
Integration of Specification
Techniques

Christian Krog Madsen

LYNGBY 2003

EKSAMENSPROJEKT
NR. 2003-66

IMM

Trykt af IMM, DTU

iii

Abstract

Graphical specification notations have gained much popularity in software engineering, as
witnessed by the widespread adoption of UML throughout the software industry. Graph-
ical notations are generally characterised by being intuitive to understand, i.e. new users
of these notation require little training to become familiar with them. However, few of
the graphical notations have a formally defined meaning, so diagrams expressed in such
notations are ambiguous – a highly undesirable property for a specification notation. In
contrast, formal specification languages have a formally defined mathematical meaning
but are comprehensible only to properly educated software engineers. The implication
of this is that specifications developed using formal languages are not immediately un-
derstandable to the customers and domain experts, and therefore they are difficult to
validate. In this thesis we describe the graphical notations of Live Sequence Charts and
Statecharts and propose a method using diagrams in these notations for constraining a
formal specification expressed in a subset of the RAISE Specification Language. Further-
more, we propose a development method that combines the traditional approach with
that of formal development. We give a small example illustrating the application of this
method.

Keywords: Specification methods, RAISE Specification Language, graphical specification
techniques, Live Sequence Charts, Statecharts.

iv

v

Resumé

Grafiske specifikationsnotationer har opn̊aet stor popularitet indenfor softwareudvikling,
hvilket blandt andet ses i den store udbredelse af UML i softwareindustrien. Grafiske
notationer er generelt set karakteriseret ved at være intuitive at forst̊a, det vil sige at nye
brugere af disse notationer har kun behov for kortvarig træning for at bliver fortrolige med
dem. Desværre er det kun f̊a grafiske notationer, som har en formelt matematisk defineret
betydning. Derfor vil diagrammer udtrykt i s̊adanne notationer som oftest være tvety-
dige, hvilket er en uhensigtsmæssig egenskab ved en notation beregnet til specifikation.
Modsætningen er formelle specifikationssprog, der har en præcis matematisk defineret be-
tydning, men som kun er forst̊aelige for veluddannede softwareudviklere. Resultatet er,
at specifikationer udarbejdet ved brug af formelle notationer ikke umiddelbart kan forst̊as
af kunder og eksperter i domænet, hvilket medfører at disse specifikationer er svære at
validere. I denne afhandling beskriver vi de to grafiske notationer Live Sequence Charts
og Statecharts og foresl̊ar en metode, der bruger diagrammer udtrykt i disse notationer
til at opstille betingelser som skal opfyldes af en formel specifikation skrevet i et uddrag
af sproget RAISE Specification Language. Desuden foresl̊as en udviklingsmetode, som
kombinerer den traditionelle metode med den model, der bruges indenfor formel soft-
wareudvikling. Metoden illustreres med et mindre eksempel p̊a dens anvendelse.

vi

vii

Preface

The work reported in this thesis was carried out at the Computer Science and Engineering
(CSE) division of the Department of Informatics and Mathematical Modelling (IMM) at
the Technical University of Denmark (DTU) from June through November 2003. The
work was supervised by Professor Dines Bjørner.

I would like to thank Professor Dines Bjørner for his valuable guidance during the project
and for reading and commenting on draft versions of this thesis. I would also like to thank
Associate Professors Martin Fränzle and Michael R. Hansen for the important feedback
and advice I received during a colloqium held in September 2003 at IMM/DTU.

Kongens Lyngby, 28 November 2003

Christian Krog Madsen

viii

ix

Contents

1 Introduction 1

1.1 Thesis Structure . 3

2 Live Sequence Charts 5

2.1 Introduction . 5

2.2 Live Sequence Chart Syntax . 5

2.2.1 Graphical Syntax of Message Sequence Charts 5

2.2.2 Graphical Syntax of Live Sequence Charts 10

2.3 Process Algebra . 15

2.3.1 The Process Algebra PAε . 15

2.3.2 Semantics of PAε . 21

2.3.3 The Process Algebra PAcε . 24

2.3.4 Semantics for PAcε . 26

2.4 Algebraic Semantics of Live Sequence Charts 29

2.4.1 Textual Syntax of Live Sequence Charts 30

2.4.2 Semantics of Live Sequence Charts 30

2.5 Live Sequence Chart Example . 33

3 Statecharts 35

3.1 Introduction . 35

3.2 Syntax of Statecharts . 35

3.3 Process Algebra . 40

3.3.1 SPL . 41

3.3.2 Semantics of SPL . 41

3.3.3 Equivalence for SPL terms . 42

3.4 Semantics of Statecharts . 43

3.5 Statecharts Example . 45

x CONTENTS

4 Relating Diagrams to RSL 47

4.1 Introduction . 47

4.2 Types of Integration . 47

4.3 RSL Subset . 48

4.3.1 Syntax . 48

4.3.2 Operational Semantics with Communication Behaviour 49

4.4 Relating Live Sequence Charts to RSL . 55

4.4.1 Syntactical Restrictions . 55

4.4.2 Satisfaction Relation . 55

4.5 Relating Statecharts to RSL . 57

4.5.1 Syntactical Restrictions . 57

4.5.2 Satisfaction Relation . 57

4.6 Checking Satisfaction . 58

4.7 Tool Support . 58

5 Development Method 61

5.1 Introduction . 61

5.2 Domain Analysis . 61

5.3 Initial Requirements Development . 61

5.4 Formalisation of Requirements . 62

5.5 Refinement/Design . 62

5.6 Implementation . 62

5.7 Testing . 62

6 Example Application: Two-Phase Commit Protocol 65

6.1 Introduction . 65

6.2 Description . 65

6.2.1 Protocol . 65

6.2.2 Internal Behaviour . 66

6.2.3 RSL Model . 68

6.2.4 Checking Satisfaction . 69

7 Conclusion 77

A A Critique of Live Sequence Charts 79

B Proofs 81

B.1 Proof of Theorem 2.3.9 – Termination of PAε 81

Bibliography 85

1

Chapter 1

Introduction

In 1968 the first NATO conference on Software Engineering was held in Germany. The
agenda was to discuss possible solutions to what was then known as the “software crisis”,
namely that the discipline of software development was plagued by delays in delivery, bud-
get overruns and faulty software. The term Software Engineering was coined to describe
the ideal that should be worked towards in the future. It was defined by Fritz Bauer [48]
as

“The establishment and use of sound engineering principles in order to
obtain economically software that is reliable and works efficiently on real ma-
chines.”

Since 1968 the field of Software Engineering has evolved at a steady pace. The fundamental
problem remains, however, that the increase in system complexity outgrows the increase
in the sophistication of our development methodologies. Software developers have tried
to keep up with the explosive growth in the possibilities and performance of hardware.
The symptoms of this continual crisis are the same as they were 35 years ago: delayed,
expensive and faulty software.

At the core of the problem lies the difficulties in forming and communicating abstract
ideas. Every software project brings together the knowledge of a range of people, from
the prospective users, management of the acquiring organisation, to software architects
and developers. The task of the developers is to elicit knowledge of the environment in
which the software will function, describe the requirements for the interaction between the
system and its environment, and finally implement the requirements as a software system.

In order to communicate decisions and ideas, specifications are used. A specification is
(ideally) a precise description that is considered normative.

There exist a wide spectrum of specification methods.

• Natural language specifications have the good property that anyone can read them
and form an idea of the intention of the specification. This is advantageous in that
the domain experts can read it and validate that it gives a suitable and sufficient
description of the domain and the system to be built.
On the negative side, natural language specifications are rarely precise. Extreme care
must be taken to avoid ambiguities and omissions. There are no tools to support
this process. Another problem is that because natural language does not have a
proper semantics, different people may interpret parts of a specification differently.

• Informal diagrams share some of the characteristics of natural language descriptions,
since they often do not require special training to understand the general idea, while

2 Chapter 1. Introduction

still being imprecise because they have no semantics. Diagrams tend to emphasise
a certain aspect of the system, while ignoring others.
Informal diagrams rely on the intuition that boxes or circles represent some object,
entity, concept or situation, while arrows denote a transfer of data, a change in the
situation or progression of time.

• Formalised diagrams are notations where at least some attempt has been made to
define what a diagram means, i.e. to give it a semantics. There are varying degrees
of formality. One example of a diagrammatic notation that has both a well-defined
syntax and a proper mathematical semantics is Petri Nets [45, 52].
Compared to informal diagrams, formalised diagrams usually require some familiari-
sation with the notation before they can be understood.

• Formal specification languages are based on concepts from mathematics, such as
sets, functions, relations and algebras. They have a well-defined syntax and a com-
plete mathematical semantics. Often, they include a proof system admitting formal
reasoning about specifications.
Formal specification languages are only readable to specially trained professionals
with a firm understanding of mathematics and computer science. Another concern
is that aspects are hard to separate in a specification. The technique of stepwise
refinement, i.e. developing a specification in steps from a very abstract model towards
a detailed model, may be applied to at least partly solve this problem.

As the degree of formality increases, the prerequisites for understanding also increase.
A possible solution could be to make parallel specifications using both graphical nota-
tions and formal notations. Clearly, this raises a new problem, namely that of ensuring
consistency between the two. It is exactly that problem, which is the topic of this thesis.

This leads to the main hypothesis of this thesis:

By providing a formal link between graphical notations and formal specification
languages, we can achieve the best of both worlds.

There are many candidate graphical notations and specification languages to choose from.
We choose the notations of Statecharts and Live Sequence Charts.

Statecharts are specifically designed for specifying the behaviour of reactive systems,
i.e. systems which are driven by and respond to external events. Statecharts are de-
rived from state machines and have been incorporated in the UML method. Several tools
supporting Statecharts are available, most notably the Statemate tool [24] developed by
I-Logix.

Live Sequence Charts are still relatively new, but are derived from Message Sequence
Charts which are both standardised by the ITU [9, 30, 31] and enjoy considerable use
particularly in the telecommunication industry. Some tool support is available for Live
Sequence Charts, for example the Play-Engine developed by David Harel and Rami
Marelly [25].

Additionally, Statecharts and Live Sequence Charts complement each other well: State-
charts specify the internal behaviour of a system component and Live Sequence Charts
specify the externally observable behaviour of the components and the protocols by which
the components communicate.

As for the specification language, we choose the RAISE Specification Language [49, 50],
because we are already familiar with that notation, it has tool support and is highly
expressive. It allows both algebraic and model-oriented specification styles and supports
applicative and imperative, sequential and parallel models. Also, RSL has a proof system
for doing provably correct stepwise refinement.

1.1 Thesis Structure 3

There is currently considerable research effort being directed at integrating different spec-
ification techniques. One direction is the Unifying Theories of Programming of Hoare and
He [29] and the further development by Woodcock [58]. They attempt to bring together
elements of sequential and parallel programming in a framework that links denotational,
operational and algebraic semantics based on relational calculus. Other directions are
proposals for integrating concurrent process algebras such as CSP or CCS with languages
allowing structured data types and values, such as Z, Object-Z or VDM. Examples are the
combination of Z and CCS, named ZCCS [15] and the combination of Object-Z with CSP,
CSP-OZ [13]. The RAISE Specification Language (RSL) is itself the result of the integra-
tion of the algebraic and model-oriented specification styles with facilities for imperative
and applicative, sequential and concurrent specifications in a single semantic framework.
RSL has also been extended with time by George and Xia [16] and linked to Duration
Calculus [59, 10] by Haxthausen and Xia [27].

In the literature, some attempts at integrating graphical notations with formal notations
have been reported. Much of this work is related to the quest for providing a formal foun-
dation for the UML method. Weber [57] presents a case study where a system is modelled
on an architectural, reactive and functional level using Class Diagrams, Statecharts and Z,
respectively. More specifically, the system is divided into objects using the Class Diagram,
the reactive behaviour of each object is specified using a Statechart, and the state tran-
sitions are specified using Z. Grieskamp et al [18] and Büssow et al [8] describe the same
approach as part of the Express project. A closely related approach is the integration
of Statecharts with the algebraic specification language Casl by Reggio and Repetto [51]
developed as part of the Common Framework Initiative (CoFI). The combined notation,
known as Casl-Chart, uses Statechart notation for specifying states and transitions and
CASL for specifying data and the functions describing the state change associated with
each transition.

1.1 Thesis Structure

The thesis is structured as follows.

Chapter 2 – Live Sequence Charts

We begin by describing the graphical syntax of Message Sequence Charts (MSC) and Live
Sequence Charts (LSC). Using ideas from the official semantics of MSC given in the ITU-T
standard Z.120, we develop a process algebra and use this to define the semantics of LSC.
Finally, we give an example where the semantics is used to derive a process algebraic term
from an LSC diagram.

Chapter 3 – Statecharts

We describe the graphical syntax of Statecharts. We then review a process algebraic
semantics of Statecharts proposed in the literature. Finally, we derive the process algebra
term from an example Statechart.

Chapter 4 – Relating Diagrams to RSL

We present the syntax and semantics of a subset of RSL and define a way to extract a
process algebraic term describing the communication behaviour of a process expressed in
RSL. We then define a satisfaction relation, that expresses the conditions under which an
RSL implementation correctly implements an LSC. We then define a similar procedure for
checking whether an RSL specification correctly implements a Statechart.

4 Chapter 1. Introduction

Chapter 5 – Development Method

We propose a development method that combines the use of diagrams with RSL and relates
the two forms of specification notation using the satisfaction relations of the previous
chapter.

Chapter 6 – Example Application of the Development Method

We present an example development – following the method of the previous chapter –
of a specification for the Two-Phase Commit Protocol used in implementing distributed
transactions.

Chapter 7 – Conclusion

We review the contributions of this thesis and give directions for future research.

Appendix A – A Critique of Live Sequence Charts

During the study of the semantics of Live Sequence Charts, we came upon a number of
problematic issues. In this appendix we discuss some of these issues.

Appendix B – Proofs

This appendix contains a proof that is used in Chapter 2.

5

Chapter 2

Live Sequence Charts

2.1 Introduction

Live Sequence Charts (LSC) is a graphical language introduced by Damm and Harel [11]
for specifying interactions between components in a system. It is an extension of the
widely used language Message Sequence Charts (MSC). MSCs are frequently used in the
specification of telecommunication systems and are closely related to the Sequence Dia-
grams of UML. Both the graphical and textual syntax of MSCs are standardised by the
ITU in Recommendation Z.120 [9, 30, 31]. The standard gives an algebraic semantics of
MSCs. LSC extends MSC by promoting conditions to first class elements and providing
notations for specifying mandatory and optional behaviour.

Reader’s Guide The material on the syntax of MSC and LSC in section Section 2.2
is intended as a quick tutorial as well as for quick reference. The section Section 2.3 on
process algebra is rather involved and may seem a bit detached from the context. The
Reader is encouraged to refer to the example in Section 2.5 to see how the semantics of a
chart is derived.

2.2 Live Sequence Chart Syntax

In this section we describe the components of Live Sequence Charts. We return to the
question of the semantics of a subset of LSC in Section 2.4. Since Live Sequence Charts
were derived from Message Sequence Charts and share many similarities with them, we
begin by describing the syntax of Message Sequence Charts and then proceed to describe
the syntax extensions introduced by Live Sequence Charts.

2.2.1 Graphical Syntax of Message Sequence Charts

Message Sequence Charts (MSC) were first standardised by the CCITT (now ITU-T)
as Recommendation Z.120 in 1992 [9]. The standard was later revised and extended in
1996 [30] and in 1999 [31]. The original standard specified the components of an MSC.
The 1996 standard also specified how several MSCs (called basic MSCs) can be combined
to form an MSC document, in which the relation between the basic MSCs is defined by a
high-level MSC. The most recent standard provides additional facilities for specifying the
data that is passed in messages and also allows inline expressions. Here we will restrict
the description to the 1992 version of the standard.

6 Chapter 2. Live Sequence Charts

An MSC consists of a collection of instances. An instance is an abstract entity on which
events can be specified. Events are message inputs, message outputs, actions, conditions,
timers, process control events and coregions. An instance is denoted by a hollow box with
a vertical line extending from the bottom. The vertical line represents a time axis where
time runs from top to bottom. Each instance thus has its own time axis and time may
progress differently on two axes.

Events specified on an instance are totally ordered in time. Events execute instantaneously
and two events cannot take place at the same time. Events on different instances are
partially ordered, since the only requirement is that message input by one instance must
be preceded by the corresponding message output in another instance.

Actions are events that are local to an instance. Actions are represented by a box on the
time line with an action label inside. Actions are used to specify some computation that
changes the internal state of the instance.

A message output represents the sending of a message to another instance or the environ-
ment. A message input represents the reception of a message from another instance or
the environment. For each message output to another instance there must be a matching
message input. A message exchange consists of a message output and a message input.
A message exchange is represented as an arrow from the time line of the sending in-
stance to the time line of the receiving instance. In case of messages exchanged with the
environment, the side of the diagram can be considered to be the time line of the environ-
ment. The arrow is labelled with a message identifier. Message exchange is asynchronous,
i.e. message input is not necessarily simultaneous with message output.

Example 2.2.1. Figure 2.1 shows an MSC with two instances, A and B. Instance A
sends the message m1 to instance B followed by message m2 sent to the environment, B
then performs some action, a, and sends the message m3 to A. 2

Figure 2.1: Message and action events.

Example 2.2.2. Figure 2.2 shows two situations that violate the partial order induced
by message exchange. Thus it is an invalid MSC.

Because events are totally ordered on an instance time line, the reception of message m1

precedes the sending of m1. This conflicts with the requirement that message input be
preceded by message output.

The exchange of messages m2 and m3 illustrates another situation that violates the partial
order, as shown by the following informal argument. Let the partial order be denoted ≤
and let the input and output of message m be denoted by in(m) and out(m), respectively.

2.2 Live Sequence Chart Syntax 7

Using the total ordering on events on an instance time line we have

in(m3) ≤ out(m2)

in(m2) ≤ out(m3)

Using the partial ordering on message events we have

out(m2) ≤ in(m2)

Now, by transitivity of ≤, in(m3) ≤ out(m3), thus violating the partial ordering on mes-
sage events. 2

Figure 2.2: Illegal message exchanges.

Conditions describe a state that is common to a subset of instances in an MSC. Conditions
have no semantic import and merely serve as documentation. Conditions are represented
as a hexagon extending across the time lines of the instances for which the condition
applies. The condition text is placed inside the hexagon.

Example 2.2.3. Figure 2.3 illustrates conditions. Condition c1 is local to instance
B. Condition c2 is a shared condition on instances A and B. Condition c3 is a shared
condition on instances A and C. Note that the time line of B is passed through the
hexagon for condition c3 to indicate that B does not share condition c3. 2

Figure 2.3: Conditions.

There are three Timer events: timer set, timer reset and timeout. Timers are local to
an instance. The setting of a timer is represented by an hourglass symbol placed next to

8 Chapter 2. Live Sequence Charts

the instance time line and labelled with a timer identifier. Timer reset is represented by
a cross linked by a horizontal line to the time line. Timer timeout is represented by an
arrow from the hourglass symbol to the time line. Every timer reset and timeout event
must be preceded by the corresponding timer set event. There is no notion of quantitative
time in MSC, so timer events are purely symbolic. Extensions of MSC with time have
been studied in [4, 40, 41].

Example 2.2.4. Figure 2.4 shows the syntax for timer events. On instance A, the
timer T is set and subsequently timeout occurs. On instance B, the timer T ′ is set and
subsequently reset. 2

Figure 2.4: Timer events.

An instance may create a new instance. This is called process creation. An instance
may also cause itself to terminate. This is called process termination. Process creation
is represented by a dashed arrow from the time line of the creating instance to a new
instance symbol with associated time line. Process termination is represented by a cross
as the last symbol on the time line of the instance that terminates.

Example 2.2.5. Figure 2.5 shows the creation of instance B by instance A and the
subsequent termination of B. 2

Figure 2.5: Process creation and termination.

Coregions are parts of the time line of an instance where the usual requirement of total
ordering is lifted. Within a coregion only message exchange events may be specified
and these events may happen in any order, regardless of the sequence in which they are

2.2 Live Sequence Chart Syntax 9

specified. Message exchanges between two instances may be ordered in one instance and
unordered in the other instance. Coregions are represented by replacing part of the fully
drawn time line with a dashed line.

Example 2.2.6. Figure 2.6 illustrates a coregion in instance B. Because of the coregion,
there is no ordering on the input of messages m1 and m2 in instance B, so they may occur
in any order. 2

Figure 2.6: Coregion.

In order to increase the readability of complex MSCs, the standard specifies a form of
hierarchical decomposition of complex diagrams into a collection of simpler diagrams. This
is known as instance decomposition. For each decomposed instance there is a sub-MSC,
which is itself an MSC. The single instance that is decomposed is represented by more
than one instance in the sub-MSC. The behaviour observable by the environment of the
sub-MSC should be equivalent to the observable behaviour of the decomposed instance.

Example 2.2.7. In Figure 2.7 instance B is decomposed into two instances, B1 and B2

in the sub-MSC. The message events in which B participates are represented as message
exchanges with the environment in the sub-MSC. The message mint exchanged between
B1 and B2 is internal to the decomposed instance, and is thus not visible in the main
MSC. 2

Figure 2.7: Instance decomposition.

10 Chapter 2. Live Sequence Charts

2.2.2 Graphical Syntax of Live Sequence Charts

Live Sequence Charts (LSC) were proposed by Damm and Harel [11] as an extension of
Message Sequence Charts. They identified a number of shortcomings and weaknesses of
the MSC standard and proposed a range of new concepts and notation to overcome these
problems.

One of the major problems with the semantics of MSCs is that it is not clear whether an
MSC describes all behaviours of a system or just a set of possible behaviours. Typically,
the latter view would be used in early stages of development, while the former would
apply in later stages when the behaviour is more fixed. Another problem noted by Damm
and Harel is the inability of MSCs to specify liveness, i.e. MSCs have no constructions for
enforcing progress. They also view the lack of semantics for conditions to be a problem.

