
�����������
	�������
��
���� ��������������� ���

�������"!��

#%$'&)(*,+.-0/213*54'6
798 &�:;(<6>=@?0AB?5#C$'&D(E*�:�4065*54F6

G HJILKNM OQP RSIUT VWRXI Y Z\[9R^]FR`_ba c Ked\Ogf
h i OSIkjlO\d j�Z K m OXM j�dn[>I ipo [i I>Ogf
q K\[rKtsuKvdwO VWRSI RxIy]'f z OXIUjD[rK{_|O

� ������� �
	���
������
� � ������� � ��� ��� ��� ���!�"���#�����

$�% & ' $ (!' $
) *+' ,-' % . & / & $102& .
0�) % & 03. *4$1/ 5 *�/ $4&

% *#% % . & (6' $ ' $7,
& $809*#% &

:<;>=@?@A�B>C>;EDFBHGJI>IJK

����������	 ��
���
���	 ��������	 �������������� !
��#"
$ ���%���& !
���	 �'�(
���)+*,
������� !
��-	 ��
���*.��)����/�/	 ��0
132�	 �4)�	 ��0,5�6�798���:<;#6�=�>�>@?�����0�A9��8������� !
��&"
B<�������(C�D�E�D�E�6�E�5�5�EF7'8�G�
�H�C�D�EID�E�=�=�6�J�K'5
�-������L��-	 ����MN	 O OP)��-2�P)�"
QRQRQ P4	 O OP)���2�P)F"

SUTVTXW�Y[Z]\R^!S/^`_RS/^,^`acbedgf(b<W�h3igi3j

Abstract

World Heritage (WH) is an organization which aims at preserving particularly in-
teresting areas, monuments etc. Each of these “sites” are described on a website.

In order to help users navigate the existing World Heritage website, some catego-
rizations have been created. For instance it is possible to browse categories based
on location or site type.

It is difficult to make good categorizations and take advantage of the possibilities
that they offer. But good categorizations expresses a lot of information about the
sites that they cover. Categorizations can be used to make some complex queries.
For example it is possible to suggest sites that are related to each other based on
some category property.

The goal of this project is to explore the possibilities that emerging XML technolo-
gies offer, and based on the technologies suggest a way of making categorizations
of semistructured data. Furthermore we explore the possibilities that categoriza-
tions of semistructured data offer, and create a framework that supports easy gen-
eration of categorizations. We explore how queries can take advantage of catego-
rizations and how query results can be presented to the users on the WH website in
a usable manner.

The WH site list contains many different sites, and many of them do not have
much in common. This makes it hard to describe all the sites using the same
schema. To avoid this problem we use a semistructured data model, and implement
a software system that illustrates some of the different principles that applies to
semistructured data. The implementation is based on Open Source Software and
XML specifications from the World Wide Web Consortium such as XQuery and
XPath.

Keywords: ontology, classification, XQuery, XML, World Heritage, semistruc-
tured data

Resuḿe

World Heritage (WH) er en organisation, hvis mål er at bevare specielt interessante
omr̊ader, monumenter mm. Hver af disse “lokaliteter” er beskrevet på en webside.

For at hjælpe brugere med at finde rundt i den eksisterende World Heritage webs-
ide, er der lavet nogle kategoriseringer. For eksempel er det muligt at “browse”
kategorier baseret på beliggenhed eller type.

Det kan være svært at lave gode kategoriseringer og udnytte de muligheder, som
de giver. Men gode kategoriseringer udtrykker en masse information, omkring de
lokaliteter de kategoriserer. Kategoriseringer kan anvendes til at konstruere kom-
plekse forespørgsler. For eksempel er det muligt at lave forespørgsler, som foreslår
andre lokaliteter, der er relaterede til en valgt lokalitet. Relationen mellem den
valgte lokalitet og de relaterede lokaliteter, er indeholdt i kategoriseringerne.

Formålet med dette projekt er at udforske de muligheder, som nye XML teknolo-
gier tilbyder, samt foreslå, hvordan disse kan benyttes til kategorisering af semi-
struktureret data. Desuden undersøger vi de anvendelsesmuligheder som kategori-
seringer tilbyder, og laver et “framework”, der kan benyttes til at lave kategorise-
ringer. Vi undersøger, hvordan forespørgsler kan udnytte kategoriseringer til at lave
gode søgefaciliteter, samt hvordan søgeresultater kan præsenteres for besøgende på
World Heritage websiden.

Listen af lokaliteter under World Heritage indeholder mange forskelligartede lo-
kaliteter, og mange af dem har kun få ting til fælles. Dette gør det problematisk at
beskrive alle lokaliteter vha. et fælles skema. For at undgå disse problemer benytter
vi en semistruktureret datamodel, og implementerer et softwaresystem, som viser
de forskellige principper omkring anvendelse af semistruktureret data.

Implementationen er baseret på open source software og XML specifikationer fra
World Wide Web Consortiumeksempelvis XPath og XQuery.

Nøgleord: ontologi, klassifikation, XQuery, XML, World Heritage, semistrukture-
ret data

i

Preface

Everybody was talking about XML a few years ago, switching to the simple textual
data format was a giant leap forward for integration of different systems. Instead
of using proprietary data formats XML made interfacing between all sorts of sys-
tems much easier. The XML format has been widely adopted and a lot of exciting
technologies have started to spawn around it. One XML query language - XPath
is reasonably mature now and another more complex query language XQuery is in
the works.

Since XML has proven itself as being a good choice for certain applications, a
demand for database systems that can handle and query XML is rising. Some
database management system vendors have already made more or less complete
solutions for storing and working with XML.

One of the two goals of this project is to take some of the new XML technologies
for at test drive, in order to see how usable and mature some of the open source
implementations are. One of the greatest strengths of XML is its flexible nature, it
is a very good tool for representing semistructured data and data with hierarchical
structure.

Having attended a course in knowledge based systems, where some of the problems
with representing complex data in a way that computers can handle, was being re-
viewed using a UNESCO project called World Heritage as case study. We thought
that it would be exciting to see if XML, and the new XML technologies, could be
used to solve some of the problems that exist in that domain.

The other goal of this project is to explore the possibilities of querying semistruc-
tured data represented in XML. Querying semistructured data raises a few interest-
ing issues, and we would like to see if it is possible to enable ordinary web users
to query the data without being exposed to the complexity.

The readers of this report should be familiar with Java, Java2 Enterprise Edition
(J2EE) , UML and XML as the applications developed in this project relies on
these technologies / notations.

The best way to read this report, is to read the introduction in chapter 1 in order
to get some basic understanding of the domain and the problems in it. Then go
to the website, developed as a part of this project, and try out a couple of queries,

ii

in order to get a little “feel” for the system. The “Advanced Search” page is the
place to visit, as it contains the interesting functionality. The website is located
at: http://csdbs.it.dtu.dk/whapp - a server that Hans Bruun, IMM has
been kind enough to put to our disposal for the demonstration of the software de-
veloped in this project. The webpage contains links to everything created during
this project; source code, documentation and applications.

Readers who wants to try the “ClassificationDesigner” can also connect to
csdbs.it.dtu.dk at port 1099. A userguide for the ClassificationDesigner is
found in appendixI on page151. Username for the server is:whuser and the
password is:fraggel .

After having tried the dataguide-based search, the rest of the chapters should be
read subsequently. Chapter two covers the theory that constitutes the base for the
project. Chapter three contains the modeling and design of the software systems.
Chapter four describes the implementation of the software systems. Chapter five is
a summary of the report, it discusses the solution created, possible extensions and
the technologies used.

Martin R. N. Christensen Chris Poulsen

iii

Contents

1 Introduction 1

1.1 What is World Heritage. 1

1.2 Detailed Problem Description. 2

2 Theory 7

2.1 Semistructured Data Models. 7

2.1.1 The eXtensible Markup Language – XML. 12

2.1.2 The XML Format. 13

2.1.3 A Semistructured WH Site. 16

2.1.4 XML Data Models . 18

2.2 Schemas for Semistructured Data. 20

2.2.1 Schema formalisms. 21

2.2.2 Obtaining a schema. 25

2.3 Querying SSD. 26

2.3.1 Path expressions. 27

2.3.2 The Generic Query Language. 28

2.3.3 XPath. 29

2.3.4 XQuery . 30

2.4 World Heritage Classifications. 32

2.4.1 Partial Orders and Lattices. 33

2.4.2 Classifications as Lattices. 34

2.4.3 Representing Ontologies. 36

2.4.4 Taking Advantage of Ontologies. 37

iv CONTENTS

2.5 Querying the Classifications. 39

2.5.1 Searching Marked Categories. 39

2.5.2 Finding Related Sites. 40

2.5.3 Finding the Best Match. 42

2.5.4 Presenting the Query Results. 42

2.6 Summary . 43

3 Application Modeling and Design 45

3.1 System Description. 45

3.2 Specification of the XML Documents. 47

3.2.1 Modeling Classifications. 47

3.2.2 Modeling the Site Document. 49

3.2.3 Generating XML Data from Existing Data. 53

3.2.4 The Connection from Classification to Data Document. . 54

3.3 WH System Model. 55

3.3.1 Actors. 55

3.3.2 Use Cases. 55

3.4 WH System Design. 58

3.4.1 The Model View Controller design pattern. 59

3.4.2 Design of the WH System. 60

3.4.3 Introducing XQueries in the Application. 63

3.4.4 Database Design. 63

3.5 WH System Class Specification. 64

3.5.1 JavaBeans and JSP Pages. 64

3.5.2 Front Controller Servlet. 65

3.5.3 Request Handlers. 65

3.5.4 Enterprise JavaBeans. 66

3.6 ClassificationDesigner Model. 67

3.6.1 Actors. 68

3.6.2 Use Cases. 68

3.7 ClassificationDesigner Design. 70

3.8 Summary . 72

CONTENTS v

4 Implementation and Testing 75

4.1 Choice of Software. 75

4.1.1 Choice of Software for the WH System. 76

4.1.2 Choice of Software for the ClassificationDesigner. 78

4.2 Implementation of the WH System. 78

4.2.1 Overview of Components in the WH System. 79

4.2.2 Implementing the Web Archive. 79

4.2.3 Implementing the EJB Component. 82

4.2.4 Performance Considerations. 84

4.2.5 The XQueries. 86

4.2.6 General Notes About Query Results. 88

4.3 Implementation of the ClassificationDesigner. 89

4.3.1 Important Notes about the ClassificationDesigner. 89

4.3.2 Class Description for the ClassificationDesigner. 91

4.4 Tests. .102

4.4.1 Tests of the WH System. 102

4.4.2 Test of ClassificationDesigner. 102

5 Discussion 103

5.1 Improvements to the WH System. 103

5.2 Reuse of WH System Components. 104

5.3 Improvements to the ClassificationDesigner. 104

5.3.1 Relational Back End. 104

5.3.2 Editing of Data Documents. 104

5.3.3 Better List Handling. 105

6 Conclusion 107

A XML Document – CD Catalog 111

B Schema for the CD Catalog 119

vi CONTENTS

C Deployment 121

C.1 Deployment of the WH System. 121

C.2 Deployment of the ClassificationDesigner. 122

D Screen Shots of the WH Web Application 123

D.1 Welcome Page. .123

D.2 About Page .124

D.3 Search for Categories. 125

D.4 Result of Search for Categories. 126

D.5 Advanced Search Form. 127

D.6 Advanced Search Result as Dataguide. 128

D.7 Advanced Search Result as List. 129

D.8 Site Information about Kronborg Castle. 130

D.9 Site Information about Roskilde Cathedral. 131

D.10 “Similar Sites” to Roskilde Cathedral. 132

D.11 Simple Search Form, Showing Help Info. 133

D.12 Result of a Simple Search. 134

D.13 Error Page. .135

E EJB Classes from the WH System 137

F XPath Performance Tests 139

F.1 Test Programs for eXist. 139

F.2 Test Programs for Saxon. 140

G Classification Schema 143

H Database Schema for the Current WH Relational Database 145

I User Manual for ClassificationDesigner 151

I.1 Installation .151

I.2 Making a Sample Classification. 151

J XML XQuery Document 163

Glossary 174

1

Chapter 1

Introduction

The first section in this chapter describes what “World Heritage” is
all about and who started the World Heritage project.
The second section describes the problems with the current World Her-
itage website, and explains how the website could be improved. This
section should be read really carefully, because some important terms
are introduced.

1.1 What is World Heritage

World Heritageis a convention started by the organization UNESCO. According
to the official UNESCO website their objective is the following:

The main objective of UNESCO is to contribute to peace and secu-
rity in the world by promoting collaboration among nations through
education, science, culture and communication in order to further uni-
versal respect for justice, for the rule of law and for the human rights
and fundamental freedoms which are affirmed for the people of the
world, without distinction of race, sex, language or religion, by the
Charter of the United Nations.

So one might say that the purpose of UNESCO is “to make the world a better place
for all of us”. The World Heritage convention was started by UNESCO in order to
ensure protection of the world’s natural and cultural heritage. When a country signs
the convention, the government of that country agrees, that it will try to preserve
the natural and cultural heritage in that country. The World Heritage list is a list
of sites which have such special properties, that they should be preserved for the
future generations.

Currently World Heritage has a website containing all sorts of information about
the convention and the approximately 730 different sites inscribed in the WH list.

2 Chapter 1. Introduction

The purpose of the website must be to inform as many people as possible about the
WH convention. Unfortunately the website is not very user friendly, hence people
visiting their website probably often leaves the website after a quick visit, without
actually digging deeper into World Heritage.

Notice that the people responsible for the WH website has realized the problem,
and has started working on a prototype website with improved useability.

1.2 Detailed Problem Description

This project is using the prototype of the World Heritage website as a case study
[vr-heritage prototype], whenever the “WH site” is mentioned, this is the website
that is being referred to. The WH site offers visitors two different ways of locating
interesting sites:

1. Navigation to interesting sites based on lists.
2. Search by keywords.

The figure on the right is a manipu-
lated screen shot from the WH site.
Some of the items in “Search by
Theme”-list have been removed and
the “Search by Keyword” construct
has been moved to the bottom.

As the screen shot shows, the “Search”
page allows the user to select a list of
sites based on theme, region or coun-
try. If the user clicks on a theme like
“Fossil Sites” the system will gener-
ate a list of relevant sites and the user
can click the links in the list to navi-
gate to the interesting sites. Figure 1.1: Screen shot from the WH site

If the user wishes to search by keyword instead of navigating the lists, the “Search
by Keyword” box should of course be used.

The “Search by Region” result list is a bit interesting, the result lists are actually
specializations of the “All Sites by Country”-list, for instance if the region “Eu-
rope” is chosen, the result is a list with all the sites in Europe sorted by country.
This indicates that “Region” is related to “Country” in some way. This relation is
of course trivial, but it is important to be aware that it exists.

If the WH Group decided to refine the region search even further, they could split
each region into more precise sub-regions. For instance could “Europe” contain

1.2 Detailed Problem Description 3

four sub-regions: “Eastern Europe”, “Northern Europe”, “Southern Europe” and
“Western Europe”.

The search could be made in the same way as the “Search by Region” search, fill-
ing in another category called “Search by Sub-region” containing the four entries
mentioned above, as well as the entries that sub-regions will introduce for the other
regions. These “extra” lists could be helpful for a visitor looking for sites in e.g.
Eastern Europe.

However this is not an optimal path to follow. The “Search” page would grow a lot
and become even less intuitive to navigate for the mundane user.

Since the “refinements” actually are specializations of the “All Sites by Country”,
it is possible to build a hierarchy based on the specializations of “All Sites by
Country”. Hierarchical structures are intuitively to navigate for users and can be
presented in the so calleddataguides.

A dataguide based on the location of the sites could look like the one in fig-
ure1.2on the next page.

Please note that the user only has the choice between searching for sites using
keywords or trying to navigate to the site using the lists in the existing system.

The attentive reader will notice that the two “trees” in the figure - also denoted
dataguides1, have the wordclassificationin their names. This is because they ac-
tually classify the contained sites by some property. The expanded dataguide is
based on a classification of sites by location.

The term “Classification” is used to describe the structure behind a
“Dataguide”. A classification is usually an XML file having a struc-
ture like the one described in section3.2.1on page47.

Dataguides allow the user to navigate to interesting entries, just like lists do, but
in a dataguide the relation between a child and parent “category” is much more
obvious.

Please note that further uses of “dataguide” refer to a object like the
one shown in figure1.2on the next page

Each category in the dataguides have a little check box next to its name (Den-
mark is selected in the example). This allows the user to improve his site queries.
By selecting one or more categories that may contain interesting sites and enter-
ing keywords, the user is able to make much more complex queries compared to
the simple queries in the existing system. It is also possible to combine selected
categories in more than one classification, in order to put together even more so-
phisticated queries.

Imagine a user interested in “Castles”, “Historic Sites and Towns” and “Sites in
Denmark” . The user could select the two categories and enter the keyword “Cas-
tle”, this would yield around 12 hits in our WH System, while the user would have

1The first one is fully collapsed, while the second is somewhat expanded.

4 Chapter 1. Introduction

Figure 1.2: A Dataguide generated by the tools developed for this report.

to click through each of the two lists in the search page of the existing system or
simply enter “Castle” in the keyword search. The first is very tedious and the latter
is very inaccurate, as it yields around 40 hits. Compare this to the same query us-
ing dataguides and the existing system returns 28 matches that lie outside the scope
that the user wanted.

Another interesting problem in the WH domain, is the problem of making a good
model for the site data. All the sites have some mutual properties like name, de-
scription and inscription criteria, but because of the radically different type of sites
in the system, there are also a lot of properties that only are relevant for a subset
of the sites. For instance a cathedral site would probably have some architectural
style, a year it was constructed and so on, while these properties make no sense to
put into a site describing a coral reef or a rain forest.

1.2 Detailed Problem Description 5

Over the past years the XML technology has evolved a lot and recently, complex
query languages and databases for XML have started emerging. The fact that the
XML technologies seem to have become somewhat usable, and that the different
sites in the WH domain have so many different properties, makes it interesting to
see if it is possible to take advantage of the semistructured nature of XML, when
the WH sites need to be put into some format that computers can handle.

XML provides a more natural approach to holding semistructured data, while a
traditional relational database requires tables, fields and types to be declared before
each piece of data can be stored. Whereas an XML database just need to know that
it is containing valid XML. This means that if a cathedral site needs to have a
property describing its architectural style, that property would just be put right into
the XML data describing the site. This makes storing the different sites very easy,
but of course some problems arise when the data need to be extracted from the
XML database, and used later on.

XML also have natural support for tree-like structures, thus making it a good choice
for storing hierarchical data such as classifications.

The goal of this project is to explore the possibilities that the emerging XML tech-
nologies, such as XQuery and XML Databases, provide. We would like to explore
the possibilities that querying of classifications introduce. Thereby making a more
user friendly system, where the users have a much wider variety of query possibil-
ities compared the the current system. One of the problems that arise is: How to
create a simple usable interface, while still maintaining the complex query options
beneath the surface.

The outcome should be a demo system that can take advantage of the data already
typed into the existing WH system. A tool for creating classifications for the sys-
tem should also be created. The demo system should be implemented using free
software (preferably open source) and open standards, where applicable.

6 Chapter 1. Introduction

7

Chapter 2

Theory

This section introduces the concept of semistructured data (SSD) and
explains some of the advantages semistructured data models has over
more traditional data models. XML is introduced as an example of
practical use of SSD. A theoretical “generic query language” is intro-
duced to give the reader an idea of how semistructured data generally
is queried, and the XML query language “XQuery” is explained with
a few examples.
The most important parts of this chapter explains how SSD can be used
to represent classifications of WH sites, and how the classifications
can be used for making some search facilities.

2.1 Semistructured Data Models

Traditionally, data for computer programs is stored in a very structured manner,
meaning that the data models used for the programs use some sort of schema, that
describes the exact structure of the data. These data models are not very flexible,
when it comes to making changes in the structure of the data. In order to change the
structure, one often needs to redefine the schema. Traditional relational databases
and object oriented databases are examples of programs, which uses these some-
what rigid data models.

Sometimes the exact structure of the data is not known, or the structure is subject to
frequent changes. The data is then calledSemistructured Data(SSD) and it can be
an advantage to make use of semistructured data models instead of the “traditional”
data models in those cases.

Because SSD has no schema associated, it is necessary for the SSD to be self
describing. Attribute names must give a hint of what kind of data the attribute
holds.

8 Chapter 2. Theory

The World Heritage sites are not subject to frequent changes, but the heterogeneous
structure of the WH sites, indicate that it could be an advantage to store WH site
information in a semistructured format anyway.

In order to explain the differences between the different data models, we introduce
a simple example just to illustrate the basic principles, the relational schema for
the WH database is quite large, so the SSD modeling of that schema is postponed
until the basics are covered. The example in figure2.1 shows how a collection of
music CD’s could be represented in a RDBMS. The notation is more compact than

CD−catalog

Album

Artist
Title
Recordlabel
Year
Genre

Track

Name
Duration

1

0..n

1..n 1

PurchaseInfo

price
currency

1 1

Figure 2.1: CD-catalog schema

that of the traditional ER diagram:

• Boxes represents entities.
• When a box is split by a horizontal line, the upper part contains the entity

name and the lower part contains a list of attributes. Otherwise the box just
contains an entity name.

• The lines between the boxes represents binary associations between entities.
The numbers at the lines are the cardinalities – e.g. a CD-catalog may con-
tain any number of albums and an album must have at least one track.

In a relational database the above schema is implemented with a table for each
entity, and the data itself as records in these tables. The example below shows how
this works. Some example data has been entered.

Album
ID CD-catalog Artist Title RecordLabel Year Genre

1 1 Red Hot
Chili Peppers

Blood Sugar
Sex Magic

Warner Bros. 1991 Rock

2 1 Pearl Jam Ten Sony Music 1992 Rock
3 1 Red Hot

Chili Peppers
By The Way Warner Bros. 2002 Rock

2.1 Semistructured Data Models 9

Track
Album Name Duration

1 The Power Of Equality 4.00
1 If You Have To Ask 4.11
2 Once 3.51
2 Even Flow 4.53
3 By The Way 3.37
3 Universally Speaking 4.19

PurchaseInfo
Album Price Currency

1 NULL DKK
2 NULL DKK
3 8.99 GBP

CD-catalog
ID

1

There are a number of disadvantages to the data model used by relational databases:

• It is impossible to add new attributes to a table without changing the schema.
• Even if some attribute values are unknown, they must be present in the tables

– e.g. thepriceattribute in thePurchaseInfotable has no value in two of the
records, but a value must be present. Hence theNULL values.

• The table attributes are limited to simple types (e.g. character data or inte-
gers). It is impossible to nest a record inside another record. For instance,
it is not possible to nest information about a track (from theTrack table) in-
side a record in theAlbumtable. Instead theTrack table has an attribute (a
foreign key), which points to theID attribute of theAlbumtable, describing
a relation between the two.
Note that the “nesting feature” could be achieved with an object oriented
database.

But the model also offers some noticeable advantages:

• Having a rigid schema with strict typing allows the RDBMS to perform quite
a lot optimizations, resulting in good storage strategies and fast operations.

• RDBMS is a well-proven technology and is widely used.

The same CD-catalog can be described, without splitting it into several tables,
using a semistructured data representation1:

{CD-catalog: {
Album: {

Artist: "Red Hot Chili Peppers",
Title: "Blood Sugar Sex Magic",
RecordLabel: "Warner Bros",
Year: 1991,
Genre: Rock,
PurchaseInfo : {currency: "DKK"}
Track: {Name: "The Power Of Equality", Duration: 4.00},
Track: {Name: "If You Have To Ask", Duration: 4.11}

}

1We adopt a notation used in[dotw] chapter for describing the data

10 Chapter 2. Theory

Album: {
Artist: "Perl Jam",
Title: "Ten",
RecordLabel: "Sony Music"
Year: 1992,
Genre: Rock,
PurchaseInfo : {currency: "DKK"}
Track: {Name: "Once", Duration: 3.51}
Track: {Name: "Even Flow", Duration: 4.53}

}
Album: {

Artist: "Red Hot Chili Peppers",
Title: "By The Way",
RecordLabel: "Warner Bros.",
Year: 2002
Genre: "Rock",
PurchaseInfo : {price: 8.99, currency: "GBP"}
Track: {Name: "By The Way", Duration: 3.37}
Track: {Name: "Universally Speaking", Duration: 4.19}

}
}}

This representation of data is much more flexible than that of the relational database.
In the following text the termstructurerefers to the “records” enclosed in curly
braces, e.g.:{Attribute1:value1,Attribute2: value2} . Notice that it is pos-
sible to nest structures in arbitrary depth, hence the need for primary keys/foreign
keys to define binary associations between structures is eliminated. Another advan-
tage of this representation is, that undefined attributes can be completely omitted,
since the data need not conform to some schema. The attributeprice in the Pur-
chaseInfostructure is now only present in the last album, where the price is known.

This data representation is actually a tree like structure. Figure2.2 on the next
page shows how the CD-catalog looks like2, when it is drawn as a tree. The simple
attribute values become leaves and are illustrated with a bold font. The attribute
names are shown as labels on the edges. The other nodes in the tree represents
attributes.

Suppose a song appears on an album and also as part of a compilation of hit singles.
In this case the track should appear under the album as well as under the compi-
lation. This scenario is illustrated by the graph shown in figure2.3 on the facing
page. The node representing the track is a child of two other nodes: the album
node and the compilation node. Obviously this is no longer a tree, and it cannot
be represented directly with the textual notation used above. But it is necessary to
specify how the “problem of multiple parents” should be handled. Two different
approaches to solve this problem springs to mind:

1. A new attributeID can be introduced inTrack as a unique ID of that track.
The track can then appear under theAlbumwhile theCompilationgets a new

2two of the albums from the CD-catalog has been omitted to make the figure fit the page

2.1 Semistructured Data Models 11

CD−catalog

Track Track

PurchaseInfo

DKK

Album

Currency

Red Hot
Chili Peppers

Blood Sugar
Sex Magic

Title Artist

Warner Bros.1991 Rock

GenreRecordLabel
Year

The Power
Of Equality

If You Have
To Ask

4.00 4.11

Name Duration Name Duration

.

.

.

.

.

.

Album Album

Figure 2.2: CD-catalog tree

CD−catalog

Album Compilation

Track Track

Once 3.51

Name Duration

Figure 2.3: Track with two parents

attributeTrackRefwhich holds the value of the ID:

{CD-catalog: {
Album: {

Artist: "Pearl Jam",
...
Track: {ID: "PJ1", Name: "Once", Duration: 3.51}
...

}
Compilation: {

...

12 Chapter 2. Theory

TrackRef: "PJ1"
...

}
}}

This solution is very similar to the primary key/foreign key used in relational
databases.

2. The notation could be extended withpointersor referenceslike in object
oriented data.[dotw] proposes the following notation for expressing refer-
ences:

{CD-catalog: &o1{
Album: &o2{

Artist: "Pearl Jam",
...
Track: &o3{Name: "Once", Duration: 3.51},
...

}
Compilation: &o4{

...
Track: &o3,
...

}
}}

Each structure is assigned an object ID and other attributes can reference the
structure by its object ID.

It is obvious, that semistructured data representations are more flexible than tradi-
tional “schema based” data representations. The biggest disadvantage of not using
schemes is, that the attribute names must be chosen with care in order for the data
to make sense. In most cases schema based data representations are also easier to
use in applications, because the application developer knows all attribute names
and types. Hence semistructured data representations should only be used, when it
is impossible make a good structural representation of the data.

Having seen that SSD diverges from the common data structures and that SSD has
its place in some applications, the question is how to actually represent SSD in a
smart way, that is easy to handle using existing software. The answer is to use
XML.

2.1.1 The eXtensible Markup Language – XML

TheeXtensible Markup Language(XML) is a standard defined by the World Wide
Web Consortium (W3C). The expression “XML” has been a buzzword for some
years now, and everybody seems to agree, that the technology has proven its worth,
but what is XML and how can it be used? In fact XML is merely a simple text for-
mat similar to HTML3, but as opposed to HTML, XML is not used for specifying

3this is no coincident since both formats are derived from the same markup language:SGML

2.1 Semistructured Data Models 13

how documents should be presented visually. XML alone is nothing but a text
format suitable for storing textual data. Naturally there are a great deal of XML
related technologies created for manipulating XML data, and these technologies
makes XML a suitable format for many different types of applications.

This section and the next few sections will give an introduction to XML and the
most important XML related technologies. The reader should gain a basic under-
standing of the different technologies, which is important since they are used in the
implementation of the World Heritage application. Readers who are interested in a
deeper understanding of these technologies should take a look at the W3C website
[w3c].

2.1.2 The XML Format

Below is an example of an XML document describing the collection of CD’s.

