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Abstract

Rotating and reciprocating mechanical machines emit acoustic noise and vibrations
when they operate. Typically, the noise and vibrations are concentrated in narrow
frequency bands related to the running speed of the machine. The frequency of the
running speed is referred to as the fundamental frequency and the related frequencies
as orders of the fundamental frequency. When analyzing rotating or reciprocating
machines it is important to know the running speed. Usually this requires direct
access to the rotating parts in order to mount a dedicated tachometer probe.

In this thesis different frequency estimation techniques are considered for pre-
dicting the true fundamental frequency from measured acoustic noise or vibration
signal. Among the methods are auto-correlation based methods, subspace methods,
interpolated Fourier transform methods, and adaptive filters. A modified version of
an adaptive comb filter is derived for tracking non-stationary signals.

The estimation problem is then rephrased in terms of the Bayesian statistical
framework. In the Bayesian framework both parameters and observations are con-
sidered stochastic processes. The result of the estimation is an expression for the
probability density function (PDF) of the parameters conditioned on observation.
Considering the fundamental frequency as a parameter and the acoustic and vibra-
tion signals as observations, a novel Bayesian frequency estimator is developed. With
simulations the new estimator is shown to be superior to any of the previously con-
sidered estimation techniques.

Within the Bayesian framework, two schemes for tracking the fundamental fre-
quency are proposed. For both schemes the tracking capability is defined as a PDF
of the next frequency estimate conditioned on the previous estimate(s). The first
scheme works in real-time and is not guaranteed to find the optimal track, i.e., the
track with highest probability. The second scheme is retrospective and requires all
observation to be available, but it is guaranteed to find the optimal track.

The Bayesian estimator can also estimate the amplitude of non-stationary fre-
quencies. An example of this is given, where the amplitudes of the orders of the
fundamental frequency are estimated. The result is found comparable with existing
amplitude order tracking methods.






Nomenclature

Symbols and Abbreviations Unless explicity stated otherwise, the symbols and
abbreviations listed below are used throughout the report.

Symbols and Notations

argmax f(x)

The value of x which maximizes f(z)

Absolute value of real values and magnitude for complex values
The convolution operator, i.e

F@) xg(t) = [72 f(r)g(t —7)dr

Matrix transpose operator

Complex conjugate operator

Matrix hermitan operator, i.e complex conjugated transpose
The expectation (mean value) of (-).

The fundamental frequency of a harmonic signal.

Fourier transform.

Inverse Fourier transform.

The likelihood function for the observations d being modelled
by the parameterset 6.

Bold lower-case letters denotes a vector.

Bold upper-case letters denotes a matrix. In some cases the
dimension are indicated with subscript notation.

Indicates that scalar x is normally distributed with mean value,

i, and the variance, o2.
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Abbreviations

ACF Adaptive Comb Filter.

ALE Adaptive Line Enhance

ANF Adaptive Notch Filter.

AR Auto-Regressive.

ARMA Auto-Regressive Moving Average.
BSS Blind Source Separation

BT Band-width Time

BW Band-width

CRLB The Cramér Rao Lower Bound for unbiased estimators.
DFT Discrete Fourier Transform.

EKF Extended Kalman Filter.

FFT Fast Fourier Transform.

FIR Finite Impulse Response.

FRF Frequency Response Function.
DFT Discrete Fourier Transform.
DOA Direction of Arrival.

ii.d. Independent identically distributed.
IIR Infinite Impulse Response.

LPC Linear Predictor Coefficients.
MAP Maximum a Posteriori.

ML Maximum Likelihood.

PDF Probability Density Function.
RMS Root of the Mean Squared.
RMSE Root of the Mean Squared Error.
SDOF Single Degree Of Freedom.

SIFT Simplified Inverse Filtering.

SNR Signal to Noise Ratio.

Std.dev Standard deviation.

w.I.t. With respect to
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CHAPTER 1

Introduction

This thesis deals with the detection and tracking of the fundamental frequency of
rotating machines based on indirect measurements, e.g., in form of acoustic noise or
of mechanical vibrations.

Driving in a passenger car most people will have an impression of the running
speed of the engine by merely listening to it. Typically, the sound heard is not
a pure sinusoidal wave but is comprised of multiple harmonic tones related to the
fundamental frequency in the presence of noise.

In the literature great attention has been paid to the detection and tracking of
harmonic signals, and it is used in many different application areas, e.g. pitch detec-
tion in speech processing, direction of arrival (DOA) estimation in radar processing.

The methods for estimating frequencies are numerous and each method has its
own strengths and limitations. Some methods operate in real-time, i.e. they update
the frequency estimate for each new input data and some operate in batches of input
samples (batch-mode). The best known and most used method is probably the fast
Fourier transform (FFT).

1.1 Motivation

When analyzing rotating machines, it is of interest to investigate how higher orders of
the fundamental frequency behave as the running speed changes. Causes for changes
in the running speed are numerous, e.g. changes in operational load or changes in
control parameters.

The most common frequency analysis methods are based on equidistant sampled
data values, e.g. in the time domain for traditional frequency spectrum analysis. To
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analyze the harmonic orders of some fundamental frequency, the data values needs
to be sampled equidistantly in the angular domain instead of time domain.

Most data acquisition systems provide data sampled equidistantly in the time
domain, it is thus necessary to transform the measured data from the time domain
to the angular domain. This operation is called resampling.

The resampling process depends on an accurate angular reference signal. This
reference is typically labeled the tacho-signal and is measured with a tachometer.
Tachometers often require direct access to revolving parts of the machine. In practice
this can be difficult to obtain, especially for small and compact machines.

Different resampling techniques are examined in [13]. They stress the importance
of the accuracy of the tacho signal.

1.2 Problem Definition

The purpose of the study has been to evaluate and if possible improve existing meth-
ods for estimating and tracking the fundamental frequency of vibro- acoustic signals
generated by rotating machinery.

1.3 Thesis Outline

Chapter two deals with the characteristics and statistics of vibro- acoustic signals.
These are illustrated by the analysis of a set of experimental data, based on which a
simple model is derived and tested.

Chapter three presents a summary of existing frequency estimation methods. The
methods are primarily used in speech processing and in radar applications.

In Chapter four the frequency estimation problem of vibro acoustic signals is for-
mulated in a Bayesian context. This has previously not been documented. The new
approach presents obvious advantages since the Bayesian framework easily incorpo-
rates prior knowledge of the signal. For the given case, this prior knowledge concerns
the harmonic structure of the signal.

Chapter five extends the Bayesian model derived in chapter four with the ability to
track the fundamental frequency. This is accomplished by including additional prior
knowledge of the fundamental frequency’s variation over time, e.g. as the outcome
of a Markov Chain Process.

In Chapter siz, the theories have been applied to two cases to illustrate the ap-
plicability of the new concepts. The first case is rather simple. It concerns a race
car passing a microphone. The strength of the new method is its ability to give a
high-resolution estimate of the Doppler shifted frequency. The second case is more
complicated. It illustrates that besides the fundamental frequency it is possible to
estimate the amplitude of different harmonic orders of the fundamental frequency.
The results show very good agreement with estimates obtained using conventional
methods relying on a measured tacho reference. Often such a reference requires di-
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rect access to the rotating parts. In this respect the proposed method is non-invasive
due to the elimination of a tacho reference.
Chapter seven concludes the investigations and outlines areas for futher research.
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CHAPTER 2

Signal Characteristics

This chapter investigates the properties of vibro-acoustic signals. For this purpose ex-
perimental data is acquired from an automobile. The data is described in section 2.2
in terms of its time-domain and frequency domain characteristics.

The statistical properties are investigated in section 2.3 using both traditional
descriptive statistics and the theory a-stable distributions («SD). The reason for
considering aSD is their ability to describe impulsive distributions and the fact that
vibration signals often show impulsive characteristics.

In the last part of the chapter a simplified model is developed based on the
experimental data and the observed statistical properties. The model is used in later
chapters to analyze the performance of various frequency estimation algorithms.

2.1 Noise and Vibration Signals

References to measuring and analyzing noise and vibration signals can be found in
the literature e.g. [2,26,47]. However, the topic of most of the references is condition
monitoring. In short, the goal of condition monitoring is to identify and extract
features from the signals that reveal the health condition of the machine.

Traditional methods for conditioning monitoring as described in [2] are often
based on Fourier analyses, hence limited to stationary or quasi-stationary signals.
Thus the frequency spectra of the vibrations are measured under stationary con-
ditions, i.e while the the machine is running at a constant speed. Faults are then
observed if the level changes over time in selected frequency bands.

For rotating machines important information can be found in signals from run-up
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or run-down measurements [17]. These signals are non-stationary and reveal speed-
dependent information.

For non-stationary signals, time-frequency methods are more appropriate [14,17,

|. The advantage of time-frequency methods over the Fourier transform is increased
temporal resolution.

Recent methods being applied to condition monitoring are taken from the field
of Machine Learning. Blind source separation (BSS) is one of the methods. Given
that the original sources are statistically independent, BSS separates the sources
from observations which are assumed to be unknown linear mixtures of the sources.
Machine Learning in condition monitoring is the topic of [69].

Indicators of faults in rotating machines are often small impulses, caused by
impacting of mechanical components, e.g. tooth meshing in gear-boxes. The small
impulses are difficult to measure in high levels of background noise.

2.2 Experimental Data

The purpose of this study is to estimate and track the fundamental frequency of
rotating machines from easily accessible signals such as emitted sound or measured
vibrations. In the following focus will be on signals generated by a combustion engine,
and to investigate the properties of this type of signals, experimental data has been
acquired from an automobile.

The data consists of three signals: the first is the tacho reference measured op-
tically from the cam-shaft of the engine, the second is accelerations in the vertical
direction of the engine block measured with an accelerometer, and the third signal
is the acoustic sound pressure measured with a microphone approximately 1m above
the engine block.

During the experiment the car is in neutral and is accelerated manually from
idle at 670 RPM to 3600 RPM over a 40 second period after which the accelerator
is released and the speed decreases to idle within 5 seconds. The profile of the
fundamental frequency as measured with the tacho-probe is shown in Figure 2.1.

The vibration and acoustic signals are sampled at a rate of 8192 samples per
second. Both signals are normalized, i.e. the mean is subtracted and the amplitude
is scaled to unit variance, &; = (x; — T)//Var(z). The acquired time signals are
shown in Figure 2.2 where the large graph is the entire signal and the smaller graphs
are excerpts comprising 4 full cycles of the fundamental frequency at T=2.5s and
T=45s respectively. The top figures 2.2(a) and 2.2(b) show the vibration and acous-
tic time signals at full measurement bandwidth; It is noted that when idle (T=2.5s)
the acoustic signal is dominated by a harmonic component at 2.5 times the funda-
mental frequency. Since the engine has 5 cylinders this frequency corresponds to the
firing frequency of the cylinders. Both signals are oversampled with respect to the
fundamental frequency shown in Fig. 2.1. Therefore the two lower figures 2.2(¢) and
2.2(d) show the same vibration and acoustic signals, but with the sample rate reduced
to 1024 samples per second equivalent to a measurement bandwidth of 400 Hz. Sub-
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Figure 2.1: Profile of the fundamental frequency for the experimental data from the
passenger car. The engine is accelerated manually from idle to 3600 RPM when the
accelerator is released.

jective comparison of the upper and lower graphs, suggests that the vibration signal
is more impulsive than the acoustic signal at the high sample rate but the difference
is less pronounced at the low sample rate.

The frequency contents of the experimental data is shown in Figure 2.3 in the
form of spectrograms. The harmonic orders stand out more clearly for the vibration
signal than the acoustic signal, and at 400 Hz bandwidth (Fig. 2.3(c)) the 2nd order
of the fundamental frequency is easily identified.

For both signals the harmonic structure is seen to be complex, containing a large
number of fractional orders of the fundamental frequency. At the high measurement
bandwidth it is almost impossible to distinguish the orders from each other and
thus makes it more difficult to detect the fundamental frequency. This is in part
caused by the smearing of the amplitude estimates that occur if the frequencies are
non-stationary during the measurement interval.

Structural properties pose another problem. This is seen in Fig. 2.3(a) where
a bright band is observed in the frequency range from 1100 Hz to 1500 Hz. The
structural properties will cause certain frequencies to be damped and others amplified
depending on where the vibrations are measured. Figure 2.4 shows the frequency
response function (FRF) at the mounting point of the accelerometer measuring the
engine vibrations. The FRF is obtained as the average of 10 hits with a hammer on
top of the engine block. It is seen that the frequency response in the range from 1100
Hz to 1600 Hz is elevated almost 20 dB compared than the lower frequencies.
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Figure 2.2: Vibro-Acoustic signals in the time domain. (a) Engine vibration with a
bandwidth of 3.2 kHz. (b) Engine noise with a bandwidth of 3.2 kHz. (¢) Low-pass
filtered engine vibration (BW=400 Hz). (d) Low-pass filtered engine noise (BW=400
Hz). The large graphs show the entire signal and the smaller graphs are excerpts
comprising 4 full cycles of the fundamental frequency at T=2.5s and T=45s.
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Figure 2.3: Frequency contents of the experimental data. Top row shows the spec-
trograms for signals for the 3.2 kHz measurement bandwidth, and bottom row for
the 400 Hz bandwidth. For both bandwidths the signals are segmented into records
of 1/2 s with 50% overlap equivalent to a frequency resolution of AF = 2 Hz. In
the left column is shown the spectrograms of vibration signal and in the right col-
umn of the acoustic signal. The noise in the vibration spectra is most prominent for
higher orders of the fundamental frequency and allows visible identification of the
2nd harmonic (c¢). For the acoustic signal the noise seems more white making a clear
identification of the harmonics difficult.
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Figure 2.4: Measured Frequency Response Function on top of an engine block
mounted in a passenger car.

2.3 Statistical Properties

It is often assumed that the noise contribution in a signal is normally distributed.
In case of the noise being a sum of many independent identically distributed (i.i.d.)
variables, this assumption is supported by the central limit theorem.

The conditions under which vibro-acoustic signals are generated may vary - not
only from one experiment to another - but also within one experiment by itself,
e.g. during a run-up or run-down experiment of a car engine. To gain fundamental
understanding of how the signals are effected it is of interest to examine the statistical
properties of the vibro-acoustic signals.

In this section two different statistical methods are applied to the vibro-acoustic
signals. The first method is to compute the traditional parameters from descrip-
tive statistics: mean(T), standard deviation(o), skewness(7) and kurtosis(x). The
second method assumes the signals to be a-stable distributions, and estimates the
four parameters for stable laws: characteristic exponent («), location (i), index of
symmetry (3), and dispersion (7).

Distributions for random variable are described by their probability density func-
tions (PDF’s). Figure 2.5 shows the PDF’s for two well-known distributions: the
normally distributed Gaussian and the Cauchy distribution. The PDF of a randomly
sampled sinusoid is also shown in the figure.

2.3.1 Descriptive Statistics

The definitions of the traditional descriptive parameters are given in Table 2.1. The
descriptive parameters are estimated in blocks of 1 second for the vibration and
acoustic signals. The parameters are computed at the measurement bandwidths of
3200 Hz and 400 Hz yielding the four graphs shown in Figure 2.6. The graphs in the
figure show that the vibration signal at high bandwidth has heavier tails (k>3) than
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x ~ sin(t)
z ~ SaS(1, 0, 0.5)
e SaS(2, 0, 0.5)

Figure 2.5: Probability Density Functions: i) a sinusoid, x ~ sin(t); ii) the
normally distributed Gaussian with unit variance (o2 = 2v), * ~ SaS(2,0,0.5);
and iii) the Cauchy distribution with v =0.5. z ~ SaS(1,0,0.5).

the acoustic signal which is close to Gaussian (k~3). As the fundamental frequency
increases the skewness for the vibration signal increases whereas the acoustic noise
remains symmetrical. At the low bandwidth the distribution of vibration signal
becomes more flat (k<3). The PDF of a sinusoid has no tails (see e.g. appendix A.1).
This could indicate that the vibration noise is located at the higher frequencies and
that at the low frequency range the signal is dominated by the pure harmonics of the
fundamental frequency. The spectrograms in Figure 2.3 supports this observation.

