
An Implementation for Memory Efficient and Data Type

Independent Linear and Planar Procrustes Alignment

Karl Skoglund

Informatics and Mathematical Modelling, Technical University of Denmark

September 8, 2003

Abstract

This document describes a method for performing

one- and two-dimensional Procrustes alignment in

a memory efficient and data type independent man-

ner. The alignment does not change the location,

rotation and scale more than necessary, a desir-

able property in many situations. This also makes

it possible to use the same data type for the result

as for the original data. The methods is efficient

since it only updates a single object vector during

the optimization.

1 Introduction

Procrustes analysis [3, 1, 4] is a well known and of-
ten used technique for e.g. obtaining the pure shape
from a set of objects. Common implementations
follow the algorithms in e.g. [2]. These affect the
location and scale severely by translating all ob-
jects to the origin and normalizing their scale to
unit size. In one and two dimensions, there exists a
simple expression for aligning a shape onto another
(called ordinary Procrustes alignment). This can
be used to avoid alteration of the data or a copy
of the data while calculating the mean. Once the
mean is found, the objects can be aligned. This
introduces few numerical errors and preserves the
overall scale of the objects.

2 Method

Assume that there exists a set of n objects wi,
1 ≤ i ≤ n, of length k in one or two dimensions. In

the linear case, the vectors wi simply consist of real
numbers of some data type. Planar objects are rep-
resented by vectors of complex numbers where the
real and the imaginary part represent the two vari-
ables. Here, the planar case is presented, but the
linear case is similar [5]. The transpose of the com-
plex conjugate operator ∗ is simply changed into
the transpose operator T .

The methods presented here require that the
data is centered, i.e.

w
∗

i 1k = 0, ∀ i (1)

This can be fulfilled by subtracting the centroid, ci,
from each object.

ci = w
∗

i 1k/k (2)

The mean of all such centroids is denoted c̄. This
is equal to the centroid of the estimated mean of
all objects. The centered version of this mean is
denoted w̄,

w̄ =

(

1

n

n
∑

i=1

wi

)

− c̄1k (3)

In [2], a simple expression for aligning an object wi

to the mean w̄ is derived.

w̃i =
w

∗

i w̄

w
∗

i wi

wi (4)

As mentioned before, this equation requires that
all vectors are centered. By use of the centroid of
each object, the alignment can be performed with-
out centering the actual data.

w̃i =
(wi − ci1k)∗w̄

(wi − ci1k)∗(wi − ci1k)
(wi − ci1k) + c̄1k

(5)

1



As always with Procrustes analysis, the problem
is that the true mean is unknown and defined in
terms of the aligned objects. In one and two dimen-
sions, the true mean can be found analytically as
the eigenvector corresponding to the largest eigen-
value of the (complex) sum of squares and products
matrix,

S =

n
∑

i=1

wiw
∗

i

w
∗

i wi

(6)

If the number of variables is small, this method can
be used to find the mean shape and then simply
aligning all objects using equation 5. Usually, the
length of each object vector is large. The matrix
S has size (k × k), and performing an eigenanal-
ysis may be computationally infeasible. The true
mean must then be found by means of a general-

ized Procrustes analysis. This is an iterative pro-
cess where the initial mean estimate w̄ is improved
until it converges to the true mean. Normally the
object vectors have to be standardized and contin-
uously updated during this process. The method
presented here manages to avoid this.

The proposed algorithm proceeds as follows:

1. Compute the centroid ci of each object vector

2. Let w̄ be the first estimate of the mean

3. Align all objects using

w̃i =
(wi − ci1k)∗w̄

(wi − ci1k)∗(wi − ci1k)
(wi−ci1k) (7)

However, the actual objects are not updated.
Instead, the results are added to an empty vec-
tor. This vector is then divided by the number
of objects. This results in a new estimate of
the true mean. The expression for this esti-
mate is

˜̄w =
1

n
(w̃1 + . . . + w̃n) (8)

4. Repeat step 3, aligning the objects to the cur-
rent mean estimate, until a stable solution for
the mean is found.

5. Align all examples using equation 5 to the true
mean.

The algorithm is simple and straightforward. How-
ever, a problem occurs. The new estimate of the

mean often has a different size compared to the for-
mer estimate. This makes the mean drift towards
zero size and the algorithm will not converge. The
scalings of the object vectors found through equa-
tion 7 are optimal for fitting the objects to the cur-
rent mean estimate, but these have to be adjusted
to maintain the scale. The easiest way of doing this
is simply by centering the scales, so that the mean
scale is 1. The updated algorithm is as follows:

1. Compute the centroid ci of each object vector

2. Let w̄ be the first estimate of the mean

3. Compute the scalings si that align the objects
to the current mean estimate,

si =
(wi − ci1k)∗(w̄ − c̄1k)

(wi − ci1k)∗(w − ci1k)
, ∀ i (9)

4. Center the scales around unit scale by

s̃i = si −
1

n

n
∑

j=1

sj + 1, ∀ i (10)

5. Compute the new mean estimate by

˜̄w =
1

n
(s̃1(w1 − c11k) + . . . + s̃n(wn − cn1k))

(11)

6. Iterate step 3-5 until the mean is stable

7. Align all examples using equation 5 to the true
mean.

2.1 Memory Requirements

The algorithm has low memory requirements, ex-
cept for the inevitable space taken up by the orig-
inal object vectors. Two additional object vectors
are required for the calculation of the mean. Con-
vergence is declared when the norm of the difference
between the the new and old estimates falls below
a certain threshold,

‖ ˜̄wnew − ˜̄wold‖ < δ (12)

Another convergence criterion that only requires
the current mean estimate for the calculation would
make it possible to use a single object vector for the
mean.

2



The algorithm also keeps a list of the centroids of
the objects. The memory requirements for this list
is usually tiny, since the number of objects in most
cases is small, especially compared to the length of
the object vectors.

2.2 Data Type Independence

Since the resulting object vectors will be as close
to their original counterpart as possible, the same
data type can be preserved. While writing the re-
sults back to the object vectors, the values must
be clamped to the limits of the data type used to
avoid under- and overflow. Of course, if the data
type is of integer format, the accuracy will be lim-
ited. However, the accuracy is limited already in
the original assignment when using integers.

2.3 Convergence

Since the scaling factors are altered they are no
longer optimal. This gives slower convergence of
this algorithm than for normal Procrustes analysis.
Also, the algorithm may not converge in all situa-
tions, this remains to be proven. Experiments show
that convergence normally can be declared within
3-10 iterations.

3 Applications

Planar Procrustes analysis is often used to align a
set of 2-D shapes, which have each been defined
by a set of landmarks. This method is especially
applicable when preserving the overall scale of the
objects is important.

One-dimensional Procrustes alignment can be
used aligning brightness and contrast in a set of
images. The image intensities of an image are sim-
ply put into a single vector. Note that the extent
and shape of the images must be similar. This
method cannot be used to align a set of images
with differing contents. The same algorithm can be
used to align color images. A separate alignment
is then performed for each color channel. This will
align both color balance and brightness/contrast. If
these properties differ significantly, a multidimen-
sional Procrustes analysis of all color channels at
once may give better results.

Figure 1: Before (top row) and after (bottom row)
comparison.

4 Results

Figure 1 shows six versions of the same image.
The top row contains three examples distorted in
brightness, contrast and color balance. The bottom
row shows the pictures after alignment. The fig-
ure shows that brightness and contrast differences
are filtered out satisfyingly, while small deviations
in color balance still can be seen after alignment.
A multidimensional Procrustes analysis might im-
prove this.

References

[1] J. M. F. Ten Berge. Orthogonal Procrustes ro-
tation for two or more matrices. Psychometrika,
42:267–276, 1977.

[2] Ian L. Dryden and Kanti V. Mardia. Statistical

Shape Analysis. John Wiley & Sons, 1999.

[3] C. Goodall. Procrustes methods in the statisti-
cal analysis of shape. 53(2):285–339, 1991.

[4] J. C. Gower. Generalized Procrustes analysis.
Psychometrika, 40:33–50, 1975.

[5] K. Skoglund. Three-dimensional face modelling
and analysis. Master’s thesis, IMM, Techni-
cal University of Denmark, Richard Petersens
Plads, Building 321, DK-2800 Kgs. Lyngby, Au-
gust 2003.

3