The most prominent feature of LSC is the introduction of a distinction between optional
and mandatory behaviour. This applies to several elements in charts. A distinction
is introduced between universal charts and existential charts. Universal charts specify
behaviour that must be satisfied by every possible run of a system. This may be compared
to universal quantification over the runs of the system. On the other hand, existential
charts specify behaviour that must be satisfied by at least one run of the system. This
is like existential quantification over the runs of the system. The typical application of
existential charts would be in the early stages of the development process, particularly in
domain modelling. An existential chart specifies a scenario that may be used to describe
characteristic behaviours of the domain. Universal charts would typically be used later
in the development process, particularly in requirements engineering and in requirements
documents. Universal charts are denoted by a fully drawn box around the chart, while
existential charts are denoted by a dashed box.

Example 2.2.8. Figure 2.8 shows a universal LSC with two instances, A and B. The
four messages are discussed in example 2.2.10 below. The behaviour specified by this chart
should be satisfied by every run of the system.

Figure 2.9 shows an existential LSC. This represents a scenario that at least one run of
the system must satisfy.

Figure 2.8: Universal chart. Figure 2.9: Existential chart.

2

LSC introduces the notion of a prechart to restrict the applicability of a chart. The
prechart is like a precondition that when satisfied activates the main chart. A given
system need only satisfy a universal chart whenever it satisfies the prechart. An empty

2.2 Live Sequence Chart Syntax 11

prechart is satisfied by any system. A prechart can be considered as the expression in an
IF-statement where the body of the THEN part is the universal chart. The prechart is
denoted by a dashed hexagon containing zero, one or more events.

Example 2.2.9. Figure 2.10 shows a universal LSC with a prechart consisting of the
single message activate. In this case, the behaviour specified in the body of the chart only
applies to those runs of the system where the message activate is sent from instance A to
instance B. 2

Figure 2.10: Prechart.

LSC allows messages to be “hot” or “cold”. A “hot” message is mandatory, i.e. if it is
sent then it must be received eventually. This is denoted by a fully drawn arrow. For
a “cold” message reception is not required, i.e. it may be “lost”. This is denoted by a
dashed arrow. Also, a message may be specified as either synchronous or asynchronous.
Synchronous messages are denoted by an open arrowhead, while asynchronous messages
are denoted by a closed arrowhead.

Example 2.2.10. Figure 2.8 illustrates the four kinds of messages: hot and cold,
synchronous and asynchronous. Message m1 is cold and asynchronous. Message m2 is hot
and asynchronous. Message m3 is cold and synchronous. Finally, message m4 is hot and
synchronous. 2

In LSC conditions are promoted to first-class events. The difference is that conditions now
have an influence on the execution of a chart, while in MSC they were merely comments.
Again, a distinction is made between a “hot” (mandatory) condition, which, if evaluated
to false, causes non-successful termination of the chart, and a “cold” condition (optional)
which, if evaluated to false, causes successful termination of the chart. A “hot” condition
is like an invariant which must be satisfied. By combining a prechart with a universal
chart containing just a single hot condition that always evaluates to false, is is possible to
specify forbidden scenarios, since the scenario expressed in the prechart will then always
cause non-successful termination. A shared condition forces synchronization among the
sharing instances, i.e. the condition will not be evaluated before all instances have reached
it and no instance will progress beyond the condition until it has been evaluated.

Example 2.2.11. Figure 2.11 illustrates two conditions. The first is hot, while the
second is cold. If the hot condition evaluates to false, the chart is aborted, indicating an

12 Chapter 2. Live Sequence Charts

erroneous situation. If the second condition evaluates to false, the current (sub)chart is
exited successfully. 2

Figure 2.11: Conditions.

Iteration and conditional execution are obtained by means of subcharts. Subcharts are
LSCs that are specified for a subset of the instances of the containing LSC and possibly
additional new instances. Iteration is denoted by annotating the top-left corner of the
chart with an integer constant for limited iteration or an asterisk for unlimited iteration.
A subchart is exited successfully either when a limited iteration has executed the specified
number of times, or when a cold condition evaluates to false. By combining subcharts with
cold conditions, WHILE and DO-WHILE loops may be created. Additionally, a special
form of subchart with two parts is used to create an IF-THEN-ELSE construct. The first
part of the subchart has a cold condition as the first event. If the condition evaluates to
true, the first part of the subchart is executed. If the condition evaluates to false, the
second part of the subchart is executed.

Example 2.2.12. Figure 2.12 illustrates limited iteration. Instance A will send the
message m1 60 times to instance B.

Figure 2.12: Limited iteration.

Figure 2.13 illustrates unlimited iteration with a stop condition, essentially like a DO-
WHILE loop. The message m1 will be sent repeatedly until the condition becomes false.
Once that happens, the subchart is exited.

Figure 2.14 is similar to the previous situation, except that the condition is now checked
before the first message is sent, thus mimicking a WHILE loop.

Figure 2.15 is like Figure 2.14 except that there is no iteration. Thus, the message m1

will be sent once if the condition evaluates to true, and it will not be sent if the condition
evaluates to false. Therefore, this construction is like an IF-THEN construct.

In Figure 2.16 the special construction for IF-THEN-ELSE is illustrated. The two sub-
charts represent the THEN and ELSE branches. If the condition evaluates to true, the

2.2 Live Sequence Chart Syntax 13

Figure 2.13: DO-WHILE loop.

Figure 2.14: WHILE loop.

Figure 2.15: IF-THEN conditional.

14 Chapter 2. Live Sequence Charts

first subchart is executed, otherwise the second subchart is executed. In either case, the
subchart not chosen is skipped entirely.

Figure 2.16: IF-THEN-ELSE conditional.

2

The distinction between “hot” and “cold” is also applied to the time line of an instance.
Any point where an event is specified on the time line is called a location. A location may
be “hot” indicating that the corresponding event must eventually take place, or “cold”
indicating that event may never occur. A “hot” location is represented by the time line
being fully drawn, while a “cold” location is represented by a dashed time line. The time
line may alternate between being fully drawn and dashed.

The addition of “cold” location conflicts with the representation of coregions inherited
from Message Sequence Charts. For this reason, the syntax for a coregion is modified to
be a dashed line positioned next to the part of the time line that the coregion spans.

Example 2.2.13. Figure 2.17 illustrates the syntax for optional progress. The time line
is fully drawn at the location where the message m1 is sent and received, indicating the
these events must eventually take place. Thus, this guarantees liveness. At the location
where the message m2 is sent and received, the time line is dashed, indicating that neither
instance is required to progress to the sending or receiving of m2. If an instance does not
progress beyond a location l, then no event on the time line of that instance following l
will take place. Thus, in this case, if m2 is never sent, m3 will never be sent.

Figure 2.17: Optional progress.

2

2.3 Process Algebra 15

2.3 Process Algebra

The ITU standard Z.120 for Message Sequence Charts includes a formal algebraic seman-
tics based on the process algebra PAε introduced by Baeten and Weijland [3]. In this
section we first review the definition of PAε following [43] and [2] and then present an
extension of that algebra (named PAcε), which will be used for defining the semantics
of a subset of Live Sequence Charts in Section 2.4.2 and for expressing communication
behaviours of RSL specifications in Section 4.3.2.

2.3.1 The Process Algebra PAε

The algebraic theory of PAε is given as an equational specification (ΣPAε
, EPAε

), consisting
of the signature, ΣPAε

, and a set of equations, EPAε
. We first define the signature and

equations and then give the intuition behind the definitions.

Signature

The one-sorted signature, ΣPAε
, consists of

1. two special constants δ and ε
2. a set of unspecified constants A, for which {δ, ε} ∩ A = ∅
3. the unary operator

√

4. the binary operators +, ·, ‖ and ‖ .

The unspecified set A is a parameter of the theory. Thus, applications of the theory require
the theory to be instantiated with a specific set A. When the theory is applied to Message
Sequence Charts, the set A will consist of identifiers for the atomic events of the chart.

For convenience and following tradition, we will apply the binary operators in infix no-
tation, i.e. instead of +(x, y) we will write x + y. To reduce the need for parentheses
operator precedences are introduced. The · operator binds strongest. The + operator
binds weakest.

Let V be a set of variables, then terms over the signature ΣPAε
with variables from V ,

denoted T (ΣPAε
, V), are given by the inductive definition

1. v ∈ V is a term;
2. a ∈ A is a term;
3. δ is a term;
4. ε is a term;
5. if t is a term, then

√
(t) is a term;

6. if t1 and t2 are terms, then t1op t2 is a term, for op ∈ {+, ·, ‖, ‖ }.
A term is called closed if it contains no variables. The set of closed terms over ΣPAε

is
denoted T (ΣPAε

).

Equations

The equations of PAε are of the form t1 = t2, where t1, t2 ∈ T (ΣPAε
, V). For a ∈ A and

x, y, z ∈ V the equations, EPAε
, are given in Table 2.1.

16 Chapter 2. Live Sequence Charts

x + y = y + x (A1)

(x + y) + z = x + (y + z) (A2)

x + x = x (A3)

(x + y) · z = x · z + y · z (A4)

(x · y) · z = x · (y · z) (A5)

x + δ = x (A6)

δ · x = δ (A7)

x · ε = x (A8)

ε · x = x (A9)

x ‖ y = x‖ y + y‖ x +
√

(x) · √(y) (F1)

ε‖ x = δ (F2)

δ‖ x = δ (F3)

a · x‖ y = a · (x ‖ y) (F4)

(x + y)‖ z = x‖ z + y‖ z (F5)

√
(ε) = ε (T1)

√
(δ) = δ (T2)

√
(a · x) = δ (T3)

√
(x + y) =

√
(x) +

√
(y) (T4)

Table 2.1: Equations of PAε.

2.3 Process Algebra 17

Intuition

The special constant δ is called deadlock. It denotes the process that has stopped executing
actions and can never resume. The special constant ε is called the empty process. It denotes
the process that terminates successfully without executing any actions. The elements of
the set A are called atomic actions. These represent processes that cannot be decomposed
into smaller parts. As mentioned above, the set A is given a concrete definition when the
theory is applied. For example, in defining the semantics of Message Sequence Charts, the
set A will contain the symbols that identify the events in the chart, such as in(a, b,m1)
identifying the event of instance b receiving message m1 from instance a.

The binary operators + and · are called alternative and sequential composition, respec-
tively. The alternative composition of processes x and y is the process that behaves as
either x or y, but not both. The sequential composition of processes x and y is the process
that first behaves as x until it reaches a terminated state and then behaves as y.

The binary operator ‖ is called the free merge. The free merge of processes x and y is the
process that executes an interleaving of the actions of x and y. The unary termination
operator

√
indicates whether the process it is applied to may terminate immediately.

The termination operator is an auxiliary operator needed to define the free merge. The
binary operator ‖ is called the left merge and denotes the process that executes the first
atomic action of the left operand followed by the interleaving of the remainder of the left
operand with the right operand. Like the termination operator, the left merge operator is
an auxiliary operator needed to define free merge.

To see why the termination operator is necessary, consider equation F1. What happens in
the free merge is that all possible sequences of atomic actions from the two operands are
generated. When both operands become the empty process, we want the free merge to be
the empty process as well, i.e. we want the equation ε ‖ ε = ε to hold. Because of equation
F2, the two first alternatives in F1 become deadlock. However, the last alternative becomes
the empty process, because of equation T1. Thus, with A6 we get the desired result. It is
possible to give a simpler definition of the free merge without using the empty process or
the termination operator, see [2], but for our purposes we need the empty process.

Derivability

We now define what it means for a term to be derivable from an equational specification.
First, the two auxiliary notions of a substitution and a context are introduced.

Definition 2.3.1. A substitution σ : V → T (Σ, V) replaces variables with terms over Σ.
The extension of σ to terms over Σ, denoted σ̄ : T (Σ, V) → T (Σ, V), is given by

1. σ̄(δ) = δ
2. σ̄(ε) = ε
3. σ̄(a) = a for a ∈ A
4. σ̄(v) = σ(v) for v ∈ V
5. σ̄(

√
(x)) =

√
(σ̄(x))

6. σ̄(x op y) = σ̄(x) op σ̄(y) for op ∈ {+, ·, ‖, ‖ }
A substitution that replaces all variables with variable-free terms, i.e. closed terms, is
called closed. 2

Definition 2.3.2. A Σ context is a term C ∈ T (Σ, V ∪ {2}), containing exactly one
occurrence of the distinguished variable 2. The context is written C[] to suggest that C

18 Chapter 2. Live Sequence Charts

should be considered as a term with a hole in it. Substitution of a term t ∈ T (Σ, V) in
C[] gives the term C[2 7→ t], written C[t]. 2

Definition 2.3.3. Let (Σ, E) be an equational specification and let t, s and u be arbi-
trary terms over Σ. The derivability relation, `, is then given by the following inductive
definition.

s = t ∈ E ⇒ (Σ, E) ` s = t

(Σ, E) ` t = t

(Σ, E) ` s = t ⇒ (Σ, E) ` t = s

(Σ, E) ` s = t ∧ (Σ, E) ` t = u ⇒ (Σ, E) ` s = u

(Σ, E) ` s = t ⇒ (Σ, E) ` σ̄(s) = σ̄(t) for any substitution σ

(Σ, E) ` s = t ⇒ (Σ, E) ` C[s] = C[t] for any context C[−]

If (Σ, E) ` s = t, abbreviated E ` s = t, then the equation s = t is said to be derivable
from the equational specification (Σ, E). 2

Reduction to basic terms

We now venture deeper into the theory of process algebra and term rewriting systems.
The goal is to show that there exists a model of the equational specification for PAε and
that the equations EPAε

form a complete axiomatisation, i.e. that whenever two terms are
equal in the model, then they are provably equal using the equations.

The first step is to show that any PAε term can be reduced to an equivalent so-called basic
term consisting of only atomic actions, δ, ε, + and ·. This result makes subsequent proofs
easier, because we need only consider these simpler terms.

Definition 2.3.4. δ and ε are basic terms. An atomic action a ∈ A is a basic term. If
a ∈ A and t is a basic term, then a · t is a basic term. If t and s are basic terms, then t+ s
is a basic term. 2

The next step is to show that any PAε term can be reduced to a basic term. To do this,
a term rewriting system is defined.

Definition 2.3.5. A term rewriting system is a pair (Σ, R) of a signature, Σ, and a set,
R, of rewriting rules. A rewriting rule is of the form s → t, where s, t ∈ T (Σ, V) are open
terms over Σ, such that s is not a variable and vars(t) ⊆ vars(s), where vars(t) denotes
the set of variables in the term t.

The one-step reduction relation, →, is the smallest relation containing the rules, R, that
is closed under substitutions and contexts. 2

Definition 2.3.6. A term s is in normal form if there does not exist a term t, such
that s → t. A term s is called strongly normalising if there exist no infinite sequences of
rewritings starting with s:

s → s1 → s2 → . . .

A term reduction system is called strongly normalising if every term in the system is
strongly normalising. 2

The term rewriting system for PAε is shown in Table 2.2. Essentially, a term rewriting
system is a collection of equations, that can be applied only one way. Compared with

2.3 Process Algebra 19

x + x → x (RA3)

(x + y) · z → x · z + y · z (RA4)

(x · y) · z → x · (y · z) (RA5)

x + δ → x (RA6)

δ · x → δ (RA7)

x · ε → x (RA8)

ε · x → x (RA9)

x ‖ y → x‖ y + y‖ x +
√

(x) · √(y) (RF1)

ε‖ x → δ (RF2)

δ‖ x → δ (RF3)

a · x‖ y → a · (x ‖ y) (RF4)

a‖ x → a · x (RF4’)

(x + y)‖ z → x‖ z + y‖ z (RF5)

√
(ε) → ε (RT1)

√
(δ) → δ (RT2)

√
(a · x) → δ (RT3)

√
(x + y) → √

(x) +
√

(y) (RT4)

Table 2.2: Term rewriting system for PAε.

the equations of PAε in Table 2.1, there are no rewrite rules corresponding to A1 and A2,
because these equations have no clear direction. Also, having a rule for A1 would render
the rewrite system non-terminating.

A common method for proving normalisation of a term rewriting system is to define a
partial ordering on the operators and constants of the signature Σ, and then extend this
ordering to terms over Σ. There are several ways to define this extension. For our purposes,
the so called lexicographical variant of the recursive path ordering will suffice. The main
reference for the following material is [2]. Other references are [3, 37, 34, 12].

Definition 2.3.7. Let s, t ∈ T (Σ, V). We write s >lpo t if s →+ t, where →+ is the
transitive closure of the reduction relation → defined by the rules RPO1-5 and LPO in
Table 2.3. 2

Theorem 2.3.8. (Kamin and Lévy [35]). Let (Σ, R) be a term rewriting system with
finitely many rewrite rules and let > be a well-founded partial ordering on Σ. If s >lpo t
for each rewriting rule s → t ∈ R, then the term rewriting system (Σ, R) is strongly
normalising.

Proof. See [35]. 2

The intuition behind this theorem is that if x >lpo y, then y is a less complicated term
that x, where we consider basic terms to be the simplest and general terms to be the most
complicated. Thus, if all the rules can only make terms less complicated, we are bound to

20 Chapter 2. Live Sequence Charts

RPO1. Mark head symbol (k ≥ 0)

H(t1, . . . , tk) → H∗(t1, . . . , tk)

RPO2. Make copies under smaller head symbol (H > G, k ≥ 0)

H∗(t1, . . . , tk) → G(H∗(t1, . . . , tk), . . . ,H
∗(t1, . . . , tk))

RPO3. Select argument (k ≥ 1, 1 ≤ i ≤ k)

H∗(t1, . . . , tk) → ti

RPO4. Push ∗ down (k ≥ 1, l ≥ 0)

H∗(t1, . . . , G(s1, . . . , sl), . . . , tk) → H(t1, . . . , G
∗(s1, . . . , sl), . . . , tk)

RPO5. Handling contexts

s → t ⇒ H(. . . , s, . . .) → H(. . . , t, . . .)

LPO. Reduce ith argument (k ≥ 1, 1 ≤ i ≤ k, l ≥ 0, H has lexicographical status wrt. the
ith argument)

Let t ≡ H∗(t1, . . . , ti−1, G(s1, . . . , sl), ti+1, . . . , tk)

then t → H(t, . . . , t, G∗(s1, . . . , sl), t, . . . , t)

Table 2.3: Reduction rules for the lexicographical variant of the recursive partial ordering.

eventually reach a term that can not be simplified.

Lemma 2.3.9. The term rewriting system for PAε in Table 2.2 is strongly normalizing.

Proof. According to theorem 2.3.8 it is sufficient to define a partial ordering on ΣPAε

and show that each rewriting rule satisfies the extension of the ordering to T (Σ). We use
the partial order ‖> ‖ >

√
> · > + > ε > δ. · has lexicographical status with regard

to the first argument. Below, we illustrate the derivation for rewrite rules RA4 and RA5.
The remaining derivations are given in Appendix B.1.

(x + y) · z >lpo (x + y) ·∗ z RPO1

>lpo (x + y) ·∗ z + (x + y) ·∗ z RPO2

>lpo (x +∗ y) · z + (x +∗ y) · z RPO4, RPO5

>lpo x · z + y · z RPO3, RPO5

(x · y) · z >lpo (x · y) ·∗ z RPO1

>lpo (x ·∗ y) · ((x · y) ·∗ z) LPO

>lpo x · ((x ·∗ y) · z) RPO3, RPO5, RPO5

>lpo x · (y · z) RPO3, RPO5

Thus, the term rewriting system for PAε is strongly normalising. 2

We are now ready to prove that every PAε term has an equivalent basic term.

Theorem 2.3.10. For every PAε term, s, there is a corresponding basic term, t, such
that PAε ` s = t.

2.3 Process Algebra 21

Proof. By theorem 2.3.9 the term rewriting system for PAε is strongly normalizing.
Thus, for every term t, there is a finite sequence of rewritings

t → t1 → t2 → · · · → s

where s is in normal form.

We use a proof by contradiction to show that s cannot contain ‖, ‖ or
√

. Assume
therefore, that s is in normal form and that s = C[x ‖ y]. But then the rewriting RF1
can be used, thus contradicting that s is in normal form. Now assume that s is in normal
form and that s = C[x‖ y]. Then there are three cases

• x = u‖ w: in this case we can use the argument recursively to show that u or one of
its sub-terms can be reduced by a rewrite rule. This line of reasoning is valid since
we deal with finite terms.

• x =
√

(u): in this case either x can be rewritten using one of RT1-4, or we can apply
the whole argument to u to show that some sub-term of u can be rewritten.

• in all other cases one of the four rewrite rules RF2-4 may be applied to s, thus
forming a contradiction.

Finally, we can use the same argument as above to show that if s = C[
√

(x)] then either
we can use one of the rewriting rules RT1-4 on s directly, or some sub-term of x can be
reduced using a rewrite rule.

Thus, in all cases we have a contradiction and the theorem follows. 2

2.3.2 Semantics of PAε

We now proceed to define a semantics for PAε. We use a structural operational semantics
in the style of Plotkin [46]. Based on the semantics, we define a behavioural equivalence
on PAε terms, called bisimulation equivalence. We then show that the quotient algebra of
PAε terms under bisimulation equivalence is a model of the equational specification PAε,
which implies soundness of the equations. Finally, we prove completeness of the equations.

A Plotkin-style operational semantics is defined using a set of derivation rules. For our
purpose, the premises and conclusion of a derivation rule are formulas of either the form

x
a−→ x′

or of the form

x ↓

Informally, the former formula means that process x can evolve into process x ′ by per-
forming action a. The latter formula means that process x can terminate immediately and
successfully.

A formula φ is provable from a set of deduction rules, if there is a rule

ϕ1 ϕ2 · · · ϕn

ϕ

such that there exists a substitution σ : V → T (Σ, V) satisfying σ(ϕ) = φ and if σ(ϕi) is
provable from the deduction rules for i = 1, 2, . . . , n.

The deduction rules of the operational semantics for PAε are shown in Table 2.4.