Parameter Symbol Equation
Mean T ]{, ZN 1%
Standard deviation o \/Z’ 1(;{ o*

Skewness T %

1)o3
N —\4
Kurtosis K Z(;L(if);ﬁ)

Table 2.1: Descriptive Parameters

2.3.2 The a-Stable Distribution

Stable distributions are a flexible modeling tool for heavy tailed distributions as they
have a controlling parameter a that describe how thick the tail should be. « is called
the characteristic exponent and this class of distributions is often called a-stable
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Figure 2.6: Descriptive Parameters. This figure shows the estimated statistical pa-
rameters for the experimental data. Most variation is observed in the kurtosis pa-
rameter. For a standard normally distribution the kurtosis is 3; values below indicate
a flatter distribution and value above distributions with heavier tails. The acoustic

signal exhibits almost normality for both bandwidths, whereas the vibration signal
is heavy tailed for the high BW and flat for the low BW.
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distributions. In fact, the a-stable distributions contain the Gaussian distribution as
a limiting case when o = 2. The Cauchy distribution is also included in this class of
distributions with a = 1 (e.g. recall Figure 2.5).

There exists no closed-form expression for the probability density function of
an a-stable distribution, but the characteristic function, (¢), which is the Fourier
transform of the probability density function is defined by

W(t) = exp (iat — A/ [1 + iBsign(t)w(t, a))) (2.1)
where

tan&F, fa#1

w(t,a) = { 2

210611, ifa=1 (2:2)

The parameters in Eq. (2.1) are «, 3, v and pu.

e « is the characteristic exponent. It satisfies 0 < a < 2. It controls how heavy
the tails are. The lower « is the heavier they are and hence the distribution is
more impulsive.

e (3 is the index of symmetry (=1 < 8 < 1). When 8 = 0, the distribution is
symmetrically around the location parameter.

e v is the dispersion parameter (v > 0), which determines the spread of the
density around its location parameter. It behaves similar as the variance of the
Gaussian density, and when o = 2 it equals the half of the variance.

e 1 is the location parameter (—oo < p < 00). It corresponds to the mean for
1 < o < 2 and the median for 0 < a < 1.

When § = 0 the distribution is symmetric. Such distributions are called Symmet-
rically v Stable distributions or SasS for short. SasS distributions do not have a finite
second (or higher) order moments. In fact, only moments for 0 < § < « are defined,
where § is called the fractional lower order moment. If X is an a-stable random
variable then with F{X} denoting the expectation of X the following apply [33]:

B{|X|°} 0o, if §>a
E{|X|5} < o0, f 0<i<a
E{|X|°} < oo, if a=2andé>0

The implications of this is that SaS distributions have no variance and that two pro-
cesses generated by an SaS distribution do not have any covariance (cross-correlation).
The estimated .S parameters for the accelerometer and microphone signals are
plotted in Figure 2.7. The parameters are estimated in blocks of 1 second using the
regression method of Koutrouvelis [23].
The two upper figures, Fig. 2.7(a) and Fig. 2.7(b) show the estimated parameters
for stable distributions for the vibration and acoustic signal at the high sample rate.
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The characteristic exponent, «, is very close to 2 for the acoustic signal and varies
between 1.6 and 2.0 for the vibration signal. This indicates that distribution of the
vibration signal has heavier tails (i.e. is spikier) than the acoustic signal which is
almost Gaussian. Looking at the small graphs in figures, Fig. 2.2(a) and Fig. 2.2(b)
this is also seen to be the case. Since the signals are normalized the location param-
eter, p, is zero as expected for both signals. The symmetry parameter, (3, indicates
that the acoustic signal is more symmetrical than the vibration signal since it is neg-
atively biased for the vibration signal. The scale parameter, -, increases with the
fundamental frequency. In the two lower figures, Fig. 2.7(c) and Fig. 2.7(d) the esti-
mated .S parameters are shown for the signals at the reduced bandwidth of 400 Hz.
Apparently, the removal of the higher frequencies from the vibration signal makes «
very close to 2.0. and supports the observations regarding the small time segments
of Figure 2.2, that the impulsive nature of vibration signal is less pronounced at the
low bandwidth.

2.3.3 Discussion

The examination of the experimental data using both descriptive statistics and a-
stable distributions, lead to similar conclusions: Firstly, with a bandwidth of 3.2 kHz
the distribution of the vibration signal is confirmed by both methods to be heavy
tailed (k> 3 and « < 2). However, the heavy tails disappear when the bandwidth is
reduced to 400 Hz (k< 3 and o = 2). The fact that k< 3 indicates a flat distribution
and it is probable that this is caused by the sine waves corresponding to the orders
of the fundamental frequency. Secondly, both ¢ and  increase with the fundamental
frequency. The energy in the vibration and acoustic signals thus increases with the
speed of the engine.

For the purpose of determining the fundamental frequency in the experimental
data it is sufficient with a measurement bandwidth of 400 Hz. In this range neither
the vibration or acoustical signal exhibit impulsive characteristics. Had this not been
the case, one could resort to using Heavy-tailed models as described in [24,33].

2.4 Modeling Noise and Vibration Signals

When evaluating methods for estimating and tracking the fundamental frequency it
is desirable to have a model of the source signals. In order for the model to be useful
it must capture the essential properties of the real signals.

As an example of such models, two different models are described briefly in the
following.

In [27] Lee and White proposes an adaptive line enhancer (ALE) which enhances
the impulses in the signal and then uses time-frequency analysis to relate the impulses
to the angle of the crank-shaft. They propose the following model for vibration signal
in condition monitoring applications

2(t) = sp(t) + s5(t) +i(t) + n(t) (2.3)
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Figure 2.7: Estimated aS Parameters. The low-pass filter removes much of the
noise from the vibration signal. This is reflected in the increase of the characteristic
exponent from (a) to (¢) . No noticeable difference is observed for the acoustic
signal. In the regions where the signals are almost periodic, the estimates of the
characteristic exponent are noted to be invalid (a > 2).
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where sp,(t) represents all harmonic signals related to the fundamental frequency,
s;(t) are the incommensurated harmonic signal (i.e. not related to the fundamental
frequency) , i(t) is the impulsive part of the signal and finally n(t) is broadband
random noise.

A more complete linear model is found in [69],

ZhF (t,0)xFy(t,0) +Z hE (L, 0)Ii(t,0)+15 (t, 0)xm(t, 0)+n;(t,0) (2.4)

where x(t,0) is the vibration signal measured at the sensor position j. The model
operates with two time scales, ¢t being the normal time in seconds and 6 being a
slow time-scale corresponding to the life-cycle of the machine. The model separates
the data into fault related sources Fj(t,6), interfering machinery components I;(t, 6),
and the modal machine response m(t,d). All sources have separate transfer paths
from their origin to the sensor. This is indicated with the * operator denoting

convolution of the sources with the impulse responses, hf;(t,0), hf;(t,0) and h3(t,0),
corresponding to the filtering by the machine casing from the source to the sensor.
The measured signal x;(t, 0) is called a convolutive mizture and methods exist which
can solve it, but it is more difficult than for the linear mixtures.

2.4.1 Harmonic Modeling

The model proposed here is a special case of the above models. It is tailored to model
periodic signals with changing fundamental frequency as encountered in rotating
machines under run-up/down operation.

Assuming that the experimental data is representative for signals where the fun-
damental frequency is to be estimated, then the essential properties to be captured
by the model are: i) The harmonic structure of the signal. The structure is specified
by a number of orders of the fundamental frequency. The number of orders can be
large. ii) The frequency of the orders, which need not be integer multiplicands of the
fundamental frequency. iii) The amplitudes of the orders, which may depend on the
fundamental frequency.

The model is shown in Figure 2.8. It consists of three parts. The first part is a
harmonic signal generator. The generator is driven by a fundamental frequency and
produces a sequence of sinusoids with predefined phases, amplitudes and frequencies
being constant orders of the fundamental frequency. The equation for the output of
the generator is shown in Eq.(2.5), where z(t) is the output of the generator; w(t)
is the fundamental frequency of the periodic signal, (t) is the phase angle of the
fundamental, and 7,, is the order number.

= Z ay, cos(Nn (1)) + by sin(n, Q(t))
(2.5)
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Figure 2.8: Signal Generation. Simulating the response of a mechanical system
using a digital filter. The digital filter is designed to have response similar to that
of a simple second order mechanical system with a single degree of freedom. The
excitation of the system is modeled with the harmonic signal generator that generates
a predetermined harmonic sequence. Gaussian noise is added after the filtering to
simulate measurement noise.

The a,, and b,, parameters determine the amplitude and phase of the n* harmonic
component through the relation

ap, cos(MpQ2(t)) + by sin(n,Q(t)) = Ay, cos(n,Q(t) + én)

where

tan(gn) = —byp/an, A, = /a2 +b2

Amplitude dependency of the fundamental frequency is accomplished by the sec-
ond part of the model. This part models the transfer path from the source to the
transducer as a simple 2nd order mechanical system with a single degree of freedom
(SDOF). The equation of motion for the system is governed by

mi(t) + ci(t) + ka(t) = F(t) (2.6)

where m is the mass, c is the damping, k is the spring forcing and F' is the external
forcing on the mass. () and (*) indicates single and double differentiation in time. z(t)
is the displacement of the mass. The frequency response for displacement, velocity
and acceleration of the system is shown in Figure 2.9 together with the system. The
mechanical system is simulated with a digital filter, which can be derived from the
Laplace transform of the transfer function X (s)/F(s) from Eq.(2.6) using the bilinear
transformation. The Laplace transform of Eq. (2.6) is shown in Table 2.2 together
with the transfer functions for the velocity and acceleration. The last part of the
model is to add white Gaussian noise with a specified variance. The noise variance
controls the signal to noise ration (SNR) of the signal. When the noise variance is
kept constant and the fundamental frequency is stationary, then the SNR will also
be constant. But, when the fundamental frequency changes, the amplitudes of the
harmonic components and hence also the SNR changes because of response of the
SDOF system.
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Figure 2.9: a) Mechanical system (see text) with a single degree of freedom. b)
Frequency responses of the second order filters simulating the mechanical system
when specified by the damping ratio, ¢ = 1/8, and the damped natural frequency
wq = 0.307 rad/s.

Displacement: Hp(s) = m (Compliance)
Velocity: Hy (s) = moioors (Mobility)
Acceleration:  Ha(s) = #;Jrk (Accelerance)

Table 2.2: SDOF system Transfer Functions. The transfer functions defined as the
system response over the excitation. They are also referred to as frequency response
functions under the names of compliance, mobility and accelerance

Example

To illustrate the properties of the model, the harmonic signal generator is configured
to generate a harmonic signal composed of the first three harmonics of the funda-
mental frequency as shown in Eq.(2.7). The amplitudes of the harmonic components
are selected to be inversely proportional to the order of the component.

t

3
z(t) = AZ%cos(kQ(t)), Qt) = /WF(T)dT (2.7)

k=1 0

Figure 2.10 shows how the relative amplitudes of the orders change as wp changes
and the orders pass through the resonance of the system. The top graph shows the
profile of the harmonic orders of wr. The lower graph shows the RMS acceleration
amplitudes of the harmonic orders’.

IThe units are arbitrary and have no physical interpretation.
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Figure 2.10: Harmonic orders of the periodic signal. Top graph: the three curves
show the frequency profiles of the three harmonic components in the driving force
of the mechanical system. The harmonic orders decrease 6 dB per octave. Bottom
graph: RMS amplitudes of the acceleration response of the driving force. The relative
amplitudes of the harmonic components change with the fundamental frequency; it
starts at the low frequency with the 3'd order dominating, then as the frequency
increases the 28 order and then the 15t order dominate.

White Gaussian noise with variance, 0%, is added to the simulated response of
the mechanical system. The simulated response thus becomes

y(t) = h(t) x (t)

, (2.8)
d(t) = yt) +e(t), e(t) ~N(0,0%)

where x denotes convolution, h(t) is the impulse response of the mechanical system,
x(t) is the generator signal, y(t) is the simulated response, and d(t) is the observed
response with the additive noise, e(t). The noise variance is determined from an
average signal to noise ratio (SNR) level defined as SN Rqp = 10log(Var(y(t))/o%).
Since y(t) varies over time, so will the actual SNR level which is also observed in
practice. Figure 2.11 shows the variation in SNR for the three responses, acceleration,
velocity and displacement, when the average SNR is 10 dB.

Cramér Rao Lower bound

The Cramér Rao Lower bound (CRLB) is a lower bound on the covariance of the
parameter errors of unbiased estimators. For estimation problems such as finding the
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Figure 2.11: Variation in SNR. This figure shows the non-stationary behavior of the
signal to noise ratio when the fundamental frequency and harmonic orders changes
as shown in Figure 2.10. The noise variance is set for each of the three responses ,
such that an average SNR of 10 dB is achieved.

fundamental frequency, the amplitudes and the phases of the signal d(t) in Eq. (2.8),
the CRLB gives the minimum variance of the parameters.

The CRLB for the parameter estimates of harmonic signals in noise, such as
Eq. (2.8) is derived in [31]. For the fundamental frequency, i, and the amplitudes,
Ay, the lower bounds are,

12

V. ) > 202, ——
ar(ur) 2 20 5.

R 252 K
Var(Ay,) > % =Y K2A3 (2.9)
k=1

N is the number of observations, 0% is the variance of the additive Gaussian noise,
and K is the number of harmonic components.

Though the CRLB is only valid for unbiased estimates, it is here used to indicate
the expected limits of an optimal unbiased estimator.

2.5 Summary

The properties of vibro-acoustic signals have been investigated in this chapter, with
the focus on determining the fundamental frequency of rotating machines. Experi-
mental data from a passenger car was examined and the results were used to design
a simple model for synthesizing vibro-acoustic signals.



CHAPTER 3

Frequency Estimation and
Tracking

Estimating periodic signals is a well established field in the literature of signal pro-
cessing. It is not the intention to give a detailed account of all methods, but rather
to present a summary of the different approaches used in following two application
areas:

Speech Processing In coding of voiced speech signals two parameters are esti-
mated. The first is the fundamental frequency of the vocal cords, called the
pitch frequency. The second, is the auto-regressive (AR) coefficients which
models the influence of the vocal tract.

Radar Applications Estimating and tracking the direction of arrival (DOA) is
the primary focus in many radar applications. It is accomplished by finding
harmonic structures in the correlation matrix corresponding to the array of
detectors.

3.1 Pitch Detection

In principle the problem of determining the pitch frequency in speech signals is similar
to the problem of determining the fundamental frequency of a rotating mechanical
system.

The pitch frequency of speech is controlled by the vibration of the vocal cords,
which opens and closes for streaming air from the lungs. It varies with the speakers,
ranging from 40 Hz for low-pitched males to 800 Hz for high-pitched females and
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children [44,63]. In the creation of speech, the vocal cords are followed by the vocal
tract which is perceivable as a resonance chamber of varying size and shape. For
speech the resonance chamber has 3 to 4 dominant resonance frequencies. In the
speech processing literature these are called formants. A characteristic section of a
voiced speech signal is shown in Figure 3.1.

