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Abstract

Road safety is a major concern for society and individuals. Although road safety has
improved in recent years, the number of road fatalities is still unacceptably high. In
2000, road accidents killed over 40,000 people in the European Union and injured
more than 1.7 million. In 2001 in Denmark there were 6861 injury traffic accidents
reported by the police, resulting in 4519 minor injuries, 3946 serious injuries, and
431 fatalities.

The general purpose of the research was to improve the insight into aggregated road
safety methodology in Denmark. The aim was to analyse advanced statistical meth-
ods, that were designed to study developments over time, including effects of interven-
tions. This aim has been achieved by investigating variations in aggregated Danish
traffic accident series and by applying state of the art methodologies to specific case
studies.

The thesis comprises an introduction to accident data, and influential factors such
as changing traffic volumes and demographic and economic trends. It highlights
the limitations in the influential factors data-structure, in particular, their strong
covariance and slow development over time.

An important issue in this thesis was to investigate the temporal dependency in
the accident series. The thesis shows that the monthly observations of accidents
are serially correlated and that this correlation can only partly be explained by
the explanatory variables. One should therefore use dynamic modelling techniques
to analyse variations in accident series. The thesis demonstrates that the general
decreasing tendency in the accident series has its own slow pattern, not explicable
by recorded descriptive variables.

In addition, as a result of the research projects carried out during the preparation of
this thesis, I have published the following papers:
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Statistisk modellering af trafik uheld, Trafikdage pa Alborg Univeristet, 2001.
Sociale karakteristika hos trafikofre, Danish Transport Research Institute, 2001.
Models for traffic accidents, FERSI Young Researchers’ Seminar, 2001.

Evaluation of the Danish Automatic Mobile Speed Camera Project Experiment:
A State-space intervention analysis, symposium i anvendt statistik, 2003.



Resumeé

Trafiksikkerhed er et stort problem, som vedrgrer samfundet og det enkelte indi-
vid. Selvom trafiksikkerhed er gradvis forbedret gennem de seneste &r, er antallet af
draebte i trafikken stadig uacceptabelt hgjt. I 2000 draebte trafikuheld over 40.000 i
EU og skadede over 1.7 millioner. I Danmark i 2001 var der 6861 politirapporteret
trafikuheld med tilskadekomst. De resulterede i 4519 lettere tilskadekomne, 3946
alvorligt tilskadekomne og 431 drabte.

Det generelle formal med dette forskningsarbejde er at forbedre indsigten i trafik-
sikkerhedsarbejdet pé aggregeret niveau. Formalet er at analysere advancerede statis-
tiske metoder, som er udviklet til at analysere udvikling over tid inklusiv bestemmelse
af interventioner. Dette formal er opfyldt ved at undersgge variationer i tidsraekker af
aggregeret danske trafikuheld og ved at anvende state of the art metoder til bestem-
melse af specifikke tiltag til forbedring af trafiksikkerheden.

Naervaerende athandling begynder med en introduktion af uheldsdata, betydnings-
fulde faktorer som varierende trafik volume og demografiske og gkonomiske tendenser,
og fremhaever begraensninger i deres datastruktur. Navnlig deres staerke kovarians og
langsomme udvikling over tid.

Et vigtigt emne i denne afhandling er undersggelse af den tidslige afhaengighed i
observationer af trafikuheld. Afhandlingen péaviser, at antallet af uheld er korreleret
over tid, og at denne korrelation kun delvis kan forklares ved hjelp af de forklarende
variable. Derfor bgr man anvende dynamiske modelleringsmetoder til at analysere
variationer i tidsraekker af trafikuheld. Denne athandling demonstrerer desuden, at
den generelle aftagende tendens i antallet af trafikuheld har sin egen langsomme
udvikling, som ikke kan beskrives ved hjlp af registreret descriptive variable.

Foruden afhandlingen er der tillige publiceret fglgende:

o Statistisk modellering af trafik uheld, Trafikdage p& Alborg Univeristet, 2001.
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e Sociale karakteristika hos trafikofre, Danish Transport Research Institute, 2001.
e Models for traffic accidents, FERSI Young Researchers’ Seminar, 2001.

e Evaluation of the Danish Automatic Mobile Speed Camera Project Experiment:
A State-space intervention analysis, Symposium i anvendt statistik, 2003.
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CHAPTER 1

Introduction

This thesis deals with the field of traffic safety research. While some mathematical
statistics are needed, the emphasis is on the methods and their conceptual underpin-
nings rather than their theoretical properties. As a result, this thesis will hopefully
appeal not only to the statisticians but also to the broad spectrum of researchers and
practitioners in the field of traffic safety.

1.1 Background

Traffic safety is a major concern for society and the individual. Although traffic safety
has improved in recent years, the number of road fatalities is still unacceptably high.
It is estimated that by 2020, road traffic accidents will have moved from ninth to
third in the world disease burden ranking, and second in the developing countries
(Bunn et al., 2003). In 2000 road accidents killed over 40,000 people in the European
Union and injured more than 1.7 million. In Denmark in 2001 there were 6861 police
reported traffic accidents with injuries, resulting in 4519 minor injuries, 3946 serious
injuries, and 431 fatalities (Statistics-Denmark, 2002).

Compared to most other OECD countries, the Danish traffic accident fatality rate
is low, but compared to its nearest neighbours in Scandinavia and the northern
part of Europe, Denmark has a high fatality rate. (Sweden 6.7 deaths per 100,000
inhabitants, Norway: 6.8, Netherlands: 6.8, United Kingdom: 6.0, Germany: 9.1
and Denmark: 9.3) (IRTAD, 2002).
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In the OECD countries traffic accidents are the leading cause of death among the
3-34 year age group. Traffic accidents are among the 4 leading causes of lost life-
years in Denmark (Sundhedsministeriet, 97) and are ranked even higher if measured
in disability adjusted life-years.

For many years, strategies and actions to reduce this unacceptable social burden
have been devised and implemented by national governments, but until the early
1980s they were mainly based on a reactive approach, i.e. aiming to slow down the
existing negative developments. In the last two decades, however, some governments,
including the Danish government, have begun to take the more progressive approach
of planning for future safety improvements by building on the knowledge acquired
in the past. The Danish Commission of Traffic Safety has set up action plans for
traffic safety in Denmark for the periods 1986-2000 and 2000-2012. The plans include
overall targets, focused areas and suggested countermeasures.

In order to develop realistic quantitative safety targets, and then to design effective
strategies and plans, one has to be able to measure safety developments and to un-
derstand the underlying processes and their causes. This, in turn, requires extensive
and reliable data recorded over a long period of time, and modelling techniques that
are suitable for describing, interpreting and, ideally, forecasting safety developments.

1.2 End-user objectives

The end-user objectives of the work described in this thesis are to investigate method-
ologies for the analysis of previous and future traffic safety developments. this thesis
focuses on following three areas.

e To be able to determine which safety developments could be anticipated from
changes in influential factors such as changing traffic volumes and demographic
and economic trends.

e To be able to attribute a change in the accident counts to a particular counter-
measure taken, the influence of other sources of variation must be established.
Modern statistical modelling techniques can be very effective in sorting out the
influence of other sources of variation.

e To review and discuss a number of modelling methodologies, with a view to-
wards developing a sound methodology for describing changes in traffic safety.

1.3 Outline of the thesis

The thesis is organized into two separate parts:



1.3 Outline of the thesis 3

Part 1 consists of chapters 2- 3, which introduce and discuss traffic safety research,
its measures and statistical modelling methods, exemplified by Danish accident series.

Chapter 2 presents traffic safety data and potential exposure data. It discusses
problems when relating changes in road safety to changes in the surroundings. Simple
explorative modelling techniques are used to extract relevant information from the
data.

A brief State of the Art review is given in chapter 3. Various non-dynamic and
dynamic modelling techniques are discussed and applied to the aggregated traffic
safety data.

In Part 2 three different aspects of the modelling methods described in part 1 are
applied to relevant Danish traffic accident scenarios.

Chapter 4 is an evaluation of an area-wide speed reducing experiment for preventing
traffic related injuries. The Chapter is based on Christen (2003), which investigates
traffic calming through speed camera enforcement. The study applies dynamic basic
structural models within the state space framework.

Chapter 5 analyses the impact of an imprecise description in police reporting manual
' Vejledning til indberetning om ferdselsuheld on the reported number of accidents
through state space models with time dependent parameters. Time dependent pa-
rameters are a natural extension of the model in chapter 4. This method is also
applied to analyze whether the influence of traffic exposure remains constant over
time.

The aim of chapter 6 is to set up a method for assessing the ability of detecting a
shift, caused by a countermeasure, in a given traffic safety times series study. This
so-called power is calculated through simulation.

The summary and conclusions are given in chapter 7.
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CHAPTER 2

Accident data

Traffic accidents may be explained by examining influences at different levels of
causality such as lifestyle influences (individual behaviour), environmental influences,
and the social structure at the national level. Explaining traffic accidents at a macro
level has occupied the attention of many transport and social scientists for the past
three decades.

In order to analyze road accidents and monitor the safety of the road transport
system, the availability and quality of accident data is of major importance. Equally
important is the availability and quality of the potential explanatory data, such as
the volume of traffic. To facilitate international comparisons, it is important that
data are recorded consistently across nations.

This chapter presents and discusses the traffic safety data in Denmark. Furthermore,
an explorative analysis of the relationship between the variation in traffic safety and
variation in explanatory variables is given.

2.1 Description of data

The data source in this thesis is primarily the official Danish traffic accident statis-
tics maintained until 31 December 2002 by Statistics Denmark. The Danish Road
Directorate has from 1 January maintained the accident statistics Since 1930 the
official accident statistics have been based on police reports. The advantage of the
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police reports is that, in principle, they are recorded consistently on a national level.
Studies have shown that this reporting is almost complete when it comes to collecting
the numbers of people killed in traffic accidents. However, the reporting of injury
and property damage only accidents is incomplete (see 2.1.2).

Other sources of traffic accident data are available in Denmark. One is hospital
admission statistics and another is statistics from insurance companies. Even though,
hospital admission statistics and insurance statistics have a higher level of reporting
of injury accidents and property damage only accidents, this thesis is based on the
official traffic accident statistic, i.e. based on police reports. This is because, both
hospital and insurance statistics suffer from temporal inconsistency as well as and lack
of information about the location of the road accidents and of other parties involved in
the accidents. Furthermore, gaining access to insurance data is not without problems.

2.1.1 The official accident statistics

A traffic accident in the official Danish traffic accident statistics is defined as an
accident on a public road, where at least one of the involved parties is driving or
bicycling.

All injury accidents and all property damage only accidents with damage exceeding
10,000 DKK are supposed to be reported to the police. A police traffic report contains
information about the specific accident (e.g. time, location and a classification of the
accident type and severity), the elements (e.g. vehicle specification , pedestrians and
obstacles) and road users involved (e.g. age, sex and intoxication).

Injury accidents are accidents where at least one of the involved persons requires
medical attention. Injuries are categorized as follows: Fatal, serious injuries and
slight injuries. Accidents victims that die from their injuries within 30 days are
labelled fatal. Persons dying as a result of an accident after 30 days are categorized
as seriously injured.

To facilitate international comparisons it is important that the national reporting
systems ideally operate to a common standard. Initiatives have been taken to propose
common definitions for the basic road accident concepts at an international level, for
example as in the Geneva Convention.

The definition of a traffic accident stated in the Geneva Convention is very similar
to the Danish definition and is as follows:

” An accident which occurred or originated on a way or street open to public traffic
which resulted in one or more persons being killed or injured and in which at least
one moving ’vehicle’ was involved.”

Comparisons between countries show that the most common classification of casu-
alties in accident statistics is ’fatal injury’, ’serious injury’ and ’slight injury’ Cost
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329 (in press). But the national definitions of these terms differ widely. For IRTAD,
the OECD road accident database, the term ’hospitalized’ has also been introduced,
covering "accident victims admitted to hospital as in-patients, excluding all killed.”
This term coincides more or less with the term ’seriously injured’ in many countries,
including Denmark.

2.1.2 Source of error

Incomplete accident reporting, also called 'under-reporting’, is a problem in all mo-
torized countries (Elvik and Mysen, 1999). Since 1996, Statistics Denmark has inves-
tigated the level of reporting nationwide and the results are updated annually. By
comparing hospital admission statistics with the accident statistics based on police
reports, the level of reporting of various categories (e.g. severity, age, and means of
transport) is estimated. The overall level of reporting in the official accident statis-
tics is only around 20% and since 1996 this reporting level has decreased slightly. In
general, the level of reporting increases as the accident severity increases. Very few
(0-5) killed in traffic are not reported by the police. The level of police reporting is
lowest for injuries to children, bicyclists and people involved in single accidents (13%,
9% and 11%) (Statistics-Denmark, 2002).

A survey by Odense University Hospital (Ulykkes-Analyse-Gruppen, 1997) has shown
that only 45% of the traffic accident injuries treated by the hospital were included
in the police reports. Additionally, the level of coverage varies with police jurisdic-
tions. Accidents occurring in rural areas are more not reported than urban accidents
(Statistics-Denmark, 2002).

International studies have shown the same relationship between location, severity
and means of transport (Elvik et al., 1997). However, studies also show that the
level of reporting in Denmark is lower than in countries such as Sweden, Norway,
and Great Britain- countries to which Denmark is normally compared (Elvik and
Mysen, 1999).

There are two major problems with underreporting. First of all, since the official
measure of traffic safety is the number of fatalities and serious injuries, (Statistics-
Denmark, 2002) Danish road safety is overestimated. Underreporting might also lead
to an underestimation of the actual cost to society of road accidents, Thus making
it difficult for a political prioritizing of the traffic safety work.

Second, the inconsistency in the level of reporting in respect to temporal and spa-
cial resolutions makes it difficult to establish targets and evaluate traffic safety work
retrospectively (e.g. when one compares traffic safety over time, one should bear in
mind that the level of reporting has decreased from 23% in 1996 to 20% in 2000).
Similar considerations are appropriate when comparing safety across modes of trans-
port or across police jurisdictions. Unfortunately, there exists only scarce data on
the variations in levels of reporting. Varying levels of reporting contribute extra un
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accounted variations in the accident models.

2.2 Measure of traffic safety

traffic safety is usually stated in terms of numbers of accidents or numbers of victims.
Occasionally, the safety effects are expressed as financial losses. In this project, only
numbers of accidents will be used to measure traffic safety, or rather the opposite,
road unsafety. (See subsection 2.2.1 for explanation)

The principle data source used for the analysis in this thesis is monthly police reported
observations of (i) the number of accidents with killed (AK), (ii) the number of
accidents with killed or seriously injured AKSI, and (iii) the number of accidents
with injuries (AI). All police reported accidents occuring between 1 January 1978
and 31 December 2001 are included in this study. By selecting a relatively long
series, one is better able to investigate potential sources of variation.

The patterns of the 3 different series can be seen in figure 2.1

It may be of interest to subdivide the total number of accidents into various cate-
gories; for example, by road-user type and/or age-group. However, the initial analysis
is focused on the broad picture with aggregated data for the purpose of developing
a sound method for the analysis of time dependent data.

2.2.1 Number of injuries versus number of injury accidents

Choosing the number of injuries as the dependent variable in order to explain varia-
tions in traffic safety can introduce a source of systematic bias. This is because the
number of injuries is conditional on there first being an injury accident. If the num-
bers of injuries per accident (injury rate) changes over time (Andreassen, 1991), then
traffic safety is incorrectly estimated. This may be a problem with any definition of
injury. From figure 2.2 it can be seen that both the rate of people killed per accident
with fatalities and the rate of seriously injured per serious injury accident changes
over time. Furthermore, a decreasing trend in the serious injury rate is visible.

An injury accident can be thought of as a single event, independent of other accidents.
(Although some of the injured may be involved in more than one injury accident in
their lifetime).

2.2.2 Potential explanatory variables

In order to understand developments in traffic and safety.it is not only the direct
traffic safety indicators such as the number of accidents or injuries that should be
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Figure 2.1: Monthly observations of accidents with injuries (AI), with killed or serious
injuries (AKSI), and with killed (AK) from 1978 to 2001.
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Injury accident rate in Denmark 1978-1999
T T T T

1.16

T T T
—— Fatality accident rate
—— Fatality or seririously injured accident rate

Injury accident rate

1.021 4

1 I I I I I I I I I I
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
Year

Figure 2.2: The rate of people killed per fatal accident and the rate of serious injuries
per serious injury accident.

monitored, but also major changes in traffic, demography and economic activity.
These three sets of factors are mainly outside the direct control of traffic safety;
However, to effectively increase traffic safety, one has to establish the relationship
between safety and these factors.

In addition to traffic, demography and economic activity many other influential fac-
tors can explain variations in the number of accidents. In an OECD (1997) report a
range potential factors besides accident-countermeasures are listed:

e Weather, technological developments, oil prices, population size and composi-
tion, -factors that cannot be influenced by road safety policy makers.

e Public transportation, modal split, fuel taxes, vehicle taxes, vehicle park com-
position, types of driver’s license etc. Many of these factors have an indirect
association with safety through the amount of exposure.

e Socio-economic changes: recorded as percentage of unemployed, prosperity,
consumption patterns, mobility needs, etc.