22 Chapter 2. Live Sequence Charts

2

a
a−→ ε

Act

x
a−→ x′

x + y
a−→ x′

Cho1

y
a−→ y′

x + y
a−→ y′

Cho2

x
a−→ x′

x · y a−→ x′ · y
Seq1

x ↓ y
a−→ y′

x · y a−→ y′
Seq2

x
a−→ x′

x ‖ y
a−→ x′ ‖ y

Par1

y
a−→ y′

x ‖ y
a−→ x ‖ y′

Par2

x
a−→ x′

x‖ y
a−→ x′ ‖ y

Lme

2

ε ↓ EpT

x ↓
x + y ↓ ChoT1

y ↓
x + y ↓ ChoT2

x ↓ y ↓
x · y ↓ SeqT

x ↓ y ↓
x ‖ y ↓ ParT

x ↓ y ↓ x
a−→ x′

x‖ y ↓
LmeT

x ↓√
(x) ↓ TerT

Table 2.4: Structural operational semantics of PAε.

We seek a means of identifying terms that behave “in the same way”. This form of
behavioural equivalence is captured in the notion of bisimulation. Here, we use the strong
formulation of bisimulation, due to Park [44].

Definition 2.3.11. (Bisimulation). (Strong) Bisimulation equivalence, ∼⊆ T (Σ)×T (Σ),
is the largest symmetric relation, such that for all x, y ∈ T (Σ), if x ∼ y, then the following
conditions hold

1. ∀x′ ∈ T (Σ) : x
a−→ x′ ⇒ ∃y′ ∈ T (Σ) : y

a−→ y′ ∧ x′ ∼ y′

2. x ↓ ⇔ y ↓

Two terms, x and y, are called bisimilar, if there exists a bisimulation relation, ∼, such
that x ∼ y. 2

It follows from the definition that the bisimulation relation is an equivalence relation, since
it is reflexive, symmetric and transitive.

The next step is to show that the bisimulation relation is a congruence. Having established
this result, it is easy to show that the deduction system in Table 2.4 is a model of the
equational specification PAε. This is the same as saying that the equations for PAε are
sound.

Definition 2.3.12. (Congruence). Let R be an equivalence relation on T (Σ). R is called
a congruence if for all n-ary function symbols f ∈ Σ

x1Ry1 ∧ . . . ∧ xnRyn ⇒ f(x1, . . . , xn)Rf(y1, . . . , yn)

where x1, . . . , xn, y1, . . . , yn ∈ T (Σ). 2

Definition 2.3.13. (Baeten and Verhoef [1]). Let T = (Σ, D) be a term deduction system
and let D = D(Tp, Tr), where Tp are the rules for the predicate (here ↓) and Tr are the

2.3 Process Algebra 23

rules for the relation (here
a→). Let I and J be index sets of arbitrary cardinality, let

ti, sj, t ∈ T (Σ, V) for all i ∈ I and j ∈ J , let Pj , P ∈ Tp be predicate symbols for all j ∈ J ,
and let Ri, R ∈ Tr be relation symbols for all i ∈ I. A deduction rule d ∈ D is in path
formal if it has one of the following four forms

{Pjsj | j ∈ J} ∪ {tiRiyi | i ∈ I}
f(x1, . . . , xn)Rt

with f ∈ Σ an n-ary function symbol, X = {x1, . . . , xn}, Y = {yi | i ∈ I}, and X ∪ Y ⊆ V
a set of distinct variables;

{Pjsj | j ∈ J} ∪ {tiRiyi | i ∈ I}
xRt

with X = {x}, Y = {yi | i ∈ I}, and X ∪ Y ⊆ V a set of distinct variables;

{Pjsj | j ∈ J} ∪ {tiRiyi | i ∈ I}
Pf(x1, . . . , xn)

with f ∈ Σ and n-ary function symbol, X = {x1, . . . , xn}, Y = {yi | i ∈ I}, and X∪Y ⊆ V
a set of distinct variables or

{Pjsj | j ∈ J} ∪ {tiRiyi | i ∈ I}
Px

with X = {x}, Y = {yi | i ∈ I}, and X ∪ Y ⊆ V a set of distinct variables.

A term deduction system is said to be in path format if all its deduction rules are in path
format. 2

Theorem 2.3.14. (Baeten and Verhoef [1], Fokkink [14]) Let T = (Σ, D) be a term deduc-
tion system. If T is in path format, then strong bisimulation equivalence is a congruence
for all function symbols in Σ.

Proof. See [1]. 2

Lemma 2.3.15. Let TPAε
be the term deduction system defined in Table 2.4. Then

bisimulation equivalence is a congruence on the set of closed PAε terms.

Proof. We show that the deduction rules EpT and Cho1 are in path format. Writing ↓
in non-fix notation, deduction rule EpT can be rewritten to

{ }
↓ (ε)

which is in the third form in Definition 2.3.13. Similarly, Cho1 can be rewritten to

{x a−→ x′}
x + y

a−→ x′

which is in the first form.

It is easily verified that the remaining deduction rules are also in path format, so the
lemma follows from theorem 2.3.14. 2

Having established that bisimulation equivalence is a congruence, we can construct the
term quotient algebra T (ΣPAε

)/ ∼. The reason we want to construct the quotient algebra
is that it is an initial algebra, which is characterised by being the smallest algebra that
captures the properties of the specification.

Recall that given an algebra A with signature Σ, the quotient algebra under the congruence
≡, written A/≡ is defined as

24 Chapter 2. Live Sequence Charts

• The carrier set of A/≡ consists of the equivalence classes of the carrier set of A under
the equivalence relation ≡, i.e. |A/≡| = { [x]≡ | x ∈ |A| }, where [x]≡ = { y | y ∈
|A| ∧ x ≡ y }.

• For each n-ary function symbol fA in A, there is a corresponding n-ary function
symbol fA/≡ in A/≡, defined by

fA/≡([x1]≡, . . . , [xn]≡) = [fA(x1, . . . , xn)]≡

Theorem 2.3.16. The set of closed PAε terms modulo bisimulation equivalence, notation
T (ΣPAε

)/ ∼, is a model of PAε.

Proof. Recall that a Σ-algebra, A, is a model of an equational specification (Σ, E), if
A |= E, i.e. if every equation derivable from E holds in A.

Because bisimulation equivalence on PAε terms is a congruence by lemma 2.3.15, it is
sufficient to separately verify the soundness of each axiom in EPAε

, i.e. to show if PAε `
x = y, then x ∼ y.

We illustrate the procedure by verifying equation A1. We have to show that there exists
a bisimulation equivalence ∼∗ such that x + y ∼∗ y + x. Let ∼∗ be defined as { (x +
y, y + x) | x, y ∈ T (ΣPAε

) } ∪ { (x, x) | x ∈ T (ΣPAε
)}. Clearly, ∼∗ is symmetric. We now

check the first bisimulation condition. x + y can evolve only by following one of the two
deduction rules Cho1 and Cho2. Suppose x

a−→ x′, then x + y
a−→ x′, but then we also

have y + x
a−→ x′. By definition x′ ∼∗ x′, so the condition is satisfied in this case. The

symmetric case y
a−→ y′ follows from the same argument. Next, the second bisimulation

condition must be checked. Suppose x ↓, then by ChoT1 x + y ↓. But in that case by
ChoT2 y + x ↓. Again the symmetric case y ↓ follows immediately.

The above procedure can be applied to the remaining equations to show that equal terms
are bisimilar. Thus, the theorem follows. 2

Finally, we show that PAε is a complete axiomatisation of the set of closed terms modulo
bisimulation equivalence, i.e. whenever x ∼ y, then PAε ` x = y.

Theorem 2.3.17. The axiom system PAε is a complete axiomatisation of the set of closed
terms modulo bisimulation equivalence.

Proof. Due to theorem 2.3.16 and 2.3.10 it suffices to prove the theorem for basic terms.
The proof for basic terms is given in [2]. 2

2.3.3 The Process Algebra PAcε

The process algebra PAε introduced in the previous section is sufficiently expressive to
define the semantics of Message Sequence Charts. However, the extension to Live Sequence
Charts calls for the introduction of an additional operator.

In this subsection we introduce the extended process algebra, called PAc ε, for Process
Algebra with conditional behaviour. PAcε is a conservative extension of PAε, meaning
that the theory of PAε also holds in PAcε. We give an axiom system and a model of PAcε,
and show that the axiom system is sound and complete. Our task now is considerably
easier, since most of the results for PAε can be directly transferred to PAcε.

The signature of PAcε, ΣPAcε
, consists of

1. two special constants δ and ε
2. a set of unspecified constants A, for which {δ, ε} ∩ A = ∅

2.3 Process Algebra 25

ε . x = x C1

δ . x = ε C2

x + y . z = (x . z) + (y . z) C3

a · x . y = a · (x . y) + ā, where ā ∈ A \ {a} C4

Table 2.5: Additional equations of PAcε.

3. the unary operator
√

4. the binary operators +, ·, ‖, ‖ and ..

The binary operator . is the conditional behaviour operator. The conditional behaviour of
processes x and y is the process that either terminates successfully or executes x followed
by y. The other operators and constants have the same meaning as they do in PAε.

Table 2.5 lists the additional equations EPAcε
for a ∈ A and x, y, z ∈ V .

ε . x → x RC1

δ . x → ε RC2

x + y . z → x . z + y . z RC3

a · x . y → a · (x . y) + ā RC4

a . y → a · y + ā RC4’

Table 2.6: Additional term rewriting rules for PAcε.

Theorem 2.3.18. The term rewriting system for PAcε in Table 2.6 is strongly normaliz-
ing.

Proof. The proof is based on the proof of theorem 2.3.9. We add the conditional
operator to the partial ordering: . >‖> ‖ >

√
> · > + > ε > δ. We now show that the

additional rewrite rules for PAcε satisfy the extension of the partial ordering to terms.

ε . x >lpo ε .∗ x RPO1

>lpo ε RPO3

δ . x >lpo δ .∗ x RPO1

>lpo ε RPO2

x + y . z >lpo x + y .∗ z RPO1

>lpo (x + y .∗ z) + (x + y .∗ z) RPO2

>lpo (x +∗ y . z) + (x +∗ y . z) RPO4, RPO5

>lpo (x . z) + (y . z) RPO4, RPO5

26 Chapter 2. Live Sequence Charts

a · x . y >lpo a · x .∗ y RPO1

>lpo (a · x .∗ y) + (a · x .∗ y) RPO2

>lpo (a · x .∗ y) + ā RPO2, RPO5

>lpo (a · x .∗ y) · (a · x .∗ y) + ā RPO2

>lpo (a ·∗ x) · (x . y) + ā RPO1, RPO3, RPO5

>lpo a · (x . y) + ā RPO1, RPO3

a . y >lpo a .∗ y RPO1

>lpo (a .∗ y) + (a .∗ y) RPO2

>lpo (a .∗ y) + ā RPO2, RPO5

>lpo (a .∗ y) · (a .∗ y) + ā RPO1, RPO3

>lpo a · y + ā RPO3, RPO5

Thus, the rewrite system for PAcε is strongly normalizing. 2

In theorem 2.3.10 we showed that every PAε term has an equivalent basic term. With the
definition of a basic term from definition 2.3.4, we have the similar result for PAcε.

Theorem 2.3.19. For every PAcε term, s, there is a corresponding basic term, t, such
that PAε ` s = t.

Proof. We have already shown that the subset of PAc ε that corresponds to PAε can
be reduced to basic terms. Thus, we only need to show that terms with the conditional
operator can be reduced to basic terms.

Because the term rewriting system for PAcε is strongly normalizing by theorem 2.3.18,
then for every term t, there exists a finite sequence of rewritings

t → t1 → t2 → · · · → s

where s is in normal form.

We use a proof by contradiction to show that s cannot contain .. Assume therefore, that
s is in normal form and that s = C[x . y].

If x = C[u . w] then the argument can be applied recursively to show that u . w or one
of u’s sub-terms can be reduced, thus contradicting that s is in normal form. Otherwise,
there are five possibilities

• x = ε: then s can be reduced by RC1.
• x = δ: then s can be reduced by RC2.
• x = u + w: then s can be reduced by RC4.
• x = a · x′: then s can be reduced by RC5.
• x = a: then s can be reduced by RC5’.

All cases contradict that s is in normal form. Thus, every PAc ε term can be reduced to
an equivalent basic term. 2

2.3.4 Semantics for PAcε

The additional semantical rules for PAcε are shown in Table 2.7.

In order to prove that bisimulation is a congruence on the set of closed PAc ε terms we
need to introduce a generalisation of the path format used in the previous section. The

2.3 Process Algebra 27

x
a−→ x′

x . y
ā−→ ε

Con1

x
a−→ x′

x . y
a−→ x′ . y

Con2

x
a−→ x′

ε . x
a−→ x′

Con3

x ↓ y ↓
x . y ↓ ConT1

x 6 ↓
x . y ↓ ConT2

Table 2.7: Extra semantical rules for PAcε.

generalisation is known as panth format for “predicates and ntyft/ntyxt hybrid format”.
It generalises the path format by allowing negative premises in the deduction rules. It is
also a generalisation of the ntyft/ntyxt of Groote [19], which in turn along with the path
format is a generalisation of the tyft/tyxt format of Groote and Vaandrager [20]. The
names of these formats are derived from the format of the premises and conclusion of the
deduction rules, see Verhoef [56] for an explanation.

The reference for the following material is Verhoef [56].

Definition 2.3.20. (Verhoef [56]). Let T = (Σ, D) be a term deduction system and
let D = D(Tp, Tr), where Tp is the set of predicate symbols and Tr is the set of relation
symbols. Let I, J , K and L be index sets of arbitrary cardinality, let sj, ti, ul, vk, t ∈
T (Σ, V) for all i ∈ I, j ∈ J , k ∈ K and l ∈ L, and let Pj , P ∈ Tp be predicate symbols for
all j ∈ J , and let Ri, R ∈ Tr be relation symbols for all i ∈ I. A deduction rule d ∈ D is
in panth format if it has one of the following four forms

{Pjsj | j ∈ J} ∪ {tiRiyi | i ∈ I} ∪ {¬Plul | l ∈ L } ∪ {vk¬Rk | k ∈ K}
f(x1, . . . , xn)Rt

with f ∈ Σ an n-ary function symbol, X = {x1, . . . , xn}, Y = {yi | i ∈ I}, and X ∪ Y ⊆ V
a set of distinct variables;

{Pjsj | j ∈ J} ∪ {tiRiyi | i ∈ I} ∪ {¬Plul | l ∈ L } ∪ {vk¬Rk | k ∈ K}
xRt

with X = {x}, Y = {yi | i ∈ I}, and X ∪ Y ⊆ V a set of distinct variables;

{Pjsj | j ∈ J} ∪ {tiRiyi | i ∈ I} ∪ {¬Plul | l ∈ L } ∪ {vk¬Rk | k ∈ K}
Pf(x1, . . . , xn)

with f ∈ Σ and n-ary function symbol, X = {x1, . . . , xn}, Y = {yi | i ∈ I}, and X∪Y ⊆ V
a set of distinct variables or

{Pjsj | j ∈ J} ∪ {tiRiyi | i ∈ I} ∪ {¬Plul | l ∈ L } ∪ {vk¬Rk | k ∈ K}
Px

with X = {x}, Y = {yi | i ∈ I}, and X ∪ Y ⊆ V a set of distinct variables.

A term deduction system is said to be in panth format if all its deduction rules are in
panth format. 2

Before we can introduce the congruence theorem for the panth format we need to define
some additional notions.

Definition 2.3.21. Let T = (Σ, D) be a term deduction system. The formula dependency
graph G of T is a labelled directed graph with the positive formulas of D as nodes. Let
PF (H) denoted the set of all positive formulas in H and let NF (H) denote all the negative
formulas in H, then for all deduction rules H/C ∈ D and for all closed substitutions σ we
have the following edges in G:

28 Chapter 2. Live Sequence Charts

• for all h ∈ PF (H) there is an edge σ(h)
p−→ σ(C);

• for all s¬R ∈ NF (H) there is for all t ∈ T (Σ) an edge σ(sRt)
n−→ σ(C);

• for all ¬Ps ∈ NF (H) there is an edge σ(Ps)
n−→ σ(C).

An edge labelled with a p is called positive and an edge labelled with an n is called
negative. A set of edges is called positive if all its elements are positive and negative if
the edges are all negative. 2

Definition 2.3.22. A term deduction system is stratifiable if there is no node in its
formula dependency graph that is the start of a backward chain of edges containing an
infinite negative subset. 2

Definition 2.3.23. Let T = (Σ, D) be a term deduction system and let F be a set of
formulas. The variable dependency graph of F is a directed graph with the variables
occurring in F as its nodes. The edge x → y is an edge of the variable dependency graph
if and only if there is a positive relation tRs ∈ F with x ∈ vars(t) and y ∈ vars(s).

The set F is called well-founded if any backward chain of edges in its variable dependency
graph is finite. A deduction rule is called well-founded if its set of premises is so. A term
deduction system is called well-founded if all its deduction rules are well-founded. 2

We are now ready to formulate the main result of Verhoef [56].

Theorem 2.3.24. (Verhoef [56]). Let T = (Σ, D) be a well-founded stratifiable term
deduction system in panth format, then strong bisimulation is a congruence for all function
symbols in Σ.

Proof. See [56]. 2

Lemma 2.3.25. Let T = (ΣPAcε
, D) be the term deduction system in Table 2.7, then

strong bisimulation is a congruence on the set of closed PAc ε terms.

Proof. The proof relies on theorem 2.3.24.

First, we must check that the term deduction system is well-founded. No variable occurs
more than once in the set of premises for any of the deduction rules, so it is clear that
there are no cycles in the variable dependency graph. Hence, the term deduction system
is well-founded.

Next, we must show that the term deduction system is stratifiable. We use proof by con-
tradiction. Assume the term deduction is not stratifiable. Then, there is some backward
chain of edges in the formula dependency graph that contains an infinite negative subset
of edges. The only negative edge in the graph is the one that stems from ConT2. Thus,
there must be a cycle containing the edge σ(x ↓) n−→ σ(x . y ↓). This cycle must also
contain at least one edge originating at the node σ(x. y ↓) and terminating at some node,
Z, see Figure 2.18.PSfrag replacements

σ(x ↓)

σ(x . y ↓)Z

n

Figure 2.18: Illustration for proof of congruence.

By the definition of the formula dependency graph, the edge σ(x . y ↓) −→ Z can only be
in the graph because there is a deduction rule with x.y ↓ as one of its premises. However,

2.4 Algebraic Semantics of Live Sequence Charts 29

there is no such rule, and we have a contradiction. Therefore, the term deduction system
is stratifiable.

Finally, we must verify that each of the deduction rules are in panth format. Since any
rule that is in path format is also in panth format, we only need to check the additional
rules for PAcε, since the remaining rules were shown to be in path format in the proof for
lemma 2.3.15. The rule Con1 can be trivially rewritten to

{x a−→ x′}
x . y

ā−→ ε

which is in the first panth form. The rule ConT2 can similarly be rewritten to

{¬ ↓ (x)}
↓ (x . y)

which is in the third panth form. The remaining three rules are easily shown to also be in
panth format.

Thus, all the conditions of theorem 2.3.24 are satisfied and the result follows. 2

Theorem 2.3.26. The set of closed PAcε terms modulo bisimulation equivalence, notation
T (ΣPAcε

)/ ∼, is a model of PAcε.

Proof. Recalling the proof for theorem 2.3.16 we have to show that for each of the
equations in EPAcε

, PAcε ` x = y implies the existence of a bisimulation, ∼, such that
x ∼ y.

We give the proof for axiom C4. Let ∼∗ be defined by { (a · x . y, a · (x . y) + ā) | x, y ∈
T (ΣPAcε

), a ∈ A } ∪ { (x, y) | x, y ∈ T (ΣPAcε
) }. Clearly, ∼∗ is symmetric. We first check

the termination condition. By ConT1 a · x . y ↓, since a · x 6 ↓. Similarly, a · (x . y) + ā ↓,
since ā 6 ↓ (and actually also a · (x.y) 6 ↓). Thus, the termination condition for bisimulation
equivalence is satisfied.

Now, we check the first bisimulation condition. There are two ways a · x . y can evolve:

• a · x . y
ā−→ ε: then we get a · (x . y) + ā

ā−→ ε and since ε ∼∗ ε by definition, the
bisimulation condition is satisfied in this case.

• a · x . y
a−→ x . y: similarly, a · (x . y) + ā

a−→ x . y and again x . y ∼∗ x . y, so the
bisimulation condition is satisfied.

The symmetric case for evolutions of a · (x . y) + ā is entirely analogous.

The remaining axioms can be checked with the same technique. 2

We now come to the final result showing that the axiom system for PAc ε is both sound
and complete.

Theorem 2.3.27. The axiom system PAcε is a complete axiomatisation of the set of
closed PAcε terms modulo bisimulation equivalence.

Proof. Due to theorems 2.3.26 and 2.3.19 it suffices to prove the theorem for basic
terms. The proof for basic terms is given in [2]. 2

2.4 Algebraic Semantics of Live Sequence Charts

In this section a subset of Live Sequence Charts are given an algebraic semantics using the
process algebra PAcε from the previous section. The presentation here is adapted from
the description of the semantics of MSC given by Mauw and Reniers [43].

30 Chapter 2. Live Sequence Charts

2.4.1 Textual Syntax of Live Sequence Charts

We give a textual syntax for LSC. The textual syntax is used to define the semantics
in the next subsection. The textual syntax is presented as an EBNF grammar below.
The nonterminals lscid, msgid and inst name are further unspecified identifiers. The
nonterminal cond represents a further unspecified conditional expression.

