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Abstract— Spectral clustering methods were proposed recently
which rely on the eigenvalue decomposition of an affinity matrix.
In this work the affinity matrix is created from the elements of a
non-parametric density estimator and then decomposed to obtain
posterior probabilities of class membership. Hyperparameters
are selected using standard cross-validation methods.
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I. I NTRODUCTION

The spectral clustering methods [1], [2], [3] are attractive
in the case of complex data sets, which possess for example
manifold structures, when the classical models such asK-
means often fail in the correct estimation. The proposed
models in the literature are, however, incomplete, since they
do not offer methods for the estimation of the model hyper-
parameters which have to be manually tuned [1]. The need
arises to construct a self-contained model, which would not
only provide accurate clustering but also which would estimate
both the model complexity and all the necessary parameters
for estimation. The additional advantage can also be provided
by the probabilistic outcome, where the confidence in the point
assignment to the clusters is given.

The kernel principal component analysis (KPCA) [4] de-
composition of a Gram matrix has been shown to be a
particularly elegant method for extracting nonlinear features
from multivariate data. KPCA has been shown to be a dis-
crete analogue of the Nyström approximation to obtaining
the eigenfunctions of a process from a finite sample [5].
Building on this observation the relationship between KPCA
and non-parametric orthogonal series density estimation was
highlighted in [6], and the relation with spectral clustering has
recently been investigated in [7]. The basis functions obtained
from KPCA can be viewed as the finite sample estimates of the
truncated orthogonal series [6], however, a problem common
to orthogonal series density estimation is that the strict non-
negativity required of a probability density is not guaranteed

when employing these finite order sequences to make point
estimates [8], this is of course also observed with the KPCA
decomposition [6].

To further explore the relationship between the decompo-
sition of a Gram matrix, the basis functions obtained from
KPCA and density estimation, a matrix decomposition which
maintains the positivity of point probability density estimates
is desirable. In this paper we show that such a decomposition
can be obtained in a straightforward manner and we observe
useful similarities between such a decomposition and spectral
clustering methods [1], [2], [3].

The following sections consider the non-parametric estima-
tion of a probability density from a finite sample [8] and relates
this to the identification of class structure within the density
from the sample. Two kernel functions, the choice of which
dependent on the data type and dimensionality, are proposed.
The derivation of the generalization error is also presented,
which enables the determination of the model parameters and
model complexity [9], [10]. The experiments are performed
on artificial data sets as well as on more realistic collections.

II. D ENSITY ESTIMATION AND DECOMPOSITION OF THE

GRAM MATRIX

Consider the estimation of an unknown probability density
functionp(x) from a finite sample ofN points{x1, · · · ,xN}
wherex ∈ Rd. The sample drawn from the density can be
employed to estimate the density in a non-parametric form by
using a Parzen window estimator (refer to [8], [9], [10] for
a review of such non-parametric density estimation methods)
such that the estimate is given by

p̂(x) =
1
N

N∑
n=1

Kh(x,xn) (1)

where Kh(xi,xj) denotes the kernel function of widthh,
between pointsxi and xj , which itself satisfies the require-
ments of a density function [8]. It is important to note that



the pairwise kernel function valuesKh(xi,xj) provide the
necessary information regarding the sample estimate of the
underlying probability density functionp(x). Therefore the
kernel or Gram matrix constructed from a sample of points
(and a kernel function which itself is a density) provides the
necessary information to faithfully reconstruct the estimated
density from the pairwise kernel interactions in the sample.

For applications of unsupervised kernel methods such as
KPCA the selection of the kernel parameter, in the case of
the Gaussian kernelh, is often problematic. However, noting
that the kernel matrix can be viewed as defining the sample
density estimate, then methods such as leave-one-out cross-
validation can be employed in obtaining an appropriate value
of the kernel width parameter. We shall return to this point in
the following sections.