As in most areas of social sciences, there is no firm economic theory indicating which
explanatory variables can explain changes in the accidents counts. The focus in
this thesis is on the aggregated level, therefore, attempts to associate changes in the
number of accidents with variations in the following factors/explanatory variables
will be conducted:
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Exposure variables

The amount of traffic is an accepted indicator of exposure to accidents [Broughton
(1991), Robertson (1996)]. Previous studies have found the amount of traffic to be the
single most determinant factor in accident models OECD (1997). Other indicators of
exposure may include the number of hours spent in traffic, number of trips, number of
vehicles, or size of population. Because there is a direct causal relationship between
vehicle kilometres and the risk of accident, the number of vehicle kilometres (in 10
million kilometres) is used. Distance travelled (traffic) is recorded by the Danish
Road Directorate. When analysing risk across modes of transport, the choice of
exposure is highly relevant (e.g. comparisons between car kilometres and bicycle
kilometres are perhaps not as relevant as car time and bicycle time).

Alcohol consumption

According to Bernhoft and Behernsdorff (2000) alcohol is involved in approximately
20% of all road fatalities in Denmark. In this analysis the amount of pure alcohol,
given in litre per person over 14 years is chosen. Other different measures might also
be relevant, e.g. the total number of beers consumed etc. The amount of alcohol is
recorded by the Statistics Denmark

Economic factors

Economic variables have the potential to inderectly influence the amount of traffic
accidents through the quantity and quality of travel (Christens, 2001a). Relevant fac-
tors could be unemployment rates and gross national product. Both unemployment
(unemp) and gross national product (gnp) are recorded by the Statistics Denmark,
independently of the accident statistics.

Population factors

Average risk differs considerably between age groups, [Christens (2001a), Statistics-
Denmark (2002)], consequently demographic changes will have a substantial influence
on traffic safety and risk. Therefore, factors such as, e.g. the proportion of young
drivers (less than 25 years of age), should be taken into account when explaining
variations in the total number of accidents. Another example is the impact on traffic
safety of the increasing number of elderly people over the next two decades. The the
total population (Pop) and the proportion of young people (young) are recorded by
the Statistics Denmark.
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Data collection procedure

Changes in the police reporting system have a huge impact on the reported number of
accidents (OECD, 1997), which is also seen in section 2.1.2. An imprecise description
in the police accident reporting manual concerning head injuries lead, in 1997 and
onwards, to the misclassification of a group of serious head injuries as minor injuries
(Lund and Hemdorff, 2002). This is denoted as HI

Seasonality and trend

As seen in figure 2.1 there is a clear seasonal variation in the accident counts. Addi-
tionally, one sees a decreasing trend in the accident series over the time period.

traffic safety legislation

Other potential factors that may explain variations in road accidents include road
safety and transportation legislation. In this analysis the legislation of 1 October
1985 (Speed), where the speed limit in urban areas was reduced from 60 km/h to
50km /h, is included. This had a very strong effect on reducing the number of traffic
accidents (Engel and Thomsen, 1998).

2.3 Explorative analysis

In the following section simple explorative methods are used in order to help to under-
stand and predict the accident process. Focus will be on identifying and evaluating
those (causal) factors with a potential influence on the accident processes. In sec-
tion 2.2, 21 variables were identified; 7 quantitative variables illustrated in figure B.1
in appendix B, 12 dummy variables capturing seasonal variation (e.g. Jan.dummy
equals 1 if the month is January and 0 otherwise) and finally 2 dummy variables
describing the change in reporting system (hi) and urban speed limit (speed).

Unfortunately, the explanatory factors identified above are measured on different fre-
quencies. The population factors and alcohol consumption are yearly observations.
Gross national product is reported quarterly, whereas the unemployment rate and
traffic index are monthly observations. While being aware that interpolation tech-
niques can impose an artificial correlation structure between the dependent variable
and the variable itself, simple linear interpolation is used in order to adjust for in-
adequate monitoring. Since the monthly variation in the population, the proportion
of young people, and alcohol consumption is very limited, this will not impose a
problem.
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Tllustrations of the accident processes in figure 2.1 clearly show temporal decreasing
trends and seasonal variation. The trend varies across the three different accident
series, but over time, road safety has improved significantly.

It would also have been natural to use scatter-plot to illustrate the relationship
between explanatory variables and the accident series, if the correlation with time
was not as high. This almost linear relationship between time and the explanatory
variables is seen in figure B.1 and table B.1 in appendix B.1. Table B.1 shows the
pairwise correlation of the 21 explanatory variables. Particularly strong correlations
are seen between time and gnp, traffic, pop, young. In other words these variables
tend to change simultaneonusly over time.

2.3.1 Multicollinearity between the explanatory variables

Correlation beetween the explanatory variables is called multicollinearity. When
multicollinearity is present between 2 explanatory variables e.g. time and gnp, it is
difficult to estimate the effect of gnp adjusting for time. This is because adjusting
for time means fixing the level of time and then estimating the effects of gnp from
observations whose time is at that particular level.

Multicollinearity has two potentially serious consequences :

e The estimated parameters tend to have large uncertainty.

e The interpretation of the parameter as the change in the predicted outcome
per unit change in the explanatory variable, when all other variables are held
constant, becomes questionable, since high correlation among the explanatory
variables means that as one variable changes, the others tend to change as well.

The first point concerns model assessment: having chosen a final model, estimating
its prediction error (generalization error) on new data. Whereas the second point is
about model selection: estimating the performance of different models in order to
choose the ’approximate best one’.

2.4 Techniques to handle multicorrelation

To be able to attribute a change in the accident series to a change in a particular factor
one has to investigate the correlation structure in the set of different explanatory
variables. In this thesis principal component analysis and Shrinkage methods will be
applied.
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2.4.1 Principal Component Analysis

Principal component analysis was originated by Pearson (1901) and later developed
by Hotelling (1933). It is a multivariate technique for examining relationships among
several quantitative variables. Principal component analysis can be used to summa-
rize data and detect linear relationships. It can also be used for exploring polynomial
relationships and for multivariate outlier detection (Gnanadesikan, 1997).

Principal component analysis summarizes high dimensional data into a few dimen-
sions. Each dimension is called a principal component and represents a linear combi-
nation of the variables. The first principal component accounts for as much variation
in the data as possible. Each succeeding principal component accounts for as much
of the variation unaccounted for by preceding principal components as possible.

When applying principal component analysis to the seven quantitative explanatory
variables from section 2.2.2, 94% of the variation among these variables can be ex-
plained by the first three principal components.

A biplot of the first few components can show useful information about the distribu-
tion of the data, eg, it can identify different groups of data or or it can identify ob-
servations with extreme values (possible outliers). A biplot consists of two elements.
The data points are first displayed in a scatter plot of the principal components to-
gether with the approximated Y variables. The Y variable axis is generated from the
regression coeflicients of the Y variables on the principal components. The lengths of
the axes are approximately proportional to the standard deviations of the variables.
A closer parallel between a Y variable axis and a principal component axis indicates
a higher correlation between the two variables.

The biplot B.2 in appendix B shows that the variables time (year), pop, gnp and
traffic are highly correlated and also correlated with the first principal component.
Alcohol and unemployment are highly correlated with each other and the second prin-
cipal component. Finally, ’'young’ has a negative correlation with the first principal
component.

The scatter-plot matrix B.4 in appendix B shows that many of the explanatory vari-
ables are highly correlated with time. Therefore, it appears appropriate to investigate
the correlation structure in the explanatory variables after adjusting for time. Time
itself, is not the driving factor in the different processes, but it could easily be argued
that the other explanatory variables vary very slowly with time.

Adjusting for one variable corresponds to making all the other variables linearly
independent of that variable. This means that, in the principal component analysis
the adjusting variable gets its own principal component. In the principal component
analysis of the time adjusted variables, time and the 3rd component are identical.
Adjustment for time also appears to make the observations less systematic, which
is seen from illustrations of the variables and the scatter-plot B.3 and in the simple
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adjusted scatter-plot matrix B.7 in appendix B. Now it takes 5 principal components
to explain 95% of the variation among the time adjusted explanatory variables.

A temporal association in the accident processes has been established. Visual in-
spections of figures B.5 and B.6 in appendix B show a relatively strong association
between traffic and accidents after adjusting for time. Associations are also seen
with gnp, unemployment and seasonal variation. It appears that increasing traffic or
increasing gnp increases the number of accidents. Unemployment appears to have a
negative correlation with the number of accidents.

Alcohol, pop and young do not appear to be associated with the accident processes.

2.4.2 Shrinkage methods

So-called 'Shrinkage’ methods were developed for the purpose of reducing the pre-
diction error when predicting future observations, whats more these methods can
sometimes also alter estimated coefficients and give more realistic values of the esti-
mated parameters.

Shrinkage methods reduce the impact of predictors in a smooth way, by reducing the
magnitude of their coefficients. The most common method is called ridge regression
(Hoerl and Kennard, 1970). A newer method, called the "Lasso,’ tends to shrink some
coefficients all the way to zero (Tibshirani, 1996). A brief introduction to Shrinkage
methods is given in appendix A.

The Gauss-Markow theorem implies that the least squares estimator in Generel Lin-
ear Models has the smallest variance among all unbiased linear estimators. Being
unbiased and having the smallest variance is convenient for testing hypotheses about
the coefficients. However, smallest variance does not imply smallest mean-square
error (prediction error). An estimator would trade a little bias for a large reduc-
tion in variance and selecting the right model amounts to creating the right balance
beetween bias and variance.

Data preparation

The explanatory data consists of the 21 variables (see section 2.2.2), which form the
basis for predicting the response, the number of accidents with killed or seriously
injured during the period 1978 - 2001. Shrinkage methods are also applied to two
other accident series: accidents with killed and accidents with injuries. Note, that
the explanatory variables are exactly the same for the three different accident series.

The effect of shrinkage depends of the size of predictors (z-variables), so these are
standardized to have unit variance. They are also standardized to have zero means,
so that the intercept in the model can be estimated separately, without shrinkage.
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The standardized z-variables were computed as:

Tstandardized = 2.1
standardized Sw ’ ( )
where Z is the mean and S, the standard deviation of z.

The 12 dummy regressors (Jan, ...,Dec) representing the seasonal pattern in the acci-
dent series are defined arbitrarily. For the accidents with killed or seriously injured,
December was selected as the reference month for the other seasonal parameters.
The value for December itself is the difference between the general level (set to zero)
and the level of December.

Discussion of shrinkage methods and accident data

By dividing the dataset into a training set of size 264 (1978-1999) and a test set
of size 24 (2000-2001), a platform for evaluating the various shrinkage methods was
constructed.

It is noted that these shrinkage techniques assume independent observations of the
response variable, but as usually seen in accident data, the observations are not
temporally independent. Therefore, one can enhance the predictive performance of
the various shrinkage and selection methods by choosing the test dataset randomly
in the existing dataset, but then the scenario is not applicable to real traffic safety
work.

Accidents with killed or seriously injured

A linear model was fitted to the mean adjusted log-transformed number of accidents
with killed or seriously injured after first standardizing the predictors to have zero
means and unit variance. Least squares estimation was applied to the training set,
producing the estimates, standard errors, t-test statistics, variance inflation factor,
and tolerance shown in table B.2 in appendix B.

The tolerance (T) and the variance inflation factor (VIF) measure the impact of
collinearity among the predictors in a regression analysis on the precision of estima-
tion. It can be shown that the variance of parameter estimates is proportional to
VIF. As a ’rule of thumb’, predictors with tolerance above 10 or equivalent variance
inflation factor below 0.1 should be treated carefully (Belsley et al., 1980).

It should be noted that these measures are applicable to quantitative regressors in
linear models. Dummy regressors require a more general approach, because corre-
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lation among regressors in related sets are affected by nonessential changes in the
model (such as changes in a baseline category for a set of dummy regressors). Since
the focus in this shrinkage study is on the quantitative regressors and not the seasonal
variation, no further action is taken.

The predictors, time, traffic and gnp, show the strongest effect, with HI also being
significant, while young and the unemployment rate are merely significant at a 5
% significant level. However, all significant variables have too high a tolerance.
Additionally, a very strong seasonal variation is present.

Table B.3 in appendix B shows the coefficients from a number of different selection
and shrinkage methods. They are subset selection (by including all variables and
excluding stepwise all non-significant (5%) terms), backward selection, ridge regres-
sion, the lasso, principal components regression and partial least squares. Excluding
all the non-significant terms at once, alcohol, pop, speed and 6 seasonal regressors)
using F-statistics has a p-value of F(1.72,9,243)=0.0848, and hence, is not significant.

Each method except subset and backward selecting has a complexity parameter, and
this parameter was chosen to minimize an estimate of the prediction error based on
random tenfold cross-validation (Hastie et al., 2001).
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Figure 2.3: Estimated prediction error curves and their standard errors for the various
shrinkage methods. The least complex model within one standard error of the best is
chosen. (broken line)

The estimated prediction error curves are shown in figure 2.3. Many of the curves are
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very flat over large ranges near their minimum. The estimated standard error bands
for each estimated error rate based on the ten error estimates computed by cross-
validation are included. The complexity parameter for the various shrinkage methods
was chosen by the “one-standard error” rule - one chooses the most parsimonious
model within one standard error of the minimum.

The "lasso" estimates have two main advantages over subset selection models: first,
they can be computed by standard continuous optimization procedures; second, the
estimate varies smoothly with the learning set and with the hyper-parameter setting.
As a result, the method is stable with respect to slight changes in data and with
respect to errors in the hyper-parameter tuning.

Figure 2.4 demonstrates that the "lasso" algorithm, for this road accident data, as in
general, leads to parameter estimates of which some are zero while others are quite
large compared to ridge regression estimates, hence giving interpretable models.

Profile of Ridge coefficients Profile of Lasso coefficients

Coefficients
I
Coefficients

10 15 20
di(y) A

Figure 2.4: Profiles of ridge and lasso coefficients except season regressors for the
road accident data as the tuning parameter X is varied. A wvertical line is drawn at
the value of the chosen tuning parameter.

A comparison of the different shrinkage methods and subset selections should be
based on the computed average prediction error (test error) and standard error,
shown in table 2.1. It is seen that all the shrinkage methods and the stepwise methods
deal with the over-fitting of the least squares regression, and therefore give better
predictions. The "lasso" predictions are clearly the best in terms of test error and
standard error. The test errors for the "lasso" predictions are about 50% of least
squares and 75% of best subset selections. Partial least squares prediction is the
second best, followed by ridge regression.

The “lasso” algorithm shrinks the coefficients with small variability. Still, it is a
surprise that the only predictors left in the model besides seasonal regressors are time,
HI and pop. In stepwise selection methods the pop had a very small t-statistic. This
shows that model selection through choosing the best model and model assessment
are two different aspects.

The validation of the various methods shows that both "lasso" and partial least
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Predictor LS Subset Backward Ridge Lasso PCR PLS
Test error  0.0200 0.0152 0.0160 0.0126  .0091 0.0181 0.0110
Std error  0.0316 0.0244 0.0239 0.0164 0.0137 0.0235 0.0165

Table 2.1: FEstimated test error results for different subset and shrinkage methods
applied to the data with accident with killed or seriously injured.

squares regression perform very well compared to the least squares regression. The
"lasso" regression may be preferred because it shrinks smoothly, rather than in dis-
crete steps.

Accidents with injuries

When applying these shrinkage and subset selection methods to the accidents with
injuries, gives very similar results. However, evaluation of the test set showed that
the shrinkage methods were not able to enhance the predictions. It is seen in table
2.2 that best subset selection only marginally improved the prediction error (test
error). Partial least squares regression is the best shrinkage method, but only at the
same level as the model with all variables included.

Predictor LS Subset Ridge Lasso PCR PLS
Test error  0.0106 0.0090 0.0131 0.0156 0.0228 0.0102
Std error  0.0160 0.0126 0.0189 0.0216 0.0270 0.0107

Table 2.2: FEstimated test error results, for different subset and shrinkage methods
applied to the data with accidents with injuries.

Accidents with killed

It can be seen from figure 2.5 that the variance in the prediction error for the ’best’
model on the training data set is very large when predicting accidents with killed. In
fact, it is so large, that when the complexity parameter for the shrinkage methods is
selected by the ’one-standard error’ rule, the minimal model (a model with just one
intercept) is chosen. In other words, the predictions of accidents with killed through
the four different shrinkage methods are equivalent and equal to the predictions from
the minimal model.

The various prediction methods are again evaluated on the test set, and the compar-
ison between the resulting three methods are seen in table 2.3. The relatively best
model is the least squares model with all explanatory variables.
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Predictor LS Subset Minimal model
Test error 0.0267 0.0598 0.1283
Std error  0.0272  0.0708 0.1322

Table 2.3: Estimated test error results, for different subset methods applied to the
data with accidents with killed.

Ridge regression

cv
o o o °
5 5 5 ° B
2 8 8 £ &
—
f—
[ .
'
()
'
—
'
S
—_—

'
]
R
%}
—

10
df(n)

Figure 2.5: Estimated prediction error curves and their standard errors for the ridge
regression method. The least complex model within one standard error of the best is
chosen (broken line).

Conclusion drawn from use of shrinkage methods

In this section, in the light of multi-correlation, the same set of explanatory variables
have been used to predict AKSI, AK , and AT through selection and shrinkage meth-
ods. For accidents with killed or seriously injured, the shrinkage methods appears
to provide good predictions. It appears that there is no gain from using shrinkage
methods on accidents with injuries. Finally, it is not possible to improve predictions
of the number of accidents with killed through shrinkage with this set of explana-
tory variables. The variables have simply too little information about the accident
process.

Therefore, it is concluded that in order to benefit from the various shrinkage methods,
the explanatory variables need to be correlated and they need to provide information
about the accident process. The ability to predict the number of accidents varies
substantially across the different accident series. Only 40% of the variation accident
with killed was accounted for by least squares regression. Whereas, 80% and 90% of
the variations were explained in the AI and AKSI, respectively.
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2.5 Conclusion

This chapter shows that variations in the accident series can partly be explained by
variations in the explanatory variables, but pinpointing the source of variation to
particular factors is troublesome. This is due to strong multicorrelation among the
explanatory variables, especially correlation with time.

Principal component analysis is not able to disentangle the strong correlation. This
is because traffic, gnp, pop, and young vary almost simultaneously with time.

The explanatory variables, ability to make linear predictions of the accidents series
was also evaluated. The predictive power of the variables varies across the different
series. In the series AKSI and AT the predictions are relatively good, whereas the
explanatory variables can not predict the number of accidents with killed. It is mainly
the temporal variables that determine the predictions.

The most important feature extracted from this chapter is the temporal dependency
in accident series. This will be investigated more thoroughly in the following chapters.
Additionally, there is some indication that changes in traffic, unemployment and gnp
can also explain some of the variations in the number of accidents.
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CHAPTER 3

Modelling variations in
accident data

Traffic accidents are unwanted events. They are unpredictable in the sense that, had
the particular accident been anticipated, it would most likely not have happened.
Even though accidents are unpredictable at a micro level, the number of accidents
at a macro level is subject to causal explanation or policy intervention. Through
changes in the behaviour of the road users and through the design of the transport
system, the probability of an accident occurring can be influenced, thereby altering
the long-term accident frequency.

To a large extent, this randomness at the micro level together with ethical considera-
tions precludes the use of perfectly controlled experimental designs, where the traffic
safety researcher can include the factors systematically and measure the effect of the
factor of interest.

Therefore, to gain insight into the causal relationship governing the accident genera-
tion process, one has to use statistical models that take developments over time into
account. Such models essentially involve repeated observation of the same physical
or institutional object. The unit of observation is a point or period in time (hour,
day, month, year).

The purpose of this chapter is to review various modelling techniques, which were
designed to understand and predict the accident process. The idea of this chapter
is not to rewrite various textbooks, but simply to give a brief introduction to the
various models that will be applied in this thesis.
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Peltzman (1975) gave one of the first examples of a traffic safety analysis on the basis
of accident risk, taking developments over time into account. Annual observations
were analyzed in an additive model on the log scale. It was clear from the study
that when analyzing data over a long period of time, changes over time should be
accounted for.

An extensive review of the literature by Hakim et al. (1991) and several original
articles on “macro models for road accidents” were published in a special issue of the
journal, Accident Analysis and Prevention (Haight, 1991). A recent literature review
is presented in Scuffham (2001) and in Cost329 (1999) a historical review is given.
These reviews were used as a starting point for this thesis.

A major issue in this research is the time perspective of the different accident mod-
elling techniques. Models that take developments over time into account can be
separated into two major classes: models that use time as an index set (non-dynamic
models) and models in which developments of processes over time are described (dy-
namic models). In the following non-dynamic models (linear and log-linear models)
and dynamic models (arima and state space models) will be discussed and their
ability to adapt to the traffic accident series will be investigated.

3.1 Non-dynamic models

Non-dynamic modelling techniques are widely used in the analysis of traffic safety
data and for estimating and testing models for evaluation of countermeasures at an
aggregated level and at the site-specific environment. In this section general linear
regression and generalized linear regression models are discussed and applied. The
temporal variables are entered as a simple index set, eg, as regressors or quantitative
factors.

3.1.1 Log linear models

Rather compelling arguments can be found in support of the assertion that accident
counts must follow the Poisson probability law (Griffin, 1989). Traffic accidents seem
to occur at random in time and space. In addition, the probability of an accident
occurring at a site during a short period of time (e.g. a second) is constant within this
period of time. These assumptions match the properties of the Poisson probability
distribution.

The Poisson regression model belongs to the class of generalized linear models (GLM),
that extend the classical regression models in two ways. First, the assumption of
normal errors is widened to that of errors of an exponential family. This allows,
for example, Poisson, binomial, gamma and inverse Gaussian errors as alternatives.
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Second, the assumption that the mean g is linear in the explanatory variables is
replaced by the assumption that some (monotonic) function of p is linear. Familiar
quantities in regression analysis have their analogies in GLM analysis; for instance,
the residual sum of squares, which measures the discrepancy of the data with respect
to the model, is replaced by the deviance D = ) d;, where

Yi
Yi —
di=2/ du. 3.1
V) " (3.1)

i

and where V() is the variance function of the distribution assumed for the errors,
thus for Poisson, the V(u) = p. Since, in general, the variance changes with the
mean, the definition of residuals should allow for this.

Since accident occurrences are necessarily discrete, positive, often sporadic and more
like random events, the Poisson regression model appears to be more suitable than
the Gaussian linear regression model. The Poisson process as the binomial limit
seems to fit exactly the sense of the word ’accident’ as a completely fortuitous event
(Haight, 1967). In a number of studies in recent years [Fridstrgm (1991), Klit (1994),
Kulmala (1995), Greibe (1999)] Poisson regression models have been used to establish
statistical relationships between traffic accidents and the contributing factors of their
surroundings.

Danish accident series

Analyses of the accident data from section 2.2.2 through Poisson regression are per-
formed separately according to the three different outcomes, AKSI, AT and AK. All
explanatory variables, except time and dummy variables, are in logs. This means
that the explanatory variables are modelled in the following additive structure on
the log scale.

log(i) = o + fijan; + - - - + Pradec; + Srstime + Brslog(unemp) +
Bislog(alcohol) + Byglog(traffic) + Bi7log(young)
Bislog(pop) + Biglog(gnp) + Baospeed + P21 hi (3.2)

A thorough discussion of this choice of transformation of the explanatory variables
is given in chapter 5. At this stage it is noted that the logarithmic form has a nice
interpretation as elasticities and that the logarithmic form may eliminate some types
of non-linearities of explanatory variables.

The estimated coefficients, standard errors and test-statistics for accidents with killed
or seriously injured are given in table C.1 in appendix C. The Poisson model fit
indicates strong over-dispersion (p<0.0001), which means that extra variation, not
explained by the model, is present in the data.
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Poisson regression models have some potential limitations. One important constraint
is that the variance must be equal to the mean [McCullagh and Nelder (1989), Thyre-
god (1998)]. If this assumption is not valid, the standard errors of the estimates, usu-
ally estimated by the maximum likelihood (ML) method, will be biased and the test
statistics derived from the model will be incorrect. Many researchers have modified
the Poisson assumption simply by assuming that

var(Y;) = o?E(Y;), (3.3)

where o2, the dispersion parameter, is assumed to be constant over the estimation
sample. The dispersion parameter is estimated from either the Pearson or the Devians
residuals. In a number of studies [Christens (2001a) and Fridstrgm et al. (1995)]
accident data were found to be significantly over-dispersed, i.e. the variance is much
greater than the mean.

Over-dispersed data can arise in a number of different ways, for example, when there
is inter-subject variability, which is common in behaviour studies and in studies of
accident-proneness (McCullagh and Nelder, 1989).

If the precise mechanism that produces the over-dispersion or the under-dispersion
is known, specific methods can be used to model the problem. In the absence of such
knowledge it is convenient to assume, as an approximation, that var(Y) = ¢2E(Y’) for
some constant ¢2. This assumption can and should be checked, but even relatively
substantial errors in the assumed functional form of var(Y) generally only have a
small effect on the conclusions. An alternative method is to assume that the variance
function is quadratic instead of linear (see section 6.2). At this point a dispersion
parameter is included in the Poisson model for AKSI.

Prior to interpretation and finding parsimonious linear predictors through standard
modelling reduction schemes, evaluation of the validity of the underlying assumption
are performed.

Residual plots for model checking in GLM

McCullagh and Nelder (1989) derive several types of residuals for GLMs, and Pierce
and Schafer (1986) show that the deviance residual is almost the optimum normal-
izing transformation for any GLM distribution. One may thus proceed as if the de-
viance residuals were normal, with mean zero and common variance, irrespective of
the distribution postulated for y; (Lee and Nelder, 1998). Consequently, two impor-
tant model checking plots can help with the analysis, namely, those of standardized
Studentized residuals against fitted values on the constant-information scale (Nelder,
1990), and the plot of the absolute residuals against fitted values on the constant-
information scale. Neither of the two residual plots in figure 3.1 indicate obvious
departures from the model.

The first plot shows a running mean that is approximately straight and flat, showing
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Figure 3.1: Model-checking residual plots for accidents with killed or seriously injured.
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that the mean of the residuals is independent of the fitted values. If there is marked
curvature, this indicates an unsatisfactory link function or linear predictor. Since the
first plot is sufficiently flat, the second plot may be used to check the variance function
V(u;) = 02E(u;). Again the plot is approximately straight and flat, which means
that the choice of variance function is vindicated. A rising trend in the absolute

residuals suggests using a variance function, V (i) = p?.

Another useful plot is the full-normal plot of the residuals. (See figure 3.1). This
can show isolated discrepant points as extreme points not following the trend of the
remainder. Figure 3.1 shows some outliers.

The residual plots above indicate that a satisfactory variance and link function have
been found. Further, diagnostics of another underlying assumption should be vali-
dated, namely, that no serial correlation is present.

Figure 3.1 shows the autocorrelation function (acf) of the standardized Studentized
residuals. From looking at the acf, it is clear that there is some significant serial auto-
correlation left in the residuals. It is noted, that the interpretation of the correlation
between individual residuals in GLMs differs from the acf in time series models, where
the correlation of the residuals is assumed to be zero (Thyregod, 1998). Due, to the
model design in a GLM, the correlation of the standardized Studentized residuals 7;
and 7 is as in equation 3.4.

_hj,k
VA =h; )T = heg)’

where h;} is the element of the local hat matrix, which can be viewed as a local
projection matrix, similar to the hat matrix from the linear models.

corr(fj, 7)) = (3.4)

If the correlations 3.4 are small, then one often uses an significant level as if the
residuals were a white noise process (uncorrelated identical random variables with
mean zero and constant variance), stemming from a dynamic time series model. The
estimated acf in a white noise process is asymptotic Gaussian with zero mean and
variance % (Madsen, 1998).

When autocorrelation in the error terms of the Poisson regression is present, reliable
inferences cannot be made. Therefore, searching further for a parsimonious Poisson
regression model does not appear to be relevant. A discussion of autocorrelated
residuals is given in 3.1.3

The Poisson regression of accidents with injuries is very similar to the above analysis
and is given in figure C.1 and table C.2 in appendix C. Again it is noted that there
is some autocorrelation left in the residuals and therefore reliable inferences cannot
be made. The estimated over-dispersion is 30% larger than for fit of AKSI. This
additional dispersion is probably partly due to a lower level of accident reporting
consistency (see section 2.1.2).

When analyzing accidents with killed through Poisson regression, all model diag-
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nostics show no obvious departure from the model’s assumptions, as seen in figure

3.2.
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accidents with killed.

Table 3.1 present the results of the Poisson regression fit, excluding the highly sig-
nificant seasonal parameters. The seasonal parameters are given in table C.3 in ap-
pendix C. There is only some over-dispersion in the model (p-value=0.0251), which
can partly be explained by a very high recording consistency (see section 2.1.2) .

From table 3.1 it can be seen that traffic is the only explanatory variable which
is highly significant and that the variation explained by one of the socio-economic
variables can be explained by the other variables. Simple backward elimination of
all non-significant variables, except seasonal variables, results in a model with only
season, time, traffic, gnp and speed. however, due to multicorrelation (see section
2.3.1), a different end model would be achieved, if another model reduction strategy

was selected.

Table 3.2 lists the estimated significant coefficients in three different end-models
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Explanatory variables Coefficient Std. error F-statistic p-value

Time -0.0889 0.0433 4.23  0.0407
logunemp 0.0338 0.1270 0.07  0.7905
logalc 0.1094 0.7587 0.02 0.8854
logtraffic 1.5909 0.2777 32.95 <.0001
logyoungpct 1.1551 0.8888 1.69 0.1951
logpop 2.1389 9.9070 0.05  0.8292
loggnp 0.5026 0.4752 1.12  0.2907
speed -0.1411 0.0640 4.82  0.0291
HI 0.0547 0.0650 0.71  0.4002

Table 3.1: Poisson regression fit to accidents with killed (1978-1999). F-test statistic
is used due to significant over-dispersion (0>=1.1876, p-value = 0.0251).

for accidents with killed. It is difficult to say which model is the most effective at
pinpointing the influences of the explanatory variables, but traffic, time and speed
are recurrent variables in all three models.

expl. var. model 1 coef. model 2 coef. model 3 coef.
time -0.1155 -0.0434 -0.0332
logunemp -0.1747
logalc 1.2629
logtraffic 1.4474 1.5153 1.6111
logyoungpct 1.7381

logpop -14.8601
loggnp 0.9499

speed -0.1174 -0.1828 -0.1420
hI

F-test statistic 0.6829 0.4051 0.1643

Table 3.2: Poisson regression coefficients, except seasonal coef., in different end-
models for accidents with killed (1978-1999) and F-test statistic for reducing all non-
significant at once. Blank entries correspond to variables omitted.

The aim of this model reduction is to achieve a model with a relatively small number
of parameters and, other things being equal, a simpler model is preferred to a compli-
cated one (principle of parasimony or Occam’s razor). Therefore, one chooses either
model 1 or model 2, but a further selection within these two models is not relevant.
This is because the two models, due to strong multicorrelation between gnp and
young (see section 2.4.1) explain almost the same changes in the accident numbers.
The individual effect of gnp and young is therefore impossible to disentangle, but
changes in these variables are associated with changes in number of accidents. Note
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that much of variation of young can be explained by gnp, whereas gnp is significant
in model with both gnp and young.

During the model reduction the coefficient for the influence of speed was found to be
in consistent. In a model with just temporal variables and traffic, the effect of the
speed changed and had a positive association (non-significant) with accidents.

This may make the interpretation of the change in speed less strong. The variable
speed is a dummy variable, which means that the effect of the speed change is mod-
elled a sudden 11 % (1-exp(0.1174)) decrease in the number of accidents in October
1985. Visual inspection of figure 3.3, which illustrates the predicted values from
model 1 and AK, indicates that the decrease is not sudden, but gradual beginning
in 1987. (This also gives also autocorrelation in the residuals). A similar pattern is
also reported in Pedersen (1999).

AK and predictions
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Figure 3.3: Poisson predictions of AK from model 1 (1982-1992).

Therefore, it is problematic to quantify the effect of the changing speed limit by
this approach, but an estimate could be obtained from a model with both gnp and
young in addition to the temporal variables and traffic. The estimated coefficient
is then 13.52% [1.95%-23.81%]| (p-value = 0.0215). Other studies have found that
urban accidents were significantly reduced by the speed limit reduction (Engel and
Thomsen, 1998).

The amount of traffic is highly significant and has an estimated coefficient 1.51 [1.03-
1.99] found in the above model. This means that a 1% increase in traffic would lead to
a 1.51% increase in the number of accidents with killed. The temporal variables are
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highly significant with a growth rate on -9.58% per year and a seasonal variation given
in table 3.3, adjusted for traffic, gnp, young. As seen, November and December are
high risk months. The limiting distribution of the Poisson is Gaussian with variance

J F M A M J J A S O N D
1.06 0.93 087 0.90 095 095 0.8 092 094 1.08 1.28 1.37

Table 3.3: Seasonal variation for accidents with killed

equal to the mean. For large accident counts, therefore, one might as well model the
number of accidents by Gaussian regression techniques after some variance stabilizing
transformation.

3.1.2 Linear models

(Recht, 1965) was probably the first to use regression techniques in the history of the
description of traffic safety developments. He attempted to explain accident rates by
means of general linear models (LM). Linear models (LM) were the predecessors of
GLM and have been used widely in traffic accident studies [Zlatoper (1984), Jovanis
and Chang (1986), Joshua and Garber (1990)]. However, a number of researchers,
[Jovanis and Chang (1986),Zlatoper (1987)], have highlighted limitations in LM to
describe adequately discrete, non-negative and sporadic accident data.

The result of using LM regression on the three accident series AKSI, AT and AK do
not differ much from the Poisson regression results. Since, LM regression assumes
that the observations have constant variance (homeoskedasticity), a transformation
of the accident counts are required. From the validation of the variance-function in
section 3.1.1, one sees that the variance of accident counts appears to be var(Y;) =
0?E(Y;) and therefore a square-root transformation is appropriate. However, in order
to get exactly the same specification of the mean structure as in section 3.1.1, and
thereby comparable coefficients, logarithmic transformation has been carried out.
The two transformations do not differ much and graphical validation of the residuals
plot of the log transformed model do not show any departure from the constant
variation assumption.

Tables C.4 , C.5 and C.6 in appendix C show the fit of the LM regression for AKSI,
AT and AK. The fit of LM and the GLM are very similar, as are the predictions made
by these non-dynamic models.

The autocorrelation functions of the residuals from the LM model look similar to
those from the log linear regression models, thus inferences based on LM are ques-
tionable. Therefore, one may prefer the log-linear to the LM.
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3.1.3 Autocorrelated residuals

When modelling data, one must always check to make sure that all the assumptions
of the model are satisfied. One of the assumptions is independent disturbance (error)
terms.