11" Order AR Spectrum of Speech Segment
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Figure 3.1: The lower graph shows the time signal of a 30 ms segment of speech
taken form the Keel Pitch Data base [39], the pitch period of 8.1 ms is clearly visible.
The top graph shows the corresponding 11** order AR spectrum signal with two
characteristic formants at 240 Hz and 2310 Hz.

With both the pitch frequency and the detailed structure of the sound signal
changing rapidly, it is difficult to measure an accurate pitch frequency. This resembles
the problem of determining the running speed of rotating machines. Equivalent to
the vocal tract, the resonances in the mechanical structure alters the signature of the
fundamental frequency and its higher orders as the running speed changes. Although
the running speed under normal operations is fairly stationary, rapid changes do occur
(e.g. a gear shift in car) where it is important not to loose track of the fundamental
frequency.

It must be mentioned however, there are important differences in the nature of
the two types of signals. If vibrations are caused by imbalance, the driving force is a
harmonic wave form opposed to a periodic pulse train. Depending on the application,
the fundamental frequency range of mechanical system is much wider than in speech
applications. The fundamental frequency of rotating mechanical systems varies with
the application, from below 1 Hz for large generators to 1.5 kHz for centrifuges
separating nuclear particles. When focusing on combustion engines for automobiles
the fundamental frequency is typically in the range from 5 Hz to 100 Hz (300 RPM
to 6000 RPM).
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3.1.1 Methods and Algorithms

Digital processing of speech is a well established research area and numerous methods
and algorithms have been proposed for pitch detection. In [16] Rabiner et al. provides
a comparative study of seven different methods, three of which will be described
shortly. Most of the algorithms estimate the pitch period in segments of constant
length (30-50ms) of the speech signal but do not track the change across segments.
The resolution is limited by the sample rate because the pitch period is estimated
instead of the pitch frequency, therefore the frequency resolution will be higher at low
frequencies than at higher frequencies. It is possible to use interpolation techniques
to increase the pitch period resolution beyond the sample interval as is shown in
e.g. [25,30,63] and the references therein.

Modified Autocorrelation Analysis

The motivation to use short-time autocorrelation analysis to extract the pitch period
is evident looking at the short speech segment of Figure 3.1. Due to the periodic
nature in the signal the autocorrelation function is expected to have a peak at the
lag equivalent to the pitch period. First defining the short-time cross correlation
function, R, of the two segments (k) and y(l) as

N—m-—1
Reup(m) =2 3 (a(n+Ryu(n)) (yln + 1+ m)w(n +m) (3.1)

n=0

where w(n) is a window function, then the estimate of the short-time autocorrelation
function is

R,0y(m) = Roqyuqy(m) (3.2)

In [44] variants of autocorrelation based pitch analysis as shown in Figure 3.2 are
examined. Firstly, the effect of higher formats are eliminated by low-pass filtering the
signal above 900 Hz. Secondly, the peak in the autocorrelation function is enhanced
by center clipping the amplitude of z(n) when it exceeds a certain threshold level C7..
The non-linear clipping functions are shown in Eq. (3.3); clp(z) is a simple center
clipper, cle(x) is a compressed center clipper and sgn(z) is a combination of the two.

z, |z|>C r—CrL, z=z>Ct +1, =z>Ct
clp(x):{ ’ =~F 0 ce(z) = 0, |#|<CrL, sgn(@)={ 0, |z|]<CL
0, lof <Cr t+Cp, z<-CL 1, z<-Cp

(3.3)

The clipping level is determined for each frame as fixed percentage of the lesser of
the absolute maxima of the first 1/3 and last 1/3 of the frame (Eq. (3.4)).

Cr, = 0.68 min [05?}%/3 x(z)|,2N/r§1§]x<N |£L'(j)|:| (3.4)
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Figure 3.2: Modified Autocorrelation Analysis for Pitch Estimation. NL, and NL,
are the non-linear clipping functions a (see text)

By clipping x(n) its impulsiveness is enhanced. In the frequency domain this results
in spectral flattening and thus the effect of the format structure is reduced.

A problem in autocorrelation based pitch analysis is to select the frame length.
Setting the frame too short may result in pitch doubling whereby a higher order of
the pitch frequency is detected. Similarly, a too long a frame may result in detection
of a lower fractional of the true pitch frequency. To the extend these problems can
be solved by tracking the pitch over multiple frames and thus detecting when pitch
doubles or halves. In [44] this is accomplished by slowly adapting the frame length
to three times the average pitch period. Another approach is to compare the pitch
estimate computed using multiple window lengths as in [63].

Simplified Inverse Filter Technique (SIFT)

The SIFT is similar to the modified autocorrelation method except for the use of a
more complex spectral flattening. The principle is shown in Figure 3.3. For each
segment the spectral content is estimated by modeling it as the output of a 12"
order auto regressive(AR) process,

12
xz(n) = — Z a;z(n —i) +e(n), e~ N(0,0%)

LPC Solver

A
_1
Low-pass F A(z) NE Find Peak

s
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Figure 3.3: Simplified Inverse Filtering Technique
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Figure 3.4: Block diagram of the cepstral based pitch estimation

where the noise e is assumed to be normally distributed noise. The coefficients,

ai,...,an, are called the linear prediction coeflicients (LPC). AR-modeling is often
used in applied signal processing, and there are many approaches to compute them,
e.g. using the Yule-Walker estimate or Levinson-Durbin algorithm (see e.g. [10, chapt.

6] for more on the subject). Once the LPC’s have been found, they are used as
coefficients in a finite impulse response (FIR) filter which then gives the inverse
filtered signal.

Cepstral Analysis

Cepstrum analysis is a technique suited to detect periodic structures in the spectrum
of a signal. The complex cepstrum, Cy(7) of the signal x(¢) is defined as the inverse
Fourier transform of the logarithm of the spectrum, X (f) = F {z(t)}= | X (f)| e??(F),
ie.

Ca(r) = F~H {log X(f)} = 7~ {log| X (A} + F~" {j(f)} (3-5)

when F and F~! symbolize the Fourier transform and its inverse. In most speech
processing applications only the amplitude of the spectra is used. As the contribution
of the angular term in Eq.(3.5) is ignored, the expression is called the real or power
cepstrum. Besides speech processing the cepstrum is also used in machine diagnostics.
More information on properties and applications of the cepstrum are found in [47,
chapt.8]. Figure 3.4 shows the block diagram of the cepstral based pitch detector
as described in [46] and [63]. The most noticeable differences between the two pitch
applications is that the latter implements spectral flattening of frequencies above 1.5
kHz prior to the inverse Fourier transform.

3.2 Subspace Methods

Direction of arrival (DOA) estimation is the term used to describe the problem of
determining the incoming angle of objects (e.g. aircrafts) using sensor arrays. The
objects are seen as far-field narrow-band sources. The plane wave signals emanating
from the sources are observed by the sensor array and depending on the angle of
an incoming wave and the geometry of the array, the wavefront is detected by the
different sensors at different times. This is illustrated in Figure 3.5 for a uniform
linear array with an incoming angle, 8, of the plane wave and the first sensor, so(t)
is chosen as the reference sensor. From the geometry of the array, the propagation
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Figure 3.5: Sensor array

delay between two sensors is
7(0) = dsinf/c

where c is the speed of propagation for the wave. The detected signal at the other
sensors thus becomes

Sm(t) = so(t — m7(0)) = Ae?WiHo—mdsiné/c)

In the case with K plane waves impinging from K different directions on the array
with M sensors, the vector s becomes,

s = Af+n
r 1 1
e—jwldsinel/c e—ijdsiHQK/c

A =

efj(Mfl);uldsinel/c . efj(Mfl)u;deinGK/c

Aqedl@rt+en)
£ = :

A elwrttér)

where n is the noise vector. The covariance matrix of the sensors is
Re = E{ss”} = A B{ff"} A" + 5’1

which has rank K in the noiseless case (02 = 0). When K < M and o2 > 0, then
the covariance matrix can be separated into a signal subspace and a noise subspace
from which the K incoming angles can be determined.

The link between DOA and frequency estimation is that each of the K impinging
wavefronts results in a sinusoidal wave across the sensors. To estimate the frequencies
in a signal, x(t), the sensor signals, s,,(t) are simply replaced by time-shifted versions
of x(t), i.e., s;m(t) = z(t + AT), where AT is the sample interval.
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3.2.1 Estimation Methods

In the following the MUSIC and ESPRIT algorithms are explained. Both methods
are based on the eigen decomposition of the auto covariance function of the signal.
These two algorithms are among the most popular of the so called high-resolution
subspace methods which also includes the Pisarenko algorithm [32; sec 8.3], [40, sec
9.7], [12, sec 12.5]

The methods are only considered for complex sinusoids, but they are easily applied
to real valued signals since real valued sinusoids can be expressed as the sum of two
complex sinusoids through Eulers identities.

First a complex signal is defined containing K complex sinusoids. The signal
is corrupted by additive white Gaussian noise with variance o and results in the
observed complex signal z(n) in (3.6).

K
z(n) = ZAkej(wkn+¢k) +w(n), w~ N(0,5?) (3.6)
k=1

A vector containing M consecutive observed samples,
x(n)=[ z(n), x(n+1), ..., esn+M-1)]" (3.7)

can be written using matrix notation

x(n) = Sa(n)+w(n) (3.8)
1 ce 1
eJwi - eIWK
S = (3.9)
ej(JW.—l)u.n . ej(M;l)wK
a(n) = [ Al L Ageifsm |7 (3.10)
91(71) = wn+o¢; (3.11)

The auto covariance matrix is defined as the expectation
Ry = E{x(n)x(n)H}
= E{(Sa(n) +w(n))(w(n)" +a(n)"s")}
= S E{a(n) a(n)H} ST 4 521
= SASY 4471

where A = diag[A;%,..., Ax?]. It is seen thatRyy has full rank, but the first term
in (3.15) contributed by the signal only has rank K.

MUSIC

The MUSIC (multiple signal classification) algorithm due to Schmidt [54] separates
the auto covariance matrix into a signal subspace and a noise subspace. This is
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accomplished through eigen decomposition of Rxx by solving (3.16) for {(v;, A;),1 <
i< M}.

Ryxvi = \iv; (316)

Assuming the eigenvectors are normalized then Rxy can be rewritten as

K M
R.x = Z )\iViViH + o2 Z VjVjH (317)
i=1 j=1
K M
= Z()‘i + oH)vivi 4 o? Z viviH (3.18)
i=1 J=K+1

where the first summation is the signal subspace and the last summation is the noise
subspace. The MUSIC algorithm defines the spectral estimate,

1
Pyusic(w) = (3.19)
ZﬁKH S(W)Hvz‘|2
s(w) = [1,e,...,edMDw) (3.20)

Since all the eigenvectors, v;, are orthogonal, the projection of any frequency vector,
s(w), onto the noise subspace, results in a sharp peak in the Pyysre spectrum when
w is close to the true frequencies in the signal subspace.

The problem still remains to find the frequencies. For this purpose the Root-
MUSIC algorithm exists. It avoids the nonlinear maximization of Pysrc otherwise
required to find the frequencies of the signal subspace (see e.g [40, sec.9.7]).

ESPRIT

The ESPRIT (estimation of signal parameters via rotational invariance techniques)
algorithm due to Roy et al. [53] also estimates the frequencies using eigen value
decomposition. The idea of ESPRIT is to divide the sensor array into two displaced
sub-arrays and use the spatial covariance matrix and cross-covariance matrix between
the two sub-arrays.

For the detection of sinusoids in the measured signal, the sub-arrays are equivalent
to two vectors of the signal, displaced one sample. The signal is modeled by

K
x(n) — Z Akej(wkn+¢k) + w(n)7 w ~ N(O, 02) (321)
k=1

from which the two sub arrays are formed,
x(n) = [=(n), an+1), ..., zn+m-1)]" (3.22)
y(n) = [z(n+1), z(n+2), ..., z(n+m) ]T (3.23)
w(n) = [wn), wh+1), ..., wh+m-—1) }T (3.24)
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By use of (3.21), x(n) can be written as

x(n) = Sa(n)+w(n) (3.25)
y(n) = S®a(n)+w(n+1) (3.26)
where
1 e 1
eJwi . eIwK
S = . . (3.27)
pilm-Dwr L gim—w

a(n) = [ A4/ o Ageitx() ] (3.28)
0; (n) = win+ ¢; (329)
& = diag[e’r, efvz, ... eI¥K] (3.30)

The spatial covariance matrix of x and the cross covariance matrix of x and y are
R = E{x(n)x(n)?} =SAS" +071,,.. (3.31)
Ry, = E{x(n)y(n)"}=SAdS" + o2 { IO“"“ 8 ] (3.32)
A = diag[4,% A%, ... A7 (3.33)

Now, since the noise is white Gaussian the variance, o2 is found as the smallest
eigenvalues of Rxx. Hence, by first estimating Rxx and Ryy, the noise contribution
can be removed,

Cxx = Ryx—0%l,,,.=SASY (3.34)
Cxy = Ruy—o?| Dot O _gapsh (3.35)
IIn- 1Xm-1 O

The frequencies, w;, 1 < i < K, are now found as K generalized eigen values of the
matrix pair (Cxx, Cxy) that lie on the unit circle, i.e. Cxx —ACxy= SA (I — \®) SH

Discussion

The statistical properties of MUSIC and ESPRIT are compared in [57] which con-
cludes that both methods have similar asymptotic variance. The estimates are shown
to improve with increasing M, unfortuneately complexity in the algorithm also in-
creases with M3. In general for frequency estimation ESPRIT should be prefered
over MUSIC, since it has a slightly lower variance and is also computational less de-
manding. This is also the conclusion of [48] in which the performance of Root-MUSIC
is investigated.

A common problem for all subspace methods, is the computational complexity of
determining the eigen values of the covariance matrix. Instead of re-estimating the
covariance matrix and its eigen values for each new observation, adaptive, iterative
or recursive update methods can be used [7,11,61,62]. An overview of such methods
is provided in [11].
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3.2.2 Tracking Methods

Tracking the objects between observations is of great interest in radar applications
and has been studied intensively. When the aforementioned subspace methods are
used for the detection, then the adaptive update methods in themselves serves as
trackers. But a remaining problem is when the signal to noise level is low to be able
to discriminate between true and false detections. The analogy to the topic of this
thesis is obvious, I.e. the problem of determining which of the detected frequencies
can be linked to some rotating part and which can not.

In the literature about target tracking (see e.g. [3,58]), a common solution is to
use state-space models of the targets and then use the observations to update the
target states. When the state space models are linear the Kalman filter [3] provide the
optimal solution. The state space model for a target moving with constant velocity
in one dimensional space is

X = [a: j:}T
1 T
P - [ 7]
Xnt1 = Fx,+v, v~ N(0,Ay)
yn = |1 O}Xn—l—u,UN./\/'(O,UuQ)

The vector x is called the state vector and describes the state of the target in full.
For a target moving with constant speed in one dimensional space this amounts to
the current position x and the current velocity @. F is the state transition matrix
which relates the current state, x,,, to the next state, x,,+1. Vv is the state noise vector
which is white Gaussian with zero mean and covariance matrix, A,. The observation
is modeled by y, which in this simple example is identical to the position. u is called
the measurement noise and is also Gaussian distributed with zero mean and variance,
0.2
For nonlinear systems the general state-space model is written [3]:

Xnt+1 = f(n, Xp, V) (3.36)
yn =h(n, xn, u) .

where x,, is the state vector at time n, y,, is the observation vector related to state
X,. The state- and measurement noise are represented by the vectors v and u respec-
tively. The state transition matrix is replaced by the nonlinear function f(-) and the
output is computed by the function h(-). The state vector can be estimated with the
Extended Kalman Filter (EKF) which essentially is the linear Kalman filter applied
by linearizing f(-) and h(-). An example using the EKF for frequency estimation
is given in [37], where the fundamental frequency of a periodic signal along with
the amplitudes and phases of the orders of the fundamental frequency are estimated
directly from the observed signal.

