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Resumé

Denne afhandling omhandler detektion af tale i signaler der indeholder meget
forskellige typer støj. Dette problem kaldes ’VAD’ (for ’Voice Activity Detec-
tion’, dvs. ’detektion af taleaktivitet’). Signalerne best̊ar af segmenter af ren
støj og segmenter med b̊ade tale og støj i en additiv blanding. To forskellige
probabilistiske metoder implementeres for at løse VAD problemet. Den ene er
en metode baseret p̊a diskriminant funktioner, hvor et lineært netværk med ét
logistisk output trænes til at give sandsynligheden for tilstedeværelsen af tale i et
givet lydsignal. Den anden metode er baseret p̊a modellering af klasse-betingede
sandsynlighedstætheder, hvortil anvendes ICA (for ’Independent Component
Analysis’, dvs. ’Uafhængig Komponent Analyse’). Algoritmerne afprøves og
sammenlignes. De sammenlignes ogs̊a med en industri standard VAD algo-
ritme, nemlig den tilhørende ITU-T G.729B anbefalingen, og en anden VAD
algoritme. Resultaterne viser hvor afgørende vigtigt det er at tage typen af støj
med i betragtning for at opn̊a robust tale detektion, og at det for visse støjtyper
er muligt at opn̊a bedre resultater med de udviklede algoritmer.

Nøgleord: maskin læring, klassifisering, stemme aktivitet detektion, lineære
netværk, uafhængig komponent analyse, modtager operations karakteristika
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Abstract

This thesis deals with the detection of speech in signals that may contain very
different noise types, referred to as the ’Voice Activity Detection’ (VAD) prob-
lem. The signals consist of sections of noise only and sections of speech and
noise in an additive mixture; convolutive mixtures are not addressed. Two dif-
ferent probabilistic methods are developed to solve the VAD problem. One is a
discriminant-function based method in which a linear network with a single lo-
gistic output is trained to output the probability of speech presence from a given
sound signal. The other is based on modelling of class-conditional probability
densities, using Independent Component Analysis (ICA) methods. The algo-
rithms are tested extensively and comparisons are made between them. They
are also compared to an industry standard VAD algorithm, namely that of the
the ITU-T G.729B recommendation and one other VAD. The results show the
crucial importance of considering the type of noise present with the speech for
obtaining robust speech detection and that for certain noise types, performance
can be bettered with the developed VAD algorithms.

Keywords: machine learning, classification, voice activity detection, linear
networks, independent component analysis, receiver operating characteristics
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Chapter 1

Introduction

Speech signals take a very special place amongst all other audio signals. To
humans, they are not only special because they can be generated by themselves,
but most of all because they carry information. Even in this modern age, much
of the information that we receive comes in the form of speech. And most other
audio signals that we perceive do not carry any information as such. Indeed,
much would be classed as ’noise’ in everyday situations.

Because of this special significance of speech signals, much work has been done
in order to be able to automatically detect the presence of speech in noisy signals.
This is for instance the case with cellular phone networks, where modern (e.g.
GSM) phones actually stop transmitting if they detect the absence of speech,
allowing on average around 3 times as much traffic to be sent using the same
bandwidth1.

The term ’speech detection’ is often used interchangeably with the term ’Voice
Activity Detection’ or ’VAD’, even though ’voice activity’ may of course be
a variety of things other than strictly speech. In any case, the majority of
human voice activity could be called ’speech’ and the two terms are also used
interchangeably in this report. ’VAD’ is also used to refer to any algorithm or
system that is designed to detect speech, and then stands for ’Voice Activity
Detector’.

A closely related problem is that of speech enhancement, where the object is
to remove as much noise as possible thus ’cleaning’ the speech and making it
easier to understand. Depending on the approach, it may also be termed ’noise
reduction’.

While Automated Speech Recognition (ASR) is often the motivation for de-
noising or separating out the speech signal (see e.g. [27]), in the hearing aid
context it is also relevant purely for the purpose of producing cleaner speech for
the benefit of the hearing aid user.

Although this problem is not treated specifically in this report, it deserves
mention due to the close relation to the VAD problem, theoretically and algo-

1This goes by the name of ’Variable Transmission Rate’, ’DTX’ etc.
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rithmically.
The approach taken in this work for the development of VAD systems is a

probabilistic, machine-learning one. Such systems are able to give probabilities
of the presence of speech, and ’learn’ to do this correctly through ’training’ on
audio-signal examples.

The algorithms are implemented in Matlab2 and are compared with two other
VAD’s, namely a VAD described in [4] and an industry standard VAD, namely
that of the ITU-T G.729B recommendation (referred to as the ITU-T VAD ).
The VAD described in [4] will henceforth be referred to as the OTI VAD and
this is exclusively meant to designate the particular VAD described in [4].

1.1 Motivation

The VAD research field offers rich opportunities for applying machine-learning
methods, which is a motivation in itself.

A different motivation comes from the hearing aid industry, for which both
speech detection and speech enhancement are highly desirable goals. Persons
with hearing disabilities require significant enhancement in order to be able to
understand speech equally well as non-impaired persons ([25]).

In the context of hearing aids, a good VAD is useful for several purposes, for
instance controlling the signal processing of the hearing aid so that it adapts
to speech presence. The hearing aid can be put in ’comfort mode’ (full noise
reduction) when no speech is present and in ’speech mode’ (no noise reduction)
when speech is present. This principle is used in Oticon’s Adapto hearing aid,
where it is called ’VoiceFinder’.

The same principle can be extended regarding classification of audio signals
into other classes, so that the hearing aid can adapt to a range of sound envi-
ronments. For instance, if music is detected, the anti-feedback system present
in modern hearing aid ’s can be switched off so that the musical notes are not
destroyed. The present work in speech detection is a first step towards this
wider ’sound environment classification’ problem.

Finally, inspiration comes from the human ability for audio processing. The
ability of the human auditory system with respect to speech detection and -
enhancement is truly awe-inspiring and represents the ultimate bench-mark for
any VAD.

One might even hope to obtain some knowledge about audio processing that
can say something about the way humans might solve the same problems. This
can be very giving but is not an end in itself. The purpose of this project is not
to model a biological system but to solve a specific engineering problem.

2Code is available on CD or from the author (dj@imm.dtu.dk)
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1.2 Structure of the thesis

This thesis is organized into three parts. The first part provides the background
for the project itself as well as the probabilistic classification framework. This
covers the problem formulation, data material, and brief descriptions of proba-
bilistic classification and ’feature extraction’.

The second part describes the different methods that have been studied and
implemented to solve the speech detection problem. These can be grouped
into linear neural network and independent component analysis methods. Some
related work done by others is also mentioned.

The final part contains the experiments that have been carried out and dis-
cusses the results. This covers experimental setup, results for each method,
comparison of the methods and an overall discussion and conclusion.
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Chapter 2

Problem formulation

The objective of this work is to develop a speech detector that can classify
audio input correctly into 2 classes: a speech class (CV A) and a non-speech
class (CNV A, for ’no voice activity’).

Speech detection is a well known classification problem which may sound
simple but is difficult in practice. The difficulty is due to the great variety
of ”intrusion” signals (some of which might be naturally termed ”noise”) and
the variety of speech signals (male/female, different rate, pitch etc. of different
speakers).

There are several assumptions on the input signals that limit and focus the
objective of this work in speech detection.

2.1 Signal model

First, the input signal x(n) is assumed to be an additive mixture of a speech
signal and an intrusion signal:

x(n) = λss(n) + λii(n) (2.1)

This is the input signal model. Note that ’convolutive noise’ in which the
speech signal itself is distorted for instance due to reverberation is not addressed.

The signal symbols are in boldface, denoting vectors, as the input signal
typically is multivariate. For instance, x(n) could be a frequency line from a
spectrogram, or a time-domain section (a ’frame’) of a speech signal.

The basic premise is that x(n) is known and available, while s(n) and i(n) are
not. The scaling of each signal, λs and λi, are also unknown, as is the absolute
scaling of x(n). x(n) is the signal as it would be picked up by say a hearing aid
microphone.

The speech signal, s(n), is assumed to be made up of an alternating sequence
of active speech and pauses (between words or sentences or when no-one speaks).
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A further assumption is that - as in most real-life situations - the noise source
will almost never be completely absent at any given time, whereas the speech
signal will often be.

This means that the x(n) is at all times either noise only or a mixture of
speech and noise. In other words, λi is assumed to always exceed zero. This
assumption is made to comply with real-life listening situations, where there is
always at least some noise.

2.2 The Signal-to-Noise Ratio measure

The Signal-to-Noise ration or SNR is a traditional measure of the relative levels
of ’signal’ to ’noise’ in a mixture of the two, as determined by λs and λi.

The ’signal’ in ’SNR’ is any signal that is a target signal while the ’noise’
is anything that is seen as an interference in a given application. In the VAD
context, the target signal is speech and anything else is noise. The SNR is then
defined as

SNR = 10 log10

Ps

Pn
(2.2)

where Px is the power of signal x, defined as

Px = lim
N→∞

1
2N + 1

N∑

n=−N

|x(n)|2

For the signals generated for this project, N is sufficiently large to give a
reliable SNR measure.

The SNR is thus measured on a logarithmic scale. It is simply one way of
quantifying the relative levels of signal and noise. It also has the intuitively
nice properties that it is equal to 0 only when the power of signal and noise are
equal, is positive when the signal is stronger than the noise and negative for
vice versa.

For the mixtures to be used for this project, only SNR’s between of 0 and 10
are used. The reasons for this are as follows. SNR less than 0 is uninteresting,
as even humans have trouble detecting speech at these SNR’s anyway and the
signal is so noisey that for most intents and purposes it would be useless to class
it as speech. Therefore, anything less than SNR 0 can be classed as belonging
to CNV A a priori. SNR’s higher than 10 are uninteresting for another reason,
namely that even extremely simple detection systems will perform well for these
signals. Thus it is the range from 0 to 10 that poses the relevant challenge. The
focus is on the edges of this area, namely SNR 0 and SNR 10.

Many of the experiments done in this project are very time consuming, so it
is necessary to choose as few SNR’s as possible in order to be able to do as many
different experiments as possible. With the choice made, noisy speech files can
be pre-stored etc., speeding up experimental work.
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2.2.1 Segmental SNR

The SNR measured on a long signal consisting of a mixture of speech and some
noise signal will be strongly affected by the parts of the signal where speech is
absent, likely resulting in an under-estimate. A better measure is the ’segmental
SNR’. This is simply an SNR measured only over those samples that actually
contain the target signal, i.e. speech, ignoring pauses:

SNRseg = 10 log(
Ps′

Pi′
) (2.3)

where Ps′ is the power of the speech signal excluding pauses and Pi′ is the
power of the intrusion signal, also ignoring those parts that overlap speech
pauses. If not otherwise specifically stated, ’SNR’ henceforth refers to this
measure.

2.3 VAD Requirements

Several requirements are desired to be met in the implemented systems, mostly
originating from the hearing aid context.

2.3.1 Time constraints

The classification of the input signal should not take longer than 200 ms. This
is so that a hearing aid can take action corresponding to the VAD signal fast
enough that the hearing aid user is not discomforted.

Whether or not the classification is done on a sample-by-sample basis, or on
a frame basis is not important, as long as this time constraint is met.

2.3.2 Robustness to noise

The speech detector should be robust to a wide range of Signal-to-Noise Ratios
and to several different types of noise. While many articles on voice activity
detection do operate with varying SNR, some only consider (typically) white,
Gaussian noise (e.g. [24]) while others also consider different noise types, e.g. [5].
White, Gaussian noise refers to signals whose samples in the time-domain are
independent (white) and where each sample is normally distributed (Gaussian).

Although these types of signals are found in real-life situations, many everyday
noise types are extremely dissimilar to white Gaussian noise.

2.3.3 Computational speed

This is not a main requirement, as the implemented systems are not intended
to be directly useable in a physical system, such as a hearing aid. However, it
is still preferable to consider computational speed in any VAD design choice, as
the hearing aid platform is a potential target for future implementation.
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2.4 Terminology

Speech detection is interchangeably referred to as VAD. ’Detection’ and ’classi-
fication’ is likewise used interchangeably.

’VAD signal’ is used both of the signal containing the true description of the
class of each frame or sample, and also for the estimated output from a classifier;
the context determines the specific meaning.
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Chapter 3

Data

This chapter describes the data used for all experiments. This involves both
speech and noise data, the mixing of the two, splitting into segments and the
correct class labelling of these segments.

3.1 Speech

Since the class of signals referred to as ’speech’ can be very diverse, a definition
will be given of the class as used here for the target signals of this project.

The speech data is made up of both male and female (adult) speech, in equal
proportions. Only ’normal’ speech is targeted. This excludes all other forms of
voice activity, such as whispering, singing and screaming.

3.2 Characteristics of speech

To humans, speech is a very characteristic audio signal. This may partly be
because our audio perception is finely tuned to this particular class. But even
just looking at a spectrogram of speech convinces of the unique characteristics
of speech compared with other audio signals - see figure 3.1.

These observations of characteristics form the basis for deciding how to pro-
ceed with the first steps towards designing a VAD.

3.2.1 Voiced and unvoiced speech

An obvious distinction is between ’voiced’ and ’unvoiced’ speech. Voiced speech
mainly occurs when uttering vowels, while unvoiced speech refers to most con-
sonants (such as the ’s’ in ’say’). The former consists (in the spectral domain)
of small repeating patterns (’pitch lines’), especially at frequencies lower than 4
kHz, while unvoiced speech is more similar to white noise.

The voiced segments last up to 400 ms while the unvoiced segments are typ-
ically around 100-200 ms.
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Figure 3.1. Spectrogram of a female speaking the sentence ’She had your dark suit and greasy
wash-water all year’ without any noise (TIMIT)

3.2.2 Frequency modulation

As time progresses, there is a characteristic frequency modulation whereby the
horizontal stripes in the spectrogram (see figure 3.1) move slightly up and down.

3.2.3 Harmonic relations

For voiced speech, there is a rather precise ’harmonic’ relation between the
frequency peaks or stripes. The first peak has a frequency called the ’first
formant’ or ’F0’ somewhere between 150 and 200 Hz, and all other peaks are
located at F0 plus multiples of F0.

3.2.4 Unvoiced speech

Unvoiced speech drops of at frequencies higher than 8 kHz and also at frequen-
cies lower than 3 kHz. Thus it does cover not all frequencies (as e.g. white
Gaussian noise).

3.2.5 Common onset

Both voiced and unvoiced speech are seen to have a certain time-frequency
appearance with common onset across many frequencies.
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3.3 Audio sources

There are several so-called speech and noise ’corpora’ that are available both
commercially and free. They differ widely in intended purpose and content.

The ’Aurora’ database1 is one of the most widely used speech corpora. How-
ever, it only contains spoken digits (’one’, ’two’ etc.), not sentences. The corpus
that was used for this project was instead the TIMIT clean speech corpus which
contains a great amount of very varied speech, which is exactly what is needed
for this VAD work.

3.3.1 TIMIT clean speech corpus

The TIMIT clean speech database, hereafter referred to as TIMIT, is an acoustic
and phonetic speech corpus that has been put together for evaluation of speech
processing systems [11].

It is used for the generation of all speech samples in this project.
The version of TIMIT available for this project contains 10 different sentences,

spoken by 382 men and 159 women, although for a few speakers, fewer sentences
are available2. All speakers speak the same 10 sentences.

Each sentence contains continuous speech, but a few pauses are also marked
in some sentences (also depending on the speaker). Each sentence last around
2-4 seconds.

The sampling frequency is 16 kHz.
Background noise level differs widely between recordings, but is so low as to

be negligible and the ’clean speech’ label is wholly justified.

3.3.2 Phonemes

Phonemes are the ’building blocks’ of speech - they are the semi-stationary
segments that make up each spoken word. In order to distinguish between
voiced and unvoiced speech, it is necessary to examine the speech signals at the
phoneme level.

Details of TIMIT processing (phoneme extraction etc.) can be found in ap-
pendix A.

3.3.3 NOISEX

This is a database of noise audio signals. It contains a realistic babble clip. But
the clip is so short, that it was decided to create babble from TIMIT instead in
the interest of variety.

This was done by mixing several layers of TIMIT speakers, each layer consist-
ing of several people speaking simultaneously. The result sounds very similar to
the NOISEX babble.

1http://www.elda.fr/proj/aurora.html
2This is a technical issue dealt with by the custom-written extraction software
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3.4 Intrusion signals

Most realistic audio signals are highly non-stationary (i.e. statistical proper-
ties vary with time). Therefore, the intrusion signals used here are also non-
stationary, although white Gaussian noise is also used.

The types of noise used were chosen because they occur in normal everyday
situations and have very different characteristics.

It is important to use a variety of different sounds to train and test the
classifiers on for at least two reasons. One is that the system will otherwise
be fitted to a relatively small set of sounds that are unrepresentative of real
life and thus unable to cope with real life situations. The other - and main -
reason is that it is desirable to discover just how much the noise type effects the
performance of the system.