The correlation between any pair of error terms of the least squares (LS) equation
must not exceed the level given in equation 3.4. Should this not hold, then the
residuals are said to be autocorrelated and a relationship between present and past
values can be observed. Serial autocorrelation therefore refers to the existence of a
linear equation involving the residuals of the regression.

There are many causes of serial autocorrelation in regressions involving time se-
ries data. Models based on monthly time series often have dependent error-term
structures, stemming mainly from seasonality and trend effects and also from some
momentum, not explained by other observable variables. Annual time series models
usually have errors that are not autocorrelated (Zlatoper, 1984).

If the correlation of the errors ¥ were known, then the formulas of the LS estimates
of 8 and var(B) are

g=(X's7'X) X'y var(8) = 62(X'S71X) 7, (3.5)

As a result, estimates of # and inference procedure based on equations 3.5, where
Y are incorrectly assumed to be equal to one, will be biased. If the explanatory
variables are uncorrelated with the error correlation then the usual LS estimates of 3
will generally still be consistent and asymptotically normally distributed. However,
they will not be efficient. High levels of autocorrelation change the ‘effective’ number
of independent observations dramatically so that observed values may provide a poor
estimate of the error term [Bayley and Hammersley (1946), Nelson and kang (1984)].

Inference and estimation in the generalized linear regression models (McCullagh and
Nelder, 1989) suffer from the same problems when autocorrelation is present.

There is a large body of literature on tests for serial autocorrelation. However, the
standard test included in most software packages is the Durbin-Watson test (Durbin
and Watson, 1950). This test is applicable for first order serial correlation. A general
test for serial dependence is the pormanteau Box-Ljung Q-statistic, which is based
on the first s residual autocorrelations (Ljung and Box, 1978).

It is important to produce a realistically small estimate of noise in order to establish
a relationship between the accident series and the explanatory variables in question.
One way to do this in the presence of serial autocorrelation is to develop autocorre-
lation consistent estimates of the asymptotic variance of 8 (Newey and West, 1987).
Another, and more natural, way is to model the serial autocorrelation by means
of dynamic modelling techniques. For such models, well developed software exists,
allowing the researcher to specify complicated error structures.
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3.2 Dynamic models

To produce an unbiased estimator of the error variance and of the coefficients of
explanatory variables in the presence of serially correlated observations, statistical
procedures that involve the use of transfer functions are often used. Box and Jenkins
(1976) auto-regressive integrated moving average (arima) approach is an example of
such a procedure. Another example is the state space models (Harvey and Durbin,
1986). In this section both arima modelling and state space models will be discussed
and applied.

3.2.1 Arima models

In the arima approach one explicitly models the autocorrelation in the errors. This
is done by designing a filter able to obtain all the information from the time-series.
All the structure and interrelations of the process, Y;, are to be captured by the
filter. The resulting residuals should behave as a white noise process. Illustrated
graphically:

Y, = = white noise

These models are based on the stationarity of the time series, that is to say, on a stable
relationship between the observation at time t and the previous observations. The
assumption is therefore, that the values at succeeding points in time are correlated.
Hence, one can forecast values of a variable, utilizing only the information contained
in the past values of the time series. These models were popularised in the 1970s
in the work of Box and Jenkins (1976). Now, the expressions, arima models and
Box-Jenkins focus, are considered to be practically synonymous.

The univariate arima representation of a time series matching a variable Y; could be
generalised to incorporate one or more explanatory variables. In this context, the
resulting model is known as a transfer function model.

Arima modelling has been widely used in traffic accident studies [Wagenaar (1984),
Scott (1986), Bergel (1992), Rebello (1999)]. These models are flexible and allow a
large number of explanatory variables. They aim both at describing and forecasting
traffic safety developments.

In the paper by Christens (2001b), changes in the two accident series, AKSI and
AK (1978-1999), were examined in relation to changes in the following three vari-
ables: traffic, the number of young people (18-24 years) and speed. A one to one
comparison with the non-dynamic models from section 3.1 is not feasible due to a
smaller monitoring period (24 months) and a different explanatory factor, namely
the number of young people. However, a comparison can provide information about
similarities and dissimilarities in the broad picture. This is particulatly so since the
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development in the accident counts over time and the influence of traffic seem to be
the two most important features when describing the aggregated number of accidents
in Denmark.

In order to obtain a stationary series for AKSI, transformations were necessary. The
visual inspection of the original series (see figure 2.1) and the analyses using the
regression models recommend certain transformations. First of all, due to the non-
stationary-variance observed in the series, a logarithmic transformation has been
carried out. With respect to the mean, the need to transform the variable is sup-
ported by the analysis of the estimated simple autocorrelation coefficients. Seasonal
differencing and regular first differencing are applied. The behaviour of the estimated
coefficients for the simple and partial autocorrelation function of the transformed se-
ries, AjAjslogaksi, suggests using the so-called airline model arima(0,1,1)(0,1,1);2
(Box and Jenkins, 1976). Time series with a large number of accidents are often
successfully modelled by the airline model (Harvey and Durbin, 1986).

The estimated coefficients for the airline model for AKSI are highly significant. The
model can be written as:

where a; is white noise.

The simple and partial autocorrelation functions of the residuals show signs of au-
tocorrelation in the residuals and the portmanteau Box-Ljung Q-statistic is not ac-
cepted. Adding log traffic as a simple regressor to the airline model improves the fit,
and the diagnostics of the residuals indicate no obvious departure from the model
assumptions.

Table 3.4 shows the estimated coefficients, std. error, t-test and p-value from the
airline model with the three explanatory variables. Traffic is the only explanatory
variable which is found to be significant.

Model parameter Estimate Std. error T-test p-value
Moving average, Lag 1 0.766 0.041 18.86 <.0001
Moving average, Lag 12 0.885 0.055 16.13 <.0001
Log traffic 1.511 0.183  8.227 <.0001
No. of young 0.000 0.015 0.023 0.9810
Speed -.089 0.055 -1.616  0.1070

Table 3.4: Estimated coefficients, std.error, t-test and p-value for arima airline model
for log AKSI

The input variables are differenced similarly to the dependent series prior to their
inclusion in the model. Investigations of the cross correlation function of the pre-
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whited input variables did not indicate any dependencies in the lag values of the
input variables.

Modelling AK within the arima framework is very similar. Again visual inspections
of the different autocorrelation functions recommend using the airline model.

Table 3.5 shows the estimated coefficients, std. error, t-test and p-value from the
airline model with the three explanatory variables. Traffic is the only explanatory
variable found to be significant. Note, that the estimate of the changing speed limit
(speed) is very similar to the estimate from the non-dynamic section, but the error
is larger, giving a non-significant p-value (0.0808) The study by Christens (2001b)

Model parameter Estimate Std. error T-test p-value
Moving average, Lag 1 0.939 0.029 32.01 <.0001
Moving average, Lag 12 0.964 0.115 8.36 <.0001
Log traffic 1.483 0.273 5.43 <.0001
No. of young 0.015 0.011 1.39  0.1655
Speed -.132 0.075  -1.75  0.0808

Table 3.5: Estimated coefficients, std.error, t-test and p-value for arima airline model
for log AK

concludes that there is some difference in the performance of the arima models com-
pared to the performance of the Poisson regression models. Log linear regression of
the accidents with killed or seriously injured indicated that inferences might not be
reliable, since autocorrelation is present in the residuals. Due to the autocorrelation
not being accounted for, the estimated coefficients are all significant in the log linear
model, whereas only traffic is significant in the arima model, which models the au-
tocorrelation. It should be noted, that the changing speed limit is almost significant
at 5% significant level in the arima model for accidents with killed.

The forecast for 1999 and the fit of the models measured in mean error and test error
are almost identical with a small advantage to the Poisson regression models.

Arima models have some potential limitations. One important constraint is that the
appropriate way to deal with trend and seasonal components is to eliminate them by
differencing. This prevents the researcher identifying the main observable features
of the accident series under study. Another potential problem is the model selection
approach advocated by Box and Jenkins (1976). This approach may lead the model
builder into a fairly wide range of possible arima models, when it is not likely that
any of these would be a suitable model (Harvey and Durbin, 1986).
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3.2.2 State space models

The distinguishing feature of state space time series models is that observations are
regarded as being made up of distinct components such as trend, seasonal, regression
and disturbance elements, each of which is modelled by a separate dynamic pro-
cess. Thus, the state space models, also called structural models, are based on the
traditional intuitive representation of a regression model:

Observed series = trend + seasonal + regression + irregular,

However, the trend and seasonal components and perhaps the regression coeffecients
are not assumed to be constant, but allowed to vary over time. The “irregular”
component reflects non-systematic movements in the series. This is in sharp con-
trast to the philosophy underlying Box Jenkins arima models, where the trend and
seasonality are removed by differencing prior to detailed analysis.

The Kalman filter (kalman, 1960) plays a key role in the statistical treatment of state
space models as least squares estimation in linear models. The Kalman filter is a
recursive estimation algorithm that minimises the mean square error and decomposes
the one-step-ahead prediction errors.

The first attempt at estimating the relationship between accidents and explanatory
variables using state space models was performed by Harvey and Durbin (1986). Re-
cently, these models have been widely used in accident research to examine variations
in monthly, quarterly and annual observations of traffic safety [Diamantopoulou et al.
(1999), Scuffham (2001), Scuffham and Langley (2002), Lassarre (2000)]. Oppe and
Bijleveld (1999) used the state space approach to simultaneously model the amount
of traffic and accident risk (injuries per accident). Thereby separating the trends and
seasonal variations in exposure (traffic) and risk.

Harvey and Durbin (1986) proposed a state space model, named basic structural
model (BSM), where the trend and seasonality are modelled as a local linear trend
and a seasonal random walk. This model is adopted to the study of AKSI, AT and
AK. The model can be described as follows:

(T e e e
e = pg—1 + Be—1 + 10
B = Bi—1 + (3.7)

e
Y= — <Z 'Yti) + Wi,
i=1

where y; denotes the log transformed number of accidents. s is the number of seasons.
All disturbances, €;, n¢, ¢; and wy, (so-called hyper-parameters) are independent
Gaussian distributed with zero mean and variances o?, o7, 07, and o3,. If o) = 07 =
02 = 0 then the model collapses to a simple non-dynamic LM with a global trend

and fixed seasonal variation, as in section 3.1.2.
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Figure 3.4 illustrates a moving trend estimated in the BSM for AKSI. The disturbance
components for this BSM fit are o7 = 0.006246, o7 = 0.00097, 67 = 0, and o, = 0,
meaning that the model estimates a moving level, but the slope and seasonal variation
remain constant over time. A BSM with fixed season and slope corresponds to the
so-called airline model (in the arima framework) with a seasonal moving average
parameter close to one. From tables 3.4 and 3.5 it is seen that the seasonal parameter
is close to one, particularly the parameter for accidents with killed.
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Figure 3.4: Log transformed AKSI and the estimated trend in the corresponding basic
structural model.

Tustrations of the residuals and the smoothed irregular disturbance component
showed that the number of accidents in January 1987 was extremely low, which is
also indicated in figure 3.4. This finding is explained by unusually cold weather con-
ditions (Statistics-Denmark, 1988). By adding a dummy variable for that particular
observation, the diagnostics of the model are improved.

Non-dynamic modelling techniques (section 3.1) indicated that some of the move-
ments in the series can be accounted for by the explanatory variables. In order
words, the explanatory varibles reduce the variance of the hyper parameter in the
three accident series. For accidents with killed the hyper parameters are equal to zero
when some of the explanatory variables (trend, season, traffic and gnp) are included.

Explanatory variables are all entered as in the classical linear regression models, but
one should note that since the (relative) variances are not known, the traditional t-
value does not follow a t-distribution. This is not a problem in large samples, since the
regression parameters converge to normal distribution (Harvey and Durbin, 1986).

Table 3.6 lists a range of diagnostics tests to verify an appropriate model specifica-
tion. The first two test for serial correlation: The Durbin-Watson is the statistic for
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first-order autocorrelation approximately assymptotic normal (2,4/T). Box-Ljung is
the pormanteau Box-Ljung Q-statistic, which is based on the first s residual autocor-
relations (Ljung and Box, 1978), tested against a ngp distribution. Normality tests
for skewness and kurtosis of the residuals (Bowman and Shenton, 1975) are assumed
to be x3 distributed. Finally, a Fy, ,,, test is undertaken for heteroskedasticity, known
as the H-test (Harvey and Durbin, 1986).

Variable Estimate p-value
Durbin Watson 1.8958 0.3953
Box-Ljung 15.223  0.1725
Normality 1.5339  0.5665
Heteroskedasticity 1.2269 0.1776
Pred. error var. 0.0062

R? 0.4415

Table 3.6: Summary diagnostics for the full state space model for AKSI (1978-1999),
adjusted for an outlier in January 1987.

The coefficients of determination, R2, used in this study are based on first differences
around the seasonal mean. The usual coefficient of determination, B2, will often
be close to unity if the model is only able to detect the trend in the accident data.
Therefore R? better reflects a good description of the data.

None of the diagnostic test indicate obvious departures from the model assumptions
and investigations of the residuals showed nothing unusual. The prediction error
variance is the variance of the one step ahead prediction errors. A larger prediction
error variance reflects a less accurate fit.

Table 3.7 lists the estimated coefficients of the explanatory variables together with
standard deviations, test statistics and the p-value. The coefficient for traffic is
the only significant variable. Unemployment and HI are nearly significant at a 5%
significant level. The estimated coefficients of these are very similar to those from
the non-dynamic models (see section 3.1). The estimated coefficients for the variance
of the state disturbance components are: o2 = 0.0047, 07 = 3.40e-5, 07 = 0 and o,
= 2.23e-5. These indicate that the trend is changing over time, a fixed slope and,
a minor changing seasonal pattern. The changes in the seasonal pattern over the
period are non-significant (p = 0.5598). This is assessed by a likelihood ratio test.

Stepwise reductions of all non-significant explanatory variables resulted in the model
with summary diagnostics given in table 3.8. At all stages in the model reduction,
the model was checked using the diagnostics described in the previous section, and
the coeflicients of the explanatory variables were examined. Once a parsimonious end
model was obtained, a reduction in the state disturbance components was performed.
The variance of the level component is 0727 = 2.59e-5, slope and seasonality are fixed
and the irregular component is o2 = 0.0050.
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Variable Coefficient R.m.s.e. Test statistic p-value
logunemp 0.1882 0.1037 1.8142  0.0708
logalc 0.3683 0.6328 0.5821  0.5610
logtraffic 1.5768 0.2057 7.6643 <.0001
logyoungpct 0.3517 1.2045 0.2920 0.7705
logpop 0.4309 11.5930 0.0371  0.9704
loggnp 0.2204  0.2998 0.7352  0.4628
speed -0.0763 0.0543 -1.4032 0.1618
HI -0.0925 0.0537 -1.7210  0.0865

Table 3.7: Estimated coefficents for the explanatory variables in the full state space
model for AKSI (1978-1999), adjusted for an outlier in January 1987.

Variable Estimate p-value
Durbin Watson 1.9160  0.4965
Box-Ljung 14.2690  0.3552
Normality 0.7667 0.6816
Heteroskedasticity 1.1015  0.3265
Pred. error var. 0.0059

R? 0.4648

Table 3.8: Summary diagnostics for the end state space model for AKSI (1978-1999),
adjusted for an outlier in January 1987.

The coefficients of the explanatory variables in the end model are listed in table
3.9. Because the variables traffic and unemployment are in logs the coefficients
may be interpreted as elasticities. Thus a 1% increase in the traffic index gives a
1.61% [1.27%- 1.97%)] increase in the number of accidents with killed or seriously
injured, while a 1% increase in the number of unemployed gives a 0.20% [0.04% -
0.36%] increase in the number of accidents. The change in the reporting routine
(HI) decreased the reported number of accidents by 1-exp(-0.0945) = 9.02% [-0.01%
- 17.61%)]

In addition to these three explanatory variables, a strong significant seasonal variation
(see table 3.10) and a decreasing trend were found.

As it can be seen, the main adverse seasonal effects occur during the October, Novem-
ber, December, and January, when taking unemployment, trend, and traffic into
account. The growth rate is -7.68% per year

Model assessment of the number of accidents with injuries (AI) was similarly per-
formed. Summary diagnostics of the full model and the end model are given in table
3.11. No obvious departures from the model assumption ares found.
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Variable Coefficient R.m.s.e. Test statistic p-value

logunemp 0.2037 0.0802 2.5394 0.0117
logtraffic 1.6194 0.1756 9.2199 <.0001
HI -0.0945 0.0496 -1.9047  0.0579

Table 3.9: FEstimated coefficients for the explanatory variables in the end state
space model for AKSI (1978-1999), adjusted for an outlier in January 1987.
02=0.0050549, o} = 0.0002597 and signal to noise ratio =0.0512

J F M A M J J A S O N D
1.06 0.87 0.88 091 1.03 094 092 099 103 108 114 1.21

Table 3.10: Seasonal variation for accidents with killed or seriously injured

Traffic was the only explanatory variable that was found to be significant when
modelling the number of accidents and, as for AKSI, slope and seasonal variations
were fixed. The variance of the level component is 03] = 0.000164 and the irregular
component is 02 = 0.00409. A 1% increase in the traffic index gives a 1.55% [1.27%-
1.83%)] increase in the number of accidents with injuries. The growth rate is -7.38%
per year. The seasonal variation is also very similar to the variation of AKSI (see

table 3.12).

A state space model of AK with the explanatory variables is identical to the linear
regression model. This is because, when including either traffic and gnp or traffic
and young in the BSM, the variances of disturbance components are not significantly
different from zero. In other words, the dynamics in the number of accidents with
killed can be explained by the development in the above variables, together with a
fixed trend and seasonal variation.