A. Kernel Decomposition

The density estimate can be decomposed in the following
probabilistic manner as

p̂(x) =
N∑

n=1

p(x,xn) (2)

=
N∑

n=1

p(x|xn)P (xn) (3)

such that each sample point is equally probablea priori,
P (xn) = N−1, i.e. data is assumedindependent and iden-
tically distributed (i.i.d). The kernel operation, such that the
kernel is itself a density function, can then be seen to be the
above conditional densityp(x|xn) = Kh(x,xn).

The sample ofN points drawn from the underlying density
forms a set and as such we can define a probability space over
the N points. A discrete posterior probability can be defined
for a pointx (either in or out of sample) given each of theN
sample points

P̂ (xn|x) =
p(x|xn)P (xn)∑N

n′=1 p(x|xn′)P (xn′)

=
K(x,xn)∑N

n′=1K(x,xn′)
≡ K̆(x,xn) (4)

such that
∑N

n=1 P̂ (xn|x) = 1, P̂ (xn|x) ≥ 0 ∀ n and each
P (xn) = 1

N .
Now if it is assumed that there is an underlying, hidden

class/cluster structure in the density then the sample posterior
probability can be decomposed by introducing a discrete class
variable such that

P̂ (xn|x) =
C∑

c=1

P (xn, c|x) =
C∑

c=1

P (xn|c,x)P (c|x) (5)

and noting that the sample points have been drawn i.i.d from
the respectiveC classes forming the distribution such that
points are independent given the class variable i.e.xn⊥x | c,
then

P̂ (xn|x) =
C∑

c=1

P (xn, c|x) =
C∑

c=1

P (xn|c)P (c|x) (6)

with constraints
∑N

n=1 P (xn|c) = 1 and
∑C

c=1 P (c|x) = 1.
Considering the decomposition of the posterior sample

probabilities for each point in the available sampleP̂ (xi|xj) =∑C
c=1 P (xi|c)P (c|xj), ∀ i, j = 1, · · · , N we see that

this is identical to the aggregate Markov model originally
proposed in [11], where the matrix of posteriors (elements
of the normalized kernel matrix) can be now be viewed as
an estimated state transition matrix for a first order Markov
process. This decomposition then provides class posterior
probabilitiesP (c|xn) which can be employed for clustering
purposes.

A divergence based criterion such as cross-entropy
N∑

i=1

N∑

j=1

K̆(xi,xj) log

{
C∑

c=1

P (xi|c)P (c|xj)

}
(7)

or distance based criterion such as squared error

N∑

i=1

N∑

j=1

{
K̆(xi,xj)−

{
C∑

c=1

P (xi|c)P (c|xj)

}}2

(8)

subject to the constraints that eachP (xi|c) and P (c|xj) are
strictly positive and

∑N
n=1 P (xn|c) = 1,

∑C
c=1 P (c|x) = 1.

Due to these constraints which ensure that the decomposition
provides interpretable probabilities then a matrix factorization
which enforces positivity of the elements in the decomposition
is required. There has been a number of recent publications
which have proposed efficient methods for obtaining such
constrained matrix decompositions [12], [13] and as such the
non-negative matrix multiplicative update equations (NMF)
[12], [13] or equivalently the iterative algorithm which per-
forms Probabilistic Latent Semantic Analysis (PLSA) [14] can
be employed in optimizing the above criteria subject to the
required constraints.

If the normalized Gram matrix is defined asG =
{P̂ (xi,xj)} = K̆(xi,xj) then the decomposition of that
matrix with NMF [12], [13] or PLSA [14] algorithms will
yield G = WH such thatW = {P (xi|c)} and H =
{P (c|xj)} are understood as the required probabilities which
satisfy the previously defined stochastic constraints.

B. Clustering with the Kernel Decomposition

Having obtained the elementsP (xi|c) and P (c|xj) of the
decomposed matrix employing NMF or PLSA, the class poste-
riors P (c|xj) will indicate the class structure of the samples.
We are now in a position to assign newly observedout-of-
samplepoints to a particular class. If we observe a new point
z in addition to the sample then the estimated decomposition
components can, in conjunction with the kernel, provide the
required class posteriorP (c|z).