Since the model adaption enters through the state- and measurement noise, the
critical part of using Kalman filters is to determine the correct noise variances and
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initial state estimates. When tracking multiple targets the state of each target is
tracked separately. But since the observations are made without any prior knowl-
edge of the targets, the interesting data association problem of assigning targets to
the observations must be solved for each measurement. This leads to the following
traditional steps in a tracking application:

1. Detection: Estimate possible positions of target.
2. Data Association: Assign the observed positions to targets.
3. Update States: Update the target states according to the observations.

The increase of computer power has allowed the development of more advanced
tracking algorithms founded on probabilistic methods such as Bayesian statistics
[5,18,35,60,67]. These approaches result in the three steps above being less distinct.

3.3 Fourier Transform Interpolation Methods

The Fast Fourier Transform (FFT) is a computationally efficient way to estimate the
frequency contents of sampled signals. Unfortunately there are two disadvantages
of using the FFT: Firstly the frequency resolution is inversely proportional to the
length (in seconds) of the measured signal. Secondly, the energy from the main lobe
leaks into the side-lobes.

To illustrate this, a harmonic signal with the frequency F} is defined as

x(t) = Asin(2nF,t)

The signal is sampled uniformly at a rate of Fs samples per second, which gives the
interval AT = 1/F, between samples. It is assumed that F, < F,/2. For easier
notation the sampled signal is denoted x,, = ©(nAT') where the subscript ,, indicates
the sample number. The discrete Fourier Transform (DFT) of x,, is defined as

N-1
G(fm) =Y ane I2/mn (3.37)
n=0

where f,, = mF;/N. This shows that the N point DFT will give N equidistant
frequency estimates with the distance AF = F's/N = 1/T where T is duration of
Zp in time. The subscript ,, is used to identify the frequency line and allows the
shorter notation, G,,, = G(fm). The leakage effect is caused by the finite record
length of the signal. The procedure of extracting the time record can be perceived
as a multiplication of the continuous signal, z(t), with a rectangular pulse wgr(t), i.e.

1, 0<t<T F _sin(7Tf)
wr(t) _{ 0, otherwise Wr(f) = T f

The effect of the multiplication in the time-domain is equivalent to a convolution in
the frequency domain. Figure 3.6 shows the DFT of z, for F, = f,, + 0AF when
& = 0.33 frequency lines. The dashed vertical line is the true location of the frequency
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Figure 3.6: Rectangular Window

F, and the solid lines are the amplitude of the Fourier coefficients, G;. The solid
curve is the window function for the rectangular window and it shows clearly the
poor attenuation in the side lobes.

The Fourier transform interpolation methods have been developed to provide bet-
ter frequency and amplitude estimates by examining the leakage into the side lobes.
As has just been shown the leakage depends on the window function applied to the
signal, hence different algorithms exist for different windows. In [13] Quinn proposes
some algorithms for interpolation using the rectangular window, and shows that
although the estimators do not achieve the asymptotic CRLB, the asymptotic vari-
ances are not far from the asymptotic CRLB. The algorithms are based on 3 complex
Fourier coefficients. Quinn’s FTI3 algorithm [43, pp.198] is listed in Table 3.1. It can

L. m = max,|Gnl, 0<m< &L
2. a1 = Re —Gg;;l

a1 = Re —Gg’;ﬁl

N —Q_
3. (§71 = 5

6-}-1 aijil
L - 641, 0_1>0Ad01 >0

' o_1, otherwise
: Baiibos L 2 & 5405

R RN NE
6. [ = [m+dAF

Table 3.1: FTI3 algorithm
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Figure 3.7: Hanning Window

be argued that the requirement for complex coefficients is disadvantage of the FTI3
algorithm since complex spectra requires twice the storage capacity and prevents
use of averaged spectra. For low SNR levels averaging the moduli of multiple DFT
spectra improves the spectral estimates. In this case the it is possible to apply the
class of Rife-Vincent windows and interpolators [52]. The Hanning window belongs
to this class of windows. In the time-domain the Hanning window is

wi(t) = 1 —cos®*(2nt/T), 0<t<T
A 0, otherwise

which in the frequency domain becomes

Wi () = 5Walf) + 3 (Walf + 1/T) + Wa(f ~ 1/T)) (3.35)

The Hanning window is shown in Figure 3.7. When compared to Figure 3.6 it is
seen that the Hanning window has a wider main lobe, but lower side lobes. The
thin curves on the figure are individual rectangular windows that are summed in
Eq. (3.38) to form the Hanning window (solid curve).

The interpolation algorithm for the Hanning window can be derived analytically
from the expressions of |Gy, | and |Gp4+1| B.1 and is listed in Table 3.2.

When multiple harmonics are present it is obvious that the side lobes of the other
harmonics will influence the estimate. In this case it is preferable to use Hanning
window over the the rectangular window, since it has lower side lobes.

More information on the Fourier interpolation can be found in the literature, e.g.
in [55] which is a comparative study of the rectangular, Hanning, and Rife-Vincent
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L m = max,|Gpl, 0<m< 1L
. |Gm+1‘
2o = T
S 2a-1
305 = =
4. f = fm+(§AF

Table 3.2: Hanning Window Interpolation

windows. For the estimation of multiple sinusoids an iterative procedure is described
in [49] which, provided sufficient frequency resolution to separate the sinusoids, gives
highly accurate estimates of both frequencies, phases and amplitudes.

3.4 Adaptive Filter Based Methods

The fact that sinusoids are solutions to 2nd order difference equations has inspired
the development of several frequency estimators. Three of these are described in
the following. The first is the method of Prony which dates back to 1795 [22] and
assumes there is no noise. The second method is a Auto-Regressive Moving Average
(ARMA) which is similar to Prony’s method but allows noise. The third method is an
Adaptive Comb Filter (ACF) which in structure is similar to the ARMA model, but
some of the known stability problems of adaptive ARMA models have been alleviated
by adding constraints to the poles and zeros in the model.

3.4.1 Prony’s Method

The essence in Prony’s Method for frequency estimation is that a sum of sinusoids,

M
x(t) = Z Ap, cos(wmt + ¢m,) (3.39)

m=1
can be expressed as the difference equation of order 2M,

2M

2(t) ==Y cpa(t — k) (3.40)
k=1

where the coefficients, ¢, are defined by the polynomial

M

2M
C(z) = H (1 —2cos(wm)z ™t +272) = Z ez k (3.41)
k=0

m=1

(The proof is summarized in appendix B.2). The interesting observation is that
the complex roots of C(z) are all located on the unit circle in the conjugate pairs,
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z = eT“m_Te. the harmonic frequencies are found as the phase angles of the
roots of C(z). Since Eq. (3.40) is recognized as an AR model of order 2M then the
coefficients of C'(z) are found directly from a sequence of N > 4M samples of y(t) or
by the methods mentioned for the SIFT in section 3.1.1.

3.4.2 Auto-Regressive Moving-Average Modeling

When noise is added to the right hand side of Eq. (3.39) the accuracy of Prony’s
method deteriorates. The noise will enter the model as a moving average (MA)
process which also needs to be modeled. To show this, we define an observed signal
with one sinusoid, d(t), and additive noise, e(t)

d(t) = Acos(wt + ¢) +e(t), e~ N(0,0?) (3.42)
From Eq. (3.40) and (3.41) we know that the harmonic part can be written as

u(t) = Acos(wt + ¢) = 2 cos(w)u(t — 1) — u(t — 2)
By isolating the harmonic part of Eq. (3.42) and setting

u(t) = d(t) —e(t)
then the difference equation gives

d(t) —2cos(w)d(t — 1) +d(t —2) = e(t) —2cos(w)e(t — 1) +e(t — 2) (3.43)

which is recognized as an ARMA (2,2) process. For M sinusoids this extends to an
ARMA (2M, 2M) process. Since ARMA modeling has been treated extensively in
the literature (see e.g. [28] and the references therein) it is here sufficient to mention
that it is generally more difficult than the simple AR estimation. In appendix B.3
the Quinn & Fernandez method [43] is explained. It is an iterative procedure for
estimating a single sinusoid in noise based on the model of Eq. (3.43).

3.4.3 Adaptive Comb Filter

A practical problem of fitting ARMA models is to ensure stability. If the poles are
located outside the unit circle, then the model becomes unstable. Another problem
is the increase in model complexity when the signal consists of multiple sinusoids and
hence an increase in the number of parameters to estimate. Furthermore the general
ARMA model does not take into consideration the possibility of the sinusoids being
fixed orders of a common fundamental frequency.

The adaptive comb filter (ACF) described here was originally introduced by Ne-
horai and Porat in [31]. The method is based on the same relationship as the general
ARMA model of a sum of sinusoids in noise, namely that a signal d(¢) which consist
of a number of sinusoids in additive white noise, €(t), satisfies the relationship

A(g™h)d(t) = Alg™Ve(t), e~ N(0,07) (3.44)
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(this is the generalization of Eq. (3.43)) where ¢~! symbolizes the unit delay operator
and A(q™!) is given by

=

Algh) = (1 —2cos(wm)g * +¢2) = Zakq_k (3.45)

m=1

The idea is then to design a pre-whitening filter for d(t), i.e

e(t) = H(q ")d(t)

such that the output, e(t), is minimized. The pre-whitening filter devised by Nehorai
and Porat is

Alg™)

10 = )

(3.46)

where
M
H 1 — p2cos(wm)q ! + p?q~?)

The scalar p,0 < p< 1 ensures all poles to be located inside the unit circle.

With Fourier series non-sinusoidal periodic signals can be resolved into a sum of
sinusoidal components with frequencies that are integer multiples of the fundamental
frequency. Therefore if the sinusoids in the signal indeed are caused by a periodic
signal, then H(q™') in Eq. (3.46) can be simplified by imposing two constraints:
The first constraint is to assume that the orders of frequencies with regard to the
fundamental frequency are known a priori, i.e., given the fundamental frequency
then the phase angles of the roots of all poles and zeros can be computed. The
second constraint concerns the magnitude of the roots, namely that all zeros are to
be located on the unit circle and all the poles are assigned the same magnitude p < 1.
The imposed constraints are illustrated in Figure 3.8(a) where the poles are marked
with x and the zeros with o.

The frequency response shown in Fig. 3.8(b), clearly exhibits the characteristics
of a comb filter, with narrow notches located at the first 5 harmonics of the fun-
damental frequency which is Fr = 85Hz. H(q™') thus attempts to attenuate the
specified harmonics in the signal and the optimization problem can be seen as that
of minimizing the output e(¢) w.r.t. Fp. The bandwidth of the notches is determined
by p according to

F.
Br=n(l-p). Bu:=5(1-p)

where B, is the bandwidth in radians and By, is the bandwidth in Hz given the
sample rate Fg.
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Figure 3.8: Adaptive Comb Filter

The algorithm given in [31] is general in the sense, that the sinusoids need not
be pure harmonics of the fundamental frequency. It is a recursive prediction error
algorithm [28] which uses the gradient of e(t) for fast convergence.

Recursive prediction error algorithms have the form [28]

et) = d(t)—d(t|®) (3.47)
Ot) = Ot —1)+vHR()T(t)e(t) (3.48)
R() = R(E—1)+~() [T0)T () - R(t - 1)] (3.49)

where d(t|®) is the predicted value of the observed signal d(t), and e(t) is called
the prediction error. The model is represented by the vector ®(t), and ¥(t) is the
gradient of the prediction error e(t). R is an approximation of the Hessian of e(t),
ie.

0% e(t)

_Oe(t) N
2o @ RO 00(t) 00 T(t)’

W(t) =

~(t) is update step size of the algorithm, also known as the gain of the algorithm.
In [28] the memory time constant of the algorithm is defined as

To = 1/~(t) (3.50)

for which observations older than Ty will contribute in the algorithm with a weight
of 36%. Using Eq. (3.50) prior knowledge about the time constant of the system can
be used to choose a proper gain factor. The choice of Nehorai and Porat ( [31]) is to
slowly decrease the gain, thus increasing the weight on older samples and improving
the estimates for the stationary signal.

A contribution from this study is the new variant of the adaptive comb filter,
which is suitable for tracking dynamic signals. It distinguishes itself from [31] in
two ways. First, the trigonometric functions have been eliminated from the algo-
rithm. The trade-off for this is that all the harmonic frequencies must be integer
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multiplicands of a common frequency. This gives a much simpler and more efficient
algorithm. The reason is that the cosine terms in Eq. (3.45) can be replaced by
polynomials in

b= —2cos(wp), (3.51)

where wp is the common frequency. This simplifies computation of A(g~!) in Eq. (3.45)
as well as the gradient of e(t) required for the adaption of the algorithm. Second,
the focus in this study is estimation and tracking of non-stationary signals with large
frequency variation. Motivated by the pitch detection algorithms where the record
length is adjusted with the frequency, a similar approach is taken here. The relation
in Eq. (3.50) allows the adjustment of the algorithm gain given the current frequency
estimate,

cos™(—0.5b(t))

i (3.52)

V(t+1) =ay(t)+(1-a)

where « serves as exponential averaging of the gain, b(¢) is the adaption parameter of
the model, and K is a constant specifying the memory time constant of the algorithm
in number of periods of wg.

The algorithm is derived in greater detail in appendix B.4, namely the computa-
tion of the gradient, ¥(t).

3.5 Evaluation

The signal model described in Section 2.4 is used to evaluate the algorithms. The
algorithms that are evaluated are

e Autocorrelation.

e Modified Autocorrelation with the center clipper and compressed clipper.

Simplified Inverse Filter with a 5’th order LPC filter.
ESPRIT .

Interpolated FFT using Hanning window.
e Adaptive Comb Filter with 1, 3, and 5 notches.

For evaluation an acceleration signal with 5 orders of the fundamental frequency
is generated. The amplitudes of the 5 harmonics are shown in Figure 3.9(a) where
C}, is the amplitude of the k’th harmonic. The variance of the additive noise is varied
to obtain an average SNR of 30 dB, 15 dB, and 0 dB. Figure 3.9(b) shows the actual
variation in SNR as the fundamental frequency changes over time. Each algorithm
is tested on 100 realizations of the acceleration signal where a new sequence of the
noise is used for each realization. The phases are fixed. The signal is sampled 1024
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Figure 3.9: Simulation Signal

times per second and segmented into records of 1/4 second overlapping 75% resulting
in record lengths of 256 samples. For each record the algorithms provide an estimate
of the fundamental frequency.

For the average SNR level of 15 dB the results are summarized in the Figures 3.10-
3.11. The remaining figures for SNR = 30 dB and 0 dB are found in Appendix C as
Figures C.2-C.7.

The results of the simulation are presented graphically with two graphs for each
test: The left graph shows the distribution of the frequency estimates and the right
graph shows the RMS error , the standard deviation of the error (¢), and the CRLB
for the signal. The difference between the RMS error and o is a measure of the bias
in the estimate. The frequency distributions are useful for explaining the measured
errors, e.g. in Fig. 3.10(c) there are visible signs of period doubling.

The results of the simulations are discussed briefly in the following.

