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Abstract— Spectral clustering methods were proposed recently when employing these finite order sequences to make point
which rely on the eigenvalue decomposition of an affinity matrix. - estimates [8], this is of course also observed with the KPCA
In this work the affinity matrix is created from the elements of a decomposition [6].

non-parametric d_e_n_sity estimator and then Qecomposed to obtain To furth | th lati hio bet the d )
posterior probabilities of class membership. Hyperparameters 'O TUtNer explore the reiationship between the decompo
are selected using standard cross-validation methods. sition of a Gram matrix, the basis functions obtained from
KPCA and density estimation, a matrix decomposition which
maintains the positivity of point probability density estimates
is desirable. In this paper we show that such a decomposition
can be obtained in a straightforward manner and we observe
. INTRODUCTION useful similarities between such a decomposition and spectral
The spectral clustering methods [1], [2], [3] are attractivelustering methods [1], [2], [3].
in the case of complex data sets, which possess for exampl&@he following sections consider the non-parametric estima-
manifold structures, when the classical models suchKas tion of a probability density from a finite sample [8] and relates
means often fail in the correct estimation. The proposelis to the identification of class structure within the density
models in the literature are, however, incomplete, since thBpm the sample. Two kernel functions, the choice of which
do not offer methods for the estimation of the model hypedependent on the data type and dimensionality, are proposed.
parameters which have to be manually tuned [1]. The ne@te derivation of the generalization error is also presented,
arises to construct a self-contained model, which would natich enables the determination of the model parameters and
only provide accurate clustering but also which would estimateodel complexity [9], [10]. The experiments are performed
both the model complexity and all the necessary parameters artificial data sets as well as on more realistic collections.
for estimation. The additional advantage can also be provided
by the probabilistic outcome, where the confidence in the poingj. DeNnsITY ESTIMATION AND DECOMPOSITION OF THE
assignment to the clusters is given. GRAM MATRIX

The kernel principal component analysis (KPCA) [4] de- Consider the estimation of an unknown probability density

composition of a Gram matrix has been shown to be fﬁnctionp(x) from a finite sample ofV points{x;,--- ,xn}

particularly elegant method for extracting nonlinear featur<€,,v°,nereX ¢ RZ The sample drawn from the density can be

fI’rOT mlrJ]Itllvarlate ??La' Epgcrﬁ has rbii?: f‘ihgwtn tobi’ein?nd'ghployed to estimate the density in a non-parametric form by

crete analogue of the Nysim approximation to obta gé%zing a Parzen window estimator (refer to [8], [9], [10] for
S

Index Terms—spectral clustering, kernel decomposition, ag-
gregated Markov model, kernel principal component analysis

téf” dei:?egfr:"':r?it;ogts)sgfertiggotcheessrer;ctji?n:hifmtl)t:tvijgp:?Pé " review of such non-parametric density estimation methods)
9 P ch that the estimate is given by

and non-parametric orthogonal series density estimation was
highlighted in [6], and the relation with spectral clustering has 1 X

recently been investigated in [7]. The basis functions obtained Bx) =+ > Kn(x,x,) 1)
from KPCA can be viewed as the finite sample estimates of the n=1

truncated orthogonal series [6], however, a problem commuihnere £, (x;,x;) denotes the kernel function of width,

to orthogonal series density estimation is that the strict nobetween pointsx; and x;, which itself satisfies the require-
negativity required of a probability density is not guaranteedents of a density function [8]. It is important to note that



the pairwise kernel function values,, (x;,x;) provide the with constrain'[sz:ﬁf:1 P(x,lc) =1 and Zle P(c]x) = 1.
necessary information regarding the sample estimate of theConsidering the decomposition of the posterior sample
underlying probability density functiop(x). Therefore the probabilities for each point in the available samﬁ’leq\xj) =
kernel or Gram matrix constructed from a sample of point§f:1 P(x;|c)P(c|x;), ¥V 4,j = 1,---,N we see that
(and a kernel function which itself is a density) provides thihis is identical to the aggregate Markov model originally
necessary information to faithfully reconstruct the estimatgmoposed in [11], where the matrix of posteriors (elements
density from the pairwise kernel interactions in the sample.of the normalized kernel matrix) can be now be viewed as