The types of noises mixed with the speech that is to be detected may be even
more important than the SNR for determining the performance of the VAD. For
instance, the G.729 standard VAD was shown in [29] to be rather ’overfitted’ to
white noise environments and having serious trouble with vehicle- and babble-
type noise.

3.4.1 White noise

This is simply a signal where each sample is identically normally distributed
and is statistically independent from all previous and following samples. Each
sample is drawn from the following distribution:

p(x) =
1√

2πσ2
exp

(
−1

2
(x− µ)2

σ2

)
(3.1)

where σ2 is the variance of the signal and µ is the mean. For the signals used
here, the variance was set to 1 and the mean to zero.

Figure 3.2 shows the same sentence as before (figure 3.1) mixed with white
noise at SNR 0.

3.4.2 Traffic noise

This was designed by combining a random section from a recording from the
inside of a volvo car with a recording of highway traffic, at different relative
amplitudes for each of 100 30-second sound clips. To this were added shorter
recordings of a traffic jam and a helicopter fly-by, also at random relative am-
plitudes and at random time points. This produced 100 30 second clips with
certain similarities, but no clip was identical.

Traffic is generally very low-frequency, so it is relatively inaudible at a given
SNR compared to e.g. white noise. This leads to an intuitive expectation
that perhaps traffic noise will be the easiest noise to detect speech in, but the
dominance of low frequencies (similar to speech) perhaps makes up for this in
difficulty.
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Figure 3.2. Spectrogram of a female speaking the sentence ’She had your dark suit and greasy
wash-water all year’ in white noise at SNR 0 (TIMIT).

Figure 3.3 shows the same sentence as before (figure 3.1) mixed with traffic
noise at SNR 0.

3.4.3 Babble

’Babble’ is a term used to describe ’noise’ consisting of many people speaking
simultaneously. ’Many’ is meant here to mean enough that it is very hard to
make out any particular sentence being spoken. A typical real-life situation
where this is found is in crowded restaurant environments.

Figure 3.4 shows the same sentence as before (figure 3.1) mixed with babble
noise at SNR 0.

Babble is clearly the worst noise type of all, as it consists of a mixture of
signals of the target signal class(!).

3.4.4 Transients

It is highly desirable that the VAD should be robust to transient noises, such as
”clicks” occurring at frequencies roughly corresponding to the fastest syllabic
rate, i.e. the rate at which speakers produce phonemes, which is around 5 Hz.

Therefore, clips were created from the ’clicks.au’ file from the ”Martin Cooke
100” data set. This was done by re-sampling each short click sequence and
stringing them together so as to produce 30 second clips consisting of short
click-sequences of individually (slightly) varying frequency.
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Figure 3.3. Spectrogram of a female speaking the sentence ’She had your dark suit and greasy
wash-water all year’ in traffic noise at SNR 0 (TIMIT). Note the dominance of the low frequencies,
similar to speech.
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Figure 3.4. Spectrogram of a female speaking the sentence ’She had your dark suit and greasy
wash-water all year’ in babble noise at SNR 0 (TIMIT). Note the nearly complete degeneration of
the target speech signal.
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Figure 3.5 shows the same sentence as before (figure 3.1) mixed with this
’clicks’ noise at SNR 0.
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Figure 3.5. Spectrogram of a female speaking the sentence ’She had your dark suit and greasy
wash-water all year’ in ’clicks’ noise at SNR 0 (TIMIT).

3.5 Combining speech and noise

Construction of the data set was done by combining speech and noise. For each
type of noise (white, traffic, clicks and babble), a set of data was created for
each choice of mean SNR

Speech was constructed into artificial ’conversations’, so that each clip of
30 seconds contains 3 different TIMIT persons speaking interchangeably. A
random delay (uniformly distributed from 0 to 2 seconds) was inserted between
each sentence. This was done as a natural way of introducing realistic variation.
Thus each 30-second clip is unique.

100 30-second clips were generated for each combination of speech, noise and
SNR. These clips are of course also individually unique.

Each 30-second clip then contains 480.000 samples (at 16 kHz).
The compensatory effect caused by speakers changing their speaking style due

to the presence of noise (known as the ’Lombard effect’ ([7]) can of course not
be taken into account with this form of synthetic data. It would naturally have
had some effect on the results, but probably on a very small scale.
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3.6 Preprocessing

Real-life audio data, such as that received by a hearing aid, is extremely dy-
namic. The sound environment can change abruptly such as while a person is
listening to a distant speaker, a nearby person speaks directly into that person’s
ear. This corresponds to changes in λs and λi in 2.1.

In practice, the analog-to-digital converter of the physical VAD platform (e.g.
a hearing aid) has a limited range and resolution. Therefore, the input signal
must somehow be normalized in amplitude. To do this, estimates of the signal’s
mean and variance are required, µ̂ and σ̂. One way of doing this if based on
recursive estimation, requiring only the current sample for estimation together
with the estimate of the previous sample. This method is detailed in chapter
B. A single parameter, λ, then controls how quickly the variance- and mean
estimates adapt to changes in the actual signal.

With λ chosen to be 0.75, a reasonable adaptation speed is achieved. The
adaptation must not be so fast as to distort single sentences, but should on the
other hand not be too slow and able to adapt quite fast to sudden amplitude
changes.

All data was then amplitude normalized in this way. Results are shown in
figures 3.6 to 3.9. From the last figure, it is evident that any VAD relying too
simply on signal energy will suffer greatly from the effects of normalization.
This is only desirable, since the goal is to design a VAD that is robust to noise.

Normalization does not change the segmental SNR of the signal, as the speech
and noise are scaled together.
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Figure 3.6. A segment of speech with the estimated variance signal (top) and the resulting
normalized signal (bottom)
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Figure 3.7. A close-up of a part of the signal where the un-normalized variance changes rather
abruptly (above) together with the estimated variance. Bottom: the signal is (quickly) normalized
but not degenerated.
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Figure 3.8. Normalization over blocks instead of single samples. The resulting normalized signal
is shown in the bottom part.
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Figure 3.9. Spectrogram of an unnormalized (top) and a normalized speech signal (white noise
at SNR 10). Note the strong effect of the normalization.

With this normalization scheme, ’clipping’ will occur on abrupt amplitude
increases, meaning that the signal amplitude will exceed the range of the physical
system. However, this is not a consideration for this project. The key point with
normalization is that it provides realistic signals that are tough to classify in a
robust way.
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Chapter 4

Probabilistic Classification

Classification problems can be approached in many ways. Here, a probabilistic
approach is taken. A detailed description of theory and techniques can be found
in [3], and only a short review of the most relevant issues as they pertain to the
implemented system will be given here.

The basic goal of probabilistic classification is to map an input signal x to an
output or outputs, namely the probability that x belongs to any given class Ck,
P (Ck|x). This is called the posterior probability of class membership since it is
based on a given input signal.

In the present case, only one particular class is interesting, namely the class
of audio signals that contain speech, as defined in chapter 3, called CV A. Since
x either contains speech or it does not, it must hold that

P (CV A|x) + P (CNV A|x) = 1 (4.1)

where CNV A jointly represents all other classes of audio signal that do not
contain speech. Therefore, it is only necessary to consider P (CV A|x).

From Bayes’ rule we have that

P (Ck|x) =
p(x|Ck)P (Ck)∑
j p(x|Cj)P (Cj)

(4.2)

which means that P (Ck|x) can be found from p(x|Ck) and vice versa. p(x|Ck)
is the distribution of x given that it belongs to class Ck. Note that capital P (·)
refers to probabilities while lower-case p(·) refers to a probability distribution
(Ck are discrete while the x are real-valued).

This is the starting point of probabilistic classification and means that there
are two main approaches for proceeding, namely trying to learn P (Ck|x) directly
or learning p(x|Ck) and then deriving the target, P (Ck|x), from that (which
requires an estimate of P (Ck)). Note also the significance of P (Ck) which is the
prior probability of class k, i.e. the probability that x will belong to Ck before
x is observed. If the prior probability of any class is high, then that class will
have an increased P (Ck|x) for any given input, x.
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Learning P (Ck|x) directly for each class is sometimes referred to as a dis-
criminative function based approach. This is due to that having P (Ck|x) for
each class is sufficient information to discriminate between them - e.g. choose
the class with the highest P (Ck|x). In the present case of only one class begin
sufficient for classification, this term is somewhat less meaningful but can still
be used to refer to the particular approach.

The mapping from input to output (x to P (Ck|x)) can be seen as a parame-
terized function:

P (Ck|x) = P (Ck|x, θ) (4.3)

with θ being the parameters. If p(x|Ck) is the target, then this can similarly
be seen as:

p(x|Ck) = p(x|Ck, θ) (4.4)

Then, in practice, there are two different tasks to be undertaken: inference
and decision making. The first of these is concerned with learning the parame-
ters of the mapping from a training data set. This contains ’true’ input-output
pairs, i.e. for each input the correct output is known.

Decision making then corresponds to 4.3 and 4.4 where x is some new input,
the parameters θ are those that have been found in the inference step, and
P (Ck|x) (using 4.2 in the case of 4.4) is then an estimate of the probability that
x belongs to class Ck. This estimate may be referred to as a ’decision’. For
these decision to be ’good’ for never-before-seen data (i.e. x is not identical to
any input in the training set, which will be typical for high-dimensional data),
the system must have the ability to generalize. This means that the inference
step is not about memorizing the training data set but to infer parameters that
can be used to obtain correct outputs for new data. This requirement has many
implications, one being that that the number of training data should preferably
greatly exceed the number of parameters, i.e. the dimensionality of θ.

4.1 Inference

The goal of training the system is to obtain a set of parameters θ that are able
to generalize, i.e. produce correct outputs for new inputs.

To achieve this, the parameters are trained on the training data set that
contains the necessary input-output pairs. During training, the parameters are
progressively changed to reduce the classification error.

For this, some sort of error function is needed first of all to measure the current
classification error which is a function of the network output y - representing
P (Ck|x), the input x and the known (correct) output or target, t. Typically, the
error function is chosen so that minimizing it lead to the maximum likelihood
solution, i.e. the parameters are chosen so that the likelihood of the training
data set is maximal.
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On a side note, in what is sometimes referred to as ”Bayesian” decision mak-
ing, no specific choice of a single model is made. Instead, the uncertainty about
the parameters is taken into account by including prior distributions on these
and then integrating them out:

P (Ck|x) =
∫

θ

P (Ck|x, θ)p(θ)dθ (4.5)

However, this is a completely different approach and is not treated further
here.

4.2 Generalization and overfitting

If a system is too complex, meaning that too many parameters (θ) are available,
it is possible to learn too much, so to speak, from the training data set. In fact,
with enough parameters, the mapping can actually be a memorization, and
nothing has really been learnt. On the other hand, if the system is too simple
(few parameters), it will not be able to learn the properties of the data that
are necessary in order to be able to generalize the decisions to new data. This
is sometimes referred to as the bias and variance tradeoff, for reasons discussed
(at length) in [3]. The main reason for all this is that the data are stochastic,
consisting of an underlying structure - that the system should learn - and some
additional noise, that it should not learn.

There are numerous ways of reaching some sort of balance in this tradeoff.
These include the ’forward selection’ and ’backwards elimination’ of classical
statistics. There, each parameter is tested to see if it should be included or
excluded, and the number of parameters is set in a (in some variants) somewhat
heuristic manner.

Another way is to employ a second data set called a validation set. Then,
several different mappings, increasingly complex, are trained on the same train-
ing set. After training, the error is then measured on the validation set. The
system that performs best on the latter is then chosen as the best one. It is
generally found that a certain complexity is optimal for the type of data and
problem at hand.

Of course, this suffers from overfitting to the validation set, but since there
is only one ’meta’ or ’hyper’ parameter (how many parameters to include in θ),
this is usually not a problem (although it pays to keep the issue in mind).

A principled way of exploring possible architectures using the validation set
approach is to either grow a system or to prune one. In growing, the simplest
possible network is selected to begin with, and this is then gradually made more
complex. In pruning, the most complex network is selected first, and this is
then gradually reduced in complexity.

For these ideas to be implemented, two things are needed. First, at method of
either growing of pruning and second, a criterion for determining which network,
i.e. level of complexity, is optimal.
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The specific ways chosen to do this are covered in chapter 9 which deals with
a particular type of mapping, namely ’linear networks’, where selection of a
system architecture (complexity) is necessary.

4.3 Thresholding

If a binary decision is required, P (Ck|x) can be thresholded to produce one
simply as

Bn =

{
0 if P (Ck|x) < t,

1 if P (Ck|x) ≥ t
(4.6)

where t is a threshold value, 0 ≤ t ≤ 1.

4.4 Targets

The targets, t, need not be binary (0/1). They may represent the probability
that x belongs to a certain class (’soft targets’). This is relevant for the present
systems that classify on a frame basis. Here, one classification decision is made
for several time-domain samples, each having a corresponding true, binary CV A

value. Therefore, a frame target is used instead that is the fraction of samples
in that particular frame that belong to CV A. This is not a crucial issue, since
most frames are either all 1 or all 0 (due to being very short in time).
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Chapter 5

Feature extraction

The term ’feature extraction’ refers to the process of transforming the input
signal in some way in order to obtain one or more of the possible goals described
in the following. This can be seen as a mapping from the original - in this case
time-domain - space to ’feature’ space. A key fact to keep in mind here is
that this transformation can not create any new information but it can ’get
rid of’ some (for the present classification problem) useless information that is
part of the information content of the input signal. [6] provide an interesting
method based on ’conditional mutual information’ for designing efficient feature
combinations in a principled way.

Feature extraction is the first step in the classification pathway. The raw
signal x is transformed by the feature extraction in order to extract useful
information etc. The raw signal may of course also be kept, which is the special
case of the feature extraction being a unity transformation.

Several different features may be ”simultaneously” extracted. Again, infor-
mation is discarded - the trick is to discard information that is not helpful or
relevant for the discriminator to do it’s job.

The most relevant features to extract depend on the current context. Thus,
a system with feedback from the decision maker to the feature extractor is
conceivable, although not trivial to design. This would be a ’doubly adaptive’
system, able to learn the mapping from features to output and also to deduce
from the output what the current optimal features should be. In a hearing aid
context, this could be applied by having a complete ’Environment Detection’
system looking for say music- and speech-sensitive features if the output was
currently consistent with that type of environment. However, this line of thought
is not pursued further.

The only way to find out which features are (the most) useful is through
experimentation, that is measuring the performance of the classifier.
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5.1 Reduction of dimensionality

With x having an increasing number of dimensions, exponentially increasing
numbers of data points are needed to ’cover’ the input space, providing sufficient
examples of input to learn from. For instance, with 36 dimensions, 3000 data
points only amount to 1.25 points per dimension. This phenomenon is often
referred to as the ’curse of dimensionality’.

This requirement for data is the reason why it is generally desired to work
with as few dimensions as possible (e.g. reducing input dimensionality through
principal component analysis or other techniques) and also to use learning struc-
tures that have strong generalization capabilities, so that they can perform well
even if trained only on scarce data.

One purpose of feature extraction can be seen as the reduction in dimension-
ality of the raw input, x.

Of course, this would also generally lead to an decrease in computational
speed, which is always desirable.

5.2 Concentration of information

By utilizing prior knowledge, it is possible to extract features that are known
to contain ’concentrated’ information that is helpful for solving the problem at
hand. In fact, the ideal feature is a one-dimensional signal that is identical to
P (Ck|x)(!) - but this is bending the concepts. In practice, the features should
contain as much relevant and as little non-relevant information as possible and
the following classifier will use these to get to an estimate of P (Ck|x).

5.3 Post-processing of features

There might be some benefit in applying some processing after the features have
been extracted. In [26], all features are transformed by taking their logarithm.
This is done to improve their spread but also to make them conform better
with a normal distribution, which was necessary for that application. One
consideration should always be that of normalization. Even though the raw
input signal has been normalized, there is no guarantee for the scaling etc. of
the resulting feature signals. In the present case, using the cross-correlations
of filterbank outputs as features, these were not found to either so large or so
small as to give numerical problems, so they were not ’re-normalized’. Another
consideration is the relative scaling between the features, but since the features
in the present system were input to an adaptive system able to re-scale each
feature appropriately itself, this was not an issue.
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5.4 Derived Features

Infinitely many features can be derived from each feature extracted from the
signal. Complexity depends on how high-level the derivation is. E.g. a peak
detection algorithm on a spectrum can be quite costly.

5.5 Time-derivatives

Time-derivatives can be calculated for any feature that operates on windows
over the signal. This is a fast operation and should probably be considered for
all features.

Higher-order time derivatives can of course also be calculated, but at expo-
nentially increasing computational cost.

5.6 Statistical moments

Taking the mean of a feature over (a certain length of) time is simply a smooth-
ing operation.

The variance of a feature may be more discriminative than the feature itself
or its mean (see [26]).

Covariance between features could possibly reveal something useful.
Higher-order moments could also be calculated, although in practice one

would have to stop at say order 3.