1 <?xml version ="1.0" encoding="ISO-8859-1"?>
2 <CD-catalog>
3 <Album>
4 <PurchaseInfo currency="DKK"/>
5 <Artist>Red Hot Chili Peppers</Artist>
6 <Title>Blood Sugar Sex Magic</Title>
7 <RecordLabel>Warner Bros.</RecordLabel>
8 <Year>1991</Year>
9 <Genre>Rock</Genre>

10 <Track>
11 <Name>The Power Of Equality</Name>
12 <Duration>4.00</Duration>
13 </Track>
14 <Track>
15 <Name>If You Have To Ask</Name>
16 <Duration>4.11</Duration>
17 </Track>
18 .
19 .
20 .
21 </Album>
22 <Album>
23 <PurchaseInfo currency="DKK"/>
24 <Artist>Pearl Jam</Artist>
25 <Title>Ten</Title>
26 <RecordLabel>Sony Music</RecordLabel>
27 <Year>1992</Year>
28 <Genre>Rock</Genre>
29 <Track>
30 <Name>Once</Name>
31 <Duration>3.51</Duration>
32 </Track>
33 <Track>
34 <Name>Even Flow</Name>
35 <Duration>4.53</Duration>

14 Chapter 2. Theory

36 </Track>
37 .
38 .
39 .
40 </Album>
41 <Album>
42 <PurchaseInfo price="8.99" currency="GBP"/>
43 <Artist>Red Hot Chili Peppers</Artist>
44 <Title>Be The Way</Title>
45 <RecordLabel>Warner Bros.</RecordLabel>
46 <Year>2002</Year>
47 <Genre>Rock</Genre>
48 <Track>
49 <Name>By The Way</Name>
50 <Duration>3.37</Duration>
51 </Track>
52 <Track>
53 <Name>Universally Speaking</Name>
54 <Duration>4.19</Duration>
55 </Track>
56 .
57 .
58 .
59 </Album>
60 <Album>
61 <PurchaseInfo price="115" currency="DKK"/>
62 <Artist>D.A.D</Artist>
63 <Title>Riskin’ It All</Title>
64 <RecordLabel>Medley Records</RecordLabel>
65 <Year>1991</Year>
66 <Genre>Rock</Genre>
67 <Track>
68 <Name>Bad Craziness</Name>
69 <Duration>3.16</Duration>
70 </Track>
71 <Track>
72 <Name>D-Law</Name>
73 <Duration>3.48</Duration>
74 </Track>
75 .
76 .
77 .
78 </Album>
79 <Compilation>
80 <PurchaseInfo price="12.99" currency="GBP"/>
81 <Title>The very best of MTV unplugged 2</Title>
82 <RecordLabel>Warner Music and Universal International Music</

RecordLabel>
83 <Year>2003</Year>
84 <Genre>Pop/Rock</Genre>
85 <Track>
86 <Name>Every Breath You Take</Name>
87 <Artist>Sting</Artist>
88 <Duration>5.07</Duration>

2.1 Semistructured Data Models 15

89 </Track>
90 <Track>
91 <Name>Wicked Game</Name>
92 <Artist>Chris Isaak</Artist>
93 <Duration>4.54</Duration>
94 </Track>
95 .
96 .
97 .
98 </Compilation>
99 </CD-catalog>

The full document is in appendixA on page111.

The first line of the document is not that interesting. It is an XML declaration,
which says that we are using XML version 1.0 with the ISO8859-1 font encoding.
The rest of the document is the XML data itself. Basically XML data consist of
two types of entities:elementsandattributes. An element always has a start tag,
e.g. <Album> and a corresponding end tag:</Album> . An element is a complex
type, and it can contain other elements and text. When an element does not contain
any data at all e.g.<Album></Album> it is called anempty elementand it can be
typed with a shorter notation. Instead of using a start- and endtag, one can use an
empty-tag:<Album/> .

An XML document must have aroot element, that encloses all other elements. In
the above example the<CD-catalog> element is the root element.

Attributes are simple types included in the start tag of an element. The CD catalog
above contains info about the purchase of each CD:

<PurchaseInfo price="12.99" currency="GBP"/>

price and currency are examples of attributes. In general attributes should be
used for meta data4 e.g. one would usually specify a unique ID as an attribute.

One should notice, that the order in which the XML-elements appear in a docu-
ment is important, since the XML-recommendation specifies, that elements should
be regarded as a sequence, whereas the order of XML-attributes has no meaning
(they can be regarded as abagof attributes). This is useful, since some XML tech-
nologies for querying XML data supports indexing of elements, allowing access to
an element without traversing the entire sequence.

Also notice that XML elements must beproperly nested, meaning that e.g. the
expression

<Album>
<Title>

</Album>
</Title>

4Information about data

16 Chapter 2. Theory

is illegal because the<Title>...</Title> tags should be completely enclosed
within the<Album>...</Album> tags.

An XML document is said to bewell formed, when the structure conforms to the
rules described above.

2.1.3 A Semistructured WH Site

Having illustrated how semistructured data can be expressed in XML, it is now
time to try and express a WH site in XML. Luckily we have received a copy of
the database schema for the existing WH database, so some of the data modeling
has already been done by the original designers. The original schema gives a few
hints about what properties, that we may want to capture in our representation of
the WH site data.

As mentioned earlier, structure of the WH site data may vary quite a bit between
sites, making it hard to create a good relational schema. The schema for the original
WH site data can be found in appendixH on page145.

The original schema has some odd structures that puzzled us a bit. For instance
when looking at the first page of the schema, the “location” and the “year” table
are connected. This seems to be correct because the “location”, which is linked to
“country”, may depend on year. If borders change at some point, the site may be
located in another location (since location is connected with country).

However the contents of the “year” table turns out to be information describing
when the “site” was inscribed into the WH. The result is that location is not depen-
dent on year information and that application designers would have to join “site”,
“location” and “year” in order to find the inscription date, very confusing and not
a good example of data modeling.

We stumbled upon a few other odd constructs while going over the schema, but as
we are taking a semistructured approach, we just chose to handle them in another
way. However, this illustrates that making a good relational schema for the WH
sites is a complex task.

An example of how the site “Roskilde Cathedral” could look in semistructured data
follows:

1 <?xml version ="1.0" encoding="UTF-8"?>
2 <Site id="site259">
3 <Name>Roskilde Cathedral</Name>
4 <Number>695</Number>
5 <BriefDescription>Built in the 12th and 13th centuries, this was

Scandinavia’s first Gothic cathedral to be built of brick
and it encouraged the spread of this style throughout
northern Europe. It has been the mausoleum of the Danish
royal family since the 15th century. Porches and side
chapels were added up to the end of the 19th century. Thus

2.1 Semistructured Data Models 17

it provides a clear overview of the development of European
religious architecture.

6 </BriefDescription>
7 <Resources>
8 <LinkResource>
9 <URL>http://www.natmus.dk/</URL>

10 <Name>National Museum of Denmark</Name>
11 </LinkResource>
12 <Report>
13 <Name>Report of the 19th Session of the Committee</Name>
14 <URL>http://whc.unesco.org/archive/repcom95.htm#695</URL>
15 </Report>
16 </Resources>
17 <Justification>
18 <Criterion>
19 <Number>ii</Number>
20 <CategoryType>C</CategoryType>
21 <Description>exhibit an important interchange of human

values, over a span of time or within a cultural area of
the world, on developments in architecture or

technology, monumental arts, town-planning or landscape
design.

22 </Description>
23 </Criterion>
24 <Criterion>
25 <Number>iv</Number>
26 <CategoryType>C</CategoryType>
27 <Description>be an outstanding example of a type of building

or architectural or technological ensemble or landscape
which illustrates (a) significant stage(s) in human

history.
28 </Description>
29 </Criterion>
30 </Justification>
31 <Location>
32 <Name>Island of Sjaelland</Name>
33 <Country>Denmark</Country>
34 <Year start="12th century" />
35 <LocationPoint>
36 <Lat_degree>12</Lat_degree>
37 <Lat_minute>4</Lat_minute>
38 <Lat_second>47.2</Lat_second>
39 <Lat_hemi>E</Lat_hemi>
40 <Long_degree>55</Long_degree>
41 <Long_minute>38</Long_minute>
42 <Long_second>32.5</Long_second>
43 <Long_hemi>N</Long_hemi>
44 </LocationPoint>
45 </Location>
46 <Inscribed>1995</Inscribed>
47 <ArchitecturalStyle>Gothic</ArchitecturalStyle>
48 </Site>

As it can be seen, the<Location> construct have a<Year> element with astart

18 Chapter 2. Theory

attribute, the element could also contain anend attribute indicating the “end” of a
location. There are several possible ways to handle the “location - year” connec-
tion, but this one is very flexible, it actually allows a “site” to be moved to another
physical location at some point, it that should be the necessary.

The textual “type” of<Year start="12th century"/> prohibits us from per-
forming calculations using the value, but it fits nicely into the layout created by
the presentation layer.

The <ArchitecturalStyle> element has been added in order to illustrate how
extra information about the site, compared to the data found on the original WH
site, may be marked up.

Section3.2.2on page49gives a deeper description of the “site” data.

2.1.4 XML Data Models

In order to make use of XML data in different programming languages it is nec-
essary to define a common data model, that is used as a “standard” for processing
XML data. The most well known data models for XML are theSimple API for
XML (SAX) and theDocument Object Model(DOM). The DOM is a “real” stan-
dard defined by the W3C, while SAX originally only was implemented in Java, but
it is now a “de facto” standard with implementations in many different program-
ming languages. SAX is a lightweight API and it is not nearly as powerful as the
DOM, but therefore SAX is also much faster and this is probably the reason for its
popularity.

This section describes the DOM and another data model very similar to the DOM,
which is used by the XML related technologiesXPathandXQuery(XML Query).
SAX is not described, since it has no relevance for this project. Note that the data
models are under continuous development, and there are different versions of the
data models. The following applies to DOM level 1, XPath v2.0 and XQuery v1.0,
but it is probably general enough to apply to all current versions of the data models.

DOM is used as a middle tier between XML and the internal representation of a
classification in the application used to generate classifications for the WH system.

The DOM

DOM is an API which has some convenient classes and methods for managing
XML documents. It is called aDocument Object Modelbecause it regards all
XML data as documents and the different parts of the document are represented
as “objects” or “classes”. The following text will avoid the term “object”, because
people have different opinions about what an object is – instead the term “class” is
used for an implemented API, and an “instance” is an instance of a class.

2.1 Semistructured Data Models 19

CD−catalog

Album

PurchaseInfo

Album Album

Document

Title Artist YearRecordLabelGenre Track Track

Name Duration Name Duration

"DKK"

"Blood Sugar
Sex Magic"

"Warner
Bros."

"Red Hot
Chili Peppers"

"Rock" "1991"

"The Power
Of Equality"

"4.00" "If You Have
To Ask"

"4.11"

currency

... ...

Figure 2.4: DOM representation of CD-catalog example

Figure 2.4 shows the DOM representation of the CD-catalog example. All the
ellipses in the figure represents instances of classes. The most important thing to
notice is, that all the instances are instances of theNodeclass. In other words:
in the DOM everything is a node. This is convenient because there are several
“universal” methods, which makes sense to use on a node, regardless of whether
the node represents an attribute, a document, an element or other things.

Naturally there are operations you should be able to use on an element, that you
cannot use on e.g. an attribute. For this reason there are also some more specialized
classes that specifically represents elements, attributes, text, documents etc. In
programming languages like Java and C++ the specialized classes extend theNode
class and add additional methods.

The line styles in the figure indicates the types of specialized classes:

• Double bold lines indicate aDocumentclass instance, which represents the
entire document.

• Bold lines indicateElementinstances.
• “Fuzzy” lines indicateAttr (attribute) instances. The figure only has one

attribute calledcurrency

• Bold punctuated lines indicateTextinstances.

The figure does not show all the classes extending theNodeclass – there are a total
of 12 subclasses toNode:

Attr, CDATASection, Comment, Document, DocumentFragment, DocumentType,
Element, Entity, EntityReference, Notation, ProcessingInstruction, Text

20 Chapter 2. Theory

In addition to the already mentioned classes, there are some other convenient
classes for managing XML documents, e.g. a class for representing a collection
of nodes. This section will not go into the boring details about the methods in the
different classes, it is sufficient to know that there are some classes for removing
nodes, fetching child nodes, adding new nodes etc.

The XQuery and XPath Data Model

The data model used in XQuery and XPath is very similar to the DOM. This data
model is not meant to be used in an object oriented programming languages, but in
a query language. For this reason the nodes are not regarded as objects, and it does
not use “methods” but “functions” and “operations”.

The data model has the following kinds of nodes:

document Represents a whole XML document.
element Represents an XML element.
attribute Represents an XML attribute.
text Represents a text string.
namespaceRepresents an XML namespace.
processing-instruction Represents a processing instruction. The “special” tags

that has the structure<? ?> are processing instructions.
comment Represents a comment in an XML document. Comments are enclosed

within <!-- --> .

Except for the namespace node all the node types in the above list are also present
in the DOM, although the names are a little different. Figure2.4on the page before
is actually also a representation of the CD-catalog as an XQuery and XPath data
model.

2.2 Schemas for Semistructured Data

As mentioned earlier, it is hard to define a common schema for the World Heritage
site data, and when considering semistructured data it is actually possible to use
the data without a schema.

However having knowledge about the structure of the data gives some advantages:

• Complex queries can be created.
• Queries can be accelerated with the use of indexes.
• High degree of control over the presentation format.
• Data storage can be optimized.

Basically the problem is to determine a schema that makes the data usable with-
out loosing too much flexibility. It may seem a bit odd to require a schema for

2.2 Schemas for Semistructured Data 21

semistructured data, but in order to be able to take advantage of semistructured
data, it is necessary to have some kind of basic knowledge about the structure of
the data.

There exist several formalisms for describing the structure of semistructured data,
and some of them will be mentioned in this section.

Since semistructured data is self-describing, it must be possible to obtain a schema
from the data itself. Basically two schema types exist,upper-boundand lower-
bound. An upper-bound schema includes information about all the elements that
the data documentsmay include, while the lower-bound schema specifies the ele-
ments that all documentsmust include.

2.2.1 Schema formalisms

At present time there is no formalism that isthe right way of describing SSD
schemas, so a couple of the simple ones will be illustrated in this section.

Logic

Logic can be used to describe schemas. The idea is that a set of rules that describe
the properties of the different elements is declared. Several branches of logic exist
andDatalog is a somewhat simple language that can be used to describe and val-
idate a schema. Another possibility is to useDescription logic that is able to
support even more complex constructs.

An example of how a simple set ofDatalog rules can be used to describe a schema
for the SSD presented in the CD Catalog example in section2.1 on page7, could
look like this:

CD-Catalog(X) :- ref(X,album,Y), Album(Y)
Album(X) :- ref(X,artist,Y1), String(Y1),

ref(X,title,Y2), String(Y2),
ref(X,recordLabel,Y3), String(Y3),
ref(X,year,Y4), String(Y4),
ref(X,genre,Y5), String(Y5),
ref(X,purchaseInfo,Z), PurchaseInfo(Z),
ref(X,track,Z1), Track(Z1)

PurchaseInfo(X) :- ref(X,currency,Y), String(Y)
PurchaseInfo(X) :- ref(X,currency,Y), String(Y),

ref(X,price,Z), Float(Z)
Track(X) :- ref(X,name,Y),String(Y),

ref(X,duration,Z), Float(Z)

The simple rules express information about which relations thatmust exist be-
tween elements. The two
PurchaseInfo(X) rules express that two differentPurchaseInfo constructs exist
and at least one must be included.

22 Chapter 2. Theory

Datalog is excellent for describinglower boundschemas, but it can be hard to de-
scribe anupper boundschema usingDatalog because multiplicities and complex
sub-elements require a lot of extra rules to be added.Datalog can easily express
the typing of schemas though.

Schema graphs

Another way to describe schemas is to use a schema graph obtained by simulation.
This approach builds upon the fact that SSD can be thought of as being a graph.
Schema graphs usually express which relations thatmay exist, so schema graphs
defineupper boundschemas.

The schema graph for theCD-Catalog data-graph shown in figure2.4on page19
would look like this:

CD−catalog

Album Track

PurchaseInfo

cd−catalog

track

purchaseInfo

string

float
price

currency

string float

artist | year | genre | title | recordLabel
duration

string

name

Figure 2.5: The schema graph for the CD-Catalog example.

The simple types in figure2.5 appears in several ellipses. Usually they should be
merged into the same, but in order to keep the schema graph on a form that is easy
to view, they have been split up.

Schema graphs gives a better overview over the data because they describe upper
bound schemas naturally. However as this small example already has shown, the
graphs tend to grow huge when the data they describe is complex. The shown
schema graph does not include multiplicities, but they could be added to the edges,
if necessary.

XML Schema

The XML Schema format from[w3c] has been a recommendation since 2. May
2001. XML Schemas can be used to describe and validate XML data, and they
support structure information and typing- and ordering of elements.

XML Schemas use a less compact format compared toDatalog , but they have
some constructs that are closer to the actual data format (XML Schemas are actu-
ally written in XML themselves).

2.2 Schemas for Semistructured Data 23

The XML Schema describing the CD-Catalog, defined in section2.1.2on page13,
could be described by the following schema (please note that the part of the schema
that describes theCompilation has been removed because it looks quite like the
Album construct and it is not necessary in order to illustrate what a schema might
look like):

1 <?xml version ="1.0" encoding="UTF-8"?>
2 <schema xmlns=’http://www.w3.org/2001/XMLSchema’>
3 <element name=’CD-catalog’>
4 <complexType>
5 <sequence maxOccurs=’unbounded’>
6 <element name=’Album’>
7 <complexType>
8 <sequence>
9 <element name=’PurchaseInfo’>

10 <complexType>
11 <attribute name=’price’ type=’decimal’ minOccurs=’

0’/>
12 <attribute name=’currency’ type=’string’/>
13 </complexType>
14 </element>
15 <element name=’Artist’ type=’string’/>
16 <element name=’Title’ type=’string’/>
17 <element name=’RecordLabel’ type=’string’/>
18 <element name=’Year’ type=’string’/>
19 <element name=’Genre’ type=’string’/>
20 <element name =’Track’ maxOccurs=’unbounded’>
21 <complexType>
22 <sequence>
23 <element name=’Name’ type=’string’/>
24 <element name=’Duration’ type=’decimal’/>
25 </sequence>
26 </complexType>
27 </element>
28 </sequence>
29 </complexType>
30 </element>
31 </sequence>
32 </complexType>
33 </element>
34 </schema>

The full schema can be found in appendixB on page119.

XML Schemas are very good for describing and typing XML data, but like the
other formalisms mentioned in this section, it is hard to get a quick overview over
complex data and the relations that exist within the data, when using XML Schemas
alone.

24 Chapter 2. Theory

Our schema format

SinceDatalog , Schema graphs and XML Schemas tend to get so complex that
it is hard to get a good overview of the structure of the data, we have decided
to create our own notation to give an overview over the structure and relations.
The notation that we have used is strongly inspired from UML and it describes
structure and cardinalities but does not contain type information. The typing could
have been included but as it does not contribute noteworthy to the understanding
of the structure of the data, it has been left out.

The format is supposed to be used in conjunction with XML Schemas and it is
really usable when designing data from “scratch”. When the structure is in place
an XML schema can be created and type information added to the XML Schema.

A legend, created using the notation itself and describing the notation, can be seen
in figure2.6. The contents of the legend looks like the things known from UML.

Element−name (1)

Attributes

Elements

Element (2)

Element 2 is a

sub−element of 1

Multiplicities of links:

(nothing) = exactly 1

0..1 = 0 or 1

n = 1 or more

0..n = 0 or more

Multiplicities in boxes:

(nothing) = exactly 1

? = 0 or 1

* = 0 or more

+ = 1 or more

Simple element−types

 are "inlined" − to

see type descriptions,

please refer to the

XML−Schemas

0..1

Element_3_ref

Element (3)

key−att

key−element

Figure 2.6: Legend for the diagram notation

Notes are illustrated as boxes with a small fold in the upper right corner.

Complex elements are drawn as boxes, simple elements5 are put in the lower part
of the box, attributes in the middle part and the element name in the upper part.
Multiplicities on elements are like the ones known from path expressions (also
described in the note “Element multiplicities”.) Unique identifiers are indicated by
surrounding the name with “” e.g. ID .

5Elements with no sub elements

2.2 Schemas for Semistructured Data 25

An association with arole-name(e.g. Element 3 ref) indicates that there will be
an Element 3 ref element in element 1 and that the element contains something
that can be used to identify the actual element 3 (a sort of foreign key from the
referenced element – usually an ID-attribute or a sub element, unique identifier for
the element, marked with “<name> ”).

2.2.2 Obtaining a schema

Several possibilities for obtaining a schema exist:

• Extraction
• Inference
• Specification

In the WH system the data did not exist on semistructured form on beforehand, so
specification is the only technique that is really used in this context.

Extraction of schemas

Since SSD is self describing it is possible to extract the schema from the data itself.
Simple algorithms for extracting schemas in some of the aforementioned formats
exist. Of course there exist no tools for generating schemas in our own format, but
the primary goal of that format, is to be used when designing documents.

One of the pitfalls when obtaining schemas from extraction is that the schemas
always fit the data, if an error exist in the structure of the data it will be included
in the schema definition. For instance a typo in an element name. But extraction is
certainly a usable tool when the data documents come from a third party without
an associated schema.

In order to get a a quick overview of a data format extraction can be used to gen-
erate a dataguide from the data, this would enable the user to navigate through the
schema using a tree structure. However in the case of complex data constructs the
dataguide may be bloated with lots of information, thus making it hard to make
any sense from it.

Please note that we rely heavily on dataguides for adjusting search scopes and
presenting results in the following sections, but those dataguides are generated
from a well specified structure in order to be able to define a very general approach
for making classifications in XML.

Inference from queries

Sometimes SSD come from legacy systems, and it is more convenient to construct
the schema from the query generating the data, rather than extracting the schema
from the data. But it is not always possible to infer a usable schema in this way.

26 Chapter 2. Theory

This technique is just mentioned for completeness, it is not used in the project.

Specification of schemas

Software engineers usually have very free hands when designing the internals of
software systems. This includes the data modeling. When no data is specified
on beforehand, the task is to design a schema that can handle all the necessary
constructs. It is in this case that our own UML like schema notation is really
usable. It provides a nice overview of the structure of the data, and it is a trivial
task to generate an XML Schema that extends the graphical representation with
type information.

2.3 Querying SSD

In order to use semistructured data it is obviously necessary to find a way to fetch
data from an SSD document. In traditional RDBMS the query language SQL is
used for getting the data, but because the semistructured data model is fundamen-
tally different from the relational data model, a very different query language must
be specified. The list below describes some important differences between SSD
and relational data. These differences makes it impossible to use a simple query
language, like SQL, for semistructured data.

1. Semistructured data allows nesting of structures in arbitrary depth.
2. SSD documents can contain attributes, that are unknown to the system/peo-

ple interacting with the document – in other words, there is no fixed database
schema when using SSD.

3. Attribute names does not need to be unique within a structure.

Because of the first property a query language for SSD must be able to handle
hierarchical structures. When looking at figure2.2on page11 this corresponds to
vertical navigation in the tree – that is, navigation from a node to its children (or
from a node to its parent). Most6 existing query languages usespath expressions
to solve this problem. Path expressions are described in section2.3.1on the next
page.

The second and third property makes similar demands to the query language. Be-
cause the attribute names (the “labels”) are unknown, or because some attributes
have the same name, the query language must be able to select a collection of at-
tributes – even without knowing their names – iterate through the collection and
process each attribute of the collection individually.

The following sections will describe a query language fulfilling the mentioned re-
quirements7.

6Probably all
7This query language is proposed in[dotw]

2.3 Querying SSD 27

2.3.1 Path expressions

Path expressions works by matching attribute names – it is best illustrated with
some examples. The examples below use the CD-catalog data described earlier
and illustrated in figure2.2on page11.

• This example shows how to make simple selections of attributes, when the
attribute names are known. All the album titles are selected.
CD-catalog.Album.Title

Result:
{Title: "Blood Sugar Sex Magic",Title: "Ten",Title: "By The

Way"}
Notice that the result includes the labels (Title). This is slightly different
from the query language proposed in[dotw], but it seems that the path ex-
pression is more powerful, when the labels are included in the results.

• Suppose that the CD-catalog also included compilations in addition to the
existing albums. The following example shows how to select titles of all
albums and all compilations:
CD-catalog.(Album|Compilation).Title

The result is the same as before, because there are no compilations, but notice
it is possible to match eitherAlbum or Compilation with | .

• If the name of an attribute is not known, it can be matched with thewild card
“ ”
CD-catalog. .Title

This gives the same result as above.
• In order to fetch all tracks in any depth in the data document, the following

expression can be used:
CD-catalog. *.Track

The * specifies any number of repetitions of a label – here any label be-
cause of the wild card. The query language has the following operations for
specifying cardinality constraints:

* any number (including zero)
+ one or more
? “optional”, meaning zero or one

• The query language also allows matching of labels using regular expressions.
This example selects all attributes in any depth belowCD-catalog with a
name starting with “C” or “G”:
CD-catalog. *.’ [CG].*’

Result:
{Genre: "rock", Currency: "DKK", Genre: "Rock,

Currency: "DKK", Genre: "Rock", Currency: "GBP" }

• All the examples above return labels as part of the results, but what if the
labels should be left out? This problem can be solved by introducing a func-

28 Chapter 2. Theory

tion value() , that returns the value of a given attribute:
CD-catalog.Album.Title.value()

Result:
{"Blood Sugar Sex Magic", "Ten", "By The Way" }
The result is identical to that of the first example, except that the labels are
left out.

The path expressions provides a powerful way of retrieving data from a single
document, but a complete query language should be able to retrieve data from
several documents and make transformations on the results of path expressions.
The next section describes a “generic” query language, which closely resembles
existing query languages for semistructured data8.

2.3.2 The Generic Query Language

The structure of the query language is to some extent similar to SQL – it is also
based on SELECT-FROM-WHERE expressions. The query language is described
below with a single example – the readers who are more interested in query lan-
guages for SSD should take a look at[dotw]9

Consider the following query:

select BigTrackName: name
from CD-catalog.Album.Track track,

track.Duration dur,
track.Name.value() name

where dur.value() > 4.00

The from statements specifies an iteration through all Albums in the CD-catalog
shown earlier. Each track is stored in the variabletrack , the variabledur holds
the duration of the track, e.g.Duration: 3.51 , andnameholds the name of the
trackwithout the label e.g."Once" .

Thewhere statement specifies that only tracks with a duration larger than 4 minutes
must be chosen.

Theselect statement specifies thatname attribute is returned with the label
BigTrackName . The result is a collection of names of tracks longer than 4 minutes,
where the labelNamehas been renamedBigTrackName :

{
BigTrackName: "If you have to Ask",
BigTrackName: "Even Flow",
BigTrackName: "Universally Speaking"
}

8The query language is identical to the one proposed in[dotw] sections 4.2, except, of course,
that the path expressions used are modified as explained earlier

9But still remember that the path expressions used in[dotw] is slightly different than the one used
in this paper

2.3 Querying SSD 29

The generic query language described above is very similar to W3C’s recommen-
dation for the XML query languageXQuery, which can be used in practice for
making applications based on semistructured data. There are differences in the
syntax, but the expressive power of the languages are almost the same.

2.3.3 XPath

XPath is the path expressions used by the XML related technologies XSL (eXten-
sible Stylesheet Language) and XQuery. It is very similar to the theoretical path
expressions used in the generic query language, but in some ways it is not as pow-
erful – the greatest disadvantage is, that it does not support regular expressions for
matching tag names or values. Fortunately it has some other clever features, which
in other ways makes it extremely powerful. The table below shows some examples
of how things are expressed using the different notations.

Generic Path Expression XPath expression

Choice
| CD-catalog.

(Album|Compilation)/Title
| /CD-catalog/Album/Title|

CD-catalog/Compilation/Title

Wildcard
CD-catalog..Title * /CD-catalog/*/Title

Arbitrary depth
* CD-catalog.*.Title // /CD-catalog//Title

Value extraction
value() CD-catalog.Album.Title.value() text() /CD-catalog/Album/Title/text()

Below is given some examples, which explains the features of XPath. The XML
document with the CD-catalog from section2.1.1on page12 is used for the exam-
ples.

• Simple selection of elements is done exactly as with the generic query lan-
guage, except that the separator. is replaced by/ . This example selects all
titles from all albums:
/CD-catalog/Album/Title

Result:

<Title>Blood Sugar Sex Magic</Title>
<Title>Ten</Title>
<Title>By The Way</Title>
<Title>Riskin’ It All</Title>

The XPath expression/ always returns the root node, so in this example
the expressions/ and /CD-catalog will return the same result – the entire
document.

30 Chapter 2. Theory

• Selection of attributes in XPath is very similar to selecting elements, but all
attribute names are preceded by “@”. For instance, the expression:

/CD-catalog/*/PurchaseInfo/@price

Will select the price attribute of the<PurchaseInfo> element.
• A nice feature of XPath is the ability to make conditional select statements.

Conditions are enclosed within[..] . The expression

//Album[PurchaseInfo/@price]/Title

Selects all<Title> elements of albums where theprice attribute is speci-
fied. The example below is a little more complicated. It selects all albums
which have some descendant element with the value “Once”. This particu-
lar query applied to the CD-catalog will return the album “Ten” by the band
“Pearl Jam”, because it has a track called “Once”.

//Album[.//*=’Once’]

2.3.4 XQuery

XQuery is a query language for XML specified by W3C. The specifications for
XQuery are still just work in progress, but the specifications are no longer subject
for frequent changes. Any changes that are made to the XQuery language are now
minor, and they will probably not affect the validity of information in this section.

Syntactically XQuery seems like a mixture of an ordinary query language like
SQL, and a functional programming language. It uses aFOR-LET-WHERE-RETURN
structure similar to theSELECT-FROM-WHEREstructure in SQL, but additionally
XQuery allows the use of several decision statements e.g.if-then-elsestatements.
One of the strongest features of XQuery is the support of variables and functions,
which makes it easy to separate queries into several chunks of code – this makes it
a lot easier to write queries that are easy to understand and debug.

XQuery Basics

Consider the small XQuery below:

1 for $track in doc("cdcatalog.xml")/CD-catalog/Album/Track
2 let $dur := $track/Duration
3 let $name := $track/Name/text()
4 where $dur > 6.00
5 return <BigTrackName>{$name}</BigTrackName>

The query does the exact same thing as the ”big track query” from section2.3.2on
page28, except it queries all data in the CD-catalog (appendixA on page111) and
it selects tracks that are longer than 6 minutes instead of 4. The XQuery is remark-
ably similar to the generic query – the main difference is, that the XQueryreturn

2.3 Querying SSD 31

statement is in the end of the query, while the correspondingselect statement in
the generic query language is in the top. Iteration through a sequence is done using
the for statement,let expressions are used for assigning values to variables.