For applications of unsupervised kernel methods such as estimated state transition matrix for a first order Markov
KPCA the selection of the kernel parameter, in the case pfocess. This decomposition then provides class posterior
the Gaussian kerndl, is often problematic. However, notingprobabilities P(c|x,,) which can be employed for clustering
that the kernel matrix can be viewed as defining the sampdarposes.
density estimate, then methods such as leave-one-out crosg divergence based criterion such as cross-entropy
validation can be employed in obtaining an appropriate value N N c
of the ker_nel Width parameter. We shall return to this point in Z Z}é(xi’xj) log {ZP(XiC)p(dxj)} (7)
the following sections. i=1 =1 p—

or distance based criterion such as squared error

A. Kernel Decomposition

N N c 2
The density estimate can be decomposed in the following ZZ {IC(XZ-,X]-) _ {Z p(xi|c)p(c|xj)}} (8)
c=1

probabilistic manner as =1 j—1
N subject to the constraints that eaflix;|c) and P(c|x;) are
Px) = > p(x%n) (2)  strictly positive andy""_| P(x,lc) = 1, =<, P(¢[x) = 1.
n=1 Due to these constraints which ensure that the decomposition
N provides interpretable probabilities then a matrix factorization
= ZP(X‘X”)P(X”) (3)  which enforces positivity of the elements in the decomposition
n=1 is required. There has been a number of recent publications

such that each sample point is equally probablepriori, which have proposed efficient methods for obtaining such

P(x,) = N7!, i.e. data is assumeihdependent and iden- constrained matrix decompositions [12], [13] and as such the

tically distributed (i.i.d) The kernel operation, such that thenon-negative matrix multiplicative update equations (NMF)

kernel is itself a density function, can then be seen to be tf12], [13] or equivalently the iterative algorithm which per-

above conditional density(x|x,) = Kp(x,X,). forms Probabilistic Latent Semantic Analysis (PLSA) [14] can
The sample ofV points drawn from the underlying densitybe employed in optimizing the above criteria subject to the

forms a set and as such we can define a probability space axgjuired constraints.

the N points. A discrete posterior probability can be defined If the normalized Gram matrix is defined a& =

for a pointx (either in or out of sample) given each of the {f:’(xi,xj)} = lé(xi,xj) then the decomposition of that

sample points matrix with NMF [12], [13] or PLSA [14] algorithms will
. p(x%) P (%) yield G = WH such thatW = {P(x;lc)} and H =
Pxulx) = —x = {P(c|x;)} are understood as the required probabilities which
2 =1 P(X|% ) P (%) satisfy the previously defined stochastic constraints.
K(x,x,) Y
= v - =Kxx) 4 o g
Doy K(x,%5) B. Clustering with the Kernel Decomposition

such thatzgzl p(xn|x) -1, p(xn|x) >0 Vn and each Having obtaineq the eIemenB(xi|c) and P(c|x;) of the
P(x,) = + decomposed matrix employing NMF or PLSA, the class poste-

Now if it is assumed that there is an underlying, hiddefiors P(c|x,) will indicate the class structure of the samples.

class/cluster structure in the density then the sample poste are now in a position to assign newly obseraad-of-

probability can be decomposed by introducing a discrete Cla%aéhplepp.mts to a particular class. If we.observe anew pc_)llnt
variable such that z In addition to the sample then the estimated decomposition

components can, in conjunction with the kernel, provide the
required class posteridP(c|z).

c c

P(xn]x) = Y P(xn,c|x) = Y P(xnle,x)P(c[x)  (5)

c=1 c=1 N A

and noting that the sample points have been drawn i.i.d from Plez) = Z Ple[xn) P(xn]2) ©)
the respectiveC' classes forming the distribution such that

n=1
N
points are independent given the class variablej.¢x | c, _ Z P( K (2, %) (10)

then n=1
Plxulx) = 3" Plsn.cx) = 3 POaldlPleh) (6) S Pl )y
c=1 c=1 n=1 Zn’:l IC(Z’ Xﬂ’)



This can be viewed as a form of 'kernel’ based non-negatiigotropic Gaussian kernel
matrix factorization where the 'basis’ functio®¥c|x,,) define 1
the class structure of the estimated density. Kn(x,%,) = (27) "2 h~ Y exp {_2”X - xn|2} (16)