3.5.1 Autocorr, Autoclip, and SIFT

Figure 3.10 shows the results for the autocorrelation based estimators. To increase the
resolution, the correlation sequence is up-sampled 8 times to give a better resolution
for choosing the peak.

For the simulated signal, it appears that of the three methods, the normal au-
tocorrelation method performs best. But for all SNR values the RMS errors are
observed to be an order of magnitude above the CRLB. At high SNR levels the stan-
dard deviation for some values tends towards zero, indicating strong bias. This is
observed especially for high frequencies.
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3.5.2 ESPRIT and Interpolated FFT

Both of theses algorithms estimate pure sinusoids and provides separate estimates for
each of the 5 harmonics in the test signal. The approach taken to find the fundamental
frequency is to estimate 5 frequencies and assume that the lowest frequency is the
fundamental frequency. For ESPRIT the 5 frequencies are taken as those lying closest
to the unit circle, and for the interpolated FFT the frequencies are chosen as the 5
largest peaks in the spectrum.

The ESPRIT algorithm (Fig. 3.11(a) and 3.11(b)) performs poorly on the simu-
lated signals. The estimation errors are closely related to the SNR profile (Fig. 3.9(b))
and the lowest estimation error is achieved approximately at t = 18 seconds where
the first harmonic peaks in amplitude.

The Interpolated FFT algorithm (Fig. 3.11(c) and 3.11(d))performs quite well.
It has some problems when the SNR level is too low for the first harmonic at the low
frequencies. But as the SNR increase so does the accuracy.

3.5.3 Adaptive Comb Filter

The adaptive comb filter is configured to either 1,3,or 5 notches. Its bandwidth is
fixed to 10 Hz (p = 0.98). The test signal is not segmented in these tests.

The results for the filter with 3 notches' are shown in Fig. 3.11(e) and 3.11(f).
Overall, the filter with 3 notches had the best performance for the given signal. The
adaptive notch filter has the lowest variance of all the methods, but the RMS error
is somewhat higher indicating biased estimates. For the chosen bandwidth the filter
is capable of tracking the fundamental frequency on the relatively slow run-up, but
it also manages to track the fast run-down until the SNR level becomes too low.

Initialization is important since the filter may lock to a wrong harmonic order of
the signal. This is perfectly illustrated in Fig. C.5(a) where the one notch filter locks
onto the 4’th harmonic which is the strongest at the time of initialization (Fig. 3.9(a)).

At the low SNR conditions, SNR = 0 dB, the figures in Appendix C show that
ACF with 3 notches is significantly better than any of the other algorithms tested in
this chapter.

3.6 Summary

This chapter has described different methods for frequency estimating. The methods
were evaluated using a simulated periodic signal with varying amplitudes and SNR
levels. Of the methods the interpolated Fourier transform and the adaptive comb
filter were found perform quite well.

To the best of my knowledge, the variant of adaptive comb filter described in
Section 3.4.3 is a new contribution of this work. It is able to track dynamic sig-
nals thanks to the feedback mechanism controlling the memory time constant. The
derivation avoiding trigonometric functions is shown in Appendix. B.4.

IThe results using the 1 or 5 notches are include in Appendix C
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Frequency Distribution : Autocorr, SNR=15
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Figure 3.10: Simulation Results for Correlation Methods, SNR=15dB
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CHAPTER 4

Bayesian Estimation

Of the frequency estimation techniques mentioned in the previous chapter, the cor-
relation methods and the ACF were the only methods that based their estimates on
the harmonic structure. All of the traditional recognized high resolution estimation
methods, Interpolated FFT, MUSIC or ESPRIT are all based on individual frequency
estimates.

In this chapter a statistical approach is taken to derive a more robust estimation
method that utilizes the harmonic structure to produce estimate closer to the CRLB.

The approach is based on Bayesian statistics. The application of Bayesian statis-
tics to spectrum analysis was first introduced by Jaynes [19] and then treated more
thoroughly by Bretthorst [6].

The chapter starts by introducing the Maximum Likelihood function in Sec. 4.1
as a prelude to the general Bayesian statistical framework described in Sec. 4.2. Here
the frequency estimation problem is formulated in Bayesian terms to include a priori
knowledge of the harmonic structure. In Sec 4.3 the Bayesian estimator is evaluated
on the same simulated data used in Sec. 3.5 and the results are compared.

The Bayesian framework is very flexible. This is shown in section 4.4 where the
model is expanded to estimate time-varying frequencies; in section 4.5 where it is
shown how to model close frequencies; and in section 4.6 where it is shown how
multiple channels can be combined to improve the estimate.

4.1 Maximum Likelihood

Maximum likelihood is a general estimation method. It can be applied whenever
it is possible to formulate a joint probability density function of the observed data
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sequence and the model parameters.

Recalling the harmonic model of Eq. (2.5) used to generate synthetic data, the
observed data is modeled as a sum of K sinusoids with additive Gaussian noise. The
model is shown in Eq. (4.1) for a data sequence with a constant frequency and an
extra parameter Ay that represents a constant level offset.

K
d(t) = Ap + Z (A, cos(wit) + By sin(wit)) +e(t), e(t) ~N(0,0?%) (4.1)
k=1

Assuming the harmonic sequence is known, i.e. wy = nrwp, where 7 are the known
orders of the fundamental frequency, wg, then the parameters to be estimated are

0={Ao, A1,...,Ax,B1,...,Br,wr,0%} (4.2)

If the noise is isolated in Eq. (4.1) it becomes clear that given the parameters 6 are
known, then the observed data is distributed as the noise. The PDF of d(t) given 6
is therefore

o) = e { -5} (43)

To 20'2

For a sequence of N observations, d(tp),...,d(txy—1) the maximum likelihood esti-
mate of 4 is the set of parameters that maximizes the joint PDF of all the observations
given 0 (Eq. (4.4)).

2

p(d(to),. ... d(tn-1)]0) = H (4.4)

When dealing with sequences of observations, then matrix notation is more conve-
nient. The matrix notation below is therefore introduced where bold letters indicate
matrices or vectors, and the subscript yxas indicates the matrix dimension.

trxa = [to ... tn-1]'

dys = [d(to) ... d(tn-1)]"

b2K+1><1 = [Ao A1 AK By BK]T

exui = [e(to) e(t1) ... e(tn_1)]" (4.5)
hy,, = m ... 0’

Uy, = [1 ST

Gryoxn = [u cos(wpth®) sin(wpth'))

Using the notation, a sequence of N observations (Eq. (4.1)) becomes:
d=Gb+e (4.6)

Eq. (4.6) is recognized as a 2K + 1 dimensional linear problem where d is the vector
with the observations, G contains the 2K + 1 basis vectors and is defined by wr and
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the known orders 7. g, e is the noise vector, and b is the vector with the amplitude
parameters.

The likelihood of the observed data in d being modeled by 6 is found by expanding
Eq. (4.4) using Eq. (4.3):

.
p(dlf) = (270%) /2 exp {—g}
_ d-—Gb)T(d-Gb
= (2r0?) MQmp{—( ;; )} (4.7)
_ (270?) " exp ~d'd+b’G'Gb-2b"G'd
202

Maximizing Eq. (4.7) w.r.t. b gives the maximum likelihood estimate®, b, of the
amplitudes (Eq. (4.8)).

b=(G'G)'G"d (4.8)

The part of the observed signal which is captured by the model is reconstructed by
substituting the true amplitudes for the estimated amplitudes in Eq. (4.6):

f=Gb (4.9)
Using Eq. (4.9) and Eq. (4.8) the likelihood (Eq. (4.7) can be rewritten:

d'd-f'f
) (4.10)

2\—N/2
plalf) = (2m®) ™ 2exp {

where the likelihood is expressed as a function of the difference in energy of the
observed signal and that captured by the model.

4.1.1 Properties

The properties of the maximum likelihood (ML) method has been studied inten-
sively in the literature for the estimation of both single and multiple frequencies
[21,29,43,50,51,56,065,66]. The ML estimator is consistent, hence it converges to
the true parameters (no bias) as N increases. It is also asymptotically efficient, i.e.,
the variance of the estimate approached the CRLB with increasing N. However, the
drawback of the ML method is the computational burden of searching the parameter
space for the global maximum. To estimate the parameters for a signal with K inde-
pendent sinusoids requires a K-dimensional search. Including the references above,
much of the literature on ML frequency estimation therefore deals with efficient ways
for searching the parameter space.

The ML method also has its limitations. When fitting models to observed data, we
usually do not know which model functions fits the data best or how many parameters

'Tn this case the ML estimate also gives the least squared error estimate: arg ming,{e' e}
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are needed. It is a recognized limitation of the ML method that it tends to over-
parameterize thus leading to more complex models than required. Another limitation
is that the ML estimates solely depend on the observed data and do not incorporate
any prior knowledge regarding the probability of the parameters. This can lead to
incomprehensible parameters [10,34]. The method lacks a measure for the belief in
the estimates.

4.2 The Bayesian Statistical Framework

With Bayesian statistics it is possible to include prior knowledge through the use of

Bayes’ theorem?:

p(d[f, Ix)p(0|1k)
p(d|Ix)
The additional conditional, I, represents the prior knowledge represented by the

choice of model for both data and noise. In the Bayesian terminology the four
probability densities have been named as listed in Table 4.1.

p(0ld, Ixc) = (4.11)

Density Name Description

p(0]d, Ix) Joint Posterior The PDF of the parameters after the data
is observed. I.e. knowledge of how well the
parameters fits the data.

p(d|0,1x) Likelihood The PDF for the data being produced by
the given parameter set and the chosen
model structure.

p(d|Ik) Evidence Prior knowledge of the data sequence given
the chosen model structure.

Table 4.1: Bayesian Terminology

Eq. (4.11) states that the joint posterior PDF of the parameters conditioned on
the observations, is identical to the likelihood multiplied by the prior probability of
the parameters divided by evidence of the the observed data. The evidence allows
different models to be compared. When the model structure is fixed, the evidence
serves only as a scaling factor and is often omitted. In that case, Eq. (4.11) is written:

p(0]d, Ix) x p(d|0, Ix)p(0|1x) (4.12)

4.2.1 Marginalization

A strength of Bayesian estimation theory is that the joint posterior PDF can be
marginalized. By this is meant that uninteresting parameters, also termed nuisance

2This is easily seen from the conditional probability, P(A, B) = P(A|B)P(B) = P(B|A)P(A)
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parameters, are integrated out of the joint PDF. Depending on the nature of prior
PDEF’s of the nuisance parameters, this may be accomplished analytically, otherwise
numerical methods can be applied.

When estimating the fundamental frequency using (4.5) and the linear model
(4.6) the amplitudes b and the noise variance o2 are nuisance parameters. In order to
integrate them out of the joint posterior PDF, appropriate priors must be chosen and
assigned to b and o that reflect whatever prior knowledge we may have. When only
little or no knowledge is available a prior with a very broad or flat PDF can be chosen.
These priors carry very little information and are called non-informative priors. For
unbounded real-valued parameters® either a uniform PDF or a Gaussian PDF with
a very large variance are often used. For scale parameters that are strictly positive
a well-known non-informative prior is Jeffrey’s prior which assumes the logarithm of
the parameter to have a uniform PDF.

Following these guidelines, the uniform probability density is chosen for the am-
plitudes and Jeffrey’s prior for the noise variance:

p(bIx) = ks
4.13
ploli) = 2 e

The integral to be solved is shown in Eq. (4.14). The evidence, p(d|Ix), and the prior
p(b|Ik) are constants. Therefore by substituting the equal sign for proportionality,
they can be ignored:

p(wrld, Ik) :/ / p(dlw, 0, b, I )p(b|Ix )p(o|lK) b do
0 R2K p(d|Ik)

o0 1
oc/ / p(d|w,o,b, Ix)— dbdo
0 R2K g

0 (4.14)
x / / (2m02)~N/2
0 R2K
d'd+b'GTGb-2b"G'd) 1
X exp ] — —dbdo
202 o
The analytical solution to the integral is found in [6] or [34]. The procedure is first

to integrate out b. This necessitates a diagonalization of GTG due to the cross
terms. The standard deviation of the noise, o, is then integrated out using a gamma
integral. The result is shown in Eq. (4.15).

— (N —2K)
p(wopld, Ix) o (ATd-d"G(GTG)"'GTd)  ?
’ det(GTG)
SN (4.15)
(ATd—£Tf)" 2
X
det(GTG)

3 Also referred to as location parameters
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The marginalized posterior density for wg is in the form of a student-t distribution
with N — 2K — 1 degrees of freedom. When the degrees of freedom is large it is
numerically more convenient to compute the logarithm of Eq. (4.15):

N

1 —2K
logp(wrld, Ix) = —3 det(G ' G) - ————log(d'd — £ f) (4.16)

4.3 Evaluation

We are now ready to do the frequency estimation in a Bayesian context. The proce-
dure is as follows:

1. Choose a priori the harmonic sequence, h to use for the estimation

2. Choose a priori the range of frequencies for which the posterior is to be evalu-
ated

Form the observation vector d
Compute the matrix G as defined in (4.5)
Compute the vector f as defined by Eq. (4.9) with the aid of Eq. (4.8)

A

Compute log p(wr|d, Ix) according to Eq. (4.16)
7. Repeat steps 4-6 for all frequencies defined in step 2 and find the maximum.

After the search for the maximizer for p(wp|d,Ix) it is possible to improved the
estimate by fitting a parabola to the peak of log p(wr|d, I ). The maximum of the
parabola is then taken as the maximum a posteriori (MAP) estimate for wg. This
interpolation is motivated by the fact that the student-t distribution is approximately
Gaussian when the number of degrees of freedom is large (> 25-30, [20]).

4.3.1 Simulations

The Bayesian frequency estimator is evaluated similarly to the the Adaptive Comb
Filter in Section 3.5. The test signal is replicated 100 times with identical amplitudes
and phases but different noise realizations.

Three different harmonic sequences are evaluated. The first estimates using a
single frequency (h;), the second estimates using the first 3 harmonics (hjz), and the
last estimates using all 5 harmonics in the test signal (hs).

h; = [1]
hy=[1 2 3]
hs=[1 2 3 4 5
The marginal PDF, p(wp|d, Ix) is computed in segments of 1/4 second of the test

signal overlapping 75%. This is identical to all the block based frequency estimators
in Sec. 3.5.
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The actual estimate of the fundamental frequency is obtained as maximizer of
the marginal PDF

max p(wr|d,Ix), f€{8.0,85,...,128.0}
wrp=27f

The result of the simulation is shown in Fig. 4.1 for a SNR level of 15 dB. The left
graphs (a,c,e) show the distribution of the frequency estimates, and the right graphs
(b,d,f) show the associated RMS errors.

The result in Fig. 4.1(a) is for the single frequency model (hy). It shows that
the strongest harmonic is estimated (see e.g. Fig. 3.9(a)). It starts with the 4th
harmonic, then as the frequency increases it jumps to the 3rd, 2nd and 1st. The
low standard deviation of the estimates (Fig. 4.1(b)) indicates that the estimate
is consistent. Comparing with the Interpolated FFT estimates (Fig. 3.11(d)) very
similar RMS errors are observed when the first order is dominant.

Figure 4.1(c) shows the results for the model with 3 harmonics (hs). In the
beginning and end of the signal where the first harmonic is significantly lower than
the 4th harmonic (Fig. 3.9(a)) it estimates the second harmonic instead of the first.
The explanation is that the harmonic sequence {2, 4, 6} carries more energy than
{1, 2, 3}. The error curves in Fig. 4.1(d) show that the estimates are close to the
optimal. Periodic fluctuations in both standard deviation and the RMS error are
observed. This phenomena has not been studied closer.