5.7 Auto- and crosscorrelation

These are 2nd order statistic. They could be carried out on the the ’raw’ input
signal or on any other feature or set of features. The autocorrelation can be
used to find periodicities and is sometimes used for pitch tracking.

Cross-correlation is also sometimes used as a ’grouping cue’ (used to attribute
low-level features to higher order objects, such as a sound source) in Computa-
tional Auditory Scene Analysis (CASA).

5.8 Specificity of features

Some features are explicitly designed to hide and remove characteristics of the
signal that are not relevant to a specific task. For instance, according to [30], the
MFCC (see appendix E) - by smoothing the time-frequency image in a certain
way - hide and remove some signal characteristics that might be relevant for
other tasks outside the speech domain.

Figure 5.1 shows a diagram of the basic classification systems (see also the
previous chapter). From the input signal x, some features f are extracted. These
are then either input to a ’direct’ classifier, yielding P (C|f) (top of figure). They
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may also be given to a modeler (of the class-conditional probability distribution)
and then also (indirectly) give P (C|f). Learning the parameters (both the
classifier (’CL’ in the figure) and the modeler (’PM’) are parameterized) is done
iteratively, adapting the parameters throughthe use of error functions (’EF’)
and the correct probability of class membership (t). The output might also be
thresholded to produce a binary signal (not shown).

Figure 5.1. Top: direct classification. Bottom: classification through modelling of the class-
conditional probability distribution. Dashed arrows are only used during learning (inference).
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Chapter 6

Use of prior knowledge

A unifying trait of all approaches to solving classification problems is the appli-
cation of prior knowledge about the problem domain. For instance, in speech
detection, the knowledge about the characteristics of speech has given rise to all
kinds of features that can be extracted from speech signals, that are designed
to ’capture’ such characteristics, in order to facilitate classification.

6.1 Selection of features

The feature extraction process seen as a transformation of the input signal
clearly has great potential. One way of loooking at this is that a non-linear
transformation might transform data that is not linearly separable into some-
thing that is. Usually, however, a ’battery’ of features is chosen where each has
some potential for capturing a particular characteristic of the target class.

Whatever features one would like to use for their known discriminative power
prior, one must be careful of the amount on computation spent on extracting
them. This should be compared with the ”unsupervised extraction” alterna-
tive, namely giving the decision maker (say, a multi-layer perceptron) access to
enough ”raw” input to learn appropriate features itself. Such a decision maker,
being highly flexible and trained to classify in the best manner possible, might
learn to extract even stronger information than a time-consuming (in design-
and extraction time) manually designed ’super’ feature extraction.

So, as a general rule, feature extraction should be kept on the simple side. It
must be remembered that the feature extraction must be performed even during
decision making on each incoming data point x.

6.2 Division into sub-classes

If the target class is known to be divisible into sub-classes, then there is a
simple way of taking advantage of this knowledge. A separate classifier is simply
designed for each sub-class, and these can be trained (inferred) separately. In
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decision making, the outputs of the classifiers can be compared, and the one
with the highest P (Ck|x) estimate can be chosen over the others (assuming the
classes are mutually exclusive).

This concept is nicely applicable to the speech domain, where the voiced
and unvoiced are distinct and mutually exclusive (speech is either voiced or
unvoiced). Potential difficulty with these particular classes lies in that voiced
speech is easily perceived as speech, while unvoiced is not - typically resembling
simply noise when heard in isolation.
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Chapter 7

Survey of Methods

7.1 Introduction

This chapter discusses and describes some of the options for designing a VAD.
These options regard the area of probabilistic classification methods, but also
the feature extraction step. Most VAD’s can generally be described as being
a combination of a certain choice of feature extraction method and a certain
choice of classification method.

A good VAD can be designed by extracting ’strong’ features, putting together
a powerful learning system (e.g. a multi-layer perceptron or other non-linear
methods) or a combination of both.

Each algorithm corresponds to a certain focus on and weighting of these
areas. The majority of articles written on VAD and related topics (such as SNR
estimation) are highly focused on a very particular feature or set of features.
This features is then often used as input for rather simple machine-learning
systems, or the parameters mapping input to output are simply manually tuned.
An example of the latter is actually the ITU-T VAD (see [1]). Of course, many
have used more principled and powerful classification methods.

7.2 Features

There are a great many suggestions for features to be extracted in the speech
detection literature, some of which are reviewed very briefly here. Those features
that are chosen to be used for the present system are described here, while the
remainder are described in appendix E. A good introduction to speech signal
processing is given in [21].

7.2.1 Filterbanks

The basic idea of filterbanks is similar to that of the Fourier transform and
may indeed be implemented using the FFT (Fast Fourier Transform). The
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input signal x is filtered by a set of filters (in parallel), giving a multivariate,
transformed signal f (see figure 5.1).

Many filterbanks are biologically inspired, e.g. ’gammatone’ filterbanks. They
can be calculated by cascading low-pass filters with differing cut-off frequencies.
The combined output gives a time-frequency image. Malcolm Slaney’s ”Audi-
tory Toolbox” (Matlab code is available) contains many filterbank models of
the human ear, so that various types of time-frequency images can be created.

7.2.2 Filterbank crosscorrelations

If the outputs of a filterbank are pair-wise cross-correlated, a derived feature-
signal is obtained that may hold strongly discriminative information about the
possible presence of speech. This idea is based on the observation of common
frequency onset of speech (see chapter 3) and is also the basic concept for the
OTI VAD (see [4]).

For the present system, the cross-correlation signals are squared in order to
obtain a phase-independent signal.

7.2.3 Linear filterbank

The simplest filterbank is one where each filter has the same bandwidth and the
filters are spaced linearly across some frequency range. However, for speech, the
result is usually not very useful, containing little information about the presence
of speech; see figure 7.1.

It is possible to adjust placement and bandwidth manually, but it is quicker
and probably better to use the so-called ’mel-scale’ instead. This is a non-linear
frequency-scale (placement and bandwidth) and it has been used to model the
human ear (which of course is rather good at detecting speech). The mel-scale
can be found in [21], page 1223.

7.2.4 Mel-scale filterbank

The main idea with this scale is to achieve finer resolution at lower frequencies
(where most of the speech energy is to be found) and coarser resolution at high
frequencies. The filters range from 133 to 6565 Hz.

Figure 7.2 shows a mel-scale filterbank consisting of 9 filters, while figure 7.3
shows one made up of 18.

Figures 7.4 and 7.5 show the output from these filterbanks together with their
(squared) cross-correlations. Clearly, they contain some relevant information.
The latter figure also shows the effect of normalization (see 3.6). Even with
this, the cross-correlation image for speech is distinctive.
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7.3 Choice of features

Given the choice between implementing a range of some of the ’promising’ fea-
tures that have been described in appendix E, or to rather invest the effort
into the development of good learning systems, i.e. algorithms and models, and
sticking with the proven mel-frequency filterbank cross-correlations feature set,
it was decided to follow the latter course. Based on experience with the OTI
VAD , it is known that cross-correlations between the power signals of filter-
banks contain much information regarding the presence or absence of speech.
This feature framework was then singled out for use in the VAD to be imple-
mented.

It should be noted that much of the information content in many of the
features mentioned in appendix E can still be expected to be contained in the
cross-correlation features.

7.4 Classification methods

VAD algorithms are in general highly focused on feature extraction and selec-
tion and less on signal modelling and pattern recognition or machine learning
theory and techniques. Many VAD algorithms described in the literature simply
compare a (typically one-dimensional) feature with a threshold value to classify
samples into speech or non-speech.

As mentioned in chapter 4, there are basically two approaches to building
a probabilistic classifier, those modelling P (CV A) directly and those modelling
p(x|CV A).

There are of course many ways of implementing each of these. In the ’direct’
section are for instance found linear neural networks and multi-layer perceptrons
(see [3]).

In the distribution-modelling section is any conceivable signal model; ’radial-
basis networks’ are a famous example (see also [3]). State-based approaches
(such as those employing hidden Markov Models) may fall in either category.

In the present case, a linear neural network is implemented. This is not as
powerful as a non-linear learning system, but it is on the other hand robust and
fast (in terms of computation time both during learning and decision-making).

Further, some work is done toward implementing several versions of a dis-
tribution-modelling classifier, using Independent Component Analysis (ICA)
techniques. This is a radically different approach and might be expected to give
very different performance results from the linear network. Together, the two
approaches are intended to shed light on the speech detection problem each in
their own way.
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Chapter 8

The ITU-T VAD and the
OTI VAD

Two VAD’s are used as benchmarks to compare the VAD’s developed in this
project with. One is a telecommunications standard VAD, the other the VAD
specified in patent document [4]. This chapter describes these two VAD’s with-
out going into detail.

8.1 The OTI VAD

This is the VAD described in patent document [4]. The basic concept behind
this VAD belongs in the feature extraction domain.

The idea is an exploitation of the initial observation (see chapter 3) that
speech exhibits a common onset within a certain frequency band. It is based
on the use of a filterbank, and the feature extraction process ends up with a
1-dimensional feature, the ’synchronism’ signal, which is then thresholded to
produce the VAD signal.

See [4] for details on this VAD.

8.2 The ITU-T G.729 standard VAD

The International Telecommunications Union (ITU) has adopted a VAD algo-
rithm to be used within its speech coding and transmission framework [1]. The
main purpose of this is to allow for a technique known as ’discontinuous trans-
mission’ or DTX, where transmission is stopped if no speech is detected. This
of course allows a much more efficient use of bandwidth. Together with other
sub-systems, this VAD makes up the ’silence compression scheme’ that is known
as ’Annex B’ of the ITU-T G.729 standard.
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8.2.1 Method

The ITU-T VAD is heuristically designed and based on a range of energy-based
and spectral features. It is a linear discriminator, where the discriminant func-
tions have been chosen manually (in a simple way, see [1]), based on visual
inspection of data points, instead of being learnt in a machine-learning sense.

The basic idea is to use two VAD algorithms. The first - and simpler - one
is set to very high specificity, i.e. it does not detect unless there is a very high
probability of voice activity. Assuming that the noise is stationary relative to
the dynamics of the voice activity, the spectral features measured during noise-
only periods can be used as a sort of noise model. This can then be used to
make a more advanced VAD. If - in a period of uncertain voice activity - the
current features diverge too much from the ’noise model’ features, then this is
taken to be caused by the presence of speech.

This concept is quite heuristic but works quite well in practice, and the ITU-T
VAD is often used as a benchmark for new VAD algorithms (e.g. see [13]).

The algorithm is available over the internet as source code (c written for the
linux platform) from ITU; see:
http://www.itu.int/rec/recommendation.asp?

type=items&lang=e&parent=T-REC-G.729-199610-I!AnnB

This code was modified to output the VAD flag and was compiled and run
under Cygwin on a winXP PC.

This algorithm only outputs binary VAD decisions so it is not possible to
obtain ROC curves, but instead points can be placed on the ROC plane (see
11.2).

The algorithm operates on frames of 10 ms length, which is very fast compared
with the hearing-aid range (less than 200ms). But various heuristic smoothing
techniques using previous frames are used to obtain a better VAD output. Due
to these mechanisms, it is not possible to modify the code so as to extract any
VAD output level for ROC curve generation.

8.3 Other VAD algorithms

Many different VAD algorithms have been built in the last many years.
The GSM (currently ’phase 2+’) standard also uses a VAD to allow for dis-

continuous transmission. This VAD is somewhat simpler than the ITU-T VAD
- for instance it does not really employ any noise model.

[29] use a quite principled approach to VAD, modelling the Discrete Fourier
Transform coefficients of both the noise and the speech signals as normally and
independently distributed. [24] develop a simple SNR estimation algorithm for
situations with white noise and speech only.

Other principled and inspiring VAD algorithms can be found in [12], [30] and
[13].
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Chapter 9

Classification using linear
neural networks

The ’linear neural network’ is one of many available options for designing a
probabilistic classifier that is based on and learns from data. A good description
of this approach is given in chapter 3 of [3] (where the general structure is called
a ’single layer network’).

The central characteristic of this classifier is that it is based on the idea of a
discriminant function, as described in chapter 4. It is a relatively fast method,
both in terms of inference and decision making. It is therefore often a good idea
to apply this method before more advanced and/or cumbersome methods. Also,
there are several ways around the apparent limitations inherent in the ’linear’
characteristic, such as using powerful features or combining output from several
networks (which is still relatively fast).

The output of a linear network is a particular form of the parameterized
expression in equation 4.3 that can be written as:

y = g(wT x + w0) (9.1)

where y is the estimated P (CV A|x). Thus, the output is some function on
a linear combination of the input elements, plus an additional term, which is
called the bias.

Repeating Bayes’ rule for convenience

P (Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

(9.2)

and dividing by p(x|Ck)p(Ck) yields

P (Ck|x) =
1

1 +

∑
j p(x|Cj)p(Cj)
p(x|Ck)p(Ck)

(9.3)
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Now, setting

a = ln
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

(9.4)

(note the inversion of the fraction) then reveals the functional form:

P (Ck|x) =
1

1 + exp(−a)

so that the function g(a) in equation 9.1 is

g(a) =
1

1 + exp(−a)

This allows the output of the network to be interpreted as the posterior prob-
ability of class membership. This is very nice in itself, but also allows training
to be done using ’natural’ training data, namely either 0’s and 1′s (in the case
of known ’true’ class membership) or continuous values between 0 and 1 in the
case of uncertain training data or fractions in the case of frames (see 4.4).

The linearity of the network lies in that a in 9.4 per 9.1 is made to be a
linear function of the input. There is no guarantee that 9.4 as a function of x
is linear, and thus the linear network may not be able to learn a good mapping
from input to output. The architecture of the network is shown in figure 9.1.
Note that the bias weight allows the output probability to be non-zero even if
the input vector is zero, which is of course a good ability as there is no prior
assumption that a zero input should give a zero output.

9.1 Preparation of training data

Time-domain input is normalized prior to feature extraction. This means that
the squared cross-correlation features that extracted from the time-domain sig-
nal will also be normalized, although on another scale. This was found to be
close to zero-mean and unit variance.

As all training sets are based on time-domain signals normalized in the same
way and are selected as subsets of the randomly permuted total set of data, no
further normalization is necessary.

As classification of frames is independent of other frames, frames that make
up the training sets can be permutated. This can also be beneficial for training
speed.

9.2 Training

As described in chapter 4, the network must learn to map from input to output
with the ability to generalize. The weights w correspond to the θ. To train
the network, an error function needs to be chosen. An algorithm to change the
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Figure 9.1. Linear network with logistic activation function and one output

weights in some way to reduce the error must also be designed. Finally, the
number of weights is a parameter in itself and must be chosen. Alternatively,
the structure of the network (including the number of weights) may be based
on the data and adapted to reduce generalization error. One way of doing this
is called ’pruning’ and is described later on.

9.2.1 Error function

There are of course infinitely many possible error functions. The one actually
used is usually chosen for reasons of simplicity and mathematical tractability,
but mainly because it is highly appropriate for classification problems.

For regression-type learning, the quadratic error function is typically used.
This is defined as

E =
N∑

n=1

(yn − tn)2 (9.5)

where N is the size of the data set, yn are the outputs and tn the corresponding
targets.

For classification problems, another error function is frequently used that is
called the cross-entropic error function. This is defined as

E = −
∑

n

{tn ln yn
n + (1− tn) ln(1− yn

n)} (9.6)

(Partial) reasoning and derivation for this is given in [3], pp. 230-231.
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Looking past the intricacies of equation 9.6, the basic reason for using it over
the quadratic variant is that it ’punishes’ errors in a more intuitively appropriate
way. It punishes small errors lightly, but if the output is opposite of the target,
the error is very high. ’Opposite’ here means that the output is near 1 when
the target is near 0 and vice versa.

This error function is depicted in figure 9.2 and a comparison with the quadratic
error function can be seen in figure 9.3, showing why it might it is an appropriate
error function to use for classification.
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Figure 9.2. Cross entropic error function. The x axis is the output (estimated probability of class
membership). Note the sharp increase in error as the output moves opposite to the target.

9.2.2 Training algorithm

Having chosen an appropriate error function, it is next necessary to derive for-
mulas for changing the network parameters (i.e. weights) so as to reduce the
error.

The error corresponding to the network output can be written as a function
of the output

E = f(y) = f(g(a)) (9.7)

where y is the output of the network.
Differentiating this composite function with respect to an individual weight,

applying the chain rule of differentiation, yields
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Figure 9.3. Cross entropic error function compared with the quadratic error function. The former
penalizes highly incorrect classification much more severely, and the quadratic error does not
distinguish much between small and large errors of estimated probabilities.

∂E

∂wi
=

∂E

∂a

∂a

∂wi
(9.8)

where a is the input to the logistic function

a =
N∑

i=1

wixi + w0

(note that in the linear network, there is no dependence between individual
weights, as there is in a multi-layer perceptron.)