Predictive power of state space models

Table 3.13 compares the predictive power of the models from this chapter to the
shrinkage methods from section 2.4.2. It shows the prediction error of the predicted
number of accidents in 2000 and 2001 for the best shrinkage method and the re-
gression predictions. The predictions of future accidents in state space models are
approximately 50% better than predictions from shrinkage methods. This is because
the state space model utilizes the serial autocorrelation in data when predicting fu-
ture events. However, if no serial correlation is present, there is much to be gained
by using shrinkage methods on accident data where the coefficient of determination
is relatively high, as it is for AKSI and AL
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Diagnostics Estimate p-value Estimate p-value
Durbin Watson 1.7925  0.0919 1.8087  0.1055
Box-Ljung 16.3360  0.2936 20.8580  0.1211
Normality 0.16050  0.9231 0.5741  0.7520
Heteroskedasticity 1.1122  0.3108 1.0530  0.4051
pev 0.0048 0.0047

R? 0.4805 0.4960

Table 3.11: Summary diagnostics for the full and the end state space model for AI
(1978-1999), adjusted for an outlier in January 1987.

J F M A M J J A S 0] N D
1.06 0.87 088 093 1.00 095 0.92 1.02 1.02 107 1.10 1.16

Table 3.12: Seasonal variation for accidents with injured

3.3 Conclusion

Only few socio-economic variables were found to be significant when modelling the
three accident series. This is because the socio-economic variables are strongly mul-
ticorrelated. In other words these variables seem to vary simultaneously with time,
and therefore they can only contribute a little additional explanation of the acci-
dent series when temporal dependencies and traffic are taken into account. Strong
multicorrelation also makes interpretation of the significant explanatory variables
problematic.

The amount of traffic has been found to be the single most important factor in all
three accident series, not taking temporal variables into account. The estimate of
traffic is large for all three series, but due to the strong multicorrelation with time,
gnp, young, and pop, the interpretation of this coefficient should be conducted with
care. However, across the wide range of modelling techniques ,non-dynamic and
dynamic, the influence of traffic was very consistent.

Summaries of the seasonal effect for the three accident series is best viewed through
a graphic presentation (see figure 3.5).

Figure 3.5 indicates that January, October, November and December are high risk
months. The number of accidents with killed in November and December is extremely
high.

The general decreasing trend in the accidents with killed or seriously injured and in
the accidents with injured varies over the estimation period. However, the growth
rate is approximately -7% per year. The growth rate for accidents with killed is
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Accident Error Shrinkage Log linear Linear State space

AKSI Test 0.0110 0.0482 0.0386 0.0072
Std 0.0165 0.0342 0.0306 0.0126
Al Test 0.0090 0.0202 0.0169 0.0044
Std 0.0126 0.0187 0.0170 0.0074
AK Test 0.0267 0.0275 0.0275 0.0275
Std 0.0272 0.0316 0.0319 0.0319

Table 3.13: Estimated test error results for non-dynamic models, state space models
and the best shrinkage method (section 2.4.2) for the three accident series. State
space model predictions of AK are identical to LM

Seasonal variation in the three accident series
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Figure 3.5: Seasonal effects for AK, AKSI, and AI (1982-1992).

approximately -10% per year.

The variation in unemployment is weakly positively associated with changes in the
number of accidents with killed or seriously injured. The change in police reporting
practices is associated with a small decrease in the reported number of accidents with
killed or seriously injured.

Increasing gnp is associated with additional accidents with killed and the reduction
in the urban speed limit is associated with a decrease in the total number of fatal
accidents.

An important issue in this chapter was to investigate the temporal dependency in the
accident series. It was shown that the monthly observations of accidents was serially
correlated and that this correlation could only partly be explained by the explanatory
variables for accidents with killed or seriously injured and for accidents with injured.
The basic structural model (Harvey and Durbin, 1986) is constructed to model tem-
poral dependencies in a very flexible manner, where level, slope and seasonality may
change over the estimation sample. However, the dynamics in the three accident
series is relatively slow and can be captured by a simple model, where only the level
is allowed to change over time and the slope and seasonality are fixed. A determin-
istic model, such as the regression model, may adequately describe the variations in
accidents with killed. Dynamic modelling techniques should be used when assessing
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the traffic safety through the use of accident series, since non-dynamic models, in
the presence of serial correlation, are only able to provide a rough indication of the
road traffic safety situation. The non-dynamic approach is likely to describe short
accident series satisfactorily.



CHAPTER 4

Evaluation of the Danish
Automatic Mobile Speed
Camera Experiment: A
State-Space Intervention
Analysis

Chapter 4 is an evaluation of an area-wide traffic calming experiment for preventing
traffic related injuries. The Chapter is based on Christen (2003), which investigates
traffic calming through speed camera enforcement. The study applies dynamic basic
structural models within the State Space framework using disaggregated accident
data.

4.1 Introduction

There is a general consensus that even modest speed reductions can prevent many
collisions, and reduce the severity of damage and injuries that result when accidents
do occur [ Leaf and Preusse (1998), Stuster and Coffman (1998), Elvik (2001) ].
Speed reductions are particularly effective at reducing injuries to pedestrians and
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cyclists. A literature study (Elvik et al., 1997) showed that a reduction of just 5%
in the mean speed leads, in general, to a reduction in the number of accidents. Out
of 8 studies, only one reports a negative effect in reducing speed, and on average, in
that study the number of accidents with injuries was reduced by approximately 15%.
Finch et al. (1994) showed that a reduction in speed of only 1 mile per hour reduces
accidents by 5%. This figure has now been validated in a more recent study by Taylor
et al. (2000). In several studies speed cameras have been shown to be associated with
decreases in the average speed and in the frequency of reported accidents [Cameron
et al. (1992), Diamantopoulou et al. (2000), Diamantopoulou and Cameron (2002)].

The Danish automatic mobile speed camera experiment was initiated to evaluate the
effect of speed cameras on the number of speeding violations in urban areas. The
hypothesis was that speed cameras would reduce the incidence of speeding and con-
sequently reduce the number of accidents correspondingly. The experiment was also
intended to provide information about how to operate the speed cameras, as well as,
to test the judicial and administrative processes. To reduce the number of accidents
as much as possible, sections of road with high accident rates and many speeding of-
fences were primarily selected for automatic mobile speed camera enforcement. The
speed camera experiment was conducted in 6 different urban areas, including areas
of Copenhagen and Odense, from April 6th, 1999 to March 31st, 2000.

The areas selected for the speed camera experiment were signposted. By placing
the speed camera in mobile unmarked vehicles, a reduction in speed throughout the
entire experiment areas was anticipated.

The experiment surveyed an average of 19000 vehicles per week and discovered that
approximately 3000 vehicles per week were exceeding the legal speed limit. Due to the
photo quality and legal aspects only 2000 out of 3000 offenders received fines. At the
start of the experiment, approximately 18% of the surveyed vehicles were violating
the speed limit and by the end of the experiment this number had dropped to 14%.In
order to assess the speed camera experiment’s effect on the vehicles’ average speed,
similar urban areas in Jutland were selected as control sites. During the experiment
the average speed in the experimental areas on urban roads with a 50 km/h speed
limit was reduced by 1.2 km /h, compared to the control sites. Through the 12 month
experiment this speed reduction varied from 0.3 km/h to 2.4 km/h (Agustsson et al.,
2000).

Following the experiment new Danish legislation was passed that introduced auto-
matic mobile speed camera enforcement nationwide. Enforcement started in October
2002.

The purpose of this paper is to assess the effect of the Danish automatic speed camera
experiment on accident counts. The Danish Road Directorate undertook to monitor
the effect of the experiment on traffic accidents and as part of this monitoring exercise
they invited the Danish Transport Research Institute to conduct an independent
technical assessment of the statistical evidence.
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The chapter is organised as follows: In section 2 data is introduced and a brief
presentation of the statistical models is given. The results are presented in section 3
and the methods and results are discussed in Section 4.

4.2 Data and statistical modelling

4.2.1 Data

To investigate the variation in accident counts in the areas where the experiment was
conducted (treatment series), and compare them to variations in accident counts in
other urban areas (control series), monthly observations of urban traffic accidents oc-
curring between 1 January, 1990, and 31 December, 2001 were included for analyses.
A relatively long series enables one to better adjust for other explanatory, variables
e.g. the amount of traffic. The main data source used for the analysis in this paper is
monthly police reported observations of (i) the number of urban accidents with killed
and seriously injured road users, (ii) the number of urban accidents with injuries (iii)
the number of urban accidents with injuries and vulnerable road users (pedestrians
and bicyclists). The speed camera experiment started ob 6 April, 1999 and ended on
31 March, 2000. It was conducted in Frederiksberg, Gentofte, Gladsaxe, Svendborg,
Odense and parts of Copenhagen.

Urban injury accidents
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Figure 4.1: Accident with injuries in urban areas with and without automatic speed
camera control. The camera experiment is highlighted in grey

The accident data series is presented in figure 4.1. It shows monthly observations
of all Danish urban injury accidents from 1 January, 1990 to 31 December, 2001.
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The accidents are divided into 2 groups - A treatment group and a control group.
The treatment group consists of accidents from the areas where the speed camera
experiment was conducted for 12 months in 1999 and 2000. The control group is
accidents from all other urban areas. The patterns in the 2 series / groups are different
with respect to trend and seasonality on this scale. The variation over months seems
to change over time for the control series, whereas the seasonality of the treatment
series is more steady. Figure 4.1 indicates that there is no clear reduction in the
number of accidents in the areas with automatic speed camera control.

To investigate whether patterns in the series can be accounted for by observable
explanatory variables, some relevant variables were identified.

Two changes in the police reporting system took place during the monitoring period.
Both changes are known to have had an influence on the distribution of reported
accident severity. During the years 1998 to 2000 all police stations switched from
manual recording to electronic reports. This change led in Copenhagen to an arti-
ficial increase in the recorded number of accidents with injuries and a decrease in
damage only accidents (Kjeldsen and Rosenkilde, 2001). This change has not found
to effect the accident severity distribution outside Copenhagen. This is properly be-
cause police reporting in Copenhagen was maintained centrally until the time of the
electronic reporting, where as reporting outside Copenhagen has always been done
by the officer on the accident site.

What’s more, an imprecise description in police reporting manual ’Vejledning til
indberetning om ferdselsuheld’ concerning head injuries led, in 1997 and onwards, to
the misclassification of serious head injuries as minor injuries (Lund and Hemdorff,
2002). The change to electronic reporting is modelled as an intervention with a
gradual change corresponding to the actual ratio of electronic and manual recordings.
The changing police reporting practice was modelled by an invention variable.

As exposure variables, two different vehicle traffic indices are included. The first
measures the traffic in Copenhagen and the second measures the total traffic in
Denmark. Furthermore, gnp, the total size of the population, the proportion of
young people (18-24 year old), the unemployment rate and alcohol consumption
are included. Unfortunately only the unemployment rate is available on a monthly
basis. Gross national product is measured quarterly and the remaining explanatory
variables are only available on a annual basis. This problem is discussed in section
4.

4.2.2 Statistical modelling

In this study the number of accidents is modelled by the basic structural model
(BSM) Harvey and Durbin (1986)
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The model can be described as follows:

Yt =+ T €
e = pe—1 + Br—1 + 0
Bt = Br—1+

Ve = — <Z 'Yti) +wi,
i=1

where y; denotes log transformed number of accidents, s is the number of seasons,

€, M, (¢ and wy are independent Gaussian distributed variables with zero mean and
; 2 2 2 2

variances o, oy, ¢, and o,

Explanatory, exposure and police intervention variables are all entered as in the
classical linear regression models.

Multiplicative Poisson regression with independent observations within the general-
ized linear model framework (McCullagh and Nelder, 1989) has also been applied to
evaluate the performance of the dynamic structure in the state space modelling. If
the relative variances are equal to zero in the above state space model, the mean
structure collapses to the multiplicative Poisson mean.

The assessment of the effect of automatic mobile speed cameras raises further issues
of model selection. These issues are described in section 4. One approach was to
concentrate on selecting an adequate model for the 3 different series of accident counts
based on data from January 1990 to December 1996, i.e. before the speed camera
experiment started. The basic idea was to fit the model with observations prior to
January 1997 and then use the 1997 data for post-sample predictive tests.

The first model fitted was a local linear and seasonal random walk model on the
series of accidents with injuries in urban experiment areas excluding Copenhagen.
Maximum likelihood estimation resulted in a model with a nonrandom slope and
seasonality, which expressed the relatively slow dynamic, given the short series with
just 96 observations. Various model diagnostics and parameters indicate good model
performance. Re-estimating the model with data up to December 1997 only alters
the parameters slightly.

This analysis was also performed on the other 2 accident series. The model for injury
accidents with vulnerable road users performed acceptably, but the post-sample pre-
dictive test failed for the accident series of serious injuries. Residual plots indicate
a clear decrease in the level of accidents from January 1997. This decrease in the
reported number of accidents has also been found in other Danish studies and is
associated with the changing police reporting practice (Lund and Hemdorff, 2002).
By allowing the state space model shift in level in January 1997, the various model
diagnostics show no departures from the model assumptions.
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4.3 Results

The 3 different experiment series, accidents with injuries (AI), accidents with killed
or serious injuries (ASI) and injury accidents with vulnerable road users (AIV) are
analysed separately in the following section.

It is seen in figure 4.2 in the appendix at the of this chapter, that accidents with
injuries in Copenhagen differ in frequency and in trend from the other series. Due to
the fact that the change from manual to electronic reporting only affected the distri-
bution of accident severity in Copenhagen, it was decided to model the accident series
from Copenhagen separately. Because of the small numbers in the treatment series,
excluding Copenhagen, and their similarity in pattern, it was decided to aggregate
these series and analyse the resulting serie separately.

Accidents with injuries and vulnerable road users (AIV) show a very similar pattern
and therefore it was decided to separate the accident counts into 2 series as was done
with the AT series. See figures 4.4 and 4.5 in the appendix.

Tlustrations of the accidents with killed or serious injuries (ASI) in 6 areas again
highlights the need for a separate analysis of the accidents in Copenhagen: see Figures
4.6 and 4.7 in the appendix. Note that all the series have an evident decrease in the
number of reported accidents due to the changing police reporting practice concerning
head injuries. Though the police reporting manual with the imprecise description was
introduced in January 1997, Copenhagen accident counts are not affected till January
1998. This finding is also reported in another study (Kjeldsen and Rosenkilde, 2001).

Prior to aggregation of the accident counts in the treatment areas excluding Copen-
hagen, tests for equal trend and seasonality in an over-dispersed Poisson model were
performed. No significant differences in the 5 treatment areas were found. The
Poisson distribution was chosen due the small numbers.

Table 4.1 summarizes the results from the models that were finally selected for the
various accident series. The models were selected through inclusion of all variables
and subsequent standard stepwise elimination of all insignificant variables, both ex-
planatory variables and noise components. For each category of accidents, the esti-
mated percentage change in the number of accidents attributed to the speed camera
experiment, are given and 95% confidence interval, values of diagnostic statistics and
the significant explanatory variables are also shown.

The model diagnostic statistics shown in 4.1 indicate rather good model performance.
Examination of plots of the residuals for the various models also suggests that the
models describe the accident data adequately.

The effect parameter for the speed camera experiment was found not to be significant
in any of the series and parameters across the various series did not tend to be either
positive or negative. Therefore it is concluded that this study can not document
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either positive or negative effects of the speed camera experiment.

The estimated parameters of the explanatory variables in the models reported in table
4.1 have some interesting features. The change to electronic reporting in Copenhagen
led to a 14% [2% ;28% artificial increase in the reported number of accidents with in-
juries. For injury accidents with vulnerable road users, this figure was 23% [8%;40%).
The misleading reporting manual led to a 23 % [24%;32%]| artificial decrease in the
number of accidents with killed or seriously injured in Copenhagen. In the 5 other
urban areas the number of accidents with killed or seriously injured was reduced by
35% [21%;47%)| due to the misleading manual.

None of the socio-economic explanatory variables were found to be significant. The
exposure measure of the traffic in Copenhagen (Copenhagen traffic index) was also
not significant. One reason for this could be that the measure is not very accurate
and does not take into account changes in traffic flows due to the opening of a new
motorway in 1997.

This study finds that the traffic index of the total vehicle traffic in Denmark is
significant. The estimated elasticities of the various accidents with respect to the
total traffic index ranges from 2.1 to 2.7. The elasticity for accidents with injuries
in Copenhagen indicates that a 1% increase in the traffic index leads, other factors
being equal, to a 2.1% [0.5%;3.5%)] increase in the number of accidents.

4.4 Discussion

In this chapter univariate state space modelling has been applied in order to estimate
the effect of the speed camera experiment on accident rates. The study could not
document any significant effect of the speed camera experiment on the 3 different
accident series.