For the case of a Gaussian (radial basis function) kernel 2h
this interpretation of a kernel based clustering motivates theof course many other forms of kernel can be employed,
definition of the kernel smoothing parameter by means of oykough they may not themselves satisfy the requirements of
of Sample predictive likelihood and as such CrOSS'Va”dati%ing a density_ For examp|e in the case of vector space rep-
can be employed in estimating the kernel width parametgssentations of text the standard similarity measure employed
In addition the problem of choosing the number of possiblg the cosine inner-product.
classes, a problem common to all non-parametric clustering .
methods such as spectral clustering [1],[15] can now be K(x,%,) = X Xn 17)
addressed using theoretically sound model selection methods ] %]
such as cross-validation. This overcomes the lack of an 0biggje jecomposition of this cosine based Gram matrix directly
tive means of selecting the smoothing parameter in most otlggn yield the required probabilities.
forms of spectral clustering [1],[15] as the proposed metho Although, the cosine inner-product does not satisfy itself
first defines a non-parametric density estimate, and then '

) . o . 1 density requirementsf (C(x,x,) = 1) it can be applied
inherent class structure is identified by the basis decomposit} Nhe presented model i I(gng as? the kernel integral is finite.

of the_ normahzgq_ kerne_l n th_e form of class condition his condition is satisfied when the data points are a priori
post_e_rlo_r probabilities. This highlights anoth_er a_dvantage, OVErmalized, e.g. to the unit sphere and the empty vectors are
Eartlt(ljomlng tb"’.‘sed. mt?]thto ds [1]’t.[15]’ ofﬁt-h!s \;lew on ker_rgje(!:xcluded from the data set. The density values obtained from

ased clustering n that projection CO€liCIEntS are provide, ., non-density kernels provide the incorrect generalization
enabling new or pre\{lougly unobserved pplnts to be aIIoca}tg ors which are scaled by the unknown constant factor and
to clusters. Thus projection of the normalized kernel functi Werefore can be still used in estimation of the parameters.

O.f ?dr,:ﬁw p0|tnt onto tT)e t():_llz_itss-?ordltlonal lt;)asshfur;ctl(t)r?s W This interpretation provides a means of spectral clustering
)[;Ioeint € posterior probability of class membership for the neQ/’vvhich, in the case of continuous data, is linked directly to non-

' . . . parametric density estimation and extends easily to discrete
| In attemptln(ﬁ tro l;get?t';y tfrlren:ogel odrdernetgﬁ numtbefr Ofmd ta such as for example text. We should also note that the
classes, a generajization error based 0 € out-of-sa gz%regate Markov perspective allows us to take the random

negative predictive likelihood, is defined as follow walk viewpoint as elaborated in [15] and sofé&connected

Nout grapit may be employed in defining the kernel similarity
Louwt = Nyyy Y log {p(z,)} (12) Kk (x,x,). Similarly to the smoothing parameter and the
n=1 number of clusters, the number of connected points in the

where N,,,.; denotes the number of out-of-sample points. Thgraph can be also estimated from the generalization error.
out-of-sample likelihood (12) is derived from the decomposi- The following experiments and subsequent analysis provide
tion in the following manner an objective assessment and comparison of a number of
classical and recently proposed clustering methods.

N
1
pz) = D plax) (13)
n=1 [1l. EXPERIMENTS
1zN:zC: In th iment d, the four following data set
= — p(z|c)P(c|xn) (14) n the experiments we used, the four following data sets
N n=1c=1 described below.
The p(z|c) can be decomposed given the finite sample suchl) Linear_strugtur_e.Data set consi_st of five 2?dimensio_nal
thatp(z|c) = Zfil p(z|x)) P(x]c) wherep(z|x;)) = K(z|x;). Gaussian distributed clusters with a spherical covariance

structure, shown in the left plot of figure 1 (left plot).
The clusters are linearly separable. This artificially cre-
ated data is used for illustration of a simple clustering

So the unconditional density estimate of an out of sample
point given the current kernel decomposition which assumes
a specific class structure in the data can be computed as the

following. problem. _
NN o 2) Mhanlfolq sthruct.urhe. Dlata ??-t consl|st c?lf three clus]:cers a;
1 shown in the right plot of figure 1. Clusters are forme
p(z) = N >0 ) Klax)P(xiloP(clx),  (15) in the shape of rings all centered at the origin with radii
n=ti=t o=t 3, 5 and 8, respectively. The ring structure is a standard
where P(x;lc) = W and P(c[x,) = H are estimated example used in spectral clustering, for example [1], [2].
parameters. The data is 2 dimensional. This is given as an example
of complex nonlinear data on which methods such as
C. Kernels K-means will fail.