P̂ (c|z) =
N∑

n=1

P (c|xn)P̂ (xn|z) (9)

=
N∑

n=1

P (c|xn)K̆(z,xn) (10)

=
N∑

n=1

P (c|xn)
K(z,xn)∑N

n′=1K(z,xn′)
(11)
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This can be viewed as a form of ’kernel’ based non-negative
matrix factorization where the ’basis’ functionsP (c|xn) define
the class structure of the estimated density.

For the case of a Gaussian (radial basis function) kernel
this interpretation of a kernel based clustering motivates the
definition of the kernel smoothing parameter by means of out-
of sample predictive likelihood and as such cross-validation
can be employed in estimating the kernel width parameter.
In addition the problem of choosing the number of possible
classes, a problem common to all non-parametric clustering
methods such as spectral clustering [1],[15] can now be
addressed using theoretically sound model selection methods
such as cross-validation. This overcomes the lack of an objec-
tive means of selecting the smoothing parameter in most other
forms of spectral clustering [1],[15] as the proposed method
first defines a non-parametric density estimate, and then the
inherent class structure is identified by the basis decomposition
of the normalized kernel in the form of class conditional
posterior probabilities. This highlights another advantage, over
partitioning based methods [1], [15], of this view on kernel
based clustering in that projection coefficients are provided
enabling new or previously unobserved points to be allocated
to clusters. Thus projection of the normalized kernel function
of a new point onto the class-conditional basis functions will
yield the posterior probability of class membership for the new
point.

In attempting to identify themodel order, eg. number of
classes, a generalization error based on the out-of-sample
negative predictive likelihood, is defined as follow

Lout = N−1
out

Nout∑
n=1

log {p(zn)} (12)

whereNout denotes the number of out-of-sample points. The
out-of-sample likelihood (12) is derived from the decomposi-
tion in the following manner

p(z) =
1
N

N∑
n=1

p(z|xn) (13)

=
1
N

N∑
n=1

C∑
c=1

p(z|c)P (c|xn) (14)

The p(z|c) can be decomposed given the finite sample such
thatp(z|c) =

∑N
l=1 p(z|xl)P (xl|c) wherep(z|xl) = K(z|xl).

So the unconditional density estimate of an out of sample
point given the current kernel decomposition which assumes
a specific class structure in the data can be computed as the
following.

p(z) =
1
N

N∑
n=1

N∑

l=1

C∑
c=1

K(z|xl)P (xl|c)P (c|xn), (15)

where P (xl|c) = W and P (c|xn) = H are estimated
parameters.

C. Kernels

For continuous data such thatx ∈ Rd a common choice
of kernel, for both kernel PCA and density estimation, is the

isotropic Gaussian kernel

Kh(x,xn) = (2π)−
d
2 h−d exp

{
− 1

2h2
||x− xn||2

}
(16)

Of course many other forms of kernel can be employed,
though they may not themselves satisfy the requirements of
being a density. For example in the case of vector space rep-
resentations of text the standard similarity measure employed
is the cosine inner-product.

K(x,xn) =
xT xn

||x|| · ||xn|| . (17)

The decomposition of this cosine based Gram matrix directly
will yield the required probabilities.

Although, the cosine inner-product does not satisfy itself
the density requirements (

∫ K(x,xn) = 1) it can be applied
in the presented model as long as the kernel integral is finite.
This condition is satisfied when the data points are a priori
normalized, e.g. to the unit sphere and the empty vectors are
excluded from the data set. The density values obtained from
such non-density kernels provide the incorrect generalization
errors which are scaled by the unknown constant factor and
therefore can be still used in estimation of the parameters.

This interpretation provides a means of spectral clustering
which, in the case of continuous data, is linked directly to non-
parametric density estimation and extends easily to discrete
data such as for example text. We should also note that the
aggregate Markov perspective allows us to take the random
walk viewpoint as elaborated in [15] and so aK-connected
graph1 may be employed in defining the kernel similarity
KK(x,xn). Similarly to the smoothing parameter and the
number of clusters, the number of connected points in the
graph can be also estimated from the generalization error.

The following experiments and subsequent analysis provide
an objective assessment and comparison of a number of
classical and recently proposed clustering methods.