Accidents change 95% R? H(43) Box- Norma- Varia-
% CI Ljung litity bles
AT Cph. 6% [-6% ; 19%] 0.45 2.09 14.75 0.67 TE
AT Others -3% [[15% ; 11%] 0.47 0.92 7.42 2.75 T
AIV Cph. 2% [-10% ; 17%] 0.46 172  12.66 2.72 TE
ATV Others 5% [[10% ; 23%] 0.49 0.76 5.25 2.38 T
ASI Cph. -1% [[13% ; 12%] 0.48 1.06 7.80 4.69 T M
ASI Others 4% [-12% ; 22%] 0.47 1.34 6.33 0.39 T M
5% Signif. 0.54/
Points 1.83 15.51 5.99

Table 4.1: Percentage changes in injury rates and values of diagnostic statistics.
Al=accidents with injuries, AIV=accidents with injuries and vulnerable road users,
ASI=accidents with killed or serious injuries, T—=traffic index, E=electronic report-
ing, M=Changing reporting practice
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It was decided to model the speed camera effect as an intervention parameter that
caused a shift in the series during the speed camera experiment. This decision was
of course based on a prior consideration. The speed camera experiment had massive
media attention from the very start and the police enforcement was relatively con-
stant throughout the experiment. If information about the police operating level was
available on a monthly basis e.g. number of speeding tickets and operating hours,
the intervention effect could have been modelled in more detail. If there was found
to be significant effects of the speed camera experiment, it would have been natural
to measure the effect of the speed camera experiment as a function of the monthly
average speed reduction.

It could be argued that the assessment of the speed camera effect should be based
on data from April 1999 and onwards and not only on the 12 month duration of the
official speed camera experiment. This is because, even though the experiment ended
officially on the 31 March 2000, police continued using the cameras in the treatment
areas. Unfortunately no record of the level of enforcement are available. Using 33
months starting 1 April 1999, to estimate the speed camera effect does not alter the
results.

Prior to the start of the official experiment, a pilot speed camera experiment was con-
ducted in Copenhagen and Odense. Since the enforcement level in the pilot experi-
ment was very low, it was decided not to take this into account. Leaving Copenhagen
and Odense out of the analysis does not alter the results and no significant shift in
level of accidents due to the pilot experiment was found when modelling accident
counts for Copenhagen and Odense separately.

During the study the question of whether to use annual or monthly data was raised.
Using annual data seemed more reliable because annual observations tend to average
out the irregularities in monthly observations. However, as pointed out by Harvey
and Durbin (1986) “Discounting can be quite considerable” due to the loss in efficiency
that arises in large samples when estimating a step intervention effect from annual,
rather than monthly, observations.

A simulation study was conducted to assess the power in this study. (See chapter
6 for a further description). If accident trends develop along the same path as the
injury accidents in this study, then the probability of detecting a true 15% shift in
level is about 67%. This means that in order to detect a significant change in the
accident rate, the effect of speed camera should be relatively high. Nine out of ten
studies would find a 20% shift in the trend. Using annual data instead of monthly
data reduces the power significantly.

Even though the effect of the Danish speed camera experiment on mean speed re-
duction was moderate, 1.2 km/h on average, varying from 0.3 to 2.4km/h in the 12
month experiment (Agustsson et al., 2000), a moderate reduction in the accident rate
would have been expected.
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One might also consider using a before-and-after design with a control group. Here,
changes in the ratio of the number of urban accidents in the treatment group and
the numbers in the control group are investigated. Such a design assumes that
the accident counts in the control group have a similar pattern to the ones in the
treatment group. A more sophisticated method is to model the treatment group and
the control group simultaneously. If observations in the control group are highly
correlated with the experiment group, one would achieve a more precise estimate
of the effect in question. Elvik (2002) has recently investigated other disadvantages
with the use of before-and-after studies.

Multivariate state space modelling was carried out for the different accident series in
order to investigate whether the trend or the seasonality in the control series changed
during the speed camera experiment. If changes were found, then the assessment of
the speed camera effect should take this into account. No evidence of changes in the
control group was found.

As is often seen with socio-economic factors, some of the explanatory variables are
measured on different frequencies. One way of dealing with this is to interpolate series
from one frequency to another with smaller time units. However, it is important to
note that such interpolation can lead to an artificial autocorrelation structure on the
interpolated series. Since the series in question, e.g., the proportion of young people
(18-24 year old) have, change rather slowly simple linear interpolation is chosen.

Using the Poisson regression method for the different accident series only changes
the speed camera effect parameter slightly and again the effect parameters are not
significantly different from zero. (See table 4.2 in the Appendix). However, diagnos-
tics of the residuals show significant autocorrelation and therefore these non-dynamic
models are not used to assess the effect of the speed camera experiment.

It could be argued that the level of enforcement in the Danish mobile speed camera
experiment was too low to achieve a positive correlation with reductions in the acci-
dent rates. International studies (Vulcan et al., 1996) show that the enforcement level
in the Danish experiment should have been approximatively 8 times higher to obtain
a positive effect. One study found that when increasing the level of enforcement to
surveying 66% of all vehicles per month, the number of speed violations was reduced
from 12% to 3% (Bodinnar, 1994).

4.5 Conclusion

The hypothesis was that speed cameras would reduce the speed and consequently
reduce the number of accidents correspondingly. This study can document neither
positive nor negative effects of the speed camera experiment on the number of acci-
dents.
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4.6 Appendix
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Figure 4.2: Monthly injury accidents in 6 treatment areas. The erperiment is high-
lighted in grey
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Figure 4.3: Monthly injury accidents in Copenhagen and the 5 other treatment areas
aggregated. The experiment is highlighted in grey
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Figure 4.5: Monthly injury accidents with vulnerable road users in Copenhagen and
the 5 other treatment areas aggregated. The experiment is highlighted in grey
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The experiment is highlighted in grey



4.6 Appendix

57

Accidents with killed or serious injuries in Copenhagen

Accidents
N Wb OO N ®
o O O O O o o

@
o

Accidents with killed or serious injuries in treatment areas except Copenhagen

Accidents
N Wb O o N
o O O O O o

[AVYa M/‘\A/&
LI

—

V\/[\A WA\/A

1990 1992 1994

1996
Year

1998 2000

Figure 4.7: Monthly accidents with killed or serious injuries in Copenhagen and the
5 other treatment areas aggregated. The experiment is highlighted in grey

Accidents change % 95% CI
Injury Cph. 8% | -4% ; 21%)]
Injury Others -4% [-14% ; 8%]
Injury, Vulnerable Cph. 5% [ 7% ; 20%)]
Injury, Vulnerable Others 1% [-14% ; 13%]
Serious injuries Cph. 0% [-12% ; 14%]
Serious injuries Others 6% [-10% ; 25%)]

Table 4.2: Percentage changes in injury
through over-dispersed Poisson regression.

rates and confidence intervals estimated
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CHAPTER 5

Time dependent regression
parameters in state space
models

This chapter has two aims. The primary aim is to assess the impact of a change in the
police accident reporting routine on the reported number of accidents. A secondary
aim is to investigate the underlying assumption, that parameters of the explanatory
variables are constant over the estimation sample. This assumption is verified by the
use of time dependent parameters in state space models.

Unfortunately, there was an imprecise description the police accident reporting man-
ual "Vejledning til indberetning om ferdselsuheld updated in 1997. According to the
new reporting routine, injured people with concussion were to be classified as having
suffered a minor injury. Previously, this injury was classified as a serious injury.

The effect of this change is particularly interesting since 1998 serves as the reference
year for which target values for the national traffic safety plan (Feerdselssikkerhed-
skommisionen, 2000). This change is also interesting from a traffic safety research
point of view, because the AKSI series serves as an important tool in assessing the
effect of different countermeasures on an aggregated and disaggregated level. The
two other accident series, AK and Al suffer from either having too few observations
or being recorded too inconsistently.

During the summer of 2003 the police reporting practice will again be altered so it
is consistent with the routine prior to 1997. Therefore, this study can also make an
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educated guess about the expected increase in the reported number of accidents.

5.1 Introduction

A natural starting point for the assessment of the effect of the changing police re-
porting practice on the number of accidents with killed or seriously injured is the
final model from chapter 3.

yr = pt + PBtime + ¢ + 1logtraffic + d2logunempl + d3Hi + §4Jan87 + ¢
Me = pg—1 + 1t (5.1)

where y; denotes log transformed AKSI, ¢; and 7; are independent Gaussian with
zero mean and variances o2 and 0'3], v; describes the seasonal variation modelled
by dummy variables and Jan87 is a dummy variable for the outlier in January 1987.
This model is in fact a local level model with explanatory variables.

Table 3.9 lists the maximum likelihood estimates from model 5.1. It is seen that traffic
is highly significant, whereas the change in reporting practice is nearly significant at
a 5% significance level. Since exp(-0.0945) = 0.9098, the estimated reduction in the
reported number of accidents was approximately 9%.

In Christen (2003) the estimated reduction was found to differ in size across the
different urban areas, ranging from 23% to 35%. In addition, the effect was immediate
in most areas, whereas the effect in Copenhagen was delayed one year. Other studies
have also found that the effect varies across areas and road user category (Lund and
Hemdorff, 2002).

In model 5.1 the most straightforward hypothesis was adopted, ie, that the introduc-
tion of the police reporting manual ’Vejledning til indberetning om ferdselsuheld’ in
January 1997 induced an one-off downward shift in the level of the series of AKSI.
However, the effect of Hi (the police manual) can be assumed to cause changes in
the dependent series in numerous ways. Prior to investigating the effect of Hi, which
may be thought of as an intervention variable, an analysis of the other explanatory
variables, mostly traffic, is performed. This is to reduce some of the biase by trying
to account for the variation caused by the other explanatory variables.

5.2 Specification of the effect of traffic

In this study the effect of traffic (exposure) on the number of accidents was also
found to be the single most important factor, not taking temporal variables into
account. Exposure variables are often modelled as elasticities. As a result, one
achieves an interpretable description of the effect of exposure and some non-linearities
are included in the model specification.
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In real life, effects are often not linear. Techniques that apply predefined basis func-
tions to achieve nonlinearities of the explanatory variables are often used. That way,
one may continue to operate in the attractive simple regression framework. Gener-
alized additive models are a more automatic flexible statistical method that can be
used to identify and characterize non-linear regression effects (Hastie and Tibshirani,
1990). In the regression setting, a simple generalized additive model for identifying
the effect of traffic may have the form:

E(Y |traffic,time, X) = a + X T 8 + f1(time) + fo(traffic), (5.2)

where Y is log AKSI and X represents the explanatory variables (season, hi, unemp)
to be modelled in a linear form. f;(time) and fy(traffic) are unknown functions
of time and traffic. The building block for fitting non-linear effects in generalized
additive models is a scatterplot smoother (e.g. a cubic smoothing spline or a kernel
smoother), which for the model 5.2 fits the function f;, fo simultaneously with the
linear effects.

Here, focus will be on fy(traffic), but a non-linear function of time is also used in
order to adjust for the generally increasing safety level, which could not be explained
by a simple linear trend (see chapter 3). Generalized additive models provide an
illustrative graphical representation of the partial effects, taking all other variables
into consideration. Figure 5.1 illustrates the partial effect of traffic and logtraffic on
the log of the number of accidents. The scatterplot smoother, here a spline smoother,
has a tendency to choose a logarithmic form for traffic and log accidents, whereas
the relationship between log traffic and log accident is almost linear. Thus, the log
specification of traffic appears to be very reasonable.

Smoothed partial residuals Smoothed partial residuals

s(traffic, 4)

Figure 5.1: Partial effect of traffic and log traffic.

A formal test of the functional specification of effect may be conducted within the
generalized additive models, but for the present investigation a graphical presentation
is sufficient. In addition, the serial correlation in the observations makes inference
non-reliable.
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5.3 Structural stability

Model 5.1 assumes that the parameters of the model, d, are constant over the es-
timation sample. A simple and intuitive way to investigate parameter constancy is
to compute recursive estimates of §; that is, to estimate the model recursively to
t =k+1,...,T giving T — k recursive estimates (8p41,...,0r) (Zivot and Wang,
2003). If § is constant, then the recursive estimates of & should quickly settle down
near a common value. If some of the elements in § are not constant, then the corre-
sponding estimates would show instability. Hence, a simple graphical technique for
uncovering parameter instability is to plot the recursive estimates, d;;, and look for
instability in the plots.

An alternative approach to investigate parameter instability is to compute estimates
of the model’s parameters over a rolling window of a given fixed length. The pa-
rameters should be constant across the different windows. Such rolling analysis can
provide a simple pseudo time dependent parameter model.

For this study the width, n, of the rolling window is set to 48 because the width, n,
has to be greater than the number of parameters in the model, and furthermore, due
to the 12 seasonal parameters in the model n should equal 24, 36, 48, ... . It is noted,
that rolling regression is not really appropriate to investigate parameter stability of
dummy variables, ie the effect of Hi, since the rolling window should contain both
values of the dummy variable.

Figure 5.2 is an illustration of the recursive and rolling estimates of the coefficients
associated with the explanatory variables in model 5.1. For simplicity reasons the
recursive and rolling estimates were calculated for every 12 months and a rolling
window of 60 monthly observations. The recursive and rolling coefficients do not
seem to vary too much compared to their variances.

Stability of the parameters can also be analysed through the use of time depen-
dent parameters in state space models. By allowing the parameters associated with
the explanatory variables in model 5.1 to be random walks, as the level and slope
component in Harvey and Durbin (1986) basic structural model, one achieves time
varying parameters. If the parameter § associated with logtraffic is allowed to follow
a random walk the model may be written as

yr = pe + v + dlogtraffic + dzlogunemp + dshi + 04Jan87 + ¢
0 = Op—1 + wy,

where y; and y; are defined as in 5.1 and w; is Gaussian (0, 02).

Testing for time variation in the coefficients of the explanatory variables is subject to
problems, as when testing for reduction of the hyperparameters in the basic structural
model (Harvey, 1989). In addition, the way the time dependent parameters are
introduced into the model is important for estimation stability, but a quick and rough
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Figure 5.2: Recursive and rolling coefficients for the the explanatory variables.

estimation gives a rather small variance of w =4.575604e-005 , the hyperparameter
associated with traffic. Figure 5.3 illustrates the smoothed estimates of ¢; (Durbin
and Koopman, 2001). From a graphic diagnostic of figure 5.3, one sees that the
parameter associated with traffic can be assumed to be constant over the sample
period, relative to the root mean square error for logtraffic in table 3.9.

The smoothed estimates of the time dependent coefficient associated with unemploy-
ment varies even less over the sample period.

These analyses find that there are no obvious departures from the assumption that
the effect of traffic and unemployment can be modelled as constant elasticities. This
is also in accordance with the satisfactory model diagnostics in chapter 3.

5.4 Assessment of the changing reporting practice

The assessment of the changing reporting practice can be thought of as an interven-
tion analysis. Intervention analysis is concerned with making inferences about the
effect of known events. These effects are measured by including intervention, dummy
variables to the dynamic regression model (e.g. Hi and Jan87 in model 5.1).

If the model contains trend and seasonal component then the effect of the intervention
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Figure 5.3: Smoothed estimates of the log of trafffic.

can assume 4 different shapes: 1) a transitory effect as the outlier in January 1987,
2) a structural break in the level of the series, 3) a structural break in the slope of
the series (e.g. a change in the gradual movement in the series), 4) or a change in
the seasonal pattern.

It is possible for an intervention to influence the pattern of the series in a combination
of the forms listed above. In addition the intervention may also give a dynamic
response, where, for example, the effect gradually decreases.

According to Harvey (1989) it is extremely difficult to determine whether the inter-
vention is an outlier, a step or a slope change. This is particularly difficult when the
effect of the changing reporting practice is relatively small compared to the variance
of the hyperparameter in the level, which is also seen in the p-value in table 3.9

In the non-dynamic models the coefficient associated with an intervention can be
estimated consistently and the variance of coefficients decreases when the sample
period increases. However, in dynamic state space models only observations recorded
immediately after the intervention took place can be used to measure the effect. This
is because the relative variance of the hyperparameter in the level determines how
quickly the series will move on to a new level. When the relative variance of the
level’s hyperparameter is approximately 0.05, as it is for the model 5.1 (see table
3.9), then the estimated effect is only influenced by the first 10 observations recorded
following the time of the intervention (Harvey, 1989).

Since assessment of an intervention variable in dynamic modelling is only based on
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few observations, one should construct a form of intervention based on as much a
priori knowledge as possible and then submit it to diagnostic checking of the model.
The form of the intervention in a specific countermeasure assessment is highly depen-
dent on the willingness of traffic users to change their behaviour and the awareness of
the forthcoming intervention. In such situations a logit function may be a better de-
scription of the response of road users to the intervention than a simple step-function
(e.g. a logit function of the road users’ speed may be a well-specified intervention
for analysing changes in safety due to speed reduction countermeasures). Unfortu-
nately, such informative data are often not available and one has to rely on a priori
assumptions.

It could easily be argued that diffent police stations would respond differently to a
change in the reporting practice. This is also seen in Christen (2003) and Lund and
Hemdorff (2002). Table 5.1 lists the effect of the changing reporting practice starting
in January 97, ..., May 97. It seems that the estimated effect depends on the assumed
starting point of the intervention.

These investigations indicated a slow dynamic response to the changing reporting
practice. The effect seems to have reached its maximum three months after the
intervention was introduced. Analyses with only one observation after the time of
intervention show the same result.

Variable Change in % 95 % CI  p-value
Hi Jan 97 -0.0945  [0.0047;-0.1937]  0.0579
Hi Feb 97 -0.1236  [-0.0252; -0.2219]  0.0129
Hi Mar 97 -0.1283 [-0.0302; -0.2264]  0.0094
Hi Apr 97 -0.1280 [-0.0295; -0.2264]  0.0099
Hi May 97 -0.0640  [0.0351;-0.1639]  0.2010

Table 5.1: Estimated effect in logscale for the changing police reporting practice for
different intervention dates.

The change in reporting practice occurs near the end of the sample. A suitable model
could be constructed on the basis of observations prior to the intervention. Thus the
estimation of the hyperparameters will be unaffected by any misspecification in the
intervention. The intervention variable is then added and the model specification is
subjected to various diagnostics. The diagnostics should be based on the residuals
immediately after the intervention, otherwise possible distortion could be diluted in
the full set of residuals.

Brown et al. (1976) utilize the generalized recursive residual to produce two sim-
ple tests for parameter instability. These two tests, known as the CUSUM and
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CUSUMSAQ tests, are based on the standardized 1-step ahead recursive residuals.
N R (5.3)
€t Yt — ,Bt_1$t

22, . . .
where f; is an estimate of the recursive error variance.

CUSUM and CUSUMSAQ are best regarded as a diagnostic rather than formal test
procedure (Harvey, 1989). One should, therefore, through the use of graphic illustra-
tions of CUSUM and CUSUMSQ), check for systematic tendencies to underpredict or
overpredict immediately after the intervention rather than just checking whether the
CUSUM and CUSUMQ exceed their confidence bands.

Figure 5.4 illustrates of predicted values of log AKSI, residuals and CUSUM from
the model with the intervention starting March 97. These visual diagnostics to-
gether with post intervention test statistics show no obvious misspecification of the
intervention occurring with a 2 month delayed response.

1998 1999 2000
— Cusum Stand Residgal
101

=10+ R

I | -
1998 1999 2000

Figure 5.4: Predicted values, log AKSI, residuals and CUSUM immediately after
intervention.

Diagnostics and test statistics for intervention models taking place in January, Febru-
ary and April 1997 show similar results. Therefore, selecting a given form of the inter-
vention by excluding models, where diagnostics indicate significant misspecification
is not possible. As argued previously, one could also assume that the intervention
could be modelled as a gradually increasing function over the first month in 1997,
but the estimate of such an approach is also highly dependent on the specific form
of the function.
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Here a conservative selection approach is used due to no a priori knowledge about
how accident series would respond to such a change. This means that the assessment
of the effect of the changing reporting practice is based on the official assumption
that states that the reporting practice should be changed immediately on 1 January,
1997. From table 5.1 one sees that under this assumption the effect is then 9%. The
estimated effects of the other intervention models listed in table 5.1 are not that
different compared to their relative confidence intervals. The relationship between
the normal and the log-normal distributions suggests the use of exp[d + 1/2var(d)]
instead of exp[S]. Adjustment for the log-normal reduces the estimated effect of the
changing reporting practice to 6.7%.

5.5 Conclusions

The change in the police reporting practice in 1997 lead to a 6.7% decrease in the
reported number of accidents with killed or seriously injured. A realistic estimate
of the actual traffic safety in 1998, measured by the number of accidents with killed
or seriously injured could be the reported number corrected by (1/0.933)-1 = 7.2%,
which is approximately 285 additional accidents. The national safety plan (Feerd-
selssikkerhedskommisionen, 2000) is based on the number of killed and the number
of seriously injured but a similar approach may be used here.

Even though the reasons for sudden changes in an accident series may be known,
it is possible to use the series to describe the effect of a given countermeasures or
exposure, when one adjusts for the changes. Even if changes are not accounted for
by observable explanatory variables, one can still utilize the series if the changes are
absorbed by a dynamic model structure.

Assessment of the effects of a specific countermeasure can be problematic and should
be based on as much a priori knowledge as possible. This is because the effective
number of observations used to estimate the effects are highly dependent on the
dynamics in the accident series. Extending the post intervention period does not
necessarily improve the estimated effect associated with the countermeasure.

Using time dependent coefficients in state space models to assess the instability of the
parameters associated with explanatory variables has, in this study, been effective.
Analysis showed that the influence of traffic is stable over the estimation sample and
that the influence of traffic can be modelled as an elasticity. Time dependent coeffi-
cients may also help to characterize and model non-linear effects as the generalized
additive models for non-dynamic observations.



68

Time dependent regression parameters in state space models




CHAPTER 6

Power

The aim of this chapter is to set up a method for assessing the ability of detect-
ing a shift, caused by a countermeasure, in a given traffic safety time series study.
Knowledge of this so-called power prevents the researcher from rejecting potentially
important ideas because a small study fails to confirm them. “Experts have been
warning about the dangers of underpowering studies for over 40 years.” Matthews
(2003).

In statistical theory, power is the probability that a test results in rejection of a
hypothesis, Hy say, when some other hypothesis, H say, is valid. This is termed the
power of the test “with respect to the alternative hypothesis H.” If there is a set of
possible alternative hypotheses, the power, regarded as a function of H, is termed the
power function of the test. When the alternatives are indexed by a single parameter
0, simple graphical presentation is possible.

If the power function is denoted by 3(d) and Hg, then the value of 3() - the proba-
bility of rejecting Hy when it is in fact valid - is the significance level.

The basis of this study is the dataset of a Danish mobile speed camera experiment
( see chapter 4 for a detailed description). From this study monthly observations of
urban injury accidents occurring from 1 January, 1990 to 31 December, 2001 in five
Danish municipalities (Frederiksberg, Gentofte, Gladsaxe, Svendborg and Odense)
were selected. An illustration of the aggregated accidents is given in figure 4.3 in
chapter 4. The mean structure of these accidents, estimated in an acceptable Poisson
regression analysis, was chosen as the initial values for the simulations. The initial
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values consisted of a decreasing trend, seasonal variation and a positive elasticity of
the amount of traffic.

Countermeasures can affect the number of accidents differently. For this simulation
study it was assumed that the countermeasure influenced the accident counts as a
step function, meaning that initial values were reduced uniformly during the period
of the countermeasure. It was decideedto simulate a countermeasure that would
influence the accident counts for 12 months, which corresponds to the duration of
the Danish speed camera experiment.

This simulation study consists of two scenarios: the first simulates Poisson distributed
accidents; in the second approach accidents are generated from a Poisson gamma
distribution in order to have over-dispersed data, as seen in many traffic accidents
series.

6.1 Simulated Poisson distributed accidents

Figure 6.1 provides an overall impression of the data. The simulated accidents in
figure 6.1 indicate a large decrease in the number of accidents during 1999 and the
estimated decrease is also highly significant (p<0.0001).

Simulated accidents from a Poisson distribution
T T T

Accidents

301 b

201 b

L L L L
1990 1992 1994 1996 1998 2000
Year

Figure 6.1: Poisson simulated accidents with a 30% decrease in the accident counts
in 1999 (highlighted in grey)
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Figure 6.2 is a graphical presentation of the power for different values of the valid al-
ternative hypothesis [0%; 30%)], calculated through 10000 simulations. Additionally,
figure 6.2 shows the power calculated from monthly and annual data. For example,
if the number of accidents varies, as in the speed camera experiment, then the prob-
ability of detecting a valid 15% decrease is approximately 83% when using monthly
data.

Power analysis of Poisson distributed data
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Figure 6.2: Power analysis of Poisson distributed data.

During the project the question of whether to use annual or monthly data was raised.
Using annual data seemed more reliable because annual observations tend to average
out the irregularities in the monthly observations. However, as mentioned earlier
Harvey and Durbin (1986) point out that the loss in efficiency which arises in large
samples when estimating a step intervention effect from annual, rather than monthly,
observations, can be quite considered.

A simulation study was conducted to verify this efficiency loss. The results are illus-
trated in Figure 6.2. The difference depends on the level of the true effect parameter,
but the possibility of finding a truely significant effect is higher when using monthly
data. One should note, that the power 5(8) = 3(—6).

Another disadvantage of using annual data when the intervention period only lasts 12
months is that one only has a single data point to measure the effect and to conclude
whether the significant estimated effect is not an artifact due to an outlier.
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6.2 Simulated over-dispersed accidents

It is frequently found in practice that the estimated dispersion parameter, after fitting
an otherwise acceptable Poison regression model, exceeds 1. This means that the
standard Poisson approach is not able to model the variation in the observations.
Two approaches are commonly used for dealing with such over-dispersion (Lee and
Nelder, 2000): the first is to use a quasi-likelihood function (QL) (McCullagh and
Nelder, 1989), having a variance of Y with an adjustable dispersion parameter, e.g.
var(Y)=c2u with o > 1 for the over-dispersed model; the second approach is to use
a random effect at the bottom level. If one uses a two-stage Poisson gamma model
with random effect u, so that E(y|u) = pw = pu = w,var(y|u) = w, E(u) = 1 and
var(u) = A, then var(y)=pu+ Ap?. Thus, the variance function of the approaches, o2
and p+ Au? are functionally different and hence potentially distinguishable through
diagnostics of the residuals (see section 3.1.1). The Poisson gamma model belongs
to the class of hierarchical generalized linear models, which is often used to model
traffic safety at an aggregate level and micro level (intersections, road sections, etc.
) [Vistisen (2002) , Hauer (2001), Fridstrgm (1991)].

The over-dispersed accident counts were generated through a compound Poisson

gamma model. Again initial values were obtained from estimation of the speed

camera experiment data. The significant over-dispersion parameter was found to be
2

o = 1.49.

Even though the simulated over-dispersed accidents were generated through the
Poisson-gamma model, the assessment of the power assumed the QL function ap-
proach. This choice was made because even relatively substantial errors in the as-
sumed functional form of var(Y") generally have only small effects on the conclusions
(McCullagh and Nelder, 1989). Furthermore, if the wrong specification of var(Y’) had
influenced the assessment of the power, then a 5% significant level was not obtained,
as seen in figure 6.3.

The over-dispersion reduces the power in the study as seen in figure 6.3. The prob-
ability of detecting a significant countermeasure when the valid effect is 15%, is
approximately 67%. The difference between using monthly or annual data is highly
increased compared to modelling Poisson distributed data. This is due to an uncer-
tain estimation of the over-dispersion based on only 1/12 of the number of monthly
observations.

6.3 Conclusion

Ideally, one should always include an analysis of the power in a given investigation.
It enables the researcher to evaluate whether the particular study design is efficient
in detecting the effect of the countermeasure in question and the limitations in the
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Figure 6.3: Power analysis of over-dispersed Poisson distributed data.

design become visual.

In this simulation study the power was relatively low compared to the expected
reduction in the number of accidents. This means that the possibility of finding a
significant effect is small.

The study does not take into account the serial correlation in the accidents that is
often seen in accident studies with monthly observations. Though serial correlation
dilutes the test statistics (see section 3.1.3), this simulation study may give a rough
impression of the power in a study.
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CHAPTER 7

Summary and conclusions

This chapter summarizes the work presented in the thesis and outlines the conclu-
sions. At the end of the chapter some suggestions for future work are provided.

The general purpose of the study was to improve the insight into the aggregated traffic
safety methodology in Denmark. The aim was to investigate contemporary statistical
methods, that haved been designed to study developments over time, including effects
of interventions. This aim has been achieved by investigating variations in aggregated
Danish traffic accident series and by applying state of the art methodologies to specific
case studies.

This thesis deals with statistical modelling of the aggregated traffic safety develop-
ments. The thesis consists of two parts. The first part introduces accident data and
influential factors such as changing traffic volume and demographic and economic
trends, and highlights the limitations in their data-structure: in particular the in-
fluential factors strong covariance and slow development over time. A number of
modelling methodologies are reviewed and discussed with a view towards developing
a sound methodology for describing changes in traffic safety.

In Part 2 two different aspects of the modelling methods described in part 1 are
applied to relevant Danish traffic accident scenarios. One scenario is the assessment
of an area-wide speed reducing experiment, through the use of mobile speed cameras,
for preventing traffic related injuries. Another scenario is the evaluation of the impact
of an unintended imprecise description in police reporting manual ’ Vejledning til
indberetning om ferdselsuheld on the reported number of accidents.
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General effects

One of the objectives for this work was to determine how traffic safety may be
affected by changes in the influential factors such as, changing traffic volumes and
demographic and economic trends in Denmark. Investigations showed that the socio-
economic variables were highly multicorrelated. In other words these variables seem
to vary simultaneously with time, which makes it difficult to pinpoint the source of
variation to particular factors.

Only a few socio-economic variables were found to be significant when modelling the
various accident series. This is because the socio-economic variables are strongly
multicorrelated and they can, therefore, only contribute with a little additional ex-
planation of the accident series when temporal dependencies and traffic are taken
into account. Strong multicorrelation also makes interpretation of the significant
explanatory variables problematic.

Among the socio-economic factors, the amount of traffic is found to be the single
most determinant factor in the accident series, not taking temporal variables into
account. The estimate of the traffic volume is large for all three series, but due
to the strong multicorrelation, interpretation of this coefficient should be conducted
with care. However, across the wide range of modelling techniques (non-dynamic
and dynamic), the influence of traffic volume was very consistent. With the use
of graphic illustrations and time dependent coefficients in state space models, the
influence of traffic is investigated. Analysis shows that the influence of traffic is
stable over the estimation sample and that the influence of traffic can be modelled as
an elasticity. Time dependent coefficients may also help to characterize and model
non-linear effects.

Variations in unemployment is weakly associated with changes in the number of
accidents with killed or seriously injured and increasing gross national product is
associated with additional accidents with killed. Again, one should interpretate the
coefficients with care because of the strong multicorrelation.

The reduction in the speed limit in urban areas in 1985 was associated with a decrease
in the number of accidents with killed.

Summaries of the seasonal effect for the accidents series indicate that January, Oc-
tober, November and December are high risk months. The number of accidents with
killed in November and December is extremely high.

The general decreasing tendency in the series of accidents with killed or seriously
injured and accidents with injured can not be modelled as a global trend. However,
it can be described as a local linear movement, where the slope is fixed and the level
or intercept has its own slow moving pattern. The slope represents the growth rate,
which is approximately -7% per for accidents with killed or seriously injured and
accidents with injuries. The growth rate for accidents with killed is approximately
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-10% per year.

Modelling methods

An important issue in this thesis was to investigate the temporal dependency in the
accident series. It was shown that the monthly observations of accidents were serially
correlated and that this correlation could only partly be explained by the explanatory
variables for accidents with killed or seriously injured and with accidents with injured.
The basic structural model (Harvey and Durbin, 1986) is designed to model temporal
dependencies in a very flexible manner, where level, slope and seasonal patterns may
change over the estimation sample. However, the dynamic in the accident series is
relatively slow and can be captured by a simple model, where only the level is allowed
to change over time and the slope and seasonal pattern are fixed. A deterministic
model, such as a regression model, may adequately describe the variations in the
accidents with killed. Dynamic modelling techniques should be used when assessing
traffic safety through the use of accident series. Although non-dynamic models, in the
presence of serial correlation, might provide an adequent description of the variations
in the accident series, inferences are not reliable. The non-dynamic approach may
be able to describe short accident series satisfactorily.

The focus was to investigate methodologies for the analysis of previous and future
traffic safety developments. An important measure of model fit is the model’s ability
to predict future observations. The predictions of future accidents in state space mod-
els are approximately 50% better than predictions from shrinkage methods, which
are designed to obviate overfitting in regression models. This is because the state
space model utilizes the serial autocorrelation in data when predicting future events.
However, if no serial correlation is present, there is much gain when using shrinkage
methods on accident data, where the coefficient of determination is relatively high.

Assessment of the effects of countermeasures

An important contribution is the demonstration and discussion of models that take
developments over time into account when assessing how a change in the accident
series is related to a particular countermeasure taken.

An example of an application, that aims to detect changes in the accident numbers
is the mobile speed camera experiment. This study is also an example of a study of
disaggregated data.

The hypothesis in the speed camera experiment was that speed cameras would re-
duce the speed and consequently reduce the number of accidents correspondingly.
This thesis can document neither positive nor negative effects of the speed camera
experiment on the number of accidents.
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Another aspect examined in this thesis is the potential ability of a given study to
detect a change in the number of accidents, caused by a countermeasure. Knowledge
of the ability to detect changes prevents the analyst from setting up under-powered
studies, where important ideas are rejected due to the design of the study.

Another example of studies that aim to detect changes due to a specific countermea-
sure or intervention is the study of the changing police reporting routine.

The thesis finds that the change in the police reporting practice in 1997 lead to a
6.7% decrease in the reported number of accidents with killed or seriously injured.
In addition, the thesis finds that even though the reasons for sudden changes that
appear in an accident series may be known, one may use the series to describe the
effect of a given countermeasure or exposure when one adjusts for the changes. Even
if changes are not accounted for by observable explanatory variables, one may still
utilize the series if the changes are absorbed by the dynamics in the model.

It is also argued that assessment of the effects of a specific countermeasure can be
problematic and should be based on as much a priori knowledge as possible. This
is because the effective number of observations used to estimate the effects is highly
dependent on the dynamic in the accident series. Extending the post intervention
period does not necessarily improve the estimated effect associated with the coun-
termeasure.

The main result from this research is the verification of the importance of dynamic
models to describe variations in traffic accident series. Furthermore, the thesis
demonstrates that the general decreasing tendency in the accident series has its own
slow pattern, not explicable by recorded descriptive variables.

Assessment of the relationship between socio-economic variables and variations in
Danish accident series does not seem to be worthwhile investigating further. This is
because socio-economic variables in Denmark are highly muliticorrelated and have a
slow simultaneous or almost deterministic development. As the traffic safety man-
agement plans often aim at improving the situation for certain groups of road users,
it might be more appropriate to focus on evaluation of specific interventions in dis-
aggregated accident series.
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Brief intro to shrinkage
methods

The idea of shrinkage methods in regression analysis is to shrink regression coefficients
towards zero in order to overcome the problem of correlated xz-variables. The different
shrinkage methods that will be applied are very briefly described in the following:

A.1 Ridge regression

When normal linear regression is applied, the parameter estimates are computed by
solving the normal equations given by

Bols = (XTX)71XTY' (Al)

If one or more of the z-variables are correlated, it means that the columns in the
X-matrix are correlated and the matrix X7 X is not invertible. To overcome this
numerical problem, ridge regression (Hoerl and Kennard, 1970) can be applied, and
the parameter estimates are given by
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N P
Bridgge = argming = Z(yz —Bo — Z »"Cijﬂj)z
i=1 j=1
P
subject to Zﬁf <s (A.2)
j=1
or equivalently by
Brigge = (X"X + M) XY (A.3)

It is seen in (A.3) that a constant \ is added to the diagonal elements of X7 X,
thereby making X7 X invertable. The bigger X is, the more the shrinkage. If the
columns of X are highly co-linear, then some coefficients, obtained through least
squares estimation, may be misleadingly negative. With ridge regression, as coeffi-
cients shrinks toward zero, their signs become meaningful.

The solution to a Ridge regression is still a matrix times Y, where the matrix is a
function of X. Hence, the solution is still linear but biased. Typically the bias is less
than the decrease in variance caused by the constraint on the estimates.

Ridge regression can also be derived as the mean or mode of a posterior distribution,
with a suitable chosen prior to distribution.

A.2 The Lasso

Instead of a constraint on the sum of the squared parameters, we could use a con-
straint on the sum of the absolute values of the parameters. This shrinkage method
is called lasso (Tibshirani, 1996), and is given by

N P
Blasso = argming = Z(yi —Bo — Z i B;)°
=1 =1
P
subject to Z 1B;| < s. (A.4)

=1
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For small values of the shrinkage factor, s, the lasso sets a number of parameters
equal to zero, while ridge regression only pulls the parameters towards zero .

A.3 Principal component regression

The idea of principal component regression is to compute a number of linear com-
binations of the original inputs, and use these as inputs to the regression analysis
(Pearson, 1901). The linear combinations are, in this case, the principal components
of the z-variables. The principal components are found by

zZm = XV, (A.5)

and are afterwards used as inputs in the regression analysis. Predictions of the
response are computed as

M
:‘jpcr =g+ Z Omzm (AG)
m=1
where ém = (2m, Y)/(Zm, Zm)-

A.4 Partial least squares regression

Partial least squares regression is very similar to principal component regression. It
was introduced by Wold (1975). However, instead of computing linear combinations
based on the z-variables, it makes the computation based on both x and y. The first
step of the partial least squares algorithm is to perform univariate regressions of y
on each x;, thereby computing univariate regression coeflicients ¢;;, where 1 in the
index indicates that it belongs to the first partial least squares direction. The first
partial least squares direction is then computed as

Z21 = Zgbljmj. (A7)

Afterwards the original inputs @1, - - - , &, are orthogonalized with respect to z;. This
is done for each of the chosen partial least squares directions, M. Notice that if we
chose M equal to the number of input variables, p, partial least squares regression
is equivalent to the usual least squares estimates. This is also the case for principal
component regression.
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APPENDIX B

Descriptive statistics

In this chapter illustrations and tables from data descriptions in the text are pre-
sented.

B.1 Descriptive
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Descriptive statistics
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Year Unemp Alcohol Traffic Young Pop Gnp  Speed
Year
Unemp -0.1316
Alcohol -0.0674  0.3993
Traffic 0.9170 -0.3007 -0.2037
Young  -0.7264 0.4485  0.3492 -0.7193
Pop 0.9088 -0.3960 -0.1730 0.8623 -0.9263
GNP 0.9958 -0.1866 -0.0809 0.9222 -0.7312 0.9127
Speed 0.8099 0.0060 -0.1297 0.7476 -0.3115 0.5693  0.8036
Hi 0.7034 -0.5760 -0.1797 0.6768 -0.8337 0.8668 0.7244 (0.3542
Jan -0.0199  0.2065 0.0037 -0.1999 0.0152 -0.0189 -0.0365 -0.0067
Feb -0.0163  0.1473 0.0013 -0.1345 0.0124 -0.0154 -0.0301 -0.0067
Mar -0.0126  0.1171  -0.0005 -0.0672 0.0099 -0.0122 -0.0187 -0.0067
Apr -0.0090 0.0515 -0.0017 -0.0305 0.0070 -0.0087 -0.0079 -0.0067
May -0.0054 -0.0567 -0.0024 0.0509 0.0043 -0.0053 -0.0044 -0.0067
Jun -0.0018 -0.1105 -0.0025 0.1161 0.0014 -0.0017 -0.0040 -0.0067
Jul 0.0018 -0.1070 -0.0022 0.1264 -0.0013 0.0016 -0.0005 -0.0067
Aug 0.0054 -0.0419 -0.0015 0.1436 -0.0041 0.0051 0.0105 -0.0067
Sep 0.0090 -0.0804 -0.0005 0.0685 -0.0070 0.0087 0.0232 -0.0067
Oct 0.0126 -0.0603 0.0007 0.0464 -0.0098 0.0121 0.0295 0.0201
Nov 0.0163 -0.0472 0.0021  0.0009 -0.0127 0.0157 0.0246 0.0201
Dec 0.0199 -0.0182 0.0037 -0.1209 -0.0154 0.0191 0.0144 0.0201

Table B.1: Correlations of predictors in the Road Accident data. 1978-2001. Vari-
ables Speed, HI, Jan, ..., Dec. are dummy regressors
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Predictor  Coeflicient Std. Error T-stat p-value VIF TOL
Jan -0.0463 0.0084 -5.51 <.0001 0.4157 2.4053
Feb -0.0888 0.0078 -11.28 <.0001 0.4729 2.1142
Mar -0.0775 0.0084 -9.18 <.0001 0.4108 2.4339
Apr -0.0655 0.0089 -7.31 <.0001 0.3657 2.7338
May -0.0233 0.0109 -2.14 0.0336 0.2461 4.0621
Jun -0.0397 0.0135  -2.92 0.0038 0.1588 6.2935
Jul -0.0522 0.0140  -3.71 0.0003 0.1482 6.7437
Aug -0.0294 0.0138  -2.12 0.0346 0.1532 6.5234
Sep -0.0273 0.0110  -2.49 0.0136 0.2422 4.1272
Oct -0.0166 0.0101  -1.65 0.1002 0.2875 3.4771
Nov -0.0032 0.0088  -0.37 0.7099 0.3791 2.6375
Dec -0.0069 0.0063 -1.09 0.2758 0.7288 1.3720
Year -0.8798 0.1470  -5.98 <.0001 0.0015 634.3933
Unemploy 0.0382 0.0190 2.01 0.0454 0.0926  10.7909
alcohol 0.0074 0.0124 0.59 0.5524 0.1863 5.3676
Traffic 0.2564 0.0490 5.23 <.0001 0.0137  72.8178
Young 0.1043 0.0419 249 0.0136 0.0256  38.9976
Pop 0.0593 0.0768 0.77  0.4405 0.0069 144.1464
Gnp 0.4574 0.1311 3.49 0.0006 0.0020 478.5030
Limit50 -0.0282 0.0177  -1.59 0.1133 0.0887  11.2678
Hi -0.0420 0.0140 -2.99 0.0031 0.1997 5.0052

Table B.2: Linear model fit to accidents with killed or serious injuries (1978-1999).

T-test statistic is the coefficient divided by it’s standard error.
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Predictor LS Subset Backward Ridge Lasso PCR PLS
Jan -.0463  -.0487 -.0493 -.0233 -.0328 -.0608 -.0463
Feb -.0888 -.0850 -.0849 -.0376 -.0619 -.0428 -.0706
Mar -.0775  -.0676 -.0669 -.0237 -.0340 -.0272 -.0446
Apr -.0655 -.0523 -.05613 -.0136 -.0126 -.0126 -.0252
May -.0233 0.0129 0.0131 0.0241
Jun -.0397 -.0119 0.0115 0.0334 0.0230
Jul -.05622 -.0229 -.0196 0.0069 0.0364 0.0150
Aug -.0294 0.0214 0.0037 0.0301 0.0406
Sep -.0273 0.0137 0.0184 0.0263
Oct -.0166 0.0164 0.0131  0.0309
Nov -.0032 0.0150 0.0011 0.0276
Dec -.0069 0.0030 0.0341 0.0015
Year -.8798 -.8775 -.9110 -.0422 -.1508 -.0551 -.0577
Unemploy 0.0382 0.0316 0.0326 -.0203 -.0440 -.0452
Alcohol 0.0074 -.0057 0.0006 -.0140
Traffic 0.2564 0.1376 0.1226 -.0188 -.0193 -.0162
Young 0.1043  0.0408 0.0352 0.0334 0.0376  0.0449
Pop 0.0593 -.0402 -.0784 -.0467 -.0542
Gnp 0.4574  0.5552 0.6020 -.0377 -.0510 -.0507
Limit50 -.0282 -.0302 -.0474  -.0399
Hi -.0420 -.0395 -.0416 -.0337 -.0053 -.0342 -.0452
Test error  0.0200 0.0152 0.0160 0.0126  .0091 0.0181 0.0110
Std error 0.0316 0.0244 0.0239 0.0164 0.0137 0.0235 0.0165

Table B.3: Estimated coefficients and test error results for different subset and shrink-
age methods applied to the data for accidents with killed or serious injuries. The blank
entries correspond to variables omitted.
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Non-dynamic analysis of
accident data

In this appendix the results of non-dynamic regression modelling are given.
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Explanatory variables Coefficient Std. error F-statistic p-value

Intercept -10.8902 7.4317
Jan -0.1441 0.0274
Feb -0.3218 0.0273
Mar -0.2946 0.0280
Apr -0.2549 0.0291
May -0.1080 0.0317
Jun -0.1781 0.0369
Jul -0.2455 0.0388
Aug -0.1480 0.0380
Sep -0.1176 0.0322
Oct -0.0749 0.0304
Nov -0.0200 0.0271
Dec ref. 30.00 <.0001
Time -0.1087 0.0218 25.03 <.0001
logunemp 0.1637 0.0651 6.32 0.0126
logalc 0.1565 0.3807 0.17 0.6814
logtraffic 1.2972 0.1404 85.61 <.0001
logyoungpct 1.3471 0.4583 8.63  0.0036
logpop 10.0213 5.0334 3.96 0.0476
loggnp 0.4583 0.2391 3.68 0.0562
speed -0.0743 0.0325 5.21  0.0233
HI -0.0512 0.0350 2.14 0.1444

Table C.1: Poisson regression fit to accidents with killed or serious injured (1978-
1999). The F-test statistic is used due to significant over dispersion (0>=3.51 p-value
<0.001). The F-test value for December is the test for no seasonal variation



95

deviance residuals

Dev. res. v scaled fitted values Al + smooth abs. dev. res. v scaled fitted values Al + smooth
° o < o
~
o
% o o o o
o+ z ° o
s
T o~
¢
3
s
3
ad 8
B
°
o o ° ° o
<+ o o
T T T T
25 30 35 40
Scaled fitted values Scaled fitted values
Autocorrelation for Al residuals Full normal plot of dev. res. Al
ER o ©
50
~
w | dsfcp
3
© | »
° S o
3
o 3
2= H
B @
£
5
o ]
S
‘ o 000®
S ‘ | ‘ | ‘ T ‘ | - I
| |
T T T T T T T T T T T T
0 5 10 15 20 3 2 1 0 1 2 3
Lag

Normal order statistics

Figure C.1: Model-checking plots for accidents with injuries.
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Explanatory variables Coefficient Std. error F-statistic p-value

Intercept -10.2793 6.5022
Jan -0.1278 0.0244
Feb -0.3173 0.0243
Mar -0.2825 0.0247
Apr -0.2488 0.0256
May -0.1123 0.0279
Jun -0.1747 0.0323
Jul -0.2609 0.0340
Aug -0.1480 0.0333
Sep -0.1174 0.0283
Oct -0.0893 0.0268
Nov -0.0369 0.0240
Dec ref. 35.50 <.0001
Time -0.0946 0.0192 24.41 <.0001
logunemp 0.0912 0.0562 2.63  0.1058
logalc 0.5379 0.3375 2.54 0.1124
logtraffic 1.5475 0.1225 160.22 <.0001
logyoungpct 1.0179 0.4038 6.35 0.0124
logpop 8.9470 4.4090 4.12  0.0435
loggnp 0.1989 0.2108 0.89  0.3462
speed -0.0807 0.0292 7.61  0.0062
HI 0.0511 0.0294 3.02  0.0837

Table C.2: Poisson regression fit to accidents with injuries (1978-1999). The F-test
statistic is used due to significant over dispersion (0?=4.17 p-value < 0.0001). The
F-test value for December is the test for no seasonal variation.
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Explanatory variables Coefficient Std. error F-statistic p-value

Intercept -1.2753 14.6278
Jan -0.2531 0.0522
Feb -0.4037 0.0513
Mar -0.4653 0.0536
Apr -0.4373 0.0553
May -0.3723 0.0612
Jun -0.3915 0.0710
Jul -0.5082 0.0749
Aug -0.4289 0.0735
Sep -0.3772 0.0620
Oct -0.2494 0.0577
Nov -0.0775 0.0503
Dec ref. 15.61 <.0001
Time -0.0889 0.0433 4.23  0.0407
logunemp 0.0338 0.1270 0.07  0.7905
logalc 0.1094 0.7587 0.02  0.8854
logtraffic 1.5909 0.2777 32.95 <.0001
logyoungpct 1.1551 0.8888 1.69 0.1951
logpop 2.1389 9.9070 0.06  0.8292
loggnp 0.5026 0.4752 1.12  0.2907
speed -0.1411 0.0640 4.82 0.0291
HI 0.0547 0.0650 0.71  0.4002

Table C.3: Poisson regression fit to accidents with killed (1978-1999). TheF-test
statistic is used due to significant over dispersion (02=1.181 p-value = 0.0251). The
F-test value for December is the test for no seasonal variation.
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Explanatory variables Coefficient Std. error F-statistic p-value

Intercept -8.1369 7.4865
Jan -0.1434 0.0267
Feb -0.3196 0.0255
Mar -0.2918 0.0270
Apr -0.2597 0.0283
May -0.1227 0.0319
Jun -0.1960 0.0369
Jul -0.2476 0.0381
Aug -0.1536 0.0380
Sep -0.1292 0.0324
Oct -0.0823 0.0306
Nov -0.0297 0.0275
Dec 0 27.55 <.0001
Time -0.1114 0.0225 22.61 <.0001
logunemp 0.1285 0.0658 3.51 0.0623
logalc 0.2708 0.3967 0.43 0.5131
logtraffic 1.3242 0.1412 80.96 <.0001
logyoungpct 0.9407 0.4625 3.81 0.0522
logpop 7.5080 5.0794 2.01 0.1574
loggnp 0.5325 0.2454 4.33 0.0384
speed -0.0752 0.0346 4.35 0.0381
HI -0.0629 0.0314 3.69 0.0559

Table C.4: Linear regression fit to accidents with killed or serious injured (1978-
1999). The F-test value for December is the test for no seasonal variation.
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Explanatory variables Coefficient Std. error F-statistic p-value

Intercept -9.2121 6.5745
Jan -0.1259 0.0234
Feb -0.3150 0.0224
Mar -0.2795 0.0237
Apr -0.2491 0.0249
May -0.1234 0.0280
Jun -0.1902 0.0324
Jul -0.2643 0.0335
Aug -0.1554 0.0334
Sep -0.1287 0.0285
Oct -0.0965 0.0269
Nov -0.0452 0.0242
Dec ref. 33.03 <.0001
Time -0.0988 0.0197 23.03 <.0001
logunemp 0.0793 0.0578 1.73  0.1894
logalc 0.6277 0.3484 2,99 0.0851
logtraffic 1.5975 0.1240 152.78 <.0001
logyoungpct 0.7782 0.4062 3.38 0.0673
logpop 7.6978 4.4607 2.74  0.0991
loggnp 0.2578 0.2155 1.32  0.2522
speed -0.0796 0.0304 6.33  0.0126
HI 0.0493 0.0276 2.94 0.0878

Table C.5: Linear regression fit to accidents with injuries (1978-1999). The F-test
value for December is the test for no seasonal variation.
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Explanatory variables Coefficient Std. error F-statistic p-value

Intercept 1.5047 14.5627
Jan -0.2602 0.0519
Feb -0.4044 0.0497
Mar -0.4669 0.0524
Apr -0.4380 0.0550
May -0.3836 0.0620
Jun -0.3977 0.0718
Jul -0.5010 0.0742
Aug -0.4317 0.0740
Sep -0.3866 0.0630
Oct -0.2523 0.0596
Nov -0.0775 0.0535
Dec 0.0000 0.0000 14.02 <.0001
Time -0.0887 0.0437 3.79  0.0529
logunemp 0.0094 0.1280 0.00  0.9439
logalc 0.3690 0.7716 0.21  0.6468
logtraffic 1.6044 0.2747 31.41 <.0001
logyoungpct 0.7956 0.8997 0.72  0.3970
logpop -0.4826 9.8805 0.00  0.9627
loggnp 0.5252 0.4773 111 0.2922
speed -0.1309 0.0673 3.49  0.0630
HI 0.0517 0.0611 0.66 0.4171

Table C.6: Linear regression fit to accidents with killed (1978-1999). The F-test value
for December is the test for no seasonal variation.
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