〈chart〉 ::= lsc 〈lscid〉 ; 〈inst def list〉 endlsc

〈inst def list〉 ::= 〈inst def 〉 〈inst def list〉 | 〈〉
〈inst def 〉 ::= instance 〈inst name〉 〈prechart〉 〈body〉 endinstance

〈prechart〉 ::= prechart 〈location〉 endprechart

〈body〉 ::= body 〈location〉 endbody

〈location〉 ::= hot 〈event〉 ; 〈location〉 | cold 〈event〉 ; 〈location〉 | 〈〉
〈event〉 ::= 〈input〉 | 〈output〉 | 〈condition〉 | 〈coregion〉
〈input〉 ::= in 〈msgid〉 from 〈address〉 〈mode〉
〈output〉 ::= out 〈msgid〉 to 〈address〉 〈mode〉
〈condition〉 ::= hotcondition 〈cond〉 | coldcondition 〈cond〉
〈coregion〉 ::= concurrent 〈coeventlist〉 endconcurrent

〈coeventlist〉 ::= 〈input〉 〈coeventlist〉 | 〈output〉 〈coeventlist〉 | 〈〉
〈address〉 ::= 〈inst name〉 | env

〈mode〉 ::= sync | async

Table 2.8: EBNF grammar for the textual syntax of Live Sequence Charts.

We do not explain the mapping from an LSC to the textual syntax further as this is
straightforward. The example in Section 2.5 illustrates the mapping.

2.4.2 Semantics of Live Sequence Charts

In order to define the semantics of the subset of LSC, we instantiate the process algebra
PAcε by specifying the set of atomic actions. We assume a set, Ao, of atomic actions
representing asynchronous (out) and synchronous (outs) message output

Ao ={out(i, j,m) | i, j ∈ L(〈inst name〉),m ∈ L(〈msgid〉)}∪
{outs(i, j,m) | i, j ∈ L(〈inst name〉),m ∈ L(〈msgid〉)}

Similarly, we assume a set, Ai, of atomic actions representing asynchronous (in) and
synchronous (ins) message input

Ai ={in(i, j,m) | i, j ∈ L(〈inst name〉),m ∈ L(〈msgid〉)}∪
{ins(i, j,m) | i, j ∈ L(〈inst name〉),m ∈ L(〈msgid〉)}

Conditions are also viewed as actions, so there is a set of atomic actions representing hot
conditions

Ahc = {hotcond(c) | c ∈ L(〈cond〉) }

2.4 Algebraic Semantics of Live Sequence Charts 31

λM,C(ε) = ε if M = ∅
λM,C(ε) = δ if M 6= ∅
λM,C(δ) = δ
λM,C(a · x) = δ if a 6∈ Ao ∪ Ai and C 6= ∅
λM,C(a · x) = a · λM,∅(x) if a 6∈ Ao ∪ Ai and C = ∅
λM,C(out(i, env ,m) · x) = δ if C 6= ∅
λM,C(out(i, env ,m) · x) = out(i, env ,m) · λM,∅(x) if C = ∅
λM,C(out(i, j,m) · x) = δ if m ∈ M or C 6= ∅
λM,C(out(i, j,m) · x) = out(i, j,m) · λM∪{m},∅(x) if m 6∈ M and C = ∅
λM,C(outs(i, env ,m) · x) = δ if C 6= ∅
λM,C(outs(i, env ,m) · x) = outs(i, env ,m) · λM,∅(x) if C = ∅
λM,C(outs(i, j,m) · x) = δ if m ∈ M or C 6= ∅
λM,C(outs(i, j,m) · x) = outs(i, j,m) · λM∪{m},{m}(x) if m 6∈ M and C 6= ∅
λM,C(in(env , j,m) · x) = δ if C 6= ∅
λM,C(in(env , j,m) · x) = in(env , j,m) · λM,∅(x) if C = ∅
λM,C(in(i, j,m) · x) = in(i, j,m) · λM\{m},∅(x) if m ∈ M and C = ∅
λM,C(in(i, j,m) · x) = δ if m 6∈ M or C 6= ∅
λM,C(ins(env , j,m) · x) = δ if C 6= ∅
λM,C(ins(env , j,m) · x) = ins(env , j,m) · λM,∅(x) if C = ∅
λM,C(ins(i, j,m) · x) = ins(i, j,m) · λM\{m},∅(x) if m ∈ M and C = {m}
λM,C(ins(i, j,m) · x) = δ if m 6∈ M or C 6= {m}
λM,C(x + y) = λM,C(x) + λM,C(y)
λM,C(x . y) = λM (x) . λM (y)

Table 2.9: Definition of the state operator λM,C .

and a set of atomic actions representing cold conditions

Acc = {coldcond(c) | c ∈ L(〈cond〉) }

The set of atomic actions, A, of the instantiated process algebra is then

A = Ao ∪ Ai ∪ Ahc ∪ Acc

The process algebra PAcε defined above does not place any constraints on the order of
atomic events. In expressing the semantics of LSC the constraint that message input
must follow the corresponding message output has to be expressed. To do this, the state
operator λM,C is introduced. It is an instance of the general state operator [3].

For M ⊆ L(〈msgid〉), x, y ∈ V , a ∈ A, i, j ∈ L(〈inst name〉) and m ∈ L(〈msgid〉), the
state operator is defined by the equations in Table 2.9. The subscript M records the
message identifiers of messages that have been output, but not yet input. The subscript
C records the message identifiers of those synchronous messages that have been output,
but not yet input. If C is non-empty and the next event is not the corresponding input
event, deadlock occurs. This ensures that no other events can come between the output
and input of a synchrous message.

The instantiated process algebra with λM,C will be referred to as PALSC in the following.

The semantics of LSCs will be defined by semantic functions over the syntactical categories
of the textual syntax of LSCs. If 〈cat〉 denotes a syntactical category (non-terminal) in the
ENBF grammar, then L(〈cat〉) denotes the language of text strings derivable from that
syntactical category. The notation PX denotes the powerset of the set X.

32 Chapter 2. Live Sequence Charts

The semantic function for LSCs, SLSC [[·]] : L(〈chart〉) → T (ΣPALSC
), is defined by

SLSC [[ch]] = λ∅,∅

((
‖i∈Instc(ch) Sinstpc [[i]]

)
.

(
‖i∈Instc(ch) Sinstbody [[i]]

))

where Inst c : L(〈chart〉) → P(L(〈inst def〉)) is the set of instance definitions in the chart.
It is defined by

Inst c(lsc 〈lscid〉 ; 〈inst def list〉 endlsc) = Inst idl(〈inst def list〉)
where in turn Inst idl : L(〈inst def list〉) → P(L(〈inst def〉)) is defined by

Inst idl (〈〉) = ∅
Inst idl (〈inst def〉 〈inst def list〉) = {〈inst def〉} ∪ Inst idl (〈inst def list〉)

The semantic function for instance precharts, Sinstpc[[·]] : L(〈inst def〉) → T (ΣPALSC
), is

defined by

Sinstpc[[instance 〈inst name〉 〈prechart〉 〈body〉 endinstance]] =

S
〈inst name〉
prechart [[〈prechart〉]]

The semantic function for instance bodies, Sinstbody[[·]] : L(〈inst def〉) → T (ΣPALSC
), is

defined by

Sinstbody[[instance 〈inst name〉 〈prechart〉 〈body〉 endinstance]] =

S
〈inst name〉
body [[〈body〉]]

For iid ∈ L(〈inst name〉 the semantic function for precharts, S iid
body[[·]] : L(〈prechart〉) →

T (ΣPALSC
), is defined by

Siid
prechart[[prechart 〈location〉 endprechart]] = S iid

location[[〈location〉]]

For iid ∈ L(〈inst name〉 the semantic function for instance bodies, S iid
body[[·]] : L(〈body〉) →

T (ΣPALSC
), is defined by

Siid
body[[body 〈location〉 endbody]] = S iid

location[[〈location〉]]

For iid ∈ L(〈inst name〉 the semantic function for event lists, S iid
location[[·]] : L(〈location〉) →

T (ΣPALSC
), is defined by

Siid
location[[〈〉]] = ε

Siid
location[[hot 〈event〉 ; 〈location〉]] = S iid

event[[〈event〉]] · Siid
location[[〈location〉]]

Siid
location[[cold 〈event〉 ; 〈location〉]] = ε +

(
Siid

event[[〈event〉]] · Siid
location[[〈location〉]]

)

For iid ∈ L(〈inst name〉 the semantic function for events, S iid
event [[·]] : L(〈event〉) →

T (ΣPALSC
), is defined by

Siid
event [[out 〈msgid〉 to 〈address〉 async]] = out(iid , 〈address〉 , 〈msgid〉)

Siid
event [[out 〈msgid〉 to 〈address〉 sync]] = outs(iid , 〈address〉 , 〈msgid〉)

Siid
event[[in 〈msgid〉 from 〈address〉 async]] = in(〈address〉 , iid , 〈msgid〉)

Siid
event[[in 〈msgid〉 from 〈address〉 sync]] = ins(〈address〉 , iid , 〈msgid〉)

Siid
event[[hotcondition 〈cond〉]] = hotcond (〈cond〉)

Siid
event[[coldcondition 〈cond〉]] = coldcond (〈cond〉)

Siid
event[[concurrent 〈coeventlist〉 endconcurrent]] =‖e∈CoEvents(〈coeventlist〉) Siid

event[[e]]

2.5 Live Sequence Chart Example 33

where CoEvents : L(〈eventlist〉) → P(L(〈event〉)) is defined by

CoEvents(〈〉) = ∅
CoEvents(〈event〉 〈eventlist〉) = {〈event〉} ∪ CoEvents(〈eventlist〉)

2.5 Live Sequence Chart Example

We conclude this chapter with an example illustrating the process of deriving a PALSC

term from an LSC diagram.

Figure 2.19 shows an example LSC with three instances. The first step is to convert the
graphical syntax into the textual syntax. The result is shown below.

Figure 2.19: Example Live Sequence Chart.

lsc Example;
instance A

prechart

hot hotcondition(cond 1) ;
hot out m1 to B async ;

end prechart body hot out m2 to B async ;
hot coldcondition(cond 2) ;
hot out m4 to B sync ;

end body

end instance

instance B
prechart

hot hotcondition(cond 1) ;
hot in m1 from A async ;

end prechart

body

hot concurrent

in m2 from A async ;
in m3 from C async ;

end concurrent ;
hot coldcondition(cond 2) ;
hot in m4 from A sync ;

34 Chapter 2. Live Sequence Charts

hot out m5 to C async ;
end body

end instance

instance C
body

hot out m3 to B async ;
cold in m5 from B async ;
cold out m6 to env async ;

end body

end instance

end lsc

Next, we derive the PALSC term from the textual syntax by using the semantic function
for LSCs. Let the chart be denoted by ch, then the semantics of ch is given by the
PALSC term below.

SLSC [[ch]] =
λ∅,∅((hotcond (cond 1) · out(A,B,m1) ‖

hotcond (cond 1) · in(A,B,m1))
.
(out(A,B,m2) · coldcond (cond 2) · outs(A,B,m4)
‖
(in(A,B,m2) ‖ in(C,A,m3)) · coldcond (cond 2) ·
ins(A,B,m4) · out(B,C,m3)
‖
out(C,B,m3) · (ε + in(B,C,m5) · (ε + out(C, env ,m6)))))

)

35

Chapter 3

Statecharts

3.1 Introduction

In this section we describe Statecharts [21, 22] which is a graphical notation tailored
for specifying the control flow of reactive systems, i.e. event-driven systems which react
to internal and external stimuli. Many electronic devices, such as digital clocks, radios,
kitchen appliances, smoke alarms, motion sensors, etc. are reactive systems. Computer
programs such as word processors and Internet browsers, that require some form of input
from the user during execution are other examples of reactive systems.

The opposite to reactive systems are transformational systems that perform some compu-
tation and terminate once the result has been evaluated.

On closer examination, a reactive system actually encompasses several transformational
systems, since whenever an event triggers a transition, the resulting change of state may
be expressed as a function from states to states, i.e. a transformation on the state.

There are several well established methods for specifying transformational systems, for
example a direct definition of a function relating input values to output values, or indirectly
through post-conditions stating properties of the output values, assuming the inputs satisfy
some pre-conditions.

Statecharts extend conventional state machines and state diagrams with hierarchical states
and ways of specifying concurrency and communication. The addition of hierarchy is
intended to prevent exponential increase in the number of states required to model complex
systems.

The history of state machines or automata is almost as long as the history of computer
science. The first reference to automata theory is Kleene’s paper from 1956 [36]. Automata
play an important role in many areas of computer science, notably in string matching and
lexical analysis.

A variant of Harel’s Statecharts have been included in the UML suite of diagram types [7,
32, 53].

3.2 Syntax of Statecharts

Like state machines and state diagrams, Statecharts are centered around states and tran-
sitions. A state represents a possible configuration of a system. The behaviour of the
system in response to internal and external stimuli depends on the state(s) it is currently

36 Chapter 3. Statecharts

in, called the active state(s). A transition describes a change of active state. A transition
is triggered by an event or action and may set off other actions.

Statecharts are represented graphically as so-called higraphs [22], utilizing area inclusion
rather than the more conventional tree or graph structure for representing hierarchy. States
are represented as rounded rectangles (for simplicity called boxes in the following). A state,
sc that is fully contained within another state, sp, is called a sub-state of sp.

States may be decomposed into sub-states using either AND or XOR decomposition. AND
decomposition captures the property that when a system is in a given state, it must also be
in all sub-states of that state. Conversely, XOR decomposition captures the property that
when a system is in a given state, it must be in exactly one of the sub-states of that state.
XOR decomposition is represented by having several sub-states. AND decomposition is
represented by subdividing the box of the containing state with a dashed line and placing
concurrent sub-states on either side of the line.

Transitions are represented as arrows from states to states. An arrow is labelled with an
identifier for the event(s) that triggers the transition and, optionally, a condition enclosed
in parentheses. In an extension of the original Statecharts, Pnueli and Shalev [47] allowed
negative events to trigger transitions. A negative event is interpreted as the absence of the
event itself. The unary logical negation operator, ¬, is used to negate events. Typically,
a transition will be triggered by both positive and negative events, i.e. it will only occur
if all the positive events are offered by the environment, while none of the negative events
are offered.

When a transition occurs, control is transferred from the origin state to the destination
state. If the origin of a transition is a state with sub-states, control is relinquished by
all sub-states. If the destination of a transition is a state that is AND decomposed into
sub-states, control is assumed by all sub-states. If the destination is XOR decomposed,
control is assumed by the default sub-state. Default states are indicated by a small filled
circle with an arrow pointing to the box of the default sub-state. A default state functions
like an initial state in a state machine.

Example 3.2.1. Figure 3.1 shows a Statechart with four states, A,B,C and D. State
A is XOR decomposed into B and C, with B being the default state.

The Statechart responds to three different events, a, b and c. When the system is in state
D it may go to state C upon receiving event c, or it may go to state A upon receiving
event a. Since A is XOR decomposed, activating state A leads to activating state B as
well, since B is the default sub-state for A. If state A is active and event b occurs, the
system will transition to state D, regardless of which sub-state of A is active.

Figure 3.1: Statechart with XOR decomposition.

2

3.2 Syntax of Statecharts 37

Example 3.2.2. Figure 3.2 shows a Statechart with AND decomposition. The Statechart
responds to three events, a, b, and c. When the system is in state G and receives event a,
states C and E will be activated concurrently. If either a sub-state of A or a sub-state of
B is active, the occurrence of event c will cause G to become the active state. 2

Figure 3.2: Statechart with AND decomposition.

The introduction of the concepts of AND and XOR states are the key to avoiding the
exponential blow-up in the number of states as the system being modelled becomes in-
creasingly complex. However, any Statechart including either form of decomposition may
be transformed into an equivalent (in a sense to be defined precisely later) Statechart
without hierarchical states. The procedure to eliminate an XOR state is to extend every
incoming transition to the default sub-state and for every outgoing transition add an out-
going transition with the same event trigger and action and target state to every sub-state.
An AND decomposed state may be eliminated by forming new states for every possible
combination of concurrent substates.

Example 3.2.3. Figure 3.3(a) illustrates the unwinding of the Statechart with AND
decomposition in Figure 3.1 into a non-hierarchical Statechart. In this case the unwound
Statechart is not more complicated than the original, since it has one less state but one
more transition. In general, an unwound AND decomposed Statechart will have at most
the same number of states as the original and at least the same number of transitions as
the original.

Similarly, Figure 3.3(b) illustrates the unwinding of the Statechart with XOR decomposi-
tion in Figure 3.2 into a non-hierarchical Statechart. In this case the resulting Statechart
is considerably more complicated that the original. There are only 5 states compared to
6 in the original, but there are 13 transitions compared to 6 in the original.

2

Statecharts support the modelling concepts of abstraction and refinement. Abstraction is
the process of extracting common properties from a model. Refinement is the process of
adding additional details to a model. In the setting of Statecharts both concepts rely on
hierarchical decomposition. Abstraction is supported by moving the common properties
(i.e. transitions with the same event trigger and same destination state) of a set of states
to a new state that has the original states as substates. Refinement is supported by adding
new substates and internal transitions to an existing state.

Example 3.2.4. (Example taken from [21]). Figure 3.4 illustrates the process of
abstraction for Statecharts. In the Statechart on the left, the transition on event b from

38 Chapter 3. Statecharts

(a) (b)

Figure 3.3: Unwinding of AND (a) and XOR (b) decomposition into a simple Statechart.

states B and C is a common property of these two state. By introducing a new super-
state, these two transitions can be replaced by one common transition, as shown in the
Statechart on the right.

Figure 3.5 shows the process of refinement. In the intermediate step in the middle, the
state D is refined to show additional details of its internal structure. However, now the
two transitions from A to D become under-specified, since it is not clear which of B and C
should become active after one of the transitions have occurred. In the Statechart on the
right, the transitions have been extended to remove the under-specification. Alternatively,
either B or C could have been defined as the default sub-state of D.

→

Figure 3.4: Abstraction.

→ →

Figure 3.5: Refinement.

2

A special kind of transition causes control to be transferred to the sub-state(s) that most
recently had control instead of the default sub-state. This history-dependent type of
transition may be related only to the immediate substates, or recursively to substates,
substates of substates, etc. In cases where no history is available, i.e. the first time control

3.2 Syntax of Statecharts 39

is transferred to a state, the default substates are used. History-dependent transitions
are represented by letting the arrow of the transition point to a symbol composed of an
‘H’ inside a circle. If the transition depends on the recursive history, the H-symbol is
decorated with an asterisk.

In some situations, it is convenient to be able to forget the past history. For this purpose,
a distinguished action, clh(S), that resets the history of a state S and all substates of S is
introduced. Once the history has been reset, the next time a history dependent transition
occurs, the default state and not the most recently visited state will become the active
state.

Example 3.2.5. Figure 3.6 illustrates a Statechart with history dependent transitions.
The first time a state is activated by a history transition, there is no history, so the default
sub-state becomes the active state. Thus, in this case, the first time B is activated, F
becomes active. Suppose now that E is the active state and that event a occurs, so A
becomes the new active state. If event a occurs now, D becomes the active state, since
only the first level of the activation history is used. C was the most recently activated
sub-state of B, so the default sub-state of C, namely D, is activated. If, on the other
hand, event b occurs, E becomes the active state, since in this case the entire history is
used. Finally, if B is active and event d occurs, all history is cleared for B, so the next
history transition will cause the default sub-state to be activated.

Figure 3.6: Statechart with history and recursive history.

2

The events that trigger transitions are typically the result of external stimuli, but may
also be generated by timeouts when control has been in a given state for a predetermined
period of time. We do not consider such timeouts here.

Example 3.2.6. Figure 3.7 shows an example Statechart modelling a reactive system
that receives four kinds of stimuli from the environment (essentially like four buttons).
Each kind of stimuli generates a unique event, called a, b, c and d.

The system is represented by state A. Initially, the system is in state B. When an event
d occurs, control is transferred to state F . A b event will now transfer control to state E.
An additional b event will transfer control to state G and H, which is the default substate
of G, while a c event will transfer control back to state F . When the system is in any of
the substates of G, a b event will cause control to be transferred to F .

When the system is in any substate of D an a event will transfer control to both J and
K. Similarly, when another b event occurs, control is relinquished by both J and K and

40 Chapter 3. Statecharts

all their substates. Control is then transferred to the most recently visited states in D
down to the lowest level, i.e. the states from which control was relinquished when the last
a event occurred.

The label “/clh(C)” on the transition from B to C is an action that indicates that when
this transition occurs, the history of C and its substates is deleted all the way down to
the lowest level. Thus, the next time the transition from J/K to D occurs, the default
state will be entered.

Figure 3.7: Example Statechart.

2

3.3 Process Algebra

Statecharts have proven difficult to give a process algebraic semantics. This difficulty
arises partly because of the property that an external event may trigger a transition that
produces an event that in turn triggers a transition, etc. Thus one event may start a chain
reaction of internal events. Furthermore, if a Statechart is in a given state, it is also in all
states enclosing the first state. Therefore, the global state or configuration of a Statechart
consists of a variable number of states.

An internal transition is called a micro-step, while the whole chain reaction caused by an
external event is called a macro-step.

There are three desirable properties for a semantics for Statecharts: the synchrony hy-
pothesis, compositionality, and causality.

The synchrony hypothesis states that for any set of input events, the reaction of a State-
chart must be maximal in the sense that the chain reaction of micro-steps should continue
until no further micro-step is possible. This is sometimes referred to as the maximal
progress assumption. Also, the chain reaction must terminate before the next external
event enters the system.

The compositionality property ensures that the behaviour of a system composed from
sub-systems is defined in terms of the observable behaviour of the sub-systems. Thus the
internal details of the sub-systems need not be known.

3.3 Process Algebra 41

The causality property ensures that for every event, there is a chain of events that lead to
that event. Thus, no event can occur spontaneously. This property only applies to internal
events, since external events – when viewed from the Statechart – will occur spontaneously.

3.3.1 SPL

The process algebraic semantics for Statecharts is presented by Lüttgen, van der Beeck
and Cleaveland [42]. It is defined in using the process algebra named Statecharts Pro-
cess Language (SPL), which is inspired by the Timed Process Language of Hennesy and
Regan [28].

The SPL process algebra is defined as a labelled transition system with two types of transi-
tions: action transitions and clock transitions. Action transitions will correspond to events
in Statecharts. Clock transitions represent progression of time. The previously discussed
micro-steps of a Statechart correspond to action transitions, while clock transitions signal
the beginning and end of a macro-step composed of a sequence of micro-steps.