Figures 4.1(e) and 4.1(f) show the results for the correct model with 5 harmonics
(hs). The correct fundamental frequency is estimated for the entire length of the
signal and with the lowest error of all methods. The periodic fluctuation in standard
deviation and RPM error are observed as in the previous example. The fluctuation
are almost identical and on the same scale. It is speculated that the phenomena
may be caused by the non-stationarity of the signal, but it needs to be investigated
further.

Further simulation results can be found in appendix C where the results are shown
for simulations with SNR=30dB (Fig. C.8) and SNR=0dB (Fig. C.9).

From the simulations it is concluded the Bayesian frequency estimator is superior
to the previous investigated methods.

4.4 Modeling Non-stationary Frequencies

To this point only stationary frequencies have been considered as basis vectors of G.
That is Eqgs.(4.5,4.6):

G=lu got) ... gox(t) gsi(t) ... gs(t) (4.17)
where the functions for computing the basis vectors are defined by
gep(t) = cos(mQp(t)),  gsi(t) = sin(mfe(t)) (4.18)

Qp(t) = /0 t wp(r) dr (4.19)
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Figure 4.1: Simulation Results for Bayesian estimation, SNR=15dB. These figures
show the performance of the Bayesian frequency estimator when assuming the signal
has (a) one harmonic, (b) two harmonics, and (c) three harmonics. Compared to
the results from the other frequency estimators shown in figures 3.10 and 3.11, the

Bayesian frequency estimator is superior.
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When the frequency is stationary, then wr(¢) is constant and Qp(t) = wpt. It follows
from Eq. (4.19) that when estimating a non-stationary frequency, the non-stationarity
should be reflected in Qg (¢). If we suppose that wg(t) is linearly increasing and the
rate of change is to be estimated, then

wp(t) =wpotat = Qp(t) = wrot + %atQ (4.20)
0 is thus increased with the additional parameter « equivalent to the acceleration of
fundamental frequency’s phase angle. The new parameter affects only how the basis
vectors in G are computed, the overall procedure therefore remains unchanged.

The effect of including the frequency change in the estimation is illustrated by
an example. A signal with a single sine wave is constructed where the frequency
increases linearly from 50 Hz to 150 Hz over a period of one second. The signal is
defined by Eq. (4.21). The sine wave has unit RMS amplitude.

2(t) = Acos(Qr (1)) + e(t), () = /O 2w f(r) dr

A=72, f(t) =50+ 100t

(4.21)
0<t<1

The signal is sampled at 1024 samples per second. A total of 100 simulations are
carried out for each of the record lengths 32, 128, and 256 samples (~ 1/32's, 1/8 s,
and 1/4 s), and at SNR levels of 0 dB and 25 dB. The marginalized posterior PDF
for wp o, o is evaluated at each of the parameters in the range

wro/2m = {10,10.5,...,200}
a/2r ={0,10,...,170}

The MAP estimate of (wpp, @), is located and used to compute the ML estimate of
the amplitude. Table 4.2 contains the mean square errors of the frequency estimate,
wr,0, and the amplitude estimate, A. The frequency errors are given in Hz. The rows
labeled a = 0 are the estimate errors when the frequency change is not modeled.

SNR Level Frequency MSE Amplitude MSE
N=32 N=128 N=256 N=32 N=128 N=256
0dB o #0 5.9 0.42 0.14 0.034 0.0086 0.003
a=0 5.9 0.48 4.3 0.034 0.011 0.2
25dB  «a #0 | 0.011 0.011 0.01 4.8e-008 3.1e-008  1e-007
a=0 | 0.0096 0.085 4 3.4e-007  0.0043 0.24

Table 4.2: Estimation Errors

The table shows that at low SNR and when « is estimated, the long record length
N=256, gives the best estimates of both frequency and amplitude. It is noted that
for N=32 hardly anything is gained in accuracy by estimating «, for N=128 and
SNR=0 the gain is limited. For N=256 and SNR=0 significant improvements are
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observed. Regarding amplitude estimation the table indicates that longer record
lengths give more accurate estimates, provided the frequency profile matches the
observed signal. If a is not estimated the table reveals that the long record length
gives the worst amplitude estimate! The effect of estimating a time-varying frequency
with a constant ML frequency model is studied in [21].

The simple linear frequency model used in this example (Eq. (4.20)) may not be
sufficient when accurate amplitude estimates are required e.g. under very low SNR
conditions. In principle, the linear frequency model can be generalized to polynomials
of any desired degree. This, however, may not be computationally feasible due to the
increase in dimension of the joint posterior PDF. In section 6.2 is given an example
that deals with this problem by using two record lengths. First, the frequency profile
is estimated using short records. Second, the amplitudes are estimated using longer
records.

4.5 Multiple Frequencies

If a signal contains frequencies that are close it is difficult to identify the individual
frequencies. For the Fourier transform the resolution is given by the BT product
and is proportional to the inverse of the record length. Thus, for a record length of
T = 250 ms the resolution is AF = 4 Hz, and it is independent of the sample rate.
In addition the leakage effect mentioned in Sec. 3.3 is unavoidable and decreases the
resolution further, e.g for the Hanning window two frequencies needs to be 2 x AF
apart.

With the flexibility of the Bayesian framework, it is relatively easy to expand
the frequency estimation model to include multiple and independent frequencies.
In the following it will be shown that with the Bayesian approach it is possible to
identify frequencies closer than AF = 1/T when a model assuming the presence of
two sinusoids is used.

Example

The signal to be analyzed is defined by

d(t) = cos(2mfit + ¢1) + cos(2m fat + ¢a) + e(t)
w; = 27Tfi, f1 =955 HZ, fg = 98.5Hz
t = nAT, AT =1/F, F,=1024Hz, 0<n <256

e(t) ~ N(0,02), ¢1,¢s ~U(0,2r)

Figure 4.2 shows two realizations of the signal. The signal is equivalent to the
product of two sine wave with the frequencies f, = (f1 + f2)/2 and f, = (f1 — f2)/2.
The segment is 1/4 second long and contains only 3/8th period of f;. From the
segment alone it is difficult to identify the beating caused by the two sinusoids.
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Figure 4.2: Two tone signal. This graph shows two realizations of a signal with two
sinusoids with unit amplitude and frequencies of 95.5 Hz and 98.5 Hz respectively.
The signal is sampled at 512 samples per second and the noise variance is 02 = 0.2
resulting in a SNR of 7dB

One Frequency

We now try applying a single tone Bayesian model to estimate the signal and compute
the ML estimate of the amplitude. The posterior distribution of p(w|d) is computed
according to Eq. (4.8) and Eq. (4.15). To reduce the amount of computations the
posterior distribution is only computed in the region, 92 Hz < f < 104 Hz in incre-
ments of 0.01 Hz. In this region the Fourier transform gives four estimates of the
magnitude which are also computed. The results for the two realizations are plotted
in Fig. 4.3. In the first realization (Fig. 4.3(a)) the posterior, p(w|d), is unimodal®
and there is no indication of two sinusoids being present. The maximum a posteriori
(MAP) estimate of w is located between the true frequencies, giving an error of ap-
proximately 1 Hz. For the second realization (Fig. 4.3(b)) the posterior is bimodal ,
indicating the presence of two sinusoids. The two local MAP estimates are offset 0.5
Hz from the true frequencies.

Two Frequencies

The next step is to estimate the posterior distribution for the model containing two
independent frequencies. The two-frequency linear model is

d = G(w,w2)b+e

G(wi,wz) = [cos(wit) sin(wit) cos(wet) sin(wat)]
b [A, Bi Ay By]'
t = [0 AT ... (N-1)AT)"

4The PDF only has one local maxima
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Figure 4.3: Estimating Two Tone Parameter with Single Frequency Model. The
vertical dashed lines indicate the position of the true frequencies in the signal. The
solid line is the ML estimate of the amplitude, and the circles are Fourier estimates of
the magnitude. The dotted line indicates the relative energy modeled. The posterior
distribution of w is shown with the dash-dot line. (a) corresponds to the realization
shown in Fig. 4.2(a) and results in a unimodal density for p(w|D). (b) corresponds
to the realization shown in Fig. 4.2(b) and results in a bimodal density.

The joint-posterior distribution of w; and ws is computed by substituting G in
Eq. (4.15) for G(w1,ws).

To reduce the amount of computations the posterior distribution is only computed
in the region, 93Hz < f < 101 Hz in increments of 0.1 Hz (See Fig. 4.4). For both
realizations the joint posterior have two distinct maxima at the true frequencies.

Discussion

The example has illustrated that two sinusoids with a difference < AF, can be
resolved, when the estimation method takes into account the presence of two sinu-
soids, and AF = 1/T where T is the observation time of the signal. The conditions
for separating close frequencies with maximum likelihood estimation is investigated
in [13, Sec.3.5].

It is seen from Fig. 4.3 that the magnitude estimates provided by the Fourier
transform are identical to magnitude estimates of the Bayesian single frequency esti-
mator. The Fourier transform only provides accurate estimates for single frequency
signals - or when the sinusoids are well separated. Using an incorrect model for the
estimation resulted in biased estimates.

In the context of estimating the running speed of rotating machines, it should
be investigated to what extent the bias caused by an incorrect estimation model
contribute to estimation error.
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Figure 4.4: Posterior Distribution for Two Independent Frequencies. For both real-
izations the joint posterior distribution for p(w,ws|d) show a clear peak at the true
local maxima. The vertical and horizontal curves are p(wz|d) and p(w;|d) respec-
tively. (a) corresponds to the realization shown in Fig. 4.2(a). (b) corresponds to the
realization shown in Fig. 4.2(b)

For this simple example, the joint posterior was computed in a brute-force manner
and only a limited part of the frequency range was explored. For real vibro-acoustic
signals with many frequency components efficient methods are required. Estimation
of joint posterior distribution for non-linear and multivariate problems is a topic of
great attention and research. Unfortunately, there has not been time to look into
that field in this study.

4.6 Multichannel Data

It is here shown that the Bayesian frequency estimator can be extended to use infor-
mation in multiple data channels when estimating the fundamental frequency. It is
a brief summary of the work presented in [38].

In a multichannel measurement the fundamental frequency and its higher order com-
ponents are expected to be present in all channels, but with varying phases and
amplitudes. With the noise in each channel also being uncorrelated, the multichan-
nel estimation problem of Eq. (4.6) becomes the linear problem:

D=GB+E (4.22)

The columns of the matrix D are the measured data channels, G is the matrix with
basis vectors as columns (Eq. (4.5)), the columns of B are the amplitude parameters
for each data channel, and the columns of matrix E are the noise contribution for
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the channels:

Dyow = [di ... du]
Bokiixw = [b1 ... byl
Exv,u = &1 ... epy]
d,, = [dn(te) ... dn(ty_1)]"
b, = [Amo Amxkx Bmi ... Bumxk|'
em = [em(to) ... em(tn_1)]", em(t) ~N(0,62)

Using Bayes rule the posterior distribution of wg conditioned on the measurement
channels is given by

_ p(dla' "7dM|wF)p(wF)
p(dla"'7dM)

To find the distribution of the data conditioned only on wpg, the nuisance parame-
ters, {Om,bm 1 1 < m < M}, are eliminated by integration from the likelihood in
Eq. (4.24). Since the nuisance parameters conditioned on wg are independent the
integration in Eq. (4.24) can be separated into the product of the M integrals in
Eq. (4.25), each involving only the parameters of the individual channels.

p(wrldi,...,dun) (4.23)

p(dl, .. .,dM|wF)
- /p(dh...,dm{am,bm 1 <m < M},wp)

Xp({om,bm : 1 <m < M}|wp)d{om,bm: 1 <m< M} (4.24)
M
=TI [ #ul{ombu}r)p(ion. ba)lor) d{am.ba) (4.25)
"
— T pduler) (4.26)

In [38] we apply the multichannel estimation scheme to the three responses of the
simulated mechanical system from Sec. 2.4 and to a three channel vibration measure-
ment from the interior of a passenger car. In both cases significant improvements are
observed when the sources are combined.

4.7 Summary

This chapter has introduced the Bayesian statistical framework in the context of fun-
damental frequency estimation. Within the framework a new block-based frequency
estimator was designed. The estimator distinguishes itself from other block based
estimators by incorporating prior knowledge in the form of a harmonic sequence char-
acterizing the periodic signal. Via simulations it was shown that the estimator was
superior to any of the estimators covered in Chapter 3.
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Examples were also given on how to expand the model to deal with other problems
related to frequency estimation, e.g. non-stationary frequencies and identification
and separation of close frequencies.

4.7.1 Relation to Recent work on Bayesian Estimation

The approach in this work to estimate the fundamental frequency is similar to that
used by Walmsley [64] and Godsill [16] to estimate the pitch of musical instruments.
The methods differ in the choice of priors, but all three use constant frequency sines
and cosines as basis functions.

References [1] and [9] both concern the multiple frequency estimation problem
addressed in Section 4.5. In [8] the parameters of generalized frequency modulated
signals are estimated in a Bayesian context.
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CHAPTER 5

Tracking

When analyzing non-stationary signals from rotating mechanical systems, it is nec-
essary to both estimate and track the fundamental frequency.

In the previous chapter a Bayesian based frequency estimator was designed. It
utilizes the harmonic structure embedded in the measured signals to enhance the
frequency estimates. Theoretically, if a model of the frequency change, for the entire
length of the observed signal, can be devised, then the estimator could estimate the
parameters of the model. Practically, however, the length of the observed signal
and the number of parameters needed will not make this approach computationally
tractable.

In this chapter the tracking problem is addressed within the Bayesian framework.
Section. 5.1 formulates the tracking problem in probabilistic terms and defines the
optimal track. In Sec. 5.2 a simple tracker is devised through a conditioned prior
on the fundamental frequency. In Sec. 5.3 The Viterbi algorithm [15] is used to find
the optimal track assuming the track is the result of a 1st-order Markov process.
Tracking examples using vibro-acoustic signals are given in Sec. 5.4.

5.1 Tracking in Probabilistic Terms

Tracking a periodic signal which changes rapidly is difficult, especially under low
SNR conditions. However, if the change is slow and a simple model can be fitted
to short segments of the signal, then the fundamental frequency can be tracked by
observing the changes in the model parameters from one segment to another.

In this chapter the Bayesian frequency estimator from the previous chapter is used
to estimate the fundamental frequency. Thus, for each segment, k, of the signal a
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posterior distribution of the fundamental frequency is computed, p(wgc) |d(k)), where
(k) denotes the values related to the kth record. The data record is defined by

d®) = [d(tkAN) d(tkAN-i-l) d(tkAN_;,_M_l)]T (5.1)

where M is the number of samples in each record. The records are offset by AN
samples from each other, thus allowing records to overlap if AN < M.

The tracking problem can now be formulated in probabilistic terms as finding
the maximum a posteriori (MAP) estimate of the joint posterior distribution of the
fundamental frequencies from all records, O = {wg) : 0 < i< L}, conditioned on
the observations, Dy = {d(i) : 0 < i< L}. The value of O corresponding to the
MAP estimate of p(O1|Dyr) is the optimal track.