From the last expression it is clear that

∂a

∂wi
= xi

Similarly, ∂E
∂a can be written in the composite form

∂E

∂a
=

∂E

∂y

∂y

∂a
= g′(a)

∂E

∂y
(9.9)

With the logistic function, g(a) = 1
1+exp(−a) so that



9.2 Training 46

∂g

∂a
=

− ∂
∂a (1 + exp(−a))
(1 + exp(−a))2

=
1

(1 + exp(−a))
exp(−a) + 1− 1
(1 + exp(−a))

=
1

(1 + exp(−a))
(1− 1

(1 + exp(−a))
)

= g(a)(1− g(a))

which incidentally is very nice with respect to computational cost, in that the
derivative can be calculated directly from the output.

Now, using the cross-entropic error function (equation 9.6) gives

∂E

∂y
=

y − t

y(1− y)

which together with 9.9 yields:

∂E

∂a
= y(1− y)

y − t

y(1− y)
= y − t (9.10)

so that finally,

∂E

∂wi
= xi(y − t) (9.11)

This simple result stems from the combination of the logistic non-linearity
with the cross-entropic error function.

9.2.3 The conjugate gradient method

The simplest way of training the network is using 9.8 in a steepest descent
algorithm, updating the weights according to;

wi = wi − α · ∂E

∂wi
= wi − α · xi(y − t)

However, this first-order approach may lead to very slow learning. Successive
gradient descent steps may converge only very slowly, and training can tend to
oscillate rather than converge. Luckily, much better alternatives are possible.

Here, a conjugate gradient algorithm is employed. Details can be found in
chapter 7 of [3], and only an overview and the actual algorithm will be given
here.

This solution is based on choosing successive search directions such that these
are orthogonal to all previous search directions, the limit to the meaning of ’all’
in this context being the number of dimensions of w. The derivation of the
formulas for these mutually orthogonal search directions is quite involved, and
can be found in [3].
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The key concept in the conjugate gradient method is that the second-order
gradient information (contained in the ’Hessian’ matrix) is given from the last
weight-update direction and the current and last gradient vectors. This means
that the directions can be updated without explicit knowledge of the Hessian,
which is a tremendous saving in computational cost (certainly with a non-linear,
multi-layer network, but also in the linear case).

The search direction at step j + 1 can be found as

dj+1 = −gj+1 + βjdj (9.12)

where gj is the gradient at step j and β must be updated according to one of
3 alternative formulas. The elements of d are the directions for each dimension
of w. The (Fletcher-Reeves (FR)) version:

βj =
gT

j+1gj+1

gT
j gj

(9.13)

is arbitrarily chosen, as no significant difference in convergence times was
found over several attempts with different sets of artificial data using the other
2 alternatives (’Polak-Ribiere’ and ’Hestenes-Stiefel’). The 3 different version of
the update formula for β are exactly equivalent in the case of a quadratic error
function; for non-quadratic error functions, they can give different results, but
this was not found to any marked degree for the data used in this project.

It was found (for artificial data) that learning using conjugate gradients was
several times faster than steepest descent learning.

9.2.4 Line search

To speed learning further, a simple search may be done along the direction found
by the conjugate gradient method. For non-quadratic error functions (as here),
this direction may actually not be towards lower cost, and the line search then
also ensure that the weights are changed in the correct direction.

A simple line search algorithm was implemented (see simple_linesearch.m)
that gives an appropriate step size for minimizing the error in a given direction.

9.2.5 Batch training

All training is done on the whole training data set, i.e. for each step of adapting
the weights, the gradient etc. is calculated for the whole training set.

9.3 Overall algorithm

Algorithm 9.3 shows how a linear network is trained, i.e. the weights are inferred,
based on training data.

Here, xn
i stands for the i’th input for the n’th example and gj

i is the gradient
for the i’th weight at the j’th iteration (same terminology for dj

i ).
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Algorithm 1 InferWeights(D,T, jmax) - Infer linear network weights given
training input, D and targets T , using jmax iterations

Set w to be random (uniformly distributed from -1 to 1)
j = 1
{Calculate output}
∀n : yn = g(wT xn + w0)
{First direction is simply the gradient}
∀i : dj

i = −gj
i =

∑
n

∂En

∂wi
=

∑
n xn

i (yn − tn)
{Search direction for optimal step size}
α = LineSearch(dj

i )
repeat
{Update weights}
wi = wi + αdj

i

{Calculate output with new weights}
∀n : yn = g(wT xn + w0)
{Calculate next error gradient}
∀i : gj+1

i =
∑

n
∂En

∂wi
=

∑
n xn

i (yn − tn)
{Update β}
βj = gT

j+1gj+1

gT
j gj

{Calculate next search direction}
dj+1 = −gj+1 + βjdj

j ← j + 1
until j = jmax
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This algorithm is implemented by the functions linlog_init.m (initializa-
tion) and linlog_train_cg.m (training). The latter calls linlog_forward.m
(calculating the output for a given input) and linlog_gradient.m (calculates
the gradient) and simple_linesearch.m (LineSearch) (all in folder ANN on
the CD1).

9.3.1 Initializing parameters

The simplest way of choosing initial parameters (weights) is to set them to
random values around zero. But since testing the performance of any network
is relatively fast compared to actually training one, one may instead initially
test several random networks and pick the best one of these to train. This was
done in all experiments to speed learning.

Figure 9.4 shows a small test of the linear network classifier. Given some
normally distributed data (seen to be linearly separable), it finds the correct
’line of demarcation’ between the classes.

Figure 9.5 shows a section of the corresponding estimated probabilities of
class membership, P (C|x).
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Figure 9.4. Classification of artificial data. Nearly all data are classified correctly. The line is the
one found by the linear network after training, separating the two classes (stars and crosses are the
true classes; the circled points are those estimated to belong to the ’cross’ class by the network).

1Also available from the author (dj@imm.dtu.dk)
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Figure 9.5. A section of true (blue) and estimated (red,dashed) probabilities of class membership,
P (C|x) after convergence, using artificial data. With one exception, the estimates are quite
accurate.

9.4 Pruning

As mentioned in chapter 4, generalization performance can be improved by the
process of pruning. An additional - practical - reason for pruning is that the
smaller the network can get, the faster it will be. Compared with another
classical technique with the same purpose known as weight decay, where all the
weights are kept, this is an advantage for a system for which computational
speed is an important parameter, as is the case with the hearing-aid target.

Further, interpretation of the relative importance of the different cross-corr-
elations between frequencies is of interest in itself.

It is quite conceivable that with an input vector size of only 36, no pruning can
be done without loosing generalization performance. The network may be so
small already that any further reduction can only lead to reduced performance.
Pruning has been used in other cases to reduce the number of parameters in
systems with an initial size of several thousand parameters, as reported by [3].
So the present case must be said to be a very small scale of pruning.

Still, even with this ’small’ scale, exhaustive search of all possible network
structures is not possible. The number of possible architectures can be expressed
as

N =
F∑

f=1

(
F

f

)
(9.14)
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where F is the number of features.
With 9 features, this is 511 possible systems and with 36 it is more than

6 · 1010.
Pruning is one solution to the problem of searching this architecture space.

The idea is to start with the most complex network, using all features as in-
puts, and train this network until convergence. Then, one weight is cut at a
time according to relative importance, and retraining is done after each cut.
This is repeated until say all the weights have been cut (possibly except for the
bias weight). In this way, only F networks will be created. It is obvious that
the method that the weights to be cut are chosen is critical for such an enor-
mous reduction to make sense and still find ’good’ networks (i.e. close to the
performance of the best network that could be found using exhaustive search).

It should be mentioned that pruning has one advantage over another typical
method of regularization2, namely weight decay3: the network size is reduced,
leading to a smaller and faster system.

How much re-training to apply after each cut is one parameter of this process
and this is typically heuristically determined, but reasonable settings can be
determined with some experimentation. The most important choice however is
the way in which the importance of the weights is estimated, as this will primar-
ily determine which architectures will be created and thus how the ’architecture
space’ is searched.

The measure of importance for a weight is termed ’saliency’. A natural mea-
sure for this is the change in the error function resulting from a small change
in the weight. Changing the weights wi by δw − i, the change in error can be
written as a Taylor expansion as

δE =
∑

i

δE

δwi
δwi +

1
2

∑

i

∑

j

Hijδwiδwj + O(δw3) (9.15)

where H is the Hessian matrix with elements

Hij =
∂E

∂wiwj

([3], (9.66)).
Assuming that training has converged, the first term in 9.15 vanishes. Further

simplification can be had by assuming that H is diagonal:

δE =
1
2

∑

i

Hiiδw
2
i (9.16)

With this approximation, the saliency of each weight si is

si = Hiiw
2
i /2

2A term used to denote methods to limit the complexity of networks
3which is adding to the error functions for large weights, also restraining complexity
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Now setting the i’th weight to zero will approximately change the error by
the saliency.

This leads to a pruning algorithm called ’Optimal Brain Damage’ (OBD) -
see [3], page 361. The version used in this project cuts one weight at a time. It
is implemented by the Matlab scripts prune.m (saliency) and melfb36_prune.m
(keeping track of what is cut and what is not).

If the full Hessian is used instead of the approximated diagonal one, the result-
ing algorithm is called ’Optimal Brain Surgeon’. On paper, it should perform
better, but in practice, it suffers from matrix inversion and other problems so
that OBD often performs better in practice.

It is important to train to completion (convergence) initially, and re-training
should be of a similar quality, even though typically fewer re-training steps are
needed.

9.4.1 The Hessian matrix of a linear network

The Hessian is defined as:

Hij =
∂E

∂wiwj
(9.17)

i.e. it contains the second-order derivatives of the error function with respect
to the weights that are the learning parameters of the network.

The Hessian matrix is needed for the Optimal Brain Damage algorithm, and
since no derivation of the Hessian matrix for a single-layer (linear) network is
given in [3], it is briefly given here.

First off, it may be noted that even though the network is linear, the Hessian
matrix is not diagonal. This is due to the non-linear (here: logistic) function
that is used. However, the Optimal Brain Damage algorithm is based on the
assumption that the Hessian is diagonal, so this assumption is carried through
here.

The error differentiated with respect to the weights has already been found
in equation 9.8. Differentiating again yields

∂(y − t)xi

∂wi
=

∂(yxi)
∂wi

= xi
∂y

∂wi

Using previous derivations,

∂y

∂wi
=

∂y

∂a

∂a

∂wi

= g(a)(1− g(a)xi
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so that finally

∂E

∂2wi
= g(a)(1− g(a))x2

i (9.18)

This simple result is the result of assuming a diagonal Hessian.

9.4.2 Practical issues

Each time a pruning ’run’ is undertaken (as per the OBD algorithm), a different
optimal weight set will be found. This is because the OBD is an algorithm that
finds a local minimum in ’pruning space’, depending on the initial weights, which
are random. This actually makes it quite difficult to use OBD to choose a final,
single network as the ’best’ network; see 12.4.

9.5 Division of input space

It is possible to train separate networks for each region of input/feature space.
This is strictly not ’Mixtures of experts’ ([3]), since this term is usually reserved
for the case when a suitable division of input space is learnt and not chosen
manually. But the idea is very similar.

The obvious division in this context is between voiced and unvoiced speech,
as these are known to be qualitatively different.

In the inference phase, one network is trained on examples belonging to one
of the regions. In the decision making use, the same data is presented to both
networks. Since signals belonging to CV A are either voiced or unvoiced, the
maximum of P (Cvoiced|x) and P (Cunvoiced|x) must be the appropriate estimate
of P (CV A|x). The intuitive approach of simply averaging over the outputs of
the two networks and setting P (CV A|x) to this is proven to be inferior by testing
the two approaches (not shown).
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Chapter 10

Classification using
Independent Component
Analysis

This chapter describes the Independent Component Analysis (ICA) methods
that have been developed for use in speech detection algorithms. A brief
overview of ICA is first given, including how the model can be inferred from the
data.

10.1 Overview

Independent Component Analysis (ICA) in its basic form is concerned with a
particular form of modelling signals.

This can be written as

x = As (10.1)

where x = [x1, x2, ..., xM ]T is the (multivariate) mixed signal, A[M×M ] is
the ’mixing matrix’ and s = [s1, s2, ..., sM ]T are the source (also multivarate)
signals. In this form, no noise is assumed and the mixing matrix is quadratic.
In the time domain, x and s might be seen as xn and sn, i.e. the mixed signal
and sources at time n. The mixing matrix A is fixed (although it must typically
be learnt first in an inference phase). Note also that there is no noise in this
model.

The key idea then is the assumption that the elements of s are statistically
independent, i.e. each source si is independently distributed from all the other
sources.

There are a number of other assumptions usually made for the basic ICA
model, and many extensions and variations of the basic model have been de-
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veloped. A good introduction can be found in [2] while [15] discusses some
extensions.

10.2 Signal separation with ICA

Typical uses of ICA is to retrieve the sources s given only the mixed signal, x.
This is possible due to the assumption of independence on the sources (which
must of course be fulfilled in practice!). ’Blind’ separation is the special case
where there is no available knowledge except for the independence of the sources.
For speech enhancement or removal of noise from a noisy speech signal, more
than one channel recording of the mixed signal is necessary - the dimensionality
of the recorded signal x must equal (or exceed) that of the sources, s1.

With only 1 channel available and several sources, separation without further
assumptions or knowledge is not possible. Stronger assumptions are then needed
than just that the sources are independent. In fact, it is necessary to incorporate
any and all prior knowledge that is available about each individual source, the
mixing matrix and so on. Only then is it theoretically possible to separate 2
or more sources that have been mixed into a single channel. The quality of
the separation depends directly on how well or strongly the prior knowledge is
expressed by the signal models and how much knowledge has been put in.

However, this is very hard to achieve, as might be expected. Jang and Lee ([8]
have developed an ICA based method for doing single source audio separation
(also working with speech data), but the results (available online) are unfor-
tunately quite unconvincing. Roweis ([23]) uses another, simplified approach,
based on the use of hidden Markov models, which could can be somewhat suc-
cessful and can be improved, but that would be a major undertaking.

Of course, if it were possible to separate the speech and whatever noise is
present in the single-channel recording available, then the VAD classification
problem would be practically already solved: the separated - now ’clean’ - speech
signal could simply be given as input to almost any simple VAD algorithm which
would have no problems classifying it correctly. No other processing (except for
maybe some rudimentary feature extraction) would be necessary. And naturally,
the cleaned-up signal would be a nice bonus(!).

Lots of knowledge does exist about speech (and other audio signals), so one
may foresee better results in the single-channel separation field in the future.

10.3 Classification with ICA

Here, ICA is used for a different purpose, namely to model the class-conditional
probability distributions of different signal classes, the P (x|Ck). Instead of
trying to separate a mixed, single-channel signal, the ICA model may be used
to design a classifier directly instead.

1Although with extended ICA algorithms, x may be only 2-dimensional and higher-
dimensional sources can still be retrieved, given enough data
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This is done by having each class Ck correspond to a mixing matrix, Ak and
a source distribution, p(sm) for each of the M sources (m = 1, 2...M). Then for
each class,

p(x|Ck) ≡ p(x|Ak, sk) (10.2)

Classification then simple requires applying Bayes’ rule (equation 4.2):

P (Ck|x) =
p(x|Ck)P (Ck)∑
j p(x|Cj)P (Cj)

=
p(x|Ak, sk)P (Ck)∑
j p(x|Aj , sj)P (Cj)

(10.3)

Ak is assumed to be known, but not the sk. The latter are therefore marginal-
ized:

p(x|Ak) =
∫

p(x|Ak, s)p(sk)dsk (10.4)

10.4 Applying the ICA model to a one-dimensional
signal

In the above, x is multivariate (of dimension M). However, the input signal
to the VAD is a one-dimensional, time-domain signal. In order to use the
multivariate ICA model on this signal, x is ’filled’ with length M sections of
this signal. The concept is that each segment of the time-domain signal can be
modelled as a mixture of M independent sources, the mixing being determined
by the elements of A (see [8]). To better understand the meaning of the latter,
equation 10.1 can be rewritten as

x = As = A·1s1 + A·2s2 + ... + A·MsM (10.5)

where A·i represents the i’th column of A. So the columns of A can be
thought of as ’building blocks’ that are put together by the elements of s to
make up x.

Now, since each ’slice’ of x (M following samples) is modelled as a weighted
sum of M different segments, each also of length M , the result typically is that
the elements of s are very sparsely distributed. This means that most elements
will be close to zero and only a few will be ’on’ for each segment. One might
say that there is a high level of redundance in A.

ICA is expected to be a powerful model for the p(x|Ck), since the basis
functions describe high-order time-domain statistics of the signals of each class.
Together with the modelling of the sparse distributions of the sources, this
should contain a much discriminative information about the classes.

10.5 ICA features

One choice is between modelling P (x|Ck) directly or first transforming x by
extracting some features, and modelling their distribution instead (P (f |Ck)),
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see figure 5.1. Given the initial observations about the distinct spectral patterns
of speech (see chapter 3), it was indeed attempted also to learn basis functions
(’basis images’) from the spectral domain. These were found to actually be
images of horizontal lines at different angles, as expected.

However, the basis functions found when training on time-domain data also
show highly speech-like characteristics (see chapter 12), so it was decided to
model the distribution of the un-transformed, time-domain signals.

Amongst many other alternatives, the obvious one would be the filter-bank
cross-correlations uses as features for the linear network (chapter 9). This was
not undertaken due to time constraints, but would certainly be an interesting
next step.

10.6 Choosing basis function length

Looking at samples of speech, it is seen that it can be described as being com-
posed of short, characteristic time-domain segments. A few of these typically
make up each phoneme. An example of two such pieces is shown in figure 10.1.
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Figure 10.1. A section of unvoiced (first part) and voiced (last part) speech (the voiced segment
is very high frequency).

Based on such inspections, a few different lengths were tried. It is expected
that some basis functions should represent onsets of speech segments, others off-
sets, and others again the ’meat’ of the speech segments (see figure 10.2). 128
samples (at 16kHz) was found to be consistent with these considerations, but
learning 128 basis functions each of length 128 samples was found to be exces-
sively time-consuming, so M = 64 had to be settled on instead. Of course, this
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Figure 10.2. An example a repeating structure in a section of speech.

is only 64/16.000 = 4 milliseconds, which is a very short time span. However,
the results even with such short functions are encouraging, even if widening
this time span is a natural next step for improving this approach. It would
for instance be possible to reduce dimensionality through Principal Component
Analysis, thus still operating with M = 64, but having this represent longer
sections of the speech signal (see [14]).

Due to the constraint on A to be square, reducing the length of basis function
also the number of functions. So M = 64 is actually a quadruple reduction in
information compared to M = 128, so to speak. However, due to the little time
available, it was decided to use M = 64 for the ICA algorithms. Figures (XX
and XX) show the basis functions found for M = 64 and M = 128 respectively.
They are seen to contain much the same type of information, and M = 64 is
thus not a catastrophic reduction per se.

10.7 Modelling the source distributions

Given equation 10.4, the distribution of s is clearly a crucial piece in the model.
One way of modelling them is to use a parameterized form,

p(s) ≡ p(s|θ)
whose parameters must be inferred (learned) from data (examples of s).
Since the source signals are expected to be very sparsely distributed, the gen-

eralized Gaussian distribution is a good choice for modelling these distributions;
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see [17] for details.

10.7.1 The generalized Gaussian distribution

This distribution can be written as

p(x) ∝ exp(−1
2
|x|q

which can also be expressed in another form as

p(x|µ, σ, β) =
ω(β)

σ
exp−c(β)|x− µ

σ
|2/(1+β) (10.6)

where

c(β) =
{

Γ( 3
2 (1 + β)

Γ( 1
2 (1 + β)

}1/(1+β)

(10.7)

ω(β) =
Γ( 3

2 (1 + β))1/2

(1 + β)Γ(1
2 (1 + β)3/2

This is a normalized form, where µ and σ are the mean and standard deviation
of the data. The β parameter is a measure of kurtosis2. When it is 0, the
distribution is equal to a normal distribution. As β → −1, the distribution
becomes uniform over the interval from -1 to 1. As β → ∞, the distribution
approaches the delta function, δ(0). With β equal to one, the distribution is
Gaussian (hence the name - ’generalized’ Gaussian).

10.8 Learning the basis functions and source dis-
tributions

Given a speech signal, the A matrix and the distributions of the source signals,
p(si), are to be learned. Standard algorithms exist that are able to do this, such
as the icaML algorithm of the IMM ICA toolbox. However, it is highly desir-
able for classification purposes that each source distribution should be modelled
accurately, since these distributions are the central part of the ICA classifier.
Standard algorithms do not do this, since they assume a fixed distribution for
all sources, e.g.

p(si) =
1
π

exp(− ln(cosh(si))) (10.8)

which is used by icaML. Therefore, an algorithm for learning A and p(si)
using the generalized Gaussian distribution has been implemented, inspired by
and following the description in [17]. It is possible to design a flexible version

2A measure of the shape of a distribution
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of equation 10.8 (see [2]), but as the generalized Gaussian distribution is a very
good and flexible approximation of highly super- and sub-Gaussian distribu-
tions, it is preferred3.

10.9 The generalized Gaussian ICA algorithm -
icaEXP

Given a set of training examples, X, this algorithm fits a distribution to each
source signal, using the β, µ and σ parameters, referred to as θ. It also finds the
corresponding A matrix.

It is implemented as an expectation-maximization (EM) type algorithm. Briefly,
this means that the A matrix is optimized based on the current estimate of the
sources, and vice versa. A good introduction to this topic can be found in [18].

The implementation can be found in the Matlab function icaEXP.m, which
calls learnbeta.m, which fits a generalized Gaussian distribution to the current
sources estimates (both in the ICA folder on the CD). The latter function relies
on genexp.m and genexplikely.m for calculating p(s) etc.

10.9.1 Estimating A

In the no-noise model (equation 10.1), s is deterministically given as s = A−1x
and equation 10.4 reduces to

p(x|A) =
p(s)

|det(A)| (10.9)

since the Jacobian is J = ∂s
∂x = A−1.

Equation 10.9 is the starting point for learning A. If the ICA model is to be
a good model of x, then (an initially randomly chosen) A should be changed
to make the given examples X = [x1x2...xN ]T more likely. Maximizing the
logarithm of equation 10.6 is equivalent (as the logarithm is a monotonous
transformation) and is used instead in practice to avoid numerical problems. T

With each iteration, A is updated by a form of gradient ascent as

A = A + α4A (10.10)

where 4A is defined as

4A = AAT ∂

∂A
log p(x|A) = −A(φ(s)sT − I) (10.11)

where φ(s) connects the update of A to the distribution of s. It is defined as

φ(s) =
∂ log p(s)

∂s
(10.12)

3’Super-Gaussian’ distributions have are more peaked and have heavier tails then Gaus-
sians, and vice versa for ’sub-Gaussian’
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with each element being

φ(si) =
∂ log p(si)

∂si
= −η|si − µi|q−1qcσ−q

i (10.13)

Here, η = sign(si − µi), q = 2/(1 + βi) and c = [Γ(3/q)/Γ(1/q)]q/2.
With an estimate of the distribution parameters θ, this gradient can then be

calculated and A updated. The reason for pre-multiplying with AAT is that
this ’scaling factor’ leads to much faster learning (see [10]).

Figure 12.28 shows the basis functions found when icaEXP is given speech
data; see chapter 12 for analysis.
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Figure 10.3. Basis functions for speech.

10.9.2 Estimating β

With an estimate of A, the µ and σ parameters can be found very simply from
samples of s (mean and variance respectively), which is simply A−1x.

β can be found using Bayes’ rule, as

p(β|x) ∝ p(x|β)p(β) (10.14)
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where p(x|β) is given by equation 10.6.
The optimal β can then be found as the one that maximizes the likelihood of

s.
Since the form of p(x|µ, σ, β) defies analytical differentiation with respect to

the parameters4, numerical differentiation is done instead and used in a straight-
forward gradient (steepest) ascent algorithm. Figure 10.4 shows some of the
distributions found for speech. For these, β varies from 2 to 8, yielding very
sparse distributions indeed. Each source has a different β however, so much
information can be gotten from modelling each source distribution separately.
It is important to keep clear then that each individual source is modelled by a
different parameter set, φi = {βi, µi, σi}.

[17] recommends using a specific Γ distribution for the prior on β, p(β).
However, lots of data can be used instead, as there is practically no limit to

computation time and available data (e.g. TIMIT for speech). The phase of
learning the β parameters (and the Ak’s) takes place before the system is used
for classification, so time is not an issue.

It was found that with source signals of length 5000 and more, there was no
significant difference between the β’s found with and without inclusion of the
prior. Also, it is difficult to see what a non-uniform prior on β should be based
on, since the model is ’artificial’ and nothing is known about the ’true’ range of
β, except that it should exceed -1. And all β’s found by the numerical fitting
algorithm where found to do this.

It was found that adapting β too quickly lead to degeneration of the basis
functions being learned at the same time. Therefore, the learning rate for β and
the decay of that learning rate were adjusted separately until robust learning
of both A and β was seen to take place. Further, initializing with too sharp
distributions (high β’s) initially also led to poor learning.

10.9.3 Scaling

After each A-estimation iteration, the A matrix is re-scaled to unit variance
if it is found to be too large5 However, no consideration is given to the final
relative scaling of A and θ, since the only important thing in this context is
that they are correspond to each other. This is ensured by re-estimating θ after
A is re-scaled in this manner so that the distribution parameters match the
scaling of the mixing matrix.

The µ and σ parameters are re-estimated based on all source signal data at
the end of calculations, since this is very quickly done.

4At least as it seems to the author initially
5The extended ICA algorithm used in Lee and Lewicki instead re-initializes A (in their case

actually the unmixing matrix, w) at this point, which seems like a great waste of information.
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Figure 10.4. Several speech source histograms together with their approximated, generalized
Gaussian distributions (ignore the scaling).

10.10 Gaussian noise - ICA model 1

Now, the simplest approach using a speech model is simply to use 10.1 alone,
assuming that it will make a good ’fit’ of the signal when speech is present (even
if mixed with noise) and less well when speech is not present:

xspeech ' Aspeechsspeech (10.15)

where Aspeech and the β’s of the pspeech(s) have been learnt beforehand by
the icaEXP algorithm, trained on speech examples.

The next step is to add a very simple noise model, namely that of white noise.
A very simple way to do this is to propose that the signal is either ’clean speech’
(same as 10.15) or Gaussian white noise only, i.e.

x = ε (10.16)

where

ε ∈ N(0,Σε) (10.17)

Then it is assumed that the signal will be modelled most closely by 10.15 when
speech is present and most closely by 10.16 when it is not. Thus p(x|CV A) is
distributed as
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p(x|CV A) = p(x|Aspeech, sspeech) =
pspeech(s)

|det(Aspeech)| (10.18)

and non-speech signals are distributed as

p(x|CNV A) =
1

2πM/2|Σε| 12
exp

(
−1

2
xT Σεx

)
(10.19)

where M is the dimensionality of x. Since all of the signal is noise under this
hypothesis, the noise variance Σε is simply the signal variance. P (CV A|x) is
then simply found using Bayes’ rule (equation 4.2). This model is used in the
VAD implemented in icaVAD1.m (ICA folder on the CD).

10.11 Modelling noise - ICA model 2

Keeping the either-or assumption on the input signal, other noise types can be
modelled through the class conditional distributions over x, exactly as by 10.18,
i.e.

p(x|Ck) =
1

|detAk|pk(s)

=
1

|detAk|pk(A−1
k x)

where k = 1...K and K is the total number of noise classes modelled. In
the present case, this was done for traffic noise, extending model 1 with this
additional model (and corresponding hypothesis) and some results can be seen
in chapter 12. This VAD is implemented in icaVAD2.m (ICA folder on the CD).

10.12 Modelling mixed signals - ICA model 2B

The assumptions above that the signal is either clean speech or some form of
noise (only) is a simplification that is counter to the realities that are to be
tackled, as defined in the introduction. Real-life speech signals always contain
additive noise, even though the SNR may sometimes be very high. Noise may
occur without speech, but rarely the other way around.

One way of learning to handle this would be to train several ICA models (A’s
and θ’s) and then keep the either-or assumption, proceeding just as with ICA
model 2, only with (many) more models. However, this would require a great
many A and θ parameters (say 3 for each noise type (SNR 0, 5 and 10)) and so
this approach might become too cumbersome in practice.
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10.13 Mixture models

Only a limited number of models can be trained on different noise and speech
combinations (type and SNR). This leads to the idea of ICA mixture models,
where a fixed number of ICA models are used to model an arbitrary variety of
mixed signals - a very general approach. The key difference from the models
above is that each model (’cluster’) then has a certain probability of representing
speech. Thus, there need not be any single model that corresponds to clean
speech. With this flexibility, more modelling ’power’ should be obtainable with
relatively few clusters.

One way of doing this is actually a sort of hybrid algorithm, lending the EM-
like inference algorithm from [16] and the ICA models and p(s) distributions
from [17].

[16] can be modified to use ICA models for modelling class conditional prob-
abilities instead of Gaussians. The algorithm can then be run in principle as
shown in figure 1 in [16]. Instead of the update rules in [16], the ICA learning
rules from [17] can be used instead, i.e. icaEXP is used to learn the source
distributions of the components.

This algorithm was implemented towards the end of this project, but could
not be tested on speech data. It did however produce promising results on
artificial data (see 12.5.5).

10.13.1 Online learning

It would be extremely nice if the mixture model algorithm were able to learn
continuously or online. In an actual hearing-aid implementation, this could be
done by collecting new noisy data all the time and updating the model using
these. This could be tuned so that learning was robust; possibly, the system
could be split into an adaptive and a non-adaptive part. The output of the
system would be a weighted sum of the outputs of these separate systems.
For instance, original cluster(s) representing clean speech could be left in their
original state, especially if they were trained on a great number of data. The
same would also apply to an expansion into separate models for male and female
speech or for voiced and unvoiced speech, if that was modelled specifically.

10.14 Speech compression

A bonus of the ICA VAD algorithm (e.g. model 1) is that it is very easy to turn
it into a speech compression algorithm. Given a clean speech signal, these are
simply arranged as an [M ×N ] matrix, unmixed by multiplication with w, and
the resulting (sparse!) source signals s can then be compressed in a straight-
forward manner, e.g. simply setting most of the elements to zero and keeping
only a few. It was found that with M = 64, using just the single highest
element in each source vector still left the resulting speech understandable,
albeit only just - quite far from loss-less compression. But keeping 8 out the
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64 elements produces speech that is quite bearable to listen to and completely
understandable - a compression factor of 8. It is quite conceivable that with M
set higher, say at 128, higher compression could be gotten with equally good
results since 64 samples as discussed previously is a very short segment of speech.
Figure 10.5 shows an example of a compressed speech signal.

Of course, with better compression algorithms much better compression could
be obtained compared with using the very naive method outlined above.
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Original (top) and compressed speech, using 4 of 64 components

Figure 10.5. Original signal (top) and ICA compressed signal, using 4 out of 64 basis functions.
The result is quite easy on the ears.
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Chapter 11

Evaluation method

This chapter describes the method used to evaluate performance of the various
VAD algorithms.

11.1 The confusion matrix

Given a set of data points, X, the corresponding class labels assigned by a
classifier, Cest, and the true class labels, Ctrue, the confusion matrix of the
classifier can be calculated. It expresses wrong and correct classification in
relation to the true classes.

estimated
known 0 1

0 A B
1 C D

Table 11.1. The confusion matrix

It is assumed that all class labels are binary, 0 (for the first class) or 1 (for
the other). The 0’s of are called ’ negatives’, the 1’s ’positives’. In the present
case, 1’s would represent the presence of speech.

The confusion matrix has four entries: A (The number of negatives correctly
classified by the classifier as negative, called ’true negatives’), B (The number of
true negatives incorrectly classified as positive, called ’false positives’), C (The
number of true positives incorrectly classified as negative, ’false negatives’) and
D (The number of true positives correctly classified as positive, ’true positives’).

In general, the confusion matrix can be extended to accommodate any number
of classes.

Two traditional measures can be read from this table, namely sensitivity and
specificity.
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Sensitivity is the probability of the estimate being 1 given that the true class is
1, so it measures how good the classifier is at getting all the true positives right.
In terms of the confusion matrix, sensitivity is D/(C+D). This may also be
called the True Postive rate (TP). Specificity is the probability of the estimate
being 0 given that the true class is 0, so it measures how good the classifier is
at getting all the true negatives right. Ideally, both should be 1, in which case
the confusion matrix is diagonal.

A third useful measure is the False Positive rate (FP), which is B/(A+B). It
is sort of the opposite of the specificity and together with the TP, it is used to
generate a more complete picture of the classifier, namely a ’Receiver Operating
Characteristics’ (ROC) curve.

The simplest measure of the quality of a classifier is the ’error rate’, which
is (B+C)/(A+B+C+D), i.e. the fraction of total misclassifications. However,
this does not contain as much information as a complete ROC curve.

11.2 Receiver operating characteristics (ROC)
curves

The linear network and the ICA models output the estimated posterior proba-
bility of class membership, i.e. in this case the probability of speech presence
given the input (P (CV A|x)). To get from this probability to a binary VAD
decision signal, a threshold is chosen (4.3). This choice determines the numbers
in the confusion matrix. If the threshold is lowered, more examples will be
classified as true, and both TP and FP will rise.

The Receiver Operating Characteristics (ROC) of a classifier shows its per-
formance as a trade off between TP and FP.

It is used in cases where there are only 2 classes, or where one wants to
examine only 2 classes at a time. A curve of the FP versus the TP is generated
by varying the threshold.

The curve always goes through (0,0) and (1,1). (0,0) is where the classifier
finds no positives. In this case it always gets the negative cases right but it of
course also gets all positive cases wrong. This point corresponds to setting the
threshold higher then the largest output for all examples. Similarly, in (1,1),
everything is classified as positive. So the classifier gets all positive cases right
but it also gets all the negative cases wrong. This corresponds to setting the
threshold lower than the smallest output for all input.

A classifier that assigns class labels at random produces a line which lies
close to the diagonal connecting (0,0) and (1,1). This is true no matter which
proportion of examples is true (prior probability, P (CV A)). Therefore, this
diagonal is always included in graphs as a sort of ’ground zero’ comparison.

It is possible to do worse than a random classifier. This means the classifier’s
answer is negatively correlated with the actual answer, so that its ROC will lie
below the diagonal. Its performance can actually be improved by inverting the
classifiers output.
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One way of comparing classifiers is to calculate the area under the ROC. A
random classifier has an area of around 0.5, while an ideal one has an area of 1.
However, the most information about the relative performance of two classifiers
can still be obtained by inspecting the ROC curves together.

For actual decision making, a threshold has to be selected. This corresponds
to fixing the classifier at a point on its ROC curve. Depending on how one
wishes to weigh specificity and sensitivity (e.g. false positives might be more
catastrophic than false negatives), the best classifier may not be the one with
the largest area under the ROC curve.

In this way, both changes in estimates of prior class probability (P (CV A))
and in the relative cost of misclassifications (cost of misclassifying true negatives
versus cost of misclassifying true positives) will simply move the location on the
ROC curve for a given threshold.

The variance of each estimate (FP and TP) is binomially distributed (the
classification of each example is a Bernoulli trial). Therefore, confidence inter-
vals can be calculated and plotted for each point on a ROC curve. Of course,
this can be done for both the FP and TP estimates. However, for the sake of
figure legibility, only the bounds on the TP estimate are given; the bounds on
the FP estimate will be of the same magnitude and for comparing ROC curves
of different systems, reading the TP values is perhaps intuitively easier. Also,
the figures will be less cluttered.

An algorithm has been developed that automatically produces a useful ROC
curve from any given estimated and true VAD signal. It does this by varying
the threshold in a way that fits with the signals to produce evenly distributed
ROC curve points. This algorithm is given in pseudo-code form, see algorithm 2.
The RocPoint helper function simply calculates the fraction of false- and true
positives resulting from a chosen threshold level. The TooDifferent helper
function simply decides whether or not a candidate ROC point is too close to
either adjacent point.

This algorithm can be found in the Matlab function roc.m .
This calls getconfusion.m to calculate ROC points (both in myfunctions
folder on the CD).

11.3 The effect of changes in prior class proba-
bilities

The linear network has a bias unit which allows it to ’pick up’ the mean level of
speech in the data it is trained on. If the speech content in the training is high,
it will learn to increase the bias weight so as to match this content. The other
weights mainly determine the real quality of the linear network as a classifier.
With new (test) data sets, if the speech content is say lower than in the training
set, the bias of the network will cause it to over-estimate P (CV A|x). However,
the ROC curve for this classifier will not change. It is possible to move the
operating point of the classifier back to the original point on the ROC curve by
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Algorithm 2 ROC (L) - Find ROC points given level set L

R ← ∅
{ROC Point set}
T ← ∅
{Corresponding threshold set}
lmin ← min(L)
lmax ← max(L)
R ← R

⋃ {(0, 0), (1, 1)}
{Initially known points}
T ← T

⋃ {Lmin, Lmax}
{Corresponding threshold}
repeat
{Find the 2 adjacent points with greatest Euclidian distance between them}
k, l ← arg max

i,j
{‖ri − rj‖; |i− j| = 1}

rk ← Rk

rl ← Rl

t ← 0.5Tk + 0.5Tl

rnew ← RocPoint(t)
D1 ← Distance(rnew, rk)
D2 ← Distance(rnew, rl)
while TooDifferent(D1, D2) do

if D1 > D2 then
rl ← rnew

else
rk ← rnew

end if
{Update the new point}
t ← 0.5Tk + 0.5Tl

rnew ← RocPoint(t)
D1 ← Distance(rnew, rk)
D2 ← Distance(rnew, rl)

end while
{Add new point}
R ← R

⋃
rnew

T ← T
⋃

t {Corresponding threshold}
until Desired number of points found



11.3 The effect of changes in prior class probabilities 75

simply increasing the threshold sufficiently.
For the ICA models, classification requires an estimate of P (CV A). Again,

the ROC curve of the ICA classifiers do not change and movement on the ROC
curve can be done by either re-estimating P (CV A) or changing the threshold.

Similar observations are applicable when dealing with the loss function, where
false negatives might not have the same cost as false positives. Changes in the
loss function do not affect the ROC curve, but do affect the point on the curve
where the VAD would be set to operate.
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Chapter 12

Results

This chapter presents the more important results from the various experiments
done with the different VAD algorithms. This covers each algorithm separately,
followed by comparative results. First, the linear networks are examined, then
the ICA models and the ITU-T VAD and OTI VAD . Some relevant comparisons
are then made between the various models and VAD’s. Additional results can
be seen in the figures of appendix D.

In comparative experiments, the (randomized) data set is exactly the same
for each classifier in order to test on as equal terms as possible. The results
are given in an order that should facilitate the drawing of the most important
conclusions. Results for individual classifiers are given first, and these are then
compared.

Initial discussion and analysis is also done in chapter, but the more major
discussions and conclusions are referred to the following chapter.

12.1 Linear network results

Several issues and questions regarding the linear network classifier are resolved
through experimentation.

12.1.1 Determining the stopping criteria

How long (how many iterations) should the linear network take before training is
stopped? Several criteria for stopping are typically used, such as stopping when
the error gradient falls below some threshold. Here, the simplest (and often the
only robust) criteria is used, namely stopping after a fixed number of iterations.
The appropriate number of iterations naturally depends on the particular type
of data that is used for training. However, using 5000 examples (see following
section) and batch-training, it was found that around 50 iterations was enough
to ensure convergence for the linear networks; see figure 12.1.



12.1 Linear network results 78

0 5 10 15 20 25 30 35 40 45 50
0.45

0.5

0.55

0.6

0.65

0.7
Training with white noise, conversation speech, SNR=0

training iteration

er
ro

r 
pe

r 
sa

m
pl

e

Figure 12.1. After around 50 iterations, each using 5000 examples, learning has converged.

12.1.2 Determining the training data set size

For each type of network, training to a fixed number of iterations was done using
different-sized training sets. This was in order to ensure a sufficiently large
training set. Clearly, the larger the training set (compared with the number
of parameters in the classifier), the more the latter will be ’forced’ to learn the
general structure in the data, unable to memorize each data point (input-output
example). After training, each network (having trained using a different-sized
training set) is tested on a ’validation’ data set. It is then possible to see how
big the training set should be for the classifier to learn robustly. The overall
conclusion was that around 5000 examples are enough to assure this ’asymptotic’
learning - see figure 12.2.

Determining the number of training iterations and the size of the training set
was of course based on several different noise types and SNR conditions.

12.1.3 Preprocessing

The input data was normalized as described in 3.6.
Secondly, frames of length 50ms where extracted. For each frame, features

are extracted. The squared filterbank outputs are summed into one value for
each filter for each frame, as are all cross-correlations. So for each frame, there
are 9 filterbank outputs and 36 cross-correlation outputs available as features.

The filterbank is implemented using a modified version of the mel-scale code
from Slaney’s Auditory Toolbox [28]. This uses an FFT to implement the
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Figure 12.2. Using around 5000 examples is enough to ensure reliable learning.

mel-scale filtering. After filtering, each output signal is squared (to get rid
of dependence on phase) and finally the elements (corresponding to samples in
the frame) are summed to give a one-dimensional signal per frame per filter.

The cross-correlations are done by cross-correlating the squared filterbank
output signals and the summing over the elements of each resulting signal,
again giving a one-dimensional signal per cross-correlation per frame.

The network will learn an appropriate scaling of each weight. It is important
of course that training and test data are normalized in the same way. The input
normalization is done in a standard way for all data sets as described in 3.6.

12.2 Comparison of features

12.2.1 Determining the size of the filterbank

The first question is how much difference the number of filters in the filterbank
makes, when used as inputs to linear networks, otherwise trained in the same
way. Two different sizes are tested, namely 9 and 18 filters.

Figure 12.3 shows one result, shown as a ROC curve, for a particular noise
type and SNR. The difference is seen to be quite negligible, and this was found
to be a consistent conclusion across noise types and SNR’s.

In the name of simplification, the size 9 filterbank is chosen. Also, 18 filters
make for 153 possible cross-correlations, which will be more difficult to examine
than the 36 possible ones for a size 9 filterbank.
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Figure 12.3. ROC comparison for networks with 9 and 18 filterbank inputs. White noise at
SNR=10, very similar results were obtained for other noise types.

12.2.2 9 filter-bank and 36 cross-correlations

The second question is how the 9 ’raw’ filterbank outputs compare with the 36
cross-correlations when used as inputs to linear networks, otherwise trained in
the same way.

Speech does have a unique distribution of power over frequencies, especially
for voiced speech (see figure 3.1)

So even though the input normalization will make it impossible to simply
use the energy of the signal as a VAD feature, a linear network can still learn
to weigh the frequencies in a way that can give some discriminative power in
certain cases. For white noise, this works quite well, see figure 12.4. But for
other cases, linear separation becomes very difficult, see figure 12.5.

The cross-correlations are able to capture much more information than the
raw filter-bank outputs. A linear network can then learn that certain frequen-
cies should be positively correlated for speech, others should be negatively cor-
related, and others still might be irrelevant. This leads to the idea of pruning,
where weights corresponding to irrelevant cross-correlations are removed from
the network - see 9.4.

However, 36 parameters is a very low number compared to the number of
available training data, so it is expected that pruning will not give much (if
any) actual improvement of performance, but it might be possible to reduce the
network size significantly without degrading performance to a marked degree.
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Figure 12.4. 9 raw filter-bank power compared with using all 36 possible cross-correlations between
them. In this ’easy’ case (white noise at SNR 0), the gain is not overwhelming.
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Figure 12.5. 9 raw filter-bank power compared with using all 36 possible cross-correlations between
them in a ’hard’ case (’clicks’ noise at SNR 0). Now, the ’raw’ features do not discriminate well
and the resulting VAD performs poorly.
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12.3 Separate voiced and unvoiced classifiers

Surprisingly, having two separate classifiers, one for voiced and one for unvoiced
speech does not improve upon results, even when using the same features as
input, see figure 12.6.
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Figure 12.6. Single classifier using 36 cross-correlation inputs compared with a combined output
from a voiced an an unvoiced classifier

.
The reason for this is undetermined and more work should be done in this

area.

12.4 Pruning

When pruning (see 9.4), the outcome is different for each ’run’, depending on
the data set used and the random initialization of the linear network weights to
be pruned. To illustrate this, figure 12.7 shows several pruning runs together -
each run is shown by plotting the validation error as a function of the number
of weights pruned. White noise seems to be the exception, being very ’well
behaved’ and producing uniform results (figure 12.8).

Each combination of noise type and SNR was investigated by pruning and
examining the validation error.

Figures 12.10 to 12.14 show some examples, where each is taken as the best
(producing the best single network) of many runs on the same noise type and
SNR combination (other figures in appendix D).
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Figure 12.7. Validation error as a function of the number of weights that have been pruned away
- several different pruning runs are plotted together. Traffic noise, SNR=0.
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Figure 12.8. Validation error as a function of the number of weights that have been pruned away.
White noise, SNR=0.
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Figure 12.9. Several pruning runs in traffic noise at SNR 10. Notice how only a few networks
(bottom graphs) are good enough from the beginning to be useful for analysis.

Note that for these experiments, the error rate and not the cross-entropic
error is used to measure the error on the validation set. This is done to avoid
the possible outlier problems with the cross-entropic error function, where a
single miss-classification can produce a huge error, making it difficult to compare
results. (The error rate is simply the total proportion of examples that are
wrongly classified, measured per example (i.e. total error divided by number of
examples)).

The validation error is typically reduced after pruning a few weights but then
rises sharply when pruning more than half the weights:

In several cases, the pruning graphs reveal that the network is unable to solve
the problem at all. This is when pruning all weights (except the bias weight)
is insignificantly worse than pruning only a few weights. The error rate per
point then is around 0.35 which is the mean proportion of non-VAD samples
in the test sets. What the network is actually learning in these cases is simply
the prior probability of the VAD class, P (CV A). Only in the cases where the
network is able to reach an error significantly lower than 0.35 can it be said to
have learnt anything useful, as the bias on its own can learn P (CV A).

For traffic, clicks and babble noise, SNR 0 pruning results only show that the
problem is too difficult (error rate does not reach much less than 0.35); appendix
D.

As an example of learning during pruning, figure 12.13 shows a pruning run
with babble, where the network is finally able to learn the correct bias, only
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Figure 12.10. Validation error as a function of number of weights pruned. White noise, SNR 0.
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Figure 12.11. Validation error as a function of number of weights pruned. Traffic noise, SNR 10.
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Figure 12.12. Validation error as a function of number of weights pruned. Clicks noise, SNR 10.

just making it down to an error rate of 35 percent.
Using training sets that are a combination of all noise types produces unim-

pressive results, see figure 12.14. This is probably due to the presence of babble
noise, which makes the problem too difficult.

Pruning does not seem to produce better networks than not pruning. This
is not surprising from the above figures. It would seem that the 36 cross-
correlations all contribute to some degree to the discriminative ability of this
feature set. Figure 12.15 is one example of comparison; similar results were
found for all combinations of noise type and SNR. Here, the network found
during pruning is re-trained from scratch (random initialization) in order to
ensure proper learning (see [3], page 362). Also, with lots of training examples
relative to the number of parameters (weights), overfitting (4.2) is not a problem.

All in all, it was chosen to keep all 36 cross-correlations as the feature set for
the best possible linear network.

Still, the weights that were chosen by the pruning process and the corre-
sponding value of those weights might say something about which frequency
correlations are most important. This is illustrated by figures 12.16 to 12.20.
These show the final networks found by pruning for different noise types and
SNR’s. Each network is the result of selecting the best network after several
individual pruning runs. In the figures, red (solid) circles represent weights with
positive value while blue (open) are negative. The size of each circle corresponds
to the magnitude of the weight.

In the example shown in figure 12.20 which is babble noise at SNR 0, only the
correlation between the first and second filters is kept; this is consistent with the
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Figure 12.13. Validation error as a function of number of weights pruned. Here it seems that
the network was not trained to completion prior to pruning, but has managed to ’learn’ during
pruning. Babble noise, SNR 10.
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Figure 12.14. Validation error as a function of number of weights pruned. The optimum represents
the learning of only slightly more than the prior class probability. Mix of all noise types, SNR 10.
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Figure 12.15. Performance using 36 cross-correlations versus pruning those correlations. White
noise, SNR 10.

results from white noise. The babble network, however, performs very poorly.
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Figure 12.16. Relative weighting by a network trained and pruned on white noise data at SNR 0.
Notice the strong positive weight between the first two (low-frequency) filters and the pattern of
positive and negative weights.

When such figures are generated for each pruning run and then put together,
the result says something about how likely each cross-correlation is to end up
in the final (optimal for that run) network and what magnitude it typically
then has. This is shown in figures 12.21 to 12.24. Every noise type and SNR
combination is shown here together, as this facilitates inspection. All circles are
now open, and the variation across pruning runs can be seen in the variation of
each circle’s diameter. Each figure represents 5 different pruning runs.
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Figure 12.17. Relative weighting by a network pruned on white noise data at SNR 10. Notice
the strong resemblance to figure 12.16, even though these networks were initialized randomly and
trained on different data.
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Figure 12.18. Relative weighting after pruning with traffic noise data at SNR 10. Notice the
difference in weights compared with white noise (previous figures) - both the size and the sign are
different.
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Figure 12.19. Relative weighting by a network after pruning with clicks noise data at SNR 10. This
network had good performance; notice how the pattern is distinct for each noise type (compare
with figures 12.17 and 12.18).
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Figure 12.20. Relative weighting by a network pruned in babble noise data at SNR 0. This network
performed poorly, but the remaining large weight may be a good choice still, see figure 12.17.
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Figure 12.21. Relative weighting by several pruned networks with white noise, SNR 0. Notice how
for most of the combinations, there is consensus as to sign and size.

Some observations can be made on these pruning results. First, for those
networks that are able to learn more than just the prior probability of speech
presence (which the bias weight handles), there is some consistency over which
weights get chosen and their value. For instance, looking at speech in white
noise, the positive correlation between the first and second filterbanks (low
frequencies) seems to signify speech. For detecting speech in traffic, other cor-
relations seem to be important. The low-frequency correlation is now not as
important, probably because traffic also has much energy content at low fre-
quencies. For those networks unable to learn much, most weights are pruned
away and there is some randomness as to what is left.

Other patterns are also seen, but their interpretation is more speculative
The most correct way to select the final network might be to train a network

- using the chosen features - on a combined training set containing all noise
types and both SNR 0 and SNR 10 mixtures. For a practical system designed
to operate in the range from SNR 0 to SNR 10, it would presumably be optimal
to train that system with data distributed across this range. However, in the
present case, networks were trained on all noise types but each network was only
trained on a particular SNR. So to select a final network to be compared with
the ICA, OTI VAD and ITU-T VAD , it is necessary to consider both networks
trained specifically on a particular noise type (which is an unfair advantage
compared with the OTI VAD and ITU-T VAD which only exist in one, general
version) and those trained on all noise types at both SNR 0 and 10.
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Figure 12.22. Relative weighting by pruned networks with traffic noise, SNR 10. With traffic,
even at SNR 10, there is less consensus than for white noise between runs (see previous figures).

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Filter #

F
ilt

er
 #

clicks noise, SNR 10

Figure 12.23. Relative weighting by pruned networks with clicks noise, SNR 10. There is more
variation in the choice of weights by networks of different pruning runs than for white noise (figure
12.21).
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Figure 12.24. Relative weighting by pruned networks with a mixture of all noise types, SNR 10.
As might be expected, mixing all noise types leads to the most variation.

12.5 ICA results

12.5.1 Learning ICA models - icaEXP

To learn basis functions and corresponding source distributions for speech, a
data set consisting of 10 persons (5 females and 5 males) speaking unique sen-
tences was used. From this, 20000 examples each with a length of 64 samples
were taken. On these examples, the icaEXP algorithm was run. The A ma-
trix was initialized to the unit matrix I. The β’s were initialized to 0.5, i.e.
only slightly super-Gaussian. The algorithm ran for 64 iterations with an initial
learning rate of 0.001.

In the case of speech signals, it was found that all sources were super-Gaussian,
as expected and found by others (see [8]).

The basis functions found generally contain signals that resemble the modelled
signal itself. This resemblance is to be expected given the extreme sparsity of
the sources, so that often a single basis function will approximate the modelled
signal well. See figures figure 12.28 and figure 12.36.

It was found that for click-type noise, the basis functions found were more or
less random, containing no phase information. This is reflected in the fact that
ICA model 1 (see 12.5.3) is not ’cheated’ by this type of noise, rather classifying
it as ’white noise’ than speech - so this presents no setback.

Notice the strong similarity between the speech and traffic basis functions.
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Figure 12.25. An example of a click. Notice the random nature of the signal.

Discrimination is still possible, both because there are differences in basis func-
tions, but also because there is significant difference between the distributions
of the sources. Figures figure 12.26 and figure 12.27 show a few distributions
(histograms and fitted generalized Gaussians) for speech and traffic respectively.

With speech and traffic being the only types of signals used that have signif-
icant time-domain structure (as opposed to the clicks and white-noise types),
music was tested as a third type of signal, known to be highly structured in
time; specifically a performance Beethoven’s moonlight sonata. Figure 12.29
shows the basis functions learnt by icaEXP when given 10000 samples from
this piece. Note the periodic, phase-specific basis functions together with the
frequency-only functions. The latter probably stem from the fact that piano
notes (frequencies) often linger on substantially longer than several millisec-
onds.

12.5.2 Basis function interpretation

The basis functions learned from clean, mixed male/female speech clearly look
like a good basis for a sparse representation of speech. In figure 12.28, the
sub-figure in row 5, column 3 for instance represents voiced speech. Some (e.g.
row 3, column 1) obviously correspond to some of the noisy, unvoiced parts of
speech.

The functions have a wavelet-like structure, specific with respect to both
frequency- and phase content. Some are reminiscent of Gabor filters (plane
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Figure 12.26. Some speech source distributions.

−4 −2 0 2

x 10
−3

0

2000

4000

6000

−5 0 5

x 10
−3

0

5000

10000

−0.01 0 0.01
0

2000

4000

6000

8000

−5 0 5

x 10
−4

0

1000

2000

−5 0 5

x 10
−3

0

5000

10000

−5 0 5

x 10
−3

0

5000

10000

−4 −2 0 2 4

x 10
−3

0

2000

4000

6000

8000

−5 0 5 10

x 10
−3

0

5000

10000

−5 0 5 10

x 10
−3

0

5000

10000

−2 0 2

x 10
−3

0

2000

4000

6000

−5 0 5 10

x 10
−3

0

5000

10000

−0.01 0 0.01
0

5000

10000

15000

−5 0 5

x 10
−3

0

2000

4000

6000

8000

−4 −2 0 2 4

x 10
−3

0

2000

4000

6000

8000

−5 0 5 10

x 10
−3

0

5000

10000

15000

−5 0 5

x 10
−3

0

5000

10000

Figure 12.27. Some traffic source distributions.
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Figure 12.28. Basis functions learnt from a mixture of male and female speech.
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Figure 12.29. Basis functions learnt from Beethoven’s moonlight sonata (piano music).
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waves restricted by a Gaussian), and these very likely correspond to segments
of voiced speech.

12.5.3 ICA model 1

This concerns the model of section 10.10.
Figure 12.30 shows the output (estimated P (CV A|x)) from this VAD for white

noise. Notice the sharp fall-offs of the signal, leading to the idea of implementing
a holding scheme - shown in figure 12.31. The corresponding ROC curves are
shown in figure 12.32 and figure 12.33. These show the potential gain from
holding schemes and also that this ICA VAD is very good at detecting speech
in white noise (as expected).
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Figure 12.30. Output from 1st ICA VAD. Note the large holes in the signal - no hangover scheme
is used. White noise, SNR 0. Also shown is the true VAD signal.

This model is surprisingly good at not detecting clicks as speech, as shown
in figure 12.34. This is probably because the clicks rather resemble white noise
(see figure 12.25).

Figure figure 12.35 shows the overall performance on white noise.
.

12.5.4 ICA model 2

This concerns the model of section 10.11. As shown in figure 12.37, model 1 is
’fooled’ into believing that traffic is speech (probably because it looks more like
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Figure 12.31. Same as figure 12.30, but now with a simple hang-over scheme. The ’holes’ are
covered with no noticeable spill-over to non-VAD regions. White noise, SNR 0.
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Figure 12.32. ROC curve corresponding to figure 12.30. White noise, SNR 0.
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Figure 12.33. ROC curve corresponding to figure 12.31. Note the significant improvement com-
pared to figure 12.32. White noise, SNR 0.
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Figure 12.34. ICA model 1 is able to see that clicks are not speech - clicks noise, SNR 0.
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Figure 12.35. ICA model 1 on white noise (blue: SNR 0, red: SNR 10)

speech than white noise), while model 2 performs much better; it is often able
to distinguish correctly. However, see also figure 12.36.

This model is no better at white noise than model 1 (they both include a
white noise model in the same way).

12.5.5 ICA mixture model

It was attempted to apply this model to speech data, but the computation time
needed was excessive.

Artificial signals were created, however, and tested on the mixture model
algorithm. Figures figure 12.38 and figure 12.39 show that the algorithm was
able to learn to correctly classify these data. This task was made harder by
letting both classes have the same mean (zero).

Babble is not handled well by the above ICA models (not shown). It might
have been handled to some extent by training specific babble models, but in
general, babble is a very difficult setting for speech detection.

12.6 OTI

Figures figure 12.40 to figure 12.43 show the performance of the OTI VAD on
different noise types.

This VAD is obviously not very good in white noise settings, and is especially
troubled by clicks noise (figure 12.42, see also figure 12.45). However - and quite
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Figure 12.36. The mixing matrix found for traffic data. Notice the close resemblance to many
of the speech basis functions; these are quite surprising and may explain some of the difficulty in
detecting speech in traffic noise.
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Figure 12.37. ICA model 1 and 2 compared. The latter handles traffic (to some degree, but not
the difficulties towards the upper right), the former cannot. Traffic noise, SNR 0.
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Figure 12.38. Correct classification of artificial data.

−3 −2 −1 0 1 2 3

−8

−6

−4

−2

0

2

4

final labelling

S
X1
X2

Figure 12.39. Estimated classification of the same artificial data as in figure 12.38 by the SIMal-
gorithm. Note that the central points are ambiguous and would be difficult to classify even by
a human. The ones that are ’classifiable’ have been classified correctly. (The blue and magenta
points are the source estimates and can be ignored).
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Figure 12.40. ROC for OTI VAD with white noise, conversation speech.
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Figure 12.41. ROC for OTI VAD with traffic noise, conversation speech.
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Figure 12.42. ROC for OTI VAD with clicks noise, conversation speech.
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Figure 12.43. ROC for OTI VAD with babble noise, conversation speech.
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surprisingly - it handles traffic noise very well (figure 12.41).
The output signal is quite ’peaky’, see figure 12.44. This VAD would probably

benefit greatly from a hang-over scheme of some kind, smoothing the sharp
drop-offs of the signal.
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Figure 12.44. True VAD and OTI VAD output levels; traffic noise, but similar characteristics for
all noise types. Note the ’peakedness’ of the output level.

12.7 The ITU-T (G.729B) standard VAD

Figure 12.46 shows the performance of this VAD as ROC points for different
noise types and SNR’s. As mentioned in 8.2.1, only points on the ROC plane
can be generated for this VAD. It will be compared with other VAD’s in the
following, so no analysis will be done here. Note however that it looks to be
quite robust to both noise type and SNR.

12.8 Linear network and the ITU-T and OTI

The conclusion from the linear network experiments was that using all 36 mel
filterbank outputs was a good choice, but it was also mentioned that it would
not be fair to compare linear networks trained on a specific noise type with
VAD’s built for any noise type (such as the ITU-T and OTI VAD ). Therefore,
in the following ROC curves, the following are compared:
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Figure 12.45. Problems with click noise. The simultaneous onset in many frequencies for this
noise type fools the OTI VAD ; output levels in the non-VAD regions are comparable to those in
the VAD regions.
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Figure 12.46. ROC points for ITU-T VAD (conversation type speech).
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• Linear network, 36 cross-correlations, specifically trained on a particular
noise type (Mel36)

• Linear network, 36 cross-correlations, trained on a mixture of all noise
type at SNR 0 (Mel36All-0)

• Linear network, 36 cross-correlations, trained on a mixture of all noise
type at SNR 10 (Mel36All-10)

• The ITU-T VAD
• The OTI VAD

The first is included to illustrate the importance of the noise type in deter-
mining performance - it will not be included in the comparison analysis for the
reasons given above. See figures 12.47 to 12.54.
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Figure 12.47. White noise, SNR 0

Inspecting these figures, it is possible to conclude with some certainty which
VAD’s best handle the different sound environments.

For white noise, Mel36All-0 performs the best. OTI and ITU are somewhat
similar, although ITU is very much ’on the safe side’ (low FP and TP) at SNR
0, and OTI is better than ITU at SNR 10.

For traffic noise, OTI is the overall winner. Mel36All-0 ties second place with
ITU.

For clicks noise, OTI fails completely (in fact, inverting the output signal
would produce a better VAD!). Again, Mel36All-0 performs quite well, but
ITU is the best VAD for this environment.

Note for all of the above that the specifically trained linear network (Mel36)
performs significantly better than the general ones (Mel36All-0 and -10).
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Figure 12.48. White noise, SNR 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positives

tr
ue

 p
os

iti
ve

s

Mel36
Mel36all0
Mel36all10
Oticon
ITU−T

Figure 12.49. Traffic noise, SNR 0
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Figure 12.50. Traffic noise, SNR 10
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Figure 12.51. Clicks noise, SNR 0
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Figure 12.52. Clicks noise, SNR 10
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Figure 12.53. Babble noise, SNR 0
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Figure 12.54. Babble noise, SNR 10

For babble noise, no VAD is impressive. Still, OTI has some success at SNR
10.

12.9 Comparing with the ICA models

Again, comparing the ITU-T VAD to other VAD’s is difficult since only one
point on the ROC plane is available for the ITU-T VAD, so those comparisons
must be done with this reservation in mind.

For white noise, figure 12.35 shows that at SNR 10, the ICA models are
actually the best ones.

Including the ICA models, for ’clicks’ noise, the ITU-T VAD must still (grudg-
ingly) be declared the winner (figures 12.34 and 12.51).

This VAD uses rather sophisticated hang-over methods, so the ICA models
(1 and 2) were improved by implementing a simple hang-over scheme to see if
they could then match the ITU-T VAD. The result is shown in figure 12.55; the
result for SNR 10 is very similar. The ITU-T VAD still seems to have an edge
and it is somewhat surprising that it handles this type of noise so well.

For traffic noise, the ICA models are not as good as OTI, although the differ-
ence is not great (figures 12.37, 12.49 and 12.50) and the ICA models actually
perform better in the low-FP, low-TP area.
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Figure 12.55. ICA model 1 improved with a simple hang-over scheme is still slightly worse than
the ITU-T for clicks noise (SNR 0).
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Chapter 13

Discussion and conclusion

This chapter discusses the findings made during this project on the main chal-
lenge, which was to build a single system that is robust to all noise types and
to both low and high SNR.

First, this work has clearly demonstrated the crucial importance of taking
the type of noise into account when developing and testing speech detection
algorithms.

Regarding feature extraction, the cross-correlation features have been proven
in this work to be very useful and able to be used for noise robust VAD algo-
rithms on their own.

As the systems stand at the end of this project, the linear network using 36
cross-correlations between squared mel-scale filterbank outputs, trained on a
combination off all noise types at SNR 0, would be chosen as the best overall
VAD. It has no outright weakness and is quite robust to both noise type and
SNR. The networks trained at SNR 0 might perform better than those trained
at SNR 10 as they are more forced, so to speak, to learn the most appropriate
parameters (weights).

The ITU-T VAD handles the clicks noise type very well, but is not well suited
for white noise environments, where it operates very cautiously at low SNR.

The OTI VAD ([4]) performs surprisingly well in traffic noise, but has grave
trouble with transient (clicks type) noise, as expected.

The ICA models are very good in white noise environments, but have some
trouble discriminating between traffic and speech. This may be due to using
too short time-domain segments in those models. They are also very good at
detecting speech in the clicks noise type, only slightly outperformed by the
ITU-T VAD .

All in all, each VAD has strong points compared with all the others, so the
actual choice in a practical situation would have to depend on the expected
sound environment that the VAD is to operate in.

Although very little optimization was done on the implementations, the linear
network classifiers are generally significantly faster than the ICA classifiers. Still,
it should be possible to create versions of both that could detect speech in real
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time.

13.1 Future improvements and research

An obvious research direction to take is to investigate the many different features
that are suggested by others in audio signal processing. The knowledge gained
here could then be applied to improve both the linear and the ICA models.

Also, investigation of other noise types should be done, e.g. music.
A continuation of the linear network method approach would be to use a

multi-layer perceptron instead (see [3]). This is a more powerful, non-linear
learning system and would certainly be an appropriate next step to research.

From the experimental results one thing is very clear, namely that when tested
on a particular noise type, linear network classifiers trained with that particular
noise type have a tremendous advantage over classifiers trained on other noise
types. The SNR is similarly important, although it seems that training on low
SNR is generalizable somewhat to better SNR conditions. Therefore, it would
be interesting to see, if it was possible to train classifiers that would estimate the
probability of the presence of the different noise types. These estimates could
then be used to weigh the outputs of each of the speech detector classifiers
(one for each noise type, possibly also different ones for high and low SNR),
producing a better and more robust combined VAD.

The ICA framework can be expanded in a number of ways. The ICA classifiers
could probably be made more powerful by learning separate models for voiced
and unvoiced speech - another example of the inclusion of prior knowledge.
Chiefly, however, the supervised ICA mixture model (although only touched
upon in this work) is of interest and is deemed to hold some promise in the
VAD context. Single-channel source separation is another next step for the ICA
approach, in a different but interesting direction.

In conclusion, the goal of building a VAD robust to different types of noise and
SNR’s can be said to be reached to a significant degree. The two main contribu-
tions of this work are the use of principled learning methods with a particular
set of features (filterbank cross-correlations) and the use of ICA models for
speech detection. Both approaches have produced useful results, and both hold
potential for further improvement, some options for which have been laid out.
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Appendix A

TIMIT processing

This appendix describes the TIMIT database in more detail, along with a discus-
sion of phonemes and definitions of voiced and unvoiced speech. The extraction
of data from the database is also briefly described.

A.1 Phonemes

Phonemes are the ’building blocks’ of speech - they are the semi-stationary
segments that make up each spoken word. In order to distinguish between
voiced and unvoiced speech, it is necessary to examine the speech signals at the
phoneme level.

Overall, speech consists of two types of sounds: consonants and vowels. Vow-
els are all voiced by definition. Consonants can be voiced or unvoiced.

Consonants involve interrupting the air that comes out of your mouth; vowels
are made by opening the mouth and letting air come out freely.

There are two basic ways of making consonants: voiced and unvoiced. Voiced
consonants involve a vibration of the vocal cords. Unvoiced consonants involve
no vibration of the vocal cords.

Vowels are made by opening the mouth and letting air come out while the
vocal cords vibrate.

There are five types of consonants: stops, fricatives, nasals, affricates, and
semivowels. Nasals and semivowels are always voiced while stops, fricatives and
affricates can be voiced or unvoiced.

Tables A.1 and A.2 list the phoneme symbols used in the TIMIT corpus as
they correspond to the above.

However, even though table ?? groups the phonemes correctly as voiced or
unvoiced, ’z’, ’zh’ and ’dh’ may be included in the unvoiced set for machine
learning purposes, as they were found to look (in the spectral domain) and
sound similar to the other unvoiced phonemes, at least as found and labelled in
the TIMIT corpus. These sets will still be referred to as ’voiced’ and ’unvoiced’.



A.2 Extraction of TIMIT data 120

A.2 Extraction of TIMIT data

Initially, much effort was used in trying to read the special ’NISP’ format that
all TIMIT sound data are stored in. Eventually, Matlab functions were found
to be available on the web and .wav data could then be extracted.

In addition to the speech itself, a VAD signal containing the true (correct)
labelling of each sample was generated by extracting the phoneme codes from
phoneme files. Further, a Voiced signal was extracted that contains the true
labelling of each sample as either voiced or unvoiced. This signal is only relevant
and used for samples that are labelled as containing speech.

Four files are associated with each sentence: a .wav file contains the speech
data, sampled at 16kHz. A text file contains a transcription of the words in the
sentence. A word file contains sample(time)-aligned word transcriptions and
the phoneme file contains the sample-aligned phoneme transcriptions.
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Voiced phonemes
Phoneme type TIMIT symbols Example word

Stops b,bcl bee
d,dcl day
g,gcl gay
dx muddy
q bat

Affricates jh joke
Fricatives v van

z zone
zh azure
dh then

Nasals m mom
n noon
ng sing
em bottom
en button
eng washington
nx winner

Semivowels,Glides l lay
r ray
w way
y yacht
hh hay
hv ahead
el bottle

Vowels iy beet
ih bit
eh bet
ey bait
ae bat
aa bott
aw bout
ay bite
ah but
ao bought
oy boy
ow boat
uh book
uw boot
ux toot
er bird
ax about
ix debit
axr butter
ax-h suspect

Table A.1. TIMIT voiced phoneme transcriptions.
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Unvoiced phonemes
Stops p,pcl pea

t,tcl tea
k,kcl key

Affricates ch choke
Fricatives s sea

sh she
f fin
th thin

Table A.2. TIMIT unvoiced phoneme transcriptions.
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Appendix B

Recursive estimation

Often, some measure needs to be calculated for at a particular time (sample)
that is based on that sample and several previous samples. If this is to be
calculated for every single sample, direct calculations will be redundant and
inefficient as the windows will be overlapping by all but one sample. Instead
of calculating a needed measure at each time step or frame by calculating on
a window of the signal, ’running’ calculation may be done instead. If this is
possible, then it is much faster, since the value for each time step or frame
can be calculated from the last value only by a simple calculation, eliminating
the need for calculating over the entire window each sample. This is done in a
recursive manner.

With an exponentially decaying window, the estimation can be written as

v(n) = k

n∑

k=0

s(n)λn−k

where v(n) is the estimate one wants to estimate and s(n) is the actual current
value of the measure. For instance, when estimating the signal’s mean, v(n)
would be the mean estimate based on the current and older samples and s(n)
would be the current value of the signal, x(n). This means that the current
estimate should take previous samples into account, but weighing ’older’ samples
with exponential decay. This type of window is often appropriate for estimation.

For variance estimation, it is necessary to also estimate the signal mean,
µx(n), as s(n) is then

(x(n)− µx(n))2

The mean and variance can of course be estimated simultaneously.
The needed normalization factor can be found by setting s(n) = 1 for all n,

in which case v(n) should also become 1 asymptotically:
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V (n) = k

n∑

k=0

1 · λn−k

= k
1− λn+1

1− λ

= 1

⇔ k =
1− λ

1− λn+1

using

n∑

k=0

λn−k =
n∑

k=0

λk

and

n∑

k=0

1 · λk =
1− λn+1

(1− λ)

which is known (and easily shown by recursive induction).
From this can be derived a simplified expression for setting v(n). First:

V (n) =
1− λ

1− λn+1

n∑

k=0

S(k)λn−k

w (1− λ)
n∑

k=0

S(k)λn−k

as
lim

n→∞
λn = 0,−1 < λ < 1

Similarly,

V (n− 1) =
1− λ

1− λn

n−1∑

k=0

S(k)λ(n−1)−k

w (1− λ)
n−1∑

k=0

S(k)λ(n−1)−k

= (1− λ)
n−1∑

k=0

S(k)λn−kλ−1



125

v(n) can thus be expressed with v(n− 1) as

V (n) w (1− λ)
(n−1∑

k=0

S(k)λn−k + s(n)
)

and so

V (n) w λV (n− 1) + (1− λ)S(k)

The closeness of the approximation depends on the number of samples and
the value of lambda. With the values actually used for the current system, the
error is negligible.

The normalization used in the preprocessing step of the current system uses a
slightly modified version of this in order to speed things up. Instead of working
sample-by-sample, it works block-by-block so that n represents the block index
and s(n) is the mean (say variance) for the current block. This eliminates
a number of multiplications in the order of the block size, at the expense of
a courser normalization (each estimate being constant within each block), see
figure 3.8.

The corresponding equation for a rectangular window of length L is

V (n) = V (n− 1) +
1
N

(S(k)− S(k − L + 1))

but is not used in this project.
For the autocorrelation, S(k) = rxx(k, τ) = x(k)x(k − τ).
The recursion formula would then be applied for all relevant τ ’s.
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Appendix C

Software

More than 400 Matlab functions, helper functions and scripts were written in the
course of this project. Some of these are mentioned in the report in connection
with pseudo-code descriptions as they form key parts of the implementation of
various algorithms. A selection from all these is on the CD that is available
with this report (or from the author, dj@imm.dtu.dk).

The most important folders are:

ANN

Functions for the linear neural network; training, pruning etc.

experiments

Functions for running and analyzing experiments.

ICA

Functions specific to Independent Component Analysis methods.

myfunctions

Helper functions, used by many of the other functions, e.g. roc.m for calculating
ROC curves.

TIMIT

Functions for reading and extracting TIMIT data.
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VADs

Several linear network VAD’s implemented as separate functions.
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Appendix D

Additional figures

This appendix contains additional figures describing the results of the experi-
ments (see chapter 12). Any observations can be found in the caption to each
figure.

D.1 Pruning
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Figure D.1. Validation error as a function of number of weights pruned. White noise, SNR 10.
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Figure D.2. Validation error as a function of number of weights pruned. Note the scale; the
fluctuations are not large. Traffic noise, SNR 0.

0 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

weights pruned

er
ro

r 
ra

te
 p

er
 p

oi
nt

Figure D.3. Validation error as a function of number of weights pruned. Clicks noise, SNR 0.
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Figure D.4. Validation error as a function of number of weights pruned. Babble noise, SNR 0.
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Figure D.5. Validation error as a function of number of weights pruned. Mix of all noise types,
SNR 0.
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Figure D.6. Relative weighting by a network trained on traffic noise data at SNR 0. Note the
degeneration; the performance of this network is very poor.

The following figures illustrate more examples of the variation found when
pruning several times with different noise types and SNR’s.
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Figure D.7. Relative weighting by a network trained on clicks noise data at SNR 0. Again,
performance of this network is poor.
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Figure D.8. Relative weighting by a network trained on babble noise data at SNR 10. Network
has poor performance.
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Figure D.9. Relative weighting by a network trained on an equal mix of all noise types at SNR 0.
Obviously dominated by the presence of babble.
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Figure D.10. Relative weighting by a network trained on an equal mix of all noise types at SNR
10.
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Figure D.11. Relative weighting by pruned networks with white noise, SNR 10.

In the following figures, 5 random pruning runs are shown to illustrate some
typical results for the different noise types and SNR’s. They are all for networks
using all 36 cross-correlations as inputs.
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Figure D.12. Relative weighting by pruned networks with traffic noise, SNR 0.
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Figure D.13. Relative weighting by pruned networks with clicks noise, SNR 0.
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Figure D.14. Relative weighting by pruned networks with babble noise, SNR 0. Notice the
degeneration; most networks are pruned down to 1 or 2 weights.
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Figure D.15. Relative weighting by pruned networks with babble noise, SNR 10.
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Figure D.16. Relative weighting by pruned networks with mixture of all noise types noise, SNR 0.

5 10 15 20 25 30 35

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

# weights pruned

er
ro

r 
ra

te
 / 

sa
m

pl
e

white noise, SNR 0

Figure D.17. For white noise, most networks perform well.
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Figure D.18. White noise, SNR 10.
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Figure D.19. For traffic, SNR 0, most networks perform poorly.
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Figure D.20. In clicks noise at SNR 0, very few networks are able to learn anything.
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Figure D.21. At SNR 10, the results are better and more consistent.
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Figure D.22. Babble noise makes for impossible learning tasks! (SNR 0).
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Figure D.23. See previous figures comments.
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Figure D.24. Mixture of all noise types; at SNR 0, the presence of babble noise is probably
responsible for the poor performances.
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Figure D.25. At SNR 10, some networks are able to learn.
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The following figures show mean and confidence intervals (assuming normal
distributions) for the validation errors, based on 10 pruning runs.
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Figure D.26. Again, for white noise, performance is consistently good and therefore, variance is
low.
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Figure D.27.

0 5 10 15 20 25 30 35 40
0.28

0.3

0.32

0.34

0.36

0.38

0.4

# weights pruned

m
ea

n 
er

ro
r 

ra
te

 / 
sa

m
pl

e

traffic noise, SNR 0

Figure D.28.
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Figure D.29.
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Figure D.30.



D.1 Pruning 146

0 5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

# weights pruned

m
ea

n 
er

ro
r 

ra
te

 / 
sa

m
pl

e

clicks noise, SNR 10

Figure D.31. For clicks at SNR 10, results are consistently quite good and the variance is low,
meaning that most networks learn to the same degree.

0 5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

# weights pruned

m
ea

n 
er

ro
r 

ra
te

 / 
sa

m
pl

e

babble noise, SNR 0

Figure D.32.
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Figure D.33.
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Figure D.34. For a mixture of all noise types at SNR 0, the results are probably ’ruined’ by the
presence of babble.
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Figure D.35. At SNR 10, the variance is probably high due to the random presence of babble,
sometimes leading to no learning, while other networks may ’pick up’ learning from examples that
are not babble.
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Appendix E

Other features

This appendix gives a short review of some of the features that are often used
in audio (and speech) processing.

E.1 Time-domain features

E.1.1 Zero-Crossing Rate (ZCR)

This is simply the number of times the time-domain signal crosses zero and is
a classic feature for speech/non-speech discrimination. The major problem is
that it cannot (alone) discriminate between speech and any other rhythmical
source, such as music. The upside is that it is extremely cheap computationally.
Used in e.g. [26].

E.1.2 Energy

This is the average energy of a frame (usually called ”Short-time energy” since
the frames are short (say 20 ms)). Also used in [26].

E.2 Spectral-like Features

E.2.1 Fourier transformation (FT)

The frequency content of part of the signal, e.g. the previous N samples. It can
be computed using the Fast Fourier Transform (FFT) so is relatively cheap in
complexity (n log n where n is the number of samples used).

E.2.2 Spectrogram

This is simply an extension of the FT and contains information on frequency
content over time of a part of the signal. Also called ”Short-time Fourier trans-
form” (STFT). It is computed by doing a FFT for each window in a series of
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(possibly overlapping) time-domain windows and thus gives ”local” frequency
information. The biggest problem is the selection of window length.

E.3 Spectrally derived features

Many of these are used in [26] and are derived from the power spectrum of the
input signal. The simples way to calculate this is using the periodogram:

Px =
1
N
|X(f)|2 (E.1)

There are many better ways of estimating the power spectrum. This choice is
a parameter in itself, and each of the more advanced methods have additional
parameters.

E.3.1 4Hz modulation energy

According to [26], speech has a characteristic energy modulation peak around
the 4 Hz syllabic rate (i.e. the rate of phoneme production). This means that
the energy in all frequency bands is modulated with time.

This can be measured by taking a series of short-time spectrums of the signal
(e.g. columns of a spectrogram) and filtering each of these ’channels’ with a
bandpass filter centered at 4 Hz. The energy of this filtered signal is then a
measure of this feature.

E.3.2 Percentage of ”Low-Energy” frames

This is the proportion of signal frames with power less than 50% of the mean
power of the previous several frames. It expresses something about the distri-
bution of power in the signal.

E.3.3 Spectral roll-off point

This is the 95th (or similar) percentile of the power spectral distribution and is
thus a measure of skewness. Voiced speech and music are similar with respect
to this feature while unvoiced speech is different. The variance of this feature
should then be a good feature.

E.3.4 Spectral centroid

This is the center of mass for the power spectrum, defined as

C =
∑

i iAi∑
i Ai

(E.2)

It also contains information about the shape of the power spectrum.
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E.3.5 Bandwith

For a spectrum, bandwidth can be calculated as ([20]:

BW =

√√√√
∑N

n=0(n− SC)2|Xi(n)|2∑N
n=0|Xi(n)|2

(E.3)

where SC is the spectral centroid. This says something further about the
power spectrum shape.

E.3.6 Spectral flux

This is the 2-norm of the frame-to-frame spectral amplitude modulation. It is
generally higher for music than for speech.

E.3.7 Rhythmicity

There are different ways of trying to capture rhythmicity in a signal, the idea
being to be able to detect the presence of music (which could be made relevant
in a VAD context). Ideally, the detection should not react to just any periodic
beat (as this would detect for instance clock ticks) but find the sort of patterns
associated with rhythmic music.

The ’Pulse metric’ is a clever, but heuristic - and quite involved - detection
of rhythmicity. It involves peak detection, which is not simple or easy to do
robustly. See [26].

E.3.8 Wavelets

A Wavelet transform (WT) produces a time-frequency ’image’ of an audio signal.
The difference between the STFT and a WT is that the former has a fixed
absolute window length while the latter has a fixed relative (input-signal to
transform-signal) window length. Proponents of the WT would argue that it
avoids the fixed window length problem of the STFT. There is a ’fast’ group of
algorithms, called ’Fast Lifting Wavelet Transform’ algorithms. It is unknown
how fast this is compared to an FFT on the same signal. Probably it depends
on the choice of the wavelet function.

E.3.9 Advanced models of human audition

See for instance [19]. Again, the auditory toolbox contains many advanced
models. The driving motivation is often the belief that the human auditory
system somehow represents a powerful feature extraction (amongst other things)
system. Still, it is questionable if models of it are directly useful for artificial
classification systems.
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E.3.10 Cepstra

The cepstral coefficients (CC) are obtained by doing an IFFT (inverse Fourier
transform) or a DCT (Discrete Cosine Transform) on the logarithm of the DTFT
(Discrete-Time Fourier Transform) of a signal. It de-emphasizes high-frequency
components of the DTFT. Usually, not all CC’s are used, yielding a special form
of compression of the DTFT.

It has the advantage of potentially separating spectrally multiplicative effects
and may also be used to compress the Fourier transform.

It can be computed from LPC (Linear Predictive Coding) coefficients (then
called ’LPCC’), but this yields slightly different results. LPC-based cepstra may
be more robust to noise, but FFT-based cepstra are supposedly better suited
for low-noise signals.

They can also be computed from a transformed FFT, e.g. on the mel-scale,
see [24]. Using the DCT, this is done as:

cp =
N∑

k=1

(log Sk) cos
(p(k − 1

2 )π
N

)
(E.4)

where Sk is the output power of each of the N mel-scale bandpass filters; [24]
use N = 20. They also use only around the first 8 cepstral coefficients. Of
course, this can be done using any filterbank.

Cepstral coefficients are highly uncorrelated, so they describe different 2nd-
order characteristics of the signal.

Computational cost is of the same order as the FFT (2 FFT’s and a loga-
rithm).

Mel-frequency cepstral coefficients (MFCC)

These are obtained by doing a DCT (usually) on the log of the power outputs
of a range of filterbanks (e.g. gammatone filterbanks). This de-emphasizes
high-frequency components of the DTFT due to the frequency location and
bandwidth of the filterbanks. Usually, not all CC’s are used, yielding a special
form of compression of the DTFT.

8 coefficients are used by [24] .

E.4 Frequency-related features

E.4.1 SAPVR

This stands for ”Spectral Autocorrelation Peak Valley Ratio”. It is used to
detect structure in the spectral autocorrelation domain. See [22].

Specific to detecting signals with periodic spectrum structure.
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E.4.2 Spectral crest factor

This is the ratio of the larges spectral coefficient to the mean (in a frequency
band). Much simpler to calculate than - and would be highly correlated to - the
SAPVR.

E.4.3 Spectral Flatness Measure

See [9]. Discriminates between ”tonal” and ”noisy” signals. Often done on
several frequency bands.

E.4.4 Spectral peak presence

If there is a (marked) peak in the spectrum of a signal, this indicates a tonal
signal. See [9]. Used in the MPEG-1 model.

E.4.5 Spectral predictability

Using some (simple) model (e.g. LPC) for the spectral coefficients, if prediction
error is small, this indicates a tonal quality. Also used by MPEG-1.