. d .
For continuous data such thate R a Common.Cho!Ce 1The K-connected graph is performed by remaining the dependencies
of kernel, for both kernel PCA and density estimation, is th&tween onlyk closest points.



and Newsgroups) the cosine inner-product equation (17) is
applied.
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Fig. 1. The scatter plots of the artificial data for 5 Gaussian distribute®
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3) Email collection. The Email data sétconsist of emails - lizati function of i et
. . . ig. 2. e generalization error as a function of smoothing paral
grouped mto_ three categoriezonference, J‘?b‘”dSpam panel) for 5 Gaussian distributed clusters. The optimum choiée=s0.06.
used earlier in [16], [17], [18]. The collection was handThe right figure presents, for optimum smoothing parameter, the generalization
labeled. In order to process text dataesim-vectoris error as a function of number of clusters. Here, any cluster number below or
- . ... equal 5 may give the minimum error for which the error values are shown
_demed as th_e complete set of all the WOI’_dS existi ove the points. The optimum choice is a maximum modelA.e= 5 (see
in all the email documents. Then each email documeit explanation in the text). The error-bars shévetandard error of the mean

is represented by histogram the frequency vector of value.

occurrences of each of the word from a term-vector. The ] ) ) )
The Gaussian clusters example is a simple linear separa-

collection of such email histograms is denotbd term- i i
document matrixin order to achieve good performancelion Problem. The model was trained using 500 randomly

suitable preprocessing is performed. It includes remoyenerated samples, and generalization error computed from

ing stopword3 and other high and low frequency words,2500 validation set samples. The aggregated Markov model,

stemming and normalizing histograms to unf,-norm as a probabilistic framework, allows the new data points, not

length. After preprocessing, the term-document matriR¢iuded in the training set, to be uniquely mapped in the

consist of 1405 email histograms described by 77g80del- Itis possible to select optimum model parameters:
terms. The data points are discrete and high dimensiogin X -connected graph in discrete data sets and the optimum
and the categories are not linearly separable. number of clusterg by minimizing the generalization error

4) Newsgroups.The collectiofi consist originally of 20 d€finéd by the equations (12) and (14).
categories each containing approximately 1000 news-IN 20 experiments, different training sets were generated,

group documents. In the performed experiments 4 c&nd the final error is an average over 20 outcomes of the

egories ¢omputer graphics, motorcycles, basebaiid algorithm on the same validation set. The left plot of figure
Christian religior) were selected each containing 20@ Presents the dependency of the generalization error as a

instances. The labels of the collection are selected baddfction of the kernel smoothing parameter averaged for

on the catalogs names the data was stored in. THk the model orders. The minimum is obtained for= 0.06.
data was processed in a similar way as that presenf:e%r that optimunt the model complexity is then investigated
above. In preprocessing 2 documents were renfovedfight plot of figure 2). Here, the minimal error is obtained for
After preprocessing the data consists of 798 newsgroﬁB 2, 3, 4 and 5 clusters and as the optimal solution 5 clusters

documents described in the space of 1368 terms. &€ chosen, which is explained in appendix .

For Gaussian clusters the cluster posteptt|z) is pre-

In the case of continuous space collections (Gaussian and . .
P ( ented on figure 3. Perfect decision surfaces can be observed.

Rings clusters) data vec_tors were normalized with its Maxs, comparison, on figure 4, the components of the traditional
mum value so, they fall in the range between 0 and 1. This
step is necessary when the features describing data points b=~ cusrer:
significantly different values and ranges. The normalizatic
to the unit £Lo-norm length was applied for the Email anci
Newsgroup collections. '
For Gaussian and Rings clusters the isotropic Gauss
kernel equation (16) is used. With discrete data sets (Em:

112)

2The Email database ia available at http://isp.imm.dtu.dk/staff/anna

3Stopword are high frequency words that are helping to build the sentence,
e.g. conjunctions, pronouns, prepositions etc. A list of 584 stopwords is used
in the experiments

4Stemming denotes the process of merging words with typical endings into
the common stem. For example for English language the endings like e.g.
-ed -ing, -s are considered.