Without any prior knowledge regarding wg) the joint posterior is simply

L—1
p(0LDL) = [] p(wi1a®) (5.2)
1=0

and the MAP is the set of w;f) which maximizes the posterior of the individual

records, p(wg) |d®):

{arg m(z}fcp(wg”d(i)) :0<i< L} (5.3)
wWr

However, it is assumed that the frequency changes slowly. This information can be

expressed as a conditioned prior distribution for wgc), e.g.,

k) (k=1 k—P
Pl WD) (5.4)
when wgc) depends on the previous P records. If wp obeys Eq. (5.4) it is said to
be a Pth-order Markov chain process [15,34]. Using Eq. (5.4) the joint posterior
becomes':

p(©r|Dr) = P(W%L_1)|@L71, Dr)p(©1-1|D1)
x P(d(L_l)|W§:L_1))P(W%L_l)|@L71)P(9L71|DL71)

P-1
o p(dP|wi) plwi) [] p(d@wi) pwid|0:) (5.5)
=1

L—1
i ) ) — i— P
x JI PPl p@i jwi ™, wi ™)
i=P

The recursive nature of the equation is exploited in the next section to design a
simple tracker.

IFollows from p(A4, B|C) = p(A|C)p(B|C)
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5.2 Tracking with Priors

The previous section showed that the tracking capabilities is linked to the PDF
of the fundamental frequency estimate conditioned on the previous history of the
fundamental frequency. Prior knowledge of how the fundamental frequency changes
over time should therefore be used when the PDF is selected. With respect to the
run-up/down example described in Section 2.2, the maximum relative change of the
fundamental frequency is less than 3% from one record to the next for 250 ms long
records with 75% overlap.
If we assume the frequency change is linear over the previous P records, i.e.,

w%"_k) =ak —|—w;ﬂn) +nn—k), n~N(@00%), 1<k<P (5.6)

then linear regression can be used to predict the location of the next observation.
This is illustrated by Figure 5.1 for P = 4.

w}"”‘” /27
04
21 P ™)
J/
W) o+ )
R
Q 19
O

18

Figure 5.1: Tracking Prior from Linear Regression. The figure shows how the prior
PDF of the current frequency estimate, p(w%n) w;ﬂn*l), . ,wgkp)), is determined
by linear regression of the past P = 4 values. In the example 02 = 1/ 4Hz?. The
predicted value for w%")

circles (o).

is marked by the asterix (*) and the past observations by

It is shown in Appendix A.2 that the prior PDF of wgl) according to Eq. (5.6) is
computed by

n n—1 n—P
p(wl(ﬁ‘)|w§7 )a "-7w1(U‘ )):N(MT7U%)’
P (22P+1)—6k)wir P
Ll (2P Ok , for P> 1 (5.7)
HT =
wg“l) , for P=1

Combining Eq. (5.7) with Eq. (5.5) a novel prior-based tracking algorithm can be

devised. Using d)g,k) to denote the tracked frequency in record k the algorithm is
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1. Initialize p(w;?)), o2, and compute

J);P) = arg m(%?(p(d(o) |w§,9))p(w§,9))

F
2. For1<k < P:
(k) ~(0)

Wy~ = arg m%{p(d('“)Iwg“))p(wg“)lﬁl(f*l)’ s wp’)
“F
3. For P<k < L:
& = argmaxp(d® W )p(w|of T, o)

F

In practice the algorithm has proven to be quite robust and its simplicity makes it
suitable for real-time implementation. The algorithm is tested on experimental data
in Section 5.4.

5.3 Tracking In Retrospect

The simple tracker is not guaranteed to give the optimal track for a given set of
observations. This is illustrated with the example shown in Figure 5.2. For simplicity
we assume wgﬁ) is discrete, i.e., wgﬁ) € {1,2,3,4}, and there are 5 observations. The
observation are shown in Fig 5.2(a), where the kth column of the table is the discrete
PDF of the kth observation.

Choosing a uniform prior PDF for wgc) then the estimated track is simply the

maxima of the individual observations as shown in Fig. 5.2(b). The encircled numbers

along the track are the values of the joint PDF for O = {wg)), e ,wg)}. The value
at the end of the track indicates how well the track matches the observed data.

The simple tracker is evaluated with the 1st-order Markov chain prior shown in
Fig. 5.2(c). The track is shown in Fig. 5.2(d). Clearly, it is not the optimal track
since the joint PDF ends at a lower value than in Fig. 5.2(b). The reason is, that the
observation at k = 2 diverts the algorithm from the optimal track. Once diverted,
the narrow shape of the prior prevents it from returning to the optimal track. Were
the optimal track in Fig. 5.2(e) to be obtained, then at k = 2 the tracker should
have selected wg) g)
retrospect.

= 3 instead of wi’ = 1. However, this choice is only obvious in

5.3.1 The Viterbi Algorithm

To find the best single path through the sequence of observations in retrospect,
the Viterbi algorithm [15] can be used. Also referred to as Viterbi Decoding, the
algorithm was originally developed for use in communication systems, but it has also
proved useful for frequency tracking under conditions of low SNR [4,43,59).
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Track using uniform prior:

Observations: p(w;}f)|d(k>) P(Wg)) =1/4
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1st-order Markov chain prior:
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Track using
1st-order Markov chain prior

Optimal track for
1st-order Markov chain prior

(d) (e)

Figure 5.2: Tracking example with discrete frequencies. (a) the observations for each
record. In (b) the resulting track when assigning a uniform prior PDF to the tracked
frequencies. (c) shows a 1st-order Markov chain prior. (d) the obtained track using
the simple algorithm (Sec. 5.2). In (e) the optimal track. All tracks are initialized
identically with p(wg))) = 1/4. The encircled numbers along the tracks are p(Oy|Dy)
from Eq. (5.5).
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The Viterbi algorithm is best explained by the Bugs on a Grid analogy [15]:
First, a bug is placed on each of the possible frequencies of the first observation.
Each bug then reproduces itself onto the frequencies of the next observation and
modifies its probability accordingly (Eq. (5.5)). This continues until the final ob-
servation is reached. When there are more than one bug at a given frequency (e.g.
wg) = 2 in Fig. 5.2(a)) then only the bug with the highest probability is allowed to
reproduce. When the bugs reach the final observation, the optimal path is be found
by tracing the ancestors of the bug carrying the highest probability. The tracks
shown in Figures 5.2(d) and 5.2(e) can be perceived as the different paths travel by

two bugs descending from the bug born in w;?) =1.

In this study a Viterbi tracker has been implemented. It uses the Viterbi al-
gorithm to find the optimal track through the observations, assuming the 1st-order
Markov chain prior is normally distributed Gaussian with a specified tracking vari-

2
ance, 0.

5.4 Experiments

The simple tracking algorithm from Section 5.2 and the Viterbi algorithm are imple-
mented as a small Matlab[J] application. The users interface is shown in Figure 5.3.
To estimate the fundamental frequency, the first step is to specify the signal, the size
of the records and the amount of overlap (upper left panel). The second step is to
specify the parameters for the Bayesian frequency estimator, i.e., the frequency range,
the resolution and the orders of the fundamental frequency (upper middle panel) of
the posterior PDF estimated for each record. Figure 5.4 shows posterior PDF’s for
the acoustic signal described in Section 2.2. The third and last step is to set the
tracking parameters. For the Viterbi tracker this amounts to selecting the variance
for the normally distributed Gaussian used as prior (in Hz?). The same variance is
used by the simple tracker. In addition the linear regression length (Eq. (5.7)) and
an optional starting point can be specified for the simple tracker.

The tracking results for the accelerometer signal are summarized in Figure 5.5
and Table 5.2, and in Figure 5.6 and Table 5.3 for the acoustic signal.

The parameters used for the simulations were found by systematically searching a
subset of the parameter space and then selecting the combination of parameters with
the lowest standard deviation of the tracking errors. For both signals the largest
errors are observed during the swift deceleration. Therefore it is expected that a
significant part of the standard deviation is caused by the run-down.

The subset of the parameter searched was selected primarily by inspection of the
spectrograms of the signals: The Accelerometer signal (see e.g. Fig 2.3(c)) has a
strong 2nd harmonic, whereas the Acoustic signal (Fig 2.3(d)) appears to have a
lower SNR and dominating 2nd, 2.5th and 2.6th orders. The searched parameter
subspace is listed in Table 5.1.
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Figure 5.3: Users interface to test program. In the top panel the Bayesian frequency

estimator is configured and the tracking parameters set.

The frequency range is

specified in MatlabO notation, i.e., it starts at 8 Hz and increases in steps of 0.5 Hz
until it ends at 65 Hz. For the simple tracker the regression length, P is specified after
the # symbol following the tracking variance. A negative start frequency indicates
the tracking should start at the most likely frequency in the first observation. The
large graph shows the tracked frequency with a virtually overlapping reference curve.
The plot in the bottom panel shows the probability of the tracked frequency in the

observations, p(d)gf) |d®).

Tracking variance [Hz?| o%

Regression length
Record length [s]

Acceleration orders

Acoustic orders

2

P
AT

H
H

{1/2, 1/4, 1/8}
{[2], [1, 2],[1, 2, 5]}

M MMMM

Table 5.1: Parameter subspace

{4,2,1,1/2,1/4,1/8,1/16}
{1, 2, 3,4, 5, 8, 16}

(not for Viterbi)

{2, 2.5], [2, 2.5, 5],[2, 2.5, 2.6, 5]}
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Figure 5.4: Bayesian Frequency Estimates of the Acoustic Signal. These figures show
the posterior PDF’s of the fundamental frequency for each of the records for the track
shown in Figure 5.3. The left figure shows the posterior probability on a linear scale;
the right on a logarithmic scale. The estimator has difficulties estimating the correct
frequency at t = 24s, which shows as a gab on the left plot and bright vertical line on
the right plot. This is reflected in the lower panel of Fig. 5.3 where the probability
of the tracked frequency is very low in the region around t = 24s.

5.5 Summary and Concluding Remarks

In this chapter the Bayesian frequency estimator was extended with tracking capa-
bilities, by using a prior for the fundamental frequency conditioned on the previous
history of the fundamental frequency estimates. The result is a surprisingly simple
and yet robust tracker. Tested on the experimental data the performance was com-
parable to the Viterbi tracker. Computationally, this tracker is much simpler than
the Viterbi tracker. But, as was illustrated in Figure 5.2 it is not guaranteed to find
the optimal track as opposed to the Viterbi tracker.

Another worthwhile observation from Figure 5.2 is that the shape of the prior PDF
influences the accumulated probability. One could erroneously believe the uniform

Algorithm Mean Err.  2xStd.Dev. Max. |Err|
Simple Tracking:
H=][1,2], 02 =1/8, P=2 -0.0020 Hz 0.34 Hz 1.02 Hz
Viterbi Tracking: 0.0017 Hy 054 1 .

H =

[1’ 2];

02 =1/16

Table 5.2: Tracking Errors from Accelerometer signal.
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Figure 5.5: The tracking error for the accelerometer signal is measured as the differ-

ence of the estimated track to the true frequency estimated with a tacho probe. Left

panel: Profile of the tracked frequency by simple tracker(top) and the error (bot-

tom). Right panel: Similar to the left panel, but for the Viterbi tracker. Visually it

is nearly impossible to distinguish the two methods.

prior would always give the highest probability for the optimal track because it always
selects the maxima of all records. But, as the example shows, the optimal track with
the uniform prior (Figure 5.2(b)) obtains a slightly lower probability than the optimal
track with the non-uniform prior (Figure 5.2(e)).

The Viterbi algorithm is related to the theory of Hidden Markov Models (HMM)
[45]. HMM’s have been used with success in speech recognition applications, where
the parameters for the prior PDF are estimated automatically. There has not been
time to study the subject closer here, but it is believed that further improvements
are possible in that direction. Regarding tracking of multiple frequencies an HMM
based approach is given in [68].
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Figure 5.6: Tracking Error for Acoustic Signal. Similar to Figure 5.5

Algorithm Mean Err.  2xStd.Dev. Max. |Err|
Simple Tracking:
H=[2,25,26, 5], 0_% —1/8, P=2 0.10 Hz 0.82 Hz 3.7 Hz
Viterbi Tracking: 0.090 Hz  0.84 Hz 3.1 Hz

H=12,25,26,5], 02=1/16

Table 5.3: Tracking Errors for Acoustic Signal



CHAPTER 6

Applications

6.1 Simulated Driveby

An application that requires frequency tracking is passive surveillance of aircrafts.
The propulsion system of the aircraft radiates high levels of acoustic energy. By
observing of the Doppler effect in acoustic signals from the aircraft, as it passed a
stationary sensor on the ground, then information about the aircrafts flight parame-
ters such as altitude and velocity can be estimated [12].

Similarly, we will here use the Bayesian frequency estimator to measure the
Doppler shift in the sound emitted by a car driving by a microphone. From the
Doppler shift, the speed and acceleration of the car is then estimated similarly to
the example with aircraft. In principle, this similar to the method described in [12].
However, there are two differences: the first is that the frequency track is estimated
using the Bayesian frequency estimator and the Viterbi tracker, as opposed to the in-
terpolated maximum of the Fourier spectrum. The second difference is that model of
the cars motion includes acceleration whereas it for the aircraft only includes velocity.

Two assumptions are necessary in order to determine the acceleration: first, the
radiated sound is narrow banded with a fundamental frequency proportional to the
velocity; second, the velocity can be approximated with a first order equation (i.e.
constant acceleration).

The movement of the car relative to the microphone introduces a Doppler shift
in the measured fundamental frequency. Knowing the position of the microphone it
is possible to fit a model to the profile of the fundamental frequency based on the
speed and acceleration of the car.
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Figure 6.1: Driveby Setup. The source is moving along the y-axis with the velocity
V and emits sound in direction S towards the detector located in position (Xd,0)

The Doppler shift depends on the speed of the source towards the detector.
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The general formula for the Doppler shift from a moving source is

1
fa=1T $7_ oad (6.1)
c
where wvgq is the velocity of the source towards the detector, f; is the frequency at
the detector, fs is the frequency emitted by the source, and c is the velocity of the
sound. When f, is proportional to the velocity of the source, fs = Kys, Eq (6.1)
becomes
Ky,
fa= - = (6.2)
c\/z2+y2
The distance between the source and the detector introduces a delay before a sound
emitted by the source is received at the detector. Assuming the velocity of sound is
constant (c), then a sound generated by the source at time, ¢ will be received at the
detector at time ¢4 defined in Eq. (6.3).

1
tg =1+ E 1'(21 + yg(t) (63)

Given the geometry in Figure 6.1 and the equations (6.2)and (6.3), the task is to
fit a model for the movement of the source as it passes the detector such that the
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generated Doppler frequency matches that observed at the detector. When assuming
constant acceleration, the model is

ys(t) = wvt+ %atQ (6.4)
Ys(t) v+ at (6.5)

6.1.1 Numerical Method

Fitting the model represented by the equations (6.4) and (6.5) is accomplished
through numerical optimization. The first step in this procedure is to estimate the
position of the source given the initial set of parameters: ¢y, the time when the source
passed the detector, i.e. ys(t) = 0; 24, the location of the detector; vy, ag, the velocity
and acceleration at time ¢ = t¢; finally the Doppler frequency at ¢t = ¢ is also needed,
fa(to). Using Eq. (6.2) and Eq. (6.3) the expected Doppler frequency is computed
as a function of the detection time, f4(tq4). The second step involves minimizing the
mean square error of the fit, e.g. using a multidimensional nonlinear minimization
algorithm a la the Nelder-Mead simplex method [41, Sec.10.4].

6.1.2 Simulated Example

To illustrate the method, the detected signal is synthesized for the parameters,
tq=20m, v=>55ms ', a=4.50ms 2, fq=3v

The frequency observed at the detector is plotted in Figure 6.2(a), where the top

graph shows the frequency and the lower graph shows is the amplitude when assuming
it decreases with the inverse of the distance from the source.

