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SummaryToday many simulation routines concerning railway dynamics employ ratherprimitive contact models which are not necessarily suited for the speci�cwheel/rail contact problem. The objective of the present thesis is to derivea more exible contact model which can be applied on a variety of contactproblems.When it comes to the modelling of the wheel/rail contact it is always acompromise between computational speed and accuracy. Many numericalmethods provide a very good accuracy, but since most railway simulationsnecessitates the evaluation of many consecutive contact situations the rela-tive slow computational speed is extremely critical. To avoid this problemthe present model is based on an analytical approach.The model derived in the thesis is a two-dimensional contact model basedon elastic half spaces. It is demonstrated that the solution to a three-dimensional contact problem with no spin has many similarities with thetwo-dimensional solution. Thus, the results obtained with the present modelcan qualitatively be extended to the three-dimensional contact problem.v



viThe thesis is divided into two parts: one containing the derivation of thecontact model and one containing examples of application. The model isapplied on four di�erent types of contact problems which cannot be treatedwith the most common contact models:� contact between corrugated surfaces� contact with velocity dependent friction coe�cient� contact between rough surfaces� non-steady contactThe calculations demonstrate with much clearness that the solution to thecontact problem is very sensitive to the choice of contact model. This il-lustrates how crucial it is to employ an adequate contact model in a givensimulation routine in order to obtain a realistic result. If the assumptionsof the contact model do not ful�ll the actual contact situation the resultcan be most erroneous and thus misleading.



Resum�eMange simulations-programmer, der behandler jernbane-dynamiske proble-mer, anvender relativt primitive kontakt-modeller, der ikke n�dvendigvis ervelegnede til det p�ag�ldende hjul/skinne kontakt-problem. Form�alet meddenne afhandling er at udlede en mere eksible kontakt-model, som kananvendes p�a en lang r�kke kontakt-problemer.N�ar det g�lder modelleringen af hjul/skinne kontakt sker der altid en afve-jning mellem regne-hastighed og pr�cision. Mange numeriske metoderregner med stor pr�cision, men da de este jernbane-dynamiske simula-tioner kr�ver at mange p�a hinanden f�lgende kontakt-problemer bliver l�st,er den relativt lave regne-hastighed meget kritisk. For at undg�a dette prob-lem bygger n�rv�rende model p�a en analytisk metode.Den model, der udledes i afhandlingen, er en to-dimensional kontakt-modelbaseret p�a teorien for elastiske halv-rum. Det p�avises at l�sningen til ettre-dimensionalt kontakt-problem uden spin i vid udstr�kning er lig dento-dimensionale l�sning. S�aledes kan de resultater, der er opn�aet medvii



viiin�rv�rende model, blive udvidet s�a de kvalitativt ogs�a g�lder for tre-dimensional kontakt.Afhandlingen er opdelt i to hovedafsnit: en del der omhandler udledningenaf kontakt-modellen, og en del hvor eksempler p�a anvendelse af modellenbliver gennemg�aet. Modellen er anvendt p�a �re forskellige typer af kontakt-problemer, der ikke kan behandles med de s�dvanlige kontakt-modeller:� kontakt mellem riede overader� kontakt med hastighedsafh�ngig friktions-koe�cient� kontakt mellem ru overader� ikke-station�r kontaktBeregningerne viser med al �nskelig tydelighed at l�sningen til et givetkontakt-problem er meget f�lsomt med hensyn til valget af l�snings-model.Dette illustrerer, at det er meget vigtigt at anvende en passende kontakt-model i et simulations-program for at opn�a realistiske resultater. Hvisforuds�tningerne for kontakt-modellen ikke opfylder det faktiske kontakt-problem, kan resultatet blive yderst fejlagtigt og dermed vildledende.
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Chapter 1IntroductionThe theory of contact mechanics plays an important role in the descriptionof a large variety of engineering problems e.g. roller bearings, gear wheelsor the rolling deformation of bodies. In railway dynamics the contact be-tween wheel and rail is a crucial property: it is via the forces transmittedthrough the contact patch that vibrations and wear are generated. Thus, itis important for the simulations of the railway dynamics to be able to makea very accurate description of the rolling contact of wheel and rail.The �rst known literature on rolling contact is a surprisingly perceptivepaper by Reynolds [61], who formulated some basic ideas concerning the be-haviour of iron cylinders rolling on rubber surfaces. The paper contains nocalculations and only few experiments and yet Reynolds' conception of fun-damental contact mechanical properties is very close to what subsequentlyhas been veri�ed with experiments and calculations.1



Chapter 1. Introduction 2By the formulation of the half space theory in the 1880's a mathematicalfoundation for the theory of contact mechanics was introduced. The maincontributors from this period are Boussinesq [4], Cerruti [11] and Hertz[27] all treating the normal contact problem. In the 1920's the �rst paperson two-dimensional tangential contact problem was published by Carter [9]and Fromm [18]. The two-dimensional tangential contact problem was thencontinuously improved until 1958 where Johnson as the �rst treated thethree-dimensional tangential contact problem [31].The main contributor to modern rolling contact mechanics is beyond doubtJ.J. Kalker who was the �rst to apply modern numerical methods to contactproblems. The amount of work made by Kalker is impressive and he haspublished a multitude of papers on all sorts of contact problems. A surveyof his principles can be found in his book from 1990 [38]. There is no doubtthat Kalker's theory applied on certain contact problems yields a very highdegree of accuracy. The drawback of the numerical approach which Kalkerapply is that the computation times are rather high and thus not very wellsuited for dynamical simulations.As Kalker's theory is known to be exact, people with less insight in the �eldof contact mechanics sometimes apply it uncritically also when the assump-tions of the theory are not ful�lled for the given contact problem. Thisresults in simulations where important properties of the contact problemare disregarded, which in worst case can lead to qualitatively wrong results.The objective of the present work is to derive a exible contact theorywhich can be applied on contact problems not covered by the assumptionsin Kalker's theory or in other common contact models. The derived modelis then applied on a number of basic contact problems in order to investigate



Chapter 1. Introduction 3how sensitive the solutions are with respect to the properties which oftenare neglected in more primitive contact models.The contact model derived in the present work is two-dimensional and basedon elastic half spaces. It is obviously a weakness of the model that it only istwo-dimensional, but it is demonstrated that the two-dimensional solutionis qualitatively similar to the one for a three-dimensional contact problemwith no spin. Thus, the results obtained with the present model can beconsidered also to be an indicator of the behaviour of a three-dimensionalcontact problem.1.1 Outline of the ThesisThe thesis is divided into two parts. In Chapter 2{3 the theory of contactmechanics is introduced and the fundamental problems are described. InChapter 4{7 the theory derived in the �rst part of the thesis is applied ona variety of contact problems. The contents of each chapter is in brief:Chapter 2. Contact Mechanics: This serves as a general introduc-tion to contact mechanics. Some principle problems of contact mechanicsare introduced and a variety of contact models are described. Finally anew approach to the three-dimensional contact problem based on the two-dimensional solution is presented.Chapter 3. A Polynomial Approach: The mathematical foundationof the new contact model is introduced. The objective of the approach is to



Chapter 1. Introduction 4transform the constitutive equation into an algebraic equation which makesit possible to calculate the stresses from a given displacement.Chapter 4. Corrugation: The example of a cylinder rolling on a cor-rugated surface is investigated using the new contact model. The normalcontact problem and the tangential contact problem are solved. Further-more the wear in the contact patch is investigated in order to predict theevolution of the corrugation. Finally the application of contact �lters isconsidered.Chapter 5. Velocity Dependent Friction Coe�cient: The tangen-tial contact problem is investigated for the case where the friction coe�cientis velocity dependent. The inuence on the tangential stress distributionand the inuence on the outline of the creep curve are examined.Chapter 6. Rough Surfaces: The problem of contact between roughbodies is treated. The inuence of the geometry of a roughness asperity isanalysed for both the normal contact problem and for the tangential contactproblem. Furthermore the cross inuence between adjacent contact patchesis investigated.Chapter 7. Non-Steady Two-Dimensional Contact: Here the two-dimensional non-steady tangential contact problem is investigated. Theoscillations of the tangential stress distribution are analysed and a relationbetween tangential force and the creepage is derived.



Chapter 1. Introduction 5The thesis is concluded by Chapter 8 where a discussion and conclusion ofthe obtained results are carried out.



Chapter 1. Introduction 6



Chapter 2Contact MechanicsThe objective of the present chapter is to outline some of the basic aspectsof contact mechanics. Di�erent approaches to solve contact problems willbe treated with the emphasis on the half space method. Finally a numberof solutions to the normal contact problem and to the tangential contactproblem are described.2.1 The Basic ProblemsThe subject of contact mechanics covers a very large variety of problemsconcerning the interaction between deformable bodies. In order to makethe topic more clear it is divided into smaller groups depending on eitherthe material of the bodies (e.g. elastic, plastic or viscoelastic contact) or7



Chapter 2. Contact Mechanics 8how the bodies in contact interact (e.g. normal contact, tangential contact,rolling contact, impact etc.).In the present work only the case of elastic contact is investigated i.e. itis assumed that no plastic deformation of the bodies takes place and thatthere is no time-dependent behaviour in the materials relationship betweenstress and strain. An introduction to inelastic contact can be found in Hill'sbook [28] and a more thorough investigation of viscoelastic rolling contactcan be found in the work of Wang [69].If it furthermore is assumed that the bodies in contact are quasi identi-cal i.e. have the same material properties, then the tangential stress doesnot inuence the normal pressure distribution. This implies that the nor-mal contact problem can be solved independently of the tangential contactproblem. As both the wheel and the rail are made of steel, the wheel/railinteraction is a typical quasi identical contact. If the bodies in contact havedi�erent material properties an iterative method must be applied e.g. thePanagiotopoulos process [55].It is presupposed that the wheel and rail interact in a rolling motion. Thebodies must thus always be in contact which implies that no impact occurs.For some special cases of wheel/rail contact this assumption is not valid e.g.heavily corrugated rails or sudden ange contact. Still the normal load isusually su�ciently large to ensure a continuous contact between wheel andrail, and so the no-impact assumption is in general reasonable.



Chapter 2. Contact Mechanics 92.2 Calculation MethodsThere exists numerous di�erent methods to solve contact problems. Thechoice of approach is not at all easy because it often is a choice betweencomputational speed and accuracy. The obvious way to solve a contactproblem is to utilize a �nite element method (FEM). Dividing the bodiesinto a �nite number of elements and assume the displacements and stressesin each element to be of a simple form e.g. constant or linear and then byputting the elements together by means of some compability relations [71],the stresses and strains in the bodies are found [48]. The FEM can handlevery complicated geometries with a very high degree of accuracy but is muchto slow to be utilized in connections where numerous consecutive contactsituations must be evaluated.A muchmore appropriate approach to the investigation of wheel/rail contactis the half space method. It assumes that the overall contact problem canbe solved just by analysing the contact patch itself. This leads of course tomajor simpli�cations of the solution as the problem then is reduced by onedimension.2.3 The Half Space ApproachFor wheel/rail contact as well as many other applications the characteristicdimensions of the bodies in contact are much larger than the size of thecontact patch. When this is the case the contact stresses do not depend onthe shape of the bodies distant from the contact area, and so the bodies



Chapter 2. Contact Mechanics 10may be approximated by semi-in�nite bodies having plane surfaces i.e. halfspaces.2.3.1 Elastic Half Space TheoryIn order to apply the elastic half space theory it is necessary that some basicproperties of the contact are ful�lled:i. The characteristic sizes of the bodies in contact are large compared tothe size of the contact patchii. the bodies are smoothiii. strain and stresses are smalliv. The bodies are fully elasticv. The bodies are homogeneous and isotropicThe restrictions (i) and (ii) ensure that the bodies can be considered as halfspaces. Provided that the strains and stresses are small, the small straintheory can be applied [64]. The assumption of small strains and stresses iscrucial because the derivation of the constitutive equations is based on theprinciple of superposition, which is only valid if the strains and stresses arelinear.The aim is now to derive a relation between stresses and displacements i.e.a constitutive equation. This is done by considering the inuence functiong(X;Y; �; �), which should be interpreted as the displacement at the point



Chapter 2. Contact Mechanics 11(X;Y ) when a point load is acting at (�; �). Because the stresses and strainscan be superposed this leads to the constitutive equationu(X;Y ) = Z Z g(X;Y; �; �) q(�; �) d�d� (2.1)where u(X;Y ) is the displacement vector and q(X;Y ) is the stress vector.The inuence functions for the half space theory were found by Cerruti [11]and Boussinesq [4] and are listed in Appendix C.The question is of course whether the half space theory can be applied forthe case of wheel/rail contact. In general the restrictions mentioned aboveare ful�lled, but for some special cases the half space approximation maybe too primitive:1. Flange contact: as the width of a ange is of magnitude 30 mm andthe characteristic size of the contact patch is approximately 10 mm,assumption (i) may be violated.2. Heavily corrugated rails: investigations have shown that the surfacematerial at the top of a corrugation asperity is harder than the surfacematerial in a corrugation trough [3]. This implies that assumption (v)is not ful�lled.3. Roughness: when the contact patch due to roughness of the wheeland rail are divided into numerous small patches, the stresses may beso large that the material will undergo a plastic deformation. In thiscase the assumptions (ii), (iii) and (iv) are violated.Despite the above listed cases it must be emphasized that the half spaceapproximation considering accuracy and computation time by far is the bestapproach for most investigations of wheel/rail contact.



Chapter 2. Contact Mechanics 122.3.2 The Normal Contact ProblemThe normal contact problem is an overall term for the case of two elas-tic bodies pressed together under a normal force. The aim is to �nd thecharacteristic properties of the contact such as displacements, pressure dis-tribution, penetration and size and shape of the resulting contact patch.Consider two elastic bodies where the shape of the undeformed bodies aregiven by the functions Z1(X;Y ) and Z2(X;Y ). The separation betweenthem is then de�ned ash(X;Y ) = Z1(X;Y )� Z2(X;Y ) (2.2)As the bodies approach one another the �rst contact will take place at thepoint (X0; Y0) which is the global minimum of h(X;Y ). This point is in thefollowing referred to as the contact point.When the bodies are pressed together they will deform around the contactpoint and a contact patch S is created. The shape and size of the con-tact patch depend on the geometry of the bodies, the normal load and thecharacteristic material constants.If several local minima of the function h(X;Y ) lie inside S the contact issaid to be multiple. In the case of multiple contact, S can be either coher-ent or divided into more separate contact zones. The distinction betweensingle point contact and multiple point contact is important for many appli-cations. Another way to categorize a contact situation is by distinguishingbetween conforming and non-conforming contact. If the bodies have dissim-ilar pro�les in the vicinity of the contact point the contact is non-conforming



Chapter 2. Contact Mechanics 13�1
�2 Z1Z2uz1uz2� �1�2contact patchFigure 2.1. The normal deformation of elastic bodies in contact.whereas bodies which �t almost together without deformation - i.e. a con-cave body and a convex body - are said to be conforming.Now let uz(X;Y ) = uz1(X;Y ) + uz2(X;Y ) be the vertical displacement ofmaterial as the bodies are deformed. Thenuz(X;Y ) + h(X;Y ) = � ; (X;Y ) 2 S (2.3)uz(X;Y ) + h(X;Y ) > � ; (X;Y ) 62 S (2.4)where � = �1 + �2 is the penetration (see Figure 2.1). The relation betweenthe vertical displacements and the normal pressure distribution is foundfrom the constitutive equation of Cerruti-Boussinesq [32]:uz(X;Y ) = 2(1� �2)�E Z ZS p(�; �)p(X � �)2 + (Y � �)2 d� d� (2.5)



Chapter 2. Contact Mechanics 14where E is the modulus of elasticity and � is the Poisson ratio. The contactis assumed to be frictionless or quasi identical i.e. the vertical displacementsdo not depend on the tangential stress. It is assumed that the normalpressure always is zero outside the contact patch sop(X;Y ) 6= 0 , (X;Y ) 2 S (2.6)p(X;Y ) = 0 , (X;Y ) 62 S (2.7)The last equation that is necessary to solve the normal contact problemarises from the fact that the normal force is equal to the normal pressuredistribution integrated over the contact patch, i.e.N = Z ZS p(X;Y ) dX dY (2.8)By this the set of equations necessary to solve the normal contact problemis established. The complexity of the normal contact problem is closelyrelated to the various types of equations. With one inequality and twointegral equations, the normal contact problem is very di�cult to solve andfor many applications a numerical approach is the only way to obtain asolution to the normal contact problem.2.3.3 The Tangential Contact ProblemNow consider two elastic bodies in contact. If a torque is applied to one ofthe bodies a tangential force will be transmitted to the other body due tothe friction in the contact patch and the bodies will roll over each other. Thetangential contact problem consists in �nding the tangential stress distribu-tion, the tangential displacements and the relative velocity in the contactpatch.



Chapter 2. Contact Mechanics 15Let the motion of the two bodies be de�ned with respect to a referencepoint which coincides with the contact point, and de�ne the linear velocityof the bodies V1(t) = 8>><>>: Vx1Vy1Vz1 9>>=>>; (2.9)V2(t) = 8>><>>: Vx2Vy2Vz2 9>>=>>; (2.10)and the angular velocity 
1(t) = 8>><>>: 
x1
y1
z1 9>>=>>; (2.11)
2(t) = 8>><>>: 
x2
y2
z2 9>>=>>; (2.12)then the relative velocity of the rigid bodies in the contact patch is given asV (t) = 8>><>>: VxVy
z 9>>=>>; = 8>><>>: Vx1 � Vx2Vy1 � Vy2
z1 � 
z2 9>>=>>; (2.13)Provided the bodies remain in contact, the linear vertical velocity is alwayszero and so the mean velocityVm = 12 jV1 + V2j (2.14)



Chapter 2. Contact Mechanics 16is always parallel to the contact plane. The creepage is then de�ned as therelative velocity of the rigid bodies normalised with the mean velocity�(t) = 8>><>>: �x�y' 9>>=>>; = 1Vm 8>><>>: VxVy
z 9>>=>>; (2.15)where �x is the longitudinal creepage, �y is the lateral creepage and ' is thespin.Now introduce a new coordinate system (x; y; z) which moves along withthe contact patch and let uT (x; y; t) = fux; uyg be the displacement inthe contact plane. De�ning the slip sT (x; y; t) = fsx; syg as the local,relative velocity in the contact patch normalised with Vm then the kinematicconstraints readsx(x; y; t) = �x(t) � '(t)y + @@xux(x; y; t)� 1Vm @@tux(x; y; t) (2.16)sy(x; y; t) = �y(t) + '(t)x+ @@xuy(x; y; t)� 1Vm @@tuy(x; y; t) (2.17)A detailed derivation of the kinematic constraints can be found in [38].In tangential contact mechanics there is often distinguished between sta-tionary and non-steady rolling contact. If the term with @u(x; y; t)=@t isnegligible the tangential contact problem is said to be stationary and thekinematic constraints are then reduced tosx(x; y) = �x � 'y + @@xux(x; y) (2.18)sy(x; y) = �y + 'x+ @@xuy(x; y) (2.19)The omitting of the time derivative of u(x; y; t) leads to major simpli�ca-tions in solving the tangential contact problem and for that reason mostcontact theories assume stationary contact.



Chapter 2. Contact Mechanics 17The contact patch is divided into a stick zone Sstick and a slip zone Sslip:(x; y) 2 Sstick , ( s(x; y; t) = 0jq(x; y; t)j < �p(x; y; t) (2.20)(x; y) 2 Sslip , ( s(x; y; t) 6= 0jq(x; y; t)j = �p(x; y; t) (2.21)where qT (x; y; t) = fqx; qyg is the tangential stress distribution and � is thefriction coe�cient according to the friction law of Coulomb. It is noticedthat the direction of the tangential stress always is opposite the directionof the slip, i.e.( s(x; y; t) � q(x; y; t) < 0s(x; y; t) � qT (x; y; t) = 0 ) ; (x; y) 2 Sslip (2.22)As the displacements tend towards zero as the distance from the contactpatch increases, it follows from the kinematic constraints thatlim(x;y)!1 sx(x; y; t) = �x(t) � '(t)y (2.23)lim(x;y)!1 sy(x; y; t) = �y(t) + '(t)x (2.24)The relation between the tangential stress distribution and the tangen-tial displacements is established from the constitutive equation of Cerruti-Boussinesq: u(x; y; t) Z ZS g(x; y; �; �)q(�; �; t) d� d� (2.25)where g(x; y; �; �; t) is the inuence matrix with the coe�cientsg11(x; y; �; �) = 2(1 + �)�E � (1� �)� + �(x� �)2�3 � (2.26)g12(x; y; �; �) = 2(1 + �)�E ��(x� �)(y � �)�3 � (2.27)



Chapter 2. Contact Mechanics 18g21(x; y; �; �) = g12(x; y; �; �) (2.28)g22(x; y; �; �) = 2(1 + �)�E � (1� �)� + �(y � �)2�3 � (2.29)� =p(x� �)2 + (y � �)2 (2.30)It is assumed that the bodies are quasi identical so that the normal pressuredoes not inuence the tangential displacements.The last equation that is necessary in order to solve the tangential contactproblem states that the tangential force T T (t) = fTx; Tyg is equal to thetangential stress distribution integrated over the entire contact patch:T (t) = Z ZS q(x; y; t) dx dy (2.31)As the area of the contact patch is �nite, a momentMz(t) acting about thenormal to the contact plane is generated:Mz(t) = Z ZS [qy(x; y; t)x� qx(x; y; t)y] dx dy (2.32)In most applications the size of the contact patch is however so small com-pared to other characteristic sizes that the inuence of the moment in thecontact patch can be neglected.The solution to the tangential contact problem is not unique: for a givencreepage an in�nity of tangential stress distributions ful�ll the equationsderived in this section. The physical explanation to this apparently non-physical behaviour is that only the solution that minimizes the tangentialforce is stable: all other solutions are unstable and will only occur in atransition phase.



Chapter 2. Contact Mechanics 192.4 Solutions to the Two-Dimensional Con-tact ProblemIn the theory of contact mechanics a problem is often referred to as two-dimensional or three-dimensional. The three-dimensional contact problemhandles real bodies whereas the two-dimensional contact problem is reducedby one degree of freedom so the bodies in contact have a characteristiccross section which is constant in the direction perpendicular to the di-rection of motion. The most often investigated two-dimensional contactproblem is the one of two in�nite cylinders in rolling contact. The omittingof one dimension is naturally strictly speaking non-physical. It is howevera case of interest as the simpli�cation makes it possible to solve certaincontact problems analytically. Furthermore the qualitative behaviour of atwo-dimensional contact problem is in many cases equivalent to the one ofa three-dimensional case as will be demonstrated in section 2.6.2.4.1 The Hertz SolutionWhen two in�nite cylinders with the radii R1 and R2 are pressed togetherunder the normal load per unit length N , they deform around the contactline and a contact strip is created. As the problem is two-dimensional onlya cross section of the cylinders is considered and so the contact line is trans-formed into a contact point and the contact strip into a line. For historicalreasons this is however still referred to as the contact patch. Assuming thatthe radii of the cylinders are much larger than the size of contact patch, the



Chapter 2. Contact Mechanics 20shape of the cylinders in the vicinity of the contact point can be approxi-mated by the second order Taylor expansionsZ1(x) ' 12R1x2 (2.33)Z2(x) ' � 12R2x2 (2.34)Let the length of the contact patch be 2a0, then the vertical displacement ofmaterial in the contact patch is found from the constitutive equation whichfor the two-dimensional case reads:uz(x) = �4(1� �2)�E Z a0�a0 p(�) ln(x� �) d� +C1 (2.35)where the constant C1 depends on the choice of datum of the displacements.This implies that the equations (2.3)-(2.4) can only be solved apart from aconstant. To avoid this unknown constant the two equations are di�erenti-ated with respect to x and so C1 disappears and the problem can be solved.Unfortunately the penetration � is also independent of x and will thus beremoved by the di�erentiation. Thus, it is impossible to �nd the penetra-tion for the two-dimensional contact problem. The constitutive equationderived with respect to x readsdu(x)dx = �4(1� �2)�E Z a0�a0 p(�)x� � d� (2.36)and so4(1� �2)�E Z a0�a0 p(�)x� � d� = ddx [Z1(x)� Z2(x)] ; �a0 < x < a0 (2.37)Introducing the equivalent radius R as1R = 1R1 + 1R2 (2.38)equation (2.37) is reduced to4(1� �2)�E Z a0�a0 p(�)x� � d� = xR ; �a0 < x < a0 (2.39)



Chapter 2. Contact Mechanics 21The normal contact problem was �rst solved in 1882 by Hertz [27] whofound that the normal pressure distribution is elliptic withp(x) = p0a0qa20 � x2 ; �a0 < x < a0 (2.40)p0 =s NE2(1� �2)�R (2.41)a0 =r8(1� �2)RN�E (2.42)It should be noticed that the shape of the two surfaces are representedlinearly in equation (2.37). This implies that geometric properties can bemoved from one body to another and so the case of two cylinders pressedtogether can always be transformed into the case of a cylinder with theequivalent radius R pressed into a level surface (a cylinder with radius equalin�nity).2.4.2 The Carter SolutionNow apply an axial torque to one of the cylinders from the previous section.Due to the friction in the contact patch a tangential force will be transmittedbetween the bodies and the cylinders will roll over each other. Let therelative global velocity of the two cylinders be non zero i.e.� = 1Vm (!1R1 � !2R2) (2.43)where !1 and !2 are the angular velocities of the cylinders and Vm is themean velocity Vm = 12 j!1R1 + !2R2j (2.44)



Chapter 2. Contact Mechanics 22The kinematic constraint then gives a relation between the slip s(x; t) andthe derivatives of the tangential displacement ux(x; t)s(x; t) = �(t) + @ux(x; t)@x � 1Vm @ux(x; t)@t (2.45)where the constitutive equation provides the relation between the tangentialstress distribution and the tangential displacement of the material in thecontact patch:ux(x; t) = �4(1� �2)�E Z a0�a0 q(�) ln(x� �) d� + C2(t) (2.46)Analogue to the constitutive equation for the normal contact problem C2(t)depends on the choice of datum of the displacements. This implies that@u(x; t)=@t can only be found apart from an unknown function, and it isthus impossible to solve the two-dimensional tangential contact problem forthe non-steady case.The stationary tangential contact problem for a Hertzian normal pressuredistribution was solved by Carter [9] in 1926 and by Fromm [18] in 1927.Whereas Fromm succeeded in solving the problem of two-dimensional elas-ticity without the use of a half space approximation, Carter regarded thecylinders as elastic half spaces. They both found that the tangential stressdistribution can be calculated as the sum of two ellipses. A new coordinatesystem where the transformation between the old coordinates and the newcoordinates is given as x� = x+ a0 � a�0 (2.47)is introduced so that one of the ellipses has its centre in O(x) and the otherin O(x�) as indicated in Figure (2.2).
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stick zone slip zone

V
�a�0 O(x�) a�0 x��a0 O(x) a0 xq1(x)q2(x�) q(x)

Figure 2.2. The Carter solution for the two-dimensional tangential contactproblem.The tangential stress distribution q(x) is thenq(x) = q1(x) + q2(x�) (2.48)q1(x) = ( �p0a0 pa20 � x2 ; �a0 < x < a00 ; otherwise (2.49)q2(x�) = ( ��p0a0 pa�20 � x�2 ; �a�0 < x� < a�00 ; otherwise (2.50)



Chapter 2. Contact Mechanics 24where the size of a�0 depends on the size of the contact length and themagnitude of the creepagea�0 = a0 + R� �0 ; ��a0=R � �0 � 0 (2.51)By integrating the tangential stress distribution over the entire contactpatch the tangential force is found, and so the creepage and the tangen-tial force are given as functions of a�0:�0 = �R (a�0 � a0) (2.52)T0 = �Na20 �a20 � a�20 � (2.53)The above expressions are only valid for a�0 � a0 which yields the criticalcreepage �c = ��a0R (2.54)This is exactly the value for which T = �N i.e. where the tangential force isequivalent to the tangential force according to the friction law of Coulomb.Consequently the cases where j�0j � j�cj are referred to as complete sliding.The classic way to evaluate a tangential contact problem is via a creepcurve, where the tangential force is plotted as a function of the creepage.The creep curve for the Carter solution is shown in Figure 2.3 where thecreepage is normalised with �c. It is seen that when the size of the creepageis small the tangential force is below the Coulomb value �N , whereas it for acertain size of the creepage will reach the saturated regime where completesliding occurs and the tangential force will then be equal to the Coulombvalue.If the tangential stress distribution is inserted into the constitutive equationand into the kinematic constraint the local relative velocity between the
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stick zone slip zone

V�a�0 a�0 x��a0 a0 xs(x)�0Figure 2.4. Local relative velocity for the Carter solution.It is furthermore seen that limx!�1 s(x) = �0 (2.58)which states the obvious property that the local relative velocity betweenthe cylinders at a position far away from the contact patch is equal to theglobal relative velocity.It can be shown that the magnitude of the creepage only depends on theposition of the small ellipse and that the tangential force only is relatedto the size of the small ellipse. This implies that there is no correlationbetween creepage and tangential force: any position and size of the smallellipse satis�es the equations for the tangential contact problem as longas it lies inside the big ellipse. As stated in section 2.3.3 this is due to
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Figure 2.5. The Cattaneo solution to the two-dimensional tangential contactproblem.the fact that only the solution which for a given creepage minimizes thetangential force is a stable solution to the tangential problem. In AppendixA it is shown that the Carter solution is the only stable solution to thetwo-dimensional stationary contact problem.The Cattaneo solution is a typical example of an instable solution to thetwo-dimensional contact problem. Consider two cylinders pressed togetherand then shifted in the tangential direction under the application of a sud-den tangential force. Cattaneo [10] then found that the tangential stressdistribution when the rolling motion starts can be described as the sum oftwo ellipses with the same origo but di�erent widths (see Figure 2.5). Asindicated in Appendix A this leads to a situation with zero creepage which



Chapter 2. Contact Mechanics 28is obvious because the rolling is about to start. The tangential force is how-ever di�erent from zero and thus bigger than the lowest possible force whichis zero as in the Carter solution. Thus, the Cattaneo solution is unstableand the tangential stress distribution and the creepage will evolve until theCarter solution is reached. The transition from the Cattaneo solution tothe Carter solution has been investigated by Kalker [36].2.5 Solutions to the Three-Dimensional Con-tact ProblemIn the previous section some analytical solutions to the two-dimensionalcontact problem were introduced. Regarding three-dimensional problemsthe solutions are much more complicated and cannot be found analytically.Instead it is necessary to apply other methods to deal with the problem.In the following sections some di�erent approaches are outlined. The pre-sentation serves as an introduction to the various methods, and only a fewexamples are mentioned in each category. A more complete listing of solu-tions to the three-dimensional contact problem can be found in [38].2.5.1 Analytical SolutionsAs in the two-dimensional case there also exists a three-dimensional Hertzsolution to the normal contact problem. If the bodies in contact in thevicinity of the contact point are non-conforming and can be approximatedby second order polynomials the contact patch will be elliptic and the normal



Chapter 2. Contact Mechanics 29pressure distribution will also be ellipticS = n (x; y) 2 IR ��� h1� (x=a0)2 � (y=b0)2i > 0 o (2.59)p(x; y) = p0s1� � xa0�2 � � yb0�2 (2.60)The expressions for the semi axes a0 and b0 of the contact ellipse and for themaximum normal pressure p0 are very complex. The Hertz solution for thethree-dimensional normal contact problem is nevertheless by far the mostconvenient contact model because the elliptic properties make it possible todescribe the normal contact with very few characteristic parameters. Thederivation of the three-dimensional Hertz solution can be found in [32].Regarding a solution to the stationary tangential contact problem, Kalkerhas made an analytical approach. With the assumption that the normalcontact is Hertzian and that the stick zone covers the entire contact patch,Kalker solved the constitutive equations by assuming the tangential stressdistribution to be on a polynomial form [34]. In principle it is possibleto apply an arbitrary high order of the polynomial approximation, but asthe complexity of the calculations explodes with the number of polynomialcoe�cients, Kalker restricted himself to a 5th order approximation. Withthis he found a linear relation between the tangential force and the creepageTx;lin = � E2(1 + �) a0b0C11�x (2.61)Ty;lin = � E2(1 + �) a0b0 �C22�y +pa0b0C23'� (2.62)where C11, C22 and C23 are the Kalker creep coe�cients which depend ona0 and b0. The creep coe�cients are listed in Appendix B.



Chapter 2. Contact Mechanics 302.5.2 Heuristic SolutionsIf the two bodies are conforming or the contact is multiple, the Hertziantheory is no longer valid. Because the theory of Hertz is the foundation ofmany methods for the tangential contact problem, it is of major interest totransform a non-Hertzian contact into an equivalent Hertzian contact, i.e.to de�ne an elliptic contact which has the same properties as the actualcontact situation. One example of establishing an equivalent contact patchfor a multiple contact was made by Pascal and Sauvage [56]. They calculatedthe Hertzian contact for each minimumof h(X;Y ) in the contact patch andthen established the properties of one resulting elliptic contact patch by aweighted sum of the characteristic properties of the small contact ellipses.Concerning the tangential contact problem, the disadvantage of Kalker's lin-ear theory presented in the previous section is that it is derived for the casewhere the stick zone covers the entire contact patch, i.e. for in�nite smallcreepages. A direct consequence of this assumption is that the tangentialforce does not reach a saturated regime and thus violates the friction lawof Coulomb. To compensate for this non-physical behaviour Shen, Hedrickand Elkins (SHE) have developed a heuristic modi�cation of Kalker's lineartheory so that the friction law of Coulomb is ful�lled when the creepage islarge.Let Tlin = qT 2x;lin + T 2y;lin and de�ne the size of the tangential force ac-cording to SHE asTSHE = 8<: �N ��Tlin�N �� 13 �Tlin�N �2 + 127 �Tlin�N �3� ; Tlin � 3�N�N ; Tlin > 3�N(2.63)



Chapter 2. Contact Mechanics 31then the lateral and the longitudinal force components areTx;SHE = Tx;linTSHETlin (2.64)Ty;SHE = Ty;linTSHETlin (2.65)The theory of SHE is based on the theory of Vermeulen-Johnson [66] butis still a pure mathematical modi�cation of the linear theory, made in orderto obtain a saturated regime. This implies that SHE is a macroscopicmodel which can only be applied to establish a creep curve: it is absolutelyinadequate to use for an evaluation of what happens inside the contactpatch such as �nding the slip and the stress or determining the location ofthe stick zone and of the slip zone.The range of validity of SHE is limited. Whereas the theory provides avery good approximation for pure creepage it is much to inaccurate whenthe spin is large. SHE is however a very often used approximation as it isanalytical and thus easy to implement and very fast. A modi�ed version ofSHE was introduced by Zhang [70] in order to ameliorate the accuracy forlarge spin.Because SHE is based on the linear theory of Kalker it presupposes aHertzian contact patch and a stationary contact.2.5.3 Numerical SolutionsBecause the equations of the half space theory in general are impossibleto solve analytically, a natural approach would be to use numerical meth-ods based on discretisation of the contact patch. The idea is to divide



Chapter 2. Contact Mechanics 32the contact patch into many small surface elements and then assume thestresses and displacements to be constant within each element. In this waythe integral equations from the half space theory are transformed into ma-trix equations which usually can be solved quite easily. The discretisationmethod can be applied for both the normal contact problem and the tan-gential contact problem, but an often used simpli�cation is to assume thecontact to be Hertzian i.e. the contact patch to be elliptic and then onlyutilize the discretisation method for the tangential contact problem.Divide the contact patch into n surface elements and assume the displace-ments and stresses inside each element to be constant and acting in thecentre of the contact element. The constitutive equation can then be writ-ten as fug = [G]fqg (2.66)fugT = fuT1 ;uT2 ; : : : ;uTng (2.67)fqgT = fqT1 ; qT2 ; : : : ; qTng (2.68)[G] = 2664 G11 � � � G1n... . . . ...Gn1 � � � Gnn 3775 (2.69)Gij = Z ZSj g(xi; yi; �; �) d�d� (2.70)where Sj is the jth surface element and (xi; yi) is the centre of the ithsurface element. The vector uTj = fuxj; uyjg is the displacement in thejth element and similarly qTj = fqxj; qyjg is the tangential stress in the jthelement.



Chapter 2. Contact Mechanics 33De�ning the creepage vectorf�gT = f�T1 ; �T2 ; : : : ; �Tng (2.71)�j = ( �x � 'yj�y + 'xj ) (2.72)and the slip vector fsgT = fsT1 ; sT2 ; : : : ; sTng (2.73)where sTj = fsxj; syjg then the kinematic constraint for the stationary tan-gential contact problem readsfsg = f�g+ ddxfug (2.74)The simplest way to solve this matrix equation is to assume that the stickzone covers the entire contact patch apart from an in�nitely narrow stripat the trailing edge where a singularity occurs. This set-up is equivalent toKalker's linear theory.The boundary conditions then yield that the tangential stress is zero at theleading edge of the contact patch and that the slip is di�erent from zeroat the trailing edge. Now let the surface elements at the leading edge benumbered from 1 to nl and the surface elements at the trailing edge be theones from (n � nl) to n, thensj = 0 ; j = 1; 2; : : : ; (n� nl) (2.75)and the matrix equation (2.74) can be rewritten asddx 2664 G11 � � � G1;n�nl... . . . ...Gn�nl;1 � � � Gn�nl;n�nl 37758>><>>: qnl+1...qn 9>>=>>; =8>><>>: �1...�n�nl 9>>=>>; (2.76)



Chapter 2. Contact Mechanics 34which is solved with respect to the stresses. Finally the tangential force isfound as T = nXj=nl+1"qj Z ZSj d�d�# (2.77)The accuracy of the method depends obviously on the discretisation: themore surface elements the better is the approximation. Kalker compares in[34] the creep coe�cients C11, C22 and C23 calculated with the discretisationmethod with the ones from his linear theory. It turns out that with adiscretisation of [11� 8] elements the error varies from 5� 10%.The above example demonstrates the fundamental principles of the dis-cretisation method, but it is not very convenient for practical use since it isequivalent to the linear theory which is analytical and thus faster and moreprecise. The real application of discretisation methods is for cases whereboth a stick zone and a slip zone exist inside the contact patch. This resultsof course in an augmentation of unknowns in equation (2.74) as the as-sumption from equation (2.75) is no longer valid. Even when the boundaryconditions (2.20)-(2.22) are introduced the equation system (2.74) is stillunconstraint. This implies that an in�nity of solutions exists just as in thetwo-dimensional contact problem. To overcome this problem the potentialenergy must be minimized which is done with a variational principle. Athorough description of this approach can be found in [38].One of the most common numerical routines to solve contact problemsis CONTACT by Kalker [67], a program which is based on discretisa-tion of the contact patch and covers a broad range of contact problems.CONTACT is often referred to as the exact theory. This is of coursean exaggeration as it is a numerical method, but it is beyond doubt thatthe routine is a very powerful tool to investigate half space contacts. The



Chapter 2. Contact Mechanics 35drawback of CONTACT is the computation time needed to solve a singlecontact problem. As the contact patch must be very �ne discretized anda number of iterations is needed to solve the variational problem, CON-TACT is not well suited for investigations which demand many consecutivecontact calculations as railway dynamic simulations or wear calculations.2.5.4 TablesA way to avoid the long computation times for the numerical solutionsis to use tables. This approach is based on the numerical solutions, butinstead of solving the contact problem every time, many di�erent contactsituations are solved once and for all and then listed in a large table. To�nd the tangential force for a given contact situation it is thus a matter ofinterpolation in the table.The advantage of tables is that the interpolation is much faster than comput-ing the numerical solution. Of course this demands a large storing capacity,but that is not a problem with the computers of today. A much more so-phisticated problem is how to de�ne a given contact situation: it craves formuch generality but yet as few entries as possible. It is crucial to utilize ap-propriate normalisations of the characteristic values in order to incorporateas many constants as possible. Typical entries of a contact table would bethe semi axes of the contact ellipse and the creepage components.Due to the limited number of entries, the use of tables is only appropriatefor Hertzian contact: the information necessary to determine a non-ellipticcontact patch would demand too many entries. For the same causes the useof tables is restricted to stationary contact. USETAB is an example of a



Chapter 2. Contact Mechanics 36contact table. It was made by Kalker [39] and is based on CONTACT. Togive an impression of the magnitude of the contact tables, it is noted thatthe storage capacity needed for USETAB is 4.5 MB. When comparing thecomputation speed USETAB is 15.000 times faster than CONTACT.For some applications the interpolation procedure may cause some numer-ical problems. If the interpolation in the table is linear the values arerepresented as piecewise linear functions and are thus non-smooth. If thesevalues are used for e.g. numerical integration the non-smoothness may re-sult in convergence problems. This can naturally be prevented by a higherorder of interpolation, but this increases the complexity of the interpolationprocedure and only moves the non-smoothness of the variable one level up.2.6 A Three-Dimensional Solution Based onTwo-Dimensional Contact TheoryThe previous sections clearly indicate that where the two-dimensional con-tact problem for certain presumptions can be solved analytically, the three-dimensional contact problem in general must be approached by employingnumerical methods. As the set of equations de�ning the three-dimensionalcontact problem in manyways is similar to the one from the two-dimensionalproblem, it is obvious to try to derive a three-dimensional solution by mod-ifying the solution to the two-dimensional contact problem.



Chapter 2. Contact Mechanics 372.6.1 The Strip TheoryThe concept of employing a two-dimensional approach to solve a three-dimensional contact problem was �rst introduced by Haines and Ollertonin 1963 [24] for the case of an elliptic contact patch subjected to a longitu-dinal traction. By dividing the contact patch into narrow strips parallel tothe rolling direction, they argued that each strip would have a tangentialstress distribution equal to the Carter solution. In the following the basicequations of the strip theory will be derived.Let the contact patch be an ellipse with the semi-axes a0 and b0 then thenormal pressure distribution according to Hertz is given asp(x; y) = p0s1� � xa0�2 � � yb0�2 (2.78)The length of the contact strip located at the lateral position y = y0 isthen 2a(y0) where a(y) = a0p1� (y=b0)2. With this de�nition the Cartersolution for a contact strip is formulated asq(x; y) = �p(x; y)� q2(x; y) (2.79)q1(x; y) = �p0a0 q[a(y)]2 � x2 (2.80)q2(x; y) = �p0a0 q[a�(y)]2 � x�2 (2.81)where x� = [x� a(y) + a�(y)] and a�(y) is half the length of the stick zone(see Figure 2.6). The two-dimensional constitutive equation applied on agiven strip then yields that@ux(u; y)@x = 4(1� �2)�E �p0a [a(y) � a�(y)] (2.82)
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2a�(y)2a(y) V yx�b0 a0slip zonestick zone@@Figure 2.6. Basic concept of the strip theory.which inserted into the two-dimensional kinematic constraint provides arelation between a�(y) and the creepage:a�(y) = a00@ E4(1� �2)�p0 �x +s1� � yb0�21A (2.83)If complete sliding occurs in a strip then a�(y) = 0. This implies that thestick zone, which is symmetric around the x-axis, is limited to the intervaly 2 [�b�; b�] where b� = b0q1� ~�2x (2.84)and where the normalised creepage ~�x is de�ned as~�x = E4(1� �2)�p0 �x (2.85)



Chapter 2. Contact Mechanics 39This de�nition further implies that complete sliding for the entire contactpatch occurs when ~�x = �1.With a�(y) de�ned, the tangential stress distribution is given by the equa-tions (2.79){(2.81). Integrating the stress distribution over the entire con-tact patch the tangential force is found asTx = �N � Z b��b� Z a�(y)�a�(y) �p0a0 q[a�(y)]2 � x�2 dx� dy (2.86)which can be solved toTx = �N �1��1 + 12 ~�2x�q1� ~�2x � 32 ~�x arcsin�q1� ~�2x�� (2.87)where �1 � ~� � 0. If ~�x < �1 complete sliding occurs and the tangentialforce is equal the Coulomb value Tx = �N . By this the tangential stressdistribution is found plus a relation between tangential force and creepageis established and so the three-dimensional contact problem is solved for thecase of pure longitudinal traction.2.6.2 A Modi�ed Strip TheoryThe problem with the strip theory is that it is based on the two-dimensionalconstitutive equation and thus neglects the cross inuence between the stressdistributions in the contact strips. The consequence of this simpli�cation isobvious when the initial slope of the creep curve is investigated. Kalker'slinear theory which can be considered to be exact when � ! 0 results in theinitial slope dTxd�x �����x=0 = � E2(1 + �)a0b0C11 (2.88)



Chapter 2. Contact Mechanics 40which indicates that the initial slope depends on C11 and thus on the ratioa0=b0. As the strip theory provides the slopedTxd�x �����x=0 = � E2(1� �2)a0b0�24 (2.89)which does not depend on the ratio a0=b0 , the strip theory is in principleonly valid for one shape of the contact patch namely when C11 = �2=4 i.e.for cases where b0 � a0. It is however possible to modify the strip theoryso it is valid for all shapes of the contact patch namely by introducing themodi�ed creepage ~�x;mod = 4(1� �)C11�2 ~�x (2.90)When this new creepage is inserted into equation (2.87) the initial slope ofthe creep curve will be equal to the one obtained by Kalker's linear theory.In Figure 2.7 the creep curve for the strip theory with the modi�ed creepage(�) is compared with creep curves obtained with CONTACT (solid line)and SHE (dashed line). For the stationary contact with Hertzian normalpressure CONTACT can be considered as an exact solution where SHEis merely an approximation. It is seen that the strip theory is very closeto the result from CONTACT and more accurate than SHE. It must beemphasized that the accuracy of the modi�ed strip theory does not dependon the shape of the contact ellipse. So it can be concluded that for the caseof pure longitudinal traction the modi�ed strip theory provides an analyticalsolution which is more accurate than SHE.Another problem with the original strip theory is, that it only considers tan-gential problems with longitudinal creepage. Kalker has made an approachto the strip theory where also the lateral creepage and the spin are takeninto account [35], but this leads to very complicated calculations based onnumerical approximations, and so the concept of a three-dimensional theory
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Chapter 2. Contact Mechanics 42where the modi�ed creepages are de�ned from Kalker's linear theory as~�x;mod = EC11�2(1 + �)�p0x�x (2.93)~�y;mod = EC22�2(1 + �)�p0y �y (2.94)in order to compensate for the neglected cross inuence between the contactstrips. The unknown stresses p0x and p0y are found from the constraint thatp20 = p20x + p20y (2.95)plus the assumption that the ratio between the initial slope of the creepcurve for Tx and the initial slope for the creep curve for Ty are identicalwith the ratio of the slopes given by Kalker's linear theory:p0xp0y = C11�xC22�y (2.96)The resulting creep curves are shown in Figure 2.8{2.9 where they are com-pared with the creep curves due to CONTACT and with the creep curvesdue to SHE.Again it is noticed that the modi�ed strip theory gives a better approxima-tion than SHE both when it comes to the total traction and for each tractioncomponent. It is further seen that the creep curve for the total traction isidentical with the creep curve for the case of pure tangential traction (seeFigure 2.8). Thus, the accuracy of the method does not decrease when alateral traction component is introduced.
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Chapter 2. Contact Mechanics 452.6.3 The Inclusion of SpinThe main problem when deriving a three-dimensional contact theory basedon the two-dimensional solution arises when the spin must be included.Where the longitudinal and the lateral creepages are very much comparablewith the creepage from the two-dimensional problem, the spin leads to aqualitatively di�erent contact situation. When the spin is included in thecontact problem the direction of the relative velocity varies inside the con-tact patch. As the direction of the tangential stress in the slip zone is knownto be opposite the direction of the slip this will lead to very complicatedstress distributions.From the kinematic constraints it is seen, that a pseudo creepage vectorcan be de�ned as f�x � y'; �y + x'gT . The spin pole is then de�ned as theposition where the pseudo creepage is zero:(x; y) = ���y' ; �x' � (2.97)Now introduce the spin coe�cient � as� = pa20 + b20r��y' �2 + ��x' �2 (2.98)then the spin pole is located inside the contact patch if � > 1. In Figure 2.10the global relative velocity inside the contact patch is shown for the caseswhere (A): � = 0:5 and (B): � = 2. It is seen how the direction of therelative velocity changes inside the the contact patch when � is large. Forthat reason the strip theory is only applicable when � � 1 where thedirection of the relative velocity does not change considerably within thecontact patch.
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�(A): small spin (B): large spin

Figure 2.10. Global relative velocity in the contact patch. (A): small spin(� = 0:5). (B): large spin (� = 2. �: spin pole).It is possible to compensate for relative small spins by using Kalker's lineartheory. This can be done by making the transformationC22�y ! C22�y +pa0b0C23' (2.99)which ensures that the initial slope of the creep curve agrees with Kalker'slinear theory also for cases where the spin is included. It must however beemphasized that this modi�cation only holds when the spin is small and it



Chapter 2. Contact Mechanics 47does not imply a decaying behaviour of the creep curve which Kalker hasshown is the e�ect of large spin [38].The above derivation of a three-dimensional theory indicates that the qual-itatively behaviour of the three-dimensional contact problem is closely re-lated to an equivalent two-dimensional contact problem, when no spin oc-curs. This fact is very useful as two-dimensional contact problems thusprovide a good understanding of the behaviour of three-dimensional prob-lems. For this reason the remaining chapters are devoted to two-dimensionalcontact theory.
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Chapter 3A Polynomial ApproachIn the present chapter a new approach to the two-dimensional contactproblem is introduced. The objective of the method is to transform theconstitutive equation which is de�ned as an integral equation into an al-gebraic equation. By this simpli�cation it is possible to solve a variety ofcontact problems which do not ful�ll the assumptions of the Hertz theoryand of the Carter theory. The fundamental principles of the method will beexplained and some simple examples of the application of the method aredemonstrated. 49



Chapter 3. A Polynomial Approach 503.1 An Extended Two-Dimensional SolutionThe Hertz solution and the Carter solution are the classic approaches tothe two-dimensional contact problem. They have many advantages but areonly valid under certain assumptions:1. the bodies in contact can be approximated with second order polyno-mials in the vicinity of the contact point.2. the friction law of Coulomb is valid.3. the bodies in contact are smooth.4. the contact is stationary.Now the question arises: how can a two-dimensional contact problem besolved if those restrictions are not ful�lled? One way to overcome this prob-lem is to employ a boundary element method where the contact patch isdivided into a �nite number of surface elements. The program VISCONdeveloped by Wang [68] is an examples of a boundary element method fortwo-dimensional contact. It is, however, very di�cult to gain an under-standing of the nature of a contact problem by using numerical methods.The inuence of the various parameters can only be investigated by calcu-lating numerous examples and then make some conclusions regarding thebehaviour of the problem with respect to the di�erent parameters. This isa time consuming approach, which may imply that certain properties of theproblem are disregarded.Instead of treating the contact problem numerically it is sought to derive ananalytical method to solve the contact problem. The advantage of analytical



Chapter 3. A Polynomial Approach 51methods is that the solution is fast and exact. Furthermore an analyticalsolution facilitates the investigation of how the various parameters inuencethe contact problem.3.2 The Basic IdeaThe main obstacle in solving a contact problem based on elastic half spacesis the constitutive equation. If the stresses are given the displacements canbe calculated quite easily, but it is very di�cult to derive an expression forthe stresses related to a prede�ned relative displacement. So the aim of thepolynomial approach is to transform this integral equation into an algebraicequation for an arbitrary choice of stress distribution or displacement gradi-ent. When this is done both the normal contact problem and the tangentialcontact problem can be expressed as a system of algebraic equations andare thus easily solved.3.2.1 Integral TransformationThe relation between the stress and the displacement gradient is given bythe constitutive equation, which is formulated as the integral equationduz(x)dx = �4(1� �2)�E Z a�a p(�)(x� �) d� (3.1)Now assume that the stress distribution can be approximated by a polyno-mial form: p(x) = PNn=0Bnxnpa2 � x2 (3.2)



Chapter 3. A Polynomial Approach 52where N in the following is referred to as the degree of the polynomial form.As the size of the contact patch is �nite and the order of the polynomial canbe chosen to an arbitrary high degree, this is a quite reasonable assump-tion. The scope of the present section is to demonstrate that if the stressdistribution can be expressed as a sum of polynomial forms like the one inequation (3.2) then the displacement gradient in the contact patch will bea sum of polynomials.Introduce the polynomial NXn=0Bnxnwhere the boundary conditionsNXn=0Bn(�a)n = NXn=0Bn(a)n = 0 (3.3)are ful�lled. It can then be shown (see Appendix D) that the followingrelation exists:Z a�a PNn=0Bn�n(x � �)pa2 � �2 d� = N�1Xm=0 �mxm + I�1 NXn=0Bnxn (3.4)I�1 = ( 0 ; jxj � asign(x)�px2�a2 ; jxj > a (3.5)The connection between the Bn's and the �m's is described by the matrixequation f�0g = [A]fB1g (3.6)f�0gT = f�0; �1; �2; : : : ; �N�1g (3.7)fB1gT = fB1; B2; B3; : : : ; BNg (3.8)



Chapter 3. A Polynomial Approach 53[A] = 266666666666664 A0 0 A1 0 A2 : : : 00 A0 0 A1 0 : : : AN=2�10 0 A0 0 A1 : : : 00 0 0 A0 0 : : : AN=2�20 0 0 0 A0 : : : 0... ... ... ... ... . . . ...0 0 0 0 0 : : : A0 377777777777775 (3.9)where the coe�cients Ak are de�ned asAk = �� (2k)!k! �a2�2k ; k = 0; 1; 2; : : : (3.10)Because the matrix [A] always is nonsingular there exists a unique solutionto the inverse problem fB1g = [A]�1f�0g (3.11)i.e. that if the �n's are given, then the Bn's can be determined from equation(3.11). The matrix [A]�1 is[A]�1 = 266666666666664 A�10 0 A�11 0 A�12 : : : 00 A�10 0 A�11 0 : : : A�1N=2�10 0 A�10 0 A�11 : : : 00 0 0 A�10 0 : : : A�1N=2�20 0 0 0 A�10 : : : 0... ... ... ... ... . . . ...0 0 0 0 0 : : : A�10 377777777777775 (3.12)where the coe�cients A�1k are de�ned asA�1k = 1� (2k)!(2k � 1)k! �a2�2k ; k = 0; 1; 2; : : : (3.13)Now the question is whether the above solution is unique. It has beendemonstrated that if the stress distribution has the polynomial form as in



Chapter 3. A Polynomial Approach 54equation (3.2) then the displacement gradient always will be a polynomial.But is the inverse problem also unique: will a polynomial displacementgradient always imply a stress distribution on a polynomial form?As �N�1 = ��BN it will always be true that if the stress distribution isa polynomial form of a �nite degree, then the displacement gradient willbe a polynomial of one degree lower than the stress distribution. Now letthe displacement gradient be a polynomial of the �nite degree (N � 1) andassume that the stress distribution isp(x) = f(x) MXm=0Bmxm (3.14)It is already known that if f(x) = 1=pa2 � x2 and M = N then the stressdistribution (3.2) is a solution to the inverse problem. If there exists anothersolution then it can be written asp(x) = g(x)PMm=0Bmxmpa2 � x2 (3.15)Now assume that g(x) is in�nitely smooth for �a < x < a and thuscan be expressed as a Taylor expansion of order Mg. This implies that(M +Mg) = (N � 1) i.e. that Mg is �nite, which ensures that if the dis-placement gradient is a polynomial of �nite degree, then the stress distri-bution is also a polynomial form of a �nite degree. This is exactly theclass of stress distributions for which the equations (3.6)-(3.13) are validand for which a unique solution to the inverse problem exists. With thisargumentation the basic idea of the polynomial approach is demonstrated:p(x) = PNn=0Bnxnpa2 � x2 , duz(x)dx = N�1Xm=0 �mxm ; jxj � a (3.16)The polynomial approach is based on comparison of polynomial coe�cients.As the stress distributions or the displacement gradients can be de�ned in



Chapter 3. A Polynomial Approach 55several coordinate systems it is important to be able to change the base of acertain polynomial. This is done by applying the binomial formulae whichstates that if NXn=0Gn(x+ d)n = NXn=0nxn (3.17)then there is a linear relation between the Gn's and the n'sf0g = [D] fG0g (3.18)where f0gT = f0; 1; 2; : : : ; Ng (3.19)fG0gT = fG0; G1; G2; : : : ; GNg (3.20)and where a matrix element in [D] at the position (i; j) is found asDij = 8>>>><>>>>:  ji ! dj�i ; j � i0 ; j < i (3.21)The matrix [D] is nonsingular for all values of d and can thus be inverted.The elements in [D]�1 are D�1ij = (�1)j�iDij (3.22)The last necessary integral transformation is related to the integral of thestress distribution i.e. the evaluation of the force. Let the force be equal thestress distribution integrated over the entire contact patch:Nforce = Z a�a PNn=0Bn�npa2 � �2 d� (3.23)



Chapter 3. A Polynomial Approach 56then the force is found asNforce = �fA0gT fB0g (3.24)fA0gT = �A0; 0; A1; 0; : : : ; AN=2�1; 0	 (3.25)fB0gT = fB0; B1; B2; B3; : : : ; BN�1; BNg (3.26)With the above derived transformations of integrals into algebraic equationsit is possible to turn the entire contact problem into a set of algebraic equa-tions, which facilitates the derivation of a solution as it will be demonstratedin the next section.3.3 Application of the TheoryThe advantage of the polynomial approach is that the displacement gradi-ents are polynomials with known coe�cients. By comparing the coe�cientsa few complicated polynomial equations are split into many very simpleequations which are easily solved. In the next sections two examples ofthe application of the polynomial approach are briey described: one for anormal contact problem and one for a tangential contact problem.3.3.1 Two-Dimensional Non-Hertzian ContactThe Hertz solution to the normal contact problem is only valid if the bodiesin contact can be approximated by second order polynomials. Now assumethat it is necessary to employ a higher order approximation of the separation



Chapter 3. A Polynomial Approach 57h = Z(X) in order to achieve a satisfying accuracy:Z(X) = NXn=0ZnXn (3.27)This expression is inserted into the constitutive equation:ddX " NXn=0ZnXn# = 4(1� �2)�E Z a�a p(�)x� � d� (3.28)According to the polynomial approach this implies that the normal pressuredistribution will be a polynomial form of the degree N . Thus the contactproblem contains (N + 3) unknowns: the (N + 1) coe�cients from thepolynomial form, the size of half the contact patch, a, plus the position ofthe contact patch in the global coordinate system - the centre of the contactpatch is not necessarily located at the origo of the coordinate system inwhich Z(X) is de�ned.The separation between the bodies { Z(x) { de�ned in the local coordinatesystem is calculated with the aid of the binomial matrix (equation (3.18))where d is the position of the centre of the contact patch de�ned in theglobal coordinate system. Thus, Z(x) is given as the polynomialZ(x) = NXn=0 �Znxn (3.29)where x = X � d. The unknowns a and d plus the coe�cients of thepolynomial form are now found from the matrix equation (3.11) where �n =(n + 1) �Zn+1, from the boundary conditions (equation (3.3)) and from therelation for the normal force (equation (3.24)). As the coe�cients for thepolynomial form are represented linearly in the equation system they can besubstituted directly. This implies that the entire normal contact problem isreduced to solving two nonlinear equations with the unknowns a and d.



Chapter 3. A Polynomial Approach 58For some applications it is possible to derive analytical expressions for aand d whereas it in other cases is necessary to apply a numerical method.With the values from the Hertzian solution as initial guess, an iterativemethod will converge in very few steps. Compared with boundary elementmethods where an iterative process must be applied within each contactelement the present approach is of course much faster. A further advantageis that the problem is solved without using variational methods which arevery time consuming. The existence of many di�erent values of a and d assolutions to the nonlinear equations is of course a problem, but providedthe contact patch is coherent the iterative process will converge quicklytowards the real a- and d-values. The other solutions to the equations yieldnon-physical stress distributions where the normal pressure in some areasis negative.3.3.2 The Tangential Problem for a Two-DimensionalNon-Hertzian ContactThe Carter solution to the tangential contact problem is based on a Hertziannormal pressure distribution. If the normal pressure distribution is non-Hertzian the Carter solution is no longer valid and the polynomial approachmust then be applied. Let the normal pressure distribution bep(x) = �E4(1� �2)PNn=0Bnxnpa2 � x2 (3.30)and assume the tangential stress distribution to be the sum of two polyno-mial forms q(x) = q1(x) + q2(x�) (3.31)
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Figure 3.1. The tangential stress distribution according to the polynomialapproach. q1(x) = 8<: ��E4(1��2)PNn=0 Bnxnpa2�x2 ; �a < x < a0 ; otherwise (3.32)q2(x�) = 8<: ��E4(1��2)PMm=0 Bmx�mpa�2�x�2 ; �a� < x� < a�0 ; otherwise (3.33)This is equivalent to the Carter solution but with the ellipses replaced bypolynomial forms (see Figure 3.1). Thus, the contact patch is still assumedto be divided into a stick zone and a slip zone where the stick zone is locatedat the leading edge of the contact patch. The displacement gradients arisingfrom the two contributions to the tangential stress distribution are found



Chapter 3. A Polynomial Approach 60from the polynomial approach as:du1(x)dx = �fx0gT [A]fB1g ; �a < x < a (3.34)du2(x�)dx� = �fx�0gT [A�]fB�1g ; �a� < x� < a� (3.35)with the notation fx0gT = f1; x; x2; : : : ; xN�1g (3.36)fx�0gT = f1; x�; x�2; : : : ; x�M�1g (3.37)and where the elements in the matrix [A�] are equivalent to those fromthe matrix [A] (see equation (3.9)) just with a replaced by a�. With thisinserted into the kinematic constraint where s(x) = 0 as x 2 Sstick a relationbetween the polynomial forms and the creepage is established�0 = � �fx0gT [A]fB1g+ fx�0gT [A�]fB�1g� (3.38)Changing the base of q2(x�) this equation is rewritten as�0 = � �fx0gT [A]fB1g+ fx0gT [D][A�]fB�1g� (3.39)where d = a� a� in the matrix [D] (see equation (3.18)). It follows imme-diately that the degree of the two polynomials are the same i.e. N = M .As the creepage is independent of the position x a new matrix equation isderived 0 = [As]fB2g+ [Ds][A�s]fB�2g ) (3.40)fB�2g = �[A�s]�1[Ds]�1[As]fB2g (3.41)where the indices s denotes that the matrices are sub-matrices where the�rst row and the �rst column are removed. Provided the normal contactproblem is already solved and thus a and the Bn's are known, the tangential



Chapter 3. A Polynomial Approach 61contact problem consists of (N + 2) unknowns: the (N + 1) polynomialcoe�cients B�n plus the size of the stick zone a�. The matrix equation (3.41)yields (N � 1) equations and the boundary conditionsNXn=0B�n(�a�n) = NXn=0B�na�n = 0 (3.42)provides another two equations. The last equation necessary to solve thecontact problem is derived from equation (3.39) and reads�0 = � �fA0gTfB1g+ fIgT [D][A�]fB�1g� (3.43)where fIg is the unity vector fIgT = f1; 0; 0; : : : ; 0g. Equivalent to the nor-mal contact problem the polynomial coe�cients can be substituted directlyso that one nonlinear equation with the unknown a� remains. The solutionto this equation can sometimes be found analytically or else with the aid ofan iterative process which converges in very few steps if the Carter value a�0is utilized as initial guess. When a� is found the tangential force is equal tothe sum of the contributions from q1(x) and q2(x�):T = � ��E4(1� �2) �fA0gTfB0g+ fA�0gTfB�0g� (3.44)The distribution of the slip is found by inserting the displacement gradientsinto the kinematic constraint:s(x) = 8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>: ���PNn=0 Bnxnpx2�a2 + PNn=0 B�nx�npx�2�a�2 � ; �a � x0 ; �a < x < 2a� � a���PNn=0 B�nx�npx�2�a�2 ; 2a� � a < x < a����PNn=0 Bnxnpx2�a2 + PNn=0 B�nx�npx�2�a�2 � ; a � x (3.45)



Chapter 3. A Polynomial Approach 62The above solution to the tangential contact problem is only valid if thecontact patch is coherent and divided into a stick zone at the leading edgeand a slip zone at the trailing edge. If the contact patch is divided intoseveral stick zones then the termsign(x�)�px�2 � a�2 (3.46)in equation (3.4) must be taken into account, because it will inuence thedisplacement gradient in the adjacent stick zone. This implies that thedisplacement gradients no longer can be evaluated as polynomials of a �nitedegree. As the polynomial approach is based on comparison of polynomialcoe�cients this will cause the model to break down. It is however possibleto make a Taylor approximation of the term (3.46) and then utilize thepolynomial approach as will be done in Chapter 6.Some contact theories assume that the stick zone covers the entire contactpatch i.e. a� = a. With this assumption the number of unknowns in thesystem of equations is reduced by one and the problem is thus short ofone degree of freedom. It is for that reason necessary to neglect on of theboundary conditions. Normally it is assumed that q(�a) = 0 and so therestriction NXn=0B�na�n = 0 (3.47)must be ignored. This implies that a singularity occurs at the trailing edgeat the contact patch i.e. limx!a q(x) =1 (3.48)which of course is a violation of the restriction that jq(x)j � �p(x) unlessthe friction coe�cient is in�nite. For this reason contact theories where thestick zone covers the entire contact patch is usually referred to as contactwith in�nite friction.



Chapter 4CorrugationThe Hertz solution and the Carter solution are not valid for heavily corru-gated surfaces. The objective of the present chapter is to demonstrate howthe polynomial approach can be utilized to investigate corrugation phenom-ena.4.1 Introduction to CorrugationA big problem in railway tra�c is the corrugation of the rails. Corrugationappears as short-wave ripples across the surface of the rail which generatenoise and cause discomfort for the passengers. The presence of corrugationalso augment the dynamical load on the tracks which increases the wearof the rails and the running gear. A high dynamical load also implies a63



Chapter 4. Corrugation 64faster deterioration of the track. The corrugation evolves locally withoutany apparent reason and develops amplitudes of magnitudes up to 100 �mdepending on the wave lengths.It is a common theory that the corrugation can be generated by severaldi�erent mechanisms. As the characteristic wave length apparently dependson the wear mechanism it is convenient to divide the rail corrugation intoseveral classes depending on the wave length [2] or the wear mechanism[19]. In the latter work by Grassie and Kalousek the wave length �xingmechanisms are divided into six di�erent groups. It is stated that the wearmechanisms are known for all the groups except the one denoted as shortpitch corrugation. This type of corrugation has a typical wave length whichlies within the range from 0:03� 0:1 m, and is recognized by characteristicshiny patches on the rail heads, where each patch indicates a trough in thecorrugation pattern.Because the wear mechanism which causes short pitch corrugation is un-known, the only way to treat the corrugation problem is to grind the rails,which is a very time and money consuming process. It is thus of great inter-est for the railway companies to understand the nature of the corrugation:how does it evolve and what determines the characteristic wave length andthe growth rate of the corrugation? With the answers to these questionsin hand it will be possible to take measures to prevent the corrugation andespecially to develop a maintenance strategy that minimizes the costs re-lated to the grinding of the rails without worsening the general quality ofthe track surface.As the corrugation evolves over thousands of train passages it is very di�cultto make experiments in order to investigate the evolution of the corrugation.



Chapter 4. Corrugation 65However it is possible to analyse the existing corrugation on a given railand then from the knowledge of the tra�c on the site draw some generalconclusions. Such �eld experiments only make sense if the tra�c on therails is homogeneous, i.e. on closed systems such as metro lines [1], becausea large diversity in the rolling stock complicates the establishing of a relationbetween the wave length of the corrugation and the characteristics of thetra�c on the site.A much more powerful approach is to employ numerical simulations in thepursuit of achieving an understanding of the corrugation mechanism. Muchtheoretical work has been carried out over the years in order to explain thephenomenon of corrugation, e.g. [12], [14] and [62]. An overview of thedi�erent approaches are listed in a state of the art review by Knothe andGrassie [41].Most of the theoretical models focus on the dynamics of wheel and rail toexplain and describe the formation of corrugation, but make more or lessprimitive approximations of the contact mechanics. Surely the dynamicsof the rail and wheel must be taken into account in a complete model,but in the present chapter it will be shown that a more accurate model ofthe contact mechanics itself inuences the corrugation heavily and must beincluded in the ordinary simulation programs to yield more realistic results.



Chapter 4. Corrugation 664.2 An In�nite Cylinder Rolling on a Corru-gated SurfaceThe corrugation model derived in the present chapter is a simpli�ed modelonly focusing on the contact mechanics of wheel/rail interaction. The wheeland rail are thus described as bodies with no mass and thus with no eigen-modes or eigenfrequencies. The system is furthermore considered to betwo-dimensional, and so the problem of a wheel rolling on a corrugated railis transformed into the case of an in�nite cylinder rolling on a corrugatedsurface. These simpli�cations will evidently give rise to some discrepanciesbetween the results of the simulations and what is observed for three-dimensional contact situations, but as demonstrated in section 2.6 thereare many similarities between a three-dimensional contact problem withoutspin and a two-dimensional problem which ensures that the behaviour ofthe two-dimensional model in those cases is qualitatively equivalent to thebehaviour of the three-dimensional model.4.2.1 The Physical ModelTo investigate the inuence of pure contact mechanics on the evolution ofcorrugation, the two-dimensional case of a cylinder rolling on a surface isexamined (see Figure 4.1), where it is assumed that the level of the surfaceat any time can be described by a series of harmonic functionsZ2(X) = Z0 + MXm=1 [ZA;m cos(kmX) + ZB;m sin(kmX)] (4.1)
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Figure 4.1. An in�nite cylinder rolling on a corrugated surface.To simplify the model, it is assumed that the entire wear is laid upon thesurface, i.e. the cross section of the cylinder always will be circular with theconstant radius R. This presumption is reasonable as the model is intendedto simulate many wheels running on the same surface.If the local curvature of the surface is larger than the curvature of thecylinder a two point contact occurs when the cylinder is located in a troughof the corrugation pattern. Consequently a sudden shift in the location ofthe contact point will occur and the rolling motion is replaced by impactsbetween the cylinder and the surface. This is however only the case whenthe surface is very heavily corrugated and thus of minor interest for theinvestigation of the formation of corrugation. Cases where impacts betweenthe bodies are taken into account can be found in [32]. Thus it is assumedthat the curvature of the cylinder always is much larger than the curvatureof the surface i.e.k2mRqZ2A;m + Z2B;m � 1 ; m = 1; 2; : : : ;M (4.2)



Chapter 4. Corrugation 68The above restriction also ensures that multiple contact is avoided whichis a further simpli�cation of the contact problem. Much work has beencarried out to treat the case of multiple contact points, e.g. [56] and [57],where the con�guration of an equivalent contact patch is derived from theactual contact patches. These approaches may be applicable for generalsimulations of the dynamics of a body rolling on a corrugated surface, butthey are not well-suited for investigations of the contact mechanics. Thefollowing sections will demonstrate that the behaviour of the problem isvery strongly related to what happens inside the contact patch, which im-plies that heuristic approaches provide poor accuracy and may even causeimportant properties of the contact problem to be disregarded.4.2.2 The Normal Contact ProblemAssume that the cylinder rolls along the surface with the constant velocityV and with the constant angular velocity 
 and choose the origo of theglobal coordinate system such that the vertical projection of the cylinderaxis has the position X = 0 to the time t = 0. Now de�ne the shape ofthe two bodies in a moving coordinate system with origo at the verticalprojection of the cylinder axis on Z2:Z1(�x) = R�pR2 � �x2 (4.3)Z2(�x) = MXm=1 [ZA;m cos [km(V t + �x)] + ZB;m sin [km(V t+ �x)]] (4.4)Introduce the wave length Lm and the local angular velocity !m asLm = 2�km (4.5)!m = V km (4.6)
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XV �(V t)O(x)AAV t��contact patch

contactpoint
Figure 4.2. Local coordinate systems.and let the parameter � be the longitudinal shift in the location of thecentre of the contact patch i.e.�x 2 S , �a < �x�� < a (4.7)where it is assumed that j�j � a. The de�nition of � provides that if� > 0 then the centre of the contact patch is located behind the cylinderaxis with respect to the rolling direction. The magnitude of � depends onthe shape of the bodies in the vicinity of the contact point and thus on theposition of the cylinder on the surface.Now de�ne a new coordinate system where x = �x�� (see Figure 4.2). Withthis notation the bodies in contact are described in a coordinate system with



Chapter 4. Corrugation 70origo in the centre of the contact patchZ1(x) = R�pR2 � (x+�)2 (4.8)Z2(x) = MXm=1 [ZA;m cos (!mt + kmx+ km�)+ZB;m sin (!mt+ kmx+ km�)] (4.9)Making a Taylor expansion of the shape of the bodies, the separationZ(x) = Z1(x)� Z2(x) can be written asZ(x) = R 12 �x+�R �2 + 18 �x+�R �4 + : : :!�MXm=1 "ZA;m cos(!mt+ km�) 1� (kmx)22! + (kmx)44! � : : :! +ZA;m sin(!mt+ km�) �kmx+ (kmx)33! � : : :!+ZB;m sin(!mt+ km�) 1� (kmx)22! + (kmx)44! � : : :! +ZB;m cos(!mt+ km�) kmx� (kmx)33! + : : :!# (4.10)As in the Hertzian case it is presupposed that the size of the contact patchis much smaller than the radius of the cylinder, which justi�es a secondorder Taylor approximation of Z1(x).It is obvious that kmx is a critical quantity for the contact problem. Becausex has the same magnitude as a the contact situation is described with thecharacteristic parameter kma which is equal to 2�a=Lm. The ratio betweenthe size of the contact patch and the wave length of the corrugation isthus very important for the contact problem. When 2�a=Lm ! 0 thecontact problem can be approximated with the Hertzian solution whereas



Chapter 4. Corrugation 71larger ratios implies that more terms in the polynomial approximation ofthe surface must be included in order to obtain a satisfactory accuracy.In the present investigation the complete Taylor expansion is used in thecalculations. At �rst this is strictly speaking impossible as the degree of theexpansion is in�nite, but it turns out that the in�nite series eventually canbe substituted by known functions. It is noticed that the application of thein�nite series does not provide any problems concerning the magnitude ofthe coe�cients as they are of the size (kmx)n=n! which tends towards zeroas n tends towards in�nity.By di�erentiating Z(x) with respect to x and inserting the result into theconstitutive equation this yields thatdZ(x)dx = 1Xn=0 �nxn = 4(1� �2)�E Z a�a p(�)x� � d� (4.11)where the coe�cients �n are�0 = �R + MXm=1 km [ZA;m sin(!mt+ km�)�ZB;m cos(!mt+ km�)] (4.12)�1 = 1R + MXm=1 k2m [ZA;m cos(!mt+ km�)+ZB;m sin(!mt + km�)] (4.13)�2 = � MXm=1 k3m2! [ZA;m sin(!mt+ km�)�ZB;m cos(!mt+ km�)] (4.14)



Chapter 4. Corrugation 72�3 = � MXm=1 k4m3! [ZA;m cos(!mt + km�)+ZB;m sin(!mt+ km�)] (4.15)...�2n = (�1)n MXm=1 k2n+1m2n! [ZA;m sin(!mt + km�)�ZB;m cos(!mt+ km�)] (4.16)�2n+1 = (�1)n MXm=1 k2n+2m(2n+ 1)! [ZA;m cos(!mt+ km�)+ZB;m sin(!mt+ km�)] (4.17)With the aid of the polynomial approach it is now possible to express thenormal pressure distribution as the polynomial formp(x) = �E4(1� �2)P1n=0Bnxnpa2 � x2 (4.18)with the coe�cientsB1 = � ��R + MXm=1 km [ZA;m sin(!mt+ km�)�ZB;m cos(!mt+ km�)] 1Xj=0 (�1)jA�1j k2jm(2j)! (4.19)B2 = � 1�R + MXm=1 km [ZA;m cos(!mt+ km�)+ZB;m sin(!mt + km�)] 1Xj=0 (�1)jA�1j k2j+1m(2j + 1)! (4.20)



Chapter 4. Corrugation 73B3 = � MXm=1 km [ZA;m sin(!mt + km�)�ZB;m cos(!mt+ km�)] 1Xj=0 (�1)jA�1j k2j+2m(2j + 2)! (4.21)B4 = � MXm=1 km [ZA;m cos(!mt+ km�)+ZB;m sin(!mt + km�)] 1Xj=0 (�1)jA�1j k2j+3m(2j + 3)! (4.22)...B2n�1 = (�1)n+1 MXm=1 km [ZA;m sin(!mt+ km�)�ZB;m cos(!mt+ km�)] 1Xj=0 (�1)jA�1j k2j+2n�2m(2j + 2n� 2)! (4.23)B2n = (�1)n+1 MXm=1 km [ZA;m cos(!mt+ km�)+ZB;m sin(!mt + km�)] 1Xj=0 (�1)jA�1j k2j+2n�1m(2j + 2n� 1)! (4.24)The restriction that p(�a) = p(a) = 0 yields the expressionB0 = � 1Xn=1B2na2n (4.25)which can be calculated toB0 = a2�R � � a��2 MXm=1 km [ZA;m cos(!mt + km�)+ZB;m sin(!mt+ km�)] 1Xj=0 (�1)jAj k2j+1m(2j + 1)! (4.26)



Chapter 4. Corrugation 74and so the coe�cients for the polynomial form of the normal pressure distri-bution are derived. It is noticed that they only depend on the two unknownquantities � and a. It is not possible to bring the coe�cients on a closedform but the magnitude of the contribution from each polynomial coe�cientis found to be Bnan�1 = O� (kma)nn! � (4.27)Let pn(x) be de�ned as an approximation of the real normal pressure dis-tribution p(x) where the in�nite series is truncated so it is a polynomial ofdegree n, then a measure of the relative error introduced by the truncationis de�ned as limx!a � p(x)� pn(x)p(x)� pn+1(x)� ' Bn+1anBnan�1 = kman+ 1 (4.28)A result of equation (4.28) is that a large a=Lm ratio demands a high degreeof the Taylor expansion in order to reduce the error introduced by thetruncation. If only a second order approximation is employed the solutionis naturally equal to the Hertz solution. A rule of thumb says that theHertzian theory can be applied if a=Lm < 1=20. With this ratio insertedinto the error estimation from equation (4.28) the relative error is calculatedto be about 10 %. Thus the polynomial approach provides a powerful toolto estimate the magnitude of the error introduced by applying a truncatedsolution to a given contact problem. It is further noticed thatlimn!1Bnan = 0 (4.29)which ensures that the expression for the normal pressure distribution con-verges as n tends towards in�nity.To obtain a solution to the normal contact problem it only remains to derivesome expressions for the unknowns a and �. The boundary conditions



Chapter 4. Corrugation 75provide the expression 1Xn=0B2n+1a2n = 0 (4.30)With the Bn's inserted, this equation can be rewritten as0 = �+ MXm=1 kmRJ0(kma) [ZA;m sin(!mt+ km�)�ZB;m cos(!mt + km�)] (4.31)where J0 is the Bessel function of the �rst kind of order 0. The secondnecessary equation is established from the expression for the normal forceN = Z a�a p(x) dx = � �E4(1� �2)fA0gTfB0g (4.32)Inserting the polynomial coe�cients in the matrix equation a simple expres-sion for the normal force N is derivedN = �E4(1� �2) " a22R + MXm=1 kmaJ1(kma) [ZA;m cos(!mt+ km�)+ZB;m sin(!mt + km�)]# (4.33)The two equations (4.31) and (4.33) can be solved numerically with theHertzian values a = a0 and � = 0 as initial guess. A much more convenientway to solve the problem is to apply Taylor expansions of the two expressionsabout the Hertzian values. The latter approach leads to the closed formexpressions� = � MXm=1 kmRJ0(kma0) [ZA;m sin(!mt)� ZB;m cos(!mt)] (4.34)a = a0 � MXm=1 kmRJ1(kma0) [ZA;m cos(!mt) + ZB;m sin(!mt)] (4.35)



Chapter 4. Corrugation 76which are excellent approximations as long as the amplitudes of a and �are small. Due to the restriction from equation (4.2) this will always be thecase in the present model. Making the substitution !mt = kmX the shiftin the location of the centre of the contact patch and the size of half thecontact patch are expressed in the global coordinate system as�(X) = � MXm=1 kmRJ0(kma0) [ZA;m sin(kmX)�ZB;m cos(kmX)] (4.36)a(X) = a0 � MXm=1 kmRJ1(kma0) [ZA;m cos(kmX)+ZB;m sin(kmX)] (4.37)i.e. that when the cylinder axis is located at the position X then the valuesfor � and a are given by the equations derived above. It is in the expressionfor a(X) assumed that the normal force is constant. If the normal forceoscillates and thus can be put on the formN = N0 + MNXm=1 [NA;m cos(kN;mX) +NB;m sin(kN;mX)] (4.38)then the expression for half the size of the contact patch is rewritten asa = a0 + a02N0 MNXm=1 [NA;m cos(kN;mX) + NB;m sin(kN;mX)]�MXm=1 kmRJ1(kma0) [ZA;m cos(kmX) + ZB;m sin(kmX)] (4.39)This expression is like the others restricted to small amplitudes of a whichalso implies that the amplitude of the normal force is small. The expressionfor � remains unchanged as the oscillating normal force in this context is asecondary e�ect. In the following analysis the normal force is presupposed



Chapter 4. Corrugation 77to be constant. The inclusion of an oscillating normal force can easily bemade but it does not result in any changes in the qualitative behaviour ofthe contact problem.By this the normal contact problem for a cylinder rolling on a corrugatedsurface is solved. As the characteristic parameters a and � are expressedon closed forms it is possible to carry out some basic analysis concerningthe contact problem. It is important to notice, that the position of thecontact point and the centre of the contact patch are not identical. Let �cbe the shift in the location of the contact point with respect to the axis ofthe cylinder. The contact point is then found as the position for which thetangents of the cylinder and the surface have the same slope, which can bedone by solving the equation�cpR2 ��2c = � MXm=1 km [ZA;m cos[km(V t+�c)]�ZB;m sin[km(V t+�c)]] (4.40)with respect to �c. Applying a Taylor expansion this leads to the solution�c = � MXm=1Rkm [ZA;m sin(kmX) � ZB;m cos(kmX)] (4.41)which is not equivalent to �. Considering a corrugated surface with onlyone characteristic wave length, it is noticed that� = J0(a0k)�c (4.42)The size of the di�erence between � and �c is thus depending on therelative size of half the contact patch. This is quite an evident fact as �c isa pure geometrical property, independent of the deformation in the contactpatch, whereas � is related to both geometry and deformation. From the
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�Figure 4.3. The amplitude of the location of the centre of the contact patchnormalised with kRpZ2A + Z2B .expression (4.42) it is seen that the contact point can be located on oneside of the cylinder axis whereas the centre of the contact patch is on theother side of the axis. This is due to the asymmetry of the surface: whenthe cylinder is on a spike or in a trough, the surface is symmetric aroundthe axis which implies that the contact point and the centre of the contactpatch are coincident. For all other positions of the cylinder - provided thesurface is corrugated - the two points will not be identical. The amplitudeof � normalised with kRpZ2A + Z2B is plotted in Figure 4.3.If the normal force is constant then the size of the contact patch dependsstrongly on a0k and thus on the ratio a0=L. The amplitude of a { referredto as ba { normalised with kRpZ2A + Z2B is thus equal to the Bessel func-tion of �rst kind order 1 which is shown in Figure 4.4. It is seen that forcertain values of a0=L the size of the contact patch will be constant eventhough the shape of the surface varies. Similarly a resonance e�ect willoccur for the a0=L values for which ba has a local maximum. The globalmaximum of the amplitude is obtained for a0=L ' 0:293 and is found to beba ' 0:582kRpZ2A + Z2B .
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a0/LFigure 4.4. Amplitude of half the size of the contact patch normalised withkRpZ2A + Z2B .In Figure 4.5 the normal pressure distribution for di�erent positions of thecylinder is shown for a corrugation with one distinct wave number k wherek2RpZ2A + Z2B = 0:4 and a0=L = 0:45. The calculations are made for aconstant normal force and are compared with the Hertzian solution for thecylinder rolling on a level surface. It is clearly seen that the normal pressuredistribution due to the asymmetries at the vicinity of the contact point isasymmetric itself. This feature turns out to be extremely important for thesolution to the tangential contact problem as demonstrated in the followingsection.
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V(B): V t = �L=4
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VFigure 4.5. (A)-(B) Normal pressure distribution. Top: stress distributioncalculated with the polynomial approach (solid line) and calculated withthe Hertzian theory (dashed line). Bottom: position of the cylinder.
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V(D): V t = �3L=4
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Chapter 4. Corrugation 824.2.3 The Tangential Contact ProblemIn the previous section the normal contact problem was solved for the caseof an in�nite cylinder rolling on a corrugated surface. The objective of thepresent section is to derive a solution to the equivalent stationary tangentialcontact problem. It is naturally a dubious simpli�cation to presuppose thecontact to be stationary, especially for the case of short pitch corrugationwhere the wave lengths are so small that the displacement gradients insidethe contact patch certainly are time dependent. The tangential problem ishowever treated as a stationary contact as this provides a good understand-ing of the behaviour of the problem. The case of non-steady contact will betreated in Chapter 7.As indicated in section 3.3.2 the tangential stress distribution is assumedto be described as the sum of the two polynomial forms q1(x) and q2(x�),where q1(x) = �p(x) and where q2(x�) is unknown. From the normal contactproblem it is known that the contribution from q1(x) to the displacementgradient inside the contact patch isdux1(x)dx = 1Xn=0��nxn )dux1(x)dx = �(x+�)R + MXm=0�km [ZA;m sin(!mt+ kmx+ km�)�ZB;m cos(!mt + kmx+ km�)] (4.43)With this expression inserted into the kinematic constraint0 = �0 + dux1(x)dx + dux2(x�)dx (4.44)



Chapter 4. Corrugation 83the contribution from q2(x�) is calculated as@ux2(x; t)@x = ��xR � �0 + MXm=0�km [ZA;m cos(kmx+ !mt)+ZB;m sin(kmx+ !mt)] (4.45)which in the x� coordinate system is@ux2(x�; t)@x = ��0 � �(x� +��)R +MXm=0�km [ZA;m cos[km(x� +��) + !mt]+ZB;m sin[km(x� +��) + !mt]] (4.46)where �� = �� a + a� (4.47)Thus the displacement gradient can be described by an in�nite polynomialin x� dux2(x)dx = 1Xn=0��nx�n (4.48)Because dux2(x)=dx is a polynomial, the polynomial approach can be ap-plied, i.e. q2(x�) can be expressed as a polynomial form:q2(x�) = ��E4(1� �2)P1n=0B�nx�npa�2 � x�2 (4.49)Equivalent to the calculation of the Bn's in the normal contact problem,the coe�cients to the polynomial form q2(x�) are found asB�1 = � �0�� + ���R � MXm=1 km [ZA;m sin(!mt+ km��)�ZB;m cos(!mt+ km��)] 1Xj=0 (�1)jA��1j k2jm(2j)! (4.50)



Chapter 4. Corrugation 84B�2 = 1�R � MXm=1 km [ZA;m cos(!mt + km��)+ZB;m sin(!mt+ km��)] 1Xj=0 (�1)jA��1j k2j+1m(2j + 1)! (4.51)B�3 = MXm=1 km [ZA;m sin(!mt+ km��)�ZB;m cos(!mt+ km��)] 1Xj=0 (�1)jA��1j k2j+2m(2j + 2)! (4.52)B�4 = MXm=1 km [ZA;m cos(!mt+ km��)+ZB;m sin(!mt+ km��)] 1Xj=0 (�1)jA��1j k2j+3m(2j + 3)! (4.53)...B�2n�1 = (�1)n MXm=1 km [ZA;m sin(!mt+ km��)�ZB;m cos(!mt+ km��)] 1Xj=0 (�1)jA��1j k2j+2n�2m(2j + 2n� 2)! (4.54)B�2n = (�1)n MXm=1 km [ZA;m cos(!mt + km��)+ZB;m sin(!mt+ km��)] 1Xj=0 (�1)jA��1j k2j+2n�1m(2j + 2n� 1)! (4.55)The coe�cient B�0 is derived from one of the boundary conditionsB�0 = �a�2�R +�a�� �2 MXm=1 km [ZA;m cos(!mt + km��)+ZB;m sin(!mt+ km��)] 1Xj=0 (�1)jA�j k2j+1m(2j + 1)! (4.56)



Chapter 4. Corrugation 85while the other boundary condition yields that�0 = ���R + MXm=0�kmJ0(kma�) [ZA;m sin(!mt+ km��)�ZB;m cos(!mt + km��)] (4.57)There are obvious similarities between the �n's and the ��n's and thus alsobetween the Bn's and the B�n's. Consequently the considerations from theprevious section regarding the convergence of the coe�cients Bn and theerror introduced by truncating the in�nite series are also valid for the B�n'sin the tangential contact problem.The only unknown quantity in the above equation is half the size of the stickzone a�. It is not possible to �nd an exact analytical closed form expressionfor a�, but with numerical methods where the a�0 from the Carter solutionis used as initial guess, a� can be found in just a few iterations. Anotherapproach is to assume the amplitude of a� to be small and then employ aTaylor expansion of the equation as in the normal contact problem. Withthis method the size of the stick zone is found asa� = a�0 ��(X) + a(X) � a0 �MXm=0 kmRJ0(kma�0) [ZA;m sin[!mt+ km(a�0 � a0)]�ZB;m cos[!mt+ km(a�0 � a0)]] (4.58)Making the substitution !mt = kmX and inserting the expressions for �(X)and a(X) where the normal load is assumed to be constant, the size of halfthe stick zone depending on the cylinders position on the surface is expressedas a�(X) = a�0 + MXm=0 �a�A;m cos(kmX) + a�B;m sin(kmX)� (4.59)



Chapter 4. Corrugation 86( a�A;ma�B;m ) = " a�1;m �a�2;ma�2;m a�1;m #( ZA;mZB;m ) (4.60)where the matrix coe�cients area�1;m = kmR [�J1(kma0)� J0(kma�0) sin [km(a�0 � a0)]] (4.61)a�2;m = kmR [J0(kma0) � J0(kma�0) cos [km(a�0 � a0)]] (4.62)Now let the surface be harmonic with only one characteristic wave length Li.e. one characteristic wave number k. It is seen from equation (4.59) thatthe size of the stick zone oscillates with the same wave length as the wavelength of the corrugation. Let ba� denote the amplitude of a� and let �a� bethe phase of a� with respect to the surface thenba� =q(a�1)2 + (a�2)2qZ2A + Z2B (4.63)�a� = arctan�a�2a�1� (4.64)With the use of the polynomial approach it is thus possible to establishanalytical expressions for the amplitude and the phase of the oscillatingsize of half the stick zone. It is seen that these properties can be normalisedso they only depend on the ratio ra0 de�ned asra0 = a�0a0 (4.65)and the relative size of the contact patch (a0=L). In Figure 4.6 the amplitude(equation (4.63)) and the phase lag (equation (4.64)) are plotted for variousvalues of ra0 and a0=L. It is seen that �a� is quite sensible to the size of thera0 ratio. When ra0 = 0:5 i.e. when the stick zone covers half the contactpatch, a sudden shift in the phase of a� occurs.
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Chapter 4. Corrugation 90Like for the case of the normal pressure distribution it is not possible toderive a closed form expression for the tangential stress distribution, but anarbitrary good approximation is found by employing a �nite number of theB�n coe�cients. In Figure 4.7 the tangential stress distribution calculatedwith the polynomial approach is compared with the Carter solution for thecylinder rolling on a level surface. As the tangential stress distribution inthe slip zone is closely related to the normal pressure distribution due tothe friction law of Coulomb, an asymmetry equivalent to the one from thenormal contact problem also appears in the tangential contact problem.It is very important to notice that an oscillating behaviour takes place insidethe contact patch both with respect to the size of the stick zone and withrespect to the magnitude of the local tangential stress. This property isimportant when it comes to wear calculations as the wear only takes placein the slip zone and depends on the magnitude of the tangential stress. Athorough investigation of wear phenomena will be carried out in the nextsection.
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Chapter 4. Corrugation 93The tangential force is found by integrating the tangential stress distribu-tion over the entire contact patch. It is evident that the contribution fromq1(x) is �N i.e. it is only necessary to integrate q2(x�) in order to �nd thetangential force. By applying the equationT2 = � ��E4(1� �2)fA�0gTfB�0g (4.66)the tangential force is found to be T = �N + T2:T (X) = �N � ��E4(1� �2) (a�22R + MXm=0 kma�J1(kma�)�[ZA;m cos [km(X +��)] + ZB;m sin [km(X +��)]]) (4.67)When a(X), a�(X) and �(X) are known the tangential force can be cal-culated in a straightforward way. If the amplitudes of these quantities aresmall it is however possible to make a simpli�cation without any appreciableloss of accuracy. The tangential force is then expressed asT (X) = T0 + MXm=0 [TA;m cos(kmX) + TB;m sin(kmX)] (4.68)( TA;mTB;m ) = " T1;m �T2;mT2;m T1;m #( ZA;mZB;m ) (4.69)where T0 is the Carter value and the matrix coe�cients areT1;m = ��E4(1� �2)kma�0 ��a�1;mkmR � J1(kma�0) cos [km(a�0 � a0)]� (4.70)T2;m = ��E4(1� �2)kma�0 ��a�2;mkmR + J1(kma�0) sin [km(a�0 � a0)]� (4.71)Assuming that the level of the surface is harmonic with the characteristicwave length L, this implies that the amplitude bT and the phase �T of the



Chapter 4. Corrugation 94tangential force are bT =q(T1)2 + (T2)2qZ2A + Z2B (4.72)�T = arctan�T2T1� (4.73)These values are plotted in Figure 4.8 for di�erent values of ra0 and a0=L.It is seen that when ra0 is small both the amplitude and the phase arealmost constant when a0=L also is small. When the ra0 ratio grows bT ismore sensible to the value of a0=L. The reason for this behaviour lies inthe fact that the size of the stick zone compared with the wave length ofthe corrugation is important for the behaviour of the tangential contactproblem.
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Chapter 4. Corrugation 984.3 WearCorrugation of rails is a result of a wear process which takes place as thewheel rolls over the rail. Many di�erent hypotheses have been developed toexplain the wear mechanism. In general wear mechanisms are divided intotwo groups: one containing local and sudden wear and one including wearwhich develops over a long period of time. The local wear is a result of iso-lated abnormalities in the wheel/rail interaction such as wheel ats causedby sudden blocking of the wheel or shelling due to high local temperatures[45]. Whereas this type of wear is caused by isolated events the long timewear is related to the consecutive rolling motion and occurs without non-typical events such as wheel blocking or major irregularities of the track.This implies that the long time wear mechanism will cause the wheel andthe rail to be worn even if the wheel is perfectly circular and smooth andthe rail is completely level and smooth.The reason for long time wear can either be rolling contact fatigue, plasticdeformation or material removal in the contact patch. Rolling contact fa-tigue is a crack generating mechanism caused by the characteristic sequenceof tensile and shear stresses under a rolling load. The rolling contact fatigueis certainly a long time e�ect, but as there is no apparent relation betweenrolling contact fatigue and cracks on one side and corrugation of wheel andrail on the other side the topic will not be treated in this work. A surveyof rolling contact fatigue can be found in [16].Plastic deformation is a result of large normal pressures in the contact patch.It is generally accepted that plastic deformation is of minor interest in theinvestigation of corrugation phenomena [13]. Initially the surface of a newlyground rail may undergo plastic deformations in a very thin layer at the



Chapter 4. Corrugation 99surface, but this will introduce residual stresses which remain after thenormal pressure on the material is relieved. As the number of wheel passagesincreases, the material will harden as the residual stresses are built up andeventually the surface of the rail will be su�ciently hard to sustain thenormal pressures without any plastic deformation. This process is oftenreferred to as a shakedown mechanism [6].This leaves the removal of material due to frictional work as the majorwear mechanism when it comes to the formation of corrugation. The mostcommon theory for frictional wear is developed by Frederic [17] and statesthat the wear is proportional to the frictional work in the contact patch.When a wheel rolls over a rail under the inuence of a certain torque,tangential forces are transmitted between the bodies in the contact patch.As the relative velocity in a part of the contact patch { the slip zone { isdi�erent from zero, frictional work is created. De�ning the wear W (X) asthe material removed from the surface after one passage of the wheel thenW (X) = ����KV ZS q(X; t)s(X; t) dt���� (4.74)where K is a material depending constant. For steel K ' 7:58 �10�6 m2=N.Many models where calculation of the wheel/rail wear is carried out havebeen published e.g. [29], [30] and [65]. In most models the wear hypothesisis simpli�ed such that the integral in equation (4.74) is replaced by thetangential force multiplied with the creepage:W (X) = jKT (X)�j (4.75)This linearised version of equation (4.74) is however much too primitivefor the case of a cylinder rolling on a corrugated surface. In the previoussection it was shown that even when the amplitude of the tangential force is



Chapter 4. Corrugation 100very small, the size of the stick zone and the local tangential stress oscillatewith quite a large amplitude (see e.g. Figure 4.6 (B) and Figure 4.8 (B).In those cases the wear calculated with equation (4.75) is almost constantwhereas the actual wear derived from equation (4.74) will oscillate. It isthus necessary to solve the integral in equation (4.74) in order to obtain asatisfactory evaluation of the wear.4.3.1 Calculating the WearTo derive a solution to the integral (4.74) it is convenient to �nd an expres-sion for the amount of time an arbitrary point on the surface is located inthe slip zone. Consider a point X0 on the corrugated surface. This pointwill be exactly at the leading edge of the contact zone at the time t0 forwhich V t0 +�(V t0)� a(V t0) = X0 (4.76)Introducing t� as the time when X0 is located at the limit between the stickzone and the slip zone and t1 as the time where X0 is located at the trailingedge of the contact patch (see Figure 4.9) thenV t� +�(V t�) + 2a�(V t�)� a(V t�) = X0 (4.77)V t1 +�(V t1) + a(V t1) = X0 (4.78)Now let � be half the time it takes for X0 to travel through the contactpatch and similarly let �� be half the time it takes for the same point totravel through the stick zone then� (X0) = 12 (t1 � t0) (4.79)��(X0) = 12 (t� � t0) (4.80)



Chapter 4. Corrugation 101XX0V �(V t0)O(x)�a(V t0) XX0V �(V t�) O(x)2a�(V t�) � a(V t�) XX0V �(V t1) O(x) a(V t1)Figure 4.9. The contact patch passing a point on the surface.



Chapter 4. Corrugation 102Assuming the amplitudes of a, � and a� to be small it is possible to makea �rst order Taylor expansion of � and �� which gives that� (X0) = �a0V + MXm=0 [�A;m cos(kmX0) + �B;m sin(kmX0)] (4.81)( �A;m�B;m ) = " �1;m 00 �1;m #( ZA;mZB;m ) (4.82)where �1;m = kmRV [J0(kma0) sin(kma0) + J1(kma0) cos(kma0)] (4.83)Similarly ��(X0) is found as��(X0) = �a�0V + MXm=0 ���A;m cos(kmX0) + ��B;m sin(kmX0)� (4.84)( ��A;m��B;m ) = " ��1;m ���2;m��2;m ��1;m #( ZA;mZB;m ) (4.85)where ��1;m = kmR2V [J0(kma0) [3 sin [km(2a�0 � a0)]� sin [kma0]]+J1(kma0) [cos [km(2a�0 � a0)] + cos[kma0]]�2J0(kma�0) sin [kma�0]] (4.86)��2;m = �kmR2V [J0(kma0) [3 cos [km(2a�0 � a0)]� cos[kma0]]]�J1(kma0) [sin [km(2a�0 � a0)]� sin[kma0]]�2J0(kma�0) cos [kma�0]] (4.87)There are obviously strong similarities between a and � and between a� and��. The a and a� represent the size of the contact patch and the size of thestick zone in space-domain whereby � and �� are the equivalent properties



Chapter 4. Corrugation 103in time-domain. Even though there evidently are points of resemblancebetween the quantities in time-domain and in space-domain it is relevant tofocus on some qualitative di�erences.Whereas � as well as a always will have the same phase as the corrugatedsurface, the representation of the stick zone given by a� and �� has a phaseshift with respect to the corrugation pattern. It is however worth noticingthat the phases of �� and a� are not equivalent. This property is a conse-quence of the fact that �� depends on the position of the leading edge of thecontact patch at the time t0 and the position of the limit between stick zoneand slip zone at the time t�. Because the size of the stick zone oscillates intime and �� depends on two di�erent times the relation between a� and ��is quite complicated.In the following calculations it is demonstrated that the ratio ��(X)=� (X)is important for the properties of the wear. Due to the above stated dis-crepancies between the description in time-domain and in space-domain itmust for that reason be emphasized that��(X)� (X) 6= a�(X)a(X) (4.88)neither with respect to the phase nor with respect to the amplitude.When the expressions for � and �� are derived it is possible to solve theintegral in equation (4.74). From the previous sections it follows that thetangential stress distribution and the slip in the slip zone can be expressedas polynomial forms and so the wear is expressed asW (X) = �����KV Z �(X)2��(X)��(X) q(X; t)s(X; t) dt����� (4.89)



Chapter 4. Corrugation 104q(X; t) = ��E4(1� �2)P1n=0Bn(V t)[X � V t��(X)]npa2(V t)� [X � V t��(V t)]2 (4.90)s(X; t) = ��P1m=0 B�n(V t)[X � V t���(V t)]npa�2(V t) � [X � V t ���(V t)]2 (4.91)which can be calculated toW (X) = �����KVN Ra20 ���B0(X)a(X) �2 � (X) �1� r� (X) � r2� (X) + r3� (X)������(4.92)r� (X) = ��(X)� (X) (4.93)Presupposing that the amplitudes of a, a� and � are small the expressionfor the wear can be approximated byW (X) = W0 + MXm=0 [WA;m cos(kmX0) +WB;m sin(kmX0)] (4.94)( WA;mWB;m ) = " W1;m �W2;mW2;m W1;m #( ZA;mZB;m ) (4.95)where W0 = K�2N a0R �1� ra0 � r2a0 + r3a0� (4.96)W1;m = K�2N kmVR h��1 �1 + 2ra0 � 3r2a0���1 �1 + r2a0 � 2r3a0�i+2K�2N �1� ra0 � r2a0 + r3a0� �hJ1(kma0)� bB0i (4.97)W2;m = K�2N kmVR ��2 �1 + 2ra0 � 3r3a0� (4.98)



Chapter 4. Corrugation 105The term W0 represents the global wear of the surface and is thus uninter-esting when it comes to the investigation of corrugation. Naturally it is ofimportance to know how the geometry of a cross section of the rail changesas the number of train passages increases, because a modi�ed shape of thecross section inuences on the contact geometry, but this e�ect is neglectedin the present investigation. It is however noted that W0 and thus theglobal wear does not depend on the initial corrugation pattern and is there-fore equal to the expression for the wear arising from the Carter solution.4.4 Evolution of the CorrugationWhen the cylinder rolls over the surface a certain amount of material isremoved from the surface. The height of the material removed at a givenposition on the surface is denoted the wear. The wear in itself is of limitedinterest as it is small compared to the characteristic size of the corrugationon the surface. As the number of cylinder passages increases the shape of thesurface will slowly undergo an evolution from the initial corrugation patternto another surface geometry. This evolution of the corrugation is crucialin wheel/rail wear because an adequate maintenance strategy depends onhow fast the corrugation grows. The present section treats the subject ofnumerous consecutive cylinder passages and thus the evolution of an initialcorrugation.From equation (4.94) it is seen that one distinct wave length of the corru-gation results in exactly the same wave length in the wear. The amplitudesand phases are di�erent, but the wave lengths are identical. This propertyimplies that there is no cross inuence between the di�erent wave lengths



Chapter 4. Corrugation 106and so the problem of a corrugated surface with several characteristic wavelengths can be solved by calculating the wear for each wave length and thenadding these results, provided that the componentW0 is included only once.Thus, to simplify the calculations it is assumed that the surface is harmonicwith one distinct wave length.With the wear de�ned as the height of the material removed as the cylinderrolls over the surface, it is obvious that the shape of the surface after onepassage of the cylinder is equal the old surface minus the wear:Zf1g2 (X) = Zf0g2 (X) �W f0g(X) (4.99)where the high indices refer to the number of cylinder passages. As theinitial surface and the wear are given byZf0g2 (X) = Zf0gA cos(kX) + Zf0gB sin(kX) (4.100)W f0g(X) =W f0gA cos(kX) +W f0gB sin(kX) (4.101)the shape of the new surface isZf1g2 (X) = �Zf0gA �W f0gA � cos(kX) + �Zf0gB �W f0gB � sin(kX) )Zf1g2 (X) = Zf1gA cos(kX) + Zf1gB sin(kX) (4.102)In the previous section it was found that WA and WB depend linearly onZA and ZB with the coe�cients W1 and W2. Because W1 and W2 do notdepend on the amplitude of the surface they are constant even when theshape of the surface changes as the number of cylinder passages increases.Due to this fact it is possible to �nd the surface coe�cients after one passageof the cylinder via the discrete mapping( Zfn+1gAZfn+1gB ) = " 1�W1 W2�W2 1�W1 #( ZfngAZfngB ) (4.103)



Chapter 4. Corrugation 107With the above discrete mapping it is possible to calculate the shape ofthe surface after each passage of the cylinder in a straight forward ana-lytical way. Thus time consuming integrations or space stepping methodsare replaced by algebraic expressions, which makes the present approachextremely fast. As the method includes the oscillating behaviour insidethe contact patch in contradiction to many other approaches it is also ableto monitor e�ects that more primitive methods disregard. It must be em-phasized that all the calculations presuppose that the amplitude of thecorrugation is small compared to the wave length and the radius of thecylinder, but this is always ful�lled when it comes to the evolution of a veryslight corrugation.4.4.1 Stability of the CorrugationThe fact that the corrugation can be calculated by analytical closed formsmakes it possible to derive some qualitative properties concerning the evolu-tion of an initial corrugation. From the discrete mapping (4.103) it is foundthat the amplitude of the surface after one passage of the cylinder can bedescribed by the former surface con�guration asr�Zfn+1gA �2 + �Zfn+1gB �2 =p1� 2W1r�ZfngA �2 + �ZfngB �2 (4.104)which can be generalised tor�Zfn+1gA �2 + �Zfn+1gB �2 = (1� 2W1) n+12 r�Zf0gA �2 + �Zf0gB �2(4.105)This means that the growth rate of the corrugation only depends on theabsolute value of (1 � 2W1): if this term is smaller than 1 any initial am-plitude will be levelled out whereas the amplitude grows exponentially if



Chapter 4. Corrugation 108(1� 2W1) > 1. As jW1j � 1 this criteria of stability can be formulated as:W1 > 0 , the corrugation is levelled outW1 = 0 , the corrugation is constantW1 < 0 , the corrugation is ampli�ed (4.106)It is important to notice that the wear componentW2 does not inuence thegrowth rate of the corrugation even though it contributes to the magnitudeof the wear amplitude. This illustrates the fact that the magnitude of thewear alone is not important for the evolution of the corrugation: it is themagnitude and the phase of the wear which is important. If the phase of thewear is such that it has its maximumon a corrugation spike the corrugationlevels out whereas a maximumwear located at the position of a corrugationtrough causes the corrugation to evolve very fast.4.4.2 Amplifying and Levelling ZonesFrom the stability criteria (4.106) it is seen that W1 is crucial for the evo-lution of the corrugation: this quantity determines the stability and thegrowth rate of the corrugation. A typical outline of W1 is given in Figure4.10. For a given ra0-value the outline of W1 will always be qualitativelyequivalent to the one monitored in Figure 4.10 with only one critical L=a0ratio for which (1�2W1) = 0. This is the limit of stability i.e. surface irreg-ularities with L=a0 ratios smaller than this value are levelled out while thecorrugation is ampli�ed if the L=a0 value is above the critical value. Fur-thermore it is seen that (1� 2W1) tends towards 1+ for long wave lengths.This states that if the wave length of the corrugation is large compared witha0 then the amplitude of the corrugation is una�ected by the wear.
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X/L2Figure 4.12. The qualitative evolution of corrugation4.4.3 Characteristic Wave LengthIt was in the previous section demonstrated how certain wave lengths willbe ampli�ed and other wave lengths will be levelled out. Now the questionis whether one distinct wave length will evolve from an arbitrary surfacecon�guration. In Figure 4.10 it was demonstrated that if a�0=a0 is constantthen (1�2W1) has a maximum for a certain L=a0-value. At �rst this maxi-mum does not seem to be very dramatic, but because the wear rate is givenas (1�2W1)n+12 a very distinct peak in the frequency spectra will grow up asthe number of cylinder passages increases. So this relative wave length willbe dominating the corrugation, which explains why a certain corrugationpattern usually evolves with one and only one distinct wave length. This



Chapter 4. Corrugation 112
-0.4

-0.2

0

0.2

0.4

0 10 20 30 40 50 60 70 80 90 100
X/a0

Z(X)
0

2.5

5

7.5

10

2.5 5 7.5 10 12.5
L/a0

Z2 A+Z2 BFigure 4.13. The evolution of surface regularities represented by white noise.Top: Level of the surface. Bottom: Spectrum of the surface. Dashed line:initial surface. Solid line: surface after a number of cylinder passages.e�ect is seen in Figure 4.13 where the initial surface corrugation is repre-sented by white noise. After a number of cylinder passages a corrugationpattern with one dominating wave length has evolved. The wear mechanismoperates thus as a �lter on the initial surface corrugation.The �ltering e�ect is a crucial feature for the evolution of the corrugation.In general the initial amplitudes of the surface irregularities are not impor-tant for the evolution of the corrugation. As the growth of the corrugationis exponential, the wave length of a surface component is far more impor-tant than the amplitude. In practice all wave lengths are to some extendrepresented on the surface of a rail, and so a certain wave length will emerge



Chapter 4. Corrugation 113
0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L/
a 0

a*0/a0Figure 4.14. The characteristic wave lengths for which the corrugation ismost likely to developwithout any apparent reason even though it is not very strongly representedin the initial wheel/rail system.The characteristic wave length depends on the ratio a�0=a0 and thus on themagnitude of the creepage. So if the creepage changes, the characteristicwave length of the corrugation will change. In Figure 4.14 the characteristicwave length is shown for di�erent ra0-values. The line indicates the parame-ter combinations for which (1�2W1) has its local maximum. It is seen thatthe L=a0-ratio for the characteristic wave length approximately lies in therange from 5-10. In wheel/rail contact the typical size of a0 is somewherebetween 5 mm and 10 mm, which thus provides a characteristic wave lengthin the interval 0.025 { 0.1 m. This �ts very well with the observed wavelengths for short pitch corrugation [19].



Chapter 4. Corrugation 114The above analysis is made for the case where a�0 and a0 are constant forall the passages of the cylinder. In reality this assumption is only validfor closed line systems where the tra�c is homogeneous. On railway lineswith a large diversity in the tra�c the size of the contact patch and themagnitude of the creepage depends on the type of the rolling stock. As theprinciple of superposition is valid the resulting wear rate after n passages iscalculated asr�ZfngA �2 + �ZfngB �2 =0@ nYj=1"1� 2W1 afjg0L ; a�fjg0afjg0 !#1A 12r�Zf0gA �2 + �Zf0gB �2 (4.110)where afjg0 and a�fjg0 refer to the contact parameters for the j'th passage.Because the qualitative behaviour of (1�2W1) is unique, the resulting wearrate for a situation with many di�erent types of rolling stock will in generalhave a similar behaviour i.e. an amplifying zone and a levelling zone plusone distinct wave length.4.4.4 Moving CorrugationA result of the changing phase of the wear is that the corrugation has atendency to move along the surface. If the maximumwear is located on thedownhill side of the corrugation spikes the corrugation pattern will movein the opposite direction of the cylinder whereas a maximum wear on theuphill side results in a corrugation pattern moving in the same direction asthe cylinder. When the maximum of the wear is located in the corrugation
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Chapter 4. Corrugation 117however, will be quite distinct. An example of a moving corrugation isshown in Figure 4.16.4.5 Contact FiltersThe previous sections demonstrate that the size of the contact patch andthe size of the stick zone relative to the wave length of the corrugation arecrucial parameters in order to determine the qualitative behaviour of thewear. The fact that the size of the contact patch acts like a mechanical�lter on the surface irregularities is quite obvious: the �nite size of thecontact patch implies that the cylinder is not able to sense irregularitieswith relative small wave lengths. Many contact theories try to take thisproperty into account by applying a �lter on the surface irregularities. Oneof the most frequently used �lters is suggested by Remington [60] who hasintroduced a contact �lter for a rectangular contact patch:FR = L2�a0 sin�2�a0L � (4.113)This �lter is not directly applicable for all problems as it for certain a0=L-values is negative. This implies e.g. for a wear problem that materialis added to the surface instead of being removed as the cylinder passesby. To avoid this apparent non-physical behaviour Hempelmann [26] hasintroduced a modi�ed Remington contact �lter where negative values donot occur: FRM = 11 + 5:32 �a0L �2 + 6 �a0L �4 � 1:984 �a0L �6 (4.114)The two contact �lters are monitored in Figure 4.17.
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Chapter 4. Corrugation 119Consider the problem of a cylinder with the radius R0 rolling on the corru-gated surface Z2(X) = ZA cos(kX) + ZB sin(kX) (4.115)When the local curvature of the surface is taken into account this yieldsthat the equivalent radius of the contact problem can be approximated byReqv(X) = R� (Rk)2 [ZA cos(kX) + ZB sin(kX)] (4.116)Now apply the Remington �lter to the surface irregularities and insert theequivalent radius into the Hertz solution and into the Carter solution, thenthe following characteristic parameters for the contact problem are derivedaF (X) = a0 � 12k2a0R [ZA cos(kX) + ZB sin(kX)]FR(ka0) (4.117)a�F (X) = a�0 + 12k2a0R (1� 2ra0) �[ZA cos(kX) + ZB sin(kX)]FR(ka0) (4.118)TF (X) = �N �1� r2a0 + k2Rra0 (1� ra0) �[ZA cos(kX) + ZB sin(kX)]FR(ka0)] (4.119)The �rst thing to notice is that the above derived modi�ed version of theCarter solution still results in a contact patch with a centre which is exactlylocated on the vertical projection of the cylinder axis i.e. �(X) = 0 8 X. Itis possible to correct for this error by assuming that the centre of the contactpatch is located at the contact point, but as demonstrated in section 4.2.2this assumption is also erroneous.When it comes to the size of the contact patch the solution with the �lter isquite acceptable. The phase with respect to the surface is constant for boththe �lter solution and for the polynomial approach. For the amplitudes ofthe contact patch the calculations yield that the relative error committed



Chapter 4. Corrugation 120by applying the Remington �lter is1� baFba = �26 �a0L �2 + O��a0L �4� (4.120)It is seen that for small a0=L ratios the �lter solution provides a goodaccuracy, but the error grows quadraticly in a0=L and so an a0=L ratio of0.25 results in an error of 10 %. In general it must however be concludedthat the �lter approach is satisfactory for the calculation of a, which is notsurprising as the contact �lter is a geometrical �lter suited for a stationarycontact situation i.e. for the normal contact problem.For the tangential contact problem where the size of the stick zone entersinto the solution as an important parameter, the accuracy of the �lter so-lution decreases considerably. The contact �lter is not able to handle thephase shift introduced by the oscillating behaviour of the contact patch.As a result both a�F and TF have constant phase lag with respect to thecorrugated surface. This is in sharp contrast to the solutions found by thepolynomial approach illustrated by Figure 4.6 and Figure 4.8.The amplitudes of a� and a�F are shown in Figure 4.18. It is evident thatthere are very large discrepancies between the results obtained with the�lter approach and the results from the polynomial approximation. First ofall it must be noticed that the �lter solution results in a symmetry aroundra0 = 0:5 i.e. that ba�F (ra0) = ba�F (1 � ra0) (4.121)ba�F (0:5) = 0 8 a0L (4.122)This symmetric behaviour is far from the results obtained with the poly-nomial approach. Another important result is that the contact �lter yields
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Chapter 4. Corrugation 123contact problem. Because the �lter only depends on the a0=L ratio theerror introduced by the �lter solution is quite large both with respect tothe amplitudes and the phases of the quantities of the tangential contactproblem.The lack of accuracy of the �lter solution results in qualitatively false resultswhen they are applied to a wear calculation. In the previous section it wasdemonstrated how important the phase of the wear is for the evolution ofa corrugation pattern. Because the wear is related to the tangential forceand the size of the stick zone, errors in the calculation of these quantitieswill naturally be transmitted into the wear calculations(A): ra = 0:1
0

0.5
1

1.5
2

2.5

0 0.2 0.4 0.6 0.8 1

am
pl

itu
de

 T

a0/L(B): ra = 0:2
0

0.5
1

1.5
2

2.5

0 0.2 0.4 0.6 0.8 1

am
pl

itu
de

 T

a0/L(C): ra = 0:3
0

0.5
1

1.5
2

2.5

0 0.2 0.4 0.6 0.8 1

am
pl

itu
de

 T

a0/LFigure 4.19. (A)-(C): Amplitude of the tangential force calculated with thepolynomial approach (solid line) and calculated with the �lter approach(dashed line).



Chapter 4. Corrugation 124(D): ra = 0:4
0

0.5
1

1.5
2

2.5

0 0.2 0.4 0.6 0.8 1

am
pl

itu
de

 T

a0/L(E): ra = 0:5
0

0.5
1

1.5
2

2.5

0 0.2 0.4 0.6 0.8 1

am
pl

itu
de

 T

a0/L(F): ra = 0:6
0

0.5
1

1.5
2

2.5

0 0.2 0.4 0.6 0.8 1

am
pl

itu
de

 T

a0/L(G): ra = 0:7
0

0.5
1

1.5
2

2.5

0 0.2 0.4 0.6 0.8 1

am
pl

itu
de

 T

a0/L(H): ra = 0:8
0

0.5
1

1.5
2

2.5

0 0.2 0.4 0.6 0.8 1

am
pl

itu
de

 T

a0/L(I): ra = 0:9
0

0.5
1

1.5
2

2.5

0 0.2 0.4 0.6 0.8 1

am
pl

itu
de

 T

a0/LFigure 4.19. (D)-(I): Amplitude of the tangential force calculated with thepolynomial approach (solid line) and calculated with the �lter approach(dashed line).



Chapter 4. Corrugation 125An often used approach for wear calculations based on the Carter solution isto assume that the wear can be considered to be concentrated in the centreof the slip zone i.e. that if the cylinder axis is located at the position X0then the resulting wear for this instant contact situation is laid on the pointX0 + a�. With the wear approximation from equation (4.75) this providesthe following expression for the wear:WF (X) = jKTF (X � a�)�j )WF (X) = W0 +WF;A cos(kX) +WF;B sin(kX) (4.123)( WF;AWF;B ) = " WF;1 �WF;2WF;2 WF;1 #( ZAZB ) (4.124)where WF;1 = �K�2Nk2a0ra0 �1� 2ra0 + r2a0� cos(ka�0)FR (4.125)WF;2 = �K�2Nk2a0ra0 �1� 2ra0 + r2a0� sin(ka�0)FR (4.126)It is seen that by assuming the wear to be concentrated in the centre of theslip zone a phase lag with respect to the initial corrugation is introduced.However, as demonstrated in the previous calculations the value of a�F andthus the location of the centre of the slip zone is erroneous. A consequenceis that also the estimation of the phase of the wear is wrong. This propertyis illustrated in Figure 4.20 where the tangential force and the wear areshown as functions of the position on the corrugated surface.The evaluation of the tangential force according to the �lter solution is onlyslightly di�erent from the solution obtained with the polynomial approach.This picture is however grossly disturbed when it comes to the evaluation ofthe wear. The discrepancy between the two amplitudes remains small, but
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X/LFigure 4.20. Comparison between polynomial approach (solid line) and �ltersolution (dashed line). Contact con�guration: L=a0 = 3 and ra0 = 0:3.Top: the tangential force acting on a given position on the surface.Bottom: the wear acting on a given position on the surface.the phase lags are completely di�erent. In the present example the maxi-mum wear according to the �lter solution is located in the troughs of thecorrugation pattern whereas the polynomial approach yields a maximumwear at the corrugation spikes. A consequence of the di�erent phase lags isthat a wear calculation made with the �lter approach for the present case re-sults in a growing corrugation while the polynomial approach demonstratesthat the corrugation will be levelled out. The reason for this behaviouris related to the asymmetry of the stress distribution, which implies thatthe tangential stress distribution calculated with the polynomial approachhas a tendency to move towards the top of the corrugation spike comparedwith the Carter solution (see Figure 4.7). Thus, when the locations of the
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Chapter 4. Corrugation 128It is noticed that this value actually does not depend on the applied contact�lter. The di�erences in the location of the limit between the amplifyingzone and the levelling zone for the two approaches are demonstrated inFigure 4.21. It is clearly seen that the two solutions di�er qualitatively.Consequently the �lter approach will predict a growth in the corrugationwhere the more advanced polynomial approach demonstrates that the givencorrugation actually will be levelled out.It must thus be concluded that for cases where the L=a0 ratio is small theRemington �lter is only suited for the normal contact problem. When itcomes to the tangential contact problem the omitting of the size of thestick zone leads to qualitatively false results. If a contact �lter is utilizedfor the tangential contact problem, it is therefore important that the sizeof the contact patch is included in the �lter function in order to obtain asatisfactory wear model.



Chapter 5Velocity DependentFriction Coe�cientThe objective of the present chapter is to investigate how a velocity de-pendent friction coe�cient inuences the tangential contact problem. Twotypes of friction coe�cients will be treated: a friction coe�cient de�ned asa step function with one static value and one kinematic value plus the caseof a friction coe�cient de�ned as a smooth function of the local relativevelocity. As characteristic quantities for the tangential contact problem theoutline of the creep curve and the shape of the tangential stress distributionare examined. 129



Chapter 5. Velocity Dependent Friction Coe�cient 1305.1 Friction FunctionWhen an object slides over a surface a tangential force will be transmittedbetween the two bodies due to friction in the contact patch. A fundamentalproblem is now how the magnitude of this tangential force can be calculated.The classic friction law of Coulomb states that there exists a linear relationbetween normal force and tangential force given asT = �N (5.1)where � is the friction coe�cient. Originally � was presupposed to be amaterial dependent constant, but today it is accepted that this assumptionfor many contact situation is much too primitive.When it comes to rolling friction the relation between the tangential forceand the normal force is given by the creep curve. The shape of the creepcurve found by experimental observations, however, often di�ers consider-ably from the shape derived by theoretical calculations. A common devia-tion is that where the calculated creep curve enters a saturated regime withconstant tangential force for complete sliding, experiments indicate thatthe tangential force reaches a maximum and then decays as the creepage isincreased [46]. This qualitative shape of the creep curve is important forrailway dynamics, as a decreasing creep curve introduces a negative damp-ing in the system, which may cause the system to loose its stability.It is a common theory that the high frequency noise which occurs as arailway vehicle runs through a curve is closely related to the decaying creepcurve [25]. Due to the negative damping of the system, the tangential forcewill start to oscillate, resulting in rapid variations in the location of the limitbetween the stick zone and the slip zone. The resulting curve-shrieking is



Chapter 5. Velocity Dependent Friction Coe�cient 131therefore often referred to as a stick-slip phenomenon. The equivalence inthe case of sliding friction is the friction oscillator where very interestingnonlinear dynamics can be found as a result of the slip-stick-behaviour (seee.g. [7] and [58]).One way to explain a decaying creep curve is that the classic friction law ofCoulomb is not valid for the given contact situations. Most contact modelsare based on the friction law of Coulomb where the friction coe�cient isassumed to be constant but experiments indicate that the friction coe�cientdepends on the sliding velocity (e.g. [43] and [54]). The question is now howa velocity dependent friction coe�cient inuences the tangential contactproblem.Assume that the friction coe�cient depends on the relative velocity betweenthe bodies in contact. With the further assumption that the macroscopicfriction law of Coulomb can be applied on the microscopic case i.e. thatq(x) = �p(x), then � is depending on the local relative velocity between thebodies i.e. the slip: � = f(s) (5.2)The function f is in the following referred to as the friction function.The present work will not go into investigations of the outline of f(s) butjust assume it to be prede�ned. Work on the determination of the frictionfunction for various contact situations can be found in e.g. [5], [44] and [59].In the following sections the tangential contact problem will be solved forvarious con�gurations of � = f(s).



Chapter 5. Velocity Dependent Friction Coe�cient 1325.2 A Friction Coe�cient De�ned as a StepFunctionA simple outline of a velocity dependent friction function is obtained byassuming the friction coe�cient to be a step function. In 1989 Ohyama [53]suggested a model describing the two-dimensional contact problem wherethe friction coe�cient has one static value and one kinematic value, i.e.�(s) = ( �0 ; s = 0�k ; s 6= 0 (5.3)The solution found by Ohyama states that the tangential stress distributionin the stick zone is identical to the Carter solution for � = �0 whereas thetangential stress distribution in the slip zone is equivalent to the Carter so-lution with � = �k. The tangential stress distribution according to Ohyamais shown in Figure 5.1 for the case where �k < �0 and for �k > �0.In Figure 5.2 the creep curves corresponding to the stress distributions mon-itored in Figure 5.1 are shown. The creep curve for the Ohyama solutionwhere �k < �0 has a distinct maximumand then decays until it has reachedthe regime of complete sliding where T = �kN . This behaviour �ts to someextend with experimental data [54], only the decaying shape for the Ohyamasolution is restricted to a limited range of the creepage whereas the experi-ments indicate that the slope of the creep curve remains negative also whencomplete sliding occurs.
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stick zone slip zone

V
�a�0 O(x�) a�0 x��a0 O(x) a0 x�0p(x) �kp(x)q2(x�) q(x)(A)

stick zone slip zone�a�0 O(x�) a�0 x��a0 O(x) a0 x�kp(x) �0p(x)q2(x�) q(x)(B)
Figure 5.1. Tangential stress distributions according to Ohyama [53]. Top(A): �k = 0:6�0. Bottom (B): �k = 1:4�0.
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Chapter 5. Velocity Dependent Friction Coe�cient 135The problem with the Ohyama solution is that when �k < �0 it is nota minimum solution to the tangential contact problem. If the kinematicfriction coe�cient is smaller than the static friction coe�cient the solutionis therefore not valid i.e. the tangential stress distribution from Figure 5.1(A) and the creep curve from Figure 5.2 (A) are wrong.In order to solve the tangential contact problem when �k < �0 the polyno-mial approach is employed with the conditions thatjq(x)j < �0p(x) ; �a < x < 2a� � a (5.4)q(x) = �0p(x) ; x = 2a� � a (5.5)q(x) = �kp(x) ; 2a� � a < x < a (5.6)It can then easily be shown that the solution to this tangential contactproblem actually is equivalent to the Carter solution for � = �k with theonly modi�cation that a Kronecker peak occurs at the limit between stickzone and slip zone (see Figure 5.3). Because the integral of this peak iszero, it will not contribute to the tangential force and so the creep curve forthe case when the kinematic friction coe�cient is smaller than the staticfriction coe�cient is equal to the creep curve for the Carter solution where� = �k.Consequently a friction function de�ned as a step function introduces nodecay in the creep curve, and so the stability of the rolling contact problemin this case apparently is una�ected by the varying friction coe�cient. Itmust thus be concluded that classic slip-stick oscillations will not occur inrolling contact when the friction coe�cient is de�ned as a step-function.Another problem of the Ohyama solution is related to the calculation ofthe creepage which is inaccurate. An obvious indicator of this fact is seen
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Figure 5.3. Actual tangential stress distribution with one static frictioncoe�cient and one kinematic friction coe�cient when �k < �.from the creep curves in Figure 5.2. When the friction coe�cient is de�nedas a function lying in the interval from �0 to �k the resulting creep curveshould lie between the equivalent creep curves for the Carter solution. Thisis clearly not the case for the creep curves calculated with the Ohyamasolution. Like the actual creep curve for �k < �0 is identical with the Cartercreep curve for � = �k the equivalent result is obtained when �k > �0.Thus, the creep curve related to the tangential stress distribution indicatedin Figure 5.1 (B) is actually equivalent to the upper Carter creep curve inFigure 5.2 (B).



Chapter 5. Velocity Dependent Friction Coe�cient 1375.3 A Friction Coe�cient De�ned as a SmoothFunctionNow assume that the friction coe�cient is a smooth function of the slip. Theproblem of solving the tangential contact problem then arises from the factthat the slip and thus the friction coe�cient varies over the slip zone. As thetangential stress distribution in the slip zone is de�ned as q(x) = �(s)p(x)the fact that s = s(x) leads to a quite complicated tangential stress distri-bution.Because the friction coe�cient is assumed to be a smooth function of s(x)it is possible to write it as a polynomial in x:�(x) = MXm=0 ��mxm ; x 2 Sslip (5.7)With the usual assumption of one stick zone and one slip zone the tangentialstress distribution can be expressed asq(x) = q1(x) + q2(x�) (5.8)where q1(x) = �(x)p(x) in the slip zone. The normal pressure distributionis in the present calculations de�ned to be Hertzian, but the calculationscan be made for an arbitrary normal pressure distribution as long as it isexpressed as a polynomial form. The contribution from q1(x) in the slipzone is thus q1(x) = p0a0qa20 � x2 MXm=0 ��mxm )q1(x) = �E4(1� �2)PM+2m=0 Bmxmpa20 � x2 (5.9)



Chapter 5. Velocity Dependent Friction Coe�cient 138where the coe�cients are given asB0 = a20�R ��0 (5.10)B1 = a20�R ��1 (5.11)B2 = 1�R ���2a20 � ��0� (5.12)...BM = 1�R ���Ma20 � ��M�2� (5.13)BM+1 = � 1�R ��M�1 (5.14)BM+2 = � 1�R ��M (5.15)With q1(x) expressed as a polynomial form q2(x�) can be found using thepolynomial approach.The problem is however that s(x) and thus �(x) depend on both q1(x)and q2(x�), which implies that �(x) must be recalculated by which newexpressions for q1(x) and q2(x�) are found. This iterative process convergeshowever after a few steps and so the tangential contact problem for a velocitydependent friction coe�cient is solved.To illustrate how the solution to the tangential contact problem changeswhen the friction coe�cient is assumed to be velocity dependent, two ex-amples are investigated. Let the friction coe�cient be de�ned as�(s) = �0 � �k1 + j�sj + �k (5.16)then one example is calculated with �k = 1:4�0 whereas the other exampleis for the case where �k = 0:6�0. The coe�cient � determines the size ofthe initial slope of the friction function and can be chosen arbitrarily. With



Chapter 5. Velocity Dependent Friction Coe�cient 139the above de�nition of the friction function the kinematic friction coe�cient�k is given as �k = lims!1�(s) (5.17)In Figure 5.4 the friction functions and the creep curves are plotted forthe two cases. It is noticed that the initial slopes of the creep curves areuna�ected by the velocity dependent friction coe�cient and is thus equal tothe slope of the creep curves for the Carter solutions. As the magnitude ofthe creepage increases the tangential force tends towards the value �(�)N .It must be emphasized that the shown creep curves are not equal to thecreep curve for a Carter solution where the friction coe�cient is de�nedas � = �(�). Because the creepage is the global relative velocity whereasthe slip is the local relative velocity the two solutions will only be identicalwhen � = 0 or when � !1.For the case where �k < �0 (see Figure 5.4 (A)) the creep curve has amaximum and then decays. The location of the maximum depends on theratio �k=�0 and the initial slope of the friction function given by �. Largerinitial slopes will imply that the maximum occurs for smaller values of thecreepage, which also is the case if the ratio �k=�0 decreases. In all cases themaximum occurs before complete sliding takes place.Examples of the tangential stress distribution for the two cases are shownin Figure 5.5. It is seen that the magnitude of the tangential stress alwayslies between the Carter solution for respectively � = �0 and � = �k. At thelimit between stick zone and slip zone the tangential stress distribution hasa vertical tangent just like in the Carter solution. Crossing this limit thetangential stress distribution will continue to grow for a while when �k > �0whereas it decays immediately when �k < �0.
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Chapter 5. Velocity Dependent Friction Coe�cient 142As the initial slope of the friction function increases the tangential stress dis-tribution in the slip zone will approach the Carter solution for � = �k morerapidly. When � and thus the slope tends towards in�nity the tangentialstress distribution will have the outline due to Ohyama for �k > �0 whereasthe tangential stress distribution for the case �k < �0 will be equivalent tothe one indicated in Figure 5.3.It has in the present chapter been demonstrated that a decaying frictionfunction results in a decaying creep curve. As an isolated result this is notat all unexpected. The power of the calculations lies however in the factthat when the friction function is known then it is possible to determine forwhat size of the creepage the maximum of the creep curve is located. Thisis a critical value of the creepage for which instability of the system is likelyto occur.



Chapter 6Rough SurfacesIn the contact problems investigated so far it has been assumed that thebodies are smooth. The present chapter serves as an introduction to thetopic of contact problems involving rough surfaces. First the normal contactproblem is solved for one isolated roughness asperity and afterwards thecross inuence between isolated contact patches is investigated. Finally thetangential problem for rough surfaces in contact will be investigated briey.6.1 Contact between Rough SurfacesTo make the assumption that the bodies in contact are smooth is naturallya simpli�cation. Any surface, manufactured or worn, will always have localasperities and troughs - it is just a matter of scaling. Consequently an143



Chapter 6. Rough Surfaces 144extended model of wheel/rail interaction must also include the case wherewheel and rail are considered to be rough. Whereas numerous papers onnormal contact between rough surfaces have been published, e.g. [8] and[21], the amount of work on rolling contact between bodies with roughsurfaces is quite limited [42].When two rough spheres are pressed together a contact patch is createdequivalently to the contact of smooth spheres. Two characteristic propertiesmake the rough problem di�er from the smooth problem. First of all thepresence of asperities will result in an incoherent contact patch. Let 2arbe the area of the contact patch for the rough surface contact and let 2a0be the contact area for the equivalent Hertzian contact then the relativesize of the contact area ar=a0 is an important parameter for the roughcontact. A second e�ect related to the asperities is that the normal pressuredistribution pr(x) locally will reach values much higher than the Hertzianvalue. In Figure 6.1 two examples of the two-dimensional normal contactproblem for rough bodies are shown. The results are calculated by Knotheand Theiler [42] and are compared with the equivalent Hertzian solution,where the roughness of the bodies is omitted.As indicated in Figure 6.1, the solution to the normal contact problemstrongly depends on the size of the roughness wave length. Thus, one of thebasic problems of rough contact is: what is the minimum wave length ofthe roughness which should be included in the model? As a given surfacein theory can be represented by arbitrary small wave lengths it is necessaryto de�ne a cut-o� wave length Lr which indicates the smallest wave lengthin the representation of the surface. It can be demonstrated [42] that ar=a0depends heavily on Lr : smaller cut-o� wave lengths result in smaller ar=a0-values.
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Chapter 6. Rough Surfaces 146From Figure 6.1 it is furthermore seen that the maximum of the normalpressure distribution increases as the cut-o� wave length decreases. WhenLr is very small and thus the maximum normal pressure is very large theutilization of the half space approach is questionable because the assump-tions of fully elastic material and small strains are violated. Similarly verysmall ar=a0 values will indicate that the size of the local contact patch is ofthe same magnitude as the characteristic size of the local roughness asperity.In these cases the half space approach is no longer valid and other methodsmust be applied. In the present chapter it is however assumed that the con-tact between the local asperities can be evaluated as a half space contacti.e. the cut-o� wave length Lr is su�ciently large.6.2 Characterization of RoughnessCalculations including the contact between rough surfaces are often basedon roughness measurements of real surfaces. Such measurements result in alarge amount of data which makes the calculation of the contact mechanicsvery di�cult. Thus, it is convenient to be able to describe a given roughsurface with few parameters which can be used as input in a contact model.In the previous section it was demonstrated that the cut-o� wave length is acritical parameter for the contact situation, but it is an open question whatother properties are relevant for the contact situation. In other words: howis it possible to describe a rough surface with few parameters and still besure that the description is unique in a contact mechanical context?Much work has been carried out in this �eld without any decisive conclusionsbeing made. A list of di�erent methods to characterize a rough surface can



Chapter 6. Rough Surfaces 147be found in the book by Thomas [63]. Greenwood and Williamson [20]advocate for a description based on mean values and standard deviationsof the asperity-height and asperity-curvature and then express the surfaceas a Gaussian distribution. This approach is quite erroneous as the heightdistribution in reality is not symmetric. Due to the wear of the surface theasperities of the surface are attened, i.e. the curvatures of the asperities aresmaller than the curvatures of the troughs. It is of course possible to correctfor this property by applying an asymmetric representation of the data, butthe basic problem remains: will surfaces with the same mean values andstandard deviations for the asperity-height and asperity-curvature yield thesame contact mechanical properties? The remainder of the present chapteris devoted to the investigations of di�erent surface properties in the searchfor crucial surface parameters.6.3 The Normal Contact Problem for one As-perityIn order to make the problem as simple as possible the �rst investigationsconsider only one surface asperity Z(�x) in contact with a nominally atand smooth surface. The local coordinate system is de�ned such that thecontact point is located in �x = 0. From section 2.4.1 it is known that thegeometrical properties for two bodies in contact can be moved fromone bodyto the other without loss of accuracy i.e. the case of two rough surfaces canbe transformed into the case of one rough surface and one smooth surfacein contact. Now let the roughness asperity be described asZ(�x) = �0 + 12�2�x2 + 16�3�x3 + 124�4�x4 (6.1)



Chapter 6. Rough Surfaces 148which implies that the geometric moments of the asperity are given as�i = d(i)Z(�x)d�x(i) �����x=0 i = 0; 2; 3; 4 (6.2)where �1 is not present due to the choice of origo and where �2 is thecurvature, �3 is the skewness and �4 is the atness of the asperity. Thevalues of the �'s are chosen such that the asperity is convex in the vicinityof the contact point, which ensures that the contact patch is coherent andthat there is only one contact point. It is further assumed that the fourthorder approximation of the asperity provides an satisfactory accuracy i.e.that higher order terms of the series expansion can be neglected.Employing the polynomial approach this leads to a contact patch with thecentre located the distance � from O(�x) and with half the contact widtha. Introducing the new coordinate system x = �x �� the normal pressuredistribution over the contact patch isp(x) = �E4(1� �2)P4n=0Bnxnpa2 � x2 (6.3)B0 = a2� ��2 + �3�+ 12�4�2 + 112�4a2� (6.4)B1 = 1� �14a2 (�3 + �4�)����2 + 12�3�+ 16�4�2�� (6.5)B2 = 1� � 112a2�4 � �2 � �3�� 12�4�2� (6.6)B3 = � 12� [�3 + �4�] (6.7)B4 = � 16��4 (6.8)where the two unknowns a and � are derived from the boundary conditionsplus the constraint that the integral of the normal pressure distribution is



Chapter 6. Rough Surfaces 149equal to the normal force:0 = ���2 + 12�3�+ 16�4�2�+ 14a2 (�3 + �4�) (6.9)N = �E8 (1� �2) ���2 + �3�+ 12�4�2�a2 + 18�4a4� (6.10)The values for a and � for various combinations of the �'s are given inTable 6.1 where ~N is the normal force normalised with (�E)=8(1� �2).�4 = 0 �3 6= 0 �2 > 0 a = �23 �2�3 (2 cos (�) � 1)� 12� = 13 arccos �278 ~N2�43�62 � 1�� = 1�3 � ~Na2 � �2�restriction: 2716 ~N2�43�62 < 1�2 = 0 asperity is not convex�3 = 0 �2 > 0 a = � ~N�2� 12� = 0�2 = 0 asperity is not convexTable 6.1. (A): �4 = 0. Characteristics of the contact patch for variousasperities.



Chapter 6. Rough Surfaces 150�4 6= 0 �3 6= 0 �2 > 0 if �3 + �4� = 0:a = �2�2�4 �q1 + 2�4�22 ~N � 1�� 12� = ��3�4restriction: �2 = �233�4if �3 + �4� 6= 0: (no analytical solution)a = � �4��3+�4� ��2 + 12�3�+ 16�4�2��12~N = ��2 + �3�+ 12�4�2� a2 + 18�4a4�2 = 0 asperity is not convex�3 = 0 �2 > 0 a = �4�2�4 �q1 + 12 �4�22 ~N � 1�� 12� = 0restriction: 12 �4�22 ~N > �1�2 = 0 a = �8 ~N�4� 14� = 0restriction: �4 > 0Table 6.1. (B): �4 6= 0. Characteristics of the contact patch for variousasperities.



Chapter 6. Rough Surfaces 151All the combinations except for one can be solved analytically. Only whenit comes to an asperity where �2; �3; �4 6= 0 the solution must be foundby employing an approximation method e.g. series expansions or numericaliterations. The restrictions indicated in the table provides the parametercombinations for which the assumptions of coherent contact patch and singlecontact point are ful�lled.The results from Table 6.1 indicate that the relation between the size of halfthe contact patch and the �'s is strongly nonlinear. A consequence of thisnonlinearity is that the principle of superposition is not valid. In Figure 6.2four di�erent asperities are shown: Ai ; i = 1; 2; 3; 4. The con�guration ofthe asperities implies that each asperity can be expressed as a combinationof the others A1 � A2 �A3 + A4 = 0 (6.11)i.e. there is a linear dependency between the four asperities. It is seen thatthe discrepancies between the geometry of the asperities are minor in thevicinity of the contact point.Now the four di�erent asperities are pressed down on a smooth, level surfaceunder the application of the normal load ~N . This way a contact patch witha normal pressure distribution is generated (see equation (6.3)). The pres-sure distributions for the asperities are shown in Figure 6.3. It is evidentthat the principle of superposition does not hold. The linear dependency ofthe geometry of the asperities cannot be retrieved in their normal pressuredistributions, i.e. it is not possible to create the normal pressure for oneasperity by combining the stress distributions for the other asperities. Thisimplication demonstrates clearly that a statistical representation of the as-perities do not provide a unique characterization of the surface in a contactmechanical context. A surface consisting of n asperities of type A1 and n
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Chapter 6. Rough Surfaces 154asperities of type A4 is statistical equal to a surface with n asperities of typeA2 and n asperities of type A3, but the resulting size of half the contactpatch ar or the magnitude of the normal pressure pr are not identical whenthe two surfaces are pressed down on a level surface.6.4 Cross Inuence between Adjacent Con-tact PatchesIn the previous section only isolated asperities were examined. As a roughsurface consists of many adjacent asperities it is of interest to know howthe normal contact problem for a given asperity is inuenced by the normalcontact problem of the adjacent asperities. The cross inuence betweenmore contact patches arises from the relative displacement of material dueto the deformation in the contact patch. Where the normal pressure iszero outside the contact patch, the relative displacements will in principlea�ect the entire surface of the bodies in contact. In order to simplify theinvestigations only the case of two neighbouring contact patches is analysed,but the methodology can easily be applied for more contact patches.Consider the surface Z(X) being pressed down on a level surface. Providedthat Z(X) has two minima inside the potential region of contact, there willbe two contact points. If the normal load furthermore is su�ciently smallor if the trough between the local minima is su�ciently deep, a contactsituation with two separate contact patches occurs as indicated in Figure 6.4.Now assume that Z(X) can be expressed as a polynomial in the vicinity ofboth contact points, then the polynomial approach states that the pressure



Chapter 6. Rough Surfaces 155distributions will be polynomial forms:p1(x1) = �E4(1� �2)PMm=0Bmxm1pa21 � x21 (6.12)p2(x2) = �E4(1� �2)PMm=0Gmxm2pa22 � x22 (6.13)where a1 and a2 refer to half the size of the two contact patches and wherethe local coordinate systems x1 and x2 are de�ned with respect to the globalcoordinate system as x1 = X � d1 ��1 (6.14)x2 = X � d2 ��2 (6.15)as indicated on Figure 6.4. With the aid of the polynomial approach thedisplacement gradients of the contact patches are found to beduz1(x1)dx1 = M�1Xm=0 �mxm1 + I�1;1 MXm=0Bmxm1 (6.16)duz2(x2)dx2 = M�1Xm=0 mxm2 + I�1;2 MXm=0Gmxm2 (6.17)I�1;1 = 8<: 0 ; jx1j � a1sign(x1)�px21�a21 ; jx1j > a1 (6.18)I�1;2 = 8<: 0 ; jx2j � a2sign(x2)�px22�a22 ; jx2j > a2 (6.19)where the �m's and the m's are derived from the Bm's and the Gm's,respectively, applying the polynomial approach, where a in the matrix [A]is substituted with a1 and a2. The normal contact problem for the two
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2a1 2a2�1 �2d1 d2 XO(X)O(x1) O(x2)p1(x1) p2(x2)

Figure 6.4. Local coordinate systems for adjacent contact patches.contact patches is then given asdZ(X)dX = M�1Xm=0 [�mxm1 + mxm2 ] + I�1;2 MXm=0Gmxm2 ; jx1j � a1 (6.20)dZ(X)dX = M�1Xm=0 [mxm2 + �mxm1 ] + I�1;1 MXm=0Bmxm1 ; jx2j � a2 (6.21)It is not possible to solve this system of equations in a straightforwardway due to the square roots in I�1;1 and I�1;2. One way to overcome thisproblem is by making a Taylor approximation of I�1;1 and I�1;2 with thepoint of evolution in the centre of the adjacent contact patch i.e. at x1 = 0for I�1;2 and at x2 = 0 for I�1;1. Now the equations (6.20) and (6.21)are reduced to pure polynomial equations, which implies that the unknownBm's and Gm's can be found by comparing the polynomial coe�cients.



Chapter 6. Rough Surfaces 157The remaining unknowns a1, a2, d1, d2, B0 and G0 can be found from theboundary conditions: MXm=0Bm(�a1)m = MXm=0Bmam1 = 0 (6.22)MXm=0Gm(�a2)m = MXm=0Gmam2 = 0 (6.23)and the relation between the normal pressure and the normal force:~N1 = �2fA0;1gTfB0g (6.24)~N2 = �2fA0;2gTfG0g (6.25)where the notation fA0;1g denotes the vector fA0g with a = a1. The onlyproblem remaining is to de�ne ~N1 and ~N2 which refer to the normal forceacting on each contact patch and where ~N = ~N1 + ~N2. Unfortunately thisproblem is unsolvable because it is impossible to calculate the penetration inthe two-dimensional contact problem (see section 2.4.1). It is thus necessaryto make some sort of estimate of how the normal force is distributed betweenthe two asperities. Several approaches to this problem have been formulated(e.g. [57]) and the qualitatively behaviour of the cross inuence between thecontact patches is not critical with respect to the distribution of the normalforces. Even though the contact problem for two adjacent contact patchesnow is formulated as a set of algebraic equations it is in general not possibleto �nd an analytical solution because the quantities a1, a2, d1 and d2 arerepresented in the equations in a nonlinear way. The problem can howeverbe solved with an iterative method in just a few steps if the Hertzian valuesare utilized as initial guess.After having derived a method to solve the normal contact problem for twointerfering contact patches, it is of interest to investigate how the cross in-uence between the contact patches a�ect the entire contact problem i.e. to
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A :�3 = 0�4 = �1536�32xj�2jZj� 2jFigure 6.5. The asperity A providing two distinct contact patches.compare the result for the calculations where the cross inuence is includedwith an approach without cross inuence. Consider a roughness asperity Awhere �3 = 0 and �4 = �1536�32 (see Figure 6.5). The asperity has twominima at d1;2 = �1=(16�2). If the normal force is small this will resultin two distinct contact patches. Assuming that there is no cross inuencebetween the contact problems, the theory from the previous section can beapplied on each minimum. Introduce the transformations �x1 = X � d1 and�x2 = X � d2 then the two local asperitiesZ1(�x) = 12 ~�2�x2 + 16~�3�x3 + 124 ~�4�x4 (6.26)Z2(�x) = 12 ~�2�x2 � 16~�3�x3 + 124 ~�4�x4 (6.27)~�2 = �2�2 ; ~�3 = 96�22 ; ~�4 = �1536�32 (6.28)can be investigated with the theory from the previous section.The normal pressure distributions for the two approaches are demonstratedin Figure 6.6 for various normal forces. Not surprisingly, the stress distri-butions are very much alike when the normal force is small, i.e. when therelative distance between the two contact patches is large. Because the rel-ative displacements decrease rapidly as the distance from the contact patch
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Chapter 6. Rough Surfaces 160grows, there will hardly be any cross inuence in these cases. As the normalload increases two things happen: the size of the contact patches becomeslarger and the location of the centre of each contact patch represented by�1 and �2 is shifted more towards the position X = 0. Both propertiesresult in a shorter distance between the contact patches and thus in a largercross inuence. The result is quite evident: for large normal loads the dis-crepancies between the two solutions are rather big. A consequence of theimportance of the cross inuence is, that a description of a rough surfacealso must include the distance between the asperities if it is sought to make adescription of the surface which is unique in a contact mechanical context.Thus, mean-line roughness parameters as root-mean-square or centre-lineaverage ([63]) are not adequate as isolated descriptors of a rough surface,since they cannot evaluate the distance between the roughness asperities.Due to the symmetry of A it is obvious that the investigated contact patchesare symmetric around X = 0. The qualitative result of the above compari-son between calculations with cross inuence and calculations without crossinuence is however not a result of the symmetry. The demonstrated prop-erties will also occur if the local asperities are not symmetric or if the normalloads acting on them are not identical.6.5 Tangential Contact of Rough SurfacesWhen the normal contact problem is solved for the case of rough bodies incontact, it should be possible to solve the tangential contact problem in asimilar way, just like it has been done in the previous chapters.



Chapter 6. Rough Surfaces 161The solution of the tangential contact problem for rough surfaces poseshowever some conceptual problems. If both bodies in contact are rough, theslope of the asperities will cause the normal force between two asperity sidesto a�ect the tangential contact problem [15]. Consequently it is not possibleto superpose the roughness onto one of the bodies such that the problemis transformed into the case of a rough body in contact with a perfectlysmooth body. Assuming that the wave lengths of the asperities are muchlarger than their amplitudes, this e�ect can however be disregarded.Another problem is that as the local asperity travels through the Hertziancontact patch, the local normal force varies swiftly, which implies that thecontact problem actually is non-steady. The following investigations con-sider the tangential contact as a sum of local, stationary contact problems,i.e. that the tangential contact problem is solved for each local contact patchin a straightforward way. Important properties may thus be ignored, butthe investigation will yet serve to provide an understanding of the basicproperties of tangential contact for rough surfaces.6.5.1 Tangential Contact for one AsperityAssume that the contact patch is divided into a stick zone at the leading edgeand a slip zone at the trailing edge, then the tangential stress distributionis de�ned as q(x) = q1(x) + q2(x�) (6.29)with the kinematic constraint0 = � + dux1(x)dx + dux2(x�)dx (6.30)As always q1(x) = �p(x).



Chapter 6. Rough Surfaces 162Consider the asperities investigated in section 6.3, where the normal pres-sure distribution had the formp(x) = �E4(1� �2)P4n=0Bnxnpa2 � x2 (6.31)Employing the polynomial approach this leads to an expression for q2(x�)q2(x�) = ��E4(1� �2)P4n=0B�nx�npa�2 � x�2 (6.32)where the coe�cients are given asB�0 = �a�2� ��2 + �3�� + 12�4��2 + 112�4a�2� (6.33)B�1 = � 1� � �� + 14a�2 (�3 + �4��)�����2 + 12�3�� + 16�4��2�� (6.34)B�2 = � 1� � 112a�2�4 � �2 � �3�� � 12�4��2� (6.35)B�3 = 12� [�3 + �4��] (6.36)B�4 = 16��4 (6.37)and where �� = ��a+a�. The unknowns of the tangential contact problemare now a� and either the creepage � or the tangential force T . They canbe found by employing the boundary conditions and the relation betweenthe tangential stress and the tangential force, which yields the equations� = �����2 + 12�3�� + 16�4��2�+ 14�a�2 (�3 + �4��) (6.38)T = �N � ��E8 (1� �2) ���2 + �3�� + 12�4��2�a�2 + 18�4a�4�(6.39)



Chapter 6. Rough Surfaces 163These two equations can for certain values of the �'s be solved analyticallyjust like in the case of the equivalent normal contact problems. If an ana-lytical solution cannot be found, an iterative process converges in just a fewsteps if the Carter solution is applied as initial guess.In Figure 6.7 the tangential stress distributions for the asperities A1; : : : ;A4are monitored for T = 0:75�N . It is clearly seen that the size of the stickzone varies with the geometry of the asperity. A result of the varying a�is, that the creepage is not the same for the four contact situations. InFigure 6.8 the equivalent creep curves are plotted, where the � indicatesthe contact situations from Figure 6.7. Two distinct properties must benoticed when it comes to the creep curves: the magnitude of the criticalcreepage and the initial slope of the creep curve depend on the geometry ofthe asperities.The critical creepage �c for which complete sliding occurs can be derivedfrom equation (6.38) by setting a� = 0, which yields the expression�c = (�� a)��2 + 12�3(�� a) + 16�4(�� a)2� (6.40)The slope of the creep curve is found by di�erentiating equation (6.38) andequation (6.39) with respect to a�, divide the two quantities and then leta� approach a. This calculation leads to the expressionlim�!0� �dTd� � = � �E8(1� �2) (2a+ O(�5)) (6.41)The consequence of this result is very interesting. If the asperity in thevicinity of the contact point can be approximated with a fourth order poly-nomial then the initial slope of the creep curve will always be proportionalto the size of the contact patch.
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Chapter 6. Rough Surfaces 1666.5.2 The Tangential Contact Problem with Cross In-uenceLike in the case with the normal contact problem, adjacent contact patcheswill inuence each other when it comes to the tangential contact problem.The tangential problem with the cross inuence between adjacent contactpatches can be solved by applying an approach equivalent to the one fromthe normal contact problem.Consider two contact patches with the normal pressure distributions p1(x1)and p2(x2) de�ned as in equation (6.12) and equation (6.13), then the tan-gential stress distributions over the contact patches are assumed to have theform q1(x1) = �p1(x1) + q1;2(x�1) (6.42)q2(x1) = �p2(x2) + q2;2(x�2) (6.43)q1;2(x�1) = ��E4(1� �2)PMm=0B�mx�m1pa�21 � x�21 (6.44)q2;2(x�2) = ��E4(1� �2)PMm=0G�mx�m2pa�22 � x�22 (6.45)where the local coordinates x�1 and x�2 are de�ned asx�1 = x1 + a1 � a�1 (6.46)x�2 = x2 + a2 � a�2 (6.47)Each of the two contact patches are thus divided into a stick zone at theleading edge with half the size a�1 and a�2, respectively, and a slip zone atthe trailing edge.



Chapter 6. Rough Surfaces 167The gradients of the relative displacements can now be found using thepolynomial approach, which provides the kinematic constraints for the twostick zones� = M�1Xm=0 [�mxm1 + mxm2 + ��mx�m1 + �mx�m2 ] +MXm=0 �I�1;2Gmxm2 + I��1;2G�mx�m2 � ; jx�1j � a�1 (6.48)� = M�1Xm=0 [�mxm1 + mxm2 + ��mx�m1 + �mx�m2 ] +MXm=0 �I�1;1Bmxm1 + I��1;1B�mx�m1 � ; jx�2j � a�2 (6.49)where the ��m's and the �m's are derived from the B�m's and the G�m's,respectively, applying the polynomial approach, where a in the matrix [A]is substituted with a�1 and a�2. Finally I��1;1 and I��1;2 are de�ned asI��1;1 = 8<: 0 ; jx�1j � a�1sign(x�1)�px�21 �a�21 ; jx�1j > a�1 (6.50)I��1;2 = 8<: 0 ; jx�2j � a�2sign(x�2)�px�22 �a�22 ; jx�2j > a�2 (6.51)The procedure is now exactly the same as for the normal contact problem.I�1;1, I�1;2, I��1;1 and I��1;2 are transformed into polynomials and so theunknowns B�0 , G�0, a�1, a�2 plus either the local tangential force or the localcreepage can be found from the boundary conditions and the condition, thatthe tangential force is equal the integral of the tangential stress distribution.
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Chapter 6. Rough Surfaces 169As the contact problem is assumed to be stationary, the local creepagesacting on the two contact patches must be identical. In Figure 6.9 thetangential stress distribution is calculated for the normal contact problemfrom section 6.4 (see Figure 6.6). The normal pressure distribution whichis utilized as foundation for the calculations of the tangential contact prob-lem is the one where the cross inuence is incorporated. The four contactsituations are calculated for the constant creepage � = �0, which impliesthat the tangential force varies as the normal force is increased. Due to thenonlinearity of the problem, the ratio between normal force and tangentialforce is not constant.In Figure 6.9 three di�erent ratios are listed. The ratios are de�ned asrT1 = T1 without cross inuenceT1 with cross inuence (6.52)rT2 = T2 without cross inuenceT2 with cross inuence (6.53)rT = T without cross inuenceT with cross inuence (6.54)where T1 refers to the �rst contact patch, T2 refers to the second contactpatch and T is the entire tangential force. The calculated ratios indicatethat the entire tangential force is almost una�ected by the cross inuence.The cross inuence implies that the �rst contact patch will have a largerstick zone and a smaller resulting tangential force whereas a larger tangentialforce is transmitted through the second contact patch because the stick zonediminishes.



Chapter 6. Rough Surfaces 170N = N0 N = 1:5N0 N = 2N0 N = 2:5N0� = 0:5�0 rT1 = 1:1108 rT1 = 1:1505 rT1 = 1:1903 rT1 = 1:2392rT2 = 0:9087 rT2 = 0:8836 rT2 = 0:8613 rT2 = 0:8402rT = 0:9966 rT = 0:9952 rT = 0:9935 rT = 0:9916� = �0 rT1 = 1:0857 rT1 = 1:1220 rT1 = 1:1577 rT1 = 1:1953rT2 = 0:9271 rT2 = 0:9018 rT2 = 0:8798 rT2 = 0:8593rT = 0:9961 rT = 0:9937 rT = 0:9912 rT = 0:9885� = 1:5�0 rT1 = 1:0630 rT1 = 1:0968 rT1 = 1:1297 rT1 = 1:1639rT2 = 0:9497 rT2 = 0:9212 rT2 = 0:8987 rT2 = 0:8781rT = 0:9986 rT = 0:9950 rT = 0:9918 rT = 0:9884� = 2�0 rT1 = 1:0481 rT1 = 1:0733 rT1 = 1:1040 rT1 = 1:1356rT2 = 0:9774 rT2 = 0:9460 rT2 = 0:9212 rT2 = 0:8995rT = 1:0067 rT = 1:0006 rT = 0:9960 rT = 0:9918Table 6.2. Ratios between tangential forces calculated without cross inu-ence and with cross inuence for various values of the creepage and thenormal force.In Table 6.2 the three ratios are calculated for various values of the creepageand the normal force, where the reference creepage �0 is the one which is usedfor the contact situations shown in Figure 6.9. Three trends are apparent:1. Increasing normal force resulting in shorter distance between the con-tact patches implies that the second contact patch contributes moreto the total tangential force.



Chapter 6. Rough Surfaces 1712. Smaller creepage implies that the second contact patch contributesmore to the total tangential force.3. The total tangential force is almost una�ected by the cross inuencebetween the contact patches.The above calculations indicate that the tangential contact problem is lessa�ected by the cross inuence than the normal contact problem. The twoproblems are solved for exactly the same con�guration in Figure 6.6 andFigure 6.9. Considering the size of the contact patch as a crucial quantityfor the normal contact problem and the total tangential force as the im-portant quantity for the tangential contact problem it is evident that thecross inuence is not as important for the tangential contact problem asit is for the normal contact problem. It must however be emphasized thatwhen the distance between the contact patches is small compared to thecharacteristic size of the contact patches, both the normal contact problemand the tangential contact problem will be a�ected by the cross inuence.
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Chapter 7Non-SteadyTwo-Dimensional ContactIn the present chapter an approximative method to investigate non-steadycontact for the two-dimensional tangential contact problem is introduced.The objective of the method is to �nd the tangential stress distributionand establish a relation between the creepage and the tangential force. Itis demonstrated that exact solutions for the tangential stress distributionand the tangential force can be derived, whereas the relation between thecreepage and the tangential force depends on an approximation of the dis-placements at a reference point. To illustrate the application of the theorya contact problem with an oscillating tangential force is examined.173



Chapter 7. Non-Steady Two-Dimensional Contact 1747.1 Non-Steady ContactIn the previous chapters the tangential contact problem is considered tobe stationary, i.e. it is assumed that the quantities of the contact prob-lem changes very slowly implying that the time derivative of the relativedisplacements can be neglected. Thus, it is a precondition for stationarycontact that the characteristic wave length of the contact problem is muchlarger than the size of the contact patch. This assumption is much tooprimitive for a variety of problems of wheel/rail contact such as corrugationproblems or contact involving rough surfaces. For that reason it is necessaryto be able to incorporate non-stationarity in the contact model in order toextend the �eld of application.The case of three-dimensional non-steady contact has been investigatedthoroughly by Gro�-Thebing [22] and [23], who extended Kalker's theorybased on discretization of the contact patch [38] to a non-steady application.By introducing a linearization a non-steady theory equivalent to Kalker'slinear theory is obtained, where the creep coe�cients now are frequencydependent. In the latter work of Gro�-Thebing the approach is modi�ed sothe linearization is made with respect to an arbitrary reference state of thenonlinear stationary contact model. The problem with Gro�-Thebing's con-tact model is that it is based on linearizations of the basic equations withineach discretized contact element. This approach is therefore only adequatefor contact situations where the amplitudes of the oscillating quantities aresmall. When this is not the case a very �ne discretization of the contactpatch much be applied, which augment the computation time considerably.In Chapter 2 it was demonstrated that it is impossible to solve the two-dimensional non-steady contact problem because the relative displacement



Chapter 7. Non-Steady Two-Dimensional Contact 175depends on the choice of datum. It is however possible to make some qual-itative investigations of the problem. As in many other �elds of rollingcontact mechanics Kalker has made some of the primary work in this �eld[36] and [37]. The �rst paper [36] is an analytical description of the casewhere the stick zone is assumed to cover the entire contact patch, i.e. acontact with in�nite friction, whereas the second paper [37] introduces anumerical approach to non-steady rolling contact. In the present chapteran analytical approach to two-dimensional, non-steady rolling contact wherethe contact patch is divided into one stick zone and one slip zone will beintroduced.7.2 Deriving a Non-Steady TheoryIn the stationary contact theory it is assumed that the relative displacementux = ux(x) where the local coordinate x is given by the global coordinateX as x = X � Vmt. The kinematic constraint for a particle in the contactpatch then reads �Vms(x) = �Vm� + dux(x)dt (7.1)where Vm is the mean velocity [33]. With the de�nition of x this leads tothe expression �Vms(x) = �Vm� + dux(x)dx dxdt )s(x) = � + dux(x)dx (7.2)This is the kinematic constraint which is the foundation of all stationarycontact theories.



Chapter 7. Non-Steady Two-Dimensional Contact 176If the relative displacement now also depends on the time i.e. ux = ux(x; t)then the kinematic constraint is calculated to�Vms(x; t) = �Vm�(t) + @ux(x; t)@x dxdt + @ux(x; t)@t )s(x; t) = �(t) + @ux(x)@x � 1Vm @ux(x; t)@t (7.3)With the de�nition of the slip being zero in the stick zone this yields that0 = �(t) + @ux(x; t)@x � 1Vm @ux(x; t)@t ; x 2 Sstick (7.4)In order to �nd an expression for the time dependent creepage it is necessaryto be able to calculate the derivatives of ux(x; t). Due to the outline of thekinematic constraint it is assumed that ux(x; t) can be expressed asux(x; t) = Ux(x+ Vmt)� �0x� Ux(x0 + Vmt) + �0x0 + ux(x0; t) (7.5)where the reference coordinate x0 2 Sstick is de�ned asx0 = X � Vmt+ f(t) (7.6)The derivatives of the relative displacement are then@ux(x; t)@x = U 0x(x+ Vmt)� �0 (7.7)@ux(x; t)@t = VmU 0x(x+ Vmt) � U 0x(x0 + Vmt)f 0(t) +��0 + @ux(x0; t)@x0 � (f 0(t) � Vm) + @ux(x0; t)@t (7.8)which inserted into the kinematic constraint yields that�(t) = � 1VmU 0x(x0 + Vmt)f 0(t) + 1Vm ��0 + @ux(x0; t)@x0 � f 0(t) �@ux(x0; t)@x0 + 1Vm @ux(x0; t)@t (7.9)



Chapter 7. Non-Steady Two-Dimensional Contact 177In order to simplify this expression it is assumed that f 0(t) and U 0x(x0+Vmt)are small i.e. that their product is small compared to the other quantitiesand consequently can be neglected. This assumption is reasonable if theposition of x0 is located in a small interval of the contact patch. As x0always is located in the stick zone it further follows that the term��0 + @ux(x0; t)@x0 �f 0(t)also can be neglected. With these simpli�cations the expression for thecreepage is reduced to�(t) = �@ux(x0; t)@x0 + 1Vm @ux(x0; t)@t ; x0 2 Sstick (7.10)Since ux(x0; t) depends on the choice of datum the derivative @ux(x0; t)=@tis an unknown function and so the problem cannot be solved unless anappropriate approximation for ux(x0; t) is applied.In order to �nd an expression for ux(x0; t), Johnson has suggested an ap-proach where the three-dimensional case of a rectangular contact patch withuniform tangential stress distribution is considered [32]. Denoting the sidelengths of the rectangle as 2a and 2b where 2a is the length parallel tothe rolling direction, the value of ux(x0; t) is approximated with the dis-placement at the centre of the rectangle when the uniform tangential stressdistribution q(x; y; t) = T=2a is acting on the contact patch. T is in thiscontext the tangential force per unit length. In principle the assumption ofcomplete sticking leads to a singularity in the tangential stress distributionat the trailing edge of the contact patch. To avoid this phenomenon theJohnson approach is slightly modi�ed, so the tangential stress distributionis expressed as the sum of two uniform stress distributions where one isde�ned over the entire contact patch and the other is de�ned over the stick



Chapter 7. Non-Steady Two-Dimensional Contact 178zone: q(x; y; t) = q1(x; t) + q2(x�; t) (7.11)q1(x; t) = �N2a ; �a < x < a (7.12)q2(x�; t) = ��N � T2a� ; �a� < x� < a� (7.13)Applying the three-dimensional constitutive equation (see Appendix C) onthis tangential stress distribution under the assumption that b � a, anexpression for ux(x0; t) is found to beux(x0; t) = 4(1� �2)�E f�N [g(x0; a)� g(x�0; a�)] + Tg(x�0; a�)g (7.14)g(x0; a) = 11� � + ln(2b) + 12 x0a ln�a� x0a+ x0��12 ln �a2 � x20� (7.15)where x0 is de�ned to be the centre of the stick zone i.e. x0 = a� � a andx�0 = 0.The above approximation of ux(x0; t) is quite primitive and is only validwhen the size of the slip zone is very small i.e. when a�0 ! a0. This constraintimplies that the theory is equivalent to the stationary linear model where thestick zone always covers the entire contact patch. The simpli�ed expressionfor the tangential stress distribution results in values for the stationarycreepage which are di�erent from the stationary value of the Carter solutionwhen the stick zone does not cover the entire contact patch.A better approximation of ux(x0; t) can be achieved by considering the samerectangular contact patch with the side lengths 2a and 2b, but where the



Chapter 7. Non-Steady Two-Dimensional Contact 179tangential stress distribution in a cross section of this contact patch is equalto the Carter stress distribution:q(x; y; t) = q1(x; t) + q2(x�; t) (7.16)q1(x; t) = �p0a pa2 � x2 ; �a < x < a (7.17)q2(x�; t) = ��p0a pa�2 � x�2 ; �a� < x� < a� (7.18)Again the constitutive equation provides an expression for ux(x0; t):ux(x0; t) = 4(1� �2)�E [�N [g(x0; a)� g(x�0; a�)] + Tg(x�0; a�)] (7.19)g(x0; a) = 1 + �2(1� �) + ln(4b)� ln(a) � �x0a �2 (7.20)where x0 still is de�ned as the centre of the stick zone.The problem with the above calculations of ux(x0; t) is that the approxima-tion to an in�nite cylinder rolling on a surface implies that b ! 1 whichalso causes ux(x0; t) to tend towards in�nity. Instead it is only assumedthat b� a and then consider the result to be an indicator of the qualitativebehaviour of the non-steady problem.When all quantities except for the tangential force and the creepage areconstant in time the non-steady contact problem is in principle solved byinserting the derivatives of ux(x0; t) which can be found from equation (7.14)or from equation (7.19) into the kinematic constraint from equation (7.10).However, it is sought to derive a theory which can be applied on a widerange of non-steady contact problems where other quantities such as thesize of the contact patch, the size of the stick zone or the velocity also vary



Chapter 7. Non-Steady Two-Dimensional Contact 180in time. So it remains to establish a set of equations which describes howthese other oscillating quantities are related. To do that it is necessary tosolve the entire contact problem i.e. to �nd the tangential stress distribution,the size of the stick zone and the size of the tangential force.In order to illustrate how the non-steady contact problem may be solved,a very simple example of non-steady contact is treated. It is obviouslypossible to employ the procedure on much more complicated problems, butthe simple problem is chosen in order to demonstrate the basic concept ofthe method.Consider a cylinder rolling on a smooth surface with constant velocity andconstant normal force but with the oscillating tangential force:T (t) = T0 + MXm=0 [TA;m cos(!mt) + TB;m sin(!mt)] (7.21)It is noticed that the assumption of constant normal force implies that thesize of the contact patch is constant in time i.e. a = a0. The objective ofthe calculations is now to establish an expression for the creepage on theform �(t) = �0 + MXm=0 [�A;m cos(!mt) + �B;m sin(!mt)] (7.22)To do that the point of departure is taken in the gradient of the relativedisplacement @ux(x; t)=@x = U 0x(x + Vmt)� �0 (7.23)As both the tangential force and the creepage are harmonic functions intime it is assumed that the function Ux(x + Vmt) also is harmonic i.e.Ux(x+ Vmt) = MXm=0 � [UA;m sin[km(x+ Vmt)]�UB;m cos[km(x+ Vmt)]] (7.24)



Chapter 7. Non-Steady Two-Dimensional Contact 181In order to �nd the tangential stress distribution and the size of the stickzone an approach similar to the one for the corrugated surface must beapplied. Assuming that the contact patch is divided into one stick zone andone slip zone, the gradient of the relative displacement in the stick zone isgiven as @ux(x; t)@x = @ux1(x; t)@x + @ux2(x; t)@x (7.25)where @ux1(x; t)=@x = x�=R as the normal stress distribution is Hertzian.The equation (7.23) then indicates that@ux2(x; t)@x = ��xR � �0 + MXm=0�km [UA;m cos(kmx+ !mt)+UB;m sin(kmx+ !mt)] (7.26)where !m = kmV . Introducing the coordinate transformationx� = x+a�a�the displacement gradient is rewritten as@ux2(x�; t)@x = ��0 � �(x� +��)R +MXm=0�km [UA;m cos[km(x� +��) + !mt]+UB;m sin[km(x� +��) + !mt]] (7.27)where �� = a� � a. Employing the polynomial approach, a procedureequivalent to the example of the corrugated surface (see section 4.2.3) yieldsthe tangential stress distributionq(x; t) = �p(x; t) + q2(x�; t) (7.28)where q2(x�; t) = ��E4(1� �2)P1n=0B�nx�npa�2 � x�2 (7.29)



Chapter 7. Non-Steady Two-Dimensional Contact 182B�0 = �a�2�R +�a�� �2 MXm=1 km [UA;m cos(km�� + !mt)+UB;m sin(km�� + !mt)] 1Xj=0 (�1)jA�j k2j+1m(2j + 1)! (7.30)B�1 = � �0�� + ���R � MXm=1 km [UA;m sin(km�� + !mt)�UB;m cos(km�� + !mt)] 1Xj=0 (�1)jA��1j k2jm(2j)! (7.31)B�2 = 1�R � MXm=1 km [UA;m cos(km�� + !mt)+UB;m sin(km�� + !mt)] 1Xj=0 (�1)jA��1j k2j+1m(2j + 1)! (7.32)...B�2n�1 = (�1)n MXm=1 km [UA;m sin(km�� + !mt)�UB;m cos(km�� + !mt)] 1Xj=0 (�1)jA��1j k2j+2n�2m(2j + 2n� 2)! (7.33)B�2n = (�1)n MXm=1 km [UA;m cos(km�� + !mt)+UB;m sin(km�� + !mt)] 1Xj=0 (�1)jA��1j k2j+2n�1m(2j + 2n� 1)! (7.34)The boundary conditions provide the restriction that�0 = ���R + MXm=0�kmJ0(kma�) [UA;m sin(km�� + !mt)�UB;m cos(km�� + !mt)] (7.35)



Chapter 7. Non-Steady Two-Dimensional Contact 183from which an expression for half the size of the stick zone a� can be founddepending on the coe�cients UA;m and UB;m.Integrating the tangential stress distribution over the contact patch, thetangential force is found to beT (t) = �N � ��E4(1� �2) (a�22R + MXm=0 kma�J1(kma�)�[UA;m cos(km�� + !mt) + UB;m sin(km�� + !mt)]) (7.36)Comparing the coe�cients from this expression with the ones from equation(7.21) the unknowns UA;m and UB;m are determined.In order to employ the size of the stick zone and the magnitude of thetangential force in further calculations it is convenient to derive closedform expressions for these two quantities. Just like in the case of the cor-rugated surface a series expansion is applied under the assumption thatk2RpU2A + U2B � 1, which leads to the expressions:a�(t) = a�0 + MXm=0 �a�A;m cos(!mt) + a�B;m sin(!mt)� (7.37)T (t) = T0 + MXm=0 [TA;m cos(!mt) + TB;m sin(!mt)] (7.38)where the coe�cients with indices A and B are found from the usual matrixequation8>><>>: �a�A;m; TA;m	T�a�B;m; TB;m	T 9>>=>>; = 2664 �a�1;m; T1;m	T ��a�2;m; T2;m	T�a�2;m; T2;m	T �a�1;m; T1;m	T 37758>><>>: UAUB 9>>=>>;(7.39)



Chapter 7. Non-Steady Two-Dimensional Contact 184with the matrix coe�cientsa�1;m = �kmRJ0(kma�0) sin[km(a�0 � a0)] (7.40)a�2;m = �kmRJ0(kma�0) cos[km(a�0 � a0)] (7.41)T1;m = ��E4(1� �2)kma�0 ��a�1;mkmR � J1(kma�0) cos[km(a�0 � a0)]� (7.42)T2;m = ��E4(1� �2)kma�0 ��a�2;mkmR + J1(kma�0) sin[km(a�0 � a0)]� (7.43)In Figure 7.1 the tangential stress distribution is shown for the case ofone distinct wave length where a0=L = 1 i.e. a contact situation wherethe oscillations in time are so fast, that the time derivative of the relativedisplacement must be included in the contact model. The importance ofincluding the term @ux(x; t)=@t is clearly demonstrated in the �gure, wherethe non-steady solution (solid line) is compared with the stationary Cartersolution (dashed line). The discrepancies between the two solutions aresigni�cant and even though the amplitude of a� indicated by the locationof the limit between stick zone and slip zone is minor, the tangential stressdistribution varies considerably inside the stick zone.At the extreme a contact situation where a� is constant but the tangentialstress distribution still oscillates can occur. This is the case for con�gu-rations where J0(ka�) = 0. Thus, the common conception of oscillatingtangential forces as a slip-stick phenomenon where the sizes of the stickzone and the slip zone oscillate does not provide a complete picture of thenon-steady contact problem. It is possible to have a situation where thetangential force and thus the tangential stress distribution and the slip os-cillates even though the position of the limit between stick zone and slipzone is kept constant.
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Chapter 7. Non-Steady Two-Dimensional Contact 186With the expressions for a�(t) and T (t) derived it is possible to establisha relation between the tangential force and the creepage. Inserting theapproximation for ux(x0; t) into the kinematic constraint in equation (7.10)this leads to the result that�(t) = �0 + MXm=) [�A;m cos(!mt) + �B;m sin(!mt)] (7.44)where ( �A;m�B;m ) = " �1;m ��2;m�2;m �1;m #( UAUB ) (7.45)The coe�cients �1;m and �2;m obviously depend on which approximation ofux(x0; t) there is utilized. The approach based on the modi�ed version ofJohnson's stress distribution results in the coe�cients�0 = 0 (7.46)�1;m = �(kma0)2 J0(kma0) � 11� � + ln�2ba0�� �J0(kma0)! (7.47)�2;m = �(kma0)2 J1(kma0) � 11� � + ln�2ba0�� �1kma0J0(kma0)! (7.48)provided that a�0 = a0. The fact that the size of the stick zone oscillateseven when a�0 = a is due to fact that the location of the slip zone changesbetween the leading edge and the trailing edge of the contact patch. Thus,a value of a� greater than a is interpreted as a situation where a slip zone



Chapter 7. Non-Steady Two-Dimensional Contact 187with half the length (a� � a) is located at the leading edge of the contactpatch.The approximation of ux(x0; t) based on the tangential stress distributionsimilar to the Carter solution (equation (7.16)) yields that�0 = �a0R (ra0 � 1) (7.49)�1;m = �R �a�1;m + kma0ra0a�2;m� +4(1� �2)�E kmT2;m � 1 + �2(1� �) + ln�4ba�0�� (7.50)�2;m = �R �a�2;m � kma0ra0a�1;m� �4(1� �2)�E kmT1;m � 1 + �2(1� �) + ln�4ba�0�� (7.51)It is seen that for ra0 = 1 the solution for the approach based on the modi�edJohnson stress distribution is almost identical to the solution where ux(x0; t)is found from a Carter stress distribution. This must evidently be the caseas the Johnson stress distribution can be considered as a linearization ofthe Carter solution for the case where ra0 = 1 with the only di�erence thatthe �rst approximation is made for a uniform stress distribution whereasthe latter approximation is derived from an elliptic stress distribution.By this the non-steady contact problem is solved. The obvious similaritiesbetween the above derived expressions for the tangential stress distributionand for the tangential force and the same quantities for the case of a cylin-der rolling on a corrugated surface (see section 4.2.3) should be noticed.Replacing UA;m with ZA;m and UB;m with ZB;m the stress distribution andthe tangential force are identical with the ones from the corrugated sur-face. Consequently the solution to the stationary tangential problem for



Chapter 7. Non-Steady Two-Dimensional Contact 188the case of a cylinder rolling on a corrugated surface which was derived insection 4.2.3 is also a solution to the non-steady contact problem when itcomes to the tangential force and the tangential stress distribution. Theomitting of the time-derivative in the kinematic constraint only a�ects thesize of the creepage, which then is oscillating instead of being constant.Another interesting feature is that the quantity ux(x0; t) does not inuencethe tangential stress distribution or the tangential force. The approximationof ux(x0; t) does only a�ect the creepage, and so the derived solutions forq(x; t) and T (t) are exact, even though the two-dimensional non-steadycontact problem by de�nition is unsolvable.To analyse the relation between the creepage and the tangential force theratio T (t)=�(t) is investigated. In order to simplify the calculations it isassumed that Ux(x+ Vmt) only has one distinct wave length i.e.Ux(x+ Vmt) = �k [UA cos[k(x+ Vmt)] + UB sin[k(x+ Vmt)]] (7.52)The ratio between the amplitudes of T (t) and �(t) then readsbTb� = �T 21 + T 22�21 + �22 �12 (7.53)and the di�erence in phase is given as�T � �� = arctan�T2T1�� arctan��2�1� (7.54)It is seen that both the ratio of the amplitudes bT=b� and the di�erence inphase (�T � ��) depend on the two ratios a0=L and ra0 = a�0=a0 i.e. on therelative size of the contact patch and the magnitude of the reference creepageor the reference tangential force. The coe�cients UA;m and UB;m do notinuence the ratio of the amplitudes or the di�erence in phase, a property



Chapter 7. Non-Steady Two-Dimensional Contact 189which is quite obvious as no restrictions concerning these coe�cients aregiven in the derivation of the theory.Gro�-Thebing has derived an analytical expression for the ratio bT=b� for theJohnson approach where the stick zone covers the entire contact patch [23].De�ning the tangential force and the creepage as the complex quantitiesT (t) = bTei!t (7.55)�(t) = b�ei!t (7.56)where i = p�1 and bT and b� are complex constants, Gro�-Thebing demon-strates thatbTb� = �Ea4(1� �2) 24 1J0(ka)J0(ka)+iJ1(ka) + ika h 11�� + ln �2ba �i35 (7.57)This solution is shown in Figure 7.2 (dashed line) where it is compared withthe approach based on the modi�ed Johnson stress distribution (solid line).The size of the pseudo contact width is set to be b = 20a0. It is seen thatthe two solutions are identical when a0=L! 0 which implies that the wavelength is very large compared with the size of the stick zone i.e. the inuenceof the non-steady term in the kinematic constraint vanishes. Furthermorethe two solutions are identical when J0(ka0) = 0 which exactly are thecases where the size of the stick zone is constant in time and thus coversthe entire contact patch. The discrepancies between the two solutions forall other values of a0=L arises from the fact that Gro�-Thebing's solutionhas a singularity at the trailing edge of the contact patch as a result of thecomplete stick assumption, whereas the approach based on the modi�edJohnson stress distribution has incorporated a small slip zone at the trailingedge in order to avoid this singularity.
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Chapter 7. Non-Steady Two-Dimensional Contact 191the outline of the same quantities when ra0 = 0:8 (see Figure 7.3 (A) andFigure 7.3 (H)). Thus, the non-steady behaviour of the contact problem isnot very sensitive to the stationary size of the stick zone and the slip zone.In the above example a non-steady contact problem with oscillating tangen-tial force is solved employing a simple series expansion of T (t) and a�(t).This approach is used in order to demonstrate the application of the derivednon-steady theory. It is obviously possible to solve the problem derivingmore sophisticated closed form expressions for T (t) and a�(t), just as theproblem also can be solved if other quantities such as the normal force, thecurvature or the material properties oscillate as the cylinder rolls along thesurface. In all cases the expressions for the tangential stress distribution andthe tangential force are exact whereas the creepage is found using an ap-proximation of the value ux(x0; t). The only constraints necessary to solvethe non-steady problem are that Ux = Ux(x + Vmt) and that the contactpatch is divided into one stick zone and one slip zone.
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Chapter 8ConclusionIn the present work a two-dimensional contact model based on half spaceapproximations has been formulated. The fundamental problem of the halfspace approach to a contact problem arises from the constitutive equationwhich provides the relation between the stress distribution q(x) and thegradient of the relative displacement dux(x)=dx:dux(x)dx = 4(1� �2)�E Z a�a q(�)x� � d�When the stress distribution is known this equation does not cause anyproblems, but when the stress distribution has to be found from a givengradient of the relative displacement, the constitutive equation providesmajor di�culties. 195



Chapter 8. Conclusion 196It has in the present work been shown thatp(x) = PNn=0Bnxnpa2 � x2 , duz(x)dx = N�1Xm=0 �mxm ; jxj � awhere the coe�cients Bn and �m are linearly dependent. Thus, the consti-tutive equation originally formulated as an integral equation is reduced toan algebraic equation. Since this equation consists of polynomials the actualcalculation is reduced to the comparison of polynomial coe�cients, whichsimpli�es the solution of the contact problem signi�cantly. Because the con-stitutive equation for the normal pressure distribution and the gradient ofthe relative normal displacement is equivalent to the constitutive equationfor the tangential stress distribution and gradient of the relative tangentialdisplacement, both the normal contact problem and the tangential contactproblem can be solved with the derived model.The model has been applied on four di�erent contact problems which cannotbe solved by more primitive contact models which are nevertheless the mostcommon in simulations investigating wheel/rail contact:Contact between corrugated surfaces: It has been demonstrated thatthe case of a cylinder rolling on a corrugated surface is very sensitive tothe choice of contact model. The presence of corrugation implies that thestress distribution becomes asymmetric, a property which is decisive for theevolution of the corrugation. This e�ect is disregarded if the tangentialstress distribution is assumed to be equal to the one for the Carter solution.Contact with velocity dependent friction coe�cient: The derivedmodel has been applied on the case where the friction coe�cient depends on



Chapter 8. Conclusion 197the local relative velocity between the surfaces in contact. The tangentialstress distribution and the creep curve were calculated. If the friction coef-�cient is de�ned as a step function with one static value and one kinematicvalue, the outline of the creep curve is identical with the creep curve forthe Carter solution where the friction coe�cient is de�ned as the kinematicfriction coe�cient. When the friction coe�cient is de�ned as a decayingfunction of the local relative velocity, the creep curve will have a maximumand then decay as the creepage increases. The location of this maximumcan be determined.Contact between rough surfaces: Employing the new contact modelit can be demonstrated that the combination of curvature, skewness andatness of a roughness spike is important for the normal contact problem,thus statistical representations of these contact properties for a given surfacemay be misleading in a contact mechanical sense as the contact situation isnot unique for a given statistical representation. It is further demonstratedthat the initial slope of the creep curve is proportional to the size of theactual contact patch. Finally it has been shown that the normal contactproblem is more sensitive to the cross inuence between adjacent contactpatches than the tangential contact problem.Non-steady contact: An approximative method for the case of non-steady contact has been derived. It is shown that an expression for the timedependent creepage depends on an approximation of the displacement at areference point whereas the expressions for the tangential stress distributionand the tangential force are exact. Calculations show that the ratio betweenthe amplitude of the creepage and the amplitude of the tangential force



Chapter 8. Conclusion 198with appreciable accuracy can be found by a linear approach to the contactproblem.8.1 Further InvestigationsIt is obviously possible to solve combinations of the di�erent contact prob-lems with the derived model e.g. the case of a corrugated surface with avelocity dependent friction coe�cient or the non-steady contact of roughsurfaces. Due to the generality of the derived model the application canalso be extended to many other cases of contact mechanics which are notcovered by more conventional contact models. An example of such an ap-plication is the case where the material properties - e.g. the modulus ofelasticity or the coe�cient of friction - depends on the temperature in thecontact patch. Due to the frictional work the temperature is not constantover the contact patch. If the temperature �eld is known and an expressionfor the material properties dependency of the temperature also is known,then both the normal contact problem and the tangential contact problemcan be solved employing a method equivalent to the one described for thecase of the velocity dependent friction coe�cient.The main weakness of the new contact model is evidently that it is a two-dimensional model. It has been demonstrated that the two-dimensionalmodel can be extended also to cover three-dimensional contact situationswith no spin by integrating the two-dimensional solution over an ellipticcontact patch. An obvious continuation of the present work is to performthis integration for the four di�erent contact problems in order to obtaina three-dimensional model for each case. A much harder task is to include



Chapter 8. Conclusion 199the e�ect of spin in the contact model. It is obviously possible to intro-duce a correction factor depending on the spin which makes the creep curveresemble the numerically calculated creep curve (e.g. by CONTACT). How-ever, the introduction of a correction factor implies that the strictly physicalbackground of the derived expressions is eliminated. A much better way toinclude the spin in the model is by rede�ning the location of the strips inthe strip theory. Thus, instead of having linear strips parallel to the rollingdirection, curved strips parallel to the pseudo creepage vector must be intro-duced. This results in more complicated calculations but it is an interestingapproach to the three-dimensional problem with spin which may providevery accurate results.
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Appendix AMinimum of theTwo-Dimensional SolutionThe following calculations will demonstrate that the Carter solution to thetwo-dimensional tangential problem is a minimum solution.Consider a tangential stress distribution de�ned as the sum of two ellipsesq(x) = q1(x) + q2(x�) (A.1)q1(x) = �p0a0 qa20 � x2 (A.2)q2(x�) = p�0qa�20 � x�2 (A.3)201
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stick zoneslip zone slip zone

V
�a�0 O(x�) a�0 x��a0 O(x) a0 xq1(x)q2(x�) q(x)d`̀
Figure A.1. Tangential stress distribution.x� = x+ d (A.4)Then the gradient of the relative lateral displacement due to Cerruti-Boussinesq is:dux(x)dx = �4(1� �2)�E ���p0a0 x+ �p�0(x+ d)� ; �a�0 < x+ d < a�0 (A.5)which inserted into the kinematic constraint yields that�0 = 4(1� �2)�E ���p0a0 x+ �p�0(x+ d)� (A.6)As �0 is independent of x this implies thatp�0 = ��p0a0 (A.7)



Appendix A. Minimum of the Two-Dimensional Solution 203and so �0 = �4(1� �2)E �p0a0 d (A.8)The resulting tangential force is found by integrating q(x)T = 12 ��p0a0 �a20 � a�20 � (A.9)This implies that the minimum tangential force is found by maximizing a�20 .The only restriction for a�0 and d is thata�0 + jdj � a0 (A.10)i.e. the ellipse q2(x�) always lies inside the ellipse q1(x), and so the maximumvalue of a�0 is a�0;max = a0 � jdj (A.11)and consequently d = a0 � a�0;max (A.12)which is equivalent to the Carter solution. This demonstrates that underthe assumption that the tangential stress distribution can be expressed asthe sum of two ellipses, the Carter solution is the only minimal solution.
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Appendix BKalker's CreepCoe�cientsThe coe�cients are listed for a Poisson ratio � = 0:25:a0 is the semi axis of the contact ellipse in the rolling direction.b0 is the semi axis of the contact ellipse perpendicular to the rolling direction.The derivation of the creep coe�cients can be found in [34].205
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a0=b0 C11 C22 C230.1 3.31 2.52 0.4730.2 3.37 2.63 0.6030.3 3.44 2.75 0.7150.4 3.53 2.88 0.8230.5 3.62 3.01 0.9290.6 3.72 3.14 1.030.7 3.81 3.28 1.140.8 3.91 3.41 1.250.9 4.01 3.54 1.36
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b0=a0 C11 C22 C231.0 4.12 3.67 1.470.9 4.22 3.81 1.590.8 4.36 3.99 1.750.7 4.54 4.21 1.950.6 4.78 4.50 2.230.5 5.10 4.90 2.620.4 5.57 5.48 3.240.3 6.34 6.40 4.320.2 7.78 8.14 6.630.1 11.7 12.8 14.6
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Appendix CConstitutive EquationsThe below listed constitutive equations for the loaded half space are derivedfor quasi identical bodies. A derivation can be found in [47].Two-dimensional case:uz(x) = �4(1� �2)�E Z p(�) ln jx� �j d� + C1 (C.1)ux(x) = �4(1� �2)�E Z q(�) ln jx� �j d� + C2 (C.2)duz(x)dx = �4(1� �2)�E Z p(�)x� � d� (C.3)dux(x)dx = �4(1� �2)�E Z q(�)x� � d� (C.4)209



Appendix C. Constitutive Equations 210Three-dimensional case:uz(x; y) = 2(1� �2)�E Z Z p(�; �)� d�d� (C.5)ux(x; y) = Z Z fg11(x; y; �; �) qx(�; �)+g12(x; y; �; �) qy(�; �)g d�d� (C.6)uy(x; y) = Z Z fg21(x; y; �; �) qx(�; �)+g22(x; y; �; �) qy(�; �)g d�d� (C.7)g11(x; y; �; �) = 2(1 + �)�E � (1� �)� + �(x� �)2�3 � (C.8)g12(x; y; �; �) = 2(1 + �)�E ��(x� �)(y � �)�3 � (C.9)g21(x; y; �; �) = 2(1 + �)�E ��(x� �)(y � �)�3 � (C.10)g22(x; y; �; �) = 2(1 + �)�E � (1� �)� + �(y � �)2�3 � (C.11)� =p(x� �)2 + (y � �)2 (C.12)



Appendix DTransformation of theConstitutive EquationThe aim of the present investigation is to derive a general solution to theintegral I = Z a�a PNn=0Bn�n(x� �)pa2 � �2 d� (D.1)Introducing the transformation � = x � � then the polynomial is rewrittenas NXn=0Bn�n = NXn=0Bn nXi=0 (�1)i ni !xn�i�i (D.2)and so the integral (D.1) is transformed intoI = NXn=0Bn nXi=0 (�1)i ni !xn�i Z x�ax+a �i�1p��2 + 2x� + a2 � x2 d� (D.3)211



Appendix D. Transformation of the Constitutive Equation 212Now let Ii�1 denote the integralIi�1 = Z x�ax+a �i�1p��2 + 2x� + a2 � x2 d� (D.4)then the value of Ii is given by the recursive formulaeIi = �1i � 1��x2 � a2� Ii�2 + �2� 1i�xIi�1 ; i = 1; 2; : : : (D.5)I�1 = ( 0 ; jxj � jajsign(x)�px2�a2 ; jxj > jaj (D.6)I0 = �� (D.7)This implies that if jxj � jaj then Ii�1 can be written as a polynomial in xIi�1 = iXj=1�ijxj�1 (D.8)where the coe�cients are given as�ij =8<: �� (i�1)!(j�1)![( 12 (i�j))!]2 �a2�i�j ; i�j2 2 IN00 ; otherwise (D.9)Inserted into equation (D.3) this yields the new equationI = NXn=0Bn nXi=1 (�1)i ni !xn�i iXj=1�ijxj�1 (D.10)i.e. a polynomial in x with the coe�cients �m:I = N�1Xm=0 �mxm (D.11)Comparing the coe�cients of the polynomials in equation (D.10) and equa-tion (D.11) this implies thatj = m � n+ i+ 1 (D.12)



Appendix D. Transformation of the Constitutive Equation 213which also yields the restriction that (n�m�1)=2 2 IN0. It is now possibleto derive a relation between the Bn's and the �m's�m = NXn=m+1Bn nXi=n�m (�1)i ni !xn�i�i;m�n+i+1 (D.13)which can be reduced to�m = NXn=m+1BnAk ; k 2 IN0 (D.14)Ak = �� (2k)!k! �a2�2k (D.15)k = n�m� 12 (D.16)This demonstrates that there exists a linear relation between the Bn's andthe �m's only depending on a and n � m. The above derivation is madewith the assumption that I�1 = 0 i.e. for the case where jxj � jaj. WhenI�1 is included the general solution to the integral (D.1) is given asZ a�a PNn=0Bn�n(x� �)pa2 � �2 d� = N�1Xm=0 �mxm + I�1 NXn=0Bn (D.17)
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