5The Newsgroups collection is available at engp://kdd.ics.uci.edu/ Fig. 3. The cluster posterior valuggc|z) obtained from the aggregate
SReduction in term space (stopwords removing, stemming, etc. ) resultd@rkov model for Gaussian clusters. The decision surfaces are positive. The
with empty documents, which were removed from the data set. separation in this case is perfect.



CLUSTER 1 CLUSTER 2 CLUSTER 3

kernel PCA are presented. Here, both the positive and f
negative values are observed, which makes it difficult -
determine the optimum decision surface.

CLUSTER 1 CLUSTER 2 CLUSTER 3

Fig. 7. The components of the traditional Kernel PCA model for Rings
structure. The decision surfaces are both positive and negative.

in this case perfect (0/1) decision surfaces are observed (figure
6), which are the outcome of the aggregated Markov model.
The components of kernel PCA present, as in the previous
case, the separation possibility but with more ambiguity for
selection the decision surface.
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Fig. 4. The components of the traditional Kernel PCA model for Gaussi Email collection -
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clusters. The decision surfaces are both positive and negative. 0 2 6545 I
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Fig. 5. The generalization error as a function of smoothing paranteter
for 3 clusters formed in the shape of rings (left panel). The optimum choice
is h = 0.065. On the right figure the generalization error as a function of
number of clusters is shown for the optimum choice of smoothing parameter.
The error bars shows the standard error of the mean value.

The Ring data is a highly nonlinear clustering problentig. 8. Left upper panel presents the mean generalization error as a function
In the experiments, 600 examples were used for training ffrboth the cluster number and the k - cutoff threshold in the k-connected
. ! . . ' “graph for Emails collection. For clarity in made decision the selected cut off
generahz‘_"\t'()n 3000 validation set S?‘mples were generate_d_ holds (K=50 and K=100) are shown on the right plot. The optimal model
the experiments were repeated 40 times, with different trainiisghe choice ofK = 50 (50-connected graph) with 3 clusters. Lower figure
sets. The generalization error. shown on figures 5 is an averﬁggents the confusion matrix for labeling produced by the selected optimal
’ . . ' ' el and the original labeling. Only the small confusion can be observed.
over errors obtained in each of the 40 runs on the same
validation set and for all the model ordefs The optimum
smoothing parameter (figure 5, left plot) is equat= 0.065
and the minimum in generalization error is obtained for
clusters. As in the Gaussian clusters example, a smaller m
of 2 clusters is also probable

The generalization error for Email collection is shown in
ft plot of figure 8. The mean values are presented averaged
o 20 random choices of the training and the test set. For
training 702 samples are reserved and the rest of 703 examples
is used in calculation of the generalization error. Since, used
cuTER ) CLUSTER 2 CLUSTERS kernel is the cosine inner-product, thi€-connected graph
' is applied to set the threshold on the Gram matrix and
remain the dependency only between the closest samples. For
Email collection, the minimal generalization error is obtained
when using 50-connected graph with the model complexity
of 3 clusters. In this example, since the data categories are
, ) , overlapping, the smaller models are not favored as it was in the
Fig. 6. The cluster posterior valuggc|z) obtained from the aggregate i I dd Ri dG ian d |
Markov model for Rings. The decision surfaces are positive. The separatff)ﬁse_ orwe separat_e ata as Rings _an aU_SS'an ata sets. In
in this case is perfect. the right plot of the figure 8 the confusion maftis presented.
_ _ With respect to the labels it can be concluded thatsham
The cluster posterior for Rings data set and the kernel PG#nails are well separatefiy(5%) and the overlapping between
components are presented in figures 6 and 7, respectively. Also

8The confusion matrix contains information about actual and predicted
“The generalization error is similar for both 2 and 3 numbers of clusterglassification done by the classification system.




theconferenceandjob emails is only slightly larger. In general,leading to the possibility of selecting model order and para-
the data is well classified. meters. These virtues were not offered by the classical spectral
clustering methods like [1] and [15].

In the case of continuous data, it can be noted that the
quality of the clustering is directly related to the quality
of the density estimate. Once a density has been estimated
the proposed clustering method attempts to find modes in
the density. Also if the density is poorly estimated due to
perhaps a window smoothing parameter which is too large
then class structure may be over-smoothed and so modes
i may be lost, in other words essential class structure may not

be identified by the clustering. The same argument applies
to a smoothing parameter which is too small thus causing

Newsgroups collection Newsgroups collection
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. (. o . non-existent structure to be discovered. The same argument
can be made for the connectedness of the underlying graph
2 12 20 09 il connecting the points under consideration.

The disadvantage of the proposed model, in comparison
with considered classical spectral clustering methods, is the
4 sa 20 EEOH oo computational complexity which is larger. As the vectors
initializing the Gram matrix decomposition the eigenvectors
Fig. 9. Left upper panel presents the mean generalization error as a funcf® .u.sed, what ensu_res faster convergence and. better decom-
of both the cluster number and the k - cutoff threshold in the k-connect@Dsition outcome. It is, however, not necessary, in the case of
graph for Newsgroups collection. The error for selected K (10 20 30 40) \ge|| separated simple data sets.
shown on the right plot. The optimal model complexity is 4 clusters when ’
using 20-connected graph. Lower figure presents the confusion matrix for
labeling produced by the selected optimal model and the original labeling. APPENDIX
Only the small confusion can be observed. .

Y In case of the presented model the minimal values of the
%eneralization error are observed for all the model complex-
elges smaller or equal the correct complexity. It is noticed
H{By in the case of well separated clusters which is the
se of the presented examples. When perfect (0/1 valued)
ster posterior probability(c|z;) is observed, the probability
I the samplep(z;) is similar for both smaller and larger
(P]dels. It is true, as long as the natural cluster separations

the differences around the minimum are small compered to tﬁeebn%t_lip“t’f 'k')e'l as _Iongt; as thefs;l]mplle r:as IargeN((iIo:\e to1)
maximum values of the investigated generalization error. In tREOPabtl ylo | teongmgd 0 ?Ee Ot etc us ?idfz) ~LAS bl
right plot of the figure 8 the confusion matrix is presente@m exampie 1els consider the structure o inear separab’e

With respect to the labels it can be concluded that the d&Igsters. The generalization error 14 depends on the out-of-

is well separated and classified. The data points are, howe &J:nple kernel functioiC(z|x;), which is constant for various
\r/ﬁéues of the model parameterand the result of the Gram

more confused than in the case od email collection. In avera trix d itioP p Theref the level of
10% of each cluster is misclassified. atrix ecof“p‘?s' iorP (xyc) (Clxn)'. erefore, the level o .
Be generalization error as a function of model complexity

In order to perform the comparison of the aggregaté d d | h It of the G .
Markov model with the classical spectral clustering meth rameterc depends only on the result of the Gram matrix

as presented in [1] another experiment was performed, composition. In the presented case, for the correct, 3 cluster,

results of which are not presented in this paper due to spa’ﬁ?@r}lar'o thebclassf pcIJst?rlor takes the_:dbma(ljrytgll vatluefs. Whelzn
constraints. For both, continuous and discrete data sets, ust er number of clusters are considered, the out-ol-sample
both the Gaussian kernel and inner-product an investigatif) S posterior values are still binary asm the presented mode|
of the overall performance in classificatfowas made. It was it is enough that the out-of-sample is close to any of the

found, that both aggregated Markov model and the spectpaﬂining samples in the clusters and not to all of them. For

clustering model for selected model parameters did equaﬂ_1 re fﬁmplix mloo:elst thetcla?s pQSt‘;”OIZ 'S no I?”?Tr b":?ry’
well in the sense of miss-classification error. However, tha c€ 1€ natural cluster structure is broken, 1.e./ at feast two

spectral clustering model was less sensitive to the choice Qgsters are placed close to each other and the point assignment
smoothing parameter is ambiguous. Therefore, the generalization error values are

increased.

3 83.5 1.0 3.6 5.0

The generalization error for the Newsgroups collection
shown in the left plot of figure 9. For the training, 400 sampl
randomly selected from the set was used and the rest of
collection (398 examples) was designated for generalizatigﬁ
error. 40 experiments was performed and figure 9 displays th
mean value of the generalization error. The optimum mod@
has 4 clusters in model using 20-connected graph, even thou
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