Synthesized Signal Detection

From the frequency profile the harmonic signal h(¢4) in Eq. (6.6) is created

h(ta) = sin (27r /0 tdfd(t)dt> (6.6)

glts) = D(ltd) sen h(ta) (o) + N (0, 0) (6.7)

Squaring h(t4) and keeping the sign is a nonlinear operation that introduces higher
overtones. Equation (6.7) is the final expression for the simulated signal. The term
1/D(tq) is identical to the amplitude graph in Figure 6.2(a). The variance of ad-
ditive Gaussian noise is adjusted to give an average signal to noise ratio of 12 dB.
Figure 6.2(b) shows the time signal and Figure 6.2(c) shows the spectrogram of the
same signal.
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Figure 6.2: Simulated Soundtrack

Model Fitting

The Bayesian frequency tracker is configured to search for a track in the range from
140 — 200Hz in increments of 1/4Hz. The posterior of the fundamental frequency
is shown in Figure 6.3(a) along with the estimated track. The track is used in the
numerical optimization process which results in the final parameter estimates shown
in Table 6.1 and the fit is plotted in Figure 6.3(b).

to/s fa/Hz v/ms™t a/ms™2 xz/m

Initial 1.90 120.0 20 2.0 10
Final 2.13 165.0 54.95 4.49 19.99
True — 165.0 55.00 4.50 20.00

Table 6.1: Parameters for Simulation

6.1.3 Racecar Example

Figure 6.4(a) shows a soundtrack from a racecar driveby recorded at the Daytona
International Raceway [36, Track 1]. Unfortunately only few facts are known about
the recording, hence there are no results to compare the estimates with.

The spectrogram (Figure 6.4(b)) indicates that the fundamental frequency is in
the range 150-200 Hz and that higher harmonics are present. Hence, the Bayesian
tracker is configured to search for the track in the range 150 — 200 Hz, using the first
and second harmonics of the fundamental frequency.

Once the track is estimated, the model is fitted using the initial parameters listed
in Table 6.2.

The detected track along with the fitted curve is shown in Figure 6.4(c). The
model parameters are listed in Table 6.2.
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Figure 6.3: Fitted Track
to/s fa/Hz v/ms~t a/ms™2 x/m
Initial 1.50 170.0 20 2.0 15
Final 1.48 167.9 54.6 4.5 19.8
Table 6.2: Parameters for Racecar
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Figure 6.4: Soundtrack from race car driveby. (a) soundtrack of a Nissan GTP
Racecar recorded 15.2 meters from the roadway on the back straight away of the
Daytona International Raceway [36, Track 1]|. (b) Frequency contents of sound track.
(c) Measured and fitted frequency track. See Table 6.2 for the parameters.
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6.1.4 Discussion

In this section the Bayesian frequency estimator and tracker was used to estimate
the fundamental frequency of a moving source as it passes by a microphone. Based
on this frequency estimate a nonlinear numerical optimization method was used to
fit a model of motion to the source from which the velocity and acceleration of source
was determined.

The spectrograms of the real data from the Daytona racing track showed the
presence of a large number overtones. With its ability to track harmonic sequences,
the Bayesian tracker is expected to provide optimal estimates of the fundamental
frequency for this type of signals, and thus provide the best input for the numerical
optimization procedure.

To keep the entire problem within the Bayesian framework, it would be obvious
to replace the Nelder-Mead simplex method, with a Bayesian sampling method to
find the maximum a posteriori estimate for the model parameters. Two different
directions can be taken: The first is to keep the two-step approach used here, where
the frequency track is estimated as the first step and the model is fitted in the second
step. When dealing with long sequences where the Doppler shift is relatively slow, the
approach works quite well as demonstrated here. But when dealing with fast Doppler
shifts or short sequences, it becomes difficult to divide the signal into segments from
which accurate frequency estimates can be made. In this case a second direction
should be investigated. Namely, the possibility of synthesizing the basis functions in
the Bayesian Estimator directly from the model parameters as in Eq. (6.6), possibly
combined with the amplitude correction used in Eq. (6.7).

6.2 Order Tracking

When analyzing vibrations from rotating machines, it is of interest to estimate and
track the amplitudes and phases of different orders of the fundamental frequency.
Unless the fundamental frequency is stationary, traditional spectral estimation tech-
niques (e.g. Fourier analysis) can give inaccurate amplitude estimates for the orders
due to the non-stationarity which causes smearing of the amplitude estimates of the
orders. The smearing can be avoided by resampling the vibration signal from hav-
ing a constant time increment to a constant angular increment in-between samples.
Figure 6.5 shows a simplified block diagram of an order tracker based on resampling.
The Tacho Analyzer measures the delays between the tacho pulses and computes
the times at which the resampler should resample the vibration signal to ensure an
equidistant vibration signal in the angular domain.

Here it will be shown that comparable order tracks are obtainable using the
Bayesian frequency tracker without resampling the vibration signal. The resampling
is avoided by incorporating the non-stationarity of the fundamental frequency into
the basis vectors of the linear model as discussed in Sec. 4.4.
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/ Signal / Spectrum
| Resampler”™ /3 Analyzer

Tacho
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Figure 6.5: Ordertracking by Resampling

6.2.1 Resampling Setup

The vibration signal described in Chapter 2 is chosen as the source signal for which
the amplitudes of the orders 1,2,2.5 and 5 of the fundamental frequency are to be
estimated. The measurement bandwidth of the vibration signal is reduced to 800 Hz
and sampled at a rate of 2048 samples per second.

For reference, the signal is processed by a B&K Pulse order tracking analyzer.
The analyzer is configured to compute 10 orders with a resolution of 0.05 order,
hence each record must contain 20 periods of the fundamental frequency since the
equivalent of the BT product in the angular domain is

AF - TRec =1 ~ AOrder - RevRee =1

where AF and TR, are the frequency resolution and record length in the time do-
main, AOrder is the order resolution and Revpg,. is the record length in periods of
the fundamental frequency in the angular domain. The amplitude of the selected or-
ders are computed as the power in the order bands listed in Table 6.3. The bandwidth

Order Width

1.0 0.3
2.0 0.3
2.5 0.1
5.0 0.1

Table 6.3: Definition of Order slices. Order specifies the center of the order band
and Width specifies the width of the slice (in orders).

of orders 2.5 and 5 is set to 0.1 orders so that orders 2.6 and 5.2 do not interfere.
The interfering orders can be identified on the spectrogram in Figure 2.3.

6.2.2 Estimating the Fundamental Frequency

The fundamental frequency must first be estimated. This is accomplished using the
Bayesian frequency estimator and the Viterbi tracker described in Section 5.3.1. The
parameters for the frequency estimator and tracker are listed in Table 6.4. Figure 6.6
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Parameter Value

Harmonic Sequence 1,2,2.5,5
Frequency Range 8, 8.5,...,80 Hz
Record Length 250 ms

Record Overlap 5%

Tracking Variance (or2?) 1/16

Table 6.4: Frequency Tracker Configuration

shows the tracked profile and the tracking error. The maximum frequency error is
0.22 Hz and standard deviation is 0.077 Hz for the track in full.

— Ref
—— Estimate

RPM Profile

F/[Hz]

0 10 20 30 40 50 60

Time/[s]
0.4
0.2 1
O
-0.2} 1 1
04 10 20 0 20 50 60

Figure 6.6: Tracking Error. The top graph shows the profile of the estimated funda-
mental frequency for the Bayesian order tracking example. The bottom graph shows
the estimation error in Hz as a function of time.

6.2.3 Estimating the Amplitudes

The primary focus until now has been on estimating the fundamental frequency in
the signal, but in the process the amplitude and phase of the harmonics in the signal
model are also estimated as the coefficient vector in the linear problem (Eq. (4.6)).
Knowing the fundamental frequency for each data record, the amplitudes and phases
of the harmonic orders can easily be computed by recomputing the basis vectors
using the estimate of the fundamental frequency and using the maximum likelihood
estimator given by Eq. (4.8). For the vibration signal segmented into 250 ms records
this gives the order tracks shown in Figure 6.7. The figure shows that the estimated
order tracks are noisier than the resampled order tracks. The explanation for this is
found in the CRLB for the amplitude estimates; it is shown in [31] that
202

Var(é'k) Z T
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where C}, is the amplitude of the k’th harmonic, o2 is the noise variance, and N is the
number of samples used in the estimate. The record length of the resampled order-
tracks is 20 periods of the fundamental frequency, this gives effective record lengths
ranging from 2.0s at the low frequencies (10 Hz) to 1/3 s at the high frequencies (60
Hz).

To be able to compare the two methods, the record length of the Bayesian esti-
mator is also adapted to 20 periods of the fundamental frequency. Unfortunately, as
has been shown by example in Sec. 4.4 the amplitude estimates becomes inaccurate
when the basis functions start deviating from the true frequency profile, which is
likely to occur when record lengths are increased. A remedy to this problem is to
model the frequency change in the basis functions which was also discussed.

The approach taken here models the frequency changes as polynomials up to
degree 10 and estimates the order from records equivalent to 20 periods of the funda-
mental frequency as in the resampled order tracker. To find the center of the records,
the fundamental frequency is integrated,

Rev(t):/o Fr(t)dt (6.8)

which gives the revolution number as a function of time. Since Rev(t) is a monotous
rising function it is possible to find the values of ¢,, corresponding to a specified
number of cycles of the fundamental frequency. When using 20 periods per record,
then selecting every 5th period corresponds to a 75% overlap. This is similar to the
setup of the resampled order tracker. To get a good polynomial fit to the frequency
profile, the polynomial is fitted to a record of twice the length (¢,, £ 20 rev) of the
segment for the amplitude estimate (¢, + 10 rev). The order tracks resulting from
this procedure are shown in Figure 6.8 and reveals very close resemblance to the
resampled order tracks.

6.2.4 Discussion

This example has shown that the Bayesian estimator is capable of both estimating
the fundamental frequency and the amplitudes of the orders. The results were found
to be comparable to the resampled order tracks. The resampled order tracks are
computed by resampling the source signals from the time domain to angular domain,
opposed to the Bayesian estimator which resamples its basis functions instead. If the
order tracks are to be computed for many signals, then there is a computationally
advantage of resampling the basis functions instead of the individual signals. Another
advantage doing order tracking in the time domain, is that it becomes possible with
simple means to remove, extract or edit the orders in individual signals.
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. Comparison: Bayesian (250 ms/rec) vs Order Tracking (20 rev/rec)
10 T T T T T

10 0 10 20 30 40 50 60

Figure 6.7: Order Estimation with fixed record length. This figure shows with thick
lines the estimated amplitude order tracks for the Bayesian order tracking example.
The amplitudes are measured in RMS ms~2 and the time in seconds. The record
length is fixed in time to 250 ms. The thin lines are the resampled order tracks
computed in records of a fixed length of 20 revolutions.

Comparison: Bayesian (20rev/rec) vs Order Tracking (20rev/rec)

10 0 10 20 30 40 50 60

Figure 6.8: Order Estimation with varying record length. This figure is similar
to Figure 6.7, except the Bayesian amplitudes are now computed in records of a
fixed length of 20 revolutions, identically to the resampled order tracks. Very little
difference between the two estimates are observed.



CHAPTER 7

Conclusion

The original motivation behind this study was to solve the practical problem of
estimating the fundamental frequency of rotating machine parts without the need of
dedicated tacho probes. Instead, the fundamental frequency was to be estimated from
other sources such as the emitted sound pressure or the vibrations of the machine
measured with microphones and accelerometers respectively.

In Chapter 2 the characteristics of a microphone and an accelerometer signal were
examined. The signals were from a run-up/down experiment with a 5 cylinder engine
in a passenger car. Numerous orders of the fundamental frequency were observed in
both signals. This poses a problem for the estimation algorithms, namely to choose
the fundamental frequency for these orders order. For the purpose of evaluating
different frequency estimation algorithms, a simple signal model was devised based
on the observations. The synthesized signals were modeled as a sequence of harmonics
of the fundamental frequency, where the relative amplitudes and phases are made
dependent on the fundamental frequency.

Different frequency estimation algorithms and methods were examined in Chap-
ter 3 and evaluated against the simulated signals. Special attention was paid to the
Adaptive Comb Filter (ACF), being the only method using a harmonic sequence for
the estimate. A minor contribution of this work is the new and efficient version of
the ACF which was derived for estimating non-stationary signals. The simplicity and
efficiency of the ACF makes it suitable for implementations where limited computa-
tional resources are available. Of the evaluated methods the interpolated FFT and
the ACF were found to perform best.

The main contribution of this work is the Bayesian frequency estimator described
in Chapter 4 and its extension to tracking described in Chapter 5. The Bayesian sta-
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tistical framework has proven itself a powerful tool for incorporating prior knowledge
into the estimation procedure. For the Bayesian frequency estimator the prior knowl-
edge concerns the sequence of the known orders of the fundamental frequency, and
knowledge about how the fundamental frequency evolves to enable tracking across
overlapping records of the signal. Examples were given for other possible extensions,
e.g., modeling close frequencies, modeling known non-stationary frequency changes,
and merging data channels. The fact that the Bayesian estimator does not require
equidistant sampled observations, makes it possible to exclude e.g. overloaded or
missing data values from a record in order to prevent them from corrupting the es-
timates. This is not possible with any of the other frequency estimation algorithms
examined.

Applications

The applicability of Bayesian frequency estimator was demonstrated in Chapter 6,
where it was applied successfully on two practical problems.

In the first problem, the Bayesian estimator determined the Doppler shifted fre-
quency in the sound from a race car passing by a microphone. With a nonlinear
optimization method, the Doppler shifted frequency track was fitted to a model of
the cars motion, and the race car’s speed, acceleration, and distance to the micro-
phone was determined.

The second problem concerned amplitude order tracking, i.e., estimating the am-
plitudes of orders of the fundamental frequency. This was accomplished in two steps.
First, the Bayesian frequency estimator was used to obtain the track of the fun-
damental frequency. Second, the amplitudes were estimated over longer segments
equivalent to a fixed number of cycles of the fundamental frequency. For each seg-
ment the fundamental frequency was approximated by a polynomial. The resulting
amplitude order tracks were found to be comparable to those computed using con-
ventional order tracking. In conventional Ordertracking the signals are resampled
against a tacho reference, prior to using the Fast Fourier Transform (FFT) for the
amplitude estimation. The resampling is necessary because the FFT has fixed fre-
quencies as basis functions. The Bayesian approach allows frequency variation in
the basis functions. The conceptual difference of the two methods is that the con-
ventional method resamples the signals to match the basis functions, whereas the
Bayesian approach resamples the basis functions to match the signals. In a scenario
with many channels there will be computationally advantages in only resampling the
basis functions.

Further Work

The Bayesian framework is appealing in the way it includes prior knowledge in the
modeling process. When we measure signals, e.g., from mechanical systems or struc-
tures, it is often to gain insight into the systems or structures. Often we do possess
prior knowledge of the system which could be useful in the measurement process, e.g.
for validating the results.
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In this work only relatively simple models with few parameters have been consid-
ered. The maximum a posteriori (MAP) estimates were found using an exhaustive
search over a limited region of the parameter space. For vibro-acoustic signals there
are many other parameters that would be interesting to estimate, e.g., which orders
of the fundamental frequency to include in the harmonic sequence, or to include
frequency change in the basis functions. Unfortunately, additional parameters in-
crease the dimensionality of the problem. Locating the MAP estimate via exhaustive
search quickly becomes impractical for a multi-dimensional parameter space. How-
ever, the recent literature on Bayesian Estimation is rich on examples addressing
these problems, