyan, 
magenta and yellow, respectively). 
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Figure 2.  SSH T-MAFs 1-6 row-wise. 

4 Discussion and conclusions 

By maximizing the temporal autocorrelation we generally isolate features with 
the longest period in the first MAFs.  This means that signals related to the mean 
and possible trend of the data will be captured first.  Thereafter signals with shorter 
periods like annual signals and intra-annual variations will be captured. 

Figure 3 shows that the first seven SST T-MAFs (especially T-MAFs 1-4) are 
highly autocorrelated temporally.  SST T-MAF1 (shown in red) is highly 
(positively) correlated with all 24 months of SST data with a small semi-annual 
oscillation.  Accordingly, the spatial structure of SST T-MAF1 shows the overall 
mean of the SST field having high temperatures in the tropics and cold temperatures 
away from the Equator.  The SST T-MAF1 is nearly uncorrelated with all 24 
months of SSH shown in indices 25-48.  This corresponds well with the fact that the 
mean of the SSH field has been removed prior to the analysis. 
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Figure 3.  SST T-MAF analysis: autocorrelations (in black), and correlations between original SST 
(indices 1-24) and SSH variables (indices 25-48), and SST T-MAFs 1-6 (in red, green, blue, cyan, 
magenta and yellow, respectively). 
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Figure 4.  SSH T-MAF analysis: autocorrelations (in black), and correlations between original SST 
(indices 1-24) and SSH variables (indices 25-48), and SSH T-MAFs 1-6 (in red, green, blue, cyan, 
magenta and yellow, respectively). 

Correlations between SST T-MAF2 and the 24 months of SST data (in green) 
exhibit strong annual oscillations [5] with positive correlations in the Northern 
Hemisphere’s winter months and negative correlations in the summer months.  The 
correlations with the 24 months of SSH are also high, but note that the extreme 
correlations occur one month later for the SSH than for the SST (e.g. 

, minimum in month 8 and 20 for SST, but month 9 and 21 for SSH).  The 
spatial structure of SST T-MAF2 shown in Figure 1 shows highs in the Southern 
Hemisphere and lows in the Northern Hemisphere and corresponds to an annual 
heating and cooling of the ocean.  The apparent phase lag of one month between the 
highs of the SST and the SSH is explained by the fact that the SST represent the 
instant temperature of the sea surface, whereas the steric expansion causing the sea 
level to rise is a more integrated effect. 

For both the SST T-MAF3 and the SST T-MAF4 (blue and cyan curves) 
the correlations also show some oscillations, but not on annual periods.  This 
correlation pattern is furthermore dramatically disturbed in the second half of 1997.  
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This dramatic change in correlation is in accordance with the El Niño build-up 
during 1997.  The connection to the El Nino is also captured by the corresponding 
spatial structure of SST T-MAF3.  This exhibits a conspicuous high in the 
equatorial Pacific off the South American west coast.  The spatial structure of the 
SST T-MAF4 is also El Nino related in the tropical Pacific, but some very 
interesting signals in the south Atlantic Ocean are also found. 

The first seven to nine SSH T-MAFs (again especially T-MAFs 1-4) are highly 
autocorrelated temporally.  SSH T-MAF1 is nearly uncorrelated with the SST, but 
highly (positively) correlated with the SSH data in 1996 and well into the first half 
of 1997.  During the spring of 1997 this correlation drops to around zero where it 
stays for the rest of 1997.  The corresponding spatial pattern of SSH T-MAF1 
shows the warm and therefore high SSH “waters normally residing in the western 
part of the Pacific” mentioned in the introduction.  By and large, SSH T-MAF2 
exhibits an opposite correlation pattern: going from small oscillations close to zero 
to being very high in the second half of 1997.  Accordingly, the spatial pattern of 
SSH T-MAF2 shows very high values in the equatorial Pacific off the South 
American west coast and also highs along the Mexican and south west U. S. coasts.  
This, again, complies with the El Niño phenomenon. 

Generally all correlation structures between SSH T-MAFs and the 24 months of 
SSH data show large differences between 1996 and 1997.  For T-MAF3 amplitudes 
are high and the annual oscillation is very conspicuous in 1996 with much smaller 
correlation values and oscillations in 1997.  The spatial pattern of SSH T-MAF3 
may show El Niño related edge effects with lows immediately to the north of the 
Equator and highs immediately to the south of the Equator in the Pacific. 

For a joint analysis of SST and SSH data by means of canonical correlations 
analysis (CCA), see [8].  For a non-linear CCA of the same data, see [3]. 

In spite of the very short time span of the data and the associated risk of over-
interpreting the results, simultaneous inspection of spatial patterns of the T-MAFs 
and the correlations between the original and transformed variables from the 
analysis gives good indications of a large anomaly in both the SST and SSH fields 
off the South American west coast taking place in the second half of 1997.  This is 
in good agreement with established oceanographic knowledge on the build-up of 
one of the largest El Niño events on record. 

Future analysis should include simultaneous maximisation of temporal and 
spatial autocorrelation.  Also analysis of longer time series should be carried out in 
order to establish whether 1997 (and 1998) represent anomalous events in terms of 
global SST and SSH. 
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