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Abstract

This document renders some results from trying to
fit a 3-D appearance model [3] of the human face
to 2-D images using ordinary optimization meth-
ods. The objective function is the absolute differ-
ence between a 2-D projection of the model and the
image. The results show well-formed 2-parameter
surfaces near global minima, which should lead to
robust minimization in larger parameter spaces.

1 Introduction

A deformable model in three dimensions can be
used for (semi) automatic recognition and segmen-
tation of 2-D images. The advantage of using a 3-D
model is the larger amount of information it con-
tains. A model of the human face [4], which is used
in this article, can be fitted to images of heads in a
wide range of poses.

In two dimensions, deformable models can be
successfully fitted to objects in underlying images
using the active appearance model [3]. In this ar-
ticle, a different approach is taken. Inspired by
Blanz et al. [1], ordinary optimization algorithms
are used.

2 Method

The appearance of the deformable face model is
controlled by a number of parameters, n−1, where
n is the number of actual faces the model is built
from. These control shape and texture simultane-
ously. To specify position, orientation and scale,
seven (3+3+1) more parameters are added. In an

extended implementation, parameters for lighting
conditions, camera settings, etc. could be added.

The fitting algorithm attempts to find a set of
parameters that results in the lowest possible dif-
ference between a 2-D projection of the model and
the image. The difference is calculated by treat-
ing the projection and image as vectors, vp and vi,
and calculating the norm of the difference between
them. The p-norm ‖v‖p is defined as

‖v‖p ≡

(

∑

i

|v|p

)1/p

(1)

The norm used here is the so-called L1-norm,
‖vp −vi‖1 which is simply the sum of absolute dif-
ferences. The reason for this is that the L1-norm
doesn’t penalize differences as heavily as the com-
monly used L2-norm.

To find the most suitable ensemble of param-
eters, an iterative, multidimensional optimization
method is used. In this article two different meth-
ods are employed, steepest decent, which is a slowly
converging gradient-based method, and the sim-
plex method (also known as the Nelder-Mead or
Amoeba method), which is not gradient-based and
has faster convergence. The steepest decent algo-
rithm was used to investigate whether a gradient-
based method would have any advantages over the
widely used simplex method.

The notation and descriptive ideas in the next
two sections are from [2].

2.1 The Steepest-Decent Method

The steepest decent method works by finding the
direction of maximum slope and then moving in
this direction until the minimum along this line is
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Figure 1: Using steepest decent to find the mini-
mum of the ”banana-function”.

found. This procedure is iterated until the real
minimum is reached. The direction dk of steep-
est decent is found as the negative gradient vector.
For non-analytical functions this can be calculated
using finite differences. One iteration is as follows

• Find the direction of steepest decent at the
current position k, dk = −∇f(xk).

• Let xk+1 = xk + λkdk, where λk solves
minλ g(λ) = minλ f(xk + λdk).

Often it is not possible or necessary to solve the
one-dimensional line search in every iteration. In-
stead, a single step length can be approximated us-
ing for example Armijo’s rule. This rule defines a
function T (λ) = g(0) + ǫλg′(0), 0 < ǫ < 1. The
step length λ is then chosen so that

g(λ) ≤ T (λ) (2)

g(αλ) ≥ T (αλ), α > 1

Common choices for the parameters ǫ and α are
ǫ = 0.5 and α = 2.

2.2 The Nelder-Mead (Simplex)
Method

The method used for most experiments here is the
Nelder-Mead, or Simplex, method. A simplex in

R
n is a set of n + 1 corner points x1, . . . ,xn+1

such that the vectors xi − x1 are linearly inde-
pendent. In practice this forms a non-degenerate
hyper-tetrahedron. In one dimension this is a line,
in two dimensions a triangle and in three dimen-
sions a tetrahedron. The method works by chang-
ing the position of the corner point with the largest
function value in each iteration. This makes the
simplex move and deform until it encompasses the
minimum with some chosen accuracy.

Define xm and xM as the corner points with the
smallest and largest function values respectively. In
an iteration, xM is moved along the line going from
xM through the center of mass of all other points.
All but one point in a simplex form a hyper-plane,
so the center of mass is calculated as

xg =
1

n

∑

xi 6=xM

xi (3)

The new corner point is chosen along the line ac-
cording to

xr = xg + α(xg − xM ), α > 0 (4)

Three cases occur:

1. f(xm) < f(xr) < f(xM ), choose xnew = xr.

2. f(xr) ≤ f(xm), the minimum is probably even
further away, so the simplex is expanded. Let

xe = xg + β(xr − xg), β > 1 (5)

Tow sub-cases occur:

(a) f(xe) < f(xr), set xnew = xe.

(b) f(xe) ≥ f(xr), set xnew = xr.

3. f(xr) ≥ f(xM ), the minimum seems to be in-
side the area defined by the current simplex
and xr, so the simplex is contracted. Let

xc = xg + γ(xr − xg), 0 < γ < 1 (6)

Again, two sub-cases occur:

(a) f(xc) < f(xM ), set xnew = xc.

(b) f(xc) ≥ f(xM ), the simplex is shrinked,
set xi = 1

2
(xi + xm) for all i.
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Figure 2: A two-dimensional simplex annotated
with the possible new positions for xM .

3 Results

In appendix A, a series of plots are presented, each
showing one or two parameters and the correspond-
ing function values. Surfaces constructed from ap-
pearance parameters are smooth and unimodal in
the whole range (±3 standard deviations). The
plots showing position and rotation changes also
have these properties, but show slightly more com-
plex surfaces.

Figure 3 shows a face fitted to an image using all
30 parameters. The model was manually initialized
with respect to location, orientation and scale, but
no initialization of the appearance parameters was
carried out. Despite this, the algorithm was able
to correctly fit the model to the image. Of course,
the image used in this example poses a relatively
easy problem. It is an image of one of the faces
from which the model is built. In a real applica-
tion, one would like to fit the model to an ordinary
digital image of a person, including background.
This, however, requires a more general model, and
some extra work.

4 Conclusions and Summary

This paper has presented some results from fitting
a deformable 3-D model to images. Plotting pairs
of parameters against the absolute difference be-
tween the model and the image shows well-formed
surfaces around the minima. This indicates that
it should be possible to fit the model to an image
using more, possibly all, parameters. A few suc-

Figure 3: Fitting to an image using all 30 param-
eters. The left column shows the image and the
right shows the model. The top row represents be-
fore and the bottom row after optimization.

cessful experiments with this have been carried out
(see figure 3). However, to make the method useful
in a real application, the model needs to be more
general, more parameters must be added along with
greater control of the initialization of these, and a
way to deal with background information must be
devised.
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