Let Λ be a countable set of events and let σ 6∈ Λ be a distinguished event called a clock
event. Input actions are defined as 〈E,N〉, where E,N ⊆ Λ. The special case of 〈∅, ∅〉 is
called an unobservable or internal event, also denoted •. Output actions E are defined as
subsets of Λ.

The syntax of SPL is given by the BNF grammar:

P ::= 0 | X | 〈E,N〉.P | [E]σ(P) | P + P | P . P | P .σ P | P ‖ P | P \ L

where X is a process variable that stands for a process term, and L is a restriction set,
i.e. a set of action identifiers that are hidden from the environment of X \ L. 0 is the
empty process, i.e. the process which does not perform any actions. 〈E,N〉.P is the prefix
operator applied to the process P . It represents the instantaneous input of the input
action 〈E,N〉, which can only occur if all the events in E are offered by the environment,
and none of the events in N are offered by the environment. The signal operator [E]σ(P)
signals the output of output action E to the environment of process P . The output action
is cleared by the next clock transition. The disabling operator applied to processes P and
Q, written P . Q, is the process that either behaves as Q permanently disabling P , or
behaves as P .σ Q. The enabling operator applied to processes P and Q, written P .σ Q
behaves as P , disabling Q until the next clock transition. In combination, the disabling
and enabling operators serve to define the behaviour when there are enabled transitions
on several layers of a hierarchical state.

3.3.2 Semantics of SPL

The semantics of SPL is a Plotkin style operational semantics in the form of a labelled
transition system. The labelled transition system is defined as 〈S, E,→, S〉, where S is
the set of states, E = A ∪ {σ} is the set of actions, including the special clock action, σ,
→∈ S × E × S is the transition relation, and S is the start state. Following tradition,

P
E→
N

P ′ will be used as an abbreviation for (P, 〈E,N〉, P ′) ∈→ and P
σ−→ P ′ as an

abbreviation for (P, σ, P ′) ∈→. The meaning of P
E→
N

P ′ is that process P can evolve to

a process P ′ whenever the environment of P outputs all the actions in E and none of the
actions in N .

Before the transition deduction system can be defined, the initial output action set must be
defined. The initial output action set, notation ĪI(P) for P ∈ S, is defined by the equations

42 Chapter 3. Statecharts

in Table 3.1. Intuitively, ĪI(P) is the set of actions that process P is immediately ready to
output.

ĪI([E]σ(P)) = E

ĪI(P + Q) = ĪI(P) ∪ ĪI(Q)

ĪI(P ‖ Q) = ĪI(P) ∪ ĪI(Q)

ĪI(P . Q) = ĪI(P) ∪ ĪI(Q)

ĪI(X) = ĪI(P), if X
def
= P

ĪI(P \ L) = ĪI(P) \ L

ĪI(P .σ Q) = ĪI(P)

Table 3.1: Initial output action sets.

The term deduction system for action transitions is presented in Table 3.2

2

〈E,N〉.P E→
N

P
Act

P
E→
N

P ′

X
E→
N

P ′
if X

def
= P Rec

P
E→
N

P ′

P .σ Q
E→
N

P ′ .σ Q
En

P
E→
N

P ′

P . Q
E→
N

P ′ .σ Q
Dis1

P
E→
N

P ′

P + Q
E→
N

P ′
Sum1

Q
E→
N

Q′

P + Q
E→
N

Q′
Sum2

Q
E→
N

Q′

P . Q
E→
N

Q′
Dis2

P
E→
N

P ′

P ‖ Q
E\ĪI(Q)→

N
P ′ ‖ Q

if N ∩ ĪI(Q) = ∅ Par1

Q
E→
N

Q′

P ‖ Q
E\ĪI(P)→

N
P ‖ Q′

if N ∩ ĪI(P) = ∅ Par2

P
E→
N

P ′

P \ L
E→

N\L
P ′ \ L

if E ∩ L = ∅ Par1

Table 3.2: Action transitions.

The term deduction system for clock transitions is presented in Table 3.3.

3.3.3 Equivalence for SPL terms

We can now define a behavioural equivalence on SPL terms. As we did previously for PAε,
we choose the strong bisimulation equivalence.

Definition 3.3.1. Bisimulation equivalence, ∼ ⊆ S×S, is the largest symmetric relation

3.4 Semantics of Statecharts 43

2

0
σ−→ 0

tNil

2

〈E,N〉.P σ−→ 〈E,N〉.P
if 〈E,N〉 6= • tAct

P
σ−→ P ′, Q

σ−→ Q′

P ‖ Q
σ−→ P ′ ‖ Q′

if • 6∈ I(P ‖ Q) tPar

P
σ−→ P ′, Q

σ−→ Q′

P . Q
σ−→ P ′ . Q′

tDis

P
σ−→ P ′

P \ L
σ−→ P ′ \ L

if • 6∈ I(P \ L) tRes

2

[E]σ(P)
σ−→ P

tOut

P
σ−→ P ′, Q

σ−→ Q′

P + Q
σ−→ P ′ + Q′

tSum

P
σ−→ P ′

P .σ Q
σ−→ P ′ . Q

tEn

P
σ−→ P ′

X
σ−→ P ′

if X
def
= P tRec

Table 3.3: Clock transitions.

such that whenever P ∼ Q, then the following conditions hold

1. ĪI(P) ⊆ ĪI(Q)

2. If P
E→
N

P ′, then ∃Q′ ∈ S : Q
E→
N

Q′ ∧ Q ∼ Q′.

2

Note that compared to the bisimulation relations defined for the process algebras PAε

and PAcε in Section 2.3.2 we have the extra requirement the bisimilar processes have the
same initial output sets. This requirement ensures that bisimilar processes have the same
observable behaviour in terms of both input and output actions.

3.4 Semantics of Statecharts

We have now presented the tools for expressing the semantics of Statecharts. The next
step is to define the correspondence between a Statechart and an SPL term. First, we
place some restrictions on the composition of Statecharts by defining a textual syntax, in
the form of Statechart terms. Then we define a semantic function that maps Statechart
terms to SPL terms.

We need some additional notation. Let N be a countable set of names for Statechart
states, T be a countable set of names for Statechart transitions and Π a countable set of
Statechart events. Every event e ∈ Π has a negated event ¬e. By definition ¬¬e = e. If
E ⊆ Π ∪ {¬e | e ∈ Π} then ¬E is an abbreviation for {¬e | e ∈ E}.
Now, Statechart terms are introduced. In order for a Statechart to be expressible as a
Statechart term, it must have exactly one top-level state and it must have no history or
inter-level transitions, i.e. transitions that cross the boundary of its containing state. His-
tory transitions are disallowed because they make the semantics much more complicated.
Inter-level transitions are disallowed because they preclude compositionality in both the
syntax and semantics. Note, however, that a Statechart with inter-level transitions can
always be transformed into an equivalent Statechart without inter-level transitions.

1. Basic state: If n ∈ N , then s = [n] is a Statechart term.
2. XOR-state: If n ∈ N , s1, . . . , sk are Statechart terms for k > 0, T ⊆ T ×{1, . . . , k}×

P(Π ∪ ¬Π) × P(Π) × {1, . . . , k}, and 1 ≤ l ≤ k, then s = [n : (s1, . . . , sk), l, T] is
a Statechart term. Here, s1, . . . , sk are the sub-states of s, l is the index of the

44 Chapter 3. Statecharts

currently active state and T is the set of transitions between the sub-states of s.
The default state is defined to be s1. A transition 〈t, n1, E,A, n2〉 with name t links
state sn1

to state sn2
, is triggered by the events in E and produces the actions in A.

3. AND-state: If n ∈ N , and s1, . . . , sk are Statechart terms for k > 0, then s = [n :
(s1, . . . , sk)] is a Statechart term.

A Statechart term is considered well-formed, if:

(a) the set of names for states is disjoint from the set of names for transitions, i.e. N∩T =
∅;

(b) no transition produces an event that contradicts its trigger, i.e. for every transition
〈t, n1, E,A, n2〉, E ∩ ¬A = ∅;

(c) no transition produces an event that is in its trigger, i.e. for every transition 〈t, n1, E,A, n2〉,
E ∩ A = ∅.

The set of well-formed Statechart terms is denoted SC .

The function root yields the name of the state it is applied to. The function out yields
the name of the destination state of the transition it is applied to.

Now, the embedding is defined. We give the definition first and then explain it below.
The process algebra SPL is instantiated with the set of events Λ = Π ∪ ¬Π and the set
of process variables V = {n̂ | n ∈ N}. Let Σ Q be the distributed non-deterministic
choice between the elements of the set Q, with Σ{ } = 0, then the embedding function
SStC [[·]] : SC → TΣSPL

is defined as

1. If s = [n], then SStC [[s]] = 0.
2. If s = [n : (s1, . . . , sn), l, T], then if nl = root (sl), SStC [[s]] = n̂l, where for 1 ≤ i ≤ n,

n̂i = SStC [[si]].Σ{{[t]} | t ∈ T ∧root(out(t)) = ni} along with the equations produced
by SStC [[s1]], . . . , SStC [[sn]]. The translation {[t]} of a transition t is defined below.

3. If s = [n : (s1, . . . , sn)], then SStC [[s]] = SStC [[s1]] ‖ · · · ‖ SStC [[sn]], along with the
equations produced by SStC [[s1]], . . . , SStC [[sn]].

The translation of a transition t = 〈t, i, E,A, j〉 is defined as {[t]} = 〈E ′, N ′〉.[A ∪ (E ∩
¬Π)]σ(n̂j), where E ′ = E ∩Π is the set of positive events in E and N ′ = ¬(E ∩¬Π)∪¬A
is the set of negated negative events in E combined with the negated events in A.

The definition of the embedding requires an explanation. First of all, the semantics of a
Statechart is expressed as a set of equations rather than a single process term. This allows
for recursion. The semantics of a basic state is the inactive process 0, since a basic state
will not take part in any transitions. The semantics of an AND-state is just the parallel
composition of the semantics’ of its substates. The semantics of an XOR-state is more
involved. First observe that an XOR-state may either stay in the currently active substate,
or a transition t may occur, making out(t) the new active substate. This behaviour is
modelled by the disabling operator. In the former case the XOR-state behaves like the
currently active substate, disabling all transitions until the next clock event. In the latter
case, the transition becomes an input prefix handling the triggering events in E, and an
output signalling handling the actions in A. For the transition to occur, all the positive
events in E and none of the negative events in E must be offered by the environment. This
explains E ′ and partly N ′. The reason why ¬A is included in N ′ is that we must ensure
global consistency, meaning that no subsequent transition which requires the absence of
the events in A fires in the same macro-step. The global consistency requirement also
explains why the output includes the negative events in E, since the process is not allowed
to produce an event which contradicts its trigger.

3.5 Statecharts Example 45

3.5 Statecharts Example

In this section the process of deriving an SPL expression from a Statechart is illustrated.
The example Statechart is shown in Figure 3.8. In this case, the Statechart is already in a
form suitable for conversion to a Statechart term. If this were not the case, the Statechart
would first have to be modified to remove inter-level transitions and to have exactly one
top-level state.

The corresponding Statechart term s1 is listed below along with terms for each of the
substates of state n1.

Figure 3.8: Example Statechart.

s1 = [n1 : (s2, s3); 1; {〈t1, 3, {g}, ∅, 2〉, 〈t2 , 2, {h}, ∅, 3〉}]
s2 = [n2]

s3 = [n3 : (s9, s10)]

s4 = [n4]

s5 = [n5]

s6 = [n6]

s7 = [n7]

s8 = [n8]

s9 = [n9 : (s4, s5, s6); 4; {〈t3, 4, {a}, {x}, 5〉, 〈t4 , 6, {b}, {y}, 5〉, 〈5, s4 , {c}, {z}, 6〉,
〈t6, 4, {d}, {w}, 6〉}]

s10 = [n10 : (s7, s8); s7; {〈t6, 8, {e}, {q}, 7〉, 〈t7 , 7, {f}, {r}, 8〉}]

The translation of the Statechart terms into SPL is straightforward. The result is listed
below.

46 Chapter 3. Statecharts

[[s1]] = n̂2

n̂2 = [[s2]] . 〈{h}, ∅〉.[∅]σ(n̂3)

n̂3 = [[s3]] . 〈{g}, ∅〉.[∅]σ(n̂2)

[[s2]] = 0

[[s3]] = [[s9]] ‖ [[s10]]

[[s4]] = 0

[[s5]] = 0

[[s6]] = 0

[[s7]] = 0

[[s8]] = 0

[[s9]] = n̂4

n̂4 = [[s4]] . 〈{a}, {¬x}〉.[{x}]σ(n̂5) + 〈{d}, {¬w}〉.[{w}]σ(n̂6)

n̂5 = [[s5]] . 〈{b}, {¬y}〉.[{y}]σ(n̂6)

n̂6 = [[s6]] . 〈{c}, {¬z}〉.[{z}]σ(n̂7)

[[s10]] = n̂8

n̂8 = [[s8]] . 〈{e}, {¬q}〉.[{q}]σ(n̂7)

n̂7 = [[s7]] . 〈{f}, {¬r}〉.[{r}]σ(n̂8)

47

Chapter 4

Relating Diagrams to RSL

4.1 Introduction

In this chapter we briefly review a number of ways of integrating different specification
notations. We then define a subset of RSL and give an operational semantics, based
on the semantics for Timed RSL as defined by George and Xia [16]. We extend the
semantic rules with behaviour annotations capturing the communication behaviour of the
RSL expression. Utilizing these behaviours, we define three satisfaction relations: one
relating a universal LSC to an RSL specification, one relating an existential LSC to an
RSL specification and one relating a Statechart to an RSL specification.

4.2 Types of Integration

Haxthausen [26] identifies three approaches to integrating different specification tech-
niques:

• the unifying, wide-spectrum approach,
• the family approach, and
• the linking approach.

The wide-spectrum approach provides a complete semantical integration of the techniques.
This was the approach adopted in the development of RSL. The advantage of this approach
is that the same language is used throughout the development process. The disadvantage
is that this approach results in a complicated semantics.

The idea in the family approach is to define a reasonably expressive base language and
then integrating other techniques by defining extension languages. The semantics of the
extension languages are required to be consistent with the semantics of the base language.
This approach is used in the CoFI project, for which the base language is called Casl. The
advantage of the family approach is that the semantics is “only as complicated as it needs
to be”, in the sense that for a particular project, one uses the smallest language in the
family that has the required facilities.

In the previous two approaches a new semantics that subsumes the semantics’ of the
individual techniques is developed. In contrast, in the linking approach, the individual
semantics’ are preserved, and the integration instead takes the form of a formal relation
between the individual semantics’. This approach is particularly suited for specification
techniques that are fundamentally different.

48 Chapter 4. Relating Diagrams to RSL

There is also a fourth approach to integration, namely what we call the combination
approach. In this approach one notation is embedded in the other to extend its expres-
siveness. An example is Coloured Petri Nets, which are the result of the combination of
classical Petri Nets with an ML-like language [39, 33] used for inscriptions on arcs and type
definitions. Other examples are the combinations of Statecharts with Casl and Statecharts
with Z mentioned in the introduction.

We believe that of the four approaches described, the linking approach is most suited for
our purpose. By using this approach we do not have to “massage” the familiar semantics’
of the individual techniques into a new framework. Additionally, all the tools (proof
system, syntax checkers, code generators) developed for RSL are immediately available in
the integrated method.

What we present in the rest of this chapter is therefore how to link Live Sequence Charts
and Statecharts with RSL.

4.3 RSL Subset

4.3.1 Syntax

The subset of RSL defined below is almost the same as the subset defined by George and
Xia [16] for Timed RSL. We omit the wait construct and use the standard input and
output operators from RSL rather than the corresponding operators in Timed RSL. Also,
we exclude the special notation for recursive functions. For use in establishing the relation
to Live Sequence Charts and Statecharts, we annotate the input and output operators
with a message identifier. Similarly, the parallel and interlocking operators are annotated
with two process identifiers.

We assume familiarity with RSL and therefore skip an informal description of the operators
and constructs of the RSL subset.

The syntactic categories are

• Expressions denoted by E,
• Variables denoted by x,
• Identifiers denoted by id,
• Channels denoted by c,
• Reals denoted by r,
• Types denoted by τ ,
• Value definitions denoted by V,
• Message identifiers denoted by msgid,
• Process identifiers denoted by n.

The grammar of the subset of RSL is given below.

V ::= id : τ | id : τ , V

E ::= () | true | false | r | id | x | skip | stop | chaos

| x := E | if E then E else E | let id = E in E | c?msgid | c!msgidE
| E de E | E debc E | E n‖n E | E n–‖ n E | E ; E
| λ id : τ • E | E E

When in the following we refer to an RSL expression, we mean an expression within the
subset of RSL defined here.

4.3 RSL Subset 49

4.3.2 Operational Semantics with Communication Behaviour

Before presenting the rules of the operational semantics a number of definitions are needed.

A store s is a finite map from variables (x) to values (v): s = [x 7→ v, . . .].

An environment ρ is a finite map from identifiers (id) to values (v) : ρ = [id 7→ v, . . .].

A closure is a pair consisting of a lambda expression (λ id : τ • E) and an environment
(ρ): [[λ id : τ • E, ρ]].

Compared to George and Xia [16], we modify the notion of a configuration to a triple
< E, s, n > where E is an expression, s is a store and n is a process identifier. Moreover,
we augment configurations of the form α op s op β for op =‖, –‖ to include three process
identifiers, i.e. α op (s, n, n1, n2) op β, where n1 is the identifier of the process represented
by the configuration α, while n2 is the identifier of the process represented by β.

Inspired by Haxthausen and Xia [27], the rules of the operational semantics are extended
to include communication behaviour in the form of a PALSC term. The transition relation
has the form

ρ ` αwith φ
e−→ α′

with φ′

where ρ is the environment, α and α′ are configurations, φ and φ′ are behaviours and e
is an event. The intuition is that the configuration α with the behaviour φ can evolve to
the configuration α′ with behaviour φ′ by performing the event e.

There are two types of events, silent events and communication events. The silent event,
ε, denotes an internal change that is not externally visible. Communication events are
either input events of the form c?msgid or output events of the form c!msgidE. The symbol
� is used to denote any event, i.e. a situation where the transition is the same for a silent
event and for a communication event.

The only operational rules that change the communication behaviour are the rules for
input, output, communication across a parallel or interlocking combinator and merging of
two parallel processes. In all other rules, the communication behaviour is preserved.

The process identifier, n, stored in a configuration is used to name processes in PALSC

events. This information is needed to identify the sender and recipient in message input
and message output events in the behaviours.

The rules for the parallel and interlocking combinators apply the function merge that
merges the stores on either side of a parallel composition. It is defined in RSL notation
by

merge(s, s′, s′′) = s′ † [x 7→ s′′(x) | x ∈ dom(s′′) ∩ dom(s) • s(x) 6= s′′(x)]

In the rules below we use a notation of the form

C

ρ ` C2

C3

as a shorthand for the two rules

C

ρ ` C2

and

C

ρ ` C3

Also, for rules without premises, i.e. axioms, we write the symbol 2 above the line.

50 Chapter 4. Relating Diagrams to RSL

Basic Expressions

2

ρ ` < skip, s, n >with φ
ε−→ < (), s, n >with φ

2

ρ ` < chaos, s, n >with φ
ε−→ < chaos, s, n >with φ

Configuration Fork

2

ρ ` < E1 op E2, s, n >with φ
ε−→ < E1, s, n >with φ op < E2, s, n >with φ

where op ∈ {de,debc}

Look up

2

ρ † [id 7→ v] ` < id , s, n >with φ
ε−→ < v, s, n >with φ

2

ρ ` < id , s † [id 7→ v], n >with φ
ε−→ < v, s † [id 7→ v], n >with φ

Sequencing

2

ρ ` < E1;E2, s, n >with φ
ε−→ (< E1, s, n >;E2)with φ

ρ ` αwith φ
�−→ α′

with φ′

ρ ` (α;E)with φ
�−→ (α′;E)with φ′

2

ρ ` (< v, s, n >;E)with φ
ε−→ < E, s, n >with φ

Assignment

2

ρ ` < x := E, s, n >with φ
ε−→ (x :=< E, s, n >)with φ

ρ ` αwith φ
�−→ α′

with φ′

ρ ` (x := α)with φ
�−→ (x := α′)with φ′

2

ρ ` < v, s, n >with φ
ε−→ < (), s † [x 7→ v], n >with φ

Input

2

ρ ` < c?msgid , s, n >with φ
c?msgidv−−−−−→ < v, s, n >with φ · ins(env ,n,msgid)

4.3 RSL Subset 51

Output

2

ρ ` < c!msgidE, s, n >with φ
ε−→ (c!msgid < E, s, n >)with φ

ρ ` αwith φ
�−→ α′

with φ′

ρ ` (c!msgidα)with φ
�−→ (c!msgidα′)with φ′

2

ρ ` (c!msgid < v, s, n >)with φ
c!msgidv−−−−−→ < (), s, n >with φ · outs(n,env ,msgid)

Internal choice

2

ρ ` (α de β)with φ
ε→ αwith φ

ε→ βwith φ

External choice

ρ ` αwith φ
a−→ α′

with φ′

ρ ` αwith φdebcβwith ϕ
a→ α′

with φ′

βwith ϕdebcαwith φ
a→ α′

with φ′

ρ ` αwith φ
ε−→ α′

with φ′

ρ ` αwith φdebcβwith ϕ
ε→ α′

with φ′debcβwith ϕ

βwith ϕdebcαwith φ
ε→ βwith ϕdebcα′

with φ′

2

ρ ` < v, s, n >with φ debcαwith φ′

ε→ < v, s, n >with φ

αwith φ′debc < v, s, n >with φ
ε→ < v, s, n >with φ

52 Chapter 4. Relating Diagrams to RSL

Parallel combinator

2

ρ ` < E1 n1
‖n2

E2, s, n >with φ
ε−→ < E1, s,n1 >with φ‖ (s, n, n1, n2) ‖< E1, s,n2 >with φ

ρ ` αwith φ
c!msgidv−−−−−→ α′

with φ′ ρ ` βwith ϕ
c?msgidv−−−−−→ β′

with ϕ′

ρ ` αwith φ ‖ (s, n, n1, n2) ‖ βwith ϕ
ε→ α′

with φ · out(n1,n2,id) ‖ (s, n, n1, n2)

‖ β′
with ϕ · in(n1,n2,msgid)

βwith ϕ ‖ (s, n, n1, n2) ‖ αwith φ
ε→ β′

with ϕ · in(n2,n1,id) ‖ (s, n, n1, n2)

‖ α′
with φ · out(n2,n1,msgid)

ρ ` αwith φ
�−→ α′

with φ′

ρ ` αwith φ ‖ (s, n, n1, n2) ‖ βwith ϕ
�→ α′

with φ′ ‖ (s, n, n1, n2) ‖ βwith ϕ

βwith ϕ ‖ (s, n, n1, n2) ‖ αwith φ
�→ βwith ϕ ‖ (s, n, n1, n2) ‖ α′

with φ′

2

ρ ` αwith φ ‖ (s, n, n1, n2) ‖< v, s′, n2 >with ϕ
ε→ αwith φ ‖ (s, n, n1, n2) ‖ s′with ϕ

< v, s′, n2 >with ϕ‖ (s, n, n1, n2) ‖ αwith φ
ε→ s′with ϕ ‖ (s, n, n1, n2) ‖ αwith φ

ρ ` αwith φ
�−→ α′

with φ′

ρ ` αwith φ ‖ (s, n, n1, n2) ‖ s′
with ϕ

�→ α′
with φ′ ‖ (s, n, n1, n2) ‖ s′

with ϕ

s′with ϕ ‖ (s, n, n1, n2) ‖ αwith φ
�→ s′with ϕ ‖ (s, n, n1, n2) ‖ α′

with φ′

2

ρ ` < v, s′′, n1 >with φ‖ (s, n, n1, n2) ‖ s′with ϕ
ε→ < v,merge(s, s′, s′′), n >with φ‖ϕ

s′with ϕ ‖ (s, n, n1, n2) ‖< v, s′′, n1 >with φ
ε→ < v,merge(s, s′, s′′), n >with φ‖ϕ

4.3 RSL Subset 53

Interlocking combinator

2

ρ ` < E1 n1
–‖n2

E2, s, n >with φ
ε−→ < E1, s,n1 >with φ –‖ (s, n, n1, n2) –‖ < E1, s,n2 >with φ

ρ ` αwith φ
c!msgidv−−−−−→ α′

with φ′ ρ ` βwith ϕ
c?msgidv−−−−−→ β′

with ϕ′

ρ ` αwith φ –‖ (s, n, n1, n2) –‖ βwith ϕ
ε→ α′

with φ · out(n1,n2,id) –‖ (s, n, n1, n2)

–‖ β′
with ϕ · in(n1,n2,msgid)

βwith ϕ –‖ (s, n, n1, n2) –‖ αwith φ
ε→ β′

with ϕ · in(n2,n1,id) –‖ (s, n, n1, n2)

–‖ α′
with φ · out(n2,n1,msgid)

ρ ` αwith φ
ε−→ α′

with φ′

ρ ` αwith φ –‖ (s, n, n1, n2) –‖ βwith ϕ
ε→ α′

with φ′ –‖ (s, n, n1, n2) –‖ βwith ϕ

βwith ϕ –‖ (s, n, n1, n2) –‖ αwith φ
ε→ βwith ϕ –‖ (s, n, n1, n2) –‖ α′

with φ′

2

ρ ` αwith φ –‖ (s, n, n1, n2) –‖ < v, s′, n2 >with ϕ
ε→ αwith φ –‖ (s, n, n1, n2) –‖ s′with ϕ

< v, s′, n2 >with ϕ –‖ (s, n, n1, n2) –‖ αwith φ
ε→ s′

with ϕ –‖ (s, n, n1, n2) –‖ αwith φ

ρ ` αwith φ
�−→ α′

with φ′

ρ ` αwith φ –‖ (s, n, n1, n2) –‖ s′with ϕ
�→ α′

with φ′ –‖ (s, n, n1, n2) –‖ s′with ϕ

s′with ϕ –‖ (s, n, n1, n2) –‖ αwith φ
�→ s′with ϕ –‖ (s, n, n1, n2) –‖ α′

with φ′

2

ρ ` < v, s′′, n1 >with φ –‖ (s, n, n1, n2) –‖ s′with ϕ
ε→ < v,merge(s, s′, s′′), n >with φ‖ϕ

s′with ϕ –‖ (s, n, n1, n2) –‖ < v, s′′, n1 >with φ
ε→ < v,merge(s, s′, s′′), n >with φ‖ϕ

54 Chapter 4. Relating Diagrams to RSL

Function

2

ρ ` < E1 E2, s, n >with φ
ε−→ (< E1, s, n > E2)with φ

ρ ` αwith φ
�−→ α′

with φ′

ρ ` (α E)with φ
�−→ (α′ E)with φ′

2

ρ ` < λ id : τ • E, s, n >with φ
ε−→ < [[λ id : τ • E, ρ]], s, n >with φ

2

ρ ` (< [[λ id : τ • E1, ρ1]], s, n > E2)with φ
ε−→ ([[λ id : τ • E1, ρ1]] < E2, s, n >)with φ

ρ ` αwith φ
�−→ α′

with φ′

ρ ` ([[λ id : τ • E, ρ1]] α)with φ
�−→ ([[λ id : τ • E, ρ1]] α′)with φ′

2

ρ ` ([[λ id : τ • E, ρ1]] < v, s, n >)with φ
�−→ ([[λ id : τ • E, ρ1]] v)with φ

ρ1 † [id 7→ v] ` αwith φ
�−→ α′

with φ′

ρ ` ([[λ id : τ • α, ρ1]] v)with φ
�−→ ([[λ id : τ • α′, ρ1]] v)with φ′

ρ1 † [id 7→ v] ` αwith φ
�−→ < v′, s, n >with φ′

ρ ` ([[λ id : τ • α, ρ1]] v)with φ
�−→ < v′, s, n >with φ′

Let expression

2

ρ ` < let id = E1 in E2, s, n >with φ
ε−→ (let id =< E1, s, > in E2)with φ

ρ ` αwith φ
�−→ α′

with φ′

ρ ` (let id = α in E)with φ
�−→ (let id = α′ in E)with φ′

2

ρ ` (let id =< v, s, n > in E)with φ
ε−→ < E[v/id], s, n >with φ

4.4 Relating Live Sequence Charts to RSL 55

If expression

2

ρ ` < if E then E1 else E2, s, n >with φ
ε−→ (if < E, s, n > then E1 else E2)with φ

ρ ` αwith φ
�−→ α′

with φ′

ρ ` (if α then E1 else E2)with φ
�−→ (if α′ then E1 else E2)with φ′

2

ρ ` (if < true, s, n > then E1 else E2)with φ
ε−→ < E1, s, n >with φ

2

ρ ` (if < false, s, n > then E1 else E2)with φ
ε−→ < E2, s, n >with φ

4.4 Relating Live Sequence Charts to RSL

4.4.1 Syntactical Restrictions

There are a number of problematic issues with conditions in LSCs as discussed in Ap-
pendix A. For that reason we choose to omit hot and cold conditions when relating an
RSL specification to an LSC. This is done by removing all condition events from the PALSC

term prior to checking satisfaction.

Since RSL only supports synchronous communication on channels, we restrict the relation
to cover synchronous messages only. More specifically, if an LSC contains asynchronous
messages no RSL specification can satisfy it.

4.4.2 Satisfaction Relation

Before we can define what it means for an RSL expression to satisfy a Live Sequence
Chart, we introduce some auxiliary notions.

In most cases we do not want an LSC to constrain all parts of an RSL specification.
Typically, we only want to constrain the sequence of a limited number of messages. For
this reason we label each LSC with the set of events it constrains. We allow this set to
contain events that are not mentioned in the chart. For an LSC ch this set is denoted Cch .

Below we need an event extraction function that yields the set of those event identifiers that
occur in the PALSC term for an LSC. The event extraction function, events : T (ΣPAcε

) →

56 Chapter 4. Relating Diagrams to RSL

PEvent is defined as

events(ε) = ∅
events(in(n1, n2,m)) = {m}
events(out(n1, n2,m)) = {m}
events(ins(n1, n2,m)) = {m}
events(outs(n1, n2,m)) = {m}
events(hotcondition (cond)) = ∅
events(coldcondition (cond)) = ∅
events(X · Y) = events(X) ∪ events(Y)

events(X + Y) = events(X) ∪ events(Y)

events(X ‖ Y) = events(X) ∪ events(Y)

events(X . Y) = events(X) ∪ events(Y)

As explained above we do not check LSC conditions when making the relation to RSL.
The function removing conditions, clean : T (ΣPAcε

) → T (ΣPAcε
) is defined as

remcond (ε) = ε

remcond (in(n1, n2,m)) = in(n1, n2,m

remcond (out(n1, n2,m)) = out(n1, n2,m)

remcond (ins(n1, n2,m)) = in(n1, n2,m

remcond (outs(n1, n2,m)) = out(n1, n2,m)

remcond (hotcondition (cond)) = ε

remcond (coldcondition (cond)) = ε

remcond (X · Y) = remcond (X) · remcond (Y)

remcond (X + Y) = remcond (X) + remcond (Y)

remcond (X ‖ Y) = remcond (X) ‖ remcond (Y)

remcond (X . Y) = remcond (X) . remcond (Y)

Definition 4.4.1. A PALSC term, x, can simulate a PAcε term, y, notation x � y, if

y ↓⇒ x ↓ ∧ ∀y′ : y
a−→ y′ ⇒ ∃x′ : x

a−→ x′ ∧ x′ � y′

2

Definition 4.4.2. A PALSC formula cbh is called a communication behaviour of an RSL
expression E wrt. an initial store s0, if and only if there exists a configuration α, such that

[] ` < E, s0, n >with ε (
�→)∗ αwith cbh

where (
�→)∗ denotes the transitive closure of the transition relation. If α is of the form

< v, s, n >, where v is a value literal or a lambda expression, cbh is called a terminated
behaviour. 2

We are now ready to define the satisfaction relations for universal and existential LSCs.

Definition 4.4.3. (Satisfaction for universal LSC) An RSL expression E satisfies a
universal LSC, ch, if for any initial store, s0, for any terminated behaviour, cbh, of E

4.5 Relating Statecharts to RSL 57

there exists a PALSC term φprefix and a PALSC term φsuffix, such that

events(φprefix) ∩ Cch = ∅
events(φsuffix) ∩ Cch = ∅

and

φprefix · remcond (SLSC [[ch]]) · φsuffix � cbh

2

Definition 4.4.4. (Satisfaction for existential LSC) An RSL expression E satisfies an
existential LSC, ch, if for any initial store, s0, there exists a terminated behaviour, cbh,
of E, a PALSC term φprefix and a PALSC term φsuffix,such that

events(φprefix) ∩ Cch = ∅
events(φsuffix) ∩ Cch = ∅

and

φprefix · remcond (SLSC [[ch]]) · φsuffix � cbh

2

4.5 Relating Statecharts to RSL

4.5.1 Syntactical Restrictions

In Statecharts negative events, i.e. the absence of events, can be part of the trigger of a
transition. In RSL there is no way of checking whether a message is available on a channel
without actually performing an input. Thus, the absence of an event can not be detected.
We therefore restrict the relation between Statecharts and RSL to cover only triggers with
all positive events. Specifically, if a Statechart contains a negative event in a trigger, no
RSL specification can satisfy it.

4.5.2 Satisfaction Relation

Similar to the approach for Live Sequence Charts, we now want a method of extracting
from an RSL specification its communication behaviour in the form of an SPL term. We
do this in two steps: first we extract the communication behaviour as a PALSC term using
the procedure defined for LSCs and then apply a function translating a PALSC expression
into an SPL expression.

Definition 4.5.1. Let translate : PALSC → SPL be the function defined by

translate(ε) = 0

translate(in(s, r,m)) · X) = 0 . 〈{m}, ∅〉.[∅]σ(translate (X))

translate(ins(s, r,m)) · X) = 0 . 〈{m}, ∅〉.[∅]σ(translate (X))

translate(out(s, r,m)) · X) = [{m}]σ(translate (X))

translate(outs(s, r,m)) · X) = [{m}]σ(translate (X))

translate(X ‖ Y) = translate(X) ‖ translate(Y)

translate(X + Y) = translate(X) + translate(Y)

58 Chapter 4. Relating Diagrams to RSL

2

The result of the translate function may not be in a convenient form, so we define an
additional function, normalise, that simplifies an SPL term.

Definition 4.5.2. Let normalise : SPL → SPL be the function defined by

normalise(0) = 0

normalise(0 . 〈m, ∅〉.(X)) = (0 . 〈m, ∅〉.normalise(X)

normalise([m]σ(X)) =

{
[m]σ(normalise(X)) if X 6= [n]σ(Y) for every n and Y
normalise([m ∪ n]σ(Y)) if X = [n]σ(Y) for some n and Y

normalise(X ‖ Y) = normalise(X) ‖ normalise(Y)

normalise(X + Y) = normalise(X) + normalise(Y)

2

We can now define the satisfaction relation for a Statechart. Unlike for LSC we do not
allow prefixes and suffixes, since the single Statechart is supposed to provide the full
specification of the communication behaviour of the object.

Definition 4.5.3. (Satisfaction for Statechart) An RSL expression E satisfies a State-
chart, ch, if for any initial store, s0, for any terminated behaviour, cbh , of E

SStC [[ch]] � normalise(translate(cbh))

2

4.6 Checking Satisfaction

The two satisfaction criteria defined in Definition 4.4.3 and 4.5.3 both require checking that
all behaviours of the RSL expression can be simulated by the semantics of the correspond-
ing chart. In some situations the RSL expressions may have infinitely many behaviours,
so in that case, this simple form of checking is not possible. We do not have a solution
for this problem at present, but the idea of common histories of Haxthausen and Xia [27]
may be a solution.

The idea behind common history is to derive a process algebraic term that captures all
the possible behaviours of an RSL expression.

Another problem arises when processes are recursive as is often the case for Statecharts.
In this case, it is not enough to simply perform the transitions to check satisfaction. If
the processes eventually terminate, an inductive proof on the number of recursions may
be used to prove satisfaction. If the processes are non-terminating there is no base case,
so induction can not be used. In this case the more powerful principle of co-induction may
be used.

4.7 Tool Support

Actually checking an RSL specification against a behavioral specification in the form of
LSCs and Statecharts can be very tedious. For that reason, the methods defined above
are of limited applicability without tool support.

4.7 Tool Support 59

Tools should be developed to extract the semantic terms from diagrams and RSL specifi-
cations and for checking the satisfaction relations.

It would also be convenient to have a way of translating an LSC or Statechart into a
skeleton RSL specification. Such a procedure was studied at the beginning of the present
project, but was deemed to be too restrictive as to the style of the RSL specification.
The problem is that because of the expressiveness of RSL, there are many ways to specify
essentially the same behaviour. An automatic conversion would force the software engineer
to use one particular style.

60 Chapter 4. Relating Diagrams to RSL

61

Chapter 5

Development Method

5.1 Introduction

In this section we place the use of graphical and formal specification notations in the larger
context of a development method covering the phases of software engineering from domain
analysis to testing. This discussion is based loosely on elements from Sommerville [55] and
Bjørner [6].

5.2 Domain Analysis

Domain Analysis is the study of the environment or context in which the system to be
developed will operate. In this phase it is important for the software engineers to familiarise
themselves with the processes and terms of the domain. To achieve this, the engineers
talk with those people whose work will be affected by the new system, or who has other
interests in the system, i.e. those people collectively referred to as the stake-holders. It is
also important to establish if and how the system will interact with existing systems.

In this phase of development, descriptions are going to be written in natural language
supplemented by informal diagrams. UML Use Case diagrams may also be employed in
this phase to characterise the main scenarios of use.

5.3 Initial Requirements Development

The goal in initial requirements development is to identify the required interactions be-
tween the system and its environment and to divide the system into its constituent com-
ponents.

As the first step in specifying the requirements, Live Sequence Charts defining the pat-
terns of interaction, i.e. the protocols between the environment and the system should
be developed. In the next step, Live Sequence Charts defining the internal communica-
tion between components in the system should be prepared. Once these charts are ready,
the internal behaviour of the components should be explained using Statecharts. Here,
the Live Sequence Charts are the glue that binds together the Statecharts of different
components.

In order to ensure consistency, verification tools such as Rhapsody developed by I-Logix,
should be run to check that the Live Sequence Charts and the Statecharts are compatible.

62 Chapter 5. Development Method

5.4 Formalisation of Requirements

By now the overall subdivision of the system and its behaviours are fixed. The formali-
sation of the requirements serves the purpose of making sure that the final requirements
are precise and complete in terms of the functional requirements. This phase will add
additional details to the initial specification from the previous phase.

In this phase, the requirements are formally specified using RSL. The development of the
specification will be guided by the diagrams from the previous phase. Once the specifica-
tion is finished, it must be checked against the Live Sequence Charts and Statecharts. This
is done using the satisfaction relations defined in the previous chapter. As is discussed
elsewhere in this report, tool support is necessary for this step to be feasible in practise.

The RSL specification is most easily made by defining one function – possibly calling other
auxiliary function – for each component, i.e. for each Statechart. The system is then the
parallel composition of the component functions.

5.5 Refinement/Design

Next, one or more steps of refinement may be carried out. Refinement will transform
the formal specification into a style that is close to the implementation language. Typi-
cally, this will involve translating an applicative specification into an imperative one. The
refinement step(s) may also introduce design and architecture decisions.

The refinement process is an integrated part of the RAISE method [50], which includes
the necessary proof system and tools to prove correctness of a refinement step. Even if
the correctness of refinement is not formally proved, it is still worth spending the extra
time on the refinement steps, since flaws in the specification may be uncovered and it will
ease the implementation.

5.6 Implementation

The implementation phase is concerned with going from specifications to software. The
time spent doing refinements in the previous phase will typically be rewarded when the
implementation is developed, since many of the implementation choices have already been
made. Also, the closer the final specification is to the implementation language, the fewer
mistakes are likely to be made.

In the case of RSL, and indeed other similar specification languages, tools exist that
allow a specification, that is sufficiently concrete, to be automatically translated into a
programming language.

5.7 Testing

In the first stage of testing, each component of the system should be tested individually,
i.e. component-level black-box testing. The LSCs developed for the initial requirements
are a valuable tool for this purpose, since they describe the required interactions between
components. Therefore, the overall test scenarios can be identified from the charts. The
particular test vectors to use must be identified from the formal specification.

5.7 Testing 63

In integration testing, i.e. system-level black-box testing, the LSCs are again valuable. In
this case, it is the interactions between the environment and the system that are in focus.
Again, overall test scenarios are identified from the charts, while the exact test vectors are
elicited from the formal specification.

64 Chapter 5. Development Method

65

Chapter 6

Example Application: Two-Phase
Commit Protocol

6.1 Introduction

We present an example of the application of the central parts of the development method
discussed in the previous chapter. We include only the phases of initial requirements spec-
ification and formalisation, since the aim is to show how to develop an RSL specification
from diagrams and how to check the satisfaction relations.

The example is the Two-Phase Commit protocol of Gray [17]. The description below is
based on Sharp [54].

6.2 Description

In many forms of distributed systems, the need arises for a group of parties to reach an
agreement to perform some action. Each party has the option of vetoing the action, in
which case all the other parties must not perform the action. Another possibility is that
one or more parties fail before either committing or vetoing the action. In that case, the
action must also be aborted by all parties.

One application of this protocol is to implement distributed transactions. In this case, the
parties must agree whether to commit or roll back the transaction, such that it is either
performed by all parties or by none.

The protocol described here is centralised, since a single distinguished party acts as the
coordinator. The remaining parties are slaves.

6.2.1 Protocol

We start by describing the communication that takes place in the protocol.

Figure 6.2 illustrates the situation in which both parties agree to commit the transaction.
After the coordinator receives confirmation from both parties, they are informed of the
outcome.

Figure 6.3 and 6.4 illustrate the two situations in which slave 1, respectively slave 2, causes
the transaction to be aborted. Since the party that aborts already knows the transaction
will be aborted, the subsequent abort message is only sent to the other party by the

66 Chapter 6. Example Application: Two-Phase Commit Protocol

Figure 6.1: LSC for the initiation of the protocol.

Figure 6.2: LSC commit.

coordinator. In case both processes abort, see 6.5, no confirmation messages are sent by
the coordinator.

Figure 6.3: LSC abort by slave 1.

6.2.2 Internal Behaviour

Next, the internal states of the coordinator are described. In the initial state, the co-
ordinator will wait for the user to request some action to be performed as a distributed
transaction. The requested action is transmitted to the other parties. If both parties
responds with commit, the transaction is committed. If at least one party responds with
abort, the transaction is aborted.

The Statechart for the coordinator is shown in Figure 6.6.

6.2 Description 67

Figure 6.4: LSC abort by slave 2.

Figure 6.5: LSC abort by both slaves.

Figure 6.6: Statechart for the coordinator.

68 Chapter 6. Example Application: Two-Phase Commit Protocol

6.2.3 RSL Model

Now, we model the protocol in RSL. More specifically, we define processes for the system,
the coordinator and the two slaves. The system process is just the parallel composition of
the coordinator process and the two slave processes.

The coordinator process will wait to be invoked by inputting a request from the user. The
requested action is transmitted to the two slaves. Next, the coordinator will input the
responses from first slave 1 and then slave 2. If both choose to commit, they are informed
that agreement has been reached to commit. Note how the function commit is supposed
to abstract the actual action to be performed. If either slave responds with abort, the
other slave is informed that the transaction is aborted and the coordinator performs the
necessary clean-up, abstracted by the function abort.

The slave processes are entirely analogous. They first wait for a request to be received
from the coordinator. Upon receipt, they decide – non-deterministically – to commit or
abort. In the latter case, they tell the coordinator to abort and perform the necessary
clean-up, abstracted by abort. In the former case, they tell the coordinator to commit and
await the response. Based on the coordinator’s response, they either commit or abort the
transaction. The non-deterministic choice is an abstraction of the process used to decide
whether to commit or abort. The details of this decision depends on the exact application
of the protocol.

scheme TwoPhaseCommit =
class

type Req == REQ, Commit == COMMIT, Abort == ABORT

channel uc, rcs1, rcs2 : Req, cs1c, cs2c : Commit, cs1a, cs2a : Abort

variable c : Commit, a : Abort

value

System : Unit → in any out any write a, c Unit

System() ≡ Coord() Coordinator –‖ Slaves (Slave1() Slave1 –‖ Slave2 Slave2()),

Coord : Unit → in any out any write a, c Unit

Coord() ≡
let req = uc?REQ1

in

rcs1!REQ2
req ;

rcs2!REQ3
req ;

((c := cs1c?COMMIT1
;

((c := cs2c?COMMIT2
; cs1c!COMMIT3

COMMIT
; cs2c!COMMIT4

COMMIT) ; commit())
debc
(a := cs2a?ABORT2

; cs1a!ABORT3
ABORT ; abort()))

debc
(a := cs1a?ABORT1

;
((c := cs2c?COMMIT2

; cs2a!ABORT4
ABORT ; abort())

debc
(a := cs2a?ABORT2

; abort()))))
end,

Slave1 : Unit → in rcs1, cs1c, cs1a out cs1c, cs1a write a, c Unit

6.2 Description 69

Slave1() ≡
let req = rcs1?REQ2

in

(cs1c!COMMIT1
COMMIT ; (c := cs1c?COMMIT3

; commit())
debc (a := cs1a?ABORT3

; abort()))
de
(cs1a!ABORT1

ABORT ; abort())
end,

Slave2 : Unit → in rcs2, cs2c, cs2a out cs2c, cs2a write a, c Unit

Slave2() ≡
let req = rcs2?REQ3

in

(cs2c!COMMIT2
COMMIT ; (c := cs2c?COMMIT4

; commit())
debc (a := cs2a?ABORT4

; abort()))
de
(cs2a!ABORT2

ABORT ; abort())
end,

commit : Unit → Unit,
abort : Unit → Unit

end

6.2.4 Checking Satisfaction

We will illustrate the process of checking satisfaction for the chart where the transaction
is committed. The procedure for checking the remaining charts is entirely analogous.

The first step is to extract the semantics of the chart.

[[ch]] =
λ∅,∅(((ins(Slave1 ,Coordinator ,COMMIT 1) ‖ ins(Slave2 ,Coordinator ,COMMIT 2))

‖
outs(Slave1 ,Coordinator ,COMMIT 1)
‖
outs(Slave2 ,Coordinator ,COMMIT 2))

.
((outs(Coordinator ,Slave1 ,COMMIT 3) ‖ outs(Coordinator ,Slave2 ,COMMIT 4))
‖
ins(Coordinator ,Slave1 ,COMMIT 3)
‖
ins(Coordinator ,Slave2 ,COMMIT 4))

)

Using the definition of λ∅,∅ (Section 2.4.2, page 31) and the axioms for PAcε (Table 2.5,
page 25) this can be rewritten to basic terms.

[[ch]] =
outs(Slave1 ,Coordinator ,COMMIT 1) · ins(Slave1 ,Coordinator ,COMMIT 1)
· outs(Slave2 ,Coordinator ,COMMIT 2) · ins(Slave2 ,Coordinator ,COMMIT 2)
+
outs(Slave2 ,Coordinator ,COMMIT 2) · ins(Slave2 ,Coordinator ,COMMIT 2)
· outs(Slave1 ,Coordinator ,COMMIT 1) · ins(Slave1 ,Coordinator ,COMMIT 1)

.

70 Chapter 6. Example Application: Two-Phase Commit Protocol

outs(Coordinator ,Slave1 ,COMMIT 3) · ins(Coordinator ,Slave1 ,COMMIT 3)
· outs(Coordinator ,Slave2 ,COMMIT 4) · ins(Coordinator ,Slave2 ,COMMIT 4)
+
outs(Coordinator ,Slave2 ,COMMIT 4) · ins(Coordinator ,Slave2 ,COMMIT 4)
· outs(Coordinator ,Slave1 ,COMMIT 3) · ins(Coordinator ,Slave1 ,COMMIT 3))

Next, the behaviours of the RSL specification are extracted. It turns out there are four pos-
sible terminated behaviours, corresponding to the four possibilities COMMIT-COMMIT,
ABORT-COMMIT, COMMIT-ABORT, ABORT-ABORT.

cbh1 =
λ∅,∅(ins(env ,Coordinator ,REQ1) · outs(Coordinator ,Slave1 ,REQ2)

· outs(Coordinator ,Slave2 ,REQ3) · ins(Slave1 ,Coordinator ,COMMIT1)
· ins(Slave2 ,Coordinator ,COMMIT2) · outs(Coordinator ,Slave1 ,COMMIT3)
· outs(Coordinator ,Slave2 ,COMMIT4)
‖
ins(Coordinator ,Slave1 ,REQ2) · outs(Slave1 ,Coordinator ,COMMIT1)
· ins(Coordinator ,Slave1 ,COMMIT3)
‖
ins(Coordinator ,Slave2 ,REQ3) · outs(Slave2 ,Coordinator ,COMMIT2)
· ins(Coordinator ,Slave1 ,COMMIT4)

)

cbh2 =
λ∅,∅(ins(env ,Coordinator ,REQ1) · outs(Coordinator ,Slave1 ,REQ2)

· outs(Coordinator ,Slave2 ,REQ3) · ins(Slave1 ,Coordinator ,COMMIT1)
· ins(Slave2 ,Coordinator ,ABORT1) · outs(Coordinator ,Slave1 ,ABORT2)
‖
ins(Coordinator ,Slave1 ,REQ2) · outs(Slave1 ,Coordinator ,COMMIT1)
· ins(Coordinator ,Slave1 ,ABORT2)
‖
ins(Coordinator ,Slave2 ,REQ3) · outs(Slave2 ,Coordinator ,ABORT1)

)

cbh3 =
λ∅,∅(ins(env ,Coordinator ,REQ1) · outs(Coordinator ,Slave1 ,REQ2)

· outs(Coordinator ,Slave2 ,REQ3) · ins(Slave1 ,Coordinator ,ABORT3)
· ins(Slave2 ,Coordinator ,COMMIT2) · outs(Coordinator ,Slave2 ,ABORT4)
‖
ins(Coordinator ,Slave1 ,REQ2) · outs(Slave1 ,Coordinator ,ABORT3)
‖
ins(Coordinator ,Slave2 ,REQ3) · outs(Slave2 ,Coordinator ,COMMIT2)
· ins(Coordinator ,Slave1 ,ABORT4)

)

cbh4 =
λ∅,∅(ins(env ,Coordinator ,REQ1) · outs(Coordinator ,Slave1 ,REQ2)

· outs(Coordinator ,Slave2 ,REQ3) · ins(Slave1 ,Coordinator ,ABORT3)
· ins(Slave2 ,Coordinator ,ABORT1)
‖
ins(Coordinator ,Slave1 ,REQ2) · outs(Slave1 ,Coordinator ,ABORT3)
‖
ins(Coordinator ,Slave2 ,REQ3) · outs(Slave2 ,Coordinator ,ABORT1)

)

6.2 Description 71

Using the definition of λ∅,∅ (Section 2.4.2, page 31) and the axioms for PAcε (Table 2.5,
page 25) the behaviours are rewritten to basic terms.

cbh1 = ins(env ,Coordinator ,REQ1)
· outs(Coordinator ,Slave1 ,REQ2) · ins(Coordinator ,Slave1 ,REQ2)
· outs(Coordinator ,Slave2 ,REQ3) · ins(Coordinator ,Slave2 ,REQ3)
· outs(Slave1 ,Coordinator ,COMMIT1) · ins(Slave1 ,Coordinator ,COMMIT1)
· outs(Slave2 ,Coordinator ,COMMIT2) · ins(Slave2 ,Coordinator ,COMMIT2)
· outs(Coordinator ,Slave1 ,COMMIT3) · ins(Coordinator ,Slave1 ,COMMIT3)
· outs(Coordinator ,Slave2 ,COMMIT4) · ins(Coordinator ,Slave2 ,COMMIT4))

cbh2 = ins(env ,Coordinator ,REQ1)
· outs(Coordinator ,Slave1 ,REQ2) · ins(Coordinator ,Slave1 ,REQ2)
· outs(Coordinator ,Slave2 ,REQ3) · ins(Coordinator ,Slave2 ,REQ3)
· outs(Slave1 ,Coordinator ,COMMIT1) · ins(Slave1 ,Coordinator ,COMMIT1)
· outs(Slave2 ,Coordinator ,ABORT1) · ins(Slave2 ,Coordinator ,ABORT1)
· outs(Coordinator ,Slave1 ,ABORT2) · ins(Coordinator ,Slave1 ,ABORT2)

cbh3 = ins(env ,Coordinator ,REQ1)
· outs(Coordinator ,Slave1 ,REQ2) · ins(Coordinator ,Slave1 ,REQ2)
· outs(Coordinator ,Slave2 ,REQ3) · ins(Coordinator ,Slave2 ,REQ3)
· outs(Slave1 ,Coordinator ,ABORT3) · ins(Slave1 ,Coordinator ,ABORT3)
· outs(Slave2 ,Coordinator ,COMMIT2) · ins(Slave2 ,Coordinator ,COMMIT2)
· outs(Coordinator ,Slave2 ,ABORT4) · ins(Coordinator ,Slave2 ,ABORT4))

cbh4 = ins(env ,Coordinator ,REQ1)
· outs(Coordinator ,Slave1 ,REQ2) · ins(Coordinator ,Slave1 ,REQ2)
· outs(Coordinator ,Slave2 ,REQ3) · ins(Coordinator ,Slave2 ,REQ3)
· outs(Slave1 ,Coordinator ,ABORT3) · ins(Slave1 ,Coordinator ,ABORT3)
· outs(Slave2 ,Coordinator ,ABORT1) · ins(Slave2 ,Coordinator ,ABORT1)

Recall that by Definition 4.4.3 (page 56) we now have to find a prefix and a suffix to add
to the semantics of the chart.

Starting with cbh1, we find that the prefix should be

φprefix =
ins(env ,Coordinator ,REQ1)
· outs(Coordinator ,Slave1 ,REQ2) · ins(Coordinator ,Slave1 ,REQ2)
· outs(Coordinator ,Slave2 ,REQ3) · ins(Coordinator ,Slave2 ,REQ3)

and that the suffix should be

φsuffix = ε

Thus, we have to check that

φprefix · SLSC [[ch]] · φsuffix � cbh1

It is clear that if two terms are equal, then one simulates the other. Since φprefix is a prefix
of cbh1 we can therefore remove φprefix from the front of both expressions. We denote cbh 1

without prefix as ĉbh1. We are now ready to check that SLSC [[ch]] simulates ĉbh1. The
procedure is illustrated in Figure 6.7. The aliases si and ti for 1 ≤ i, j ≤ 8 are defined
below. On the right side of the diagram is the sequence of transitions that ĉbh1 can evolve
by. On the left is the matching sequence of transitions that SLSC [[ch]] can evolve by. The
labels in the middle are the actions for the transitions.

72 Chapter 6. Example Application: Two-Phase Commit Protocol

SLSC [[ch]] · φsuffix � ĉbh1y outs(Slave1 ,Coordinator ,COMMIT1)

y
s7 � t7y ins(Slave1 ,Coordinator ,COMMIT1)

y
s6 � t6y outs(Slave2 ,Coordinator ,COMMIT2)

y
s5 � t5y ins(Slave2 ,Coordinator ,COMMIT2)

y
s4 � t4y outs(Coordinator ,Slave1 ,COMMIT3)

y
s3 � t3y ins(Coordinator ,Slave1 ,COMMIT3)

y
s2 � t2y outs(Coordinator ,Slave2 ,COMMIT4)

y
s1 � t1y ins(Coordinator ,Slave2 ,COMMIT4)

y
ε � ε

Figure 6.7: Checking simulation for cbh1.

s1 = ins(Coordinator ,Slave2 ,COMMIT 4)

s2 = outs(Coordinator ,Slave2 ,COMMIT 4) · s1

s3 = ins(Coordinator ,Slave1 ,COMMIT 3) · s2

s4 = outs(Coordinator ,Slave1 ,COMMIT 3) · s3

s5 = s′5 . s4 + s′4

s6 = s′6 . s4 + s′4

s7 = (ins(Slave1 ,Coordinator ,COMMIT 1) · s′6) . s4 + s′4

s′4 = outs(Coordinator ,Slave2 ,COMMIT 4)

· ins(Coordinator ,Slave2 ,COMMIT 4)

· outs(Coordinator ,Slave1 ,COMMIT 3)

· ins(Coordinator ,Slave1 ,COMMIT 3)

s′5 = ins(Slave2 ,Coordinator ,COMMIT 2)

s′6 = outs(Slave2 ,Coordinator ,COMMIT 2) · s′5

t1 = ins(Coordinator ,Slave2 ,COMMIT4)

t2 = outs(Coordinator ,Slave2 ,COMMIT4) · t1
t3 = ins(Coordinator ,Slave1 ,COMMIT3) · t2
t4 = outs(Coordinator ,Slave1 ,COMMIT3) · t3
t5 = ins(Slave2 ,Coordinator ,COMMIT2) · t4
t6 = outs(Slave2 ,Coordinator ,COMMIT2) · t5
t7 = ins(Slave1 ,Coordinator ,COMMIT1) · t6

6.2 Description 73

SLSC [[ch]] · φsuffix � ĉbh2y outs(Slave1 ,Coordinator ,COMMIT1)

y
u5 � v5y ins(Slave1 ,Coordinator ,COMMIT1)

y
u4 � v4y outs(Slave2 ,Coordinator ,ABORT1)

y
u3 � v3y ins(Slave2 ,Coordinator ,ABORT1)

y
u2 � v2y outs(Coordinator ,Slave1 ,ABORT2)

y
u1 � v1y ins(Coordinator ,Slave1 ,ABORT2)

y
ε � ε

Figure 6.8: Checking simulation for cbh2.

We now repeat the procedure for cbh2. The prefix is the same as for cbh1. The suffix is

φsuffix =
ins(Slave2 ,Coordinator ,ABORT1)
· outs(Coordinator ,Slave1 ,ABORT2) · ins(Coordinator ,Slave1 ,ABORT2)

Again, let ĉbh2 be the result of removing φprefix from the front of cbh2.

Thus, we have to check that

SLSC [[ch]] · φsuffix � ĉbh2

Figure 6.8 illustrates the procedure. The aliases ui and vi for 1 ≤ i ≤ 5 are defined below.

u1 = ins(Coordinator ,Slave1 ,ABORT2)

u2 = outs(Coordinator ,Slave1 ,ABORT2) · u1

u3 = ins(Slave2 ,Coordinator ,ABORT1) · u2

u4 = (u′
4 . u′) · u3

u5 = (ins(Slave1 ,Coordinator ,COMMIT 1) · u′
4 . u′) · u3

u′
4 = outs(Slave2 ,Coordinator ,COMMIT 2)

· ins(Slave2 ,Coordinator ,COMMIT 2)

u′ = outs(Coordinator ,Slave1 ,COMMIT 3)

· ins(Coordinator ,Slave1 ,COMMIT 3)

· outs(Coordinator ,Slave2 ,COMMIT 4)

· ins(Coordinator ,Slave2 ,COMMIT 4)

+

outs(Coordinator ,Slave2 ,COMMIT 4)

· ins(Coordinator ,Slave2 ,COMMIT 4)

· outs(Coordinator ,Slave1 ,COMMIT 3)

· ins(Coordinator ,Slave1 ,COMMIT 3)

74 Chapter 6. Example Application: Two-Phase Commit Protocol

v1 = ins(Coordinator ,Slave1 ,ABORT2)

v2 = outs(Coordinator ,Slave1 ,ABORT2) · v1

v3 = ins(Slave2 ,Coordinator ,ABORT1) · v2

v4 = outs(Slave2 ,Coordinator ,ABORT1) · v3

v5 = ins(Slave1 ,Coordinator ,COMMIT1) · v4

The two remaining behaviours, cbh 3 and cbh4, can be checked using the same technique,
but we omit the details.

Now, we must verify that the specification implements the Statechart.

First, the semantics is extracted from the Statechart.

[[Coordinator]] = Înit

Înit = [[Init]] . 〈{REQ 1}, ∅〉.[{REQ 2,REQ3}]σ(Ŵait)

Ŵait = [[Wait]] . 〈{COMMIT 1}, ∅〉.[∅]σ(̂WaitCommit)

+ 〈{ABORT 3}, ∅〉.[∅]σ(̂WaitAbort)

̂WaitCommit = [[WaitCommit]] . 〈{COMMIT 2}, ∅〉.[{COMMIT 3,COMMIT 4}]σ(̂Comitted)

+ 〈{ABORT 1}, ∅〉.[{ABORT 2}]σ(Âborted)

̂WaitAbort = [[WaitAbort]] . 〈{COMMIT 2}, ∅〉.[{ABORT2}]σ(Âborted)

+ 〈{ABORT 1}, ∅〉.[{ABORT 4}]σ(Âborted)

̂Committed = [[Committed]]

Âborted = [[Aborted]]

[[Init]] = 0

[[Wait]] = 0

[[WaitCommit]] = 0

[[WaitAbort]] = 0

[[Committed]] = 0

[[Aborted]] = 0

By substituting process variables with their values, we get the more compact expression

[[Coordinator]] = 0 . 〈{REQ 1}, ∅〉.[{REQ 2,REQ3}]σ(

0 . 〈{COMMIT 1}, ∅〉.[∅]σ(

0 . 〈{COMMIT 2}, ∅〉.[{COMMIT 3,COMMIT 4}]σ(0)

+ 〈{ABORT 1}, ∅〉.[{ABORT 2}]σ(0))

+ 〈{ABORT 3}, ∅〉.[∅]σ(

0 . 〈{COMMIT 2}, ∅〉.[{ABORT2}]σ(0)

+ 〈{ABORT 1}, ∅〉.[{ABORT 4}]σ(0)))

We now extract the SPL expressions that describes the behaviour of the RSL specification.
In this case we are not interested in the behaviour of the whole system, since the Statechart

6.2 Description 75

only describes the behaviour of the Coordinator. Therefore, we extract the behavioural
SPL term by first finding the terminated behaviours of the Coordinator process. As was
the case above for the system as a whole, there are four possible behaviours. We will only
show the procedure for the first of these, named cbh 5.

cbh5 =
ins(env ,Coordinator ,REQ1) · outs(Coordinator ,Slave1 ,REQ2)
· outs(Coordinator ,Slave2 ,REQ3) · ins(Slave1 ,Coordinator ,COMMIT1)
· ins(Slave2 ,Coordinator ,COMMIT2) · outs(Coordinator ,Slave1 ,COMMIT3)
· outs(Coordinator ,Slave2 ,COMMIT4)

Next, we translate the PALSC term into SPL using the functions translate (Definition 4.5.1)
and normalise (Definition 4.5.2).

translate(cbh5) = 0 . 〈{REQ1}, ∅〉.[∅]σ([{REQ 2}]σ([{REQ 3}]σ(

0 . 〈{COMMIT 1}, ∅〉.[∅]σ(0 . 〈{COMMIT 2}, ∅〉.[∅]σ(

[{COMMIT 3}]σ([{COMMIT 4}]σ(0)))))))

ĉbh5 = normalise(translate(cbh5)) = 0 . 〈{REQ1}, ∅〉.[{REQ 2,REQ3}]σ(

0 . 〈{COMMIT 1}, ∅〉.[∅]σ(0 . 〈{COMMIT 2}, ∅〉.[{COMMIT 3,COMMIT 4}]σ(0)))

It is easy to see that if all the nondeterministic choices in the SPL expression for the
Coordinator Statechart are resolved in favour of the left operand, then the resulting SPL
term is identical to ĉbh5. Therefore, the RSL specification satisfies the Statechart.

76 Chapter 6. Example Application: Two-Phase Commit Protocol

77

Chapter 7

Conclusion

The aim of this MSc project was to study ways of integrating graphical specification tech-
niques with formal specification languages. We have presented the syntax and semantics
of two such graphical specification techniques, namely Live Sequence Charts and State-
charts. We have defined a method of using diagrams expressed in these graphical notations
to constrain a formal specification given in a subset of the RAISE Specification Language
(RSL), and proposed a development method applying these principles in combination with
the recommended development method for RSL.

For both Live Sequence Charts and Statecharts the semantics is traditionally defined
using Büchi automata. However, in this report we have presented semantics’ based on
process algebra. The justification for this choice is that the process algebras provide a
more compact notation while offering an established technique for checking behavioural
equivalence.

The semantics for Live Sequence Charts is an extension of the existing standardised se-
mantics of Message Sequence Charts, from which Live Sequence Charts are derived. To
the best of our knowledge, this work represents the first attempt to define the semantics
of Live Sequence Charts using a process algebra. The distinction between universal and
existential charts is not incorporated into the semantics. Rather, this distinction is made
when the diagrams are related to an RSL specification.

The semantics for Statecharts is taken from the literature. Unlike many other semantics’
for Statecharts it is characterised by possessing the three desirable properties of synchrony,
compositionality and causality.

Several approaches to the integration of Live Sequence Charts and Statecharts with RSL
were investigated before the linking approach as described in this thesis was adopted. The
linking approach means that there is no direct translation between the notations. Instead,
the diagrams are considered as constraints against which the RSL specification should
be checked. This approach seems to give the software engineer the greatest freedom
in choosing the style of specification to use. Moreover, the idea of using diagrams as
constraints on the specification mimics the way requirements are used in the development
process: they guide the development of the design and implementation and are used to
verify that the implementation behaves in the way it is required to do.

The proposed development method combines elements of a typical informal development
method oriented towards graphical notations, such as the widely used UML method, with
the formal development method of RAISE. Essentially, the diagrams replace the initial,
very abstract specifications in the RAISE method.

Referring back to the hypothesis stated in the introduction the obvious question is: to
what extent has the hypothesis been confirmed? Clearly, the techniques presented in this

78 Chapter 7. Conclusion

work are not complete and mature enough to be directly employed in software projects
of realistic scale. There are still several open questions and unsolved problems regarding
the relations between diagrams and formal specifications. However, this work has shown
a promising direction that warrants further research. The main benefit of combining dia-
grams with formal specifications is that domain experts, who are not software experts, can
validate the requirements, since the graphical notations are rather easy to become familiar
with, as opposed to formal specification languages, which require extensive training. Also,
the diagrams help highlight important aspects of a prospective system, while abstracting
other aspects away. Ideally, methods similar to the one described in this thesis will lead
to more widespread use of formal methods in software engineering, offering some hope of
countering the so-called software crisis.

There are several topics for future work. The satisfaction relations between Live Se-
quence Charts and RSL and between Statecharts and RSL are somewhat problematic,
since checking them can be difficult. When processes are recursive, a simple evaluation
is not sufficient. If the processes terminate, the satisfaction relation can be proved using
an inductive proof on the number of recursions. If the processes are non-terminating,
induction is not strong enough. Possibly, the dual notion of co-induction may be used in
this case. The notion of common histories may also be of use in alleviating this problem.

A wholly different approach to the integration of graphical notations with formal speci-
fication, is to develop new types of diagrams tailored specifically to coexist with formal
methods.

A prerequisite for any kind of industrial applications of this method is the development of
tool support. These tools should automate the translation of the diagrams into correspond-
ing process algebra terms, extract communication behaviours of the RSL specification and
check the satisfaction relation between the diagrams and the specification. Furthermore,
tool support may be provided for converting a (collection of) diagram(s) into a skeleton
specification.

79

Appendix A

A Critique of Live Sequence
Charts

The definition of Live Sequence Charts [11] leaves a number of question open for interpre-
tation. These questions must be answered if LSCs are to be used for software development
based on formal methods or tool support.

Damm and Harel propose Live Sequence Charts as a notation for specifying inter-object
or inter-process behaviour. Their development method combines LSCs with Statecharts,
which specify the intra-object or intra-process behaviour. A complete systems specification
will thus contain a number of LSCs and a Statechart for each instance referenced in the
LSCs.

The semantics for LSC given by Damm and Harel treats conditions as events just like
message input or output events. Thus, it is not specified when or how conditions should
be evaluated. Specifically, it is not clear whether conditions are evaluated once or whether
they somehow wait for the condition to become satisfied. Furthermore, since local actions
that may change local variables are allowed anywhere between non-local events (i.e. con-
ditions, message events, etc.), the Boolean expression of a condition is not guaranteed to
hold as an invariant for the next event. In principle, a condition could hold at the moment
it is evaluated, but be false when the next event happens. Therefore, the meaning of
conditions is unclear.

Another problem regarding conditions is that cold conditions allow the system to terminate
successfully without completing the rest of the chart. Essentially, this means that what
follows a cold condition places no constraints on a system implementing the specification.

The last issue concerning conditions is the use of simultaneous conditions on more than
one instance. Because the condition is a Boolean expression over the visible variables of
the chart, some form of global variables is presupposed. This would not seem to match
the reality of a distributed system, which is an important application area for LSCs.
Indeed, in such a system all communication between processes or objects would be via
messages. In an example, Damm and Harel [11] use LSC for specifying a driver-less Rail-
car system originally proposed by Harel and Gery [23]. In their example a proximity
sensor is supposed to notify the driver-less car that it is approaching a station. To do
this, they place a simultaneous condition on the proximity sensor and the car, stating that
the car should be cruising. In the interest of encapsulation and separation of concerns,
the behaviour of the proximity sensor should not be guided by the internal state of the
rail-car. A more realistic model for this situation is that the car sends a signal to the
proximity sensor. This more closely matches the physics of the situation: the magnetic

80 Appendix A. A Critique of Live Sequence Charts

field of the rail-car induces a current in the sensor, which is interpreted as the car passing
by. However, one may argue that replacing simultaneous conditions with message passing
clutters the specification.

Another problematic issue of LSCs is the use of mandatory versus optional progress.
Similar to the issue with cold conditions discussed above, optional progress allows a correct
implementation to omit the rest of the specification.

The inclusion of timers inherited from Message Sequence Charts seems to oppose the inter-
object orientation of LSC. Timers specify (non-quantified) timing constraints on a single
instance. Because there is no notion of quantifiable time, these timing constraints have
no semantical import. If the definition of LSC were extended to include quantifiable time
(as is done by Klose and Wittke [38] for example) more general timing constraints on the
occurrence of causally ordered events within an instance and between instances would be
more useful.

Finally, the ability to specify hot and cold messages, i.e. whether a message is required
to be received or may disappear, is redundant because of the facility for describing hot
and cold locations. Essentially, the temperature of the locations take precedence over
the temperature of the message, so whether or not the message is received is determined
entirely by the temperature of the message input. This questionable feature of LSC is
recognised by Harel and Marelly [25] who list the possible cases and conclude that the
temperature of the message has no semantical meaning.

81

Appendix B

Proofs

B.1 Proof of Theorem 2.3.9 – Termination of PAε

In the proof of theorem 2.3.9 on page 20 we showed that the rewriting rules RA4 and RA5
satisfy the lexicographical recursive path ordering. We now give the remaining derivations.

RA3

x + x >lpo x +∗ x RPO1

>lpo x RPO2

RA6

x + δ >lpo δ‖ ∗x RPO1

>lpo δ RPO2

RA7

δ · x >lpo δ ·∗ x RPO1

>lpo δ RPO2

RA8

x · ε >lpo x ·∗ ε RPO1

>lpo x RPO2

RA9

ε · x >lpo ε ·∗ x RPO1

>lpo x RPO2

RF1

x ‖ y >lpo x ‖∗ y RPO1

>lpo (x ‖∗ y) + (x ‖∗ y) RPO2

>lpo (x ‖∗ y) + ((x ‖∗ y) + (x ‖∗ y)) RPO2

>lpo ((x ‖∗ y)‖ (x ‖∗ y)) + (((x ‖∗ y)‖ (x ‖∗ y)) + ((x ‖∗ y) · (x ‖∗ y))) RPO2

>lpo x‖ y + y‖ x +
√

((x ‖∗ y)) · √((x ‖∗ y)) RPO2, RPO3

>lpo x‖ y + y‖ x +
√

(x) · √(y) RPO3

82 Appendix B. Proofs

RF2

ε‖ x >lpo ε‖ ∗x RPO1

>lpo δ RPO2

RF3

δn‖ x >lpo ε‖ ∗x RPO1

>lpo δ RPO3

RF4: this case cannot be proved with the partial ordering used so far. We skip this rewrite
rule for now and return to it below.

RF4’

a‖ x >lpo a‖ ∗x RPO1

>lpo (a‖ ∗x) · (a‖ ∗x) RPO2

>lpo a · x RPO3,RPO5

RF5

(x + y)‖ z >lpo (x + y)‖ ∗z RPO1

>lpo ((x + y)‖ ∗z) + ((x + y)‖ ∗z) RPO2

>lpo ((x +∗ y)‖ z) + ((x +∗ y)‖ z) RPO4

>lpo x‖ z + y‖ z RPO3

RT1

√
(ε) >lpo

√∗(ε) RPO1

>lpo ε RPO3

RT2

√
(δ) >lpo

√∗(δ) RPO1

>lpo δ RPO3

RT3

√
(a · x) >lpo

√∗(a · x) RPO1

>lpo δ RPO2

RT4

√
(x + y) >lpo

√∗(x + y) RPO1

>lpo (
√∗(x + y)) + (

√∗(x + y)) RPO2

>lpo (
√

(x +∗ y)) + (
√

(x +∗ y)) RPO4

>lpo
√

(x) +
√

(y) RPO2

We now return to the case of RF4. The problem in this case is that we would like to have
‖ >‖ so that we can use RPO2 to introduce ‖, but this would conflict with RF1 where
we want ‖> ‖ .

The solution found by Bergstra and Klop [5] is to adorn the operators ‖ and ‖ with a
rank. The intuition is that we should allow parallel to be introduced using RPO2, but

B.1 Proof of Theorem 2.3.9 – Termination of PAε 83

only if the complexity of the arguments are reduced at the same time. The rank is a
measure of the complexity of the arguments. First, weights of terms are introduced.

Definition B.1.1. Let x and y be terms in PAε and let a be an atomic action. The
weight of a term x, denoted |x|, is defined inductively by

|a| = 1

|δ| = 1

|ε| = 1

|√(x)| = |x|
|x + y| = max{|x|, |y|}
x · y	=	x	+	y
x ‖ y	=	x	+	y
x‖ y	=	x	+	y

2

Definition B.1.2. The rank of an operator ‖ or ‖ is the weight of subterm of which it
is the leading operator. In the definition of terms over PAε the ‖ and ‖ operators are
removed and the following families of operators added.

• {‖n |n ≥ 2}
• {‖ n|n ≥ 2}

where in both cases n is the sum of the weights of the two arguments to the operator. 2

We now extend the partial order on the signature ΣPAε
to

δ < ε <
√

< + < · < ‖ 2 <‖2< ‖ 3 <‖3< . . .

Let n = |x| + |y|, then

a · x‖ n+1y >lpo a · x‖ ∗
n+1y RPO1

>lpo (a · x‖ ∗
n+1y) · (a · x‖ ∗

n+1y RPO2

>lpo (a · x) · ((a · x‖ ∗
n+1y) ‖n (a · ‖ ∗

n+1y)) RPO2, RPO3

>lpo (a ·∗ x) · (a ·∗ x ‖n y) RPO1, RPO3

>lpo a · (x ‖n y) RPO3

84 Appendix B. Proofs

85

Bibliography

[1] Baeten, J. C. M., and Verhoef, C. A congruence theorem for structured opera-
tional semantics with predicates. In Proceedings CONCUR 93, Hildesheim, Germany
(1993), vol. 715 of Lecture Notes in Computer Science, Springer-Verlag, pp. 477–492.

[2] Baeten, J. C. M., and Verhoef, C. Concrete process algebra. In Handbook of
Logic in Computer Science, S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
Eds., vol. 4: Semantic Modelling. Oxford University Press, 1995, ch. 2. .

[3] Baeten, J. C. M., and Weijland, W. P. Process Algebra. No. 18 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[4] Ben-Abdallah, H., and Leue, S. Expressing and analyzing timing constraints in
Message Sequence Chart specifications. Tech. Rep. 97-04, Electrical and Computer
Engineering, University of Waterloo, Waterloo, Ontario, Canada, 1997.

[5] Bergstra, J. A., and Klop, J. W. Algebra of communicating processes with
abstraction. Theoretical Computer Science 37, 1 (1985), 77–121.

[6] Bjørner, D. Software Engineering, vol. 3: From Domains via Requirements to
Software. 2003–2004. To be published.

[7] Booch, G., Rumbaugh, J., and Jacobson, I. The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

[8] Büssow, R., Geisler, R., and Klar, M. Specifying safety-critical embedded sys-
tems with Statecharts and Z: A case study. In Fundamental Approaches to Software
Engineering: First International Conference, FASE’98, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS’98, Lisbon, Por-
tugal, March/April 1998 (1998), E. Astesiano, Ed., vol. 1382 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 71–87.

[9] CCITT. CCITT Recommendation Z.120: Message Sequence Chart (MSC), 1992.
[10] Chaochen, Z., and Hansen, M. R. Duration Calculus: A formal approach to

real–time systems. Monographs in Theoretical Computer Science. Springer–Verlag,
2003.

[11] Damm, W., and Harel, D. LSCs: Breathing life into Message Sequence Charts.
Formal Methods in System Design 19 (2001), 45–80. Early version appeared as Weiz-
mann Institute Tech. Report CS98-09, April 1998. An abridged version appeared
in Proc. 3rd IFIP Int. Conf. on Formal Methods for Open Object-based Distributed
Systems (FMOODS’99), Kluwer, 1999, pp. 293–312.

[12] Dershowitz, N., and Jouannaud, J.-P. Rewrite systems. In Handbook of The-
oretical Computer Science (1990), J. van Leeuwen, Ed., vol. B: Formal Models and
Semantics, Elsevier, pp. 243–320.

[13] Fischer, C. CSP-OZ: A combination of Object-Z and CSP. Tech. Rep. TRCF-97-2,
Universität Oldenburg, 1997.

[14] Fokkink, W. J. The tyft/tyxt format reduces to tree rules. In Proceedings 2nd
International Symposium on Theoretical Aspects of Computer Science (TACS’94),
Sendai, Japan (1994), vol. 789 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 440–453.

86 BIBLIOGRAPHY

[15] Galloway, A. Integrated Formal Methods. PhD thesis, University of Teeside, 1996.
[16] George, C. W., and Xia, Y. An Operational Semantics for Timed RAISE. In

FM’99 — Formal Methods (1999), J. M. Wing, J. Woodcock, and J. Davies, Eds.,
FME, Springer–Verlag, pp. 1008–1027.

[17] Gray, J. Notes on database operating systems. In Operating Systems – An Advanced
Course, R. Bayer et al., Eds., vol. 60 of Lecture Notes in Computer Science. Springer-
Verlag, 1978, pp. 393–481.

[18] Grieskamp, W., Heiseland, M., and Dörr, H. Specifying embedded systems
with Statecharts and Z: An agenda for cyclic software components. In Fundamen-
tal Approaches to Software Engineering: First International Conference, FASE’98,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March/April 1998 (1998), E. Astesiano, Ed., vol. 1382
of Lecture Notes in Computer Science, Springer-Verlag, pp. 88–106.

[19] Groote, J. F. Transistion systems specification with negative premises. Tech. rep.,
CWI, Amsterdam, 1990. An extended abstract appeared in J. C. M. Baeten and J.
W. Klop, editors, Proceedings CONCUR 90, Amsterdam, Lecture Notes in Computer
Science no. 458, pp. 332–314, Springer-Verlag, 1990.

[20] Groote, J. F., and Vaandrager, F. W. Structured operational semantics and
bisimulation as a congruence. Information & Computation 100, 2 (1992), 202–260.

[21] Harel, D. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8, 3 (1987), 231–274.

[22] Harel, D. On visual formalisms. Communications of the ACM 33, 5 (514–530 1988).
[23] Harel, D., and Gery, E. Executable object modeling with Statecharts. IEEE

Computer 30, 7 (1997), 31–42.
[24] Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R.,

Shtull-Trauring, A., and Trakhtenbrot, M. B. STATEMATE: A working
environment for the development of complex reactive systems. Software Engineering
16, 4 (1990), 403–414.

[25] Harel, D., and Marelly, R. Come, Let’s Play – Scenario-Based Programming
Using LSCs and the Play-Engine. Springer-Verlag, 2003.

[26] Haxthausen, A. Some approaches for integration of specification techniques (invited
extended abstract), 2000.

[27] Haxthausen, A., and Xia, Y. Linking DC together with TRSL. In Proceedings
of 2nd International Conference on Integrated Formal Methods (IFM’2000), Schloss
Dagstuhl, Germany, November 2000 (2000), no. 1945 in Lecture Notes in Computer
Science, Springer-Verlag, pp. 25–44.

[28] Hennessy, M., and Regan, T. A process algebra for timed systems. Information
and Computation 117 (1995), 221–239.

[29] Hoare, C. A. R., and He, J. Unifying Theories of Programming. Prentice-Hall,
1998.

[30] ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 1996.
[31] ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 1999.
[32] Jacobson, I., Booch, G., and Rumbaugh, J. The Unified Software Development

Process. Addison-Wesley, 1999.
[33] Jensen, K. Coloured Petri Nets – Basic Concepts, Analysis Methods and Practi-

cal Use, Volume 1 Basic Concepts. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1992.

[34] Jouannaud, J.-P. Rewrite proofs and computations. In Proof and Computation,
H. Schwichtenberg, Ed., vol. 139 of Computer and Systems Sciences. Springer Verlag,
1995.

[35] Kamin, S., and Lévy, J.-J. Two generalizations of the recursive path ordering.

BIBLIOGRAPHY 87

Unpublished manuscript, 1980.
[36] Kleene, S. C. Representation of events in nerve nets and finite automata. In

Automata Studies, C. Shannon and I. McCarthy, Eds. Princeton University Press,
1956, pp. 3–41.

[37] Klop, J. W. Term rewriting systems. In Handbook of Logic in Computer Science,
S. Abramsky, D. Gabbay, and T. Maibaum, Eds., vol. 2: Background: Computational
Structures. Oxford University Press, 1992, ch. 1, pp. 1–116.

[38] Klose, J., and Wittke, H. An automata based interpretation of Live Sequence
Charts. In TACAS 2001 (2001), T. Margaria and W. Yi, Eds., LNCS 2031, Springer-
Verlag, pp. 512–527.

[39] Kristensen, L. M., Christensen, S., and Jensen, K. The practitioner’s guide to
Coloured Petri Nets. International Journal on Software Tools for Technology Transfer
2, 2 (1998), 98–132.

[40] Ladkin, P. B., and Leue, S. Analysis of Message Sequence Charts. Tech. Rep.
IAM 92-013, Institute for Informatics and Applied Mathematics, University of Berne,
Bern, Switzerland, 1992.

[41] Leue, S. Methods and Semantics for Telecommunications Systems Engineering. PhD
thesis, Philosophisch-naturwissenschaftlichen Fakultät, University of Berne, Bern,
Switzerland, 1995.

[42] Lüttgen, G., van der Beeck, M., and Cleaveland, R. Statecharts via process
algebra. Tech. Rep. ICASE Report No. 99-42, Institute for Computer Applications in
Science and Engineering, NASA Langley Research Center, Hampton, Virginia, USA,
1999.

[43] Mauw, S., and Reniers, M. A. An algebraic semantics of basic Message Sequence
Charts. The Computer Journal 37, 4 (1994), 269–277.

[44] Park, D. M. R. Concurrency and automata on infinite sequences. In 5th GI Con-
ference (1981), P. Deussen, Ed., vol. 104 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 167–183.

[45] Petri, C. A. Kommunikation mit Automaten. Bonn: Institut für Instrumentelle
Mathematik, Schriften des IIM Nr. 2, 1962.

[46] Plotkin, G. D. Structural operational semantics. Lecture notes, Aarhus University,
1981. DAIMI FN-19. Reprinted 1991.

[47] Pnueli, A., and Shalev, M. What is a step: on the semantics of Statecharts. In
Theoretical Aspects of Computer Software (TACS’91), T. Ito and M. A, Eds., vol. 526
of Lecture Notes in Computer Science. Springer-Verlag, 1991, pp. 244–264. Sendai,
Japan.

[48] Pressman, R. S. Software Engineering: A Practitioner’s Approach. McGraw-Hill,
1997.

[49] RAISE Language Group. The RAISE Specification Language. BCS Practitioner
Series. Prentice Hall Int., 1992.

[50] RAISE Method Group. The RAISE Development Method. BCS Practitioner
Series. Prentice Hall Int., 1995.

[51] Reggio, G., and Repetto, L. Casl-Chart: A combination of Statecharts and of
the algebraic specification language Casl. Tech. Rep. DISI-TR-00-2, DISI, Università
di Genova, 2000.

[52] Reisig, W. A Primer in Petri Net Design. Springer-Verlag, 1992.
[53] Rumbaugh, J., Jacobson, I., and Booch, G. The Unified Modeling Language

Reference Manual. Addison-Wesley, 1998.
[54] Sharp, R. Principles of Protocol Design, second ed. IMM-DTU, 2001.
[55] Sommerville, I. Software Engineering, sixth ed. Addison-Wesley, 2001.
[56] Verhoef, C. A congruence theorem for structured operational semantics with pred-

88 BIBLIOGRAPHY

icates and negative premises. Nordic Journal of Computing 2, 2 (1995), 274–302.
[57] Weber, M. Combining Statecharts and Z for the design of safety-critical control

systems. In FME 96: Industrial Benefit and Advances in Formal Methods (1996),
M. Gaudel and J. Woodcock, Eds., vol. 1051 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 307–326.

[58] Woodcock, J. C. P., and Hughes, A. Unifying theories of parallel program-
ming. In Formal Methods and Software Engineering: 4th International Conference
on Formal Engineering Methods, ICFEM 2002 Shanghai, China (October 21–25
2002), C. George and H. Miao, Eds., vol. 2495 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 24–37.

[59] Zhou, C., Hoare, C. A. R., and Ravn, A. P. A calculus of durations. Information
Processing Letters 40, 5 (1991), 269–276.

	Introduction
	Thesis Structure

	Live Sequence Charts
	Introduction
	Live Sequence Chart Syntax
	Graphical Syntax of Message Sequence Charts
	Graphical Syntax of Live Sequence Charts

	Process Algebra
	The Process Algebra PA
	Semantics of PA
	The Process Algebra PAc_
	Semantics for PAc

	Algebraic Semantics of Live Sequence Charts
	Textual Syntax of Live Sequence Charts
	Semantics of Live Sequence Charts

	Live Sequence Chart Example

	Statecharts
	Introduction
	Syntax of Statecharts
	Process Algebra
	SPL
	Semantics of SPL
	Equivalence for SPL terms

	Semantics of Statecharts
	Statecharts Example

	Relating Diagrams to RSL
	Introduction
	Types of Integration
	RSL Subset
	Syntax
	Operational Semantics with Communication Behaviour

	Relating Live Sequence Charts to RSL
	Syntactical Restrictions
	Satisfaction Relation

	Relating Statecharts to RSL
	Syntactical Restrictions
	Satisfaction Relation

	Checking Satisfaction
	Tool Support

	Development Method
	Introduction
	Domain Analysis
	Initial Requirements Development
	Formalisation of Requirements
	Refinement/Design
	Implementation
	Testing

	Example Application: Two-Phase Commit Protocol
	Introduction
	Description
	Protocol
	Internal Behaviour
	RSL Model
	Checking Satisfaction

	Conclusion
	A Critique of Live Sequence Charts
	Proofs
	Proof of Theorem 2.3.9 -- Termination of PA

	Bibliography

