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Summary

Today many simulation routines concerning railway dynamics employ rather
primitive contact models which are not necessarily suited for the specific
wheel /rail contact problem. The objective of the present thesis is to derive
a more flexible contact model which can be applied on a variety of contact

problems.

When it comes to the modelling of the wheel/rail contact it is always a
compromise between computational speed and accuracy. Many numerical
methods provide a very good accuracy, but since most railway simulations
necessitates the evaluation of many consecutive contact situations the rela-
tive slow computational speed is extremely critical. To avoid this problem

the present model is based on an analytical approach.

The model derived in the thesis is a two-dimensional contact model based
on elastic half spaces. Tt is demonstrated that the solution to a three-
dimensional contact problem with no spin has many similarities with the
two-dimensional solution. Thus, the results obtained with the present model

can qualitatively be extended to the three-dimensional contact problem.
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The thesis 1s divided into two parts: one containing the derivation of the
contact model and one containing examples of application. The model 1s
applied on four different types of contact problems which cannot be treated

with the most common contact models:

e contact between corrugated surfaces
e contact with velocity dependent friction coefficient
e contact between rough surfaces

e non-steady contact

The calculations demonstrate with much clearness that the solution to the
contact problem is very sensitive to the choice of contact model. This il-
lustrates how crucial 1t is to employ an adequate contact model in a given
simulation routine in order to obtain a realistic result. If the assumptions
of the contact model do not fulfill the actual contact situation the result

can be most erroneous and thus misleading.



Resumé

Mange simulations-programmer, der behandler jernbane-dynamiske proble-
mer, anvender relativt primitive kontakt-modeller, der 1kke ngdvendigvis er
velegnede til det pageldende hjul/skinne kontakt-problem. Formalet med
denne afhandling er at udlede en mere fleksible kontakt-model, som kan

anvendes pa en lang raekke kontakt-problemer.

Nar det gaelder modelleringen af hjul/skinne kontakt sker der altid en afve-
jning mellem regne-hastighed og pracision. Mange numeriske metoder
regner med stor praecision, men da de fleste jernbane-dynamiske simula-
tioner kraever at mange pa hinanden fglgende kontakt-problemer bliver lgst,
er den relativt lave regne-hastighed meget kritisk. For at undga dette prob-

lem bygger naervaerende model pa en analytisk metode.

Den model, der udledes 1 afhandlingen, er en to-dimensional kontakt-model
baseret. pa teorien for elastiske halv-rum. Det pavises at lgsningen til et
tre-dimensionalt kontakt-problem uden spin 1 vid udstraekning er lig den

to-dimensionale lgsning. Saledes kan de resultater, der er opnaet med

v
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nerverende model, blive udvidet sa de kvalitativt ogsa gaelder for tre-

dimensional kontakt.

Afhandlingen er opdelt 1 to hovedafsnit: en del der omhandler udledningen
af kontakt-modellen, og en del hvor eksempler pa anvendelse af modellen
bliver gennemgaet. Modellen er anvendt pa fire forskellige typer af kontakt-

problemer, der ikke kan behandles med de seedvanlige kontakt-modeller:

kontakt mellem riflede overflader

kontakt med hastighedsathangig friktions-koefficient
e kontakt mellem ru overflader

ikke-stationaer kontakt

Beregningerne viser med al gnskelig tydelighed at lgsningen til et givet
kontakt-problem er meget fglsomt med hensyn til valget af lgsnings-model.
Dette illustrerer, at det er meget vigtigt at anvende en passende kontakt-
model i et simulations-program for at opna realistiske resultater. Hvis
forudsatningerne for kontakt-modellen 1kke opfylder det faktiske kontakt-
problem, kan resultatet blive yderst fejlagtigt og dermed vildledende.
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Indices

* stick zone

0 time invariant

A cosine term

B sine term

F filter

lin linear

m mode number

mod modified

r rough

R Remington filter

SHE Shen, Hedrick, Elkins

x longitudinal

y lateral

z vertical
Notation

a amplitude

N normalised

s vector, matrix

vector
transposed vector
matrix

mmverted matrix
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Chapter 1

Introduction

The theory of contact mechanics plays an important role in the description
of a large variety of engineering problems e.g. roller bearings, gear wheels
or the rolling deformation of bodies. Tn railway dynamics the contact be-
tween wheel and rail 1s a crucial property: it is via the forces transmitted
through the contact patch that vibrations and wear are generated. Thus, it
is important for the simulations of the railway dynamics to be able to make

a very accurate description of the rolling contact of wheel and rail.

The first known literature on rolling contact is a surprisingly perceptive
paper by Reynolds [61], who formulated some basic ideas concerning the be-
haviour of iron cylinders rolling on rubber surfaces. The paper contains no
calculations and only few experiments and yet Reynolds’ conception of fun-
damental contact mechanical properties is very close to what subsequently

has been verified with experiments and calculations.

1
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By the formulation of the half space theory in the 1880°s a mathematical
foundation for the theory of contact mechanics was introduced. The main
contributors from this period are Boussinesq [4], Cerruti [11] and Hertz
[27] all treating the normal contact problem. Tn the 1920’s the first papers
on two-dimensional tangential contact problem was published by Carter [9]
and Fromm [18]. The two-dimensional tangential contact problem was then
continuously 1mproved until 1958 where Johnson as the first treated the

three-dimensional tangential contact problem [31].

The main contributor to modern rolling contact mechanics is beyond doubt
J.J. Kalker who was the first to apply modern numerical methods to contact
problems. The amount of work made by Kalker is impressive and he has
published a multitude of papers on all sorts of contact problems. A survey
of his principles can be found in his book from 1990 [38]. There is no doubt
that Kalker’s theory applied on certain contact problems yields a very high
degree of accuracy. The drawback of the numerical approach which Kalker
apply is that the computation times are rather high and thus not very well

suited for dynamical simulations.

As Kalker’s theory is known to be exact, people with less insight in the field
of contact mechanics sometimes apply it uncritically also when the assump-
tions of the theory are not fulfilled for the given contact problem. This
results in simulations where important properties of the contact problem

are disregarded, which in worst case can lead to qualitatively wrong results.

The objective of the present work is to derive a flexible contact theory
which can be applied on contact problems not covered by the assumptions
in Kalker’s theory or in other common contact models. The derived model

is then applied on a number of basic contact problems in order to investigate
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how sensitive the solutions are with respect to the properties which often

are neglected in more primitive contact models.

The contact model derived in the present work 1s two-dimensional and based
on elastic half spaces. Tt is obviously a weakness of the model that 1t only is
two-dimensional, but it is demonstrated that the two-dimensional solution
is qualitatively similar to the one for a three-dimensional contact problem
with no spin. Thus, the results obtained with the present model can be
considered also to be an indicator of the behaviour of a three-dimensional

contact problem.

1.1 Outline of the Thesis

The thesis is divided into two parts. In Chapter 2 3 the theory of contact
mechanics 1s introduced and the fundamental problems are described. In
Chapter 4 7 the theory derived in the first part of the thesis is applied on

a variety of contact problems. The contents of each chapter is in brief:

Chapter 2. Contact Mechanics: This serves as a general introduc-
tion to contact mechanics. Some principle problems of contact mechanics
are introduced and a variety of contact models are described. Finally a
new approach to the three-dimensional contact problem based on the two-

dimensional solution is presented.

Chapter 3. A Polynomial Approach: The mathematical foundation

of the new contact model is introduced. The objective of the approach is to
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transform the constitutive equation into an algebraic equation which makes

it possible to calculate the stresses from a given displacement.

Chapter 4. Corrugation: The example of a cylinder rolling on a cor-
rugated surface is investigated using the new contact model. The normal
contact problem and the tangential contact problem are solved. Further-
more the wear in the contact patch is investigated in order to predict the
evolution of the corrugation. Finally the application of contact filters 1s

considered.

Chapter 5. Velocity Dependent Friction Coefficient: The tangen-
tial contact problem is investigated for the case where the friction coefficient
is velocity dependent. The influence on the tangential stress distribution

and the influence on the outline of the creep curve are examined.

Chapter 6. Rough Surfaces: The problem of contact between rough
bodies 1s treated. The influence of the geometry of a roughness asperity 1s
analysed for both the normal contact problem and for the tangential contact
problem. Furthermore the cross influence between adjacent contact patches

1s investigated.

Chapter 7. Non-Steady Two-Dimensional Contact: Here the two-
dimensional non-steady tangential contact problem is investigated. The
oscillations of the tangential stress distribution are analysed and a relation

between tangential force and the creepage i1s derived.
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The thesis is concluded by Chapter 8 where a discussion and conclusion of

the obtained results are carried out.
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Chapter 2

Contact Mechanics

The objective of the present chapter is to outline some of the basic aspects
of contact mechanics. Different approaches to solve contact problems will
be treated with the emphasis on the half space method. Finally a number
of solutions to the normal contact problem and to the tangential contact

problem are described.

2.1 The Basic Problems

The subject of contact mechanics covers a very large variety of problems
concerning the interaction between deformable bodies. Tn order to make
the topic more clear it is divided into smaller groups depending on either

the material of the bodies (e.g. elastic, plastic or viscoelastic contact) or

7
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how the bodies in contact interact (e.g. normal contact, tangential contact,

rolling contact, impact etc.).

In the present work only the case of elastic contact is investigated i.e. it
is assumed that no plastic deformation of the bodies takes place and that
there is no time-dependent behaviour in the materials relationship between
stress and strain. An introduction to inelastic contact can be found in Hill’s
book [28] and a more thorough investigation of viscoelastic rolling contact

can be found in the work of Wang [69].

If 1t furthermore is assumed that the bodies in contact are quasi identi-
cal 1.e. have the same material properties, then the tangential stress does
not influence the normal pressure distribution. This implies that the nor-
mal contact problem can be solved independently of the tangential contact
problem. As both the wheel and the rail are made of steel, the wheel /rail
interaction is a typical quasi identical contact. Tf the bodies in contact have
different material properties an iterative method must be applied e.g. the

Panagiotopoulos process [55].

Tt is presupposed that the wheel and rail interact in a rolling motion. The
bodies must thus always be in contact which implies that no impact occurs.
For some special cases of wheel /rail contact this assumption is not valid e.g.
heavily corrugated rails or sudden flange contact. Still the normal load s
usually sufficiently large to ensure a continuous contact between wheel and

rail, and so the no-impact assumption is in general reasonable.
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2.2 Calculation Methods

There exists numerous different methods to solve contact problems. The
choice of approach is not at all easy because 1t often is a choice between
computational speed and accuracy. The obvious way to solve a contact
problem is to utilize a finite element method (FEM). Dividing the bodies
into a finite number of elements and assume the displacements and stresses
in each element to be of a simple form e.g. constant or linear and then by
putting the elements together by means of some compability relations [71],
the stresses and strains in the bodies are found [48]. The FEM can handle
very complicated geometries with a very high degree of accuracy but is much
to slow to be utilized in connections where numerous consecutive contact

situations must be evaluated.

A much more appropriate approach to the investigation of wheel /rail contact
is the half space method. Tt assumes that the overall contact problem can
be solved just by analysing the contact patch itself. This leads of course to
major simplifications of the solution as the problem then is reduced by one

dimension.

2.3 The Half Space Approach

For wheel /rail contact as well as many other applications the characteristic
dimensions of the bodies in contact are much larger than the size of the
contact patch. When this is the case the contact stresses do not depend on

the shape of the bodies distant from the contact area, and so the bodies
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may be approximated by semi-infinite bodies having plane surfaces i.e. half

spaces.

2.3.1 Elastic Half Space Theory

In order to apply the elastic half space theory it 1s necessary that some basic

properties of the contact are fulfilled:

1. The characteristic sizes of the bodies in contact are large compared to

the size of the contact patch
1. the bodies are smooth
1. strain and stresses are small
iv. The bodies are fully elastic

v. The bodies are homogeneous and isotropic

The restrictions (i) and (ii) ensure that the bodies can be considered as half
spaces. Provided that the strains and stresses are small, the small strain
theory can be applied [64]. The assumption of small strains and stresses is
crucial because the derivation of the constitutive equations is based on the
principle of superposition, which is only valid if the strains and stresses are

hnear.

The aim is now to derive a relation between stresses and displacements i.e.
a constitutive equation. This is done by considering the influence function

g(X,Y,(,n), which should be interpreted as the displacement at the point
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(X,Y) when a point load is acting at ({,n). Because the stresses and strains

can be superposed this leads to the constitutive equation

u(X,Y) = //Q(X7V7C777) q(¢,m) d¢dn (2.1)

where u(X,Y) is the displacement vector and g(X,Y) is the stress vector.
The influence functions for the half space theory were found by Cerruti [11]
and Boussinesq [4] and are listed in Appendix C.

The question is of course whether the half space theory can be applied for
the case of wheel/rail contact. In general the restrictions mentioned above
are fulfilled, but for some special cases the half space approximation may

be too primitive:

1. Flange contact: as the width of a flange 1s of magnitude 30 mm and
the characteristic size of the contact patch 18 approximately 10 mm,

assumption (i) may be violated.

2. Heavily corrugated rails: investigations have shown that the surface
material at the top of a corrugation asperity is harder than the surface

material in a corrugation trough [3]. This implies that assumption (v)

1s not fulfilled.

3. Roughness: when the contact patch due to roughness of the wheel
and rail are divided into numerous small patches, the stresses may be
so large that the material will undergo a plastic deformation. In this

case the assumptions (ii), (iii) and (iv) are violated.

Despite the above listed cases 1t must be emphasized that the half space
approximation considering accuracy and computation time by far i1s the best

approach for most investigations of wheel/rail contact.
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2.3.2 The Normal Contact Problem

The normal contact problem is an overall term for the case of two elas-
tic bodies pressed together under a normal force. The aim is to find the
characteristic properties of the contact such as displacements, pressure dis-

tribution, penetration and size and shape of the resulting contact patch.

Consider two elastic bodies where the shape of the undeformed bodies are
given by the functions 7, (X,Y) and Z3(X,Y). The separation between

them 1s then defined as

As the bodies approach one another the first contact will take place at the
point (Xg,Yy) which is the global minimum of A(X,Y). This point is in the

following referred to as the contact point.

When the bodies are pressed together they will deform around the contact
point and a contact patch S 1s created. The shape and size of the con-
tact patch depend on the geometry of the bodies, the normal load and the

characteristic material constants.

Tf several local minima of the function A(X,Y") lie inside S the contact is
said to be multiple. Tn the case of multiple contact, S can be either coher-
ent, or divided into more separate contact zones. The distinction between
single point contact and multiple point contact 1s important for many appli-
cations. Another way to categorize a contact situation is by distinguishing
between conforming and non-conforming contact. If the bodies have dissim-

lar profiles in the vicinity of the contact point the contact 1s non-conforming
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Figure 2.1. The normal deformation of elastic bodies in contact.

whereas bodies which fit almost together without deformation - 1.e. a con-

cave body and a convex body - are said to be conforming.

Now let 1, (X, V) = 1,1 (X, V) 4+ u.5(X,Y) be the vertical displacement of
material as the bodies are deformed. Then
u (X, YY)+ h(X,V)=6, (X,V)€ES (2.3)
uw (X, YY)+ h(X,V)>48 , (X,V) €S (2.4)
where § = §; + 83 is the penetration (see Figure 2.1). The relation between

the vertical displacements and the normal pressure distribution 1s found

from the constitutive equation of Cerruti-Boussinesq [32]:

_ 200 -vY) p(¢.n)
u (X,Y) = = /[; N DR d¢ dny (2.5)
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where F is the modulus of elasticity and v is the Poisson ratio. The contact
is assumed to be frictionless or quasi identical i.e. the vertical displacements
do not depend on the tangential stress. Tt is assumed that the normal

pressure always 1s zero outside the contact patch so

p(X,Y)£0 & (X,V)eS (2.6)
p(X,Y)=0 & (X,V)¢S (2.7)

The last equation that i1s necessary to solve the normal contact problem
arises from the fact that the normal force is equal to the normal pressure

distribution integrated over the contact patch, i.e.

N:./.Ap(X,Y)dXdY (2.8)

By this the set of equations necessary to solve the normal contact problem
is established. The complexity of the normal contact problem is closely
related to the various types of equations. With one inequality and two
integral equations, the normal contact problem 1s very difficult to solve and
for many applications a numerical approach is the only way to obtain a

solution to the normal contact problem.

2.3.3 The Tangential Contact Problem

Now consider two elastic bodies in contact. Tf a torque is applied to one of
the bodies a tangential force will be transmitted to the other body due to
the friction in the contact patch and the bodies will roll over each other. The
tangential contact problem consists in finding the tangential stress distribu-
tion, the tangential displacements and the relative velocity in the contact

patch.
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Let the motion of the two bodies be defined with respect to a reference

point which coincides with the contact point, and define the linear velocity

of the bodies

V’H
Vz

V’n2
Valt) = § Vi (2.10)
Vio

and the angular velocity

Q.’H
Ql(f) = Qy1
Qz1

(2.11)

Q.’nQ

(2.12)

y2

922

then the relative velocity of the rigid bodies in the contact patch is given as

V’n V’H - V’n2
V(f) = Vy = Vir — Vi (2-13)
Qz Qz1 - 922

Provided the bodies remain in contact, the linear vertical velocity is always

zero and so the mean velocity

1
Vin = §|V1+V2| (2.14)
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is always parallel to the contact plane. The creepage is then defined as the

relative velocity of the rigid bodies normalised with the mean velocity

=1 & t=0-1 1, (2.15)
¥ " Q,

where £ is the longitudinal creepage, £, is the lateral creepage and ¢ is the

spin.

Now introduce a new coordinate system (z,y, z) which moves along with
the contact patch and let w7 (2,y,#) = {u,,u,} be the displacement in
the contact plane. Defining the slip s”(z,y,#) = {s:,s,} as the local,
relative velocity in the contact patch normalised with V,,, then the kinematic

constraints read

Sp(2,y,1) =&, (1) — oty + %um(m, y, 1) — ‘J—m%uT(T, y, 1) (2.16)
o 1 0
syl y,t) =& ) + o(t)ze + a—Tuy(m, y, 1) — V—Euy(m, y, 1) (2.17)

A detailed derivation of the kinematic constraints can be found in [38].

In tangential contact mechanics there is often distinguished between sta-
tionary and non-steady rolling contact. Tf the term with du(x,y,1)/01 is
negligible the tangential contact problem is said to be stationary and the

kinematic constraints are then reduced to

5}

so(,y) = & — oy + zous(r,y) (2.18)
T
5}

sylm,y) =&+ pr + a—ruy(m,y) (2.19)

The omitting of the time derivative of u(2,y,1) leads to major simplifica-
tions in solving the tangential contact problem and for that reason most

contact theories assume stationary contact.
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The contact patch is divided into a stick zone S0 and a slip zone Syp:

s(xz,y,t) = 0
(’777 U) € Sstick - { Q(T7 Y ) (220)
s(x,y,t 0
(,y) € Ssip & (rwt) # (2.21)
14

where 7 (7,y,1) = {qx, g, } is the tangential stress distribution and p is the
friction coefficient according to the friction law of Coulomb. Tt 1s noticed
that the direction of the tangential stress always is opposite the direction

of the slip, 1.e.

{ sz, y,t) -q(e,y,t) < 0
s(z,y,t) g (z,y,t) = 0

} ’ (Tvy) € Sslip (222)

As the displacements tend towards zero as the distance from the contact

patch increases, 1t follows from the kinematic constraints that

lim s (rnt) =& (0) - ety (2.23)
im sy () = () + el (2.24)

The relation between the tangential stress distribution and the tangen-
tial displacements is established from the constitutive equation of Cerruti-

Boussinesq:

u(r,y,1) //qg(%y,cn)q(cn,f) d¢ dn (2.25)

where g(2,y,(,n,1) is the influence matrix with the coefficients

g ey, ¢n) = 2(17;7”) [(1 p,,) + V(mpg C)Q] (2.26)
gia(x,y,¢,n) = 2(171__;71/) [u(ri)%(yn)] (2.27)
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gor(x,y,¢,n) = gia(z,y,(,n) (2.28)

21+0) [(1=v) , vly—n)°

go2(7,y,(m) = (2.29)

mh p p

p=V(r =0+ (y—n)> (2.30)

Tt 1s assumed that the bodies are quasi identical so that the normal pressure

does not influence the tangential displacements.

The last equation that is necessary in order to solve the tangential contact
problem states that the tangential force TT(T,) = {T,, Ty} is equal to the

tangential stress distribution integrated over the entire contact patch:

T(1) = //q (e, y, 1) dx dy (2.31)

As the area of the contact patch is finite, a moment, M, (1) acting about the

normal to the contact plane is generated:

M, (t) = //q lay (2, y,1)x — g2 (2, y,)y] dedy (2.32)

Tn most applications the size of the contact patch is however so small com-
pared to other characteristic sizes that the influence of the moment in the

contact patch can be neglected.

The solution to the tangential contact problem is not unique: for a given
creepage an infinity of tangential stress distributions fulfill the equations
derived in this section. The physical explanation to this apparently non-
physical behaviour is that only the solution that minimizes the tangential
force is stable: all other solutions are unstable and will only occur in a

transition phase.
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2.4 Solutions to the Two-Dimensional Con-

tact Problem

In the theory of contact mechanics a problem is often referred to as two-
dimensional or three-dimensional. The three-dimensional contact problem
handles real bodies whereas the two-dimensional contact problem is reduced
by one degree of freedom so the bodies in contact have a characteristic
cross section which 1s constant in the direction perpendicular to the di-
rection of motion. The most often investigated two-dimensional contact
problem is the one of two infinite cylinders in rolling contact. The omitting
of one dimension is naturally strictly speaking non-physical. Tt is however
a case of interest as the simplification makes it possible to solve certain
contact problems analytically. Furthermore the qualitative behaviour of a
two-dimensional contact problem is in many cases equivalent to the one of

a three-dimensional case as will be demonstrated in section 2.6.

2.4.1 The Hertz Solution

When two infinite cylinders with the radit Ry and Ry are pressed together
under the normal load per unit length N, they deform around the contact
line and a contact strip is created. As the problem is two-dimensional only
a cross section of the cylinders is considered and so the contact line is trans-
formed into a contact point and the contact strip into a line. For historical
reasons this is however still referred to as the contact patch. Assuming that

the radii of the cylinders are much larger than the size of contact patch, the
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shape of the cylinders in the vicinity of the contact point can be approxi-
mated by the second order Taylor expansions
1
Zi(x) ~ —a? 2.33
o)~ (2.33)
1
Zo(z) ~ ——2a” 2.34
(o) (234)
Let the length of the contact patch be 2aq, then the vertical displacement of
material in the contact patch is found from the constitutive equation which
for the two-dimensional case reads:

w = [ Gne - gacra e

—an
where the constant ('j depends on the choice of datum of the displacements.
This implies that the equations (2.3)-(2.4) can only be solved apart, from a
constant. To avoid this unknown constant the two equations are differenti-
ated with respect to x and so 'y disappears and the problem can be solved.
Unfortunately the penetration § is also independent of x and will thus be
removed by the differentiation. Thus, it 1s impossible to find the penetra-
tion for the two-dimensional contact problem. The constitutive equation
derived with respect to x reads

du(z) 41 —v?) / PO e (2.36)

7an’7’37(

de T

and so

Mi/an &dC:%[ZNm)fZQ(I)] , —ag<wm<ap  (2.37)

mH Can & —C
Introducing the equivalent radius R as
1 1 1
- = —+ — 2.38
R Ry + Ry ( )
equation (2.37) is reduced to
41 —v?) [ p(0) x
A==, —a r<a 2.39
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The normal contact problem was first. solved in 1882 by Hertz [27] who

found that the normal pressure distribution is elliptic with

plx) = f_o a — 2%, —ag <z <ap (2.40)
0
= N (2.41)
po = 2(1 —v?)7R ’
8(1 —v?)RN
ay = 8(1 — v*)RN (2.42)
mk

Tt should be noticed that the shape of the two surfaces are represented
linearly in equation (2.37). This implies that geometric properties can be
moved from one body to another and so the case of two cylinders pressed
together can always be transformed into the case of a cylinder with the
equivalent radius R pressed into a level surface (a cylinder with radius equal

infinity).

2.4.2 The Carter Solution

Now apply an axial torque to one of the cylinders from the previous section.
Due to the friction in the contact patch a tangential force will be transmitted
between the bodies and the cylinders will roll over each other. Tet the

relative global velocity of the two cylinders be non zero i.e.

f = VL ((.L)] R1 — (.L)QRQ) (243)

m

where wy and wy are the angular velocities of the cylinders and V,,, is the
mean velocity

1
Vm = 5 |W1R1 + w2R2| (244)
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The kinematic constraint then gives a relation between the slip s(2,1) and

the derivatives of the tangential displacement wu,(z,1)

Oug (1) 1 Qug(x,t)

(o) = €0 + = - (2.45)

where the constitutive equation provides the relation between the tangential
stress distribution and the tangential displacement of the material in the

contact patch:

g (1) :74(1%};2) /“ﬂ g(O)In(x — ) d¢ + Cs(1) (2.46)

—aqg

Analogue to the constitutive equation for the normal contact problem Cy(t)
depends on the choice of datum of the displacements. This implies that
Ou(x,1)/0t can only be found apart from an unknown function, and it is
thus impossible to solve the two-dimensional tangential contact problem for

the non-steady case.

The stationary tangential contact problem for a Hertzian normal pressure
distribution was solved by Carter [9] in 1926 and by Fromm [18] in 1927.
Whereas Fromm succeeded in solving the problem of two-dimensional elas-
ticity without the use of a half space approximation, Carter regarded the
cylinders as elastic half spaces. They both found that the tangential stress
distribution can be calculated as the sum of two ellipses. A new coordinate
system where the transformation between the old coordinates and the new
coordinates 1s given as

*

= x+ag—ap (2.47)

is introduced so that one of the ellipses has its centre in O(2) and the other

in O(z*) as indicated in Figure (2.2).
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Figure 2.2. The Carter solution for the two-dimensional tangential contact

problem.

The tangential stress distribution ¢(z) is then

= q1(7) + q2(27)

q(w) =
BPo. /a2 — 2% | —ag <z <ag
nr)=4q ™ .
0 , otherwise
_ HPo *2 *92 % * *
(o) = | AT <t <af
0 , otherwise

(2.48)

(2.49)

(2.50)
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where the size of af; depends on the size of the contact length and the

magnitude of the creepage
R
fl?‘):flo-F;fo , —pag/R <& <0 (2.51)

By integrating the tangential stress distribution over the entire contact
patch the tangential force is found, and so the creepage and the tangen-

tial force are given as functions of aj:

&0 = = (a5 — ao) (2.52)
N

Ty =55 (af - a7?) (2.53)
"0

The above expressions are only valid for af; < ag which yields the critical
creepage
7/1L_(]’0

gc: R

This is exactly the value for which T'= p /N i.e. where the tangential force 18

(2.54)

equivalent to the tangential force according to the friction law of Coulomb.

Consequently the cases where [£5] > |£.| are referred to as complete sliding.

The classic way to evaluate a tangential contact problem is via a creep
curve, where the tangential force is plotted as a function of the creepage.
The creep curve for the Carter solution is shown in Figure 2.3 where the
creepage 18 normalised with &.. Tt 18 seen that when the size of the creepage
i1s small the tangential force 1s below the Coulomb value u /N, whereas it for a
certain size of the creepage will reach the saturated regime where complete
sliding occurs and the tangential force will then be equal to the Coulomb

value.

If the tangential stress distribution is inserted into the constitutive equation

and into the kinematic constraint the local relative velocity between the
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Figure 2.3. Creep curve for the Carter solution.

bodies 1s found to be

3 2 2 *2 %2 o
,R(\/m ajg \/T (1,0) , r < —ag

0 , —ag < x < 2aj — ag

—ap , o 2af —ag <z <ag

3 2 2 *2 %2
R(\/m ag \/T ”'0) , ag < =¥

(2.55)
This implies that the contact patch is divided into a stick zone with the
length 2af at the leading edge and a slip zone at the trailing edge (Figure 2.1
and Figure 2.4):

Setiek =iz €S| —ag < x < 2a; — ag} (2.56)
Ssiip = {2 € S| 2a), —ag < 2 < ag} (2.57)
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stick zone slip zone

Figure 2.4. TLocal relative velocity for the Carter solution.

It 1s furthermore seen that

lim s(z) =& (2.58)

r—+o0o

which states the obvious property that the local relative velocity between
the cylinders at a position far away from the contact patch is equal to the

global relative velocity.

It can be shown that the magnitude of the creepage only depends on the
position of the small ellipse and that the tangential force only 1s related
to the size of the small ellipse. This implies that there is no correlation
between creepage and tangential force: any position and size of the small
ellipse satisfies the equations for the tangential contact problem as long

as 1t lies inside the big ellipse. As stated in section 2.3.3 this is due to
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Figure 2.5. The Cattaneo solution to the two-dimensional tangential contact
problem.

the fact that only the solution which for a given creepage minimizes the
tangential force is a stable solution to the tangential problem. Tn Appendix
A it is shown that the Carter solution is the only stable solution to the

two-dimensional stationary contact problem.

The Cattaneo solution is a typical example of an instable solution to the
two-dimensional contact problem. Consider two cylinders pressed together
and then shifted in the tangential direction under the application of a sud-
den tangential force. Cattaneo [10] then found that the tangential stress
distribution when the rolling motion starts can be described as the sum of
two ellipses with the same origo but different widths (see Figure 2.5). As

indicated in Appendix A this leads to a situation with zero creepage which
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is obvious because the rolling is about to start. The tangential force is how-
ever different, from zero and thus bigger than the lowest possible force which
is zero as in the Carter solution. Thus, the Cattaneo solution is unstable
and the tangential stress distribution and the creepage will evolve until the
Carter solution 1s reached. The transition from the Cattaneo solution to

the Carter solution has been investigated by Kalker [36].

2.5 Solutions to the Three-Dimensional Con-

tact Problem

In the previous section some analytical solutions to the two-dimensional
contact problem were introduced. Regarding three-dimensional problems
the solutions are much more complicated and cannot be found analytically.
Instead 1t is necessary to apply other methods to deal with the problem.
In the following sections some different approaches are outlined. The pre-
sentation serves as an introduction to the various methods, and only a few
examples are mentioned in each category. A more complete listing of solu-

tions to the three-dimensional contact problem can be found in [38].

2.5.1 Analytical Solutions

As in the two-dimensional case there also exists a three-dimensional Hertz
solution to the normal contact problem. TIf the bodies in contact in the
vicinity of the contact point are non-conforming and can be approximated

by second order polynomials the contact patch will be elliptic and the normal
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pressure distribution will also be elliptic

s={(ryem ‘ 1= (e/a0)” = (w/b0)’] > 0} (2.59)

p(z,y) = po% - (%)2 - (%)2 (2.60)

The expressions for the semi axes ag and by of the contact ellipse and for the

maximum normal pressure pg are very complex. The Hertz solution for the
three-dimensional normal contact problem is nevertheless by far the most
convenient contact model because the elliptic properties make it possible to
describe the normal contact with very few characteristic parameters. The

derivation of the three-dimensional Hertz solution can be found in [32].

Regarding a solution to the stationary tangential contact problem, Kalker
has made an analytical approach. With the assumption that the normal
contact is Hertzian and that the stick zone covers the entire contact patch,
Kalker solved the constitutive equations by assuming the tangential stress
distribution to be on a polynomial form [34]. Tn principle it is possible
to apply an arbitrary high order of the polynomial approximation, but as
the complexity of the calculations explodes with the number of polynomial
coefficients, Kalker restricted himself to a hth order approximation. With

this he found a linear relation between the tangential force and the creepage

E
Totin = — -~ a0hoC r 2.61
x,l1 2(1 —|—1/) anboChi& ( 6 )
E
Ty,lin = —m (Iobo (022€y =+ \/ (10})0023@) (262)

where (71, (99 and (Ca3 are the Kalker creep coefficients which depend on

ag and bg. The creep coefficients are listed in Appendix B.
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2.5.2 Heuristic Solutions

If the two bodies are conforming or the contact is multiple, the Hertzian
theory is no longer valid. Because the theory of Hertz is the foundation of
many methods for the tangential contact problem, it is of major interest to
transform a non-Hertzian contact into an equivalent Hertzian contact, i.e.
to define an elliptic contact which has the same properties as the actual
contact situation. One example of establishing an equivalent contact patch
for a multiple contact was made by Pascal and Sauvage [56]. They calculated
the Hertzian contact for each minimum of (X, V) in the contact patch and
then established the properties of one resulting elliptic contact patch by a

weighted sum of the characteristic properties of the small contact ellipses.

Concerning the tangential contact problem, the disadvantage of Kalker’s lin-
ear theory presented in the previous section is that it is derived for the case
where the stick zone covers the entire contact patch, i.e. for infinite small
creepages. A direct consequence of this assumption is that the tangential
force does not reach a saturated regime and thus violates the friction law
of Coulomb. To compensate for this non-physical behaviour Shen, Hedrick
and Elkins (SHE) have developed a heuristic modification of Kalker’s linear
theory so that the friction law of Coulomb is fulfilled when the creepage 1s

large.

2
Ty,lin

Let, ﬂm =
cording to SHE as

and define the size of the tangential force ac-

2 3
N (Thn) 1 (Thn) + 1 (Thn) :| . T < 3uN
Terp = H [ LN 3\ N 27 \ anN lin & op
uN o Tiin > 3uN
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then the lateral and the longitudinal force components are

T
Ty sAr = Tr,lmﬂ (2.64)
ﬂin
Tswr
Ty sHe = Ty,lin# (2.65)
lin

The theory of SHE is based on the theory of Vermeulen-Johnson [66] but
is still a pure mathematical modification of the linear theory, made in order
to obtain a saturated regime. This implies that SHE is a macroscopic
model which can only be applied to establish a creep curve: it is absolutely
inadequate to use for an evaluation of what happens inside the contact
patch such as finding the slip and the stress or determining the location of

the stick zone and of the slip zone.

The range of validity of SHE is limited. Whereas the theory provides a
very good approximation for pure creepage it is much to inaccurate when
the spin is large. SHE is however a very often used approximation as it 1s
analytical and thus easy to implement and very fast. A modified version of
SHE was introduced by Zhang [70] in order to ameliorate the accuracy for

large spin.

Because SHE is based on the linear theory of Kalker it presupposes a

Hertzian contact patch and a stationary contact.

2.5.83 Numerical Solutions

Because the equations of the half space theory in general are impossible
to solve analytically, a natural approach would be to use numerical meth-

ods based on discretisation of the contact patch. The idea is to divide
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the contact patch into many small surface elements and then assume the
stresses and displacements to be constant within each element. Tn this way
the integral equations from the half space theory are transformed into ma-
trix equations which usually can be solved quite easily. The discretisation
method can be applied for both the normal contact problem and the tan-
gential contact problem, but an often used simplification is to assume the
contact to be Hertzian i.e. the contact patch to be elliptic and then only

utilize the discretisation method for the tangential contact problem.

Divide the contact patch into n surface elements and assume the displace-
ments and stresses inside each element to be constant and acting in the
centre of the contact element. The constitutive equation can then be writ-

ten as

{u} =[Gl{q} (2.66)

{u}" = {u] ul ) (2.67)
{@}" ={dl,d%,...,al} (2.68)
G11 o G1n
[G] = o (2.69)
Gn1 Gnn
G, = / / (i35, ¢, ) dldn (2.70)
J oSS

7

where S; is the jth surface element and (x;,y;) is the centre of the ith
surface element. The vector u;p = {urj, uy; } is the displacement in the
jth element and similarly q;r = {454, qy;} 18 the tangential stress in the jth

element.
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Defining the creepage vector

& — Yj
¢ = 2.72
j {M%} (2.72)

{S}T = {ST,.@;,...,ST} (2.73)

kel

and the slip vector

where s;p = {84;, sy; } then the kinematic constraint for the stationary tan-

gential contact problem reads

{st={&+ %{u} (2.74)

The simplest way to solve this matrix equation is to assume that the stick
zone covers the entire contact patch apart from an infinitely narrow strip
at the trailing edge where a singularity occurs. This set-up is equivalent to

Kalker’s linear theory.

The boundary conditions then yield that the tangential stress is zero atf the
leading edge of the contact patch and that the slip is different from zero
at the trailing edge. Now let the surface elements at the leading edge be
numbered from 1 to nl and the surface elements at the trailing edge be the

ones from (n — nl) to n, then
$;=0,7=1,2...,(n—nl) (2.75)
and the matrix equation (2.74) can be rewritten as

Gy ce Gi i dnit1 &
d

— z R (2.76)

annlj o annl,nfnl q, gn,fnl
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which is solved with respect to the stresses. Finally the tangential force 1s
found as
n
T= Y [qj / / dCdn] (2.77)
iy JJs;

The accuracy of the method depends obviously on the discretisation: the
more surface elements the better is the approximation. Kalker compares in
[34] the creep coefficients C41, (a9 and (a3 calculated with the discretisation
method with the ones from his linear theory. Tt turns out that with a

discretisation of [11 x 8] elements the error varies from 5 — 10%.

The above example demonstrates the fundamental principles of the dis-
cretisation method, but it is not very convenient for practical use since it is
equivalent, to the linear theory which is analytical and thus faster and more
precise. The real application of discretisation methods is for cases where
both a stick zone and a slip zone exist inside the contact patch. This results
of course in an augmentation of unknowns in equation (2.74) as the as-
sumption from equation (2.75) is no longer valid. Even when the boundary
conditions (2.20)-(2.22) are introduced the equation system (2.74) is still
unconstraint. This implies that an infinity of solutions exists just as in the
two-dimensional contact problem. To overcome this problem the potential
energy must be minimized which is done with a variational principle. A

thorough description of this approach can be found in [38].

One of the most common numerical routines to solve contact problems
is CONTACT by Kalker [67], a program which is based on discretisa-
tion of the contact patch and covers a broad range of contact problems.
CONTACT 1is often referred to as the exact theory. This is of course
an exaggeration as it 1s a numerical method, but it is beyond doubt that

the routine is a very powerful tool to investigate half space contacts. The
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drawback of CONTACT is the computation time needed to solve a single
contact problem. As the contact patch must be very fine discretized and
a number of 1terations is needed to solve the variational problem, CON-
TACT is not well suited for investigations which demand many consecutive

contact calculations as railway dynamic simulations or wear calculations.

2.5.4 Tables

A way to avoid the long computation times for the numerical solutions
is to use tables. This approach is based on the numerical solutions, but
instead of solving the contact problem every time, many different contact
situations are solved once and for all and then listed in a large table. To
find the tangential force for a given contact situation it is thus a matter of

interpolation in the table.

The advantage of tables is that the interpolation is much faster than comput-
ing the numerical solution. Of course this demands a large storing capacity,
but that is not a problem with the computers of today. A much more so-
phisticated problem is how to define a given contact situation: it craves for
much generality but yet as few entries as possible. Tt is crucial to utilize ap-
propriate normalisations of the characteristic values in order to incorporate
as many constants as possible. Typical entries of a contact table would be

the sem1 axes of the contact ellipse and the creepage components.

Due to the limited number of entries, the use of tables is only appropriate
for Hertzian contact: the information necessary to determine a non-elliptic
contact patch would demand too many entries. For the same causes the use

of tables 18 restricted to stationary contact. USETAB is an example of a
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contact table. Tt was made by Kalker [39] and is based on CONTACT. To
give an impression of the magnitude of the contact tables, it 18 noted that
the storage capacity needed for USETAB is 4.5 MB. When comparing the
computation speed USETAB is 15.000 times faster than CONTACT.

For some applications the interpolation procedure may cause some numer-
ical problems. Tf the interpolation in the table is linear the values are
represented as piecewise linear functions and are thus non-smooth. If these
values are used for e.g. numerical integration the non-smoothness may re-
sult in convergence problems. This can naturally be prevented by a higher
order of interpolation, but this increases the complexity of the interpolation

procedure and only moves the non-smoothness of the variable one level up.

2.6 A Three-Dimensional Solution Based on

Two-Dimensional Contact Theory

The previous sections clearly indicate that where the two-dimensional con-
tact problem for certain presumptions can be solved analytically, the three-
dimensional contact problem in general must be approached by employing
numerical methods. As the set of equations defining the three-dimensional
contact problem in many ways is similar to the one from the two-dimensional
problem, it is obvious to try to derive a three-dimensional solution by mod-

ifying the solution to the two-dimensional contact problem.
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2.6.1 The Strip Theory

The concept of employing a two-dimensional approach to solve a three-
dimensional contact problem was first introduced by Haines and Ollerton
in 1963 [24] for the case of an elliptic contact patch subjected to a longitu-
dinal traction. By dividing the contact patch into narrow strips parallel to
the rolling direction, they argued that each strip would have a tangential
stress distribution equal to the Carter solution. In the following the basic

equations of the strip theory will be derived.

Let the contact patch be an ellipse with the semi-axes ag and by then the

normal pressure distribution according to Hertz is given as

p(z,y) = po% - (%)2 - (%)2 (2.78)

The length of the contact strip located at the lateral position y = yq 18
then 2a(yo) where a(y) = ag\/1 — (y/bo)?. With this definition the Carter

solution for a contact strip is formulated as

g(x,y) = pp(r,y) — q2(2, y) (2.79)
¢ (2,y) = ﬂ [a(y)]” — 22 (2.80)
go(,y) = & [a* (y)]” — a2 (2.81)

where 2* = [z — a(y) + a*(y)] and a*(y) is half the length of the stick zone
(see Figure 2.6). The two-dimensional constitutive equation applied on a

given strip then yields that

Oy (1, y) 4(1 — v?) upo

or ™ a

[a(y) — a™(y)] (2.82)
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Figure 2.6. Basic concept of the strip theory.

which inserted into the two-dimensional kinematic constraint provides a

relation between a*(y) and the creepage:

*(y) = P e (1)2 (2.83)
@) =ao 41 — v upg o bo o

Tf complete sliding occurs in a strip then a*(y) = 0. This implies that the

stick zone, which is symmetric around the z-axis, is limited to the interval

b =boy/ 1 — €2 (2.84)

and where the normalised creepage ér is defined as

- E
C AT

y € [—b*; b*] where

(2.85)



Chapter 2. Contact Mechanics 39

This definition further implies that complete sliding for the entire contact

patch occurs when 5} = 1.

With a*(y) defined, the tangential stress distribution is given by the equa-
tions (2.79) (2.81). Tntegrating the stress distribution over the entire con-

tact patch the tangential force is found as

b* a*(y)
TV [ [ ) e dy (2.86)
J—b* J—a*(y) agp

which can be solved to
12 - 3~ . -
T, =puN [1— {14+ §ET 1—&2— 5&} arcsin 1—&2 (2.87)

where —1 < é <0.Tf ér < —1 complete sliding occurs and the tangential
force is equal the Coulomb value T, = uN. By this the tangential stress
distribution 1s found plus a relation between tangential force and creepage
is established and so the three-dimensional contact problem is solved for the

case of pure longitudinal traction.

2.6.2 A Modified Strip Theory

The problem with the strip theory is that it is based on the two-dimensional
constitutive equation and thus neglects the cross influence between the stress
distributions in the contact strips. The consequence of this simplification is
obvious when the initial slope of the creep curve is investigated. Kalker’s
linear theory which can be considered to be exact when £ — 0 results in the

initial slope

dT, )
— = ———aphC 2.88
i, - 2 —|—1/)HO oG ( )
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which indicates that the nitial slope depends on 11 and thus on the ratio

aq/bo. As the strip theory provides the slope

L] by ™ (2.89)
T P TE R .

which does not depend on the ratio aqg/bo , the strip theory is in principle
only valid for one shape of the contact patch namely when C1; = 72/4 i.e.
for cases where by > ag. Tt is however possible to modify the strip theory
so 1t 1s valid for all shapes of the contact patch namely by introducing the
modified creepage

€rmod = w& (2.90)
When this new creepage is inserted into equation (2.87) the initial slope of
the creep curve will be equal to the one obtained by Kalker’s linear theory.
In Figure 2.7 the creep curve for the strip theory with the modified creepage
(o) is compared with creep curves obtained with CONTACT (solid line)
and SHE (dashed line). For the stationary contact with Hertzian normal
pressure CONTACT can be considered as an exact solution where SHE
is merely an approximation. It is seen that the strip theory is very close
to the result from CONTACT and more accurate than SHE. Tt must be
empbhasized that the accuracy of the modified strip theory does not depend
on the shape of the contact ellipse. So it can be concluded that for the case
of pure longitudinal traction the modified strip theory provides an analytical

solution which 1s more accurate than SHE.

Another problem with the original strip theory is, that it only considers tan-
gential problems with longitudinal creepage. Kalker has made an approach
to the strip theory where also the lateral creepage and the spin are taken
into account [35], but this leads to very complicated calculations based on

numerical approximations, and so the concept of a three-dimensional theory
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Figure 2.7. Longitudinal tangential force when £, = 0. Solid line: CON-
TACT. Dashed line: SHE. o: modified strip theory.

based on the simplicity of the two-dimensional solution vanishes. The in-
clusion of lateral creepage can be made fairly easily by dividing the contact
problem into two separate problems: one for the longitudinal traction and
one for the lateral traction. Applying the strip theory on both problems the

following expressions are derived:

T 1z -
T’L‘ = /'L]VpL |:1 - (1 + _gg m,od) - gmod o
Po 27" R

3 ~
§€m7m0d arcsin ( 1— ffmod)] (2.91)

Poq 1 52 c
T, = NNP—: [1 — (1 + §€y7m,od) [ Z,mod .

3 - =
§€y7m0d arcsin ( 1— f;ymod)] (2.92)



Chapter 2. Contact Mechanics 42

where the modified creepages are defined from Kalker’s linear theory as

- EC

gm,m,od = 2711 r (293)
72 (1 + v)upos

- FEC

gy,mod = 22 (294)

m2(1 4+ v) ppoy Y

in order to compensate for the neglected cross influence between the contact

strips. The unknown stresses py, and pg, are found from the constraint that

i = P + Poy (2.95)

plus the assumption that the ratio between the initial slope of the creep
curve for T, and the initial slope for the creep curve for T, are identical

with the ratio of the slopes given by Kalker’s linear theory:

Por Ciiér
poy  Caa&y

(2.96)

The resulting creep curves are shown in Figure 2.8 2.9 where they are com-
pared with the creep curves due to CONTACT and with the creep curves
due to SHE.

Again it is noticed that the modified strip theory gives a better approxima-
tion than SHE both when 1t comes to the total traction and for each traction
component. Tt 1s further seen that the creep curve for the total traction is
identical with the creep curve for the case of pure tangential traction (see
Figure 2.8). Thus, the accuracy of the method does not decrease when a

lateral traction component is introduced.
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Figure 2.8. Total tangential force when &, = &,. Solid line: CONTACT.
Dashed line: SHE. o: modified strip theory.

The illustrated tangential problem is calculated for the case £, = &, but
the discrepancies are qualitatively the same for other combinations of &,
and &,, so it must be concluded that for general no-spin contact situations
the modified strip theory 18 a better approximation than SHE. A further
advantage of the strip theory is that it calculates the stick zone which 1s
not the case with SHE. Tt is obviously an approximation but comparisons
with CONTACT indicate that there is a fairly good agreement between the
very accurate calculated stick zone of CONTACT and the one found by the
strip theory.
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Figure 2.9. Components of the tangential force when £, = ¢,.

Top: Longitudinal tangential force. Bottom: Lateral tangential force.

Solid line: CONTACT. Dashed line: SHE. o: modified strip theory.
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2.6.3 The Inclusion of Spin

The main problem when deriving a three-dimensional contact theory based
on the two-dimensional solution arises when the spin must be included.
Where the longitudinal and the lateral creepages are very much comparable
with the creepage from the two-dimensional problem, the spin leads to a
qualitatively different contact situation. When the spin is included in the
contact problem the direction of the relative velocity varies inside the con-
tact patch. As the direction of the tangential stress in the slip zone 18 known
to be opposite the direction of the slip this will lead to very complicated

stress distributions.

From the kinematic constraints it is seen, that a pseudo creepage vector
can be defined as {&, —yp, &, + 2p}T . The spin pole is then defined as the

position where the pseudo creepage is zero:

e = (2.2 (2.97)

e
Now introduce the spin coefficient & as
\Jal + b2
- ”S“L - (2.98)
& 3
(2) + (%)

then the spin pole is located inside the contact patch if @ > 1. Tn Figure 2.10

the global relative velocity inside the contact patch 18 shown for the cases
where (A): & = 0.5 and (B): ® = 2. Tt is seen how the direction of the
relative velocity changes inside the the contact patch when @ is large. For
that reason the strip theory 1s only applicable when ® <« 1 where the
direction of the relative velocity does not change considerably within the

contact patch.
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Figure 2.10. Global relative velocity in the contact patch. (A): small spin
(® =0.5). (B): large spin (® = 2. e: spin pole).

Tt 1s possible to compensate for relative small spins by using Kalker’s linear

theory. This can be done by making the transformation

Cosly  — Coaby + VanboCasp (2.99)

which ensures that the initial slope of the creep curve agrees with Kalker’s
linear theory also for cases where the spin is included. Tt must however be

empbhasized that this modification only holds when the spin is small and it
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does not imply a decaying behaviour of the creep curve which Kalker has

shown is the effect, of large spin [38].

The above derivation of a three-dimensional theory indicates that the qual-
itatively behaviour of the three-dimensional contact problem is closely re-
lated to an equivalent two-dimensional contact problem, when no spin oc-
curs. This fact is very useful as two-dimensional contact problems thus
provide a good understanding of the behaviour of three-dimensional prob-
lems. For this reason the remaining chapters are devoted to two-dimensional

contact theory.
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Chapter 3

A Polynomial Approach

In the present chapter a new approach to the two-dimensional contact
problem is introduced. The objective of the method is to transform the
constitutive equation which is defined as an integral equation into an al-
gebraic equation. By this simplification it 18 possible to solve a variety of
contact problems which do not fulfill the assumptions of the Hertz theory
and of the Carter theory. The fundamental principles of the method will be
explained and some simple examples of the application of the method are

demonstrated.

49
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3.1 An Extended Two-Dimensional Solution

The Hertz solution and the Carter solution are the classic approaches to
the two-dimensional contact problem. They have many advantages but are

only valid under certain assumptions:

1. the bodies in contact can be approximated with second order polyno-

mials in the vicinity of the contact point.
2. the friction law of Coulomb is valid.
3. the bodies in contact are smooth.

4. the contact is stationary.

Now the question arises: how can a two-dimensional contact problem be
solved 1f those restrictions are not fulfilled? One way to overcome this prob-
lem is to employ a boundary element method where the contact patch is
divided into a finite number of surface elements. The program VISCON
developed by Wang [68] is an examples of a boundary element method for
two-dimensional contact. Tt is, however, very difficult to gain an under-
standing of the nature of a contact problem by using numerical methods.
The influence of the various parameters can only be investigated by calcu-
lating numerous examples and then make some conclusions regarding the
behaviour of the problem with respect to the different parameters. This is
a time consuming approach, which may imply that certain properties of the

problem are disregarded.

Instead of treating the contact problem numerically it is sought to derive an

analytical method to solve the contact problem. The advantage of analytical
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methods is that the solution is fast and exact. Furthermore an analytical
solution facilitates the investigation of how the various parameters influence

the contact problem.

3.2 The Basic Idea

The main obstacle in solving a contact problem based on elastic half spaces
is the constitutive equation. If the stresses are given the displacements can
be calculated quite easily, but it is very difficult to derive an expression for
the stresses related to a predefined relative displacement. So the aim of the
polynomial approach is to transform this integral equation into an algebraic
equation for an arbitrary choice of stress distribution or displacement gradi-
ent. When this is done both the normal contact problem and the tangential
contact problem can be expressed as a system of algebraic equations and

are thus easily solved.

3.2.1 Integral Transformation

The relation between the stress and the displacement gradient is given by

the constitutive equation, which is formulated as the integral equation

du, (z) 4(1 — 1/2) /a p(<)
@ (

dr  7F r—)

ac (3.1)

Now assume that the stress distribution can be approximated by a polyno-

mial form:

N n
Zn:(} B” r
2 2

plr) = = =— (3.2)
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where N in the following is referred to as the degree of the polynomial form.
As the size of the contact patch is finite and the order of the polynomial can
be chosen to an arbitrary high degree, this is a quite reasonable assump-
tion. The scope of the present section is to demonstrate that if the stress
distribution can be expressed as a sum of polynomial forms like the one in
equation (3.2) then the displacement gradient in the contact patch will be

a sum of polynomials.

Introduce the polynomial

N
Z B,x"
n=0
where the boundary conditions
N N
> Ba(—a)" = Ba(a)" =0 (3.3)
n=0 n=0

are fulfilled. Tt can then be shown (see Appendix D) that the following

relation exists:

S OB c"
n= (— ﬁmr +740Y Bya" (3.4)
, 0, |rl<a 3.5

The connection between the B, ’s and the (3,,’s 1s described by the matrix

equation

{8} = [A B} (3.6)

{80} ={Bo, B, B2, ..., Bn1} (3.7)
{B:i}" ={B1, B2, Bs, ..., Bn} (3.8)
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[ Ay 0 AL 0 A 0]
0 Ay 0 A 0 ... Anjpy
0 0 Ay 0 A 0
[A] = 0 0 0 Ay 0 ... Anjos (3.9)
0 0 0 0 A 0
0 0 0 0 0 ... A

where the coefficients A, are defined as

B (2k)! ray2k B
Ap = —mis (5) k=012, ... (3.10)

Because the matrix [A] always is nonsingular there exists a unique solution

to the inverse problem
{B1} = [A]""{6o} (3.11)

i.e. that if the 3, s are given, then the B,,’s can be determined from equation

(3.11). The matrix [A]7" is

At 0 AT 0 A L 0
-1 —1 —1
0 Ao 0 A1 0 AN/271
0 0 A" 0 A 0
— —1 —1
[A]7' = 0 0 0 A 0 Ay, (3.12)
0 0 0 0 Al 0
00 0 0 0 .. A

where the coefficients Alj are defined as

_ 1 (2k)! a2k
A1:—7(—) k=0,1,2,... 3.13

o (2k — 1)k \2 ’ (8.13)
Now the question is whether the above solution i1s unique. Tt has been

demonstrated that if the stress distribution has the polynomial form as in



Chapter 3. A Polynomial Approach 54

equation (3.2) then the displacement gradient always will be a polynomial.
But is the inverse problem also unique: will a polynomial displacement

gradient always imply a stress distribution on a polynomial form?

As On_1 = —m By 1t will always be true that if the stress distribution is
a polynomial form of a finite degree, then the displacement gradient will
be a polynomial of one degree lower than the stress distribution. Now let
the displacement gradient be a polynomial of the finite degree (N — 1) and

assume that the stress distribution 1s

pa) = f(@) 3 Bra™ (3.14)

Tt is already known that if f(2) = 1/v/a? — 2? and M = N then the stress
distribution (3.2) is a solution to the inverse problem. Tf there exists another
solution then it can be written as

M m
a(r) SN Bur
2 2

plr) = (3.15)

a- —

Now assume that g(2) is infinitely smooth for —a < 2z < a and thus
can be expressed as a Taylor expansion of order M,. This implies that
(M 4+ M,) = (N —1) i.e. that M, is finite, which ensures that if the dis-
placement gradient is a polynomial of finite degree, then the stress distri-
bution 1s also a polynomial form of a finite degree. This 18 exactly the
class of stress distributions for which the equations (3.6)-(3.13) are valid
and for which a unique solution to the inverse problem exists. With this

argumentation the basic 1dea of the polynomial approach 1s demonstrated:

N n
Zn:(} BnT N d?l,z(l‘

p(r) = a— .

) N-—1
=Y Bnr™ , |z|<a (3.16)
m=0

The polynomial approach is based on comparison of polynomial coefficients.

As the stress distributions or the displacement gradients can be defined in
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several coordinate systems it 1s important to be able to change the base of a
certain polynomial. This 1s done by applying the binomial formulae which

states that if
N
> Golz+d)” Z% (3.17)
n=0

then there 18 a linear relation between the (5,,’s and the 4, ’s

{30} = [D]{Ga} (3.18)

where
(v} = {70,779, - v} (3.19)
{Go} = 1{Go,G1,Go,....GN) (3.20)

and where a matrix element in [D] at the position (7, j) is found as

(",)d-“ >
Dy = ' (3.21)

ij =
0 , <
The matrix [D] is nonsingular for all values of d and can thus be inverted.

The elements in [D]~! are

D' = (~1)7"Dy; (3.22)

27

The last necessary integral transformation 1s related to the integral of the
stress distribution i.e. the evaluation of the force. Let the force be equal the

stress distribution integrated over the entire contact patch:

B i3
Nforer = / ZJ% i (3.23)
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then the force 1s found as

Nforce = 7{A0}T{B0} (324)
{AO}T = {A0707A1707"'7AN/27170} (325)
{Bo}" = {Bo, Bi, Bz, Ba, ..., Bx_1, By} (3.26)

With the above derived transformations of integrals into algebraic equations
it 18 possible to turn the entire contact problem into a set of algebraic equa-
tions, which facilitates the derivation of a solution as it will be demonstrated

in the next section.

3.3 Application of the Theory

The advantage of the polynomial approach is that the displacement gradi-
ents are polynomials with known coefficients. By comparing the coefficients
a few complicated polynomial equations are split into many very simple
equations which are easily solved. TIn the next sections two examples of
the application of the polynomial approach are briefly described: one for a

normal contact problem and one for a tangential contact problem.

3.3.1 Two-Dimensional Non-Hertzian Contact

The Hertz solution to the normal contact problem is only valid if the bodies
in contact can be approximated by second order polynomials. Now assume

that it is necessary to employ a higher order approximation of the separation
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h = Z(X) in order to achieve a satisfying accuracy:
N
Z(X) = IuX" (3.27)

n=0

This expression 1s inserted into the constitutive equation:
N
4(1 — 2 .

n=0 )

mH _ar—C
According to the polynomial approach this implies that the normal pressure

d
dXx

distribution will be a polynomial form of the degree N. Thus the contact
problem contains (N + 3) unknowns: the (N + 1) coefficients from the
polynomial form, the size of half the contact patch, a, plus the position of
the contact patch in the global coordinate system - the centre of the contact
patch 18 not necessarily located at the origo of the coordinate system in

which Z(X) is defined.

The separation between the bodies  Z(2) defined in the local coordinate
system is calculated with the aid of the binomial matrix (equation (3.18))
where d is the position of the centre of the contact patch defined in the

global coordinate system. Thus, 7 () is given as the polynomial

Z(@) =" Tna" (3.29)

where # = X — d. The unknowns a and d plus the coefficients of the
polynomial form are now found from the matrix equation (3.11) where §,, =
(n+ 1)Z,41, from the boundary conditions (equation (3.3)) and from the
relation for the normal force (equation (3.24)). As the coefficients for the
polynomial form are represented linearly in the equation system they can be
substituted directly. This implies that the entire normal contact problem is

reduced to solving two nonlinear equations with the unknowns a and d.
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For some applications it is possible to derive analytical expressions for a
and d whereas it in other cases i1s necessary to apply a numerical method.
With the values from the Hertzian solution as initial guess, an iterative
method will converge in very few steps. Compared with boundary element
methods where an iterative process must be applied within each contact
element the present approach is of course much faster. A further advantage
is that the problem 1s solved without using variational methods which are
very time consuming. The existence of many different values of @ and d as
solutions to the nonlinear equations i1s of course a problem, but provided
the contact patch is coherent the iterative process will converge quickly
towards the real a- and d-values. The other solutions to the equations yield
non-physical stress distributions where the normal pressure in some areas

s negative.

3.3.2 The Tangential Problem for a Two-Dimensional

Non-Hertzian Contact

The Carter solution to the tangential contact problem 1s based on a Hertzian
normal pressure distribution. Tf the normal pressure distribution is non-
Hertzian the Carter solution is no longer valid and the polynomial approach
must then be applied. Tet the normal pressure distribution be

Tk ZN B,x"

P(T) = 4(1 — 1/2) n:207 5

(3.30)

a r

and assume the tangential stress distribution to be the sum of two polyno-

mial forms

0(2) = 41(2) + 4ol (3.31)
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Figure 3.1. The tangential stress distribution according to the polynomial

approach.

B ZN B,x™
umF P n T
q1 (T) = 4(1-v2) \/(’l;f.’r,‘? y Te<r<a (332)
0 ,  otherwise
A
. Zm: B, o™
(]2(7‘*) — 4(‘1“11/2) a*nzim*z ’ 7(]’* < .’If* < (]’* (333)
0 otherwise

)

This is equivalent to the Carter solution but with the ellipses replaced by
polynomial forms (see Figure 3.1). Thus, the contact patch is still assumed
to be divided into a stick zone and a slip zone where the stick zone is located
at the leading edge of the contact patch. The displacement gradients arising

from the two contributions to the tangential stress distribution are found
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from the polynomial approach as:

duy (2)

= —{2MTAB} , —a<z<a (3.34)
dusy (2
% — OTIANBY L a <t < a” (3.35)
with the notation
{2 = {1,227 2V} (3.36)
{27 = {1,207 2%%, M (3.37)

and where the elements in the matrix [A*] are equivalent to those from
the matrix [A] (see equation (3.9)) just with a replaced by a*. With this
inserted into the kinematic constraint where s(2) = 0 as 2 € Sg4j0x a relation

between the polynomial forms and the creepage is established

&0 = 1 ({a"Y AU B Y + {0y (AT BT ) (3.38)

Changing the base of ¢2(2*) this equation is rewritten as

€0 = n ({="Y TAU B} + ="} DA BTY) (3.39)

where d = a — a” in the matrix [D] (see equation (3.18)). Tt follows imme-
diately that the degree of the two polynomials are the same i.e. N = M.
As the creepage is independent of the position # a new matrix equation is

derived

0=[AJ{B} + [DJ[A{Bs} = (3.40)
(B3} = (A7 '[D) A B2} (3.41)
where the indices s denotes that the matrices are sub-matrices where the

first row and the first column are removed. Provided the normal contact

problem is already solved and thus a and the B,,’s are known, the tangential
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contact. problem consists of (N + 2) unknowns: the (N + 1) polynomial
coefficients B} plus the size of the stick zone a*. The matrix equation (3.41)

yields (N — 1) equations and the boundary conditions

N N
Y o Bi(=a) = Bra™ =0 (3.42)
n=0 n=0

provides another two equations. The last equation necessary to solve the

contact problem is derived from equation (3.39) and reads
b= 1 ({0} {B Y + (VT IDIA{ BT (3.43)

where {7} is the unity vector {7}7 = {1,0,0,...,0}. Equivalent to the nor-
mal contact problem the polynomial coefficients can be substituted directly
so that one nonlinear equation with the unknown a* remains. The solution
to this equation can sometimes be found analytically or else with the aid of
an iterative process which converges in very few steps if the Carter value a
1s utilized as initial guess. When a* is found the tangential force is equal to
the sum of the contributions from ¢ (2) and ¢o(2*):

TZ*% ({AY ™ {Ba} +{ASY{B:}) (3.44)

The distribution of the slip is found by inserting the displacement gradients

imto the kinematic constraint:

PONIL T DN
T = T T 7 —a<x

0 , —a<x<2a*—a

20* —a<zx<a

(3.45)
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The above solution to the tangential contact problem 1s only valid if the
contact patch 1s coherent and divided into a stick zone at the leading edge
and a slip zone at the trailing edge. If the contact patch is divided into
several stick zones then the term
sign(a™*)m

/.77*2 _ (],*2

in equation (3.4) must be taken into account, because it will influence the

(3.46)

displacement gradient in the adjacent stick zone. This implies that the
displacement gradients no longer can be evaluated as polynomials of a finite
degree. As the polynomial approach is based on comparison of polynomial
coefficients this will cause the model to break down. Tt 1s however possible
to make a Taylor approximation of the term (3.46) and then utilize the

polynomial approach as will be done in Chapter 6.

Some contact theories assume that the stick zone covers the entire contact
patch i.e. a* = a. With this assumption the number of unknowns in the
system of equations 1s reduced by one and the problem is thus short of

one degree of freedom. Tt is for that reason necessary to neglect on of the

boundary conditions. Normally it is assumed that g(—a) = 0 and so the
restriction
N
> Bra™ =0 (3.47)
n=0

must be ignored. This implies that a singularity occurs at the trailing edge
at the contact patch i.e.

lim ¢(2) = oo (3.48)

r—a
which of course is a violation of the restriction that |¢(z)] < pp(x) unless
the friction coefficient is infinite. For this reason contact theories where the
stick zone covers the entire contact patch is usually referred to as contact

with infinite friction.



Chapter 4

Corrugation

The Hertz solution and the Carter solution are not valid for heavily corru-
gated surfaces. The objective of the present chapter is to demonstrate how
the polynomial approach can be utilized to investigate corrugation phenom-

ena.

4.1 Introduction to Corrugation

A big problem in railway traffic is the corrugation of the rails. Corrugation
appears as short-wave ripples across the surface of the rail which generate
noise and cause discomfort for the passengers. The presence of corrugation
also augment the dynamical load on the tracks which increases the wear

of the rails and the running gear. A high dynamical load also implies a

63
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faster deterioration of the track. The corrugation evolves locally without
any apparent reason and develops amplitudes of magnitudes up to 100 ym

depending on the wave lengths.

It is a common theory that the corrugation can be generated by several
different mechanisms. As the characteristic wave length apparently depends
on the wear mechanism it is convenient to divide the rail corrugation into
several classes depending on the wave length [2] or the wear mechanism
[19]. Tn the latter work by Grassie and Kalousek the wave length fixing
mechanisms are divided into six different groups. Tt is stated that the wear
mechanisms are known for all the groups except the one denoted as short
pitch corrugation. This type of corrugation has a typical wave length which
lies within the range from 0.03 — 0.1 m, and 1is recognized by characteristic
shiny patches on the rail heads, where each patch indicates a trough in the

corrugation pattern.

Because the wear mechanism which causes short pitch corrugation is un-
known, the only way to treat the corrugation problem is to grind the rails,
which is a very time and money consuming process. It is thus of great inter-
est for the railway companies to understand the nature of the corrugation:
how does it evolve and what determines the characteristic wave length and
the growth rate of the corrugation? With the answers to these questions
in hand it will be possible to take measures to prevent the corrugation and
especially to develop a maintenance strategy that minimizes the costs re-
lated to the grinding of the rails without worsening the general quality of

the track surface.

As the corrugation evolves over thousands of train passages it is very difficult

to make experiments in order to investigate the evolution of the corrugation.
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However 1t i1s possible to analyse the existing corrugation on a given rail
and then from the knowledge of the traffic on the site draw some general
conclusions. Such field experiments only make sense if the traffic on the
rails is homogeneous, i.e. on closed systems such as metro lines [1], because
a large diversity in the rolling stock complicates the establishing of a relation
between the wave length of the corrugation and the characteristics of the

traffic on the site.

A much more powerful approach is to employ numerical simulations in the
pursuit of achieving an understanding of the corrugation mechanism. Much
theoretical work has been carried out over the years in order to explain the
phenomenon of corrugation, e.g. [12], [14] and [62]. An overview of the
different approaches are listed in a state of the art review by Knothe and

Grassie [41].

Most of the theoretical models focus on the dynamics of wheel and rail to
explain and describe the formation of corrugation, but make more or less
primitive approximations of the contact mechanics. Surely the dynamics
of the rail and wheel must be taken into account in a complete model,
but in the present chapter it will be shown that a more accurate model of
the contact mechanics itself influences the corrugation heavily and must be

included in the ordinary simulation programs to yield more realistic results.
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4.2 An Infinite Cylinder Rolling on a Corru-
gated Surface

The corrugation model derived in the present chapter is a simplified model
only focusing on the contact mechanics of wheel /rail interaction. The wheel
and rail are thus described as bodies with no mass and thus with no eigen-
modes or eigenfrequencies. The system is furthermore considered to be
two-dimensional, and so the problem of a wheel rolling on a corrugated rail
is transformed into the case of an infinite cylinder rolling on a corrugated
surface. These simplifications will evidently give rise to some discrepancies
between the results of the simulations and what is observed for three-
dimensional contact situations, but as demonstrated in section 2.6 there
are many similarities between a three-dimensional contact problem without,
spin and a two-dimensional problem which ensures that the behaviour of
the two-dimensional model in those cases is qualitatively equivalent to the

behaviour of the three-dimensional model.

4.2.1 The Physical Model

To investigate the influence of pure contact mechanics on the evolution of
corrugation, the two-dimensional case of a cylinder rolling on a surface 1s
examined (see Figure 4.1), where it is assumed that the level of the surface

at any time can be described by a series of harmonic functions

M
Zo(X) =70+ Y [Zam cos(km X) + 7 m sin (kpm X)] (4.1)

m=1
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A
|_)f

Figure 4.1. An infinite cylinder rolling on a corrugated surface.

To simplify the model, 1t is assumed that the entire wear is laid upon the
surface, 1.e. the cross section of the cylinder always will be circular with the
constant radius R. This presumption 1s reasonable as the model is intended

to simulate many wheels running on the same surface.

If the local curvature of the surface is larger than the curvature of the
cylinder a two point contact occurs when the cylinder is located in a trough
of the corrugation pattern. Consequently a sudden shift in the location of
the contact point will occur and the rolling motion is replaced by impacts
between the cylinder and the surface. This is however only the case when
the surface 18 very heavily corrugated and thus of minor interest for the
investigation of the formation of corrugation. Cases where impacts between
the bodies are taken into account can be found in [32]. Thus it is assumed
that the curvature of the cylinder always is much larger than the curvature

of the surface 1.e.

kp,RAJ 73+ 7 <1, m=1,2.. M (4.2)
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The above restriction also ensures that multiple contact 1s avoided which
is a further simplification of the contact problem. Much work has been
carried out to treat the case of multiple contact points, e.g. [56] and [57],
where the configuration of an equivalent contact patch is derived from the
actual contact patches. These approaches may be applicable for general
simulations of the dynamics of a body rolling on a corrugated surface, but
they are not well-suited for investigations of the contact mechanics. The
following sections will demonstrate that the behaviour of the problem is
very strongly related to what happens inside the contact patch, which im-
plies that heuristic approaches provide poor accuracy and may even cause

important properties of the contact problem to be disregarded.

4.2.2 The Normal Contact Problem

Assume that the cylinder rolls along the surface with the constant velocity
V' and with the constant angular velocity ©Q and choose the origo of the
global coordinate system such that the vertical projection of the cylinder
axis has the position X = 0 to the time t = 0. Now define the shape of
the two bodies in a moving coordinate system with origo at the vertical
projection of the cylinder axis on 7s:

Zi(x)=R—\R?>—2? (4.3)

Ta(x) = Z (74 m coslkm(VE+ )]+ 75 msin[kn(VE+2)]]  (4.4)

m=1
Introduce the wave length I, and the local angular velocity w,, as
2

T =
-k

(4.5)

Wi =V (4.6)
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Figure 4.2. Local coordinate systems.

and let the parameter A be the longitudinal shift in the location of the

centre of the contact patch i.e.
relS & —a<zx—A<a (4.7)

where if, is assumed that |A| < a. The definition of A provides that if
A > 0 then the centre of the contact patch 1s located behind the cylinder
axis with respect to the rolling direction. The magnitude of A depends on
the shape of the bodies in the vicinity of the contact point and thus on the

position of the cylinder on the surface.

Now define a new coordinate system where 2z = 2 — A (see Figure 4.2). With

this notation the bodies in contact are described 1n a coordinate system with
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origo in the centre of the contact patch

Zi(x) = R—\/R?> — (v + A)? (4.8)
M
Ta(x) = Z (74 m o8 (Wt + kma + knA)+
m=1

Zgmsin (Wt + kmt + knA)] (4.9)

Making a Taylor expansion of the shape of the bodies, the separation
Z(x) = Zi(x) — Za(x) can be written as

Z(m)_R(% <m;A)2+1§<m;A)4+___)

M 2 4
ke ke
Z A m co8(wmt + kmA) (1 — (k) + (k) — .. ) +

2! 41

m=1

. (k)
Zam 8wt + km A) | —kma + TR +

| (bmt)” (k)"
ZB.m Sin(wmt + kynA) (1 T + e +

kemA) | K (k)"
Z5.m cos(wmt + kpA) | kya — 3 + ... (4.10)

As in the Hertzian case it is presupposed that the size of the contact patch
is much smaller than the radius of the cylinder, which justifies a second

order Taylor approximation of 7 ().

Tt is obvious that k,, x is a critical quantity for the contact problem. Because
x has the same magnitude as a the contact situation 1s described with the
characteristic parameter k,,a which is equal to 27a/L,,. The ratio between
the size of the contact patch and the wave length of the corrugation 1s
thus very important for the contact problem. When 27a/lL,, — 0 the

contact problem can be approximated with the Hertzian solution whereas
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larger ratios implies that more terms in the polynomial approximation of

the surface must be included in order to obtain a satisfactory accuracy.

In the present investigation the complete Taylor expansion is used in the

calculations. At first this is strictly speaking impossible as the degree of the

expansion is infinite, but it turns out that the infinite series eventually can

be substituted by known functions. Tt is noticed that the application of the

infinite series does not provide any problems concerning the magnitude of

the coefficients as they are of the size (k)" /n! which tends towards zero

as n tends towards infinity.

By differentiating 7 (x) with respect to 2 and inserting the result into the

constitutive equation this yields that

d7(x) 41— [°
=S =20 [ B
where the coefficients 3, are
A M
Bo=5+ ; Fern [7 4 m S0 (Wi + ki A) —
- 7Z5.m cos(wmt + kpA)]
: M
b=+ n; 2 (7 am cos(wWmt + km A)+

Z8.m sin(wmt + kmA)]

Mo
By = — Z Q—m (74 m 8in(wmt + kp A)—
m=1 :

7Z8.m cos(wmt + kmA)]

(4.11)

(4.12)

(4.13)

(4.14)
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63:72 7Am(’0<(wm7‘—|—k A+

75 .msin(wmt + k, A)] - (4.15)

M
Bon = (—1)" Z gn! (7 4 m sin(wmt + kpA)—

ZB.m cos(wmt + kpnA)]  (4.16)

M o ponto
ne1 = (—1)7 — 7 A m mt + kp A)+
Bant1 = (—1) Z(2n+1) (7 4 m cos(wmt + )+
Zn.m sin(wmt + knA)] (4.17)
With the aid of the polynomial approach it i1s now possible to express the
normal pressure distribution as the polynomial form

E >, Bnpa”

PO = o e (4.18)

with the coefficients

By = — WAR+Z:1k (7 4 m sin(wmt + kpA)—
: oo k2
78.m cos(wmt + kmA)] ; 1A 2;”) (4.19)
[I— )
By = ) + n; ko [7 4 m cos(wmt + kpm A)+
- o L2i+1
ZBm S0 (@it + kA (1) AT #1)' (4.20)

=0
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M
By =3 km[Zamsin(wmt + knA)—
m=1
i L27+2
Y 1 m,
7B.m cOS(Wmt + kmA)] ; 1A CHE (4.21)
M
B, = — Z b [Z 4 m cOs(wmt + kpmA)+
m=1
i . L27+3
: YA bl m,
7B.m sm(wmt—kkmA)];( 17 A T (4.22)
M
Bon—1 = (=1)""" " ko [Zam sin(wimt + kpm A)—
m=1
0o L 2i+2n—2
ZB.m cos(Wmt + kmA)] Y (—1F A —2 (423
B.m CO8(wml + ki, 72_% J 2j+2n72)!( )
M
Bo, = (71)"’4'1 Z ko [Z 4 m cos(wmt + km A)+
m=1
o0 ) L2 +2n—1
ZBm S0 (Wit + kA (1) AT (4.24)

=~ T2+ 20— 1)

The restriction that p(—a) = p(a) = 0 yields the expression

~ > Bya™ (4.25)
n=1

which can be calculated to

2

e (23

ZB.m S0 (wmt 4+ kA (1) 4

7=0

m [ 4 m cos(wmt + kpmA)+

HM§

2741
k.l

T (4.26)
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and so the coefficients for the polynomial form of the normal pressure distri-
bution are derived. Tt is noticed that they only depend on the two unknown
quantities A and a. Tt is not possible to bring the coefficients on a closed

form but the magnitude of the contribution from each polynomial coefficient

Bpa" ' = 0O (M) (4.27)

n!

1s found to be

Let p,(x) be defined as an approximation of the real normal pressure dis-
tribution p(2) where the infinite series is truncated so it is a polynomial of
degree n, then a measure of the relative error introduced by the truncation

1s defined as

l‘_?l (4.28)

[ p(x) — p, () ] - Bnyia”  kpa
p(x) — ppy1(x)| — Bpa?™! n+1
A result of equation (4.28) is that a large a/ L, ratio demands a high degree
of the Taylor expansion in order to reduce the error introduced by the
truncation. If only a second order approximation is employed the solution
is naturally equal to the Hertz solution. A rule of thumb says that the
Hertzian theory can be applied if @/, < 1/20. With this ratio inserted
into the error estimation from equation (4.28) the relative error is calculated
to be about 10 %. Thus the polynomial approach provides a powerful tool
to estimate the magnitude of the error introduced by applying a truncated
solution to a given contact problem. Tt is further noticed that

Iim B,a” =0 (4.29)

n—r00

which ensures that the expression for the normal pressure distribution con-

verges as n tends towards infinity.

To obtain a solution to the normal contact problem it only remains to derive

some expressions for the unknowns ¢ and A. The boundary conditions
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provide the expression
> Bonpra™ =0 (4.30)
n=0

With the B, ’s inserted, this equation can be rewritten as

M
0=A+ > ki RIo(kma) [Zam sin(wmt + kynA)—

m=1

7 B,m cos(wmt + kynA)] (4.31)

where Jg 1s the Bessel function of the first kind of order 0. The second

necessary equation is established from the expression for the normal force

Tk

v [t e

Inserting the polynomial coefficients in the matrix equation a simple expres-

ston for the normal force N is derived

mH a? M
N = m 3R + n; b aldy (kma) [7 4 m cos(wmt + km A)+

Z5.m Sin(wmt + kynA)] (4.33)

The two equations (4.31) and (4.33) can be solved numerically with the
Hertzian values @ = ag and A = 0 as initial guess. A much more convenient
way to solve the problem is to apply Taylor expansions of the two expressions
about the Hertzian values. The latter approach leads to the closed form

expressions

M
A= kmRIo(kmao) [Za.m sin(wmt) — Zmcos(wmt)]  (4.34)
m=1

M
a=ag— Z b RI1 (kmao) [Z 4 m cos(wmt) + ZB.m sin(wpt)] (4.35)

m=1
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which are excellent approximations as long as the amplitudes of @ and A
are small. Due to the restriction from equation (4.2) this will always be the
case in the present model. Making the substitution w,,t = &k, X the shift
in the location of the centre of the contact patch and the size of half the

contact patch are expressed in the global coordinate system as

M
AX) == kmRIo(kmao) [Za,m sin(km X)—
m=1

Z5.m cos(km X)]  (4.36)

M
a(X) =ay— Y km R (kmao) [Zam cos(km X)+

m=1

Zn.msin(kn, X)) (4.37)

i.e. that when the cylinder axis is located at the position X then the values
for A and a are given by the equations derived above. Tt 18 in the expression
for a(X) assumed that the normal force is constant. Tf the normal force
oscillates and thus can be put on the form

M
N =No+ Y [Namcos(knmX) + Npmsin(knm X)] (4.38)

m=1

then the expression for half the size of the contact patch is rewritten as

M
a = ag+ ;TOOW; [Nam cos(knmX) + Np o sin(kym X)] —

M
> ko BRIy (kma) [Zam cos(km X) + Zp m sin(kn X)) (4.39)
m=1
This expression 1s like the others restricted to small amplitudes of a which
also implies that the amplitude of the normal force is small. The expression
for A remains unchanged as the oscillating normal force in this context is a

secondary effect. Tn the following analysis the normal force is presupposed
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to be constant. The inclusion of an oscillating normal force can easily be
made but it does not result in any changes in the qualitative behaviour of

the contact problem.

By this the normal contact problem for a cylinder rolling on a corrugated
surface is solved. As the characteristic parameters @ and A are expressed
on closed forms it 18 possible to carry out some basic analysis concerning
the contact problem. Tt is important to notice, that the position of the
contact point and the centre of the contact patch are not identical. Tet A,
be the shift in the location of the contact point with respect to the axis of
the cylinder. The contact point i1s then found as the position for which the
tangents of the cylinder and the surface have the same slope, which can be

done by solving the equation

A M
E = > ke [Zam cos[km (VE+ A)]—
R? — A? o

Znmsinlky, (VE+ AL]]  (4.40)

with respect to A.. Applying a Taylor expansion this leads to the solution

M
Ao =" Rkpm[Zamsin(kmX) — Zp m cos(km X)] (4.41)
m=1
which 1s not equivalent to A. Considering a corrugated surface with only

one characteristic wave length, it is noticed that
A= J()((],()]{T)AC (442)

The size of the difference between A and A. is thus depending on the
relative size of half the contact patch. This is quite an evident fact as A, is
a pure geometrical property, independent of the deformation in the contact

patch, whereas A 18 related to both geometry and deformation. From the
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Figure 4.3. The amplitude of the location of the centre of the contact patch

normalised with kR\/Zi 4+ 7,2_-;.

expression (4.42) it is seen that the contact point can be located on one
side of the cylinder axis whereas the centre of the contact patch is on the
other side of the axis. This is due to the asymmetry of the surface: when
the cylinder is on a spike or in a trough, the surface is symmetric around
the axis which implies that the contact point and the centre of the contact
patch are coincident. For all other positions of the cylinder - provided the

surface 1s corrugated - the two points will not be identical. The amplitude

of A normalised with kR+\/7% + 7% is plotted in Figure 4.3.

If the normal force is constant then the size of the contact patch depends
strongly on agk and thus on the ratio ag/7.. The amplitude of @  referred
to as @ normalised with kRm is thus equal to the Bessel func-
tion of first kind order 1 which is shown in Figure 4.4. Tt is seen that for
certain values of aq/I the size of the contact patch will be constant even
though the shape of the surface varies. Similarly a resonance effect will
occur for the ag/7. values for which @ has a local maximum. The global

maximum of the amplitude is obtained for ag/L ~ 0.293 and is found to be

i~ 0.582kR\/7% + 73,
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Figure 4.4. Amplitude of half the size of the contact patch normalised with

kR\/7% + 7.

In Figure 4.5 the normal pressure distribution for different positions of the
cylinder is shown for a corrugation with one distinct wave number k where
k’R Zi 4+ Z% = 0.4 and ag/7. = 0.45. The calculations are made for a
constant normal force and are compared with the Hertzian solution for the
cylinder rolling on a level surface. Tt is clearly seen that the normal pressure
distribution due to the asymmetries at the vicinity of the contact point is
asymmetric itself. This feature turns out to be extremely important for the
solution to the tangential contact problem as demonstrated in the following

section.



Chapter 4. Corrugation 80

(A):Vi=0
1.2 T T T

normal pressure

Z/IL

-1.5  -1.25 -1 -0.75 -05 -0.25 0 0.25 0.5
XIL

0.8
0.6
0.4
0.2

normal pressure

012 | : : : : : : :
01} 1
0.08 | — 1
0.06 - 1
0.04 1
0.02 | 1

ZIL

-1.5  -1.25 -1 -0.75 -05 -0.25 0 0.25 0.5

Figure 4.5. (A)-(B) Normal pressure distribution. Top: stress distribution
calculated with the polynomial approach (solid line) and calculated with
the Hertzian theory (dashed line). Bottom: position of the cylinder.
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Figure 4.5. (C)-(D) Normal pressure distribution. Top: stress distribution
calculated with the polynomial approach (solid line) and calculated with

the Hertzian theory (dashed line). Bottom: position of the cylinder.
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4.2.3 The Tangential Contact Problem

In the previous section the normal contact problem was solved for the case
of an infinite cylinder rolling on a corrugated surface. The objective of the
present section is to derive a solution to the equivalent stationary tangential
contact problem. Tt is naturally a dubious simplification to presuppose the
contact to be stationary, especially for the case of short pitch corrugation
where the wave lengths are so small that the displacement gradients inside
the contact patch certainly are time dependent. The tangential problem 1s
however treated as a stationary contact as this provides a good understand-
ing of the behaviour of the problem. The case of non-steady contact will be

treated in Chapter 7.

As indicated in section 3.3.2 the tangential stress distribution is assumed
to be described as the sum of the two polynomial forms ¢q(2) and ¢o (%),
where ¢y (2) = up(x) and where go(2*) is unknown. From the normal contact
problem it is known that the contribution from ¢;(2) to the displacement

gradient inside the contact patch 1s

dx

dugi(x i n
1():Zﬂﬁnm’ N
n=0

dug(x)  ple+A)
de R

M
+ Z pho [Z 4 m sin(wmt + kma + kyp A)—

m=0

ZB.m coS(wmt + kma + knA)] (4.43)

With this expression inserted into the kinematic constraint

dugy (x) N dugo(x*)

0=
o+ dx dx

(4.44)
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the contribution from ¢o(2™) is calculated as

oo (2,1

m=0

ZBm S0 (kma +wmt)]  (4.45)

which in the #* coordinate system is

Ottgn (27, 1) ¢ ulx* + A*) N
A ST A R e A

ox R
M
Z pho [Z 4 m cos[knp (2" + A") + wnt]+
Zg.m sinlk, (2% + A%) 4+ wpt]] (4.46)
where
A*=A—-—a+a* (4.47)

Thus the displacement gradient can be described by an infinite polynomial

inx*

(]?ITQ Zﬁ* *7, (448)

Because dugs(2)/dx is a polynomial, the polynomial approach can be ap-
plied, i.e. ga(2*) can be expressed as a polynomial form:

prl S Brat

A1 —v?) Jax? — 2 (4.49)

ga(a”) =

Equivalent to the calculation of the B,’s in the normal contact problem,

the coefficients to the polynomial form ga(2*) are found as

& A
* 0 3 *
By = —E + = n; b [7 4 m sin(wimt + kp A™)—
°° k27
Z8.m cOs(wWmt + kAT (—1)7 AT "7' (4.50)

!
j=0 (2)!
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1 M
By =—— km [Z A m cos(wmt + by A™)+
TR = '
i L27+1
78 m S (Wt + kA (1) AT T2 4.51
Bm SN (Wit + ki ; io2j+ 0 (4.51)
M
By =3 km [Zamsin(wmt + kpnA”)—
m=1
i . L27+2
78 m c08(Wmt + kmA” AT 4.52
M
B; Z 74 m cos(wmt + ki AY)+
i . L27+3
78 m S0 (Wit + km A” ) e L. 4.53
M
B3, = ”ka [Z 4 m sin(wmt + by A™)—
m=1
o0 ) 25+ —2
7B m cos(wmt + kpnA® —1 A T (4.54
M
B, = "ka [7 4 m cos(wmt + km A" )+
m=1
oo ) 254201
7B msin(wmt + ky, A* AT ™ (455
The coefficient. By is derived from one of the boundary conditions
(1,*2 (1,* 2 M
By = Rz + <?) Z b [7 4 m cos(wmt + km A™)+
’ m=1
°° 2+
75 m sSin(wmt + ky A™) (—1) 7/4*7 4.56
B.m SIN(wmt + Z @i ( )

=0
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while the other boundary condition yields that

M
A*
&o = % + mz_:o /,Lkme]()(kmfl*) [ZA,m sin(wmt + kmA*)f

7 5.m CO8(wmt + kmA”)] (4.57)

There are obvious similarities between the §,’s and the 5’s and thus also
between the B,’s and the B} ’s. Consequently the considerations from the
previous section regarding the convergence of the coefficients B, and the
error introduced by truncating the infinite series are also valid for the B)’s

in the tangential contact problem.

The only unknown quantity in the above equation is half the size of the stick
zone a™. Tt is not possible to find an exact analytical closed form expression
for a*, but with numerical methods where the af; from the Carter solution
is used as initial guess, a* can be found 1n just a few iterations. Another
approach is to assume the amplitude of a* to be small and then employ a
Taylor expansion of the equation as in the normal contact problem. With

this method the size of the stick zone 1s found as

a* =af — A(X) +a(X) —ag —
M
> ko RIo(kma) [Zam sinfwmt + kn (a — ag)]—

m=0

7 5.m CoS[wmt + ki (af — ao)]] (4.58)

Making the substitution wy,, = k., X and inserting the expressions for A(X)
and a(X) where the normal load is assumed to be constant, the size of half
the stick zone depending on the cylinders position on the surface is expressed

as

M
a*(X) =ay+ Y [k, cos(km X) + a%y.,, sin(kn X)] (4.59)
m=0
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* * *
a a —a A

Am 1,m 2.m A,m

’ m — *,m . m (460)
H’R,m, (I’Q,m, U’Lm, ZR,m,

where the matrix coefficients are
a?m =k R[—J1 (kmao) — Jo(kmap) sin [k, (af — ap)]] (4.61)

al . =k R [Jo(kmag) — Jo(kmay) cos [km (af, — ao)]] (4.62)

,m

Now let the surface be harmonic with only one characteristic wave length I,
i.e. one characteristic wave number k. Tt is seen from equation (4.59) that
the size of the stick zone oscillates with the same wave length as the wave
length of the corrugation. Let a* denote the amplitude of @* and let ¢,« be

the phase of a® with respect to the surface then

it =/ (a) + (0375 + 73 (4.63)

¢q+ = arctan (H—Q) (4.64)

ES
aq

With the use of the polynomial approach it 1s thus possible to establish
analytical expressions for the amplitude and the phase of the oscillating
size of half the stick zone. Tt 1s seen that these properties can be normalised
so they only depend on the ratio r,, defined as

@

Py = -2 (4.65)

agn

and the relative size of the contact patch (ag/L). Tn Figure 4.6 the amplitude
(equation (4.63)) and the phase lag (equation (4.64)) are plotted for various
values of r,, and aq/ 7. Tt is seen that ¢,« is quite sensible to the size of the

T4, Tatio. When r,, = 0.5 1.e. when the stick zone covers half the contact

0

patch, a sudden shift in the phase of a* occurs.
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Figure 4.6. (A)-(C) The size of half the stick zone. Top: amplitude nor-

malised with kR\/7% + 7%. Bottom: phase with respect to Z»(X).
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Figure 4.6. (D)-(F) The size of half the stick zone. Top: amplitude nor-
malised with kR\/7% + 7%. Bottom: phase with respect to Z»(X).



Chapter 4. Corrugation 89

(G): 1oy = 0.7

T T T T

[

o000
ND o
T
1

amplitude a*

o

0 0.2 0.4 0.6 0.8 1
180 T T T T

phase a*

0.8 F A
0.6 | .
0.4 .

02 7
O 1 1 1

180 T T T T

amplitude a*

phase a*

aolL

08 r ]
0.6 - b
04 r b
0.2 - b

180 : : : :
9 | k_/

0 0.2 0.4 0.6 0.8 1
aolL

amplitude a*

phase a*
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Like for the case of the normal pressure distribution it is not possible to
derive a closed form expression for the tangential stress distribution, but an
arbitrary good approximation is found by employing a finite number of the
B} coefficients. Tn Figure 4.7 the tangential stress distribution calculated
with the polynomial approach is compared with the Carter solution for the
cylinder rolling on a level surface. As the tangential stress distribution in
the slip zone is closely related to the normal pressure distribution due to

the friction law of Coulomb, an asymmetry equivalent to the one from the

normal contact problem also appears in the tangential contact problem.

Tt 1s very important to notice that an oscillating behaviour takes place inside
the contact patch both with respect to the size of the stick zone and with
respect to the magnitude of the local tangential stress. This property 1s
important when it comes to wear calculations as the wear only takes place
in the slip zone and depends on the magnitude of the tangential stress. A
thorough investigation of wear phenomena will be carried out in the next

section.
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Figure 4.7. (A)-(B) Tangential stress distribution. Top: stress distribution
calculated with the polynomial approach (solid line) and calculated with
the Carter theory (dashed line). Bottom: position of the cylinder.
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Figure 4.7. (C)-(D) Tangential stress distribution. Top: stress distribution
calculated with the polynomial approach (solid line) and calculated with
the Carter theory (dashed line). Bottom: position of the cylinder.



Chapter 4. Corrugation 93

The tangential force 1s found by integrating the tangential stress distribu-
tion over the entire contact patch. Tt is evident that the contribution from
q1(x) is pN i.e. it is only necessary to integrate ¢o(2*) in order to find the
tangential force. By applying the equation

purk

=
T =Y

{AGY {85} (4.66)
the tangential force is found to be T'= uN + T5:

Tk a*? il
_ e )z ko a* Y (k,,a*)-
4(1y2){23+2 " T1 (kma”)

m=0

T(X) = puN —

(74 m €08 [k (X 4+ A™) + 75 m sin [k (X + A*)]]} (4.67)

When a(X), a*(X) and A(X) are known the tangential force can be cal-
culated in a straightforward way. If the amplitudes of these quantities are
small it is however possible to make a simplification without any appreciable

loss of accuracy. The tangential force is then expressed as

T(X)=To+ > [Tamcos(kmX) + T sin (kpn X)] (4.68)

m=0
A, _ 1, 2, A, (469)
TR,m, L TQ,m, TLm, ZR,m,

where Ty 1s the Carter value and the matrix coefficients are

*

7T/,LE % 7(]’1,777, * *

Tim = mkmao TR Ji (kmajy) cos [k, (af — ao)]] (4.70)
ﬂ-/'LF] * -7(];,771 *\ - *

Tom = mkmao LR + Jy (kmag) sin [k, (af — ao)]] (4.71)

Assuming that the level of the surface i1s harmonic with the characteristic

wave length T., this implies that the amplitude T and the phase ¢r of the
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tangential force are

T =/(TV)" + (Th)°\/ 72 + 7% (4.72)

T
¢r — arctan (%) (4.73)

1

These values are plotted in Figure 4.8 for different values of r,, and aq/1.
It is seen that when r,, is small both the amplitude and the phase are
almost constant when ag/L also is small. When the r,, ratio grows T is
more sensible to the value of aq/I.. The reason for this behaviour lies in
the fact that the size of the stick zone compared with the wave length of
the corrugation is important for the behaviour of the tangential contact

problem.
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Figure 4.8. (A)-(C) The tangential force. Top: amplitude normalised with
V75 4+ 73 urE/(4(1 — v?)). Bottom: phase with respect to 75(X).
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4.3 Wear

Corrugation of rails is a result of a wear process which takes place as the
wheel rolls over the rail. Many different hypotheses have been developed to
explain the wear mechanism. In general wear mechanisms are divided into
two groups: one containing local and sudden wear and one including wear
which develops over a long period of time. The local wear is a result of iso-
lated abnormalities in the wheel /rail interaction such as wheel flats caused
by sudden blocking of the wheel or shelling due to high local temperatures
[45]. Whereas this type of wear is caused by isolated events the long time
wear 1s related to the consecutive rolling motion and occurs without non-
typical events such as wheel blocking or major irregularities of the track.
This implies that the long time wear mechanism will cause the wheel and
the rail to be worn even if the wheel 1s perfectly circular and smooth and

the rail 1s completely level and smooth.

The reason for long time wear can either be rolling contact fatigue, plastic
deformation or material removal in the contact patch. Rolling contact fa-
tigue is a crack generating mechanism caused by the characteristic sequence
of tensile and shear stresses under a rolling load. The rolling contact fatigue
is certainly a long time effect, but as there 18 no apparent relation between
rolling contact fatigue and cracks on one side and corrugation of wheel and
rail on the other side the topic will not be treated in this work. A survey

of rolling contact fatigue can be found in [16].

Plastic deformation is a result of large normal pressures in the contact patch.
Tt is generally accepted that plastic deformation is of minor interest in the
investigation of corrugation phenomena [13]. Tnitially the surface of a newly

ground rail may undergo plastic deformations in a very thin layer at the
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surface, but this will introduce residual stresses which remain after the
normal pressure on the material is relieved. Asthe number of wheel passages
increases, the material will harden as the residual stresses are built up and
eventually the surface of the rail will be sufficiently hard to sustain the
normal pressures without any plastic deformation. This process is often

referred to as a shakedown mechanism [6].

This leaves the removal of material due to frictional work as the major
wear mechanism when it comes to the formation of corrugation. The most
common theory for frictional wear is developed by Frederic [17] and states
that the wear is proportional to the frictional work in the contact patch.
When a wheel rolls over a rail under the influence of a certain torque,
tangential forces are transmitted between the bodies in the contact patch.
As the relative velocity in a part of the contact patch  the slip zone is
different from zero, frictional work is created. Defining the wear W(X) as

the material removed from the surface after one passage of the wheel then

W(X) =

KV / (X, 1)s(X 1) di (4.74)
Js
where K is a material depending constant. For steel K ~ 7.58-107% m?/N.

Many models where calculation of the wheel /rail wear is carried out have
been published e.g. [29], [30] and [65]. Tn most models the wear hypothesis
is simplified such that the integral in equation (4.74) is replaced by the

tangential force multiplied with the creepage:

W(X) =

KT(X)¢| (4.75)

This linearised version of equation (4.74) is however much too primitive
for the case of a cylinder rolling on a corrugated surface. In the previous

section it was shown that even when the amplitude of the tangential force 1s
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very small, the size of the stick zone and the local tangential stress oscillate
with quite a large amplitude (see e.g. Figure 4.6 (B) and Figure 4.8 (B).
Tn those cases the wear calculated with equation (4.75) is almost constant
whereas the actual wear derived from equation (4.74) will oscillate. Tt is
thus necessary to solve the integral in equation (4.74) in order to obtain a

satisfactory evaluation of the wear.

4.3.1 Calculating the Wear

To derive a solution to the integral (4.74) it is convenient to find an expres-
sion for the amount of time an arbitrary point on the surface is located in
the slip zone. Consider a point Xy on the corrugated surface. This point
will be exactly at the leading edge of the contact zone at the time #, for
which

Vig + A(Vig) — a(Vig) = Xy (4.76)

Introducing . as the time when X is located at the limit between the stick
zone and the slip zone and 11 as the time where X 1s located at the trailing

edge of the contact patch (see Figure 4.9) then

Vi, + A(VE) + 20" (V) — a(Vi,) = X, (4.77)

Now let 7 be half the time it takes for X to travel through the contact
patch and similarly let 7* be half the time it takes for the same point to

travel through the stick zone then

(Xo) = = (t — 1o) (4.80)

N — DN
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Figure 4.9. The contact patch passing a point on the surface.
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Assuming the amplitudes of a, A and a* to be small it is possible to make

a first order Taylor expansion of 7 and 7 which gives that

M
r(Xo) = J”VO n mZ::O [74.m €08(km X0) + T m sin (K X0)] (4.81)
m m 0 A m
TA, _ m, A, (4.82)
TB,m 0 T1,m ZR,m,
where
kR .
T m = 7 [Jo(kmao) sin(kmag) + J1 (kmag) cos(kp,ag)] (4.83)
Similarly 7*(Xj) is found as
a’ M
™(Xy) = —704— [Tf\’m cos(km Xo) —|—7';§7m sin(kao)] (4.84)
m=0
Tr\,m, — T1*,m, 77—2*7777, ZA,m, (4 85)
T;-fs’ ,m T;,m, T1*,m, z Bm
where
. km R . “ .
T = Ea [Jo(kmag) [3sin [k, (2a; — ag)] — sin [knao]] +
Ji (kmao) [cos [km (2a5 — ag)] + cos[kmaq]] —
2Jo(kmaj) sin [k, ag]] (4.86)
Tom = oy [Jo(kman) [3cos [km(2ay — ag)] — cos[kmao]]] —
Ji (kmao) [sin [k, (2a5 — ag)] — sin[km,aq]] —
2Jo (kmaf) cos [kmag]] (4.87)

There are obviously strong similarities between a and 7 and between a* and
7. The a and a* represent the size of the contact patch and the size of the

stick zone in space-domain whereby 7 and 7* are the equivalent properties
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in time-domain. Fven though there evidently are points of resemblance
between the quantities in time-domain and in space-domain it is relevant to

focus on some qualitative differences.

Whereas 7 as well as a always will have the same phase as the corrugated
surface, the representation of the stick zone given by a* and 7* has a phase
shift with respect to the corrugation pattern. Tt 18 however worth noticing
that the phases of 7* and a® are not equivalent. This property is a conse-
quence of the fact that ™ depends on the position of the leading edge of the
contact patch at the time 7y and the position of the limit between stick zone
and slip zone at the time t,. Because the size of the stick zone oscillates in
time and 7* depends on two different times the relation between a* and 7*

is quite complicated.

Tn the following calculations it is demonstrated that the ratio 7*(X)/7(X)
is important, for the properties of the wear. Due to the above stated dis-
crepancies between the description in time-domain and in space-domain it

must for that reason be emphasized that

(4.88)

neither with respect to the phase nor with respect to the amplitude.

When the expressions for 7 and ™ are derived 1t 1s possible to solve the
integral in equation (4.74). From the previous sections it follows that the
tangential stress distribution and the slip in the slip zone can be expressed
as polynomial forms and so the wear is expressed as

W(X)=|KV /Tm g(X,t)s(X 1) dt (4.89)

TH(X)=7(X)
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prll 3o Ba(VHIX — Vi — A(X)]”

WX = Va2 (V1) — [X — Vi A(VH)]?

Y om=o Ba(VOIX = Vi = A*(VH)]"
Var (Vi) — [X = Vi — A=(V1)]

s(X,t) = pm

which can be calculated to

W(X) = KVN% (%) F(X)[1 = e (X) = 72(X) + 73(X)]
4.92)
i) = 2 (493)

Presupposing that the amplitudes of a, a* and A are small the expression

for the wear can be approximated by

M
W(X)=Wo+ > [Wamcos(km Xo) + W m sin(km Xo)] (4.94)
m=0
A, _ 1, 2, A, (4.95)
WR,m, WQ,m, WLm, ZR,m,
where
Wo = mﬂ/v%“ (1 vy — 72 73] (4.96)
fe V
Wim = Kp?N =2 [ﬁ* [T+ 200 — 302 ] —

m [1 4+ rin — Qrgn]} +
QRPN [1— vy — 2 473 ]

0

[.11 (ko) — ﬁo} (4.97)

kmV
Wom = Ku’N = 5 [T+ 2rq, — 375 ] (4.98)
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The term Wy represents the global wear of the surface and is thus uninter-
esting when it comes to the investigation of corrugation. Naturally 1t is of
importance to know how the geometry of a cross section of the rail changes
as the number of train passages increases, because a modified shape of the
cross section influences on the contact geometry, but this effect is neglected
in the present investigation. Tt is however noted that W; and thus the
global wear does not depend on the initial corrugation pattern and is there-

fore equal to the expression for the wear arising from the Carter solution.

4.4 Evolution of the Corrugation

When the cylinder rolls over the surface a certain amount of material 18
removed from the surface. The height of the material removed at a given
position on the surface is denoted the wear. The wear in itself is of limited
interest as it is small compared to the characteristic size of the corrugation
on the surface. As the number of cylinder passages increases the shape of the
surface will slowly undergo an evolution from the initial corrugation pattern
to another surface geometry. This evolution of the corrugation is crucial
in wheel /rail wear because an adequate maintenance strategy depends on
how fast the corrugation grows. The present section treats the subject of
numerous consecutive cylinder passages and thus the evolution of an initial

corrugation.

From equation (4.94) it is seen that one distinct wave length of the corru-
gation results in exactly the same wave length in the wear. The amplitudes
and phases are different, but the wave lengths are identical. This property

implies that there is no cross influence between the different wave lengths
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and so the problem of a corrugated surface with several characteristic wave
lengths can be solved by calculating the wear for each wave length and then
adding these results, provided that the component W is included only once.
Thus, to simplify the calculations it 1s assumed that the surface is harmonic

with one distinct wave length.

With the wear defined as the height of the material removed as the cylinder
rolls over the surface, it 1s obvious that the shape of the surface after one

passage of the cylinder is equal the old surface minus the wear:
28 (x) = 280 () - Wi () (4.99)

where the high indices refer to the number of cylinder passages. As the

initial surface and the wear are given by

73 (x) = 71 cos(kX) + 710 sin(k X) (4.100)
Wi (x) = Wi cos(kX) + Wi sin(kX) (4.101)

the shape of the new surface is

72 (x) = (Zj“"" - Wj“‘f) cos(kX) + (Z,{;} - W,i“}) sin(kX) =

73 (x) = 78 cos(kX) + 75 sin(kX) (4.102)
In the previous section it was found that W, and Wg depend linearly on
74 and Zp with the coefficients W, and W5. Because Wy and W5 do not
depend on the amplitude of the surface they are constant even when the

shape of the surface changes as the number of cylinder passages increases.

Due to this fact it is possible to find the surface coefficients after one passage

{n}
ZA
4.103
Ui o

of the cylinder via the discrete mapping

Z0TL [row wy
P25 (R (RS 1A 78
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With the above discrete mapping it is possible to calculate the shape of
the surface after each passage of the cylinder in a straight forward ana-
lytical way. Thus time consuming integrations or space stepping methods
are replaced by algebraic expressions, which makes the present approach
extremely fast. As the method includes the oscillating behaviour inside
the contact patch in contradiction to many other approaches it is also able
to monitor effects that more primitive methods disregard. Tt must be em-
phasized that all the calculations presuppose that the amplitude of the
corrugation 1s small compared to the wave length and the radius of the
cylinder, but this 1s always fulfilled when it comes to the evolution of a very

slight, corrugation.

4.4.1 Stability of the Corrugation

The fact that the corrugation can be calculated by analytical closed forms
makes 1t possible to derive some qualitative properties concerning the evolu-
tion of an initial corrugation. From the discrete mapping (4.103) it is found
that the amplitude of the surface after one passage of the cylinder can be

described by the former surface configuration as

¢(zj”'+”)2 + (Z,{;’*”’)2 = m¢(zj”})2 + (Z,{;"‘f)2 (4.104)

which can be generalised to

¢(Zin+1})2 i (Z’{%n+1})2 — (1 2W1)"2” ¢(210})2 n (Z’{;})Q

(4.105)

This means that the growth rate of the corrugation only depends on the

absolute value of (1 — 2WW7): if this term is smaller than 1 any initial am-

plitude will be levelled out whereas the amplitude grows exponentially if
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(1 —2W7) > 1. As |[W;| <« 1 this criteria of stability can be formulated as:

Wiy >0 < the corrugation is levelled out
Wy =0 <& the corrugation is constant (4.106)
Wy <0 <& the corrugation is amplified

Tt is important to notice that the wear component W5 does not influence the
growth rate of the corrugation even though it contributes to the magnitude
of the wear amplitude. This illustrates the fact that the magnitude of the
wear alone is not important for the evolution of the corrugation: it is the
magnitude and the phase of the wear which 1s important. If the phase of the
wear 1s such that it has its maximum on a corrugation spike the corrugation
levels out whereas a maximum wear located at the position of a corrugation

trough causes the corrugation to evolve very fast.

4.4.2 Amplifying and Levelling Zones

From the stability criteria (4.106) it is seen that W; is crucial for the evo-
lution of the corrugation: this quantity determines the stability and the
growth rate of the corrugation. A typical outline of Wy is given in Figure
4.10. For a given r, -value the outline of Wy will always be qualitatively
equivalent to the one monitored in Figure 4.10 with only one critical I./ag
ratio for which (1 —2W;) = 0. This is the limit of stability i.e. surface irreg-
ularities with I./aq ratios smaller than this value are levelled out while the
corrugation is amplified if the I./aq value is above the critical value. Fur-
thermore it is seen that (1 — 2W;) tends towards 17 for lTong wave lengths.
This states that if the wave length of the corrugation is large compared with

ag then the amplitude of the corrugation 1s unaffected by the wear.
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Figure 4.10. The wear coefficient, (1 — 2W7) for r,, = 0.6

Because Wy only depends on the relative size of the contact patch and the
relative size of the stick zone it s possible to monitor the critical wave length
in a (af/ap, I./ag)-diagram as done in Figure 4.11. The line indicates the
(ag/an, L/ag)-values for which Wy = 0. For all the combinations of aj/aqg
and I./aq lying above this line W; < 0, which result in an amplification of
the corresponding corrugation. Similarly values of a}/aq and I /ag located

below the line imply that the corrugation 1s levelled out.

In Figure 4.12 the qualitative evolution of a corrugated surface is shown.
The initial surface corrugation consists of two wave lengths 7.1 and 1.5 where

I1 lies in the levelling zone and I in the amplifying zone. The amplitude
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Figure 4.11. The smallest possible wave length for the corrugation

related to 77 is initially 10 times bigger than the amplitude for the contri-

bution from lo:

7(X) = 7171 () + 715 (%) (4.107)
71 (x) =10 [Zj“"" cos(ky X) + 7% sin(k, X)} (4.108)
7% (x) = {Zﬁ{”’ cos(kaX) + 7800 Sin(kQX)} (4.109)

ie. Zi?}()() is dominating the initial surface. As the corrugation evolves
the wear will cause Zi?}()() to be levelled out whereas Ziz}()() is becoming
more and more dominant. After a while the initial surface corrugation has
completely vanished and is replaced by a corrugation pattern with another

distinct wave length.
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EVOLUTION OF CORRUGATIONS

XLy

Figure 4.12. The qualitative evolution of corrugation

4.4.3 Characteristic Wave Length

Tt was in the previous section demonstrated how certain wave lengths will
be amplified and other wave lengths will be levelled out. Now the question
is whether one distinct wave length will evolve from an arbitrary surface
configuration. Tn Figure 4.10 it was demonstrated that if af/ag is constant
then (1—2W) has a maximum for a certain L/ag-value. At first this maxi-
mum does not seem to be very dramatic, but because the wear rate is given
as (1—2W, )% a very distinct peak in the frequency spectra will grow up as
the number of cylinder passages increases. So this relative wave length will
be dominating the corrugation, which explains why a certain corrugation

pattern usually evolves with one and only one distinct wave length. This
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Figure 4.13. The evolution of surface regularities represented by white noise.
Top: Tevel of the surface. Bottom: Spectrum of the surface. Dashed line:
initial surface. Solid line: surface after a number of cylinder passages.

effect is seen in Figure 4.13 where the initial surface corrugation is repre-
sented by white noise. After a number of cylinder passages a corrugation
pattern with one dominating wave length has evolved. The wear mechanism

operates thus as a filter on the initial surface corrugation.

The filtering effect 1s a crucial feature for the evolution of the corrugation.
In general the initial amplitudes of the surface irregularities are not impor-
tant for the evolution of the corrugation. As the growth of the corrugation
is exponential, the wave length of a surface component is far more impor-
tant than the amplitude. Tn practice all wave lengths are to some extend

represented on the surface of a rail, and so a certain wave length will emerge
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Figure 4.14. The characteristic wave lengths for which the corrugation 1s
most likely to develop

without any apparent reason even though it is not very strongly represented

in the initial wheel /rail system.

The characteristic wave length depends on the ratio aj/ag and thus on the
magnitude of the creepage. So if the creepage changes, the characteristic
wave length of the corrugation will change. Tn Figure 4.14 the characteristic
wave length is shown for different r, -values. The line indicates the parame-
ter combinations for which (1 —2W7) has its local maximum. Tt is seen that
the I/ag-ratio for the characteristic wave length approximately lies in the
range from 5-10. Tn wheel/rail contact the typical size of ag is somewhere
between 5 mm and 10 mm, which thus provides a characteristic wave length
in the interval 0.025 0.1 m. This fits very well with the observed wave
lengths for short, pitch corrugation [19].
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The above analysis is made for the case where af and aq are constant for
all the passages of the cylinder. In reality this assumption is only valid
for closed line systems where the traffic is homogeneous. On railway lines
with a large diversity in the traffic the size of the contact patch and the
magnitude of the creepage depends on the type of the rolling stock. As the
principle of superposition 1s valid the resulting wear rate after n passages 1s

calculated as

ICDRICDE

el a;{j}

ﬁ l1 — ( T )] w(Zimﬁ)Q + (71{30})2 (4.110)

7=1

{7} {3}

where a5’ and a; refer to the contact parameters for the j’th passage.
Because the qualitative behaviour of (1 —2W;) is unique, the resulting wear
rate for a situation with many different types of rolling stock will in general
have a similar behaviour i.e. an amplifying zone and a levelling zone plus

one distinct wave length.

4.4.4 Moving Corrugation

A result of the changing phase of the wear is that the corrugation has a
tendency to move along the surface. If the maximum wear is located on the
downhill side of the corrugation spikes the corrugation pattern will move
in the opposite direction of the cylinder whereas a maximum wear on the
uphill side results in a corrugation pattern moving in the same direction as

the cylinder. When the maximum of the wear 1s located in the corrugation



Chapter 4. Corrugation 115

10 T T T T T T T T T

phase increases

L/ ap

phase decreases

0 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
a*olao

Figure 4.15. The limit between increasing and decreasing phase of the
corrugation.

troughs or at the corrugation spikes the corrugation pattern will remain at

the same position as the mnitial corrugation.

The phase of the surface is represented by 75 /7. From the discrete map-

ping in equation (4.103) a relation for the evolution of the phase is derived

as
{n+1} {n} {n} 2]
7 7 7
ey CRRLCE Ll Sy (4.111)
7 7 |\

This expressions demonstrates that it is the sign of W5 which is determining
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EVOLUTION OF CORRUGATION

XIL

Figure 4.16. Corrugation moving along the surface.

the evolution of the phase of the corrugation pattern:

Ws >0 < the phase decreases
Wy =0 < the phase is constant, (4.112)
Wy <0 < the phase increases

In Figure 4.15 the values for which W5 = 0 are plotted. For the values
situated to the left or below of this line the phase of the corrugation will
be decreasing while the values above or to the right of the line results in an
increasing phase. Tt must be noticed that while the expression for the growth
rate is exponential (equation (4.105)) the expression for the change of phase
is additive. This implies that the phenomenon of moving corrugation often
is suppressed by the growth of the amplitude. Tn the regions where Wy 1s

close to zero and thus the growth rate is very small the change of phase,
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however, will be quite distinct. An example of a moving corrugation 1s

shown in Figure 4.16.

4.5 Contact Filters

The previous sections demonstrate that the size of the contact patch and
the size of the stick zone relative to the wave length of the corrugation are
crucial parameters in order to determine the qualitative behaviour of the
wear. The fact that the size of the contact patch acts like a mechanical
filter on the surface irregularities is quite obvious: the finite size of the
contact patch implies that the cylinder is not able to sense irregularities
with relative small wave lengths. Many contact theories try to take this
property into account by applying a filter on the surface irregularities. One
of the most frequently used filters is suggested by Remington [60] who has

introduced a contact filter for a rectangular contact patch:

I 9ma
Fr = sin ( ”f“”) (4.113)

2mag

This filter is not, directly applicable for all problems as it for certain aq/ -
values 1s negative. This implies e.g. for a wear problem that material
is added to the surface instead of being removed as the cylinder passes
by. To avoid this apparent non-physical behaviour Hempelmann [26] has
introduced a modified Remington contact filter where negative values do

not occur:

1
1 +5.32(%)” 46 (%) —1.984 (%2)°

Fru (4.114)

The two contact filters are monitored in Figure 4.17.
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Figure 4.17. Contact filters. Dashed line: the Remington filter Fg.
line: the modified Remington filter Fras.

4.5.1

nomial Approach

Solid

The Remington Filter Compared with The Poly-

The problem with the Remington filter both in its original version and in

the modified version is that it only depends on the ratio aq//.. This is a

critical simplification as the results from the previous sections demonstrate

that also the ratio r,, = a}/ag influences the characteristic behaviour of

the problem. The qualitative discrepancies between solutions obtained by

applying the Remington filter and the solutions derived with the polynomial

approach can be illustrated by considering a modified version of the Carter

solution.
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Consider the problem of a cylinder with the radius Rq rolling on the corru-

gated surface

Z9(X) = Zacos(kX) + Zgsin(kX) (4.115)

When the local curvature of the surface is taken into account this yields

that the equivalent radius of the contact problem can be approximated by
Requ(X) = R— (Rk)’ [Za cos(kX) + Zp sin(kX)] (4.116)

Now apply the Remington filter to the surface irregularities and insert the
equivalent radius into the Hertz solution and into the Carter solution, then

the following characteristic parameters for the contact problem are derived
1
ap(X) = ag — §k2a0R[ZA cos(kX) + Zpsin(kX)] Fr(kag) (4.117)

ap(X) = ap + %kQaORU — 2r4,) -

(74 cos(kX) + Zgsin(kX)] Fr(kao) (4.118)
Trp(X) = puN [1 =72 +k>Rra, (1 —ra,) -

(74 cos(kX) + Zgsin(kX)] Fr(kao)] (4.119)

The first thing to notice is that the above derived modified version of the
Carter solution still results in a contact patch with a centre which is exactly
located on the vertical projection of the cylinder axis i.e. A(X) =0V X. Tt
is possible to correct for this error by assuming that the centre of the contact
patch is located at the contact point, but as demonstrated in section 4.2.2

this assumption is also erroneous.

When 1t comes to the size of the contact patch the solution with the filter 1s
quite acceptable. The phase with respect to the surface is constant for both
the filter solution and for the polynomial approach. For the amplitudes of

the contact patch the calculations yield that the relative error committed
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by applying the Remington filter is

oy o (%)) (4.120)

Tt is seen that for small aq//. ratios the filter solution provides a good

accuracy, but the error grows quadraticly in aq/7 and so an aq//]. ratio of
0.25 results in an error of 10 %. Tn general it must however be concluded
that the filter approach is satisfactory for the calculation of @, which is not
surprising as the contact filter is a geometrical filter suited for a stationary

contact situation i.e. for the normal contact problem.

For the tangential contact problem where the size of the stick zone enters
into the solution as an important parameter, the accuracy of the filter so-
lution decreases considerably. The contact filter is not able to handle the
phase shift introduced by the oscillating behaviour of the contact patch.
As a result both a}. and Tg have constant phase lag with respect to the
corrugated surface. This is in sharp contrast to the solutions found by the

polynomial approach illustrated by Figure 4.6 and Figure 4.8.

The amplitudes of a* and a} are shown in Figure 4.18. Tt is evident that
there are very large discrepancies between the results obtained with the
filter approach and the results from the polynomial approximation. First of
all 1t must be noticed that the filter solution results in a symmetry around

Tao = 0.5 1.e. that

@ (rag) = (1 7a,) (4.121)
(4.122)

This symmetric behaviour is far from the results obtained with the poly-

nomial approach. Another important result is that the contact filter yields
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Figure 4.18. (A)-(F): Amplitude of half the size of the stick zone calculated
with the polynomial approach (solid line) and calculated with the filter
approach (dashed line).
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Figure 4.18. (G)-(T): Amplitude of half the size of the stick zone calculated
with the polynomial approach (solid line) and calculated with the filter
approach (dashed line).

the largest error for r,, values in the vicinity of 0.5. This is not at all an ex-
treme contact situation and yet the error is considerable in the entire ag/T.
interval. Tt must thus be concluded that the validity of the filter approach
is very questionable for the calculation of a® because the filter is indifferent,

with respect to r,,.

The same qualitative discrepancies are found for the amplitude of T' (see
Figure 4.19). The filter solution also provides an amplitude of 7" which
18 symmetric around r,, = 0.5 whereas the polynomial approach do not
have this property. The error introduced by utilizing a contact filter for the
calculation of T is very large even for relative small values of aq/T,, which

illustrates the inadequacy of the Remington contact filter for the tangential
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contact problem. Because the filter only depends on the aq/7 ratio the
error introduced by the filter solution is quite large both with respect to
the amplitudes and the phases of the quantities of the tangential contact

problem.

The lack of accuracy of the filter solution results in qualitatively false results
when they are applied to a wear calculation. Tn the previous section it was
demonstrated how important the phase of the wear is for the evolution of
a corrugation pattern. Because the wear 18 related to the tangential force
and the size of the stick zone, errors in the calculation of these quantities

will naturally be transmitted into the wear calculations
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Figure 4.19. (A)-(C): Amplitude of the tangential force calculated with the
polynomial approach (solid line) and calculated with the filter approach
(dashed line).
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polynomial approach (solid line) and calculated with the filter approach
(dashed line).
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An often used approach for wear calculations based on the Carter solution is
to assume that the wear can be considered to be concentrated in the centre
of the ship zone i.e. that if the cylinder axis is located at the position X
then the resulting wear for this instant contact situation is laid on the point
Xo + a®. With the wear approximation from equation (4.75) this provides

the following expression for the wear:

We(X) = |[KTr(X —a7)é] =
Wp(X) =Wy + Wracos(kX) + Wr g sin(kX) (4.123)
%% A

Al _ A (4.124)
Wr B 7R

Wry = —Kp>NkZagra, (1 — 2r4, + 7o ) cos(kay)Fr (4.125)
Wro = —Kp’NkZagra, (1 — 2ra, + 7. )sin(kag)Fr  (4.126)

Wr1 —Wro
Wra  Wra

where

Tt 1s seen that by assuming the wear to be concentrated in the centre of the
slip zone a phase lag with respect to the initial corrugation is introduced.
However, as demonstrated in the previous calculations the value of a}, and
thus the location of the centre of the slip zone is erroneous. A consequence
is that also the estimation of the phase of the wear 1s wrong. This property
is illustrated in Figure 4.20 where the tangential force and the wear are

shown as functions of the position on the corrugated surface.

The evaluation of the tangential force according to the filter solution is only
slightly different from the solution obtained with the polynomial approach.
This picture 18 however grossly disturbed when it comes to the evaluation of

the wear. The discrepancy between the two amplitudes remains small, but
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Figure 4.20. Comparison between polynomial approach (solid line) and filter
solution (dashed line). Contact configuration: L/ag =3 and r,, = 0.3.
Top: the tangential force acting on a given position on the surface.
Bottom: the wear acting on a given position on the surface.

the phase lags are completely different. In the present example the maxi-
mum wear according to the filter solution is located in the troughs of the
corrugation pattern whereas the polynomial approach yields a maximum
wear at the corrugation spikes. A consequence of the different phase lags 1s
that a wear calculation made with the filter approach for the present case re-
sults in a growing corrugation while the polynomial approach demonstrates
that the corrugation will be levelled out. The reason for this behaviour
is related to the asymmetry of the stress distribution, which implies that
the tangential stress distribution calculated with the polynomial approach
has a tendency to move towards the top of the corrugation spike compared

with the Carter solution (see Figure 4.7). Thus, when the locations of the
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Figure 4.21. The limit between amplifying zone and levelling zone. Solid
line: polynomial approach. Dashed line: solution with contact filter.

contact patches for the two solutions are almost identical the phases of the
two calculated tangential forces do not differ very much, but the internal
asymmetry of the tangential stress distribution in the polynomial approach

leads to a considerable shift of the phase when it comes to the wear.

The stability of the corrugation calculated with the filter approximation 1s
determined by the quantity (1—2Wp 7). Like in the case with the polynomial
approach the limit of stability is given by the values for which Wg; = 0,
which implies that cos(ka}) = 0. Thus, the limit between the amplifying

zone and the levelling zone is defined as

: 1
o _ (4.127)
L 4rq,
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Tt is noticed that this value actually does not depend on the applied contact
filter. The differences in the location of the limit between the amplifying
zone and the levelling zone for the two approaches are demonstrated in
Figure 4.21. Tt is clearly seen that the two solutions differ qualitatively.
Consequently the filter approach will predict a growth in the corrugation
where the more advanced polynomial approach demonstrates that the given

corrugation actually will be levelled out.

Tt must thus be concluded that for cases where the I/ag ratio is small the
Remington filter 18 only suited for the normal contact problem. When it
comes to the tangential contact problem the omitting of the size of the
stick zone leads to qualitatively false results. Tf a contact filter is utilized
for the tangential contact problem, it is therefore important that the size
of the contact patch is included in the filter function in order to obtain a

satisfactory wear model.
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Velocity Dependent

Friction Coeflicient

The objective of the present chapter is to investigate how a velocity de-
pendent friction coefficient influences the tangential contact problem. Two
types of friction coefficients will be treated: a friction coefficient defined as
a step function with one static value and one kinematic value plus the case
of a friction coefficient defined as a smooth function of the local relative
velocity. As characteristic quantities for the tangential contact problem the
outline of the creep curve and the shape of the tangential stress distribution

are examined.

129
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5.1 Friction Function

When an object slides over a surface a tangential force will be transmitted
between the two bodies due to friction in the contact patch. A fundamental
problem is now how the magnitude of this tangential force can be calculated.
The classic friction law of Coulomb states that there exists a linear relation

between normal force and tangential force given as
T =uN (5.1)

where p is the friction coefficient. Originally p was presupposed to be a
material dependent constant, but today it is accepted that this assumption

for many contact situation i1s much too primitive.

When it comes to rolling friction the relation between the tangential force
and the normal force is given by the creep curve. The shape of the creep
curve found by experimental observations, however, often differs consider-
ably from the shape derived by theoretical calculations. A common devia-
tion is that where the calculated creep curve enters a saturated regime with
constant tangential force for complete sliding, experiments indicate that
the tangential force reaches a maximum and then decays as the creepage 1s
increased [46]. This qualitative shape of the creep curve is important for
railway dynamics, as a decreasing creep curve introduces a negative damp-

ing in the system, which may cause the system to loose its stability.

It 18 a common theory that the high frequency noise which occurs as a
railway vehicle runs through a curve 1s closely related to the decaying creep
curve [25]. Due to the negative damping of the system, the tangential force
will start to oscillate, resulting in rapid variations in the location of the limit

between the stick zone and the slip zone. The resulting curve-shrieking 1s
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therefore often referred to as a stick-slip phenomenon. The equivalence in
the case of sliding friction is the friction oscillator where very interesting
nonlinear dynamics can be found as a result of the slip-stick-behaviour (see

e.g. [7] and [58]).

One way to explain a decaying creep curve is that the classic friction law of
Coulomb 1s not valid for the given contact situations. Most contact models
are based on the friction law of Coulomb where the friction coefficient 1s
assumed to be constant but experiments indicate that the friction coefficient
depends on the sliding velocity (e.g. [43] and [54]). The question is now how
a velocity dependent friction coefficient influences the tangential contact

problem.

Assume that the friction coefficient depends on the relative velocity between
the bodies in contact. With the further assumption that the macroscopic
friction law of Coulomb can be applied on the microscopic case i.e. that
q(2) = pp(x), then pis depending on the local relative velocity between the
bodies i.e. the slip:

1= f(s) (5.2)

The function f is in the following referred to as the friction function.

The present work will not. go into investigations of the outline of f(s) but
just assume 1t to be predefined. Work on the determination of the friction
function for various contact situations can he found in e.g. [5], [44] and [59].
In the following sections the tangential contact problem will be solved for

various configurations of u = f(s).
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5.2 A Friction Coefficient Defined as a Step

Function

A simple outline of a velocity dependent friction function is obtained by
assuming the friction coefficient to be a step function. Tn 1989 Ohyama [53]
suggested a model describing the two-dimensional contact problem where

the friction coefficient has one static value and one kinematic value, i.e.

0o , s=0
u(S)—{ Z i (5.3)

The solution found by Ohyama states that the tangential stress distribution
in the stick zone is identical to the Carter solution for yu = pg whereas the
tangential stress distribution in the slip zone is equivalent to the Carter so-
lution with g = pi. The tangential stress distribution according to Ohyama

is shown in Figure 5.1 for the case where p; < pg and for pg > pp.

In Figure 5.2 the creep curves corresponding to the stress distributions mon-
itored 1n Figure 5.1 are shown. The creep curve for the Ohyama solution
where pg < po has a distinct maximum and then decays until it has reached
the regime of complete sliding where 7" = u; N. This behaviour fits to some
extend with experimental data [54], only the decaying shape for the Ohyama
solution is restricted to a limited range of the creepage whereas the experi-
ments indicate that the slope of the creep curve remains negative also when

complete sliding occurs.
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The problem with the Ohyama solution is that when p, < pg it 18 not
a minimum solution to the tangential contact problem. Tf the kinemaftic
friction coefficient is smaller than the static friction coefficient the solution
is therefore not valid i.e. the tangential stress distribution from Figure 5.1

(A) and the creep curve from Figure 5.2 (A) are wrong,.

In order to solve the tangential contact problem when py, < pqo the polyno-

mial approach is employed with the conditions that

0(2)] < pop(z) , —a <z <2 a (5.4)
q(w) = pop(x) , = =2a"—a (5.5)
g(2) = pgp(x) , 20" —a<z<a (5.6)

Tt can then easily be shown that the solution to this tangential contact
problem actually is equivalent to the Carter solution for pu = pi with the
only modification that a Kronecker peak occurs at the limit between stick
zone and slip zone (see Figure 5.3). Because the integral of this peak is
zero, 1t will not contribute to the tangential force and so the creep curve for
the case when the kinematic friction coefficient is smaller than the static

friction coefficient is equal to the creep curve for the Carter solution where

1= .

Consequently a friction function defined as a step function introduces no
decay in the creep curve, and so the stability of the rolling contact problem
in this case apparently is unaffected by the varying friction coefficient. Tt
must thus be concluded that classic slip-stick oscillations will not occur in

rolling contact when the friction coefficient is defined as a step-function.

Another problem of the Ohyama solution is related to the calculation of

the creepage which is inaccurate. An obvious indicator of this fact is seen
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Figure 5.3. Actual tangential stress distribution with one static friction
coefficient and one kinematic friction coefficient when p; < p.

from the creep curves in Figure 5.2. When the friction coefficient is defined
as a function lying in the interval from pg to pi the resulting creep curve
should lie between the equivalent creep curves for the Carter solution. This
is clearly not the case for the creep curves calculated with the Ohyama
solution. Like the actual creep curve for g < g 1s identical with the Carter
creep curve for p = pi the equivalent result 18 obtained when pup > .
Thus, the creep curve related to the tangential stress distribution indicated
in Figure 5.1 (B) is actually equivalent to the upper Carter creep curve in

Figure 5.2 (B).
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5.3 A Friction Coefficient Defined as a Smooth

Function

Now assume that the friction coefficient is a smooth function of the ship. The
problem of solving the tangential contact problem then arises from the fact
that the slip and thus the friction coefficient varies over the slip zone. As the
tangential stress distribution in the slip zone is defined as q(2) = u(s)p(=)
the fact that s = s(x) leads to a quite complicated tangential stress distri-

bution.

Because the friction coefficient is assumed to be a smooth function of s(z)

it is possible to write it as a polynomial in x:

M
/’L(T) = Z /'Lm,mm’ , T E Sslip (57)
m=0

With the usual assumption of one stick zone and one slip zone the tangential

stress distribution can be expressed as

0(2) = 41(2) + 4ol (5.8)

where ¢q(2) = p(2)p(2) in the slip zone. The normal pressure distribution
is in the present calculations defined to be Hertzian, but the calculations
can be made for an arbitrary normal pressure distribution as long as it 1s
expressed as a polynomial form. The contribution from ¢y () in the slip

zone 1s thus

M
P
i) = fad o 3T ™ =
' m=0

T Sty Bma™
4(1 — 1/2) (1% — f[j2

qi(x) = (5.9)
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where the coefficients are given as

By — 10 (5.10)
0 WRNO .
2
a
By = L 5.11
1 ﬂ_RM ( )
1
By = e (poag — po) (5.12)
Bar = = (e — s ) (5.13)
TR
F— (5.14)
M4+1 — ﬂ_R/iMq .
1
Bugo = ——mnm (5.15)

With ¢q(2) expressed as a polynomial form g2(2*) can be found using the

polynomial approach.

The problem is however that s(z) and thus p(z) depend on both ¢ (z)
and gs(2*), which implies that p(2) must be recalculated by which new
expressions for ¢1(x) and ¢o(2™) are found. This iterative process converges
however after a few steps and so the tangential contact problem for a velocity

dependent friction coefficient is solved.

To illustrate how the solution to the tangential contact problem changes
when the friction coefficient is assumed to be velocity dependent, two ex-
amples are investigated. Let the friction coefficient be defined as

Mo — Mk

= 5.16
T o] + p (5.16)

1(s)

then one example 1s calculated with p; = 1.4 whereas the other example
is for the case where pp = 0.6pg. The coefficient k determines the size of

the initial slope of the friction function and can be chosen arbitrarily. With
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the above definition of the friction function the kinematic friction coefficient

[ 18 given as
pe = Tim p(s) (5.17)

In Figure 5.4 the friction functions and the creep curves are plotted for
the two cases. Tt is noticed that the initial slopes of the creep curves are
unaffected by the velocity dependent friction coefficient and is thus equal to
the slope of the creep curves for the Carter solutions. As the magnitude of
the creepage increases the tangential force tends towards the value p(£)N.
Tt must be emphasized that the shown creep curves are not equal to the
creep curve for a Carter solution where the friction coefficient is defined
as u = p(€). Because the creepage is the global relative velocity whereas
the slip is the local relative velocity the two solutions will only be identical

when & = 0 or when £ — co.

For the case where pp < po (see Figure 5.4 (A)) the creep curve has a
maximum and then decays. The location of the maximum depends on the
ratio pg/po and the initial slope of the friction function given by . Larger
initial slopes will imply that the maximum occurs for smaller values of the
creepage, which also is the case if the ratio ug/po decreases. Tn all cases the

maximum occurs before complete sliding takes place.

FExamples of the tangential stress distribution for the two cases are shown
in Figure 5.5. Tt is seen that the magnitude of the tangential stress always
lies between the Carter solution for respectively p = pg and g = pg. At the
limit between stick zone and slip zone the tangential stress distribution has
a vertical tangent just like in the Carter solution. Crossing this limit the
tangential stress distribution will continue to grow for a while when p; > pq

whereas 1t decays immediately when pp < po.
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Figure 5.4. Creep curves when the friction coefficient is velocity dependent.
Solid line: creep curve. Dashed line: p(&)/pug. Dotted lines: creep curve for
the Carter solution with g = pg and p = .
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Figure 5.5. Tangential stress distributions when the friction coefficient 1s
velocity dependent. Solid line: tangential stress. Dashed lines: tangential
stress for the Carter solution with g = po and g = py.
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As the mnitial slope of the friction function increases the tangential stress dis-
tribution in the slip zone will approach the Carter solution for y = i more
rapidly. When « and thus the slope tends towards infinity the tangential
stress distribution will have the outline due to Ohyama for pg > pg whereas
the tangential stress distribution for the case ug < pp will be equivalent to

the one indicated in Figure 5.3.

Tt has in the present chapter been demonstrated that a decaying friction
function results in a decaying creep curve. As an isolated result this is not
at all unexpected. The power of the calculations lies however in the fact
that when the friction function is known then it is possible to determine for
what size of the creepage the maximum of the creep curve 18 located. This
is a critical value of the creepage for which instability of the system is likely

to occur.



Chapter 6

Rough Surfaces

In the contact problems investigated so far it has been assumed that the
bodies are smooth. The present chapter serves as an introduction to the
topic of contact problems involving rough surfaces. First the normal contact
problem is solved for one isolated roughness asperity and afterwards the
cross influence between isolated contact patches is investigated. Finally the

tangential problem for rough surfaces in contact will be investigated briefly.

6.1 Contact between Rough Surfaces

To make the assumption that the bodies in contact are smooth is naturally
a simplification. Any surface, manufactured or worn, will always have local

asperities and troughs - 1t is just a maftter of scaling. Consequently an

143
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extended model of wheel/rail interaction must also include the case where
wheel and rail are considered to be rough. Whereas numerous papers on
normal contact between rough surfaces have been published, e.g. [8] and
[21], the amount of work on rolling contact between bodies with rough

surfaces is quite limited [42].

When two rough spheres are pressed together a contact patch is created
equivalently to the contact of smooth spheres. Two characteristic properties
make the rough problem differ from the smooth problem. First of all the
presence of asperities will result in an incoherent contact patch. TLet 2a,
be the area of the contact patch for the rough surface contact and let 2aq
be the contact area for the equivalent Hertzian contact then the relative
size of the contact area a./aq is an important parameter for the rough
contact. A second effect related to the asperities is that the normal pressure
distribution p,(2) locally will reach values much higher than the Hertzian
value. Tn Figure 6.1 two examples of the two-dimensional normal contact
problem for rough bodies are shown. The results are calculated by Knothe
and Theiler [42] and are compared with the equivalent Hertzian solution,

where the roughness of the bodies 13 omitted.

As indicated in Figure 6.1, the solution to the normal contact problem
strongly depends on the size of the roughness wave length. Thus, one of the
basic problems of rough contact 1s: what is the minimum wave length of
the roughness which should be included in the model? As a given surface
in theory can be represented by arbitrary small wave lengths it is necessary
to define a cut-off wave length /.. which indicates the smallest wave length
in the representation of the surface. Tt can be demonstrated [42] that a,./aq
depends heavily on I,.: smaller cut-off wave lengths result in smaller a,/aq-

values.
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Figure 6.1. Normal pressure distribution for a two-dimensional contact
between rough surfaces. Top: ag/ T, = 23.4. Bottom: aq/ T, = 69.7.

Solid line: the actual normal pressure. Dashed line: the equivalent Hertzian
normal pressure. The calculations are made by Knothe and Theiler [42].
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From Figure 6.1 it 18 furthermore seen that the maximum of the normal
pressure distribution increases as the cut-off wave length decreases. When
L, 18 very small and thus the maximum normal pressure is very large the
utilization of the half space approach is questionable because the assump-
tions of fully elastic material and small strains are violated. Similarly very
small a, /aq values will indicate that the size of the local contact patch is of
the same magnitude as the characteristic size of the local roughness asperity.
In these cases the half space approach is no longer valid and other methods
must be applied. In the present chapter it is however assumed that the con-
tact between the local asperities can be evaluated as a half space contact

i.e. the cut-off wave length 1., 1s sufficiently large.

6.2 Characterization of Roughness

Calculations including the contact between rough surfaces are often based
on roughness measurements of real surfaces. Such measurements result in a
large amount of data which makes the calculation of the contact mechanics
very difficult. Thus, it is convenient to be able to describe a given rough
surface with few parameters which can be used as input in a contact model.
In the previous section it was demonstrated that the cut-off wave length is a
critical parameter for the contact situation, but it is an open question what
other properties are relevant for the contact situation. ITn other words: how
is 1t possible to describe a rough surface with few parameters and still be

sure that the description is unique in a contact mechanical context?

Much work has been carried out in this field without any decisive conclusions

being made. A list of different methods to characterize a rough surface can
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be found in the book by Thomas [63]. Greenwood and Williamson [20)]
advocate for a description based on mean values and standard deviations
of the asperity-height and asperity-curvature and then express the surface
as a (zaussian distribution. This approach is quite erroneous as the height
distribution in reality is not symmetric. Due to the wear of the surface the
asperities of the surface are flattened, 1.e. the curvatures of the asperities are
smaller than the curvatures of the troughs. Tt is of course possible to correct
for this property by applying an asymmetric representation of the data, but
the basic problem remains: will surfaces with the same mean values and
standard deviations for the asperity-height and asperity-curvature yield the
same contact mechanical properties? The remainder of the present chapter
is devoted to the investigations of different surface properties in the search

for crucial surface parameters.

6.3 The Normal Contact Problem for one As-
perity

In order to make the problem as simple as possible the first investigations
consider only one surface asperity Z(x) in contact with a nominally flat
and smooth surface. The local coordinate system is defined such that the
contact point is located in # = 0. From section 2.4.1 it is known that the
geometrical properties for two bodies in contact can be moved from one body
to the other without loss of accuracy 1.e. the case of two rough surfaces can
be transformed into the case of one rough surface and one smooth surface
in contact. Now let the roughness asperity be described as

1 1 1
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which implies that the geometric moments of the asperity are given as

d(i)Z(m) .
Ai = W m:() 1= 0727374 (62)

where Ay is not present due to the choice of origo and where Ay is the
curvature, Az 1s the skewness and A4 1s the flatness of the asperity. The
values of the A’s are chosen such that the asperity is convex in the vicinity
of the contact point, which ensures that the contact patch is coherent and
that there is only one contact point. Tt is further assumed that the fourth
order approximation of the asperity provides an satisfactory accuracy i.e.

that higher order terms of the series expansion can be neglected.

Employing the polynomial approach this leads to a contact patch with the
centre located the distance A from O(x) and with half the contact width
a. Introducing the new coordinate system # = 2 — A the normal pressure

distribution over the contact patch is

rE 24_0 Bnl‘n
ol = n= 6.3
p(x) 40— %) 02 _ 2 (63)
B — a’ \ A 1/\ A2 ! Aua? 6.4
0= [A2tAsA+ SAAT+ TAaa (6.4)
[, 1 BN
B1 = — |—a (Ag —+ A4A) — A AQ + _A?A + _A4A (65)
T[4 2 6
11, | 2
By = — | —a”Xs — Ao — AsA — ~AA (6.6)
T [12 2
1
By = — o= [As + A4A] (6.7)
2
1
By = 7—A4 (68)
O

where the two unknowns a and A are derived from the boundary conditions

plus the constraint that the integral of the normal pressure distribution 1s
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equal to the normal force:

1 1 1
0=A (Az +5AsA + EA“AQ) + 1“2 (Az + AaA) (6.9)

TF 1 1
N =0 A+ MA+ - 2A% ) a” + —Nya? 6.10
8(1U2){<2+3 + A4 )a+84a (6.10)

The values for @ and A for various combinations of the A’s are given in

Table 6.1 where N is the normal force normalised with (/) /8(1 — v?).

wl=

M=0]A3#0 | A >0 a:(%i—j(?cos(@)—ﬂ)

A 27 N2x4
0= 3 arccos (g e 1

A:;—z(%—/b)

Lo DY
restriction: %)\—,ﬁ <1
2

Ay = 0 || asperity is not convex

A3=01] X >0| a=

N

Xz

S
[SE

Ay = 0 || asperity is not convex

Table 6.1. (A): Ay = 0. Characteristics of the contact patch for various
asperities.



Chapter 6.

Rough Surfaces

150

As £ 0

a= (232 ({14228 - 1))
A=
L. A2
restriction: Ag = ﬁ
if A3 + A A # 0: (no analytical solution)
o= (—A;;Am (o + 1AsA + %/\4A2)) ’
N = (Ao + AzA + $AA%) a® + Ihya
Ay = 0 || asperity is not convex
N =0 0 >0 |la= (432 (/14338 -1))"
A=0
restriction: %1—31\7 > —1
No=0 | a=(s£)

restriction: Ay > 0

Table 6.1. (B): Ay # 0. Characteristics of the contact patch for various

asperities.
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All the combinations except for one can be solved analytically. Only when
it comes to an asperity where Az, Az, Ay # 0 the solution must be found
by employing an approximation method e.g. series expansions or numerical
iterations. The restrictions indicated in the table provides the parameter
combinations for which the assumptions of coherent contact patch and single

contact point are fulfilled.

The results from Table 6.1 indicate that the relation between the size of half
the contact patch and the A’s is strongly nonlinear. A consequence of this
nonlinearity is that the principle of superposition is not valid. In Figure 6.2
four different asperities are shown: A; | i = 1,2,3,4. The configuration of
the asperities implies that each asperity can be expressed as a combination
of the others

A —As — A3+ A, =0 (6.11)

i.e. there is a linear dependency between the four asperities. Tt is seen that
the discrepancies between the geometry of the asperities are minor in the

vicinity of the contact point.

Now the four different asperities are pressed down on a smooth, level surface
under the application of the normal load N. This way a contact patch with
a normal pressure distribution is generated (see equation (6.3)). The pres-
sure distributions for the asperities are shown in Figure 6.3. Tt 18 evident
that the principle of superposition does not, hold. The linear dependency of
the geometry of the asperities cannot be retrieved in their normal pressure
distributions, i.e. it 1s not possible to create the normal pressure for one
asperity by combining the stress distributions for the other asperities. This
implication demonstrates clearly that a statistical representation of the as-
perities do not provide a unique characterization of the surface in a contact

mechanical context. A surface consisting of n asperities of type A; and n
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Figure 6.2. Different asperities. The dashed line indicates A;.
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asperities of type Ay is statistical equal to a surface with n asperities of type
As and n asperities of type Az, but the resulting size of half the contact
patch a, or the magnitude of the normal pressure p, are not identical when

the two surfaces are pressed down on a level surface.

6.4 Cross Influence between Adjacent Con-

tact Patches

In the previous section only isolated asperities were examined. As a rough
surface consists of many adjacent asperities it is of interest to know how
the normal contact problem for a given asperity is influenced by the normal
contact problem of the adjacent asperities. The cross influence between
more contact patches arises from the relative displacement, of material due
to the deformation in the contact patch. Where the normal pressure 1s
zero outside the contact patch, the relative displacements will in principle
affect the entire surface of the bodies in contact. Tn order to simplify the
investigations only the case of two neighbouring contact patches is analysed,

but the methodology can easily be applied for more contact patches.

Consider the surface 7 (X) being pressed down on a level surface. Provided
that Z(X) has two minima inside the potential region of contact, there will
be two contact points. Tf the normal load furthermore is sufficiently small
or if the trough between the local minima is sufficiently deep, a contact
situation with two separate contact patches occurs as indicated in Figure 6.4.
Now assume that Z(X) can be expressed as a polynomial in the vicinity of

both contact points, then the polynomial approach states that the pressure
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distributions will be polynomial forms:

M m
Tk Zm,:() RmT1

4(1 — 1/2) (112 — T12

i) = (6.12)

M ,
TF Zm,:() Gm’l‘;n

(=07 Jal -l

pa(ra) = (6.13)

where a1 and as refer to half the size of the two contact patches and where
the local coordinate systems #1 and x4 are defined with respect to the global

coordinate system as

as indicated on Figure 6.4. With the aid of the polynomial approach the

displacement gradients of the contact patches are found to be

duq (1) Ml M
21 (1 m m
T = Z 6771171 + [71,1 Z Bm,m] (616)
m=0 m=0
M—1 M
duyo(x
dusales) _ Ymxy + 1 Z Gmry (6.17)
de m=0 m=0
0 e <
I_141 = 1gn (o ) 6.18
0 el <a
T_12=14 sign(r.)r (6.19)

= |nal>a
2 2

where the [3,,’s and the v,,’s are derived from the B,,’s and the G,,’s,
respectively, applying the polynomial approach, where a in the matrix [A]

is substituted with a7 and as. The normal contact problem for the two
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Figure 6.4. Local coordinate systems for adjacent contact patches.

contact patches is then given as

M1 M
) N e S Gt
qX = — [ﬁmﬂﬁ ) +P)/mr2] + [71,2m_0 GmerV s |T1| S an (620)
M1 M
dZ(X) m m § : m
qX = — [P)/m,mQ +Bm,m1 ] + [71,1 i er’r1 3 |T2| S az (621)

Tt 18 not possible to solve this system of equations in a straightforward
way due to the square roots in 7_; ;1 and 7T_; 5. One way to overcome this
problem is by making a Taylor approximation of I_; ; and /_; 5 with the
point of evolution in the centre of the adjacent contact patch i.e. at 1 =0
for T_y 9 and at 22 = 0 for 7_1 1. Now the equations (6.20) and (6.21)
are reduced to pure polynomial equations, which implies that the unknown

Bm’s and (G,,’s can be found by comparing the polynomial coefficients.
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The remaining unknowns a1, as, dy, ds, By and (G can be found from the

boundary conditions:

M M

> Bm(-a1)" =Y Bpal =0 (6.22)
m=0 m=0

M M

> G(—as)” = Grad =0 (6.23)
m=0 m=0

and the relation between the normal pressure and the normal force:

Ny

—2{ A1} {Bo} (6.24)
Ny = —2{A¢ 2} {Go} (6.25)

where the notation {Aq 1} denotes the vector {Ag} with @ = a1. The only
problem remaining is to define /\71 and /\72 which refer to the normal force
acting on each contact patch and where N = Ny + Ns. Unfortunately this
problem is unsolvable because it is impossible to calculate the penetration in
the two-dimensional contact problem (see section 2.4.1). Tt is thus necessary
to make some sort of estimate of how the normal force is distributed between
the two asperities. Several approaches to this problem have been formulated
(e.g. [57]) and the qualitatively behaviour of the cross influence between the
contact patches is not critical with respect to the distribution of the normal
forces. Even though the contact problem for two adjacent contact patches
now is formulated as a set of algebraic equations it is in general not possible
to find an analytical solution because the quantities ay, as, di and dy are
represented in the equations in a nonlinear way. The problem can however
be solved with an iterative method in just a few steps if the Hertzian values

are utilized as initial guess.

After having derived a method to solve the normal contact problem for two
interfering contact patches, 1t is of interest to investigate how the cross in-

fluence between the contact patches affect the entire contact problem i.e. to
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Figure 6.5. The asperity A providing two distinct contact patches.

compare the result for the calculations where the cross influence is included
with an approach without cross influence. Consider a roughness asperity A
where A3 = 0 and Ay = —1536)\3 (see Figure 6.5). The asperity has two
minima at dy 2 = +1/(16X2). Tf the normal force is small this will result
n two distinct contact patches. Assuming that there 18 no cross influence
between the contact problems, the theory from the previous section can be
applied on each minimum. Introduce the transformations 1 = X — d; and

x9 = X — ds then the two local asperities

1< 1< 1
7()—1X LW SR e (6.27)
/2.77—22.77 6'37‘ 2447‘ .

Ao =—2Xy , A3 =06A2 | Ay = —1536)3 (6.28)

can be investigated with the theory from the previous section.

The normal pressure distributions for the two approaches are demonstrated
in Figure 6.6 for various normal forces. Not surprisingly, the stress distri-
butions are very much alike when the normal force is small, i.e. when the
relative distance between the two contact patches is large. Because the rel-

ative displacements decrease rapidly as the distance from the contact patch
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grows, there will hardly be any cross influence in these cases. As the normal
load increases two things happen: the size of the contact patches becomes
larger and the location of the centre of each contact patch represented by
Ay and As is shifted more towards the position X = (. Both properties
result in a shorter distance between the contact patches and thus in a larger
cross influence. The result is quite evident: for large normal loads the dis-
crepancies between the two solutions are rather big. A consequence of the
importance of the cross influence is, that a description of a rough surface
also must include the distance between the asperities if it is sought to make a
description of the surface which is unique in a contact mechanical context.
Thus, mean-line roughness parameters as root-mean-square or centre-line
average ([63]) are not adequate as isolated descriptors of a rough surface,

since they cannot evaluate the distance between the roughness asperities.

Due to the symmetry of A it is obvious that the investigated contact patches
are symmetric around X = 0. The qualitative result of the above compari-
son between calculations with cross influence and calculations without cross
influence is however not a result of the symmetry. The demonstrated prop-
erties will also occur if the local asperities are not symmetric or if the normal

loads acting on them are not identical.

6.5 Tangential Contact of Rough Surfaces

When the normal contact problem is solved for the case of rough bodies in
contact, 1t should be possible to solve the tangential contact problem in a

similar way, just like 1t has been done in the previous chapters.



Chapter 6. Rough Surfaces 161

The solution of the tangential contact problem for rough surfaces poses
however some conceptual problems. If both bodies in contact are rough, the
slope of the asperities will cause the normal force between two asperity sides
to affect the tangential contact problem [15]. Consequently it is not, possible
to superpose the roughness onto one of the bodies such that the problem
is transformed into the case of a rough body in contact with a perfectly
smooth body. Assuming that the wave lengths of the asperities are much

larger than their amplitudes, this effect can however be disregarded.

Another problem is that as the local asperity travels through the Hertzian
contact patch, the local normal force varies swiftly, which implies that the
contact problem actually 1s non-steady. The following investigations con-
sider the tangential contact as a sum of local, stationary contact problems,
i.e. that the tangential contact problem is solved for each local contact patch
in a straightforward way. Tmportant properties may thus be ignored, but
the investigation will yet serve to provide an understanding of the basic

properties of tangential contact for rough surfaces.

6.5.1 Tangential Contact for one Asperity

Assume that the contact patch is divided into a stick zone at the leading edge
and a slip zone at the trailing edge, then the tangential stress distribution

1s defined as
o) = 01 () + 4o(s”) (6.29)
with the kinematic constraint

dugy (x) N dugs(x*)

0=
&+ dx dx

(6.30)

As always q1(2) = pp(x).
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Consider the asperities investigated in section 6.3, where the normal pres-

sure distribution had the form

TF Zi:o Bnax”

p(x) = 0 v (6.31)

Employing the polynomial approach this leads to an expression for go(2*)

prE Yo Byt

) = 6.32
q?(T ) 4(1 71/2) PrORE— ( )
where the coefficients are given as
* (]’*2 * 1 *2 1 *2
BO = — AQ + AgA + —A4A + —A4(], (633)
T 2 12
116 1
B = —— |24+ —a"" (As + MA™) —
1 = |:/,L + 4(] ( 3+ Mg )
1 1
A* </\2 + 5/\3A* + g/\4A*2)] (6.34)
* 1 1 *2 * 1 *2
B2 = —— | —=a A4 — AQ — AgA — —A4A (635)
T [12 2
1
Bsy = o [As + A4 A%] (6.36)
1
By = —2A 6.37
BT M (6.37)

and where A* = A—a+a”*. The unknowns of the tangential contact problem
are now a* and either the creepage & or the tangential force T. They can
be found by employing the boundary conditions and the relation between
the tangential stress and the tangential force, which yields the equations
* 1 * 1 *2 1 *2 *
E=pA" [ Ao + 5/\3A + g/\4A + THa (A3 + A4A™) (6.38)
T F

T=uN — ———
K 8 (1 —v?)

1 1
{ <A2 + A3A* + §A4A*2) a*? + g/\4a*4}(6.39)
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These two equations can for certain values of the A’s be solved analytically
just like in the case of the equivalent normal contact problems. Tf an ana-
lytical solution cannot be found, an iterative process converges in just a few

steps if the Carter solution is applied as initial guess.

In Figure 6.7 the tangential stress distributions for the asperities Ay, ..., Ay
are monitored for 7' = 0.75uN. Tt i1s clearly seen that the size of the stick
zone varies with the geometry of the asperity. A result of the varying a*
is, that the creepage is not the same for the four contact situations. In
Figure 6.8 the equivalent creep curves are plotted, where the ¢ indicates
the contact situations from Figure 6.7. Two distinct properties must be
noticed when 1t comes to the creep curves: the magnitude of the critical
creepage and the initial slope of the creep curve depend on the geometry of

the asperities.

The critical creepage &. for which complete sliding occurs can be derived

from equation (6.38) by setting a® = 0, which yields the expression
1 1 9
o= (A —a) A2—|—§A3(A7(1)—|—g/\4(A7(1) (6.40)

The slope of the creep curve is found by differentiating equation (6.38) and
equation (6.39) with respect to a*, divide the two quantities and then let

a* approach a. This calculation leads to the expression

(20 + O(Xs)) (6.41)

hm
£E—=0—

ar] mH
] 8(1—v?)
The consequence of this result is very interesting. If the asperity in the
vicinity of the contact point can be approximated with a fourth order poly-
nomial then the initial slope of the creep curve will always be proportional

to the size of the contact patch.
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Figure 6.7. Tangential stress distribution for 7= 0.75u/N. The dashed line

indicates A;.
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Figure 6.8. Creep curves for the four different asperities. The o indicates
the contact situations shown in Figure 6.7.

Assuming that the tangential contact problem 1s unaffected by the cross in-
fluence between adjacent contact patches when the creepage tends towards
zero, the result can be generalized. With no cross influence between the
contact patches, the principle of superposition is valid, and so the initial
slope of the creep curve for a rough contact with arbitrary many local con-
tact patches will be proportional to the global size of the contact patch as
long as the asperities can be approximated by fourth order polynomials.
This relation has been suggested by Knothe and Theiler [42] as a result, of
numerical calculations based on measured rough surfaces and is thus actu-
ally proved. Tt must therefore be emphasized that the size of the contact
patch is a crucial parameter also when it comes to the tangential contact

problem for rough surfaces.
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6.5.2 The Tangential Contact Problem with Cross In-

fluence

Like in the case with the normal contact problem, adjacent contact patches
will influence each other when it comes to the tangential contact problem.
The tangential problem with the cross influence between adjacent contact
patches can be solved by applying an approach equivalent to the one from

the normal contact problem.

Consider two contact patches with the normal pressure distributions pq(24)
and pa(xy) defined as in equation (6.12) and equation (6.13), then the tan-
gential stress distributions over the contact patches are assumed to have the

form

g1 (1) = ppr (1) + q1 2(27) (6.42)
ga(1) = ppa(xa) + (]2,2(1‘;) (6.43)

pr ke Zn]\;’:o Bpxi™

xy) = 6.44
q1,2(T1) 4(1 — VQ) (],TQ — J?TQ ( )
q2,2 To) = 4(1 o 1/2) (152 — .77;2 R 2

where the local coordinates z7 and x% are defined as

=z +ay —aj (6.46)
T = xy+as—ay (6.47)
Each of the two contact patches are thus divided into a stick zone at the
leading edge with half the size a7 and a3, respectively, and a slip zone at

the trailing edge.
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The gradients of the relative displacements can now be found using the
polynomial approach, which provides the kinematic constraints for the two

stick zones

M—1
£ = B2V + ymas + B ei™ + e ] +
m=0
M
STt aGmad + 17 oGz el <af (6.48)
m=0
M—1
E=) Bl + 1ma + Boai™ + 525" +
m=0

M
ST B+ 17 Boai™] 3l <ap (6.49)
m=0
where the G ’s and the ~,’s are derived from the BJ ’s and the G}, s,
respectively, applying the polynomial approach, where a in the matrix [A]

is substituted with a] and a%. Finally 7%, ; and 7*, , are defined as

0, Bll<a
=4 sienge: - (6.50)
o 7“%1(:)2 x> 6]
| 1
P B Y .
e 7@15?12(:)2 |23l > ad )
2 2

The procedure is now exactly the same as for the normal contact problem.
T_vq, I-10, 17y and I, , are transformed into polynomials and so the
unknowns B, G, a3, a3 plus either the local tangential force or the local
creepage can be found from the boundary conditions and the condition, that

the tangential force is equal the integral of the tangential stress distribution.
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Figure 6.9. Tangential stress distribution for adjacent contact patches.

Solid lime: with cross influence. Dashed line: without cross influence.
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As the contact problem is assumed to be stationary, the local creepages
acting on the two contact patches must be identical. In Figure 6.9 the
tangential stress distribution is calculated for the normal contact problem
from section 6.4 (see Figure 6.6). The normal pressure distribution which
1s utilized as foundation for the calculations of the tangential contact prob-
lem is the one where the cross influence is incorporated. The four contact
situations are calculated for the constant creepage & = &y, which implies
that the tangential force varies as the normal force is increased. Due to the
nonlinearity of the problem, the ratio between normal force and tangential

force 1s not constant.

In Figure 6.9 three different ratios are listed. The ratios are defined as

Ti without cross influence

(6.52)

ry, = - -
Ty with cross influence

T5 without cross influence
rp, = (6.53)

T5 with cross influence

T without cross influence
rp = (6.54)

T with cross influence

where Ty refers to the first contact patch, T3 refers to the second contact
patch and T is the entire tangential force. The calculated ratios indicate
that the entire tangential force is almost unaffected by the cross influence.
The cross influence implies that the first contact patch will have a larger
stick zone and a smaller resulting tangential force whereas a larger tangential
force is transmitted through the second contact patch because the stick zone

diminishes.
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N =N N =1.5N, N =2N, N =2.5N,
E=05& || rr, =1.1108 | rp, = 1.1505 | rp, = 1.1903 | rp, = 1.2392
rr, = 0.9087 | rp, = 0.8836 | rp, = 0.8613 | rr, = 0.8402
rp = 0.9966 | rp = 0.9952 | rp =0.9935 | rp =0.9916
E=¢& rp, = 1.0857 | rp, = 1.1220 | rp, = 11577 | rp, = 1.1953
rr, = 0.9271 | rp, = 0.9018 | rp, = 0.8798 | rr, = 0.8593
rp = 0.9961 | rp = 0.9937 | rp =0.9912 | rr = 0.9885
E=1.5& || rr, = 1.0630 | rp, = 1.0968 | rp, = 1.1297 | rp, = 1.1639
rr, = 0.9497 | rp, =0.9212 | rp, = 0.8987 | rp, = 0.8781
rp = 0.9986 | rp = 0.9950 | rp =0.9918 | rr = 0.9884
&= 2¢, rp, = 1.0481 | rp, = 1.0733 | rp, = 1.1040 | ry, = 1.1356
rr, = 0.9774 | rp, = 0.9460 | rp, = 0.9212 | rp, = 0.8995
rp = 1.0067 | rp = 1.0006 | 7 =0.9960 | rr = 0.9918

Table 6.2. Ratios between tangential forces calculated without cross influ-
ence and with cross influence for various values of the creepage and the
normal force.

In Table 6.2 the three ratios are calculated for various values of the creepage
and the normal force, where the reference creepage &g is the one which is used

for the contact situations shown in Figure 6.9. Three trends are apparent:

1. Tncreasing normal force resulting in shorter distance between the con-
tact patches implies that the second contact patch contributes more

to the total tangential force.
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2. Smaller creepage implies that the second contact patch contributes

more to the total tangential force.

3. The total tangential force is almost unaffected by the cross influence

between the contact patches.

The above calculations indicate that the tangential contact problem is less
affected by the cross influence than the normal contact problem. The two
problems are solved for exactly the same configuration in Figure 6.6 and
Figure 6.9. Considering the size of the contact patch as a crucial quantity
for the normal contact problem and the total tangential force as the im-
portant quantity for the tangential contact problem it is evident that the
cross influence is not as important for the tangential contact problem as
it 1s for the normal contact problem. Tt must however be emphasized that
when the distance between the contact patches is small compared to the
characteristic size of the contact patches, both the normal contact problem

and the tangential contact problem will be affected by the cross influence.
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Chapter 7

Non-Steady

Two-Dimensional Contact

In the present chapter an approximative method to investigate non-steady
contact for the two-dimensional tangential contact problem is introduced.
The objective of the method is to find the tangential stress distribution
and establish a relation between the creepage and the tangential force. Tt
is demonstrated that exact solutions for the tangential stress distribution
and the tangential force can be derived, whereas the relation between the
creepage and the tangential force depends on an approximation of the dis-
placements at a reference point. To illustrate the application of the theory

a contact problem with an oscillating tangential force 1s examined.

173
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7.1 Non-Steady Contact

In the previous chapters the tangential contact problem is considered to
be stationary, i.e. it is assumed that the quantities of the contact prob-
lem changes very slowly implying that the time derivative of the relative
displacements can be neglected. Thus, it is a precondition for stationary
contact that the characteristic wave length of the contact problem is much
larger than the size of the contact patch. This assumption is much too
primitive for a variety of problems of wheel /rail contact such as corrugation
problems or contact involving rough surfaces. For that reason it is necessary
to be able to incorporate non-stationarity in the contact model in order to

extend the field of application.

The case of three-dimensional non-steady contact has been investigated
thoroughly by GroB-Thebing [22] and [23], who extended Kalker’s theory
based on discretization of the contact patch [38] to a non-steady application.
By introducing a linearization a non-steady theory equivalent to Kalker’s
linear theory 1s obtained, where the creep coefficients now are frequency
dependent. Tn the latter work of Grofi-Thebing the approach is modified so
the linearization is made with respect to an arbitrary reference state of the
nonlinear stationary contact model. The problem with Grofi-Thebing’s con-
tact model is that it is based on linearizations of the basic equations within
each discretized contact element. This approach is therefore only adequate
for contact situations where the amplitudes of the oscillating quantities are
small. When this is not the case a very fine discretization of the contact

patch much be applied, which augment the computation time considerably.

In Chapter 2 it was demonstrated that it is impossible to solve the two-

dimensional non-steady contact problem because the relative displacement
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depends on the choice of datum. Tt is however possible to make some qual-
itative investigations of the problem. As in many other fields of rolling
contact mechanics Kalker has made some of the primary work in this field
[36] and [37]. The first paper [36] is an analytical description of the case
where the stick zone is assumed to cover the entire contact patch, i.e. a
contact with infinite friction, whereas the second paper [37] introduces a
numerical approach to non-steady rolling contact. Tn the present chapter
an analytical approach to two-dimensional, non-steady rolling contact where
the contact patch is divided into one stick zone and one slip zone will be

mtroduced.

7.2 Deriving a Non-Steady Theory

In the stationary contact theory it is assumed that the relative displacement
uy = uy(2) where the local coordinate x is given by the global coordinate
X as x = X — V,,t. The kinematic constraint for a particle in the contact

patch then reads

du, ()
— 7.1
o (7.1)

where 1, is the mean velocity [33]. With the definition of # this leads to

—Vms(z) = -V, &+

the expression

dug (x) dr
dr di

—Vms(z) = —V,&+

dug (x)
dx

s(z) =¢&+ (7.2)

This is the kinematic constraint which is the foundation of all stationary

contact theories.
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Tf the relative displacement now also depends on the time i.e. u, = u,(z,1)
then the kinematic constraint is calculated to

Oug (1) dx Oug (1)

—Vims(z,t) = =V, &00) + or  di ot

S t) = £(1) + 31/5£T) B V1_m3um;:,t) (7.3)

With the definition of the slip being zero in the stick zone this yields that

B Oug (1) 1 Qug(x,t)

In order to find an expression for the time dependent creepage 1t 18 necessary
to be able to calculate the derivatives of ug(2,1). Due to the outline of the

kinematic constraint it is assumed that wug,(2,1) can be expressed as
g (2,1) = Up(2 + Vipt) — &ox — Up(2o + Vind) + Eomg + up(x0, 1) (7.5)
where the reference coordinate xy € S,ii05 18 defined as
2o =X — Vint + f(1) (7.6)

The derivatives of the relative displacement are then

Oug(x,1 ,

% = Uz + Vpt) — & (7.7)
(11 ) ) )

P80 V020 4 Vi) — Ul o Vi) (1) +

(so ; 73“'“3(::’”) (1)~ Vi) + 2l (7

which inserted into the kinematic constraint yields that

1 1 Oug(xg,1 ,
€l0) = — oo + Vo) (0 + 1 (604 220 ) i -
Oy (2q,1) n 1 Ouy(xg,1)

3.1:0 W 37‘,

(7.9)
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Tn order to simplify this expression it is assumed that f'(t) and U (204 V1)
are small i.e. that their product is small compared to the other quantities
and consequently can be neglected. This assumption is reasonable if the
position of xq is located in a small interval of the contact patch. As zg
always is located in the stick zone it further follows that the term

(50 + 73“’%(::’”) (1)

also can be neglected. With these simplifications the expression for the

creepage is reduced to

Oy (2q,1) 1 Ouy(xg,1)

E(t) = B + v o . o € Sstick (7.10)

Since u,(20,1) depends on the choice of datum the derivative du, (xg,1)/01
is an unknown function and so the problem cannot be solved unless an

appropriate approximation for wu,(x, 1) is applied.

Tn order to find an expression for u,(xp,1), Johnson has suggested an ap-
proach where the three-dimensional case of a rectangular contact patch with
uniform tangential stress distribution is considered [32]. Denoting the side
lengths of the rectangle as 2a and 2b where 2a is the length parallel to
the rolling direction, the value of wu,(zo,1) is approximated with the dis-
placement at the centre of the rectangle when the uniform tangential stress
distribution ¢(x,y,t) = T/2a is acting on the contact patch. T is in this
context the tangential force per unit length. In principle the assumption of
complete sticking leads to a singularity in the tangential stress distribution
at the trailing edge of the contact patch. To avoid this phenomenon the
Johnson approach is slightly modified, so the tangential stress distribution
is expressed as the sum of two uniform stress distributions where one is

defined over the entire contact patch and the other is defined over the stick
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zone:
N
q1(.17,7‘,)zﬂ— , —a<r<a (7.12)
2a
N =T
(]2(.17*,7‘,):7% ., —at <zt <a” (7.13)
a

Applying the three-dimensional constitutive equation (see Appendix C) on
this tangential stress distribution under the assumption that & > a, an

expression for u,(zq,1) is found to he

4(1 71/2) * * * *
(w0, 1) = LN g, ) — g, %) 4+ Ty, a)} (7.14)
( )= 1 +](2b)+1m0] a— g
'qm07a71—1/ " 2 a " a—+ g

1
§]n (a2 — T%) (7.15)
where xg 1s defined to be the centre of the stick zone 1.e. g = a* — a and

*
xy = 0.

The above approximation of w,(xq,1) is quite primitive and is only valid
when the size of the slip zone is very smalli.e. when af; = ag. This constraint
implies that the theory is equivalent to the stationary linear model where the
stick zone always covers the entire contact patch. The simplified expression
for the tangential stress distribution results in values for the stationary
creepage which are different from the stationary value of the Carter solution

when the stick zone does not, cover the entire contact patch.

A better approximation of u; (29, 1) can be achieved by considering the same

rectangular contact patch with the side lengths 2a and 2b, but where the
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tangential stress distribution in a cross section of this contact patch is equal

to the Carter stress distribution:

q(l‘,y,f) = ¢ ('777f)+q2('77*7f) (716)

q1(m,t):@\/a2—m2 , —a<r<a (7.17)

a

qQ(m*,t):fﬁx/a*Q—m*Q , —at <zt <a” (7.18)

a

Again the constitutive equation provides an expression for u,(x,1):

ue(wo.t) = LN fy(oo.a) — gl a*)] + Ty(a,a®)] (719)
g(z0,0a) = ﬁ + In(4b) — In(a) — (%)2 (7.20)

where xq still 1s defined as the centre of the stick zone.

The problem with the above calculations of wu,(xq,1) is that the approxima-
tion to an infinite cylinder rolling on a surface implies that & — oo which
also causes wu,(xg,1) to tend towards infinity. Tnstead it is only assumed
that b > a and then consider the result to be an indicator of the qualitative

behaviour of the non-steady problem.

When all quantities except for the tangential force and the creepage are
constant in time the non-steady contact problem is in principle solved by
inserting the derivatives of 1, (20, ) which can be found from equation (7.14)
or from equation (7.19) into the kinematic constraint, from equation (7.10).
However, it is sought to derive a theory which can be applied on a wide
range of non-steady contact problems where other quantities such as the

size of the contact patch, the size of the stick zone or the velocity also vary
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in time. So it remains to establish a set of equations which describes how
these other oscillating quantities are related. To do that it is necessary to
solve the entire contact problem i.e. to find the tangential stress distribution,

the size of the stick zone and the size of the tangential force.

In order to illustrate how the non-steady contact problem may be solved,
a very simple example of non-steady contact is treated. Tt is obviously
possible to employ the procedure on much more complicated problems, but
the simple problem is chosen in order to demonstrate the basic concept of

the method.

Consider a cylinder rolling on a smooth surface with constant velocity and

constant normal force but with the oscillating tangential force:

T()="To+ > [Tamcos(wmt) + T m sin(wmnt)] (7.21)

m=0
Tt is noticed that the assumption of constant normal force implies that the
size of the contact patch i1s constant in time i.e. @ = ag. The objective of
the calculations is now to establish an expression for the creepage on the
form

E() =&+ > [Eam cos(Wimt) + Epm sin(wint)] (7.22)

m=0

To do that the point of departure is taken in the gradient of the relative
displacement,

Dug(2,1) /02 = UL(x + Vipt) — & (7.23)

As both the tangential force and the creepage are harmonic functions in

time it is assumed that the function U, (2 + V,,1) also is harmonic i.e.

M
Up (24 Vint) = > [V a m sin[km (2 + Vint)]—

m=0

Up m coslkm (z + Vi t)]]  (7.24)
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In order to find the tangential stress distribution and the size of the stick
zone an approach similar to the one for the corrugated surface must be
applied. Assuming that the contact patch is divided into one stick zone and
one slip zone, the gradient of the relative displacement in the stick zone 1s

given as

Oug(x,t)  Ougi(2,1) n Otigo (1)
ox N ox ox

where Jug(2,1)/02 = xp/R as the normal stress distribution is Hertzian.

The equation (7.23) then indicates that

(7.25)

Otigo (1) x M
T?T - 7% — &+ Z pho [Ua m cos(bkmt + wmt)+

m=0

Up msin(kma +wmt)]  (7.26)

where w,,, = k,, V. Introducing the coordinate transformation 2™ = x+a—a*

the displacement gradient 1s rewritten as

Otign (2%, 1) ulx* + A*)
ox =% R +
M
Z pho [Ua m cos[knm (2 + A") + wnt]+
m=0
Ug m sinlkm, (2% + A%) 4+ wpt]] (7.27)
where A* = a® — a. Employing the polynomial approach, a procedure

equivalent to the example of the corrugated surface (see section 4.2.3) yields

the tangential stress distribution

9(,1) = pp(r 1) + 4o, 1) (7.28)

where

(7.29)
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0*2 (1* 2 M
B = —— + <?) b [U A m cos(km A* + wmt)+
m=1

TR
> k27’+1

UR s (km A* 4 Wi t) Z (—1) 7A*””7 (7.30)
=R ]

M
B* = — 50 +— > b [Ua 50 (i A + wit) —

m=1

*—1 m
(— 1) A (7.31)

Ug m co8(km A* + wyt)] o)

I

j=0

M
1
B = — — ko [U A m cos(kym A" 4 w,t)+
TR = '
k%j“

@ T

hE

Upm sin (kA" + wnt)] 3 (<1 A7

0

.
Il

M=

Bs,_1=(=1)" ko (U m sin(km A + wpnt)—

m

2j4+2n—2
km

———(7.33
(2j—|—27172)!( )

I

Il
>

U cos(km A" +wnt)] D (1) 477

7

M=

B, = (—1)" ko [U A m cos(km A™ + wmt)+

m
k2,7'+2n71

Up.m sin(km A* + wnt) (—1)/ A3~ 1,’7”7(7.34)
; (27 +2n — 1)!

The boundary conditions provide the restriction that

(kma™) [Ua m sin(km A* + wpmt)—

Ug m co8(km A* + wmt)] (7.35)
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from which an expression for half the size of the stick zone a* can be found

depending on the coefficients U4 ,, and Ug ,,.

Integrating the tangential stress distribution over the contact patch, the

tangential force 1s found to be

urk a*? il
T(t) = uN — - — Feya®Jq (Ko
(t) = n 4<1”2>{2R+n§ 03y (k)

[Ua m cos(kmA™ +wmt) + Up m sin(kn A" + wmt)]} (7.36)

Comparing the coefficients from this expression with the ones from equation

(7.21) the unknowns U4, and Upg ., are determined.

In order to employ the size of the stick zone and the magnitude of the
tangential force in further calculations it is convenient to derive closed
form expressions for these two quantities. Just like in the case of the cor-
rugated surface a series expansion 1s applied under the assumption that

E*R\/U3 + UZ < 1, which leads to the expressions:

M
a*(t) = ay + Z [”’i\,m cos(wmt) + rf,‘gym sin(wmt)] (7.37)
m=0
M
T()=To+ > [Tamcos(wmt) + Thm sin(wmt)] (7.38)
m=0

where the coefficients with indices A and B are found from the usual matrix

equation
{(]’t\’mJTA’m,}T {(IT,mJTLmr}T 7{(];77”’771277”}71 []A
{ag;%’mJTR’m'}T {H;,m,vTQ,mr}T {(]’T,mmTLmr}T (]R

(7.39)
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with the matrix coefficients

a?m = —kpy RYo(kmay) sin[km, (ay — ao)] (7.40)
a;m = —kuy, RIo(kmay) coslkm (ay — ag)] (7.41)
/,Lﬂ'F] * 7(]’T,m, * *

Tim = mkmao [ R Ji (kmap) cos[kn, (af, — ao)]] (7.42)
/’”TF] * 7(];,7” * 3 *

Tom = mkmao [km—R + Ji (kmag) sin[k,, (ay — ao)]] (7.43)

In Figure 7.1 the tangential stress distribution is shown for the case of
one distinct wave length where aq/I. = 1 i.e. a contact situation where
the oscillations in time are so fast, that the time derivative of the relative
displacement. must, be included in the contact model. The importance of
including the term dug(2:,1)/01 is clearly demonstrated in the figure, where
the non-steady solution (solid line) is compared with the stationary Carter
solution (dashed line). The discrepancies between the two solutions are
significant and even though the amplitude of ¢* indicated by the location
of the limit between stick zone and slip zone is minor, the tangential stress

distribution varies considerably inside the stick zone.

At the extreme a contact situation where @™ is constant but the tangential
stress distribution still oscillates can occur. This is the case for configu-
rations where Jy(ka™) = 0. Thus, the common conception of oscillating
tangential forces as a slip-stick phenomenon where the sizes of the stick
zone and the slip zone oscillate does not provide a complete picture of the
non-steady contact problem. Tt is possible to have a situation where the
tangential force and thus the tangential stress distribution and the slip os-
cillates even though the position of the limit between stick zone and slip

zone is kept constant.
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Figure 7.1. (A)-(H): Tangential stress distribution for the case aq/L = 1.
Solid line: non-steady solution. Dashed line: Carter solution.
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With the expressions for a*(1) and T(#) derived it is possible to establish
a relation between the tangential force and the creepage. TInserting the
approximation for u,(2p,1) into the kinematic constraint in equation (7.10)
this leads to the result that

M

E) =&+ D [€am cos(@mt) + Epm sin(wmt)] (7.44)

m=)

{ gA,m, }_ [ €1,m, *€2,m, ] { []A } (745)
gR,m, €2,m, €1,m, (]R

The coefficients & ,, and &, 5, obviously depend on which approximation of

where

g (2o, 1) there is utilized. The approach based on the modified version of

Johnson’s stress distribution results in the coefficients

& =0 (7.46)

im = N(km”’o)Q (‘]O(kmao) |:11—1/ +1In (3_?)] B

J()(]{Tmfl())) (747)

€o,m = pi(kmao)” (‘]1 (kmag) [11—1/ +1In (%)] B

1

"m0

J()(]{Tmfl())) (748)

provided that af = ag. The fact that the size of the stick zone oscillates
even when aj = a is due to fact that the location of the slip zone changes
between the leading edge and the trailing edge of the contact patch. Thus,

a value of a* greater than a is interpreted as a situation where a slip zone
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with half the length (a* — a) is located at the leading edge of the contact
patch.

The approximation of ug,(2q,1) based on the tangential stress distribution

similar to the Carter solution (equation (7.16)) yields that

§o = % (ra, — 1) (7.49)
H * *
§1m = R (a7 i + Ko7, a5,n) +
(1 — 12 1 4b
M}MT2 I L T (e (7.50)
F 200 - v) aq
o= 5 bt

2

%kmﬂm [ﬁ +n (%)] (7.51)
Tt 18 seen that for r,, = 1 the solution for the approach based on the modified
Johnson stress distribution is almost identical to the solution where u, (2, 1)
is found from a Carter stress distribution. This must evidently be the case
as the Johnson stress distribution can be considered as a linearization of
the Carter solution for the case where r,, = 1 with the only difference that
the first approximation is made for a uniform stress distribution whereas

the latter approximation is derived from an elliptic stress distribution.

By this the non-steady contact problem is solved. The obvious similarities
between the above derived expressions for the tangential stress distribution
and for the tangential force and the same quantities for the case of a cylin-
der rolling on a corrugated surface (see section 4.2.3) should be noticed.
Replacing Uy, with 74 5, and Ug ,, with Zg ,, the stress distribution and
the tangential force are identical with the ones from the corrugated sur-

face. Consequently the solution to the stationary tangential problem for
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the case of a cylinder rolling on a corrugated surface which was derived in
section 4.2.3 18 also a solution to the non-steady contact problem when it
comes to the tangential force and the tangential stress distribution. The
omitting of the time-derivative in the kinematic constraint only affects the

size of the creepage, which then 1s oscillating instead of being constant.

Another interesting feature is that the quantity w,(2,1) does not influence
the tangential stress distribution or the tangential force. The approximation
of uz(2g,1) does only affect the creepage, and so the derived solutions for
g(2,1) and T(t) are exact, even though the two-dimensional non-steady

contact problem by definition is unsolvable.

To analyse the relation between the creepage and the tangential force the
ratio T'(1)/£(t) is investigated. Tn order to simplify the calculations it is
assumed that U, (2 + V,,1) only has one distinct wave length i.e.

Up (2 + Vint) = pk [Ua cos[k(z + Vi, 1)) + Ug sin[k(z + Vint)]] (7.52)

The ratio between the amplitudes of T'(1) and £(t) then reads

T 7“12+T22)15
L_(Lh+ls 7.53
¢ <€%+€§ (7.53)

and the difference in phase is given as

¢ — ¢¢ = arctan (%) — arctan (g—Q) (7.54)

1 1

Tt is seen that both the ratio of the amplitudes 7?/&? and the difference in
phase (¢7 — ¢¢) depend on the two ratios ag/7, and rq, = af/ag i.e. on the
relative size of the contact patch and the magnitude of the reference creepage
or the reference tangential force. The coefficients U4 ,, and Ug,, do not

influence the ratio of the amplitudes or the difference in phase, a property
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which is quite obvious as no restrictions concerning these coefficients are

given in the derivation of the theory.

GrofB-Thebing has derived an analytical expression for the ratio 7?/&? for the
Johnson approach where the stick zone covers the entire contact patch [23].

Defining the tangential force and the creepage as the complex quantities

T(t) = Te'™? (7.55)
&(t) = e’ (7.56)

where i = /—1 and T and ga,re complex constants, GroB-Thebing demon-
strates that

TFa [ 1
— (7.57)

T [%441«1{%4-]“(%)“

AN

This solution is shown in Figure 7.2 (dashed line) where it is compared with
the approach based on the modified Johnson stress distribution (solid line).
The size of the pseudo contact width 1s set to be b = 20aq. Tt is seen that
the two solutions are identical when ag/7 — 0 which implies that the wave
length is very large compared with the size of the stick zone 1.e. the influence
of the non-steady term in the kinematic constraint vanishes. Furthermore
the two solutions are identical when Jo(kag) = 0 which exactly are the
cases where the size of the stick zone 18 constant in time and thus covers
the entire contact patch. The discrepancies between the two solutions for
all other values of ag/ arises from the fact that GroB-Thebing’s solution
has a singularity at the trailing edge of the contact patch as a result of the
complete stick assumption, whereas the approach based on the modified
Johnson stress distribution has incorporated a small slip zone at the trailing

edge in order to avoid this singularity.
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Figure 7.2. Non-steady contact for the case r,, = 1. Dashed line: Grof3-
Thebing’s solution (7.57). Solid line: approach bhased on the modified John-
son stress distribution. Top: ratio between the amplitude of the tangential
force and the amplitude of the creepage normalised with ajmF/(4(1 — v?)).
Bottom: difference between the phase of the tangential force and the phase
of the creepage.

In general the Grofi-Thebing solution is quite accurate, also when it comes
to contact situations where r,, # 1. In Figure 7.3 the ratio of the am-
plitudes and the difference in phase according to the solution based on the
Carter stress distribution are compared with the same values given by Grof-
Thebing’s approach where aq is substituted by aj. The size of the pseudo
contact width 1s set to be b = 20ag. Tt 18 seen that the Grofi-Thebing theory
actually provides a very accurate result also when the stick zone does not,
cover the entire contact patch. This is caused by the fact that the qualita-
tive behaviour of the problem does not differ significantly when r,, changes

e.g. the outline of 7?/&? and (¢7 — ¢¢) for ro, = 0.1 is not very different from
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the outline of the same quantities when r,, = 0.8 (see Figure 7.3 (A) and
Figure 7.3 (H)). Thus, the non-steady behaviour of the contact problem is

not. very sensitive to the stationary size of the stick zone and the slip zone.

In the above example a non-steady contact problem with oscillating tangen-
tial force is solved employing a simple series expansion of T'(1) and a*(1).
This approach is used in order to demonstrate the application of the derived
non-steady theory. Tt is obviously possible to solve the problem deriving
more sophisticated closed form expressions for T'(1) and a*(1), just as the
problem also can be solved if other quantities such as the normal force, the
curvature or the material properties oscillate as the cylinder rolls along the
surface. In all cases the expressions for the tangential stress distribution and
the tangential force are exact whereas the creepage is found using an ap-
proximation of the value wu,(xo,1). The only constraints necessary to solve
the non-steady problem are that U, = U, (2 4+ V,,t) and that the contact

patch is divided into one stick zone and one slip zone.
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Figure 7.3. (A)-(C) Non-steady contact. Dashed line: Grof-Thebing’s so-
lution (7.57). Solid line: approach with Carter’s stress distribution. Top:
ratio between the amplitude of the tangential force and the amplitude of
the creepage normalised with afm F/(4(1—v?)). Bottom: difference between
the phase of the tangential force and the phase of the creepage.
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Figure 7.3. (D)-(F) Non-steady contact. Dashed line: Grof-Thebing’s so-
lution (7.57). Solid line: approach with Carter’s stress distribution. Top:
ratio between the amplitude of the tangential force and the amplitude of
the creepage normalised with afm F/(4(1—v?)). Bottom: difference between
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Figure 7.3. (G)-(T) Non-steady contact. Dashed line: GroB-Thebing’s so-
lution (7.57). Solid line: approach with Carter’s stress distribution. Top:
ratio between the amplitude of the tangential force and the amplitude of
the creepage normalised with afm F/(4(1—v?)). Bottom: difference between
the phase of the tangential force and the phase of the creepage.



Chapter 8

Conclusion

In the present work a two-dimensional contact model based on half space
approximations has been formulated. The fundamental problem of the half
space approach to a contact problem arises from the constitutive equation
which provides the relation between the stress distribution ¢(2) and the

gradient of the relative displacement du,(x)/dx:

du, () B 4(1 — 1/2) /a 9(¢)
at—C

= d
dx T ¢

When the stress distribution is known this equation does not cause any
problems, but when the stress distribution has to be found from a given
gradient of the relative displacement, the constitutive equation provides

major difficulties.

195
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Tt has in the present work been shown that

_ Zr]:r:() Bpz” du, (z)
p(x) = —— © &

N—1
=Y e, Jel<a
m=0

where the coefficients B,, and 3,, are linearly dependent. Thus, the consti-
tutive equation originally formulated as an integral equation is reduced to
an algebraic equation. Since this equation consists of polynomials the actual
calculation is reduced to the comparison of polynomial coefficients, which
simplifies the solution of the contact problem significantly. Because the con-
stitutive equation for the normal pressure distribution and the gradient of
the relative normal displacement is equivalent to the constitutive equation
for the tangential stress distribution and gradient of the relative tangential
displacement, both the normal contact problem and the tangential contact

problem can be solved with the derived model.

The model has been applied on four different, contact problems which cannot,
be solved by more primitive contact models which are nevertheless the most

common in simulations investigating wheel /rail contact:

Contact between corrugated surfaces: Tt has been demonstrated that
the case of a cylinder rolling on a corrugated surface is very sensitive to
the choice of contact model. The presence of corrugation implies that the
stress distribution becomes asymmetric, a property which is decisive for the
evolution of the corrugation. This effect i1s disregarded if the tangential

stress distribution is assumed to be equal to the one for the Carter solution.

Contact with velocity dependent friction coefficient: The derived

model has been applied on the case where the friction coefficient depends on
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the local relative velocity between the surfaces in contact. The tangential
stress distribution and the creep curve were calculated. Tf the friction coef-
ficient 1s defined as a step function with one static value and one kinematic
value, the outline of the creep curve is identical with the creep curve for
the Carter solution where the friction coefficient 1s defined as the kinematic
friction coefficient. When the friction coefficient is defined as a decaying
function of the local relative velocity, the creep curve will have a maximum
and then decay as the creepage increases. The location of this maximum

can be determined.

Contact between rough surfaces: FEmploying the new contact model
it can be demonstrated that the combination of curvature, skewness and
flatness of a roughness spike is important for the normal contact problem,
thus statistical representations of these contact properties for a given surface
may be misleading in a contact mechanical sense as the contact situation 1s
not unique for a given statistical representation. Tt is further demonstrated
that the initial slope of the creep curve is proportional to the size of the
actual contact patch. Finally it has been shown that the normal contact
problem is more sensitive to the cross influence between adjacent contact

patches than the tangential contact problem.

Non-steady contact: An approximative method for the case of non-
steady contact has been derived. Tt is shown that an expression for the time
dependent creepage depends on an approximation of the displacement at a
reference point whereas the expressions for the tangential stress distribution
and the tangential force are exact. Calculations show that the ratio between

the amplitude of the creepage and the amplitude of the tangential force
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with appreciable accuracy can be found by a linear approach to the contact

problem.

8.1 Further Investigations

Tt is obviously possible to solve combinations of the different contact prob-
lems with the derived model e.g. the case of a corrugated surface with a
velocity dependent friction coefficient or the non-steady contact of rough
surfaces. Due to the generality of the derived model the application can
also be extended to many other cases of contact mechanics which are not
covered by more conventional contact models. An example of such an ap-
plication is the case where the material properties - e.g. the modulus of
elasticity or the coefficient of friction - depends on the temperature in the
contact patch. Due to the frictional work the temperature is not constant
over the contact patch. Tf the temperature field is known and an expression
for the material properties dependency of the temperature also is known,
then both the normal contact problem and the tangential contact problem
can be solved employing a method equivalent to the one described for the

case of the velocity dependent friction coefficient.

The main weakness of the new contact model is evidently that it is a two-
dimensional model. Tt has been demonstrated that the two-dimensional
model can be extended also to cover three-dimensional contact situations
with no spin by integrating the two-dimensional solution over an elliptic
contact patch. An obvious continuation of the present work is to perform
this integration for the four different contact problems in order to obtain

a three-dimensional model for each case. A much harder task is to include
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the effect of spin in the contact model. Tt is obviously possible to intro-
duce a correction factor depending on the spin which makes the creep curve
resemble the numerically calculated creep curve (e.g. by CONTACT). How-
ever, the introduction of a correction factor implies that the strictly physical
background of the derived expressions is eliminated. A much better way to
include the spin in the model is by redefining the location of the strips in
the strip theory. Thus, instead of having linear strips parallel to the rolling
direction, curved strips parallel to the pseudo creepage vector must be intro-
duced. This results in more complicated calculations but it is an interesting
approach to the three-dimensional problem with spin which may provide

very accurate results.
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Appendix A

Minimum of the

Two-Dimensional Solution

The following calculations will demonstrate that the Carter solution to the

two-dimensional tangential problem is a minimum solution.

Consider a tangential stress distribution defined as the sum of two ellipses

9(x) = 01 () + ga(a”) (A1)
g1 (x) = “T’:H/ag g2 (A.2)
go(s%) = i Jar? — 27 (A.3)

201
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Figure A.1. Tangential stress distribution.
»=r+d (A4)

Then the gradient of the relative lateral displacement due to Cerruti-

Boussinesq 1s:

du, () 41 —v?) |:7T/,Lp()

e+ mpye+d)| , —af <x+d<ay (AB)
dx T

agn
which inserted into the kinematic constraint yields that

A1 - v?) |:7T/1p0

bo=——+

] (A.6)

agn
As &y i1s independent of x this implies that

__ HPo
agn

Py = (A7)
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and so ( 2)
41 —v7) ppo
=——>"—d A8
€o T an (A.8)
The resulting tangential force is found by integrating ¢(z)
1
(AL P s (A.9)

- 2 ap
This implies that the minimum tangential force is found by maximizing a}?.
The only restriction for af; and d is that
% + 1d] < aq (A.10)

i.e. the ellipse go(2*) always lies inside the ellipse ¢ (2), and so the maximum

value of af 1s

a’;,m,a,fn = g — |d| (A]])
and consequently
d= ag — U’?),m,a,.’n (A12)

which is equivalent to the Carter solution. This demonstrates that under
the assumption that the tangential stress distribution can be expressed as

the sum of two ellipses, the Carter solution is the only minimal solution.
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Appendix B

Kalker’s Creep

Coeflicients

The coefficients are listed for a Poisson ratio v = 0.25.
ag 18 the semi axis of the contact ellipse in the rolling direction.
bo 1s the semi axis of the contact ellipse perpendicular to the rolling direction.

The derivation of the creep coefficients can be found in [34].

208
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aq /ba Chy 22 Cos
0.1 3.31 2.52 0.473
0.2 3.37 2.63 0.603
0.3 3.44 2.75 0.715
0.4 3.53 2.88 0.823
0.5 3.62 3.01 0.929
0.6 3.72 3.14 1.03
0.7 3.81 3.28 1.14
0.8 3.91 3.41 1.25
0.9 4.01 3.54 1.36
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bo/flo Chy 22 C2a
1.0 4.12 3.67 1.47
0.9 4.22 3.81 1.59
0.8 4.36 3.99 1.75
0.7 4.54 4.21 1.95
0.6 4.78 4.50 2.23
0.5 5.10 4.90 2.62
0.4 5.57 5.48 3.24
0.3 6.34 6.40 4.32
0.2 7.78 8.14 6.63

0.1 11.7 12.8 14.6
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Appendix C

Constitutive Equations

The below listed constitutive equations for the loaded half space are derived

for quasi identical bodies. A derivation can be found in [47].

Two-dimensional case:

(o) = 2D [ penmle—qac+e, (1)
o) = ~ 1) [ t@mle—clac+ e, (C2)
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Three-dimensional case:

wrten) = [ [ Aot oG+
gr2(2,y,¢,m) qy(Cm) Y dldny  (C.6)

wy(2,y) = // {921 (2w, ¢, n) 42 (C o)+
go2(2,9,¢,m) qy(C,m) Y dldny - (C.7)

gz, Con) = 2(1;7”) :(1 ;V) + ”(mp; C)Q] (C.8)
g1, y,Con) = 2(1;;7”) :V(mi)g(yn)] (C.9)
go1 (2, y.C.m) = 2(:;7”) :V(mi))g(y")] (C.10)
oo, y,C,m) = 2(1;7”) :(1 p,,) + V(ypg 77)2] (C.11)

p= Ve -+ () (CL12)



Appendix D

Transformation of the

Constitutive Equation

The aim of the present investigation 1s to derive a general solution to the

integral

ac (0.1)

, N
= /a Zn:(} B"Cn
Joa (. —)a? = 7
Introducing the transformation n = 2 — { then the polynomial is rewritten

as
N N n ) n o
SURED oS ST G P
and so the integral (D.1) is transformed into
r—a i—1

I = ZN: B, i(q)i ( " ) Zn i J dy (D.3)

i=0 ? Jrta \/77]2 + 220+ a? — 22
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Now let I,y denote the integral

r—a i—1

"

liy =
Jrta \/77]24—2.177]4—(12—.172

dn (D.4)

then the value of I; 18 given by the recursive formulae

1 1
17;—(—,1)(.1:20,2) f7;2—|—<2—,)mf7;1 L i=1,2,... (D.5)
2

?

o0 el<al o
B I -UC L R |
In=—m (D7)

This implies that if |z| < |a| then I;_1 can be written as a polynomial in =

[7;,1 = ZO/M’J,"??] (DS)
i=1

where the coefficients are given as

(i—1)! a\t—1 i—j
—T s (2 , 1IN
oy = T B TEN
0 , otherwise
Tnserted into equation (D.3) this yields the new equation
N n n 7
T=> "B,y (-1 ( ) ) 2y gl (D.10)
n=0 i=1 ! =1

i.e. a polynomial in x with the coefficients G,,:

N—1
T=Y" fBma™ (D.11)
m=0

Comparing the coefficients of the polynomials in equation (D.10) and equa-

tion (D.11) this implies that

j=m—n+4i+] (D.12)



Appendix D. Transformation of the Constitutive Equation 213

which also yields the restriction that (n —m—1)/2 € Ng. Tt is now possible

to derive a relation between the B,,’s and the 3,,’s

N n
B = Z Bn Z (*1)7: ( 77 ) mniiai,m—n-q-iw (D.13)

n=m-1 i=n—m !

which can be reduced to

N
Bn=>_ By, k€N (D.14)
n=m-1
B (2k)! raN2k
Ap = —mh (5) (D.15)
n—m—1
h=—— (D.16)

This demonstrates that there exists a linear relation between the B, ’s and
the G,,’s only depending on a and n — m. The above derivation is made
with the assumption that 7_y = 0 i.e. for the case where |z| < |a]. When

T_1 is included the general solution to the integral (D.1) is given as

SN Bal” S -
n=0 "n d¢ = Bpa™ + 1_ B, D7
./—a, (2 — ()\/a® = ? mZ::o 171,2:;) ( )
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