The XQuery above returns this result:

<BigTrackName>Sir Psycho Sexy</BigTrackName>
<BigTrackName>Release</BigTrackName>
<BigTrackName>Venice Queen</BigTrackName>

which are the only tracks in the CD-catalog longer than 6 minutes.

Advanced Features

The XQuery in this example uses some of the more advanced features of XQuery.
This query can be used to filter the CD catalog more refined than the above query,
which just was able to get tracks that were longer that 6 minutes. The below query
can find tracks that are longer than some user specified number of minutes, exclud-
ing all tracks that contains some user specified word.

1 declare namespace wh="WorldHeritage"
2
3 define variable $cdcatalog as node()
4 {doc("cdcatalog.xml")/CD-catalog}
5
6 define function wh:filterTracks($minLength as xs:decimal,
7 $censureWord as xs:string) as node()? {
8 let $filteredTracks :=
9 <FilteredTracks>

10 {
11 for $track in $cdcatalog/Album/Track
12 let $dur := $track/Duration
13 let $name := $track/Name/text()
14 where $dur>$minLength and not(contains($name,$censureWord))
15 return <BigTrackName>{$name}</BigTrackName>
16 }
17 </FilteredTracks>
18 return
19 if(count($filteredTracks/*)=0) then()
20 else($filteredTracks)
21 }

Line 1 in the query declares the namespacewh. Namespaces are primarily used for
grouping functions, allowing function names to overlap as long that the functions
belongs to different namespaces. The namespace for predefined XQuery functions
is fn , but it is used as default and need not be used.

Line 3 defines a global variablecdcatalog of type node() . Recall that in the
XQuery/XPath data model (described in section2.1.4on page18) a node is pretty
much anything e.g. XML documents, elements or attributes. The XPath expression
in line 4 assigns a value to thecdcatalog variable.

32 Chapter 2. Theory

Line 6 starts a definition of the functionfilterTracks . Notice that it belongs
to the namespacewh. The function takes two arguments: a decimal number:
minLength and a string:censureWord . The predefined simple types use the names-
pacexs . Also notice that the purpose of the function is to find all tracks longer than
minLength minutes, that does not contain the wordcensureWord . Theas node()?

part of the function signature defines that the function returns a sequence of nodes,
and the sequence has cardinality? which means zero or one. Legal cardinality
constraints are:

• Nothing specified means exactly one.
• + one or more.
• * zero or more.
• ? “optional” – zero or one

The where statement in line 14 uses two standard XQuery functions:not that
negates a truth value, andcontains that returns true if the second argument is
contained in the first.

The final return statement in line 18 uses aif-then-else statement. It uses the
count() function to count if thefilteredTracks variable contains any tracks at
all. If this is not the case, then nothing is returned. If there actually are some tracks,
then thefilteredTrack variable is returned.

The result of the function callwh:filterTracks(6.0,"Psycho") is:

<FilteredTracks>
<BigTrackName>Release</BigTrackName>
<BigTrackName>Venice Queen</BigTrackName>

</FilteredTracks>

Notice that the track “Sir Psycho Sexy” now has been filtered away.

This section does obviously not give an exhaustive description of all XQuery fea-
tures, but it provides an overview of some of the most important features. Read-
ers who are more interested in XQuery should go and read the XQuery language
specification[XQ-lang] and the specification of XQuery functions and operators
[XQ-funop].

By now it should be clear how semistructured data can be stored as XML docu-
ments, and how these documents can be queried and transformed using the power-
ful XQuery language. The next section describes how it is possible to use semistruc-
tured data for storing information about sites in the World Heritage list.

2.4 World Heritage Classifications

Many of the sites in the World Heritage system are related in more or less obvious
ways. An important question is: How can these relations be expressed in a way
that can be exploited, and that a computer can handle?

2.4 World Heritage Classifications 33

The relationships are built upon one or more properties describing each site. If
we take a look at the example site in section2.1.3 on page16, and locate the
<CategoryType> property in the<Justification> element, that describes whether
a site is inscribed because of its natural or cultural properties. The property indi-
cates that some kind of categorization exists among the sites. This categorization is
based on theCategoryType property in theJustification , but other categoriza-
tions based on other properties are most likely to exist. The classification based on
Location has also been mentioned earlier.

The categorization byCategoryType divides the sites into two classes, a class
containing the set of sites with a naturalCategoryType and a class with cultural
CategoryType sites. It is possible to inscribe the same site several times using
different criteria – the result is that some sites have both a natural and cultural
CategoryType property. These sites can be thought of as specializations of both
the natural and cultural classes. The class that thesehybridsites form can be called
mixed.

The structure that the classification based on theCategoryType property forms is
denoted a lattice.

2.4.1 Partial Orders and Lattices

This section contains a brief introduction to lattices. The lattices are important
in this system, because they can be used to express classifications. Lattices are a
specialization of partially ordered sets.

Partial Orders

A partial ordering is a relationv: L × L → {true, false} with the following
properties:

• reflexivity(i.e. ∀l : l v l)
• transitivity (i.e. ∀l1, l2, l3 : l1 v l2 ∧ l2 v l3 ⇒ l1 v l3)
• anti-symmetric(i.e. ∀l1, l2 : l1 v l2 ∧ l2 v l1 ⇒ l1 = l2)

A partially ordered set (L,v) is a setL equipped with a partial orderingv.

A subsetY of L hasl ∈ L as anupper boundif ∀l′ ∈ Y : l′ v l and as alower
boundif ∀l′ ∈ Y : l′ w l. A least upper bound(LUB) l of Y is an upper bound
of Y that satisfiesl v l0 wheneverl0 is another upper bound ofY . Similarly a
greatest lower bound(GLB) can be defined.

Partially ordered sets need not to have LUB or GLB but when they exist, they are
unique becausev is anti-symmetric.

34 Chapter 2. Theory

Lattices

A partially ordered set where all subsets have both LUB’s and GLB’s is denoted a
lattice. Furthermore the notion of aleast-andgreatest elementis also introduced.
When talking lattices, the least element is called “bottom” or⊥ and the greatest
element is called “top” or>.

Lattices can be drawn as the example in figure2.7, and that kind of drawings is
calledHasse diagrams. The diagram illustrates the same specializations as men-

Sites

Natural Cultural

Mixed

Figure 2.7: Hasse diagram

tioned in the last section. As a convention all our lattice diagrams will have the
most general class on top and the most specialized in the bottom.

2.4.2 Classifications as Lattices

All the sites in theCategoryType example can be put into a general class, called
top (>), and then the classes natural and cultural can be viewed as specializations
of >.

The structure of the classes (based on the category type specializations) form a
lattice that is illustrated in figure2.8. The most general class is on top and the
most specialized in the bottom. The classifications does not need to have a greatest

T

Natural Cultural

Mixed

Figure 2.8: The simple representation of the category-type classification

lower bound element (GLB) specified explicitly, if some classes lack a GLB class,
the bottom (⊥) class is assumed to exist and be a specialization of these classes.

2.4 World Heritage Classifications 35

This is illustrated with the punctuated lines in figure2.9and it is obvious that this
assumption makes the classifications fulfill the lattice properties10.

The reason that the⊥ class is assumed to exist and not just defined in the classifi-
cations, is that the⊥ class does not contain any sites at all. It would not make sense
to put the⊥ class into the dataguides that the classifications will be converted into,
before being presented to the user.

Each site can belong to multiple classes. If a site for instance is a member of the
Mixed class it is also member of all the classes that the Mixed class is a specializa-
tion of (Natural, Cultural and>).

Furthermore it is possible to refine the classes by inserting sub-categories, without
changing the overall structure. The principle is illustrated in figure2.9.

T

Natural

⊥

Fossil sitesBiosphere ReservesTropical Forests Biogeographical Regions

Cultural

Mixed

Figure 2.9: Extension of the simple category-type classification

The classifications introduce some exciting possibilities in the WH system, be-
cause they incorporate extra knowledge. In a RDBMS the classifications have to
be worked out when designing the database schema, because the classifications
usually introduce additional properties on the sites. This implies that if a new clas-
sification with a different depth or structure was to be embedded in the system at a
later point, the schema and the applications that use the schema would need to be
changed.

By using the SSD approach the natural choice would be to store the extra proper-
ties, that a new classification would impose, in the classification itself. This strat-
egy would not call for changes in the “schema”11 for the WH sites and it would be
possible to create a generic piece of code to handle the presentation of the classifi-
cations.

Having introduced some of the most common concepts when doing classifications,
the next step is naturally to mention ontologies. The website http://www.whatis.com
gives the following definition of the word “ontology”:

10A lattice is a partial order where GLB- and least upper bound classes exist for all classes.
11The lower bound schema

36 Chapter 2. Theory

In its general meaning, ontology is the study or concern about what
kinds of things exist - what entities there are in the universe. It derives
from the Greek onto (being) and logia (written or spoken discourse). It
is a branch of metaphysics, the study of first principles or the essence
of things.
In information technology, an ontology is the working model of enti-
ties and interactions in some particular domain of knowledge or prac-
tices, such as electronic commerce or “the activity of planning.” In
artificial intelligence (AI), an ontology is, according to Tom Gruber,
an AI specialist at Stanford University, “the specification of concep-
tualizations, used to help programs and humans share knowledge.” In
this usage, an ontology is a set of concepts - such as things, events, and
relations - that are specified in some way (such as specific natural lan-
guage) in order to create an agreed-upon vocabulary for exchanging
information.

Ontologies are important because they define a common vocabulary for the people
using the system. The idea of ontologies is not a new one, but it is not getting
less interesting, on the contrary. Several people are actually researching the area of
ontologies actively for the time being.

Some fields already have ontologies defined, there exist an ontology for the telecom-
munications industry to take an example.

There is an interesting project on the WWW called “The Semantic Web” the idea
is to use the Internet as a sort of database, and be able to have agents combine
data from different sites into a specialized result. Viewing the WWW as a database
raises almost the same issues as the “SSD vs. RDBMS” discussion, the “schema”
for the data on the web is undefined, but in order to be able to have for instance
agents collect and combine data, there must be some common ground. This com-
mon ground can be established by defining ontologies for the relevant areas.

2.4.3 Representing Ontologies

As mentioned above, the problem with representing classifications in a way that
computers can handle, is essential if ontologies are to be incorporated in the system.

The is-a relation is a fundamental part of the classifications, it expresses the rela-
tion ships between the classes in the classification. Each classification have a top
element (>) that is the most general class, this class covers all the other classes,
meaning that all the other classes are related either directly or indirectly to> by
the is-a relation.

Some ontologies have a tree structure, they are trivial to represent in a computer,
while other have lattice structure. A lattice structure (multiple parents / inheritance)
introduces a little more complexity, but not anything alarming.

2.4 World Heritage Classifications 37

The easiest way to solve the problem with the classification structure would be to
restrict the classifications to a tree structure, but by doing so a lot of flexibility is
lost. Tree structures also tend to be bigger that lattice structures when representing
structures with natural lattice-like structure.

As mentioned before theCategoryType property imposes a lattice-like structure,
if it should be restricted to a tree structure it would look like figure2.10. If a
site belongs to the “Mixed” class it would be present in both of the mixed groups.
While using the lattice structure yields a representation like the one already shown

T

Natural Cultural

Mixed Mixed

Figure 2.10: The tree representation of the classification based onCategoryType .

in figure2.8on page34.

As the lattice structure already is present in the natural relations and we would like
the reduce redundancy in the data, we would like our classifications to be able to
have lattice structure.

As XML imposes a tree structure, representing the ontologies in XML is a natural
choice, the problem being how to solve the issue with the multiple inheritance.

There exist two possibilities to handle the cases that would otherwise violate the
tree constraints in XML:

• Duplication of information – like mentioned earlier, the data with multiple
parents can be duplicated and a copy placed under each parent. This intro-
duces some redundancy.

• The use of in-document references – it is possible to make references within
an XML document by utilizing theid andidref attributes. Some XML pro-
cessors12 can resolve the references automatically, whereas other processors
treat them as normal attributes.
Lattice structure can be expressed in XML, by using references instead of
“inlining” elements multiple times.

2.4.4 Taking Advantage of Ontologies

Ontologies may seem like a complex construct to use in the system, but they can
be implemented in a way, so users will not even notice that they are using a system

12XSLT or XQuery processor.

38 Chapter 2. Theory

based on ontologies. An obvious possibility would be to generate a dataguide based
on the classifications.

A dataguide in this context is a tree structure that the user can navigate just as
described in section1.2 on page2. It is possible to navigate all the way down to
a specific site or to mark several classes asinteresting. After having marked the
interesting classes the user can enter a keyword and the system will return a list of
the sites that belong to the selected classes and match the keyword search.

Another option is to have the system proposesimilar sites, based on different clas-
sifications. For instance similar sites based onCategoryType . These related sites
can be found by selecting all the sites that belong to the same class as the site
currently being viewed.

It is also possible to offer the user to “expand” his query-scope, if the user has se-
lectedTropical Forests and entered a keyword that resulted in zero or very few
hits, the system could suggest that the user expands his search scope, this would
in this particular case be done by extending the search scope to the “least upper
bound” class. If the user only is using the classification based onCategoryType

the least upper bound class would be “natural site”, but in a more detailed classi-
fication there might exist a more fine-grained categorization, allowing the user to
expand his search scope without getting all the natural sites back.

Another possibility is to combine search scopes from different classifications, maybe
the user selects that he is interested inTropical Forests in the CategoryType

classification andSouthern America in the Location classification, then an in-
tersection between the 2 selected search scopes would yield a very precise result,
while the union of the 2 scopes would provide a much larger (but maybe still rele-
vant) scope.

The advantage of using classifications is easy to spot, the task is to incorporate the
classifications without exposing the users to the complexity.

By using SSD / XML it is possible to create a generic application to handle and
present the knowledge in the classifications, this would be a hard task to implement
in a RDBMS, but it is possible to get away with a relative simple application when
using XML.

For instance a simple XML file describing theCategoryType classification using
the approach with theid andidref attributes, could look like this13:

<Classification>
<Class id="1">

<Name>Natural</Name>
<Class id="11">

<Name>Tropical Forest</Name>
sites...

</Class>

13Please refer to the design description in section3.2.1on page47, where the general format is
discussed.

2.5 Querying the Classifications 39

<Class id="12">
<Name>Biogeographical Regions</Name>
sites...

</Class>
<Class id="2">

<Name>Mixed</Name>
...

</Class>
<Class id="3">
<Name>Cultural</Name>

<Class idref="2"/>
...

</Class>
sites...
.
.

</Class>
</Classification>

2.5 Querying the Classifications

The previous sections described how categorizations of sites in the WH site list
can be represented more formally asclassificationsusing semistructured data. The
purpose of the classification documents is to generatedataguides, which can be
presented on a web page and used to help users to find sites they find interesting.

Previous sections also described how semistructured data can be queried. This sec-
tion describes how an SSD query language can be used together with the classifi-
cations to provide some very convenient search facilities, that will help the visitors
to the WH website to find sites.

Because the classifications will be implemented in a semistructured data format
(XML), there will be several basic operations available on the classifications, e.g.
operations to find children to a node, find all successors to a node or all successors
of a given type. The following queries in the classifications are therefore all feasible
to implement using standard technologies14.

2.5.1 Searching Marked Categories

Suppose a visitor to the WH website is presented with a dataguide like the one
shown i figure1.2on page4. The user can mark the categories, which he wants to
search, by checking the check boxes next to the category names. Then he can enter
a keyword in the form in the bottom of the figure and press “Search in selected
subjects”. Each of the categories shown in the dataguide, will have a unique id

14All XML related technologies

40 Chapter 2. Theory

associated with it. The query that searches the marked categories, has the following
information available from the user:

• A list of unique ids of the marked categories.
• A list of keywords.

This information, together with the classifications and all the WH site-data, is
enough to execute the query.

Figure2.11shows how a classification might look like. The ellipses denotes the
“categories” or “classes” of the classification, and the circles represents the sites.
The figure illustrates a scenario, where two categoriesC2andC6 has been marked
by a user – the categories are shown with bold line in the figure. The punctuated
bold lines illustrate the part of the classification, that is relevant for the keyword
search in the marked categories – the sitesS1, S2, S3, S4andS5are the only sites,
that should be included in the search.

C2 C3

C4 C6C5

C1

C7 C8

S1 S3 S6S5S2 S7S4

Figure 2.11: Classification illustrating a search in marked categories

Obviously it is easy enough to find all the relevant sites to search, when using a
semistructured data model. When the unique ids ofC2 andC6 are known, then
all the successors, hence the relevant sites, can be located simply by using path
expressions.

2.5.2 Finding Related Sites

In this report the termrelated sitesor similar sitesis used in the following way:

A site site A is similar or related to another sitesite B if they both
belong to the same category.

For example all danish sites aresimilar sitesto “Kronborg Castle”, because they
all belong to the category “Danish sites”.

When a user has found a site that he finds interesting, he might want to find some
similar sites, because the site has got some properties he finds interesting. It would

2.5 Querying the Classifications 41

be a nice feature to be able to find other sites that belong to the same category as
that site. Suppose the user has located a siteS1that he finds interesting. He then
asks for a list of similar sites.

Figure2.12and figure2.13 illustrates two classifications. The interesting siteS1
has been marked with bold line in both classifications. The bold punctuated lines

C10

C11

S7S8 S3 S10S1

C16

C13C12

C17C14 C15

S9

S11

Figure 2.12: Classification showing how to find similar sites

C2 C3

C4 C6C5

C1

C7 C8

S1 S3 S6S5S2 S7S4

Figure 2.13: Classification showing how to find similar sites

show the part of the classifications which are interesting, when looking for similar
sites. Basically all that must be done in order to find similar sites is to “find all
the children of the parent of the interesting node (site)”, which is easily done using
SSD representations of the classifications. In this case the similar sites are the
children of the category nodesC15andC4– that is, the site nodesS2andS7.

If the user is willing to accept similar sites that are not directly in the same category
as the site he finds interesting, then the query for similar sites can be expanded to
include the parent nodes of the category nodesC15andC4. This is illustrated with
the thin punctuated lines in the two figures.

42 Chapter 2. Theory

2.5.3 Finding the Best Match

Naturally the visitors at the WH website should have the possibility to mark inter-
esting categories in more than one classification and make a keyword search in all
the classifications. Such a query can be executed by searching each of the classi-
fication one at a time, but the same site will probably often appear as a match in
several of the classifications. This imposes a need to order the matching sites by
how good a match they are.

There are several issues that should be considered when ordering the matching
sites – suppose a user has marked categories in several classifications and entered
several keywords to search for. The following statements seems obvious:

• A site that matches two keywords, is better than a site that only matches one
keyword.

• A site that is matched in two categories, is a better than a site which is only
matched in a single category. This is true regardless of which classification
the categories belong to. A site might be a member of two categories in the
same classification.

It seems like a good idea to apply some “hit points” to each site while performing
the queries. The pseudo code below defines how such a hit point system can work.
The search function takes a list of keywords, a list of ids for the categories that the
user marked and a list of all the classification as arguments:

function search(keyword-list,markedCategoryID-list,classification-list) {
for each classification in classification-list

for each category in classification.categories
for each markedCategoryID in markedCategoryID-list

if category.ID=markedCategoryID
then

for each site in category.sites
for each keyword in keyword-list

if site contains keyword
then assign 1 point to site
else do nothing

else do nothing
}

The best hits are then the sites with most points.

2.5.4 Presenting the Query Results

When the WH system has finished making a query it has to present the result to the
user. One possible way to present the result is in the form of “result dataguide”.
Suppose the result of the “find similar sites” query (see the figures2.12 on the
preceding page and2.13on the page before) should be presented to the user. The
result can be expressed as a lattice as shown in figure2.14on the facing page. This
lattice can be transformed to a dataguide the exact same way, as the classification

2.6 Summary 43

Similar sites

C4

S1 S2 S7S1

C15

Figure 2.14: Lattice representing a search result

lattices are transformed to a dataguides. There are several advantages to this result
representation as opposed to simply presenting the result as a list of sites:

• If the user gets too many results from a query, he might want to make another
query that only searches sites which were results of the original query. The
lattice in figure2.14can be used directly for such a query, because it has the
same structure as the original classifications.

• A “result dataguide” contains useful information about which categories a
site belongs to – a simple list of matching sites does not. Hence visitors to
the WH site would probably appreciate the dataguide structure.

• The functionality used to generate the “search dataguides” (as shown in fig-
ure1.2on page4) and the “result dataguides” are the same. This can make
the implementation a little simpler and more elegant.

The main disadvantage of displaying the query results as dataguides is, that it is
more complicated to build the result lattice, hence it requires more processing
power. This issue should be considered, when deciding on how to present query
results to the user.

2.6 Summary

• The advantages that semistructured data has over traditional relational data
are:

– SSD allows new attributes to be added to existing structures.
– SSD allows structures to be nested into arbitrary depth.

Note that this is only an advantage, if the data in question requires some of
these properties. If the exact structure of the data is knows, and the types of
data types of attributes are known, there is no reason for choosing SSD over
traditional relational data.

• XML is an excellent format for storage of SSD.
• Classificationscan be stored as XML data – it is not trivial to store classi-

fications in traditional relational data, because the classifications are lattice
structures which require nesting.

44 Chapter 2. Theory

• Information about the sites in the WH list are also well suited for storage in
XML, because it is convenient that new information about sites can easily be
added.

• XML Schemas can be used for putting some constraints on XML data. XML
Schemas can be used to validate if an XML document complies with a
given structure, and whether elements/attributes in the document has some
required type.

• XPath and XQuery can be used for querying XML data. There are several
programs available that implements these technologies.

• When classifications are stored as SSD they can be used for making conve-
nient search facilities, which can help people find sites that they find inter-
esting.

45

Chapter 3

Application Modeling and Design

This chapter contains a description of the WH system that needs to
be created, in order to be able to take advantage of classifications for
querying the WH data.
First section is a description of the system that need to be created. It
turns out that two components are needed:

1. A system running on the server, handling queries, presentation
of the data and the presentation of query results.

2. A client application for creating classifications.
The next sections describes the modeling of the XML documents de-
scribing the WH data and the classifications.
Finally the modeling and design of the WH System, followed by the
modeling and design of the application for creating classifications.

3.1 System Description

The system, that is to be implemented, should be able to help users narrow down
World Heritage Sites that they find interesting, or maybe suggest other (relevant)
sites, that might also be of interest to the user. Furthermore it should be possible to
create classifications in the application.

In order to reach as many users as possible, the system to query classifications for
locating interesting WH sites, should be a WWW system like the existing WH Web
Site is.

Creation of classifications needs some graphical support, in order to give a good
overview of the classification being created. This is not easy to accomplish in a
web interface. Something could be done using applets, but a lot of trouble would
occur. Instead a client side application should be created, and it should be able to
interact with the WH System server over the Internet.

46 Chapter 3. Application Modeling and Design

A simple diagram describing the different software systems can be seen in fig-
ure3.1.

Figure 3.1: System diagram

The diagram shows the different software systems that need to interact in order to
have a working WH System.

WH User A visitor on the WH Web site, looking for interesting sites. The only
piece of software that this user need is a WWW browser.

WH Designer A person with relation to WH, who has credentials to alter clas-
sifications on the server. The designer creates classifications locally, and
uploads them to the WH System through the application used for creating
classifications.

WH System A Web server and a database for storing WH data. This is the system
that generates dataguides based on classifications, performs queries in the
classifications and presents the query results to theWH User.

The backbone of the system will be classifications implemented in XML. There
are several possibilities for storing XML data, it can be stored in ordinary files, in
a native XML database e.g. Xindice or in a RDBMS. Since the data will be XML
data, an XML database is used.

The format of the data has to be specified, this is to be done by creating a model of
the data, and extracting the schemas to be used in the implementation.

The XML data need processing before it can be presented to the user. Some of
this processing may take quite a while, and this is not needed to be done when the
data is requested from the user. It is therefore necessary to determine which data
views that can be extracted beforehand, and which views that has to be processed
dynamically.

Another issue with XML data is, that some of the aforementioned storage forms
are not very good at handling updates, so this issue will need to be looked into.
Along with the problem of updating data, the maintenance of the extracted views
also has to be treated, which views need to be updated and how often.

3.2 Specification of the XML Documents 47

It is possible to associate binary files to sites, the files could be sound, video or
pictures describing the site in some way. The system needs to be able to handle
this kind of data also.

A tool for creating classifications is modeled in this section. The tool should help
people design classifications, administer the classification and data documents on
the WH system server. Administration of the classifications and data documents
include common actions as upload, download and removal of documents in the
system.

3.2 Specification of the XML Documents

3.2.1 Modeling Classifications

As described in the previous sections, classifications play a major role in the sys-
tem. In the detailed problem description a couple of possible classifications were
shown on a screen shot (as dataguides), but the question is: Can we find a general
classification format, that enables us to cover both existing and future classifica-
tions?

By having a general classification schema, it is possible to create a generic presen-
tation layer that can show all the classifications, that may be incorporated in the
system. This will result in a flexible system that is easy to maintain.

Even though this project tries to take advantage of semistructured data, the clas-
sifications need to be put into a quite strict schema. This constraint is necessary,
because we would like to be able to take as much advantage of the classifications
as possible. If we have no knowledge about the structure of classifications, it is
hard to make a really usable user interface for querying, hence the schema for the
classifications is fixed.

What are XML classifications and how are they related to the WH system?

A classification is a lattice structure expressing generalization / spe-
cialization relationships. Each “Node” contains a name, description
and some keywords describing it. Additionally each node can contain
“references” to entities in a data document. For performance issues
each “reference” contains aDisplayName that gives a short descrip-
tion of the entity referenced. This enables the classification to “stand
alone” (it is not necessary to look up the referenced entities in the
data document in order to show a dataguide).

Section3.2.4 on page54 shows an example of how a classification and a data
document is linked.

The schema is shown in figure3.2 on the next page, and the entities in the dia-
gram are described in detail in the following sections. The XML Schema for the
classification documents can be found in appendixG on page143.

48 Chapter 3. Application Modeling and Design

Classification

id

DisplayName
Description
Keywords
DataDocument
ClassEntryName
EntityListQuery

Class

id

DisplayName
Description
Keywords

ItemRef

DisplayName
ItemIdref

0..n

0..n
Class

idref

Classifications

n

0..n

Figure 3.2: Lower-bound schema for the classifications

The Classifications Element

This element contains all the classifications in the system. This element is not
included in a classification definition, but is used to represent the collection of all
the classifications in the system.

It is included in order to show how the WH system keeps track of its classifications.

The Classification Element

Root element of a classification. This element contains the information that is
necessary for describing a classification.

In order to handle the classifications in a uniform way, on the server and in the
ClassificationDesigner, it it necessary to define the following elements:

DisplayName - The name that will show up in the presentation layer on the server.
Description - A short description of the classification, used to describe the classifi-

cation subtree in the dataguides. Could also be used to locate a classification
in a system with a large number of classifications.

Keywords - Keywords describing the classification, could also be used to locate
interesting classifications in systems with many classifications.

DataDocument - The URI of the document containing the elements to be classified.
ClassEntryName - The name of the elements in the data document that is going to

be classified - in the WH case the elements are called<Site> . The elements
must contain anid attribute, enabling us to look them up easily.

EntityListQuery - The XQuery used to query the<DataDocument> document in
order to get the<ClassEntryName> items that the classification is indexing.

Class - The root (>) node of the classification structure, the format of this element
is described in the next subsection.

<DataDocument> , <ClassEntryName> and<EntityListQuery> are not needed in
the WH system, but the tool for generating classifications need these values for
editing existing classifications.

3.2 Specification of the XML Documents 49

The Class Element

Class elements contain information about the classes and their lists of references
to items (sites in the WH system) belonging to the respective classes. Classes can
contain other classes or references to classes – this is the way that the structure of
classifications is defined.

DisplayName - The name that will show up in the presentation layer.
Description - A description of the class.
Keywords - Keywords describing the class.
ItemRef - A reference to theid of a class entry, name of the element to be refer-

enced is specified with the<ClassEntryName> in the<Classification> .

The ItemRef Element

The element containing the name of the reference and the id used to locate the
referenced item.

DisplayName - The name that will be displayed in the presentation layer, is con-
structed from one or more simple elements in the<ClassEntryName> ele-
ments in the data document.

ItemIdref - The value is a foreign key in the data document described in the
<Data-document> element.

For example could this element contain the value extracted from:

<Site><Name>...</Name>...</Site> in the WH system. An<ItemRef> refer-
encing the example site in section2.1.3on page16could look like this:

<ItemRef>

<DisplayName>Roskilde Cathedral</DisplayName>

<ItemIdref>site259</ItemIdref>

</ItemIdref>

3.2.2 Modeling the Site Document

Figure3.3on the following page shows the schema for the site document contain-
ing all the information about the different sites. The schema is inspired by the
schema to the relational database currently used in the official World Heritage pro-
totype application can be found in appendixH on page145. The different “entities”
or “complex elements” are explained in the following subsections.

DataCollection

This is the root element, which is used as a wrapper for the other elements.

50 Chapter 3. Application Modeling and Design

DataCollection

Site

id

Name
BriefDescription
Inscribed*

Resources

ImageResource

height?
width?

Description?
URL

0..n
0..n

LinkResource

Description?
URL
Name?

0..n

LocationPoint

Lat_degree
Lat_minute
Lat_second
Lat_hemi
Long_degree
Long_minute
Long_second
Long_hemi

0..n

LocationArea

type
3..n

0..n

The type attribute is either
"include" or "exclude", meaning

that the area is part of or not
part of the site location

0..n

Sites

language

0..n

Justification

Report

Name
URL

Description

May contain basic
XHTML tags

0..1

0..n

1

Keywords

Keyword

0..1

0..n

Year

start
end?

0..n

Criterion

Number
CategoryType
Descriptionn

<Custom Element>

display?

0..n

The display attribute
contains information

about how the element
should be desplayed

Location

Name
Country

Figure 3.3: Schema for the site document

Sites

For each language there is a<Sites> element containing all the site information
for that language.

language – This attribute describes which language is used in the site information.
Currently there is only site information in English.

Site

Contains all the information about a single site.

id – unique id of this site.
Name – The name of the site.

3.2 Specification of the XML Documents 51

Number – The number of a site. In the original WH website, all the sites have
a number that may be used to link to old documents containing information
about the site.

BriefDescription – A brief description of the site.
Inscribed – The year(s) this site was inscribed in the WH list.

Resources

This element is very important. It contains information about all the internal and
external resources linked to a site.

ImageResource

Contains information about an image that is linked to a site.

height – The height of the image, when it is displayed to the user.
width – The width of the image, when it is displayed to the user.
Description – A description of this image.
URL – Describes the location of the image. The image may exist only on an

external website or on the local web server.

Report

All the sites have at least one report associated with them. The report contains
information about the site, e.g. why the site has been inscribed in World Heritage.

Name – The name of this report. This name will be displayed on links to the
report.

URL – The location of the report.

Description

A description of a report – it may contain basic XHTML elements for formatting
the text.

LinkResource

This is the most general resource and it is simply a hyper link to something, e.g. a
link to the homepage of Roskilde Cathedral.

Description – A description of this link resource.
URL – The location of the resource.
LinkName – A name of the link. This name will be displayed on hyper links seen

by the user.

52 Chapter 3. Application Modeling and Design

Location

Describes the location of a site. The location of a site is described by a collection
of points and areas.

Name – Name of this location.
Country – Location is in this country.

Year

Each location of a site may be created in different years. This element describes
when this location was created and possibly ended.

start – Start year.
end – End year.

LocationPoint

Represents a single geographical point.

Lat degree, Lat minute, Lat second, Lathemi – Describes the exact latitude of
this point.

Long degree, Longminute, Long second, Longhemi – Describes the exact lon-
gitude of this point.

LocationArea

Describes a geographical area. An area must contain at least threeLocationPoints

elements in order to describe an area.

type – The type is either “include” or “exclude”. The location of a site is found by
taking the union of all “include” areas and then removing the “exclude” area
and finally adding all the single points which are part of the location.

Note that the location areas are not be used for anything in the WH System. The
LocationArea element is included, because it would be possible to describe areas
this way.

Justification

Contains information about why a site was inscribed in the World Heritage list.

3.2 Specification of the XML Documents 53

Criterion

A criterion is part of the justification of why a site is inscribed in the WH list. A
criterion describes one reason why the site was inscribed.

Number – Unique id of criterion.
CategoryType – “N” for natural or “C” for cultural.
Description – Either a general description of this criterion or a description of why

the site fulfills this criteria.

Keywords

A site may have number of keywords associated with it. The keywords can be used
when making keyword searches. A collection of keywords is enclosed within this
element.

Keyword

Contains a single keyword.

3.2.3 Generating XML Data from Existing Data

In order to implement a usable WH system based on XML data, it is necessary to
generate the XML data somehow. Because there is a great amount of data, it obvi-
ously cannot be generated by hand – it has to be done more or less automatically.

The “official” WH prototype website uses aMySQLrelational database1 for storing
the data, and fortunately we received a copy of this database. MySQL is able to
return the results of SQL queries as XML data. The easiest way to create XML
documents, that complies with the schemas described in the previous chapters,
is first to dump the content of each table in the MySQL database into separate
XML files. The next step is to write XQueries, that uses these files to generate the
document. This procedure was used to generate all the needed WH site data, but
it was necessary to make some small adjustments to the XML documents, before
they were ready for use in the WH system.

The following XML documents were created:

• A document with aClassification by geographical location. This classifica-
tion contains all the information about geographical location, that is avail-
able in the MySQL database, except for the coordinates. The schema for this
document type is shown in figure3.2on page48.

1The schema is specified in appendixH on page145

54 Chapter 3. Application Modeling and Design

• Another classification:Classification by Miscellaneous Categories. This
document was generated using the data from the tablescategory and
subcategory .

• A site document (see figure3.3 on page50) with information about all the
sites in the WH list. The document contains most of the information, which
is also in the MySQL database. The keywords from the database were left
out, since they are not really needed, and the precise location with coordi-
nates is also not present in the XML document.

The MySQL database contains some additional data, but the above mentioned three
document is perfectly adequate for implementing a fully functional WH system.

3.2.4 The Connection from Classification to Data Document

As mentioned earlier the<ItemIdref> in the<ItemRef> element is used to identify
the “items” that belong under the given<Class> . An example of what this looks
like in the actual documents, can be seen in figure3.4. The big ellipsis indicates
the item that references the actual element in the data document.

Classification (country−classification−uni.xml)

 <Description>This dataguide categorizes the WH sites by their greographical

 location around the world</Description>

 <ClassEntryName>Site</ClassEntryName>

DataDocument (datadoc.xml)

 <Site id="site59">

 <Name>Simien National Park</Name>
 ...

 </Site

 ...

</Sites>

<Sites language="english">

 ...

 <DisplayName>Classification by geographical location</DisplayName>

<Classification id="Cname_Classification_by_geographical_location</DisplayName>

 <Keywords>geographical location</Keywords>

 <DataDocument>/root/datadoc.xml</DataDocument>

 <EntityListQuery>for $entry in doc("/root/datadoc.xml")//Site

 return fn:concat($entry/Name,"¤¤¤",$entry/@id)

 </EntityListQuery>

 <Class id="dg0025">

 <DisplayName>Ethiopia</DisplayName>

 <ItemRef>

 </ItemRef>

 ...

 </Class>

 ...

 </Class>

 </Class>

</Classification>

 <DisplayName>Simien National Park</DisplayName>

 <DisplayName>Africa</DisplayName>

 <Class id="c1">

 <DisplayName>Eastern Africa</DisplayName>

 <Class id="dg0021">

 <DisplayName>Burundi</DisplayName>

 </Class>

 <Class id="dg002g1>

 <ItemIdref>site59</ItemIdref>

Figure 3.4: Connection between a Classification and a Data Document

3.3 WH System Model 55

3.3 WH System Model

The WH Systemis the server application that contains the web application, the
database and all the programming logic for searching the sites and classifications.

3.3.1 Actors

This section describes the different actors who will interact with the WH System.
To make things simple, there are only two different actors:

User The user is simply a person who is interested in the World Heritage, and
browses the WH web application to find information about different sites.
The user can search the site list and view info about the sites.

Administrator The administrator is responsible for administer any changes to the
WH System. The only people who needs this kind of functionality is clas-
sification designers. The use cases for this actor are therefore described in
the use case descriptions of the ClassificationDesigner in section3.6.1on
page68.

3.3.2 Use Cases

Figure3.5on the next page shows the use cases for the actor:user.

Use Case Descriptions

Browse dataguide The user used the dataguide to narrow down the search scope
and ends by making a mouse click on some site, which he finds interesting.

Search marked categories by keywordThe theoretical aspect of this use case
was described in section2.5.1on page39.
The user browses a dataguide and marks some classes, which he finds in-
teresting. Then he enters some keywords in an HTML form, and pushes
“search”. the system returns a list of all sites that matches the keywords.
The system indicates how good a match the different sites are, e.g. by plac-
ing the best matching sites in the top of the page displayed to the user or
assigning some “hit points” to each match. The sites with most hit points
would then be the best matches.

Search marked categories by keyword, combining several classificationsThe user
has the possibility to search several classifications at the same time. The best
matching keywords are those in all the classifications. Less good matches
are present in only some of the classifications.

Search sites by keywordThe system is able to search a list of sites for some spec-
ified keywords. This functionality should not be used directly by the user.

56 Chapter 3. Application Modeling and Design

User

Browse dataguide

Search marked classes
by keyword

Find similar sites

Search classifications
by keyword

Search in current
search result

Broaden search scope

<<uses>>
Search sites by keyword

<<uses>>

<<uses>>

Search marked classes
by keyword, combining
several classifications

<<extends>>

View site info

Figure 3.5: Use cases for the user

Search in current search results If the user has made a search that returned too
many hits, he can choose to make a keyword search in the current hits.

Find similar sites When a user has got some search results, he can choose to find
sites similar to a given site. The definition of “similar sites” was described
in the top of section2.5.2on page40, where the meaning of this use case
was also described from a more theoretical viewpoint. This functionality
searches all classifications and returns categories where the site is present.

Search classifications by keywordThe user can choose to make a keyword search
in the classification documents. This facility searches the classifications and
returns all categories which matches the keyword.

Expand search scopeWhen the user receives few or zero results in a search,
the user can choose to expand the search scope, meaning that the system
searches the parents of the categories chosen by the user.

3.3 WH System Model 57

User Case Interactions

The following use case interactions assume, that the user has already entered a
“Search” page in the WH application. This page presents a list of all the dataguides,
and the user can browse these categories. There is a text field for making a keyword
search in the categories which the user has marked, and a text field for making key-
word search in the dataguides (without searching the site documents).

Actor Action System response
Browse dataguide
1. The user browses the dataguides
he finds interesting. He finds a site
that he wants to know more about and
clicks the link with the mouse.

2. The user receives a new web page
containing the detailed information
about the chosen site.

Search marked categories by keyword
1. The user browses a single
dataguide, and marks interesting cat-
egories by checking a check box next
to the category names. Then he
enters some keyword(s) in a search
form and pushes “Search”.

2. The system searches the sites
under the marked categories and
presents links to sites, which matches
the keyword(s). The links may be
presented as a simple list of sites,
where the best matches are posi-
tioned in the top of the list, or as an-
other dataguide, which can be used
for additional searching.

3. The user makes a mouse click on
a site that he finds interesting.

4. The user receives a new web page
in his browser. It contains the de-
tailed information about the chosen
site.

Search marked categories by keyword, combining several classifica-
tions at the same time
1. The user browses several
dataguides and marks interesting cat-
egories by checking some check
boxes. He enters some keywords
in the search form, and pushes
“Search”.

2. The system registers that cate-
gories in different dataguides have
been chosen. It searches categories in
all the dataguides as described above
in “Search marked categories by key-
word”

58 Chapter 3. Application Modeling and Design

Search in current search results
1. The user has already searched the
system for sites, but he thinks that he
received too many hits. He decides
to search the current search results
by keyword. He enters some key-
word(s) in a search form, and pushes
“Search”

2. The system makes another key-
word search, but only in the list of
sites from the previous search. The
result is presented to the user as pre-
viously explained.

Find similar sites
1. The user has chosen to view the
details about some specific site. He
chooses to “find similar sites” (or
“find sites in same categories as cur-
rent site”) by pushing a link or a but-
ton.

2. The system locates the specific site
in all the different dataguides. It finds
all the categories, where the site is
present and creates a list of these cat-
egories and all the sites that belong
to these categories. This list is pre-
sented to the user – the site names are
links which the user can click in or-
der to see the details about the sites.

Search classifications by keyword
1. The user enters some keyword(s)
in a form for searching the classi-
fications (dataguides). He pushes
“Search dataguides”.

2. The system searches the descrip-
tion and keyword fields of all the cat-
egories in all the dataguides. All the
categories that matches the keywords
are presented to the user as a kind of
“mini dataguides” that the user can
fold and unfold

3. The user browses the “mini
dataguides” and clicks a site that he
finds exciting

4. As explained earlier a new web
page with the site details is displayed.

Expand search scope
1. The user has already made a key-
word search in some marked cate-
gories, but thinks that he received too
few hits. He clicks a link or button
saying “expand search scope”

2. The system finds the parents of all
the categories that the user chose in
his previous search. Then the system
uses the keyword from the user’s pre-
vious search to search all the parents.
The search result is presented to the
user as already explained.

3.4 WH System Design

The WH system is a J2EE application and this has some major advantages when
it comes to making the design. It is possible to make use of a design pattern: The

3.4 WH System Design 59

Model View Controller(MVC) pattern, which is very suitable for J2EE applications
– especially web applications. The use of this design pattern eliminates the need
for an in-depth class specification, because many of the classes needed to make
the application will have a “standard” structure, and the different classes will be
connected in a “standard” way. The next section briefly describes how the MVC
can be used in a J2EE application.

3.4.1 The Model View Controller design pattern

The purpose of this pattern is to separate business logic from data presentation.
The pattern consists of three components:

• The Model contains the “business logic” for the application, which means
that it contains programming logic for interacting with any database back
end, and it generates data for the view. It doesnotdefine how the data should
be used or presented for users.
In the J2EE environment the model consists ofEnterprise JavaBeans (EJB)
containing the logics andJavaBeans containing data2.

• The View is responsible for presenting the model data to the client applica-
tion. In the J2EE environment the views are JSP pages which use the model
data for generating HTML.

• The Controller intercepts service requests from clients. It determines which
changes should be made to the model depending on what kind of request it
receives.
J2EE web applications typically implements the controller as aServlet.

Figure3.6 on the following page illustrates the principle of the model view con-
troller. The figure shows the different stages that a web application goes through
while processing some service request:

1. The client sends a service request to the application server. In the WH sys-
tem, the “service request” is a HTTP request.

2. The controller intercepts the service request and determines what actions to
take. It calls the appropriate business methods in the model, which updates
the model data.

3. The controller then forwards the request to a view, that is associated with
this particular request.

4. The view generates a presentation of the available model data. This is typi-
cally a HTML page.

5. The generated presentation is sent back to the client in a service response.

It is important to notice that the model shown in the figure, is an abstract model,
meaning that an implementation using the MVC design pattern does not necessar-
ily contain components which are equivalent to the components the figure. The

2“Enterprise JavaBeans” and “JavaBeans” are two completely different type of components that
unfortunately have very similar names

60 Chapter 3. Application Modeling and Design

Controller Model

View

Client
1. Service request

5. Service response

3. Select view

2.Updates model

4. Generate view (e.g. a HTML page)
 based on model

Figure 3.6: Model View Controller design pattern

abstract components will typically be implemented as several different software
components.

It is quite simple to make a design for the WH system based on this general design
pattern, when using the J2EE technologies.

3.4.2 Design of the WH System

Figure3.7 on the next page illustrates the design of the WH System. The easiest
way to explain how this works is by example – the numbered arrows in the fig-
ure illustrates the different states the application goes through while processing a
request from a user3:

1. The client has opened the search page of the WH web application. He enters
some keywords in a search form and pushes the search button. This action
launches a HTTP request for the URLhttp://www.world-heritage.org/result.html.
The keywords are included as POST variables in the request.

2. The Front Controller Servletintercepts the HTTP request. The front con-
troller has a map which maps each possible requests into aRequest Handler.
A request handler is a Java class, that is responsible for handling one specific
request. The request for “result.html” is mapped to the request handler “Re-
sultRequestHandler”, hence the front controller forwards the HTTP request
to this request handler.

3. Because the request handler is responsible for only one HTTP request, it

3This is just an example – the URLs and filenames do not necessarily match those in the real
application

3.4 WH System Design 61

Client browser

Front Controller
Servlet

Request Handlers

XML
Database

1.

7.

8.

4.

2.

6.

JSP pages

Enterprise
JavaBeans

−
(Session Beans)3.

5.

Figure 3.7: Design of the WH web application

knows exactly what to do. It makes a JNDI4 lookup for an Enterprise Jav-
aBean (EJB). Then it calls the appropriate search method in the EJB.

4. The EJB contains thebusiness logicwhich in this case means, that it imple-
ments the functionality for performing the keyword search requested by the
client. The EJB searches the XML database and generates data (probably
information about some sites that matched the keywords), that should be re-
turned to the user. Notice that the EJB doesnot specifyhow the data should
be presented to the user.
Details about how the XML database can be searched is explained in a sec-
tion later on.

5. The result is returned to the request handler – possibly as a JavaBean5.
6. The request handler now prepares the result for a JSP page. If the EJB did

not create a JavaBean with data, it is created now. The JavaBean is added
to the HTTP request as an attribute. The request handler returns the name
“result.jsp” to the front controller.
Typically a request handler can return with to possible outcomes – it can
return a the name of whatever JSP page is responsible for presenting a result
to the client, or it might return the name of an error page if something went
wrong while handling the request.

7. The front controller forwards the HTTP request to the JSP page “result.jsp”,
which is responsible for presenting the data.

8. The JSP page extracts the JavaBean from the request. Then it generates an
HTML page based on the data. Finally the resulting page is returned to the
user.

4JNDI is a service for looking up Java objects based on some unique name, quite similar to how
one can use DNS to translate a domain name into an IP address

5Again it should be emphasized, that a JavaBean is simple a class instance containing data and
no logics, so do not confuse it with an EJB

62 Chapter 3. Application Modeling and Design

The experienced J2EE developer has probably noticed that the EJB’s are so called
Session Beans, which are directly connected to the database. This is normally not
the best way to interact with a database. Normally one would put in an extra layer
in the model between the session beans and the database. This layer would consist
of Entity Beans, so that the session beans would communicate with the entity beans
and the entity beans would be the only interface to the underlying database.

The problem with entity beans is, that they are designed as representations of rela-
tions in a relational database. This is a useful feature in applications using RDBMS
for data storage, but it is completely useless when using an XML database, and this
is why the session beans have to communicate directly with the database.

It is easy to recognize the MVC pattern in the design. The controller consists of
the front controller servletand therequest handlers. The model is the EJB’s and
the JavaBeans. Notice that the JavaBeans are not components the same way that
the front controller and the EJB’s are – they are simply temporary containers for
temporary data. Finally the views are the JSP pages.

An excellent quality in the design shown i figure3.7on the preceding page, is the
very clear division into components, where each component is responsible for a
restricted part of functionality. Because of this, it is very easy to understand how
the program works and what “kind” of code to expect in the different components.
It also makes it extremely easy to expand the application with additional function-
ality. Suppose that the application should be extended with a new search facility
of some kind. The programmer would have to go through the following steps (not
necessarily in this order):

1. The programmer creates a new static JSP/HTML page containing a search
form, where the user can provide his search criteria.

2. If the result of the new search fits into an existing data model (JavaBean),
then this is used for the result. Otherwise a new JavaBean is created for
holding the data.

3. The new search method (the business logic) is implemented in an existing
EJB.

4. A request handler is created for extracting the user’s search criteria from the
HTTP request and calling the appropriate search method in the EJB.

5. If the result fits an existing data model, it will also fit an existing view (JSP
page) and this can be used for presenting the result. Otherwise a new JSP
page is created for presenting the result for the user.

6. Finally the new type of request has to be mapped into the correct request
handler in the front controller.

This may seem like a lot of things to go through, just to add a little functionality,
but it really is not. All the steps, except the implementation of the business logic in
the EJB, are trivial. The beauty of it is, that it is not necessary to alter any existing
code to make it work. It is only necessary to add some code. It is especially nice,

3.4 WH System Design 63

that the request handler is implemented as a whole new Java class, so you can
easily find and get an overview of the code, that handles a specific request.

3.4.3 Introducing XQueries in the Application

An essential part of this project is the use of XQuery for making queries in the XML
data. The evaluation of XQueries will be made by an XQuery engine implemented
as some Java packages, and these packages will be included in the EJB, that is
responsible for all the search facilities. But where should the XQueries reside?
Normally when using XQuery, one would write the queries in a file and store it on
a hard drive together with the XML documents, that should be queried. Obviously
this is not possible, because EJB’s do not have access to the hard drive, and even if
it was possible, it would not be a desirable solution – it would be “messy” to use a
lot of files on the hard drive.

Another solution is to code the XQueries directly into Java classes as text strings.
This is definitely possible, but it would be even more messy, because there are
many XQueries. In order to make it work, all characters that Java consider to
be “special characters” should be escaped. For example all line breaks had to be
replaced by:\n. Another disadvantage is that it would be much harder to effectuate
any changes in the XQueries. If the XQuery is inside Java classes, then the entire
Java application must be compiled and redeployed before the changes take effect.

The best possible solution seems to be to put the XQueries in the XML database
together with all the XML documents. This ensures that the XQueries are stored
in a structured manner, and they are easily available for the Java classes, that needs
them. This does, however, mess up the elegant MVC design explained in the previ-
ous section, because most of the business logic will reside in the database and not
in the EJB. The database will actually also be responsible for some of theviewpart
of the MVC pattern, because it will contain XSLT style sheets used for transform-
ing XML data into HTML used in the web pages. These facts might take away
some of the “beauty” of the design, but when using new and non (yet) standard
technologies such as XQuery, it is necessary to compromise.

3.4.4 Database Design

The design of the XML database is quite simple. The database must store the
classifications, the site data, the XQueries and some style sheets for transforming
XML data into HTML. Figure3.8on the next page illustrates the database design.
The figure does not show the structure of the classifications and the site data, this
was explained earlier and is illustrated in figure3.2on page48and3.3on page50
respectively. The XML structures containing XQueries and XSLT style sheets are
very similar and very simple. The<Name>elements are used as unique identifiers
and the<Data> elements contains the XQueries and style sheets inside aCDATA

64 Chapter 3. Application Modeling and Design

XQueries

XQuery

Name
Data

Stylesheet

Name
Data

Stylesheets

0..n 0..n

wh

Classifications DataCollection

1 11 1

Conf

1

<Conf. Element>

0..n

Figure 3.8: Design of the WH XML database

section. TheCDATAsection is necessary because the XML parser should not attempt
to parse the XQueries or the style sheets.

The database also has a collection calledconf . This collection can be used for any
configuration parameters.

3.5 WH System Class Specification

This section describes the Java classes and JSP pages that makes up the WH sys-
tem. This is not an in-depth specification of all classes and their methods and
attributes available in the system, but it gives an outline of all classes that are im-
portant for the desired functionality described in the use cases earlier.

The classes are described from top to bottom, meaning that the classes closest to
the users of the WH system are described first.

3.5.1 JavaBeans and JSP Pages

The system should contain the following JSP pages, that are important for the
functionality:

• search.jsp. Contains the search form for making an advanced search in the
WH list. This is where the user can browse all the dataguides, select some
interesting categories and search by keyword.

• simpleSearch.jsp. Contains the search form for making simple searches in
the database. This page is basically just a text field, where users can enter
some keywords, and a search button.

• dgSearch.jsp. Page for searching the classifications for categories e.g.North-
ern Europeor Asia.

3.5 WH System Class Specification 65

• simpleSearchResult.jsp. Displays the result of a simple search. It is simply
a list of matching sites, with links to more information about each site.

• siteinfo.jsp. Shows information about a chosen site. Shows links for “sites
in same category as chosen site”.

• similarSitesResult.jsp. Shows sites which are in the same categories as a
previously chosen site. The sites are displayed as a dataguide. The user can
choose to search this dataguide by pressing a link.

• result.jsp. Displays the result of an advanced search. Results are displayed
as either a dataguide or a list. The page also contains a form for searching
the current result. Thecurrent resultmay be the result of a search for similar
sites, a search for categories in a classification or, of course, an advanced
search.

In addition to the above JSP pages, there are a few other uninteresting pages – e.g.
a welcome page.

The JSP pages are strongly connected to JavaBeans, because JavaBeans are the JSP
pages only source to data. Each JSP page, except the static JSP pages, uses one or
more JavaBeans for generating the HTML pages that are returned to the user. The
important JavaBeans in the WH system are:

• DataGuideBean. Represents a single dataguide. It is used bysearch.jspfor
creating the advanced search form.

• SearchResultBean. Represents a search result. The search result should be
presented both as a dataguide and as a simple list, when available. The bean
is used byresult.jsp.

• SimilarSitesBean. Represents the result of a search for similar sites. Used
by similarSitesResult.jsp

• SimpleDataBean. Represents the result of a simple search in the WH site
list. It contains a simple list with the search results. It is used bysimple-
SearchResult.jsp.

• SiteBean. Holds detailed information about a single site. Used bysite-
info.jsp.

3.5.2 Front Controller Servlet

The front controller servlet is a single Java class calledFrontController. Its only
responsibility is to pass HTTP requests on to the correct request handlers, and to
forward requests to JSP pages.

3.5.3 Request Handlers

The request handlers are not that important for the class specification. Which re-
quest handler that are required, are implicitly given by the types of requests that
are received in the front controller.

66 Chapter 3. Application Modeling and Design

3.5.4 Enterprise JavaBeans

The EJB’s are an essential part of the WH system, because they execute the pro-
gramming logic for all search facilities. There are two types of clients to the WH
System EJB’s: ordinary users, who use the WH website to search for sites, and the
classification designer program, which must be able to update classifications in the
database.

It seems obvious to make two EJB’s – one for the “web users” and one for the
classification designer client application.

SearchSessionEJB

This bean implements all the search facilities, hence it should have methods to:

• Perform an advanced search based on keywords and categories, that the user
selected in the dataguides.

• Perform a simple search based on keywords alone.
• Search the classifications for categories, based on keywords.
• Finding sites that are in same categories as a given site – the search uses the

id of the given site to find the other sites.
• Getting information about a site based on the site’s id.
• Perform a search in a “result dataguide”. This is the search facility that

the user of the WH system sees as “search current result by keyword” or
something similar.

• Expand search scope.
Note that this functionality is not implemented

DBUpdateSessionEJB

This EJB implements the facilities required by the classification designer client. It
is required to have the following methods for managing XML documents in the
database:

• InsertClassification in database.
• InsertDataCollection in database.
• RemoveClassification from database.
• RemoveDataCollection from database.
• Get list of allClassifications in the database.
• Get list of allDataCollections in the database.
• Setting “update” flag in XML database. This flag indicates that changes have

been made to classifications in the XML database.

Additionally there should be some method for authenticating users of the classifi-
cation designer.

3.6 ClassificationDesigner Model 67

3.6 ClassificationDesigner Model

Having a system that is able to show and query classifications is nice, but creating
the classification definitions by hand would be an overwhelming task. Hence a tool
allowing advanced users6 to create classifications is needed.

An intuitive way of creating a classification would be the following steps:

1. Determine what the classification should describe (Planning).
2. Create, connect and name/describe the classes (Create structure).
3. Assign item references to the classes (Index data document items).

We have named the application to generate classifications: ClassificationDesigner
(CD). The work flow in the CD application should support step 2-3.

As mentioned in the section describing the schema for the classifications, each
classification contains some properties that is needed for the CD only. For example
is it necessary that the CD knows the location of the data document containing the
data, that a given classification references.

After a classification has been created or edited, it should be put into the WH
system, thereby enabling the visitors on the site to take use of the classification.
There are 2 steps in this process:

1. Insert the XML document describing the classification into the XML storage
in the WH system.

2. Make the WH system reload its cache.

Step 1 is trivial, while step 2 may seem a bit odd.

However since classifications may be large structures, it can take a while for the
presentation layer to generate the “fold-able” dataguides. Considering the possible
long processing time, and the fact that classifications does not change that often,
the WH system should generate the dataguides once and then cache them for quick
access.

In order to make system administration of the WH system easier the CD should
also enable privileged users to remove classifications and download them for fur-
ther editing. It would also come in handy if the CD is able to upload, download
and delete data documents in the WH database – basically administering the WH
System.

Since it should be possible to edit an existing classification, the CD must be able to
import an existing classification, generate the graph structure and handle existing
item assignments to the classes.

The application should be able to validate classifications, in order to help the users
design usable classifications that does not break the system. The classifications

6Users with privileges to work on the WH system, notordinaryusers (visitors).

68 Chapter 3. Application Modeling and Design

could be validated using XML Schemas and maybe some tool to check the lattice
structure.

Finally the application should be able to load and save classification drafts locally,
allowing users to make a valid classification over several sessions.

3.6.1 Actors

This is a description of the actor that is going to interact with the Classification-
Designer. The application is intended to help the WH system administrators create
and edit classifications, so noordinary7 users will ever get to see this application.

Designer - A person that has the necessary knowledge to design classifications
for the system. Designers are also able to administer the contents of the
WH system, for instance by uploading new classifications or by removing
obsolete or faulty classifications.

3.6.2 Use Cases

Descriptions of the actions that the designers should be able to perform in the
ClassificationDesigner. The use cases are illustrated on figure3.9and described in
detail in the following section.

Edit Classification

Save Classification

Import Classification

Export Classification

Create Classification

Load Classification

Validate Classification

Download Classification

Remove Classification

Upload Data Document

Authenticate

Upload Classification

Remove Data Document

Download Data Document

Authenticate User

Remove Classification

Insert Data Document

Get Data Document

Insert Classification

Remove Data Document

Get Classification

Effectuate Changes Set update flag

<< uses >>

ClassificationDesigner

Designer

<< uses >>

WH Web System

<< uses >>

<< uses >>

<< uses >>

<< uses >>

<< uses >>

<< uses >>

Figure 3.9: Use Cases for the Classification Designer

Use Case Descriptions

The use cases for the ClassificationDesigner can be split up into two groups - the
use cases that are related to creating and altering classifications, and a group of

7The normal users that browse the WH sites.

3.6 ClassificationDesigner Model 69

administrative use cases. The latter being the use cases on the right side of the actor
in the diagram. The WH system use cases are not described, as they are simple
methods and their meaning can be deduced from the use cases that<< uses >>

them.

Create Classification Enables the designer to create new classifications. When
the designer chooses to create a new classification, he is guided through a
sequence of dialogs, making sure all the necessary information for the CD is
in place, before he starts drawing the structure.
The drawing of the classification structure and the assignment of item refer-
ences is covered in next use case - “Edit Classification”. It is possible for the
designer to assign sites to classes while drawing

Edit Classification This use case covers the actual process of creating the classi-
fication graph (showing the structure) and assigning item references to the
class nodes.
Creation of the structure is done by inserting class nodes into a canvas and
then connecting them with arrows.
After a node is created, the properties of the class, that the node represents
in the classification, can be defined and item references to the data document
can be inserted.

Save ClassificationUsed to save a complete- or draft classification locally, in a
specialized ClassificationDesigner format. This use case is used when devel-
oping classifications. A “save” preserves everything, even the size/location
of the nodes in the graph-area (the XML representation of a classification
only contains structure information, no layout).

Load Classification The process of loading a classification formerly saved in the
“Save Classification” use case. This use case restores state completely.

Validate Classification An action used to check whether the loaded classifica-
tion is valid, this validation checks to see if all required data is entered and
whether the classification graph has a legal structure (e.g. one root and no
cycles). Another obvious possibility for validation is validation against an
XML Schema, but this option is covered in the “Import Classification” use
case.

Import Classification Import a classification stored in an XML file. This use case
is utilized when the user chooses to load an existing classification from the
hard-disk. When the ClassificationDesigner imports the XML, it is validated
using an XML Schema.
A very simple layout algorithm is implemented, in order to “spread” out
the nodes in the graph, without the layout algorithm all the nodes would be
inserted in the same spot, and the designer would have to move them around
manually.

Export Classification Upon completion of a classification the user chooses to ex-
port it to an XML file. This file can then be uploaded to the WH system
using the “Upload Classification” use case. The classification data is vali-

70 Chapter 3. Application Modeling and Design

dated prior to export.
Upload Classification The process of uploading a classification to the WH sys-

tem. The WH system relies on this action to upload valid data only, so some
validation of the data must be performed prior to upload. The validation is
done by validating the classification against an XML Schema.

Download Classification The process of fetching a classification in XML format
from the server, and writing it out into an XML file that can be used in the
“Import Classification”.

Remove ClassificationThe action of removing a classification from the WH server.
This action is provided in order to keep users away from the database man-
agement system, thereby trying to prevent some of the mistakes that may
happen in such a situation.

Upload Data Document In order to provide users a simple interface to the WH
database, it is possible to upload an XML document containing the data, that
the classifications in the system are indexing.

Download Data Document Used for downloading an XML document containing
the data that is present in the WH system. The Data Document is used in
relation to many of the editing features.

Remove Data DocumentUsed to remove unwanted Data Documents from the
server.

Authenticate This use case enables the user to actually connect to the database. It
must be called prior to making changes to the WH system, or else the server
will reject the changes.

Effectuate ChangesBecause the WH system caches views of the classifications,
the system needs to know when the data is changed and the views should be
updated.

3.7 ClassificationDesigner Design

As mentioned earlier the ClassificationDesigner should provide a canvas, where
the user is able to draw the classification structure with boxes as nodes and arrows
connecting the boxes, indicating the specialization/generalization relationships.

Creating a drawing application from scratch would take a lot of time and as a stable,
open source component is available, it was decided to base the drawing part on the
JGraph[jgraph] component.

The JGraph component (and the CD application) is based on theModel View Con-
troller pattern, a clean separation of model and presentation. The JGraph compo-
nent contains the model (data) and the application provides a view to the model.

Since the JGraph component is the “heart” of the application, most of the classes
needed in the application, are just views to the underlying data model, classes that
change the default behavior of the JGraph component or graphical dialogs helping
the designer to enter valid data for the classification.

3.7 ClassificationDesigner Design 71

Application

JGraph

EntryList

ClassModel

EntityListItem

− id: String
− value: String

1 1

1

0..n

NodeData

− id: String
− name: String
− description: String
− keywords: String
− itemRefs: DefaultListModel

0..n

GraphView ListView

NodeDataView

3

3

1

1

1
0..n

1
1

1

Figure 3.10: Abstract class diagram showing the connection between the models,
views and the application.

Most of thehelper-classesare not interesting at this stage, but a few key-classes
can be identified:

ClassModel Defines which Node/Edge relationships are legal, thus defining how
the JGraph data model structure should be. In order to maintain the lattice-
like structure, it is necessary to only allow Edges between 2 different Nodes
and not allowinglooseEdges to be created.

NodeData A representation of the information stored in each graph node. This
includes name, description, keywords and a list of references to the items in
the data document. TheNodeData corresponds to the data in the<Class>

elements in the classification schema.
EntryList A list of references to the data document items, that can be indexed by

the classification.

An abstract class diagram showing how thekey-classesconceptually are related
can be seen in figure3.10. The application contains the JGraph component and
the component contains its model, view and theNodeData objects attached to each
class node. The application has a view to show / edit theNodeData values for a
single node at the time. The threeListView classes indicates that there will exist
three different lists of item references in the system. The first list will contain all
the item references, the second all the assigned references and the last one all the
unassigned references, making it a bit easier for designers to locate unassigned
item references.

The ClassificationDesigner application will consist of a frame containing three ar-
eas that will contain a model-view each. Figure3.11on the following page shows
a picture of what the CD application would look like. The hand drawn circles with
class-names in, illustrate the three classes that makes up the views.

72 Chapter 3. Application Modeling and Design

Grapher.java This is the view to the graph component, the drawing will be made
in this part of the application.

EntryList.java This panel will contain different list views containing the item
references (to the data document items) that will be added to the classes.

ClassProperties.javaThis panel is a view for theNodeData . It contains fields
where the user can change the information in the NodeData objects. When
the user selects a node in the Grapher panel, the content of the selected nodes
NodeData will be shown in this panel for editing.

Figure 3.11: Overview of the CD application

Please refer to the description of the implementation in section4.3on page89 for
more detailed information.

3.8 Summary

The system description section provides the “big picture” of how the WH System
and the ClassificationDesigner interact.

3.8 Summary 73

After the description of the systems, the XML documents that constitute the “back-
bone” of the systems is modeled. The classification document turns out to be a very
strict specification, while the site document is more “in the spirit” of semistructured
data, allowing much more freedom in the schema.

Having specified the two document types that the systems shall build upon, the
next step is to create an UML model of the WH System. Actors and use cases are
identified and described, in order to get a good overview of the features that the
system should have.

Based on the actor and use case descriptions, a design of the WH system is created.
Finally the class description is written, providing a decent picture of what that
needs to be implemented and how.

Knowing how the system, to query the classifications, is going to work, it is time
to make a model of the ClassificationDesigner. First is the identification of actors
and use cases. Next is the design. It turns out that most of the functionality in the
classification designer can be provided by a graph component, thus making most
of the design phase unnecessary.

74 Chapter 3. Application Modeling and Design

75

Chapter 4

Implementation and Testing

This chapter documents the implementation of the WH System and the
ClassificationDesigner, and explains how the implementations were
tested. The first part of the chapter explains which software, that was
chosen for the applications and why. Then the implementations of the
WH System and the ClassificationDesigner are described. Finally the
tests of the implementations are described.
We recommend the reader to read the sections “Choice of Software”
and “Implementation of the WH System” carefully, because it contains
some interesting information about the new XML technologies that are
used.
The section “Implementation of the ClassificationDesigner” contains
descriptions of all Java classes. This section is probably most interest-
ing to people who want to know about all the programming details, or
programmers who want to make changes to the ClassificationDesigner
application. The “normal” reader who just needs to get an overview
of the implementation, should not waste too much time on this section.
Test strategies are explained in the “Tests” section. This section should
be read by all readers.

4.1 Choice of Software

The WH System and the ClassificationDesigner uses many different technologies.
Some of these are well proven technologies like J2EE and XSLT, which should not
cause any problems during implementation. Other technologies, like XQuery and
XML databases are very new, and therefore all existing implementations of these
technologies, do contain some bugs and missing functionality.

In order to make the implementation as painless as possible, and to end up with
some robust applications, it is necessary to choose the best implementations of

76 Chapter 4. Implementation and Testing

these new technologies. The next section describes the experiences we had with
the different technologies, and what considerations we made.

4.1.1 Choice of Software for the WH System

Choice of J2EE Application Server

There are several different free J2EE application servers available. Two of the
most famous areJakarta TomcatandJBoss. The Tomcat server is the one Sun
includes in their own J2EE reference implementation. JBoss has more features
than the Tomcat server, and this make it seem more professional. JBoss is partially
commercial in the sense that you have to pay for the documentation of the JBoss
server – the server itself is free open source software. Fortunately it is not necessary
to buy any documentation to set up a basic server configuration without any fancy
extensions.

The choice of the application server is really not that important, because most J2EE
applications can be moved from one J2EE server to another with minimum effort.
J2EE applications uses standard configuration files for describing how the appli-
cation should be deployed on the application server, but there usually is a single
configuration file proprietary for an application server. Naturally this configuration
file must be changed when moving from one application server to another, but this
is usually the only change needed.

We decided to go with JBoss, because it is easy to setup and use.

Choice of XML Database

The choice of XML database is far more interesting. XML is still fairly new and
many related technologies for working with XML data, has not even reached the
recommendation1 status at W3C. Because of this, there are only few XML database
systems available, and only few of these are free. Unfortunately none of the free
XML databases implements any XQuery functionality, and the few commercial
XML database system that does implement XQuery are very expensive. The XML
database that seems to have the most complete implementation of XQuery is called
IPedo. In a review inPC Magazine[ipedo-rev] it is reported to cost about $29000
per CPU.

We decided to go with a cheaper solution, and initially tried outXindice[xindice]
from the Apache Group. Xindice supports XPath expressions for querying the data,
but unfortunately it does not support it very well. Very important parts of XPath is

1The recommendation status, means that W3C recommends it as a standard – this is the final
status of specifications at W3C

4.1 Choice of Software 77

missing, and it actually seems like the whole Xindice project has come to a halt –
the latest “news” in the Xindice website is from November, 25th. 20022.

Finally we decided to try theeXistXML database. eXist actually have an excellent
(nearly complete) implementation of XPath 2.0, and there are implemented some
very convenient extensions to XPath. Another positive thing about eXist is, that it
implements the same Java API as Xindice does, so eXist could easily be integrated
with our existing code. Naturally we decided to use eXist for the WH application.
The API used for interacting with the database is calledXML:DB [xmldb]. The
primary goal of the XML:DB project is:

Development of technology specifications for managing the data in
XML Databases

and the current draft specification actually provides an excellent interface for XML
databases.

Choice of XQuery Processor

Choosing a good XQuery processor was also difficult, considering that the current
XQuery specifications is just a working draft. The most important requirement
to the XQuery processor was, that is should be able to get data from the XML
database.

We tried three different XQuery processors. The first one wasQexo [qexo] or
Kawa XQuery. Qexo is just a small part of a large framework: theKawa Scheme
System– it is written by a guy named Per Bothner. Qexo had quite a few annoying
flaws, when we tried it. First of all, it only includes a limited part of the XQuery
specifications. Additionally it is poorly documented, so the best way to see if it
supports a certain XQuery feature is by trying it out. Qexo is able to read XML
documents from files and via the HTTP protocol, but we could not find any docu-
mentation of how to use other data sources. Qexo did really not comply with our
requirements, so it was discarded.

Next we tried a processor calledIpsi [ipsi]. Ipsi is better documented, it is a more
complete XQuery implementation and it should be possible to make it use an XML
database as data source, even though we did not find out how. In spite of this Ipsi
was also discarded because we triedSaxon[saxon]. Saxon was originally an XSLT
processor, but the latest release of Saxon includes an XQuery processor as well.
Saxon implements most of the functionality described in the XQuery specification.
It can get XML data from anywhere (the software developer has to implement the
data source connection himself) and finally, it is faster that both Qexo and Ipsi. In
some tests we made, Ipsi and Qexo were about equally fast, while Saxon was about
11-12 times faster.

2The time of writing is August 29th. 2003

78 Chapter 4. Implementation and Testing

Software Overview

The software we chose for the WH System is:

• JBoss Java application server v. 3.2.1 running on Sun’s J2SDK v. 1.4.2
• eXist XML database v. 0.9.2
• Saxon XSLT and XQuery processor v. 7.6.5

4.1.2 Choice of Software for the ClassificationDesigner

As we need a validating SAX parser for checking XML classifications against an
XML Schema, the Xerces parser was embedded in the classification designer.

Choice of Graph Component

The choice of the JGraph component was easy, it had a high rating on Google.com
and the documentation for the component looked reasonable. The component uti-
lizes the MVC pattern like the other complex Swing components and works pretty
much like one would expect, however it is important to note a few more or less
intuitive points.

• An item in the graph is an instance of aDefaultGraphCell.
• It is not possible to connect an edge to a “node”, all connections are made

between edges and ports. Each port is “glued” onto a “node”, thus enabling
us to connect our graph nodes using edges and ports.

• The nodes in the classification designer are instances ofDefaultGraphCell,
while the edges and ports are specializations ofDefaultGraphCell.

• The “views” in JGraph are kept in theGraphLayoutCache and also accessed
through this.

Software Overview

The software we chose for the ClassificationDesigner is:

• JGraph v. 2.2.2 - The “core” of the application.
• Xerces2 v. 2.5.0 - Used as a validating SAX parser.
• Saxon XSLT and XQuery processor v. 7.6.5

4.2 Implementation of the WH System

This section documents the most interesting and important parts of the implemen-
tation of the WH system.

4.2 Implementation of the WH System 79

4.2.1 Overview of Components in the WH System

The application illustrated in the design in figure3.7on page61, is actually imple-
mented as three separate components. The database is a stand-alone Java applica-
tion, just as a normal relational database would be.

The Enterprise JavaBeans also makes up a separate component. This component
will reside in the application server’s (JBoss)EJB containerwhen deployed.

The last component consists of the front controller servlet, the request handlers and
the JSP pages, which are bundled in aWeb Archive, and deployed in the application
server’sweb container. Even though this component is not connected to the EJB
component, both components are deployed together in anEnterprise Archive– this
is not necessary, but it makes deployment a lot easier.

The above may sound very “fancy” for those who do not know much about the
J2EE architecture, but practically it just means that all the files necessary for the
EJBs (EJB class files and some configuration files) are packaged in ajar3 file
e.g. whejbs.jar . The web archive containing the JSP pages, front controller
servlet and request handlers are packaged in a similar fashion in another file e.g.
whapp.jar . Finally these to jar files are stored together in the enterprise archive,
which just is a new jar file e.g.whapp.ear . The enterprise archive is then deployed
into JBoss.

4.2.2 Implementing the Web Archive

The image to the right shows the front controller servlet.
It has the methods that are expected in aHttpServlet

– it implements the methodsdoGet anddoPost , that are
invoked when it receives HTTP GET and HTTP POST
requests. The most interesting thing about this class is
thehandlerHash Map , which is responsible for mapping
HTTP request into request handlers. The tiny code snip-
pet below shows the principle of how this works:

1 ...
2 handlerHash.put("/search.html", new SearchRequestHandler());
3 handlerHash.put("/simpleSearch.html", new

SimpleSearchRequestHandler());
4 ...

Imagine that a client pushes the link for “search.html”. The client should retrieve
the HTML page width the form for making an advanced search in the WH site list.
Recall that this page contains all the dataguides.

What happens is, that the front controller simply looks it up in the map and finds
the request handlerSearchRequestHandler .

3“jar” is a “Java archive” – a compression program very similar to zip

80 Chapter 4. Implementation and Testing

The request handlers all implements the same interface
shown here. This allows the front controller to cast all
elements of thehandlerHash map to the same class. The
front controller then invokes the only method present in
the request handler:handleRequest . This method takes
care of looking up the search EJB and invoking all the necessary business logic.
The code snippet below shows what happens in theSearchRequestHandler :

1 ...
2 SearchSessionLocalHome sslh = Lookup.lookupSearchSessionLocalHome

();
3 LocalSearchSession lss = sslh.create();
4 DataGuideBean[] dataguides = lss.getDataguides();
5 request.setAttribute("dataguides", dataguides);
6 return "search.jsp";
7 ...

TheLookup class is a helper class for looking up EJBs using JNDI. The
LocalSearchSession class is the local interface for theSearchSessionEJB which
contains all the search facilities. The request handler simply invokes the method
getDataguides() in the EJB, this method returns an array ofDataGuideBean s –
one for each dataguide. These beans are added to the HTTP request, and finally
thehandleRequest method returns"search.jsp" , which is the name of the view
(JSP page) that should present the result to the user.

TheDataGuideBean itself is shown here. It is really sim-
ple – it has adataguide field, that contains the HTML
presentation of the dataguide, and then it has aname and
an id field. The only methods in the class are getters and
setters for the fields.

The above description of the front controller and the re-
quest handlers should be adequate to get an idea of how
the controller mechanism works. The rest of the request
handlers and JavaBeans are very similar to the classes just
described, and readers who want all the details should
consult thejavadocdocumentation or the source code.

The JSP pages are naturally an important part of the web archive. Figure4.1 on
the next page is a state chart, that tries to illustrate how users of the WH system
will visit the JSP pages. The states (boxes) represents the JSP pages and the arrows
shows a transition from one page to another. The text at the arrows is the HTTP
requests that users send. The boxes with thick line are JSP pages, that are accessible
from any other state – appendixD.1 on page123shows a screen shot of the WH
application’s welcome page, and the links in the top of the page each maps to
a JSP page. These 5 links are always present in the WH application, hence the
5 corresponding JSP pages are accessible from any other state. There should be
transition arrows from all other states to those 5 states, but for the sake of simplicity

4.2 Implementation of the WH System 81

welcome.jsp

http://somedomain/whapp
http://somedomain/whapp/welcome.jsp

about.jsp

dgSearch.jsp

error.jsp

result.jsp

search.jsp

similarSitesResult.jsp

simpleSearch.jsp

simpleSearchResult.jspsiteinfo.jsp

about.html

search.html
simpleSearch.htmldgSearch.html

similarSites.html

similarSitesSearch.html

simpleSearchResult.htmlsiteinfo.html

siteinfo.htmldgSearchResult.html

currentResult.html

siteinfo.html

changeResultView.html

result.html

Figure 4.1: Overview of all JSP pages and how they are accessed through HTTP
requests.

the 5 states are just emphasized using the thick lines. The JSP page “error.jsp” is
naturally an error page and it is used for displaying error messages.

The figure should be self explanatory. The functionality of the JSP pages is as
described in the class specification (section3.5on page64). Notice how the page
result.jsp is used to present search results for many different search facilities.
This is because most of the search facilities present the search results as dataguides,
hence they all use the samemodelfor the data (recall the MVC design pattern),
which is presented by theview: result.jsp .

The dataguides shown by the JSP pages are made using ordinary HTML and a
small JavaScript to handle the folding/unfolding of categories.

AppendixD on page123gives an idea of how the search facilities are used from
the WH System website. Notice, that the design of the website is “stolen” from the
official WH prototype website.

82 Chapter 4. Implementation and Testing

4.2.3 Implementing the EJB Component

Most of the details about how the Enterprise JavaBeans are implemented, are not
important – nor are they very interesting. This section focuses on the few interest-
ing details there are, namely how the Saxon XQuery processor and the eXist XML
database are incorporated into the WH system. Readers who are very interested in
all the hairy details should look at the source code and thejavadocdocumentation.

Combining the XQuery Processor with XML Database

Suppose there is an XML documentdatadoc.xml stored on the hard drive. The
code snippet below shows how that document is used in an XQuery evaluated with
Saxon:

1 QueryProcessor processor = new QueryProcessor(new Configuration()
, new StaticQueryContext());

2 DynamicQueryContext context = new DynamicQueryContext();
3 String xquery = "for $name in doc(’datadoc.xml’)/Sites/Site[

contains(string(.),’shark’)]/Name return $name/text()";
4 XQueryExpression queryExpression = processor.compileQuery(xquery);
5 List result = queryExpression.evaluate(context);

TheQueryProcessor at line 1 is the “base” class. It is used to create new
XQueryExpression s (line 4), that can be evaluated (line 4). The XQuery in this
example is very simple - it just returns all the names of all sites in thedatadoc.xml

document, that contains the word “shark”.

The DynamicQueryContext is actually the most interesting class. It can be used
for setting external parameters that will be available in the XQuery at evaluation
time, but an even more interesting feature is that you can use it for specifying
how the XQuery functiondoc() behaves. The Java code below shows the same
example as above, but now the XML document are stored in the XML database in
theDataCollection collection (as illustrated in figure3.8on page64).

1 QueryProcessor processor = new QueryProcessor(new Configuration()
, new StaticQueryContext());

2 DynamicQueryContext context = new DynamicQueryContext();
3 context.setURIResolver(new WHURIResolver("xmldb:exist://localhost

:4041/exist/xmlrpc"));
4 String xquery = "for $name in doc(\"DataCollection:/Sites/Site[

contains(string(.),’shark’)]/Name\")/Result/Name return $name/
text()";

5 XQueryExpression queryExpression = processor.compileQuery(xquery);
6 List result = queryExpression.evaluate(context);

Now the methodsetUriResolver() is called in line 3. This method tells the
XQueryExpression which implementation ofURIResolver to use – theURIResolver

implements the XQuerydoc() function. This allows the software developer to
have complete control of how the XML data is fetched into the XQuery processor.

4.2 Implementation of the WH System 83

The default URI resolver simply reads the XML data from the hard drive, but the
WH system uses our personal implementation – theWHURIResolver , which reads
the XML data from the eXist database.

Notice that thedoc() function now takes the argument:
DataCollection:/Sites/Site[contains(string(.),’shark’)]/Name

This argument obviously does not comply with the XQuery specification of the
doc() function, but since it is not standard functionality to fetch data from an XML
database, we had to invent a new convention for the use ofdoc() . The argument
has two parts separated by a semicolon. The first:DataCollection is the name of
the collection to use. The second part:/Sites/Site[contains(string(.),’shark’)]

is simply the XPath expression that should be used on theDataCollection – recall
that eXist supports XPath queries.

According to the specification[XQ-funop] thedoc() function must return a doc-
ument, but the above mentioned XPath expression may return acollectionor se-
quenceof XML elements. To solve this problem, theWHURIResolver wraps the
result of the XPath expression into a document with the root element<Result> .
This is why results of thedoc() functionalwaysis followed by/Result e.g.
doc("DataCollection:/Sites/.../Name")/Result/Name

TheURIResolver interface only has one method that should be implemented. The
method has the signature:

1 public Source resolve(String href, String base) throws
TransformerException;

When an XQuery expression is evaluated, it calls this method when it comes across
thedoc() function. Thehref argument in theresolve() method in Java is actu-
ally the argument fordoc() in the XQuery expression.

The example below tries to make the description above a little easier to understand:

1. An instance ofXQueryExpression with the above XQuery is created. It is
evaluated and configured to use theWHURIResolver .

2. When the XQuery processor reaches thedoc() function, it calls the method
resolve("DataCollection:/Sites/Site[contains(string(.),’shark’)]/Name","")

in theWHURIResolver .
3. The resolve method separates the argument in acollectionpart: "DataCollection"

and anXPathpart: "/Sites/Site[contains(string(.),’shark’)]/Name" .
The URI resolver has one connection to each collection in the database, so it
can easily evaluate the XPath expression on the correct database collection.
The result of the XPath expression is a sequence of<Name>elements, with
names of all sites that contains the word “shark” in any sub element.
Next a new document is created for the result with<Result> as root element.
Each element in the sequence of site names is added as a child node to the
new document.

84 Chapter 4. Implementation and Testing

Finally theresolve method returns the new document as aDOMSource4 ob-
ject.

4. The result document is now returned to the XQuery processor, which then
evaluates the additional XPath expression/Result/Name on the result docu-
ment, in order to extract the<Name>elements. Finally the XQuery processor
returns the content of the<Name>elements as aList of String objects.

Loading XQueries into the EJB

All the XQueries for searching the WH site list, are stored in the XML database.
TheSearchSessionEJB only has a single XQuery “hard coded” into the Java class,
and that is the XQuery for fetching the other XQueries in the database. This
XQuery is not much more than an XPath expression, that queries theXQueries

collection in the database for an<XQuery> element with a specific name.

When the XQueries have been fetched from the database, they are compiled as
shown in the previous section, so they are ready to be evaluated when needed.

Using External Parameters

Most of the XQueries depends on external parameters such as keywords or the
unique id of a site. These parameters are passed to the XQuery processor using
theDynamicQueryContext class which also was used for specifying a custom URI
resolver. It is simply done by calling a the method
setParameter(parametername,parametervalue) – e.g.setParameter(’siteid’,’site127’) .
This naturally requires that the XQuery has defined an external value named “siteid”.

4.2.4 Performance Considerations

It is very important to write the XQueries the “right” way to ensure fast execution
of the queries. Most of the XQueries implements search facilities, that has to go
through large amounts of data. Even though Saxon is fast to evaluate XQueries
compared to other XQuery processors, it ismuchslower than eXist, when it comes
to evaluating XPath expressions. AppendixF on page139 shows some small
scripts for testing the performance of eXist and Saxon. The result of these tests
are shown in the two tables below (tested on a 600MHz AMD Athlon system).
The tests made a number of keyword searches in two different WH site list – the
first list contains all sites in the WH list (about 730 sites) and the other list only has
a single site. These two documents were searched for 1 and 10 different keywords.

4This is simply DOM representation of an XML document

4.2 Implementation of the WH System 85

eXist
Number of sites

Number of keywords 0 1 730
1 1.25 1.25 1.35
10 1.30 1.60

Saxon
Number of sites

Number of keywords 0 1 730
1 1.50 1.50 3.00
10 1.55 3.05

Notice that one of the tests attempts to search a list with 0 WH list (actually it
attempts to search a non existing list). This test is used for measuring how long
time it takes Saxon and the eXist client programs to start up. The eXist client
program uses about 1.25 secs. to start up, while Saxon uses about 1.5 secs. These
numbers should be subtracted from all the other numbers in order to give a more
realistic estimation of how fast it performs after deployment in the WH system.

eXist is obviously much faster than Saxon – the difference between searching 1
and 730 sites in eXist is just 0.1 second, while the difference in Saxon is 1.5 sec-
ond. eXist searches 730 sites 10 keywords in approximately 0.35 second (1.60-
1.25=0.35), while Saxon uses 1.55 second (3.05-1.50). Notice that Saxon for some
reason is able to search 730 sites for 1 keyword in the same speed it can search
it for 10 keywords, while eXist uses relatively more time when the number of
keywords is increased. This might be due to the extended XPath functionality of
eXist. eXist implements two functionsmatch-any(node,’kw1’,’kw2’,...) and
match-all(node,’kw1’,’kw2’,...) . The first function evaluates to true when
the node (XML element) matches any of the keywords’kw1’,’kw2,... , while
the second function requires that all the keywords match. In addition to check for
matching keywords, eXist also replaces all matching words in the text with the
XML element<exist:match>someMatchingWord</exist:match> . This feature
might be used to highlight matching words in the text.

The main reason that eXist is so much faster than Saxon is, that its default behavior
is to indexall words inall XML elements or attributes.

The following things should be considered, when optimizing the queries:

• The eXist XML database should evaluate as much of the functionality as
possible, because it is much faster than Saxon.

• There should be as few XPath queries in eXist per HTTP query, because the
result of each query is first packed in a new XML document with<Result>

86 Chapter 4. Implementation and Testing

as root element – this was explained earlier. This preparation of the XPath
results takes a little time.

• eXist should not evaluatematch-any() or match-all() with too many key-
words as argument. The tables above shows that if the number of keywords
is increased from 1 to 10, when searching a list with 730 sites, eXist needs
an additional 0.25 second to evaluate the expression.

These guidelines where used during the implementation of the XQueries.

4.2.5 The XQueries

AppendixJ on page163 is the XML document containing all the XQueries – the
structure of the document is as described i section3.4.4on page63. This section
briefly describes each of the XQueries. There is not made any attempt to explain
exactlyhowthe XQueries performs the queries, since this is rather complicated.

Notice that the headlines below refer to the<Name>element in the XML document
and not to XQuery functions.

getclassifications

Simple query which fetches all classifications in the database. More precisely it
retrieves all<Classification> elements in theClassifications collection.

getstylesheet

Gets a specific XSLT style sheet from the database.

getsites

Gets a list of sites from the database.

simplesearch

Performs a simple keyword search in the WH site list. The query uses the extended
functionality of eXist when searching.match-any() is used for making a search
that requires one keyword to match, whilematch-all() is used for matching all
the keywords. Notice that the XQuery itself does not use any of these functions in
the XML document. This is because this information is passed to the XQuery as
an external parameter from the search EJB.

This search facility performs a full text search in all the XML elements in the
collection of WH site data.

4.2 Implementation of the WH System 87

evalxpathepr

Very general function, that simply takes one external parameter, and uses this as an
argument for thedoc() function and returns the result.

makedataguide

This is one of the more important XQueries. It takes on external parameter: “classi-
fication”, which is a<Classification> element. This classification is transformed
into the HTML dataguide that is returned.

findsimilar

Query for finding sites that belong in the same categories as some chosen site. It
takes two external parameters: “site” that is a string with the id of the chosen site,
and “ancestordepth” that specifies how “high” in the classification lattice structure
to look when generating the result (this may not make any sense for anybody if
they have not tried the functionality in the WH system web page).

advancedsearch

This is largest XQuery, that contains all the functionality for performing an ad-
vanced query. It takes two external parameters. One of them is a list of<Classification>

elements with the classifications that should be searched. The other parameter is
some XML data containing all keywords and categories provided by the user. This
XML data is created in the search EJB.

This query returns a list with 2 elements. The first is the search results as an
XML <Classification> element while the other is the result as a simple list. The
structure of the simple list is described in-line in the XQuery code.

Like the simple search facility, this search facility also performs a full text search
in all the XML elements in the collection of WH site data.

searchclassifications

Searches classifications for categories that matches some specified keywords. Takes
two external parameters: the keywords and the classifications. This search facility
performs a full text search in the classification documents.

88 Chapter 4. Implementation and Testing

4.2.6 General Notes About Query Results

Representation of Query Results

Notice that results of searches in the WH site list always are presented to the
user either as a list or as a dataguide. The “result dataguides” are generated from
“result classifications” returned by theadvancedsearch XQuery. It is extremely
convenient to return search results as classifications because theadvancedsearch

XQuery can use the result classification as an argument for a new search. Consider
the following:

• A user enters the WH System website. He chooses the advanced search
facility, where he selects some categories in some of the standard dataguides
and enters some keywords. He pushes the search button.

• The user query is eventually handled by theadvancedsearch XQuery. One
of the arguments for the XQuery is the standard classifications. The other
argument contains information about selected categories and keywords. The
XQuery returns a result containinga result classification(and a simple list).
The result classification is stored in the J2EE server in a user session variable.

• The user is now presented with a result dataguide generated from the result
classification. The user thinks he received too many results, so he selects
some categories in the new dataguide and enters some keywords. He pushes
search.

• This time theadvancedsearch XQuery uses the result classification from the
previous request, as an argument for the search. Again the XQuery returns a
result containing a new result dataguide (and a simple list).

The user can keep making new searches in a continuously shrinking dataguide,
until the search does not match any sites and nothing is returned.

The “Hit point” System

Visitors to the WH System website can choose to see the result of an advanced
search as a list instead of a dataguide. The list shows how good the sites matches
the search, by showing some “hit points”. The hit points are assigned the following
way:

A site that matches an advanced search will as a minimum be present in one cate-
gory which the user chose, and match one keyword – this gives the site 1 hit point.
The site gets 1 hit point for each additional category and 1 hit point for each addi-
tional matching word. Notice that the keyword “sword” could match both words
“swords” and “swordfish”, hence two points would be assigned – one for each
word. A simple hit point formula can be written as:
noOfMatchingCategories + noOfMatchingWords - 1

4.3 Implementation of the ClassificationDesigner 89

4.3 Implementation of the ClassificationDesigner

The section on modeling and design describes how the ClassificationDesigner (CD)
is put together using theJGraph component and a couple of standard views based
on JList and aNodeData view.

This section offers a detailed description of the classes actually used in the applica-
tion, and some notes on how the tasks that the different classes perform are carried
out.

4.3.1 Important Notes about the ClassificationDesigner

There are a few details that should be kept in mind when reading the code for
the CD. First, theparent frame contains aProperties object calledprops . The
props object contains theglobal values in the application, this is convenient when
the application state needs to be saved, restored or when values need to be shared
between different parts of the system. The advantage of sharing “global” data
using aProperties object is that the components are more loosely connected. The
disadvantage is that a little more bookkeeping is needed when extracting values
from Properties .

The ClassificationDesignerProperties

The following properties are used in the application:

cdd-filename ⇒ Filename for the last saved or loaded file (in the binary format
that includes layout information).

ccd-pathname (c)⇒ Absolute pathname for the last load or save location (work-
ing directory for classifications).

classification-description⇒ Description of the classification being worked on.
classification-entry-element⇒ The name of the XML element designating the

XML entities in the data document that are to be classified.
classification-id ⇒Contains the value of theid attribute in the<Classification>

element of the classification imported from XML.
classification-keywords⇒ A list of the keywords that describe the currently ac-

tive classification.
classification-name⇒ The name of the active classification.
classification-stylesheet⇒ Absolute path to the presentation style sheet for the

classification (not used in this implementation).
classification-stylesheet-path(c)⇒ Absolute path to the last location pointed to

in the style sheet file chooser (style sheet working directory).
data-doc-path (c)⇒ Absolute path to the current data document working direc-

tory.

90 Chapter 4. Implementation and Testing

data-document ⇒ Absolute pathname of the currently selected data document.
entity-list-query ⇒ The XQuery used to extract the data document items that the

classification is indexing.
password ⇒ The password that the user used successfully to authenticate the

DBUpdateSession EJB.
server-connection-ok⇒ true /false value indicating whether the connection test

has been completed successfully.
server-name⇒ The hostname / IP of the WH system server.
server-port ⇒ The port number where the Java Naming service is running on the

WH system server (defaults to 1099).
username⇒ The username used to authenticate the DBUpdateSessionEJB.
xml-filename ⇒ Absolute path to the XML document last loaded/saved (if any).
xml-pathname (c)⇒ Absolute path to the XML import/export working directory.

Most of the properties that start with “classification” contains information that goes
into the<Classification> construct. This is needed because the graph structure
only contains information about the classes.

Most of the properties applies only to the current working session, for instance
things like username/password should not be carried over between sessions. In
fact the only values that are carried over between sessions are the working direc-
tory paths (indicated with a “(c)”). The “carry-over” is done by storing the val-
ues in a property file calledCDesigner.properties , in the same location as the
ClassificationDesigner.jar is located.

The Dialogs

The dialogs used in the application are setup in a somewhat similar manner to
JFileChoosers . A dialog life-cycle has the following steps:

1. The dialog is instantiated and internal initialization takes place.
2. If the dialog depends on special values from e.g. the properties object, the

caller may need to query thesetupOK attribute, to see whether the dialog
was initialized properly or not.

3. If initialization went well, theshowMe() method is invoked.
4. When the user is done using the dialog theshowMe() method returns a value

indicating the choices made in the dialog. (for instance “OK” or “Cancel”).

Step 2 is not necessary for every dialog in the application. The section describing
the classes will mention if the step is necessary for a particular dialog.

The DBUpdateSessionEJB

The interaction between the ClassificationDesigner and the WH system is chan-
neled through the EJB. The bean interaction works over RMI. Once the bean is
looked up, its methods are used like any other local object methods.

4.3 Implementation of the ClassificationDesigner 91

Conversion between XML and ClassificationDesigner Graph

The conversion between XML and ClassificationDesigner graph representation uti-
lizes a DOM as middle tier.

XML file ⇔ DOM ⇔ ClassificationDesigner graph

Validation of the data are always performed “on” the first arrow encountered. For
example when converting from XML to graph, the data is validated during the
parsing from XML into DOM using an XML Schema (classification.xsd).
The other way around the data is validated as the DOM is constructed.

4.3.2 Class Description for the ClassificationDesigner

This section contains short descriptions of the classes. It is not full descriptions of
the code, but it points out important issues that need to be taken into account, if
someone needs to work with the code. Readers interested in further details should
consult the javadoc or the source code.

AuthenticateDialog

This dialog handles user authentication with respect to the DBUp-
dateEJB. Username/password and bean are be provided when
calling the constructor. If the username string is non-empty, the
constructor tries to perform asilent authenticationbased on the
values supplied in the constructor.

If the silent authentication succeeds, thestatusOK flag is set to
true and nothing more needs to be done. The code depending
on this dialog should check whethergetStatus() returnstrue

or false before going on. IfgetStatus() returnstrue , the
bean is already authenticated using user data entered earlier in
the current session.

In the case wheregetStatus() returnsfalse , the methodshowMe() should be
used to display the dialog.

BeanTools

A simple helper-classthat handles the lookup /
creation of the DBUpdateSessionEJB and clean-
up after the lookup.

92 Chapter 4. Implementation and Testing

CDFrame

This is the frame that contains all the other views and dialogs. The
CDFrame is usually stored in a field calledparent in the different
parts of the application that needs access to the frame.

The props object mentioned in the start of this section, is stored
in this class, providing easy access to its contents for all the other classes in the
application.

CDMarqueeHandler

A marquee handler takes care of the mouse interaction in
the graph component; multiple selection, single selection,
connection of nodes etc. This application needs a custom
handler to handle the insertion of edges between the nodes.

The handler also changes the cursor if it is above a port and
it highlights the port itself. Temporary drawing of edges
while the user is trying to connect two nodes is also pro-
vided by the marquee handler.

The marquee selection (done by pressing a mouse button
and dragging a box around the items to be selected) is also
handled by this class.

If the handler receives an event that it does not handle, the event is dispatched to
its super class.

ClassModel

ClassModel defines the model used in the graph component,
while the class looks very simple it has a major impact on how
the graph behaves.

The model used for the graph component in this application
is pretty simple though. The only thing that is needed in order to make the graph
behave as expected, is to describe which connections that can be made using edges.

And as there are not that many restrictions on the shape of an classification. The
model only have to prohibit the user from makingself-referenceson nodes. The
classifications must also becycle-free, but since this is a bit more complex to detect,
this code is implemented as a part of the validation function in theGrapher.java .

4.3 Implementation of the ClassificationDesigner 93

ClassProperties

This is a view to the data stored in each graph node
(Class). TheClassProperties panel occupies the lower-
right corner of the application.

The class registers itself as aGraphSelectionListener

and every time a selection event occurs, it checks to see
if a single node was selected, if so it shows the contents
of NodeData object associated with the node. If the
selection spans anything else than exactly one graph
node, all the fields in the panel is cleared in order to
avoid misunderstandings.

The panel has a button (indicated with the “
√

” sym-
bol) used to apply changes in the text fields to the data
stored in the selected graph node.

The class also registers itself as aDocumentListener

listening for events in the text fields it has. If the con-
tent of one of the fields change, the button used to apply
the changes to the graph is enabled.

The text fields also have listeners enabling the user to
hit “Enter” in a field, to make theNodeData object get
updated with the values from all the fields in theClassProperties panel.

The most interesting methods in this class are thepropagateChangesToGraph()

and propagateChangesFromGraph() . They perform the actual moving of node
data between the fields in the panel and the selected graph node.

This class relies on a reference to theEntryList class when handling the assigned
item references.

ClassificationDesigner

Contains themain method that starts up the application. The ap-
plication is started by creating a frame with 2 split panes, creat-
ing and adding the three panels that goes into the three locations.
Furthermore the mutual references between theEntryList and
ClassProperties classes are setup.

94 Chapter 4. Implementation and Testing

ClassificationProperties

This is a dialog that allows the user to change the
properties of the Classifications. Each of the fields
in this dialog must have a non-empty value in order to
form a valid classification.

The dialog can exist in two different contexts: Stan-
dalone or as part of a sequence.

The sequence mode is used when a user selects to cre-
ate a new classification, this triggers a sequence start-
ing with SelectDataDoc →
ClassificationProperties →
PresentationFormat , when running in this mode each
dialog depends on the information entered in the for-
mer.

The standalone mode is used when the user wishes to
change existing properties. The dialog is not depen-
dent on other dialogs when running in this mode, and
the field validation is not as strict.

The most interesting field in this dialog is theClass
Entry Elementfield. This field allows the user to se-
lect which XML tag that denotes the items to be ref-
erenced in the data document.

The code that populates the combo-box uses an XQuery to determine the candi-
dates for XML constructs that can be indexed.

The XQuery looks like this:

1 String query = "fn:distinct-values(for $a in doc(\""+
2 parent.props.getProperty("data-document","Error, data

document not found")+
3 "\")//*[@id] return fn:name($a))";

As it can be seen the XML-tag candidates in the data document are those ele-
ments that contain anid attribute. Furthermore should the XML construct selected
asClass Entry Elementcontain at least one simple element, that can be used to
describe the item reference to the element, but this constraint is enforced in the
PresentationFormat dialog description.

This dialog also supports aStylesheetproperty, but this is not a part of the imple-
mentation, so theshowStylesheet flag is false and the GUI components for the
style sheet selection are not added to the dialog.

The class also contains an inner class -XSLFileFilter , which is a simple file filter
used in the file chooser for the style sheet field (when style sheets are enabled).

4.3 Implementation of the ClassificationDesigner 95

EntityListItem

This is the Java representation of the item references that are essen-
tial to the way the classification designer works. An item reference
contains a string representation (name) of the item that it references,
and a uniqueid enabling the applications to locate the correct ele-
ment in the XML data document.

The constructor takes a string, where the first part is the name of the
list item and the second is the id. The two parts are separated by “¤¤¤ ”, enabling
the user to define custom list item names, without changing the format of this class.

This class also defines anequals(Object obj) method, allowing us to detect
whether two EntityListItems are equal based on their contents instead on object
identity (this is for instance used when importing classifications and synchronizing
the loaded classification with the lists in theEntryList class).

EntryList

This is the panel that goes in the upper right corner
of the application. This class is handling the lists of
item references.EntryList basically features three
different lists:Assigned Items, Unassigned Itemsand
All Items. When a user has selected a node in the
graph, it is possible to select item references from
the lists and “move” them down (into theNodeData

of the selected node).

TheAll Itemslist are constructed based on the value
of the
props.getProperty("entity-list-query","") . If
no value is defined the list is not built until the nec-
essary data are available.

In order to keep the three lists synchronized with the data in the graph nodes, it is
necessary to keep track of whichEntityListItem ’s that are assigned and so on.
One of the problems is that any item can be assigned to multiple graph nodes, so
when the item reference is removed from the graph node, it is not certain whether
it should appear in theUnassigned Itemslist or not.

Instead of making a complex piece of code to track item references across multiple
classes/models, it was decided to make a simpler solution. TheAll Items list is
static and if two out of the three lists are known, it is trivial to compute the last one,
so it was decided to run through the graph nodes and use the assigned item refer-
ences to build theAssigned Itemslist, and then finally computing the unassigned
list.

96 Chapter 4. Implementation and Testing

This is not the most efficient solution, however it is a very robust way of handling
it. Even if something should happen to bring the lists out of synchronization, next
time some change happened they would all be back in a consistent state again.

GeneralServerDialog

TheGeneralServerDialog handles almost all the server re-
lated tasks, like upload, download and deletion of data col-
lections on the server.

Upon calling the constructor, the program specifies what type
of document that the current action is working with (clas-
sification/data document), and what type of action (upload,
download or remove) that is to be performed.

The contents of this dialog depends on the output from the
DBUpdataSession bean, so the bean must be looked up5 and
authenticated before setting up the layout. If no server de-
tails are found inparent.props the dialog opens the
ServerProperties dialog and waits for it to return with the
values. After the bean is looked up successfully, asilent
authenticationis tried, given that the sufficient log-on data
already is present in theparent.props . If no username/-
password is saved in theparent.props , the
AuthenticateDialog is shown.

If both bean lookup and authentication went well, the lay-
out is setup and the dialog is ready to be activated with the
showMe() method.

5Done by using the static methods in BeanTools.

4.3 Implementation of the ClassificationDesigner 97

Grapher

Grapher is the panel that contains the JGraph component, it is the “main view” of
the application. Since this class contains the JGraph component, most of the graph
related code are placed in this file. Things like the menu-bar and tool-bar are also
found in this class, since their actions are related to the graph.

Two insert methods exists in this class. One is used for generating new clean
nodes (emptyNodeData) and other one inserts a node with a filled outNodeData

object associated (used when importing an existing classification from XML).

The Grapher contains three methods concerning state:getState() , setState()

andresetState() . The state are aVector containing a snapshot of a state. The
state can be used for saving/loading a work session etc.

The grapher also contains a couple of methods used to validate the classification
structure. The application has three ways of doing validation of a classification:

1. Count of root nodes - A classification has exactly one (no incoming edges).
2. Cycle detection - A classification must not contain cycles.
3. An XML representation of a classification can be validated using an XML

Schema.

The Cycle detection algorithmis pretty simple. It starts at the root node and
makes a depth-first search, where the paths are saved as lists of lists of nodes in
a hashtable. When a node is visited, all of the paths leading to it parents are looked
up. If the node already exists in one of them, a cycle is detected and the algorithm
is finished. If the node does not exist in any of the paths, it copies the paths, ap-
pends itself to the end of each path, saves the list of paths in the hashtable and all
its child nodes are then visited recursively.

98 Chapter 4. Implementation and Testing

All data on the WH system server is in XML format, so in order to upload a clas-
sification it must be stored in an XML document. The following procedure is used
for exporting a classification to XML.

1. Validate classification, using root count and cycle detection and check nec-
essaryprops values.

2. Create a DOM using the data inparent.props and in the graph.
3. If all necessary data exists and the DOM is created, then transform the DOM

to an XML document.

Import of an XML document to the ClassificationDesigner is almost the reverse
procedure:

1. Parse file into a DOM using a validating parser (uses the classification.xsd
XML Schema).

2. If DOM is created, createNodeData objects, populateEntryList , fill values
into parent.props and generate the graph. Finally synchronize the lists.

The class has a few helper methods for generating DOM trees, node id’s and
so on. It seems important to mentioncreateNodemap() , getNodeByName() and
getNodesByName() , they are very handy because a standard Java DOM is a bit
tedious to navigate through, by creating a node-map (maps node names to the ac-
tual DOM node) it is possible to extract data from a DOM without too much pain.
ThegetNode(s)ByName() returns a single node or a list of nodes associated with
a name.

In order to force the classifications to have the correct structure, the graph uses the
ClassModel as internal model. The only thing that can break the structure is when
the user deletes a node with associated edges. In that case the edges sticks around,
but one of the ends is not connected. The appropriate fix for thisfeaturewas to
change theremove method, making it more “greedy” when a node is deleted; the
node itself and all edges connected to it, are removed from the graph.

As this class contains the classification itself and the menu/tool-bars most of the
code that calls the other dialogs and such is present in this class.

GrapherKeyListener

TheGrapherKeyListener is hooked up to the graph and is called
whenever the user hits a key while working in the “graph” area.
This class makes it possible to select some graph elements and hit
the “delete” key to delete them.

4.3 Implementation of the ClassificationDesigner 99

GrapherSelectionListener

Another “helper-class”, this one is hooked up to the graph and
reacts on selection events. This listener handles the enabling
(and disabling) of the cut, copy and paste icons on the Classi-
ficationDesigner tool-bar.

GrapherUndoManager

Yet another “helper-class” this class extends the regular
GraphUndoManager allowing more control over the GUI.
This class enables/disables the undo and redo actions in the
graph component. Works like a swing undo-manager.

InfoDialog

This class is used whenever the application needs to send a small
message to the user. TheInfoDialog comes in two different shapes,
with and without a “Cancel” button.

This dialog basically enables the application to display error mes-
sages and have the user press “OK” before recovering. Making the
dialog able to display both “OK” and “Cancel” enables the applica-
tion to use the dialog for relaying questions to the user, for instance
questions regarding overwriting of existing files and so on.

Long messages can be split up by inserting “\n” in the message.

NodeData

A simple object containing the information that can be
stored in a class (graph node). This class implements a
DefaultGraphCell.ValueChangeHandler enabling the
graph to notify it of changes to the data.

It also overrides theclone() method, graph nodes are
cloneable, so their user-objects should also be.

ThetoString() override makes the name show up in
the boxes in the graph.

100 Chapter 4. Implementation and Testing

ObjectCloner

This is a little convenience method, it is seldom thatdeep copy
is needed in Java, but when it is, theclone() method should be
used. However when working with more complex data structures,
the clone() method becomes troublesome to define for all ob-
jects. A much simpler solution is to useserializationto clone objects. The static
deepCopy(Object oldObj) method simply tries to write theoldObj into a stream
and then read it out again. If this succeeds the returned object is a clone of the
oldObj .

Cloning is mostly used in the “state” methods ofGrapher , because it is not possible
to store for instance the state of the graph by doing aJGraph state = grapher.graph; .
A JGraph state = grapher.graph.clone(); is a better attempt, but not good
enough, because the graph component apparently contains some reference fields
that are not marked as transient, so the cloning fails.

However it is possible to extract just enough information from the graph, to be able
to capture the “state” of the graph and justdeepCopy that.

PresentationFormat

A dialog that enables the user to specify, how the name of
the item references should be constructed, using the data in
the data document.

The dialog will not work unless a data document and a class
entry element is defined. If the prerequisites for the dialog
are in place, the dialog queries the data document to find
“simple” sub-elements of the “class entry element”. The
system needs at least one simple element to be contained,
because the name of the item references for the elements are
extracted from one or more simple sub-elements.

In the WH system the class entry element is “Site” and an
obvious simple sub element is “Name”. However it could be
that some user would like to have the item reference name
contain for instance “SiteNumber-Name” for each site. In
this case the user should select “SiteNumber” a separator
and “Name” and press “OK”. This would cause the “entity-
list-query” string to be populated with the XQuery, that will
generate the right item reference names.

Please note that changing the presentation format in an existing classification,
causes the ClassificationDesigner to rebuild the “All Items” list, update allNodeData

objects in the graph and finally synchronize the lists inEntryList . TheNodeData

4.3 Implementation of the ClassificationDesigner 101

references are updated by looking the “new” values up in the “All Items” list using
the stored id’s.

SelectDataDoc

This is the dialog that enables the user to assign a data document
to a classification. Once the user has selected a data document,
the file details are stored inparent.props under the name: “data-
document”.

Changing the data document for an existing classification is a dras-
tic measure and should not be necessary in any case. However
it is possible to do this, but in order to keep the classification in
a state, where it can be trusted that item references still point to
valid entries in the data document, all item references are stripped off the graph
and assignments must be done over again using the new data.

ServerProperties

ServerProperties is the dialog concerning con-
nection properties. The user must enter an IP ad-
dress and possibly a port on the WH system server,
in order to setup a connection for executing the
DBUpdateSession EJB.

The user has the possibility to “test” the param-
eters entered. If a connection is tested OK, it is
indicated inparent.props and the other methods
that need to connect to the EJB will not show this
dialog, they will just connect silently.

XMLErrorHandler

A simple error handler, enabling the application to detect errors,
while using the validating XML parser in relation to “Import Clas-
sification”. This class is hooked up to the parser, and its error meth-
ods are called whenever an error occurs.

This class just pops up anInfoDialog with a hint about what could
have happened. Then it throws an exception that are caught in
the places utilizing the parser, and the appropriate measures are taken; the user
is alerted and exception stack-trace is generated and output on the console.

102 Chapter 4. Implementation and Testing

XMLFileFilter

A simple class used for filtering out XML files in the file choosers.
Used inGrapher in relation to import, export and data document
choosing and inGeneralServerDialog , whenever a document
need to be up- or downloaded.

4.4 Tests

4.4.1 Tests of the WH System

The WH System was not testing using some clever test strategy. The WH System
is after all just a demo application, so there was no reason to test everything for
every possible and impossible situation. Testing and debugging was primarily done
through a web browser, and the system seems robust. Naturally there are things that
could be improved (these are mentioned in the summary), but there does not seem
to be any errors in the functionality.

AppendixD on page123shows some screen shots from the WH System website.
There are screen shots of all facilities in the WH System and most of the screen
shots are explained briefly. Users who has not yet seen the screen shots or tried the
WH System website, are strongly encouraged to read this appendix.

4.4.2 Test of ClassificationDesigner

Since most of the functionality in the classification designer is taken care of by the
JGraph component, testing of the designer was performed through the user inter-
face. The application seems to be robust when using the graphical user interface.
Another validation of the application is done by making sure that the files that it
outputs, are valid. The XML classifications are validated using the XML Schema,
and they are able to “survive” being downloaded from the server, imported, ex-
ported, and uploaded to the WH System. This indicates that the application is
doing what it is supposed to.

The user manual for the designer goes through an example showing that the in-
tended functionality of the classification designer is present and working. The
manual can be found in appendixI on page151.

103

Chapter 5

Discussion

5.1 Improvements to the WH System

An obvious improvement to the WH System would be to implement the only miss-
ing search facility: The “expand scope” query which should help the user expand-
ing their search scope, when a search returns few or zero results.

The functionality for searching further in the “current search result” dataguide
could also be improved. For the moment the user must chose a category in or-
der to perform this search – this should probably be changed so all the categories
are searched, when no category is chosen.

Another possible enhancement of the search facilities could be to combine several
different queries. For example, if the user fails to choose any categories in the “ad-
vanced search” facility, the system could detect this and perform a simple search
instead of showing an error page.

A page where advanced users can formulate queries using an advanced HTML
form, generated from a schema extracted from the data document, would be a nice
add on. The form could make it possible to search in specified site attributes. For
instance, a user could specify, that he wanted to see sites inscribed in 1981 (a query
based on the<Inscribed> property.

Some other possible improvements, that are less interesting in relation to this
project, are extensions to the administration facilities. These facilities could be:

• A user interface for editing or adding site information to the database, would
be a very convenient addition.

• A facility for controlling the layout of site information in the web page, that
shows details about a site chosen by the user. Currently, presentation of
site information is controlled by a XSLT style sheet, that must manually be
edited and reinserted into the XML database.

104 Chapter 5. Discussion

5.2 Reuse of WH System Components

Some components can be reused for other purposes. The classification structure
is very general and it can be used for representation of all ontologies. Obvi-
ously this can be reused together with the XQuery that transforms classifications
into dataguides, and the small JavaScript for folding/unfolding categories in the
dataguide. The only requirement for reuse of these components is, that there is
some data suitable for being represented in a lattice structure.

The strategies for performing queries based on classifications and site data, could
be reused, though it requires quite a few changes – mostly changes to the presen-
tation layer of the application.

5.3 Improvements to the ClassificationDesigner

5.3.1 Relational Back End

As many ordinary systems based on relational database systems could benefit from
the use of classifications to index data, it could be an interesting project to investi-
gate, how much extra work there would be needed, in order to make the classifica-
tion based search run on a relational back end.

The classification documents would still need to be in XML format, in order to have
the benefits from the hierarchical structure. The item references in classification
documents can reference anything that has a unique id. Hence it would be possible
to have the classification documents classify relational data using the existing XML
schema.

However the WH System would need some major adjustments to work with the
relational backend.

Changing the classification designer would not be an enormous task, basically it is
just a few of the dialogs that need to be changed and the method building the “All
Items” list in theEntryList class. When the lists are generated everything should
work out of the box.

5.3.2 Editing of Data Documents

It would be a handy feature if the users were able to edit data documents (doc-
uments containing site information) in the ClassificationDesigner, and this would
call for the implementation of a simple XML editor.

However the documents can be edited in any editor and if the user are familiar
with an XML-aware editor, that one would probably outperform the one that the
classification designer would feature. But it could be made so that changes to

5.3 Improvements to the ClassificationDesigner 105

the data document in the classification designer would get expressed as XUpdate
statements, allowing the eXist database just to alter the necessary elements, instead
of having to pull the entire data collection out of the database and replacing it with
an updated version.

5.3.3 Better List Handling

The lists in the classification designer could be easier to use. The only way to locate
sites in them are by scrolling to the site and select it. A good extension could be
an option for entering a query and have the lists filter out all the sites that did not
match the query. This would help users looking for some particular site locate it a
lot easier.

106 Chapter 5. Discussion

107

Chapter 6

Conclusion

Before starting on this project we knew that sites in the World Heritage list could
be classified using ontologies. Ontologies offer an ordering which is intuitive to
most people. This is a big advantage because it can be used to express complex
relationships between sites, on a form that is easy to understand for the ordinary
users of the WH System.

One of the goals of this project was to see if semistructured data models are suit-
able for representing classifications of sites, as well as the sites themselves. It turns
out that SSD is excellent for representing the hierarchical structure of the classi-
fications, since it allows arbitrary nesting of structures. SSD is also suitable for
storing the site information and this is due to the schema less data model that does
not impose any constraints on the data.

Whereas the XML itself is a good choice for storing the site data and classifications,
the tools for handling XML data is another story. Many of the technologies are very
new, and most of them does not even have their final specifications defined yet.
XSLT, XPath and XML Schema have been around for a while and are well-proven,
while the XQuery and XML:DB specifications are still just working drafts.

Some XQuery implementations exist and in general two different approaches are
taken, with respect to the changing specifications. Some implementors do not im-
plement things that they think will change in the next draft, while others try to
implement the latest working draft completely. The specification for XQuery is
getting a lot closer to its final state, and the number of implementations is getting
higher each month.

We have had some trouble with the different XQuery processors, it really shows
that they are the “first” generation of the technology. Some of them had a lot of
strange errors, that got fixed during this project. But it seems that there is quite a lot
of people with interest in the processors, so many of the issues get fixed fast. Many
of the XQuery processors are closely related to XSLT processors, thus giving them
a head start compared to the few processors starting from scratch.

108 Chapter 6. Conclusion

The XML databases are another story. There are not really any precedent imple-
mentations, so the different implementors have a hard time getting it all together.

Some of the players in the field of relational databases, are trying to extend their
implementations, but due to the very different nature of SSD, we think that they
will have a hard time making really good solutions. Oracle is probably the RDBMS
vendor that is handling XQuery best, for the time being.

However some of the projects implementing native XML databases, seem to be
somewhat usable at this point. One of the biggest problems for the XML databases
is, that no standard for interfacing with them exists. Some of the implementations
uses the XML:DB API while others invent their own API.

The current freely available XML databases are not very mature yet. The eX-
ist database that we use for back end is working reasonably well, but it certainly
still have some serious issues. For instance it truncates elements containing single
characters under certain circumstances. This feature took a while to track down
and “solve”. The quick fix was to append a white-space to the single characters in
the data documents, thereby removing the risk of them being truncated.

Due to the mentioned issues (and a lot of other like them) with the XQuery proces-
sors and the XML databases, the implementation of the WH System took a while
longer than expected. For instance the selection of database was done by selecting
the one that caused us the least trouble, while the selection really should be based
on the one performing best.

It would be very nice with a database that supports XQuery, this would give our
system a performance boost. But it seems that we would need to postpone this
project quite a while, before a free XML database implementation with XQuery
support will be available.

We think that the idea of using dataguides to help users create somewhat com-
plex queries without them even knowing about it, is good and works well. Using
dataguides to represent the ontology data, makes navigation in the data intuitive for
the users.

As mentioned above, many of the technologies are not really mature enough for
a production system yet, but once the specifications become final, a lot of imple-
mentations will probably emerge. But as the things look at the moment, we do
not recommend use of the new open source XML technologies just yet. The WH
System could probably be implemented on top of a commercial XML database
implementation, such as Ipedo or Tamino, but they are very expensive.

109

Bibliography

[w3c] World Wide Web Consortium website
http://www.w3.org

[XQ-funop] XQuery 1.0 and XPath 2.0 Functions and Operatorsspecification
http://www.w3.org/TR/xpath-functions/

[XQ-lang] XQuery 1.0: An XML Query Language
http://www.w3.org/TR/xquery/

[dotw] Data on the Web
From Relations to Semistructured Data and XML
By Serge Abitebould, Peter Buneman and Dan Suciu
©2000 by Morgan Kaufmann Publishers
ISBN: 1-55860-622-X

[unesco] The Unesco World Heritage site
http://whc.unesco.org

[vr-heritage] The VRheritage.org site
http://www.vrheritage.org

[jgraph] The home of JGraph
http://jgraph.sourceforge.net

[exist] Homepage of eXist XML database
http://exist.sf.net

[xindice] Homepage of Xindice XML database
http://xml.apache.org/xindice

[tomcat] Homepage of Jakarta Tomcat
http://jakarta.apache.org/tomcat/index.html

[qexo] Qexo XQuery implementation website
http://www.gnu.org/software/qexo/

[ipsi] IPSI-XQ XQuery implementation
http://ipsi.fhg.de/oasys/projects/ipsi-xq/indexe.html

[java] Sun’s Java website
http://www.javasoft.com

[PJSP] Professional Java Server Programming
J2EE 1.3 Edition
By Subrahmanyam Allamaraju et al.
©2001 Wrox Press

110 BIBLIOGRAPHY

ISBN: 1-861005-37-7
[xmldb] XML:DB website

http://www.xmldb.org
[jboss] JBoss Java application server website

http://www.jboss.org
[saxon] Saxon XQuery processor website

http://saxon.sourceforge.net/
[ipedo-rev] Review of the IPedo XML database in PC Magazine

http://www.pcmag.com/article2/0,4149,13139,00.asp
[vr-heritage prototype]Prototype of the new VRHeritage.org site

http://www.vrheritage.org/engine/explorer

111

Appendix A

XML Document – CD Catalog

1 <?xml version ="1.0" encoding="iso-8859-1"?>
2 <CD-catalog>
3 <Album>
4 <PurchaseInfo currency="DKK"/>
5 <Artist>Red Hot Chili Peppers</Artist>
6 <Title>Blood Sugar Sex Magic</Title>
7 <RecordLabel>Warner Bros.</RecordLabel>
8 <Year>1991</Year>
9 <Genre>Rock</Genre>

10 <Track>
11 <Name>The Power Of Equality</Name>
12 <Duration>4.00</Duration>
13 </Track>
14 <Track>
15 <Name>If You Have To Ask</Name>
16 <Duration>4.11</Duration>
17 </Track>
18 <Track>
19 <Name>Breaking The Girl</Name>
20 <Duration>5.03</Duration>
21 </Track>
22 <Track>
23 <Name>Funky Munks</Name>
24 <Duration>5.22</Duration>
25 </Track>
26 <Track>
27 <Name>Suck My Kiss</Name>
28 <Duration>3.35</Duration>
29 </Track>
30 <Track>
31 <Name>I Could Have Lied</Name>
32 <Duration>4.10</Duration>
33 </Track>
34 <Track>
35 <Name>Mellowship Slinky In B Major</Name>
36 <Duration>4.00</Duration>

112 Appendix A. XML Document – CD Catalog

37 </Track>
38 <Track>
39 <Name>The Rightious And The Wicked</Name>
40 <Duration>4.05</Duration>
41 </Track>
42 <Track>
43 <Name>Give It Away</Name>
44 <Duration>4.45</Duration>
45 </Track>
46 <Track>
47 <Name>Blood Sugar Sex Magik</Name>
48 <Duration>4.31</Duration>
49 </Track>
50 <Track>
51 <Name>Under The Bridge</Name>
52 <Duration>4.34</Duration>
53 </Track>
54 <Track>
55 <Name>Naked In The Rain</Name>
56 <Duration>4.30</Duration>
57 </Track>
58 <Track>
59 <Name>Apache Rose Peacock</Name>
60 <Duration>4.43</Duration>
61 </Track>
62 <Track>
63 <Name>The Greeting Song</Name>
64 <Duration>3.14</Duration>
65 </Track>
66 <Track>
67 <Name>My Lovely Man</Name>
68 <Duration>4.45</Duration>
69 </Track>
70 <Track>
71 <Name>Sir Psycho Sexy</Name>
72 <Duration>8.24</Duration>
73 </Track>
74 <Track>
75 <Name>They’re Red Hot</Name>
76 <Duration>1.44</Duration>
77 </Track>
78 </Album>
79 <Album>
80 <PurchaseInfo currency="DKK"/>
81 <Artist>Pearl Jam</Artist>
82 <Title>Ten</Title>
83 <RecordLabel>Sony Music</RecordLabel>
84 <Year>1992</Year>
85 <Genre>Rock</Genre>
86 <Track>
87 <Name>Once</Name>
88 <Duration>3.51</Duration>
89 </Track>
90 <Track>

113

91 <Name>Even Flow</Name>
92 <Duration>4.53</Duration>
93 </Track>
94 <Track>
95 <Name>Alive</Name>
96 <Duration>5.40</Duration>
97 </Track>
98 <Track>
99 <Name>Why Go</Name>

100 <Duration>3.19</Duration>
101 </Track>
102 <Track>
103 <Name>Black</Name>
104 <Duration>5.43</Duration>
105 </Track>
106 <Track>
107 <Name>Jeremy</Name>
108 <Duration>5.18</Duration>
109 </Track>
110 <Track>
111 <Name>Oceans</Name>
112 <Duration>2.41</Duration>
113 </Track>
114 <Track>
115 <Name>Porch</Name>
116 <Duration>3.38</Duration>
117 </Track>
118 <Track>
119 <Name>Garden</Name>
120 <Duration>4.58</Duration>
121 </Track>
122 <Track>
123 <Name>Deep</Name>
124 <Duration>4.10</Duration>
125 </Track>
126 <Track>
127 <Name>Release</Name>
128 <Duration>6.30</Duration>
129 </Track>
130 <Track>
131 <Name>Alive (live)</Name>
132 <Duration>4.55</Duration>
133 </Track>
134 <Track>
135 <Name>Wash</Name>
136 <Duration>3.34</Duration>
137 </Track>
138 <Track>
139 <Name>Dirty Frank</Name>
140 <Duration>5.32</Duration>
141 </Track>
142 </Album>
143 <Album>
144 <PurchaseInfo price="8.99" currency="GBP"/>

114 Appendix A. XML Document – CD Catalog

145 <Artist>Red Hot Chili Peppers</Artist>
146 <Title>By The Way</Title>
147 <RecordLabel>Warner Bros.</RecordLabel>
148 <Year>2002</Year>
149 <Genre>Rock</Genre>
150 <Track>
151 <Name>By The Way</Name>
152 <Duration>3.37</Duration>
153 </Track>
154 <Track>
155 <Name>Universally Speaking</Name>
156 <Duration>4.19</Duration>
157 </Track>
158 <Track>
159 <Name>This Is The Place</Name>
160 <Duration>4.17</Duration>
161 </Track>
162 <Track>
163 <Name>Dosed</Name>
164 <Duration>5.12</Duration>
165 </Track>
166 <Track>
167 <Name>Don’t Forget Me</Name>
168 <Duration>4.37</Duration>
169 </Track>
170 <Track>
171 <Name>The Zephyr Song</Name>
172 <Duration>3.52</Duration>
173 </Track>
174 <Track>
175 <Name>Can’t Stop</Name>
176 <Duration>4.29</Duration>
177 </Track>
178 <Track>
179 <Name>I Could Die For You</Name>
180 <Duration>3.13</Duration>
181 </Track>
182 <Track>
183 <Name>Midnight</Name>
184 <Duration>4.55</Duration>
185 </Track>
186 <Track>
187 <Name>Throw Away Your Television</Name>
188 <Duration>3.44</Duration>
189 </Track>
190 <Track>
191 <Name>Cabron</Name>
192 <Duration>3.38</Duration>
193 </Track>
194 <Track>
195 <Name>Tear</Name>
196 <Duration>5.17</Duration>
197 </Track>
198 <Track>

115

199 <Name>On Mercury</Name>
200 <Duration>3.28</Duration>
201 </Track>
202 <Track>
203 <Name>Minor Thing</Name>
204 <Duration>3.37</Duration>
205 </Track>
206 <Track>
207 <Name>Warm Tape</Name>
208 <Duration>4.16</Duration>
209 </Track>
210 <Track>
211 <Name>Venice Queen</Name>
212 <Duration>6.07</Duration>
213 </Track>
214 </Album>
215 <Album>
216 <PurchaseInfo price="115" currency="DKK"/>
217 <Artist>D.A.D</Artist>
218 <Title>Riskin’ It All</Title>
219 <RecordLabel>Medley Records</RecordLabel>
220 <Year>1991</Year>
221 <Genre>Rock</Genre>
222 <Track>
223 <Name>Bad Craziness</Name>
224 <Duration>3.16</Duration>
225 </Track>
226 <Track>
227 <Name>D-Law</Name>
228 <Duration>3.48</Duration>
229 </Track>
230 <Track>
231 <Name>Day Of Wrong Moves</Name>
232 <Duration>3.58</Duration>
233 </Track>
234 <Track>
235 <Name>Rock’n’Rock Radar</Name>
236 <Duration>2.36</Duration>
237 </Track>
238 <Track>
239 <Name>Down That Dusty 3’rd World Road</Name>
240 <Duration>4.23</Duration>
241 </Track>
242 <Track>
243 <Name>Makin’ Fun Of Money</Name>
244 <Duration>4.08</Duration>
245 </Track>
246 <Track>
247 <Name>Grow Or Pay</Name>
248 <Duration>4.59</Duration>
249 </Track>
250 <Track>
251 <Name>Smartboy Can’t Tell Ya’</Name>
252 <Duration>3.15</Duration>

116 Appendix A. XML Document – CD Catalog

253 </Track>
254 <Track>
255 <Name>Riskin’ It All</Name>
256 <Duration>2.37</Duration>
257 </Track>
258 <Track>
259 <Name>Laugh ’n’ A½ </Name>
260 <Duration>3.24</Duration>
261 </Track>
262 </Album>
263 <Compilation>
264 <PurchaseInfo price="12.99" currency="GBP"/>
265 <Title>The very best of MTV unplugged 2</Title>
266 <RecordLabel>Warner Music and Universal International Music</

RecordLabel>
267 <Year>2003</Year>
268 <Genre>Pop/Rock</Genre>
269 <Track>
270 <Name>Every Breath You Take</Name>
271 <Artist>Sting</Artist>
272 <Duration>5.07</Duration>
273 </Track>
274 <Track>
275 <Name>Wicked Game</Name>
276 <Artist>Chris Isaak</Artist>
277 <Duration>4.54</Duration>
278 </Track>
279 <Track>
280 <Name>Zombie</Name>
281 <Artist>The Cranberries</Artist>
282 <Duration>4.17</Duration>
283 </Track>
284 <Track>
285 <Name>Imitation Of Life</Name>
286 <Artist>R.E.M.</Artist>
287 <Duration>4.07</Duration>
288 </Track>
289 <Track>
290 <Name>Layla</Name>
291 <Artist>Eric Clapton</Artist>
292 <Duration>4.40</Duration>
293 </Track>
294 <Track>
295 <Name>Four Seasons In One Day</Name>
296 <Artist>Crowded House</Artist>
297 <Duration>5.32</Duration>
298 </Track>
299 <Track>
300 <Name>Cornflake Girl</Name>
301 <Artist>Tori Amos</Artist>
302 <Duration>5.32</Duration>
303 </Track>
304 <Track>
305 <Name>Have I Told You Lately</Name>

117

306 <Artist>Rod Stewart</Artist>
307 <Duration>3.59</Duration>
308 </Track>
309 <Track>
310 <Name>Like A Rolling Stone</Name>
311 <Artist>Bob Dylan</Artist>
312 <Duration>8.29</Duration>
313 </Track>
314 <Track>
315 <Name>Human Behaviour</Name>
316 <Artist> öBjrk</Artist>
317 <Duration>3.24</Duration>
318 </Track>
319 <Track>
320 <Name>Crazy</Name>
321 <Artist>Seal</Artist>
322 <Duration>4.49</Duration>
323 </Track>
324 <Track>
325 <Name>Beds Are Burning</Name>
326 <Artist>Midnight Oil</Artist>
327 <Duration>4.48</Duration>
328 </Track>
329 <Track>
330 <Name>Run, Baby, Run</Name>
331 <Artist>Sheryl Crow</Artist>
332 <Duration>5.04</Duration>
333 </Track>
334 <Track>
335 <Name>I’m Ready</Name>
336 <Artist>Bryan Adams</Artist>
337 <Duration>4.25</Duration>
338 </Track>
339 <Track>
340 <Name>In The Air Tonight</Name>
341 <Artist>Phil Collins</Artist>
342 <Duration>4.57</Duration>
343 </Track>
344 <Track>
345 <Name>Don’t Let The Sun Go Down On Me</Name>
346 <Artist>Elton John</Artist>
347 <Duration>5.55</Duration>
348 </Track>
349 </Compilation>
350 </CD-catalog>

118 Appendix A. XML Document – CD Catalog

119

Appendix B

Schema for the CD Catalog

1 <?xml version ="1.0" encoding="UTF-8"?>
2 <schema xmlns=’http://www.w3.org/2001/XMLSchema’>
3 <element name=’CD-catalog’>
4 <complexType>
5 <sequence maxOccurs=’unbounded’>
6 <choice>
7 <element name=’Album’>
8 <complexType>
9 <sequence>

10 <element name=’PurchaseInfo’>
11 <complexType>
12 <attribute name=’price’ type=’decimal’ minOccurs

=’0’/>
13 <attribute name=’currency’ type=’string’/>
14 </complexType>
15 </element>
16 <element name=’Artist’ type=’string’/>
17 <element name=’Title’ type=’string’/>
18 <element name=’RecordLabel’ type=’string’/>
19 <element name=’Year’ type=’string’/>
20 <element name=’Genre’ type=’string’/>
21 <element name =’Track’ maxOccurs=’unbounded’>
22 <complexType>
23 <sequence>
24 <element name=’Name’ type=’string’/>
25 <element name=’Duration’ type=’decimal’/>
26 </sequence>
27 </complexType>
28 </element>
29 </sequence>
30 </complexType>
31 </element>
32 <element name=’Compilation’>
33 <complexType>
34 <sequence>
35 <element name=’PurchaseInfo’>

120 Appendix B. Schema for the CD Catalog

36 <complexType>
37 <attribute name=’price’ type=’decimal’ minOccurs

=’0’/>
38 <attribute name=’currency’ type=’string’/>
39 </complexType>
40 </element>
41 <element name=’Title’ type=’string’/>
42 <element name=’RecordLabel’ type=’string’/>
43 <element name=’Year’ type=’string’/>
44 <element name=’Genre’ type=’string’/>
45 <element name =’Track’ maxOccurs=’unbounded’>
46 <complexType>
47 <sequence>
48 <element name=’Name’ type=’string’/>
49 <element name=’Artist’ type=’string’/>
50 <element name=’Duration’ type=’decimal’/>
51 </sequence>
52 </complexType>
53 </element>
54 </sequence>
55 </complexType>
56 </element>
57 </choice>
58 </sequence>
59 </complexType>
60 </element>
61 </schema>

121

Appendix C

Deployment

C.1 Deployment of the WH System

This section describes the installation procedure of the WH Systemin Unix-like
systems. The root folder of the WH System application has the following structure:

/db/ Contains all XML files needed in the XML database. The folder structure is
exactly the same as it must be in the XML database.

/descriptors/ Deployment descriptors and other J2EE configuration files.

/jsppages/ Contains the JSP pages used in the web archive.

/lib/ Java libraries necessary to deploy the application.

/src/ WH System source files

build.properties.sample A sample build.properties file.

build.xml Ant configuration file.

The root folder will be referred to as$WHSYSHOME

The following software must be installed before beginning the installation of the
WH System (the version numbers indicate the versions we used – other versions
may work as well, but we have not tested it):

• Sun’s J2SDK v. 1.4.2
• Apache Ant v. 1.5.2
• JBoss J2EE application server v. 3.2
• eXist XML database v. 0.9.2

122 Appendix C. Deployment

Remember to set the system variables:

• JAVA HOMEMust point at Java installation directory.
• ANT HOMEMust point at Apache Ant installation directory.
• JBOSSHOMEMust point at JBoss installation directory.
• EXIST HOMEMust point at eXist installation directory.

Go throughall of the following steps:

• Start eXist with the command:
$EXIST HOME/bin/server.sh -p 4001 -x 4041

You can start eXist on different ports, but then you must edit
$WHSYSHOME/descriptors/ejb-jar.xml to reflect the changes.

• Edit $EXIST HOME/client.properties . Change the “uri” option to:
uri=xmldb:exist://localhost:4041/exist/xmlrpc

• Copy$WHSYSHOME/build.properties.sample to
$WHSYSHOME/build.properties and begin editing the file. Thelibdir at-
tribute should be the full path to:
$WHSYSHOME/lib – MAKE SURE THIS DIRECTORY IS READABLE BY
THE USER JBOSS RUNS AS.
The jbossServerDir attribute should be the full path to:
$JBOSSHOME/server/default/deploy – MAKE SURE THIS DIRECTORY
IS WRITABLE BY THE USER YOU USE FOR THE INSTALLATION.

• Now the XML files in $WHSYSHOME/db/ must be inserted in the database.
This is simply done by running the command:sh inidb.sh from the direc-
tory $WHSYSHOME/db/ .

• Create an eXist user called “whuser” using the eXist client tool
(run EXIST HOME/bin/client.sh . The “whuser” must be owner all thewh

collection and all subcollections and XML files in the subcollections. We
used the password “fraggel” for the user. If you use a different password you
must edit the file:
$WHSYSHOME/descriptors/ejb-jar.xml to reflect the changes.

• Start JBoss with the command:$JBOSSHOME/bin/run.sh

• Now it is time to install the application. Go to the root directory$WHSYSHOME

ant run the command:ant jbossinstall . This command should compile
the application and automatically install it into JBoss.

• Pray it works!!

C.2 Deployment of the ClassificationDesigner

Deployment of the ClassificationDesigner is described in the first section of the
classification designer manual in appendixI on page151.

123

Appendix D

Screen Shots of the WH Web
Application

D.1 Welcome Page

Visitors to the website initially arrives at this page.

124 Appendix D. Screen Shots of the WH Web Application

D.2 About Page

The about page has information about the project.

D.3 Search for Categories 125

D.3 Search for Categories

The “search for categories” page with the help menu shown. The keyword “asia”
is entered.

126 Appendix D. Screen Shots of the WH Web Application

D.4 Result of Search for Categories

Result of the search for categories containing the keyword “asia”.

D.5 Advanced Search Form 127

D.5 Advanced Search Form

Advanced search form. The dataguideclassification by geographicallocation” is
unfolded, and the categoriesFrance, Germany, NetherlandsandNorthern Europe
has been selected. The keywords “castle”, “fort” and “brick” has been entered in
the keyword text field.

128 Appendix D. Screen Shots of the WH Web Application

D.6 Advanced Search Result as Dataguide

Result of the search from the previous screen shot. The result is shown as a
dataguide – the user has unfolded some of the categories in the dataguide.

D.7 Advanced Search Result as List 129

D.7 Advanced Search Result as List

Result of the search from the previous screen shot. The result is shown as a list.
Notice the number in parentheses behind the site names are thehitpointsassigned
to the sites. The sites with most hitpoints are placed in the top of the list.

130 Appendix D. Screen Shots of the WH Web Application

D.8 Site Information about Kronborg Castle

Information about the site “Kronborg Castle”.

D.9 Site Information about Roskilde Cathedral 131

D.9 Site Information about Roskilde Cathedral

Information about the site “Roskilde Cathedral”. Notice that there is some addi-
tional information, which was not present in the previous screen shot (Kronborg).
This site has information about its location and its architectural style (in the bottom
of the screen shot).

132 Appendix D. Screen Shots of the WH Web Application

D.10 “Similar Sites” to Roskilde Cathedral

Shows sites similar to Roskilde Cathedral. The site is only categorized as a danish
site and as a cultural site, so these two categories are part of the result dataguide.

D.11 Simple Search Form, Showing Help Info 133

D.11 Simple Search Form, Showing Help Info

The simple search facility with the help menu shown. The keywords “reef” and
“turtle” has been entered. Thematch any keywordoption is selected.

134 Appendix D. Screen Shots of the WH Web Application

D.12 Result of a Simple Search

Result of the simple search for the keywords “reef” and “turtle”. The search result
is simply a list with all matching sites. the brief descriptions are shown in the list,
and the site names are links to the detailed site information.

D.13 Error Page 135

D.13 Error Page

An error page - the user forgot to enter a keyword or select a category when trying
to use the advanced search facility.

136 Appendix D. Screen Shots of the WH Web Application

137

Appendix E

EJB Classes from the WH System

138 Appendix E. EJB Classes from the WH System

SessionBean

...session.SearchSessionEJB

wh.ejbs.session.SearchSessionLocalHome

-uriResolver:WHURIResolver

-logger:Logger

-initialctx:InitialContext

-transformer:WHTransformer

-stylesheets:Hashtable

-presentAsListLimit:Integer

-makeupdatecheck:boolean

-updateSerialNumber:String

-classifications:List

-XQ_GETXQUERY:String

-XQ_GETCLASSIFICATIONS:String

-XQ_MAKEDATAGUIDE:String

-XQ_EVALXPATHEXPR:String

-XQ_GETSTYLESHEET:String

-XQ_GETSITES:String

-XQ_SIMPLESEARCH:String

-XQ_ADVANCEDSEARCH:String

-XQ_FINDSIMILAR:String

-XQ_SEARCHCLASSIFICATIONS:String

-XQ_UPDATECHECK:String

-XQUERIES:String[]

-dqc:Hashtable

-qp:Hashtable

-xe:Hashtable

-dataguides:DataGuideBean[]

+setSessionContext:void

+ejbActivate:void

+ejbPassivate:void

+ejbRemove:void

-initLogger:void

-initXQ_doXQueries:void

-initXQ_getXQuery:void

-initXQueryExpressions:void

-evaluateXQuery:List

-getXQuery:String

-createNodeMap:Hashtable

-searchSites_:SearchResultBean

-processSearchResult:SearchResultBean

-makeDataguide:String

-generateSearchData:Node

-makeDataGuides:void

-createItemList:List

-doUpdate:boolean

+ejbCreate:void

+nodeToString:String

+setXQueryParameter:void

+getDataguides:DataGuideBean[]

+getStylesheet:String

+getDataguideIds:String[]

+searchSites:SearchResultBean

+searchSites:SearchResultBean

+simplySearchSites:List

+searchClassifications:SearchResultBean

+simplySearchCurrentResult:SearchResultBean

+getSites:SiteBean[]

+findSimilarSites:SimilarSitesBean

SessionBean

DBUpdateSessionEJB

wh.ejbs.session.DBUpdateSession

wh.ejbs.session.DBUpdateSessionHome

-classificationCollection:Collection

-dataCollection:Collection

-confCollection:Collection

-logger:Logger

-dbURI:String

-driver:String

-database:Database

+setSessionContext:void

+ejbActivate:void

+ejbPassivate:void

+ejbRemove:void

-nodeToString:String

-compressString:byte[]

-decompressByteArray:String

+ejbCreate:void

+insertClassification:boolean

+insertDataCollection:boolean

+getDataCollectionIds:String[]

+getClassificationIds:String[]

+getDataCollection:byte[]

+getClassification:byte[]

+removeClassification:boolean

+removeDataCollection:boolean

+authenticate:boolean

+setDoUpdateFlag:boolean

Figure E.1: EJB classes from the WH system

139

Appendix F

XPath Performance Tests

F.1 Test Programs for eXist

The tests of eXist uses the full data document – this has<Sites> as root element.
Additionally there is a document containing only one site – this document has
SmallSites as root element.

0 Sites, 1 Keyword

echo "/NonExisting/Site[match-any(.,’shark’)]/Name/text()"|exist -
c /db/wh/DataCollection -x

1 Site, 1 Keyword

echo "/SmallSites/Site[match-any(.,’shark’)]/Name/text()"|exist -c
/db/wh/DataCollection -x

730 Sites, 1 Keyword

echo "/Sites/Site[match-any(.,’shark’)]/Name/text()"|exist -c /db/
wh/DataCollection -x

1 Site, 10 Keywords

echo "/SmallSites/Site[match-any(.,’shark’, ’animal’,’forest’,’
castle’,’kronborg’,’reef’,’ocean’,’plant’,’whale’,’ruin’)]/
Name/text()"|exist -c /db/wh/DataCollection -x

730 Sites, 10 Keywords

echo "/Sites/Site[match-any(.,’shark’, ’animal’,’forest’,’castle
’,’kronborg’,’reef’,’ocean’,’plant’,’whale’,’ruin’)]/Name/text
()"|exist -c /db/wh/DataCollection -x

140 Appendix F. XPath Performance Tests

F.2 Test Programs for Saxon

The tests uses the files “datadoc.xml”, which is contains all sites in the WH list –
the root element is<Sites> , and “small.xml” that contains only one site and has
SmallSites as root element.

0 Sites, 1 Keyword

doc("small.xml")/NonExisting/Site[contains(string(.),’Darwin’)]/
Name/text()

1 Site, 1 Keyword

for $site in doc("small.xml")/SmallSites/Site
let $text := string($site)
where contains($text,’Darwin’) return $site/Name/text()

730 Sites, 1 Keyword

for $site in doc("datadoc.xml")/SmallSites/Site
let $text := string($site)
where contains($text,’Darwin’) return $site/Name/text()

1 Site, 10 Keywords

for $site in doc("small.xml")/SmallSites/Site
let $text := string($site)
where

contains($text,’Darwin’)
or contains($text,’animal’)
or contains($text,’forest’)
or contains($text,’castle’)
or contains($text,’kronborg’)
or contains($text,’reef’)
or contains($text,’ocean’)
or contains($text,’plant’)
or contains($text,’whale’)
or contains($text,’ruin’)

return $site/Name/text()

730 Sites, 10 Keywords

for $site in doc("datadoc.xml")/SmallSites/Site
let $text := string($site)
where

contains($text,’Darwin’)
or contains($text,’animal’)
or contains($text,’forest’)
or contains($text,’castle’)

F.2 Test Programs for Saxon 141

or contains($text,’kronborg’)
or contains($text,’reef’)
or contains($text,’ocean’)
or contains($text,’plant’)
or contains($text,’whale’)
or contains($text,’ruin’)

return $site/Name/text()

142 Appendix F. XPath Performance Tests

143

Appendix G

Classification Schema

1 <?xml version =’1.0’ encoding="UTF-8"?>
2 <xsd:schema xmlns:xsd=’http://www.w3.org/2001/XMLSchema’>
3 <xsd:element name=’Classification’>
4 <xsd:complexType>
5 <xsd:sequence>
6 <xsd:element name=’DisplayName’ type=’xsd:string’/>
7 <xsd:element name=’Description’ type=’xsd:string’/>
8 <xsd:element name=’Keywords’ type=’xsd:string’/>
9 <xsd:element name=’Stylesheet’ type=’xsd:string’ minOccurs="

0"/>
10 <xsd:element name=’DataDocument’ type=’xsd:string’/>
11 <xsd:element name=’ClassEntryName’ type=’xsd:string’/>
12 <xsd:element name=’EntityListQuery’ type=’xsd:string’/>
13 <xsd:element ref=’Class’ />
14 </xsd:sequence>
15 <xsd:attribute name=’id’ type=’xsd:string’/>
16 </xsd:complexType>
17 </xsd:element>
18 <! -- definitions -- >
19 <xsd:element name=’ItemRef’>
20 <xsd:complexType>
21 <xsd:sequence>
22 <xsd:element name=’DisplayName’ type=’xsd:string’/>
23 <xsd:element name=’ItemIdref’ type=’xsd:string’/>
24 </xsd:sequence>
25 </xsd:complexType>
26 </xsd:element>
27
28 <xsd:element name="Class">
29 <xsd:complexType>
30 <xsd:sequence minOccurs="0">
31 <xsd:element name="DisplayName" type="xsd:string"/>
32 <xsd:element name="Description" type="xsd:string" minOccurs=

"0"/>
33 <xsd:element name="Keywords" type="xsd:string" minOccurs="0"

/>

144 Appendix G. Classification Schema

34 <xsd:element ref="ItemRef" minOccurs="0" maxOccurs="
unbounded"/>

35 <xsd:element ref="Class" minOccurs="0" maxOccurs="unbounded"
/>

36 </xsd:sequence>
37 <xsd:attribute name="id" type="xsd:string" use="optional"/>
38 <xsd:attribute name="idref" type="xsd:string" use="optional"/>
39 </xsd:complexType>
40 </xsd:element>
41 </xsd:schema>

145

Appendix H

Database Schema for the Current
WH Relational Database

The schemas on the following pages are parts of a big schema. The first three
pages are connected the following way: With the first page at the top, second page
beneath it and the third page at the bottom. The fourth page is not connected to
anything in the first three pages.

146 Appendix H. Database Schema for the Current WH Relational Database

Figure H.1: Schema for the relational database

147

Figure H.2: Schema for the relational database

148 Appendix H. Database Schema for the Current WH Relational Database

Figure H.3: Schema for the relational database

149

Figure H.4: Schema for the relational database

150 Appendix H. Database Schema for the Current WH Relational Database

151

Appendix I

User Manual for
ClassificationDesigner

I.1 Installation

The ClassificationDesigner (CD) comes as a single file, called “CDesigner.jar”.
The CD is a Java application and runs in Java version 1.4 or later. The application
can be started by typing:

java -jar CDesigner.jar

In the folder where the jar file is located. In order to be able to validate the
classifications, they specify an XML Schema internally. This schema is called:
classification.xsd and should be found together with theCDesigner.jar
file.

Note to Windows users, for some reason the Java environment was
not working correctly on our test machine, that caused the XML files
downloaded from the server to be in a wrong encoding (not UTF-8).
The solution is to forceJava to use the right encoding by starting the
application with this line:
java -Dfile.encoding=UTF-8 -jar CDesigner.jar

I.2 Making a Sample Classification

Once the application is started, as mentioned in the last section, the user is met
with a screen that looks like the one in figureI.1 on the following page.

First thing to do when creating a new application is to get a copy of the data doc-
ument that the server (the World Heritage System) uses. This is done by selecting

152 Appendix I. User Manual for ClassificationDesigner

Figure I.1: Designer Startup Screen.

the Server→Download Data Document. If this is the first time the connection
to the server is performed, a dialog - “Server properties” is shown, asking for the
name/IP of the WH System server. The connection test should be performed and
an “Info” dialog will popup informing the user whether the test succeeded or not.
A successful test is shown in figureI.2 on the next page.

If the connection test is successful, the user is asked to authenticate himself. This
is done by putting in a username and a password for the WH System. After a user
has been authenticated successfully, the system will remember the credentials for
the remainder of the session. The authentication dialog is shown in figureI.3 on
page154.

After completing the connection test and supplying proper credentials, the system
shows a list of data documents stored in the WH System. The WH System uses
a single document for data. A download location is specified, document on the
server in the list is selected and the “Download” button is pressed.

Please note that the data document usually is large, and that it may take a while do
download it. The download time depends on your network connection. While the
application is downloading the XML document, the application may appear to be
“frozen”, because it is waiting for the download to finish.

When the download finishes a dialog pops up informing the user the status of the

I.2 Making a Sample Classification 153

Figure I.2: Server Test Screen.

download. This is shown in figureI.4 on page155.

Having a data document on the local hard drive, we are ready to create classifica-
tions. The easiest way to get started is to hitFile→New, this starts a sequence of
dialogs guiding the user through the process of entering the necessary information
for the classification.

First a data document for the classification should be specified. The data document
is essential for the classification. We point to the data document that was just
downloaded. After the path is entered the screen looks like the one in figureI.5 on
page156. After hitting “OK” the application tried to analyze the data document
to see what possibilities it offers. If the analyze goes well, A dialog for entering
classification properties is shown. This dialog looks like the one in figureI.6 on
page157. This is the place where the name, description etc. for the classification
is entered. The “Class Entry Element” combo box is essential. This box allows
the user to specify, which structure in the data document that should be classified.
In this example we are interested in classifying the “Site” elements in the data
document, hence “Site” is selected. In order to be a element that can be classified,
the element should contain at least one simple element (for the presentation), and
a unique id attribute calledid .

After entering valid information about the classification, it is time to specify how

154 Appendix I. User Manual for ClassificationDesigner

Figure I.3: Server Authentication Screen.

the elements from the data document should be presented in the classification. A
dialog for selecting the format is illustrated in figureI.7 on page158. Based on the
value selected in “Class Entry Element” in the former dialog, this dialog analyzes
the “Site” element to see which elements that can be candidates for a presentation
format.

In the figure illustrating the example, it is specified that the value of the “Name”
element in “Site” should be used for the presentation format. For site number 1,
this presentation format would yield: “Galapagos Islands”.

Now the necessary information for creating a classification is entered into the sys-
tem and the process of creating the structure of the classification can be initiated.

This example makes a small classification to illustrate the process. The example
classification is illustrated in figureI.8 on page159.

The classification is created by creating the nodes (representing the classes) first. A
node is created by clicking on the left-most icon on the tool bar (just below “File”.
The node is then selected, dragged to its place in the canvas, and data describing
the node is entered in the lower right corner. The sites that should belong to a given
class are selected in the lists in the upper right corner and “moved” down into the
selected node by hitting the arrow pointing down.

The classes can be connected with arrows by clicking in the middle of a node and

I.2 Making a Sample Classification 155

Figure I.4: Data Document Download Complete.

then dragging the arrow into another node. If a node, edge or maybe a selection of
them need to be removed, just select them and hit the “delete” key on the keyboard.

The example classification puts a few of the sites into the different classes, just to
have a little demo that we can upload to the WH System.

After the classification is completed, the classification should be validated. This is
done in theClassification→Validate menu. If the classification is valid it should
be exported to XML, with theFile→Export Classification to XML menu. After
the classification has been exported to an XML file, the XML file can be uploaded
to the server.

The upload process is shown in figureI.9 on page160.

All server interaction is done in theServer menu and in order to upload the clas-
sification, theUpload Classificationmenu is selected. The XML classification
is located on the hard drive and a “Collection Name” is generated automatically.
Upon hitting upload the classification is sent to the WH System. When all the
changes to the classifications in the World Heritage System are performed, the WH
System needs to be told that it should show the result of the new changes. This is
done by selectingServer→Effectuate Changes.

Finally the result of our efforts can be seen on the server. The “Example Classi-
fication” shows up among the other classifications in the “Advanced Search” page

156 Appendix I. User Manual for ClassificationDesigner

Figure I.5: Specify a Data Document.

in the WH System. A screen shot is shown in figureI.10 on page161.

I.2 Making a Sample Classification 157

Figure I.6: Specify informations about the Classification.

158 Appendix I. User Manual for ClassificationDesigner

Figure I.7: Specify presentation format for the item references.

I.2 Making a Sample Classification 159

Figure I.8: The example Classification.

160 Appendix I. User Manual for ClassificationDesigner

Figure I.9: Uploading the example Classification.

I.2 Making a Sample Classification 161

Figure I.10: WH System screeched showing the example Classification.

162 Appendix I. User Manual for ClassificationDesigner

163

Appendix J

XML XQuery Document

1 <?xml version ="1.0" encoding="ISO-8859-1"?>
2 <XQueries>
3 <XQuery>
4 <Name>getclassifications</Name>
5 <Data><![CDATA[
6 doc("Classifications:Classification")/Result/Classification
7
8]]></Data>
9 </XQuery>

10 <XQuery>
11 <Name>getstylesheet</Name>
12 <Data><![CDATA[
13 define variable $stylesheet external
14 doc($stylesheet)/Result/Stylesheet/Data
15
16]]></Data>
17 </XQuery>
18
19 <XQuery>
20 <Name>getsites</Name>
21 <Data><![CDATA[
22 define variable $sites external
23 doc($sites)/Result/Site
24
25]]></Data>
26 </XQuery>
27
28 <XQuery>
29 <Name>simplesearch</Name>
30 <Data><![CDATA[
31 define variable $sites external
32 doc($sites)/Result
33
34]]></Data>
35 </XQuery>
36

164 Appendix J. XML XQuery Document

37 <XQuery>
38 <Name>evalxpathexpr</Name>
39 <Data><![CDATA[
40 define variable $xpath external
41 doc($xpath)/Result
42
43]]></Data>
44 </XQuery>
45
46 <XQuery>
47 <Name>makedataguide</Name>
48 <Data><![CDATA[
49 declare namespace wh="WorldHeritage"
50
51 define variable $classification as node() external
52
53 (:Converts a classfication into a dataguide (HTML representation):

)
54 define function wh:writeDataguide() {
55 <DIV>
56 <A
57 href="{concat("javascript:Toggle(’",$classification/@id,"’)

")}"
58 ID="{concat("x",$classification/@id)}"
59 style="text-decoration: none"
60 >
61 [+]
62
63
64 {$classification/DisplayName/text()}
65
66

67 <DIV
68 ID="{$classification/@id}"
69 style="margin-left: 2em;display: none"
70 >
71 {
72 let $description:=$classification/Description/text()
73 return
74 if(string-length($description)>0) then (
75 $description,
76

77)
78 else()
79 }
80 {
81 for $class in $classification/Class
82 return wh:writeClass($class,$classification/@id,$

classification/@id)
83 }
84 </DIV>
85 </DIV>
86 }
87

165

88 (:Helper function for writeDataguide() :)
89 define function wh:writeClass($class,$dgid as xs:string,$idprefix

as xs:string) {
90 if (exists($class/Class) or exists($class/ItemRef))
91 then (
92 <A
93 href="{concat("javascript:Toggle(’",$idprefix,$class/@id,"’)

")}"
94 ID ="{concat("x",$idprefix,$class/@id)}"
95 style="text-decoration: none"
96 >
97 [+]
98 ,
99 {$class/DisplayName/text()},

100 <INPUT
101 name="{concat($dgid,"checker")}"
102 type="checkbox"
103 value="{$class/@id}"
104 />
105)
106 else (
107 "[-] "
108 ,
109 {$class/DisplayName/text()}
110),
111
,
112 if(exists($class/Class) or exists($class/ItemRef)) then(
113 <DIV
114 ID ="{concat($idprefix,$class/@id)}"
115 style="margin-left: 0em;display: none"
116 >
117 {
118 for $subclass in $class/Class
119 return
120 if(exists($subclass/@id)) then (
121 <DIV style="margin-left: 2em">
122 {wh:writeClass($subclass,$dgid,$idprefix)}
123 </DIV>
124)
125 else (
126 let $idref := $subclass/@idref
127 let $referredclass := $classification//Class[@id=$idref]
128 return
129 <DIV style="margin-left: 2em">
130 {wh:writeClass($referredclass,$dgid,concat("REF",$idprefix

))}
131 </DIV>
132)
133 }
134 {
135 for $itemref in $class/ItemRef
136 return wh:writeItemRef($itemref)
137 }
138 </DIV>

166 Appendix J. XML XQuery Document

139) else ()
140
141 }
142
143 (: Helper function for writeClass() :)
144 define function wh:writeItemRef($itemref) {
145 <DIV style="margin-left: 0em">
146 <A
147 href="{concat("siteinfo.html?siteid=",string($itemref/

ItemIdref))}"
148 >-
149 {string($itemref/DisplayName)}
150 {if(exists($itemref/HitPoints)) then(concat(" (",$itemref/

HitPoints/text()," hit)")) else()}
151
152 </DIV>
153 }
154
155 wh:writeDataguide()
156
157]]></Data>
158 </XQuery>
159
160 <XQuery>
161 <Name>findsimilar</Name>
162 <Data><![CDATA[
163 declare namespace wh="WorldHeritage"
164
165 define variable $ancestordepth as xs:integer external
166 define variable $site as xs:string external
167 define variable $classifications as node()+ {doc("Classifications:

/Classification")/Result/Classification}
168
169 (:
170 Finds categories which $site is part of an builds a dataguide with
171 these categories
172 :)
173 define function wh:findSimilar() {
174 (:****
175 For each classification, first find the parentclasses of the

site in question
176 ****:)
177 let $result :=
178 for $classification in $classifications
179 (: Try letting the database get the parentclasses at some

point.
180 let $cid := $classification/@id
181 let $parentclasses := doc(
182 concat("Classifications:/Classification[@id &= ’",$cid,"’]//

Class[ItemRef/ItemIdref &= ’",$site,"’]")
183)/Result/Class
184 :)
185 let $parentclasses :=
186 for $subclass in $classification//Class

167

187 where $subclass/ItemRef/ItemIdref/text() = $site return $
subclass

188 (:****
189 If the ancestordepth>1
190 then return wh:findParentClasses($ancestordepth,parentclasses)
191 else return the parentclasses
192 ****:)
193 return
194 if($ancestordepth>1) then(
195 wh:addPrefixToClassIds($classification/@id,

wh:findParentClasses($ancestordepth - 1,$parentclasses))
196)
197 else (
198 wh:addPrefixToClassIds($classification/@id,$parentclasses)
199)
200 (:**** Present the result as a classification *****:)
201 return
202 <Classification id="advancedsearch">
203 <DisplayName>Sites in same categories as chosen site</

DisplayName>
204 {$result}
205 </Classification>
206
207 }
208
209 (:
210 Finds the ancestors of the classes $classes.
211 If $depth=1 then it finds the parents
212 If $depth=2 then it finds the grandparents
213 etc.
214 :)
215 define function wh:findParentClasses($depth as xs:integer,$classes

as node()*) {
216 (:****
217 for each class in classes find the parentnode of the class
218 if the parentnode is of type "<Class>"
219 then add it to a list of parentclasses
220 else the parent node must be of type "<Classification>" so
221 add the original class to the list of parentclasses
222 ****:)
223 let $parentclasses :=
224 for $class in $classes
225 let $parentnode := $class/parent::*
226 return
227 if(name($parentnode)="Class")
228 then($parentnode)
229 else($class)
230 (:****
231 Make a list of unique parent classes: uniqueparentclasses
232 ****:)
233 let $uniqueparentids := distinct-values($parentclasses/@id)
234 let $uniqueparentclasses :=
235 for $uniqueparentid in $uniqueparentids return ($parentclasses

[@id=$uniqueparentid])[1]

168 Appendix J. XML XQuery Document

236 (:****
237 If $depth>1 then return wh:findParentClasses($depth-1,

uniqueparentclasses)
238 else we shouldn’t go any further up - return uniqueparentclasses
239 ****:)
240 return
241 if($depth>1)
242 then(wh:findParentClasses($depth - 1,$uniqueparentclasses))
243 else($uniqueparentclasses)
244 }
245
246 (:
247 Add prefixes to Class/@id in the list of classes: $classes
248 This is done to ensure unique ids of all classes.
249 :)
250 define function wh:addPrefixToClassIds($prefix as xs:string, $

classes) {
251 for $class in $classes
252 return
253 if(exists($class/@id)) then (
254 <Class id="{concat($prefix,$class/@id)}">
255 {$class/*[name(.)!="Class"]}
256 {wh:addPrefixToClassIds($prefix,$class/Class)}
257 </Class>
258)
259 else (
260 <Class idref="{concat($prefix,$class/@idref)}"/>
261)
262 }
263
264 wh:findSimilar()
265
266]]></Data>
267 </XQuery>
268
269 <XQuery>
270 <Name>advancedsearch</Name>
271 <Data><![CDATA[
272
273 declare namespace wh="WorldHeritage"
274 declare namespace exist="http://exist.sourceforge.net/NS/exist"
275
276 (:
277 The searchdata has the following format:
278 <SearchData>
279 <Entry>
280 <Classification>classificationid</Classification>
281 <Category>cat1</Category>
282 <Category>cat2</Category>
283 ...
284 </Entry>
285 <Entry>
286 ...
287 </Entry>

169

288 ...
289 <Keyword>kw1</Keyword>
290 <Keyword>kw2</Keyword>
291 ...
292 </SearchData>
293 :)
294 define variable $searchdata as node() external
295
296 define variable $classifications as node()+ external
297
298 (:
299 Creates a condition expression based on the $idlist argument. It

should initially be called with
300 1 as $counter argument. The result is on the form: [@id=’1’ or @id

=’2" or ... or @id=’87’]
301 :)
302 define function wh:prepareIds($idlist,$counter as xs:integer) {
303 if($counter=1) then(
304 concat("@id &= ’",string($idlist[1]),"’ ",wh:prepareIds($

idlist,$counter+1))
305)
306 else (
307 if($counter=count($idlist))
308 then (concat("or @id &= ’",string($idlist[$counter]),"’ "))
309 else (concat("or @id &= ’",string($idlist[$counter]),"’ ",

wh:prepareIds($idlist,$counter+1)))
310)
311 }
312
313 (: Returns true when $elem is part of the collection $elemlist.

False otherwise :)
314 define function wh:isIn($elem,$elemlist) {
315 exists(
316 for $subelem in $elemlist
317 where $elem=$subelem return 1
318)
319 }
320
321 (:
322 Prepare a list of keywords for use in the eXist function match-any
323 :)
324 define function wh:prepareKwList($list,$index as xs:integer) {
325 if(count($list)=$index) then(
326 concat("’",string($list[$index]),".*’")
327) else (
328 concat("’",string($list[$index]),".*’,",wh:prepareKwList($list

,$index+1))
329)
330 }
331
332 (:
333 Perform an advanced search using the search data in the global

external
334 parameter $searchdata.

170 Appendix J. XML XQuery Document

335 Only searches the classifications in global external parameter $
classification

336 :)
337 define function wh:advancedSearch() {
338 (:****
339 -- Get all relevant siteids based on the searchdata
340 -- For each keyword, search the database for relevant sites that

matches the keyword.
341 Construct a temporary result on the form:
342 <KeywordSearch>
343 <Keyword>...</Keyword>
344 <Site>...</Site>
345 <Site>...</Site>
346 <KeywordSearch>
347 -- Create a collection of unique siteids
348 -- Create a filtered dataguide result
349 ****:)
350 let $classcollection :=
351 if(not(exists($searchdata/Entry))) then (
352 for $classification in $classifications
353 return
354 <ClassificationEntry>
355 <Classification>{$classification/@id}</Classification>
356 {$classification/Class}
357 </ClassificationEntry>
358)
359 else (
360 for $entry in $searchdata/Entry
361 let $cid := $entry/Classification/text()
362 let $chosencategories := distinct-values($entry/Category)
363 (:let $classcondition := wh:prepareIds($chosencategories

,1):)
364 (:return doc(concat("Classifications:Classification[@id=’

",$cid,"’]//Class[",$classcondition,"]"))/Result/
Class:)

365 return
366 <ClassificationEntry>
367 {$entry/Classification}
368 {$classifications[@id=$cid]//Class[wh:isIn(string(@id)

,$chosencategories)]}
369 </ClassificationEntry>
370)
371 let $siteidcollection := distinct-values($classcollection//

ItemRef/ItemIdref)
372 let $sitecondition := wh:prepareIds($siteidcollection,1)
373 let $kwlist := wh:prepareKwList($searchdata/Keyword,1)
374 let $matchingsites :=
375 doc(concat("DataCollection:/Sites/Site[match-any(.,",$kwlist,"

)]"))/Result/Site
376 let $filteredsites := $matchingsites[wh:isIn(@id,$

siteidcollection)]
377 let $uniquesiteids := $filteredsites/@id
378 let $resultClassification :=
379 <Classification id="advancedsearch">

171

380 <DisplayName>Search results</DisplayName>
381 {
382 for $classification in $classifications
383 return
384 for $class in $classification/Class
385 let $topclasses := $classcollection[Classification=$

classification/@id]/Class
386 let $allclasses := distinct-values(($topclasses,$

topclasses//Class)/@id)
387 return
388 wh:filterClass(
389 $class,
390 $classification,
391 $uniquesiteids,
392 $classification/@id,
393 $allclasses
394)
395 }
396 </Classification>
397
398 (:****
399 Now create the result as a simple list with hitpoint count in

the form:
400 <ResultList>
401 <HitCount></HitCount>
402 <ItemRef>
403 <DisplayName>...</DisplayName>
404 <ItemIdref>...</ItemIdref>
405 <MatchingCats>...</MatchingCats>
406 <MatchingKW>...</MatchingKW>
407 <HitPoints>...</HitPoints>
408 </ItemRef>
409 <ItemRef>
410 ...
411 </ItemRef>
412 ...
413 </ResultList>
414 ****:)
415 let $nestedClasscollection := <Classcollection>{$classcollection

}</Classcollection>
416 let $simpleResultlist :=
417 <ResultList>
418 <HitCount>{count($uniquesiteids)}</HitCount>
419 {
420 for $siteid in $uniquesiteids
421 let $site := ($filteredsites[@id=$siteid])[1]
422 let $existmatches := $site//exist:match
423 let $kwds := distinct-values(for $s in $existmatches return

lower-case($s/text()))
424 let $matchingCats := count($nestedClasscollection//Class[

ItemRef/ItemIdref=$siteid])
425 let $matchingKW := count($kwds)
426 return
427 <ItemRef>

172 Appendix J. XML XQuery Document

428 <DisplayName>{string($site/Name)}</DisplayName>
429 <ItemIdref>{string($siteid)}</ItemIdref>
430 <MatchingCats>{$matchingCats}</MatchingCats>
431 <MatchingKW>{$matchingKW}</MatchingKW>
432 <HitPoints>{$matchingCats + $matchingKW - 1}</HitPoints>
433 {for $kwd in $kwds return <Keyword>{$kwd}</Keyword>}
434 </ItemRef>
435 }
436 </ResultList>
437 return ($resultClassification,$simpleResultlist)
438 }
439
440 (:
441 Helper function for advancedSearch()
442 Remove all subclasses of $class,
443 which does note have an id $classidcollection and
444 which does not contain or has a subclass that contains
445 a site with an id in $siteidcollection
446 :)
447 define function wh:filterClass($class as node(),$classification as

node(),$siteidcollection,$prefix,$classidcollection) {
448 (:Get the type of Class - id or idref :)
449 let $type := if(exists($class/@id)) then("id") else("idref")
450 (:In case of a <Class idref=".."/> element, get the "real" <

Class> element:)
451 let $thisclass :=
452 if($type="id") then(
453 $class
454)
455 else (
456 let $idref := $class/@idref
457 return $classification//Class[@id=$idref]
458)
459 let $subclasses := $thisclass/Class
460 let $filteredSubclasses :=
461 for $subclass in $subclasses return wh:filterClass($subclass,$

classification,$siteidcollection,$prefix,$
classidcollection)

462 let $itemrefs := $thisclass/ItemRef[wh:isIn(ItemIdref,$
siteidcollection)]

463 return (
464 if(
465 (empty($itemrefs) and empty($filteredSubclasses))
466 or
467 (not(wh:isIn($thisclass/@id,$classidcollection)) and empty($

filteredSubclasses))
468)
469 then()
470 else(
471 if($type="idref") then(<Class idref="{concat($prefix,$

thisclass/@id)}"/>)
472 else (
473 <Class id="{concat($prefix,$thisclass/@id)}">
474 {$thisclass/DisplayName}

173

475 {$thisclass/Description}
476 {$thisclass/KeyWords}
477 {$itemrefs}
478 {$filteredSubclasses}
479 </Class>
480)
481)
482)
483 }
484
485 wh:advancedSearch()
486
487]]></Data>
488 </XQuery>
489 <XQuery>
490 <Name>searchclassifications</Name>
491 <Data><![CDATA[
492
493 declare namespace wh="WorldHeritage"
494
495 define variable $classifications as node()+ external
496 define variable $keywords as node()+ external
497
498 (:
499 Prepare a list of keywords for use in the eXist function match-any
500 :)
501 define function wh:prepareKwList($list,$index as xs:integer) {
502 if(count($list)=$index) then(
503 concat("’",string($list[$index]),"’")
504) else (
505 concat("’",string($list[$index]),"’,",wh:prepareKwList($list,$

index+1))
506)
507 }
508
509 (:
510 Adds $prefix to the id in $class and all subclasses to $class.
511 Referenced classes (<Class idref=../>) are replaced by the

referred class
512 :)
513 define function wh:fixClass($class as node(),$prefix as xs:string)

{
514 let $thisclass :=
515 if(exists($class/@id)) then (
516 $class
517)
518 else (
519 ($classifications//Class[@id=$class/@idref])[1]
520)
521 return
522 <Class id="{concat($prefix,$thisclass/@id)}">
523 {$thisclass/*[name()!="Class"]}
524 {for $subclass in $thisclass/Class return wh:fixClass($

subclass,concat("D",$prefix))}

174 Appendix J. XML XQuery Document

525 </Class>
526 }
527
528 (:
529 Search $classifications for categories containing words in $

keywords.
530 :)
531 define function wh:searchClassifications() {
532 <Classification id="advancedsearch">
533 <DisplayName>The following categories matched your keywords</

DisplayName>
534 {
535 let $kwlist := wh:prepareKwList($keywords/text(),1)
536 for $class in doc(concat(
537 "Classifications:/Classification//Class[match-any(

DisplayName,",
538 $kwlist,
539 ") or match-any(Description,",
540 $kwlist,
541 ") or match-any(Keywords,",
542 $kwlist,
543 ")]"
544))/Result/Class
545 return wh:fixClass(
546 <Class id="{concat("X",$class/@id)}">
547 <DisplayName>{string($class/DisplayName)}</DisplayName>
548 <Description>{string($class/Description)}</Description>
549 <Keywords>{string($class/Keywords)}</Keywords>
550 {$class/Class}
551 {$class/ItemRef}
552 </Class>,"")
553 }
554 </Classification>
555 }
556
557 wh:searchClassifications()
558
559]]></Data>
560 </XQuery>
561 <XQuery>
562 <Name>updatecheck</Name>
563 <Data><![CDATA[
564
565 doc("Conf:/UpdateSerialNumber")/Result/UpdateSerialNumber
566
567]]></Data>
568 </XQuery>
569
570 </XQueries>

175

Glossary

Class A category in a classification.
Classification A categorization of some domain expressed in XML.
CLI Command Line Interface - An interface in a textual environment like a shell

or a DOS prompt.
Dataguide Graphical representation of a classification.
EJB Enterprise JavaBean - A java component containing business logic e.g. for

searching database backends for keywords.
Entity Bean A type of EJB that represents a relation in a relational database.
ER Diagram Entity Relation Diagram - A way of describing schemas in relational

databases.
GUI Graphical User Interface - The fancy components with textfields, labels and

so on, this is the opposite of a CLI.
JavaBean A Java class containing data that should be presented to a web client.

JavaBeans are typically the only source of data available in JSP pages, when
using the MVC design pattern. Do not confuse withEnterprise JavaBean.

JNDI Java Naming and Directory Interface - A service for looking up Java objects
based on unique names for these objects – possibly across a network

JSP JavaServer Page - A JSP page is (mostly) responsible for presenting a page to
a user in HTML. The HTML is often generated dynamically. JSP pages are
quite similar to ASP or PHP pages.

MVC Model View Controller - A design pattern often used for Java and J2EE.
Presentation Layer The part of the application that creates a “window” to the

underlying data. In this system the presentation layer is responsible for gen-
erating things like the data-guides and lists of search-results.

RDBMS Relational DataBase Management System - A traditionel database, that
can be queried using SQL.

RMI Remote Method Invocation - The Java answer to RPC.
RPC Remote Procedure Call - A way of calling procedures/methods on a remote

machine without having to take the network into account.
Session BeanA type of EJB that contains business logic.
SGML Standard Generalized Markup Language is a standard for how to specify

a document markup language or tag set.
SQL Structured Query Language - A standard interactive and programming lan-

176 Appendix J. XML XQuery Document

guage for getting information from and updating relational databases.
URI Uniform Resource Identifier - A standard way (defined by W3C) of identify-

ing resources on the Internet.
XML The eXtensible Markup Language

	Introduction
	What is World Heritage
	Detailed Problem Description

	Theory
	Semistructured Data Models
	The eXtensible Markup Language -- XML
	The XML Format
	A Semistructured WH Site
	XML Data Models

	Schemas for Semistructured Data
	Schema formalisms
	Obtaining a schema

	Querying SSD
	Path expressions
	The Generic Query Language
	XPath
	XQuery

	World Heritage Classifications
	Partial Orders and Lattices
	Classifications as Lattices
	Representing Ontologies
	Taking Advantage of Ontologies

	Querying the Classifications
	Searching Marked Categories
	Finding Related Sites
	Finding the Best Match
	Presenting the Query Results

	Summary

	Application Modeling and Design
	System Description
	Specification of the XML Documents
	Modeling Classifications
	Modeling the Site Document
	Generating XML Data from Existing Data
	The Connection from Classification to Data Document

	WH System Model
	Actors
	Use Cases

	WH System Design
	The Model View Controller design pattern
	Design of the WH System
	Introducing XQueries in the Application
	Database Design

	WH System Class Specification
	JavaBeans and JSP Pages
	Front Controller Servlet
	Request Handlers
	Enterprise JavaBeans

	ClassificationDesigner Model
	Actors
	Use Cases

	ClassificationDesigner Design
	Summary

	Implementation and Testing
	Choice of Software
	Choice of Software for the WH System
	Choice of Software for the ClassificationDesigner

	Implementation of the WH System
	Overview of Components in the WH System
	Implementing the Web Archive
	Implementing the EJB Component
	Performance Considerations
	The XQueries
	General Notes About Query Results

	Implementation of the ClassificationDesigner
	Important Notes about the ClassificationDesigner
	Class Description for the ClassificationDesigner

	Tests
	Tests of the WH System
	Test of ClassificationDesigner

	Discussion
	Improvements to the WH System
	Reuse of WH System Components
	Improvements to the ClassificationDesigner
	Relational Back End
	Editing of Data Documents
	Better List Handling

	Conclusion
	XML Document -- CD Catalog
	Schema for the CD Catalog
	Deployment
	Deployment of the WH System
	Deployment of the ClassificationDesigner

	Screen Shots of the WH Web Application
	Welcome Page
	About Page
	Search for Categories
	Result of Search for Categories
	Advanced Search Form
	Advanced Search Result as Dataguide
	Advanced Search Result as List
	Site Information about Kronborg Castle
	Site Information about Roskilde Cathedral
	``Similar Sites'' to Roskilde Cathedral
	Simple Search Form, Showing Help Info
	Result of a Simple Search
	Error Page

	EJB Classes from the WH System
	XPath Performance Tests
	Test Programs for eXist
	Test Programs for Saxon

	Classification Schema
	Database Schema for the Current WH Relational Database
	User Manual for ClassificationDesigner
	Installation
	Making a Sample Classification

	XML XQuery Document
	Glossary