III. E XPERIMENTS

In the experiments we used, the four following data sets
described below.

1) Linear structure.Data set consist of five 2-dimensional
Gaussian distributed clusters with a spherical covariance
structure, shown in the left plot of figure 1 (left plot).
The clusters are linearly separable. This artificially cre-
ated data is used for illustration of a simple clustering
problem.

2) Manifold structure. Data set consist of three clusters as
shown in the right plot of figure 1. Clusters are formed
in the shape of rings all centered at the origin with radii
3, 5 and 8, respectively. The ring structure is a standard
example used in spectral clustering, for example [1], [2].
The data is 2 dimensional. This is given as an example
of complex nonlinear data on which methods such as
K-means will fail.

1The K-connected graph is performed by remaining the dependencies
between onlyK closest points.
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Fig. 1. The scatter plots of the artificial data for 5 Gaussian distributed
clusters (left figure) and 3 cluster ring formations (right panel).

3) Email collection.The Email data set2 consist of emails
grouped into three categories:conference, jobandspam,
used earlier in [16], [17], [18]. The collection was hand-
labeled. In order to process text data aterm-vector is
defined as the complete set of all the words existing
in all the email documents. Then each email document
is represented by ahistogram: the frequency vector of
occurrences of each of the word from a term-vector. The
collection of such email histograms is denotedthe term-
document matrix. In order to achieve good performance,
suitable preprocessing is performed. It includes remov-
ing stopwords3 and other high and low frequency words,
stemming4 and normalizing histograms to unitL2-norm
length. After preprocessing, the term-document matrix
consist of 1405 email histograms described by 7798
terms. The data points are discrete and high dimensional
and the categories are not linearly separable.

4) Newsgroups.The collection5 consist originally of 20
categories each containing approximately 1000 news-
group documents. In the performed experiments 4 cat-
egories (computer graphics, motorcycles, baseballand
Christian religion) were selected each containing 200
instances. The labels of the collection are selected based
on the catalogs names the data was stored in. The
data was processed in a similar way as that presented
above. In preprocessing 2 documents were removed6.
After preprocessing the data consists of 798 newsgroup
documents described in the space of 1368 terms.

In the case of continuous space collections (Gaussian and
Rings clusters) data vectors were normalized with its maxi-
mum value so, they fall in the range between 0 and 1. This
step is necessary when the features describing data points have
significantly different values and ranges. The normalization
to the unitL2-norm length was applied for the Email and
Newsgroup collections.

For Gaussian and Rings clusters the isotropic Gaussian
kernel equation (16) is used. With discrete data sets (Emails

2The Email database ia available at http://isp.imm.dtu.dk/staff/anna
3Stopword are high frequency words that are helping to build the sentence,

e.g. conjunctions, pronouns, prepositions etc. A list of 584 stopwords is used
in the experiments

4Stemming denotes the process of merging words with typical endings into
the common stem. For example for English language the endings like e.g.
-ed, -ing, -s are considered.

5The Newsgroups collection is available at e.g.http://kdd.ics.uci.edu/
6Reduction in term space (stopwords removing, stemming, etc. ) resulted

with empty documents, which were removed from the data set.

and Newsgroups) the cosine inner-product equation (17) is
applied.
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Fig. 2. The generalization error as a function of smoothing parameterh (left
panel) for 5 Gaussian distributed clusters. The optimum choice ish = 0.06.
The right figure presents, for optimum smoothing parameter, the generalization
error as a function of number of clusters. Here, any cluster number below or
equal 5 may give the minimum error for which the error values are shown
above the points. The optimum choice is a maximum model, i.e.K = 5 (see
the explanation in the text). The error-bars show± standard error of the mean
value.

The Gaussian clusters example is a simple linear separa-
tion problem. The model was trained using 500 randomly
generated samples, and generalization error computed from
2500 validation set samples. The aggregated Markov model,
as a probabilistic framework, allows the new data points, not
included in the training set, to be uniquely mapped in the
model. It is possible to select optimum model parameters:h,
K in K-connected graph in discrete data sets and the optimum
number of clustersc by minimizing the generalization error
defined by the equations (12) and (14).

In 20 experiments, different training sets were generated,
and the final error is an average over 20 outcomes of the
algorithm on the same validation set. The left plot of figure
2 presents the dependency of the generalization error as a
function of the kernel smoothing parameterh, averaged for
all the model orders. The minimum is obtained forh = 0.06.
For that optimumh the model complexityc is then investigated
(right plot of figure 2). Here, the minimal error is obtained for
all 2, 3, 4 and 5 clusters and as the optimal solution 5 clusters
are chosen, which is explained in appendix .

For Gaussian clusters the cluster posteriorp(c|z) is pre-
sented on figure 3. Perfect decision surfaces can be observed.
For comparison, on figure 4, the components of the traditional
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Fig. 3. The cluster posterior valuesp(c|z) obtained from the aggregate
Markov model for Gaussian clusters. The decision surfaces are positive. The
separation in this case is perfect.
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kernel PCA are presented. Here, both the positive and the
negative values are observed, which makes it difficult to
determine the optimum decision surface.
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Fig. 4. The components of the traditional Kernel PCA model for Gaussian
clusters. The decision surfaces are both positive and negative.
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Fig. 5. The generalization error as a function of smoothing parameterh
for 3 clusters formed in the shape of rings (left panel). The optimum choice
is h = 0.065. On the right figure the generalization error as a function of
number of clusters is shown for the optimum choice of smoothing parameter.
The error bars shows the standard error of the mean value.

The Ring data is a highly nonlinear clustering problem.
In the experiments, 600 examples were used for training, for
generalization 3000 validation set samples were generated and
the experiments were repeated 40 times, with different training
sets. The generalization error, shown on figures 5, is an average
over errors obtained in each of the 40 runs on the same
validation set and for all the model ordersc. The optimum
smoothing parameter (figure 5, left plot) is equalh = 0.065
and the minimum in generalization error is obtained for 3
clusters. As in the Gaussian clusters example, a smaller model
of 2 clusters is also probable7.
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Fig. 6. The cluster posterior valuesp(c|z) obtained from the aggregate
Markov model for Rings. The decision surfaces are positive. The separation
in this case is perfect.

The cluster posterior for Rings data set and the kernel PCA
components are presented in figures 6 and 7, respectively. Also

7The generalization error is similar for both 2 and 3 numbers of clusters.
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Fig. 7. The components of the traditional Kernel PCA model for Rings
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in this case perfect (0/1) decision surfaces are observed (figure
6), which are the outcome of the aggregated Markov model.
The components of kernel PCA present, as in the previous
case, the separation possibility but with more ambiguity for
selection the decision surface.
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Fig. 8. Left upper panel presents the mean generalization error as a function
of both the cluster number and the k - cutoff threshold in the k-connected
graph for Emails collection. For clarity in made decision the selected cut off
thresholds (K=50 and K=100) are shown on the right plot. The optimal model
is the choice ofK = 50 (50-connected graph) with 3 clusters. Lower figure
presents the confusion matrix for labeling produced by the selected optimal
model and the original labeling. Only the small confusion can be observed.

The generalization error for Email collection is shown in
left plot of figure 8. The mean values are presented averaged
from 20 random choices of the training and the test set. For
training 702 samples are reserved and the rest of 703 examples
is used in calculation of the generalization error. Since, used
kernel is the cosine inner-product, theK-connected graph
is applied to set the threshold on the Gram matrix and
remain the dependency only between the closest samples. For
Email collection, the minimal generalization error is obtained
when using 50-connected graph with the model complexity
of 3 clusters. In this example, since the data categories are
overlapping, the smaller models are not favored as it was in the
case of well separated data as Rings and Gaussian data sets. In
the right plot of the figure 8 the confusion matrix8 is presented.
With respect to the labels it can be concluded that thespam
emails are well separated (99.5%) and the overlapping between

8The confusion matrix contains information about actual and predicted
classification done by the classification system.
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theconferenceandjob emails is only slightly larger. In general,
the data is well classified.
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Fig. 9. Left upper panel presents the mean generalization error as a function
of both the cluster number and the k - cutoff threshold in the k-connected
graph for Newsgroups collection. The error for selected K (10 20 30 40) is
shown on the right plot. The optimal model complexity is 4 clusters when
using 20-connected graph. Lower figure presents the confusion matrix for
labeling produced by the selected optimal model and the original labeling.
Only the small confusion can be observed.

The generalization error for the Newsgroups collection is
shown in the left plot of figure 9. For the training, 400 samples
randomly selected from the set was used and the rest of the
collection (398 examples) was designated for generalization
error. 40 experiments was performed and figure 9 displays the
mean value of the generalization error. The optimum model
has 4 clusters in model using 20-connected graph, even though
the differences around the minimum are small compered to the
maximum values of the investigated generalization error. In the
right plot of the figure 8 the confusion matrix is presented.
With respect to the labels it can be concluded that the data
is well separated and classified. The data points are, however,
more confused than in the case od email collection. In average
10% of each cluster is misclassified.

In order to perform the comparison of the aggregated
Markov model with the classical spectral clustering method
as presented in [1] another experiment was performed, the
results of which are not presented in this paper due to space
constraints. For both, continuous and discrete data sets, using
both the Gaussian kernel and inner-product an investigation
of the overall performance in classification9 was made. It was
found, that both aggregated Markov model and the spectral
clustering model for selected model parameters did equally
well in the sense of miss-classification error. However, the
spectral clustering model was less sensitive to the choice of
smoothing parameterh.

IV. D ISCUSSION

The aggregated Markov model provides a probabilistic
clustering and the generalization error formula can be derived

9measured by the miss-classification error

leading to the possibility of selecting model order and para-
meters. These virtues were not offered by the classical spectral
clustering methods like [1] and [15].

In the case of continuous data, it can be noted that the
quality of the clustering is directly related to the quality
of the density estimate. Once a density has been estimated
the proposed clustering method attempts to find modes in
the density. Also if the density is poorly estimated due to
perhaps a window smoothing parameter which is too large
then class structure may be over-smoothed and so modes
may be lost, in other words essential class structure may not
be identified by the clustering. The same argument applies
to a smoothing parameter which is too small thus causing
non-existent structure to be discovered. The same argument
can be made for the connectedness of the underlying graph
connecting the points under consideration.

The disadvantage of the proposed model, in comparison
with considered classical spectral clustering methods, is the
computational complexity which is larger. As the vectors
initializing the Gram matrix decomposition the eigenvectors
are used, what ensures faster convergence and better decom-
position outcome. It is, however, not necessary, in the case of
well separated, simple data sets.

APPENDIX

In case of the presented model the minimal values of the
generalization error are observed for all the model complex-
ities smaller or equal the correct complexity. It is noticed
only in the case of well separated clusters which is the
case of the presented examples. When perfect (0/1 valued)
cluster posterior probabilityp(c|zi) is observed, the probability
of the samplep(zi) is similar for both smaller and larger
models. It is true, as long as the natural cluster separations
are not split, i.e. as long as the sample has large (close to 1)
probability of belonging to one of the clustersp(c|zi) ≈ 1. As
an example lets consider the structure of 3 linear separable
clusters. The generalization error 14 depends on the out-of-
sample kernel functionK(z|xl), which is constant for various
values of the model parameterc and the result of the Gram
matrix decompositionP (xl|c)P (c|xn). Therefore, the level of
the generalization error as a function of model complexity
parameterc depends only on the result of the Gram matrix
decomposition. In the presented case, for the correct, 3 cluster,
scenario the class posterior takes the binary 0/1 values. When
smaller number of clusters are considered, the out-of-sample
class posterior values are still binary as in the presented model
it is enough that the out-of-sample is close to any of the
training samples in the clusters and not to all of them. For
more complex models the class posterior is no longer binary,
since the natural cluster structure is broken, i.e./ at least two
clusters are placed close to each other and the point assignment
is ambiguous. Therefore, the generalization error values are
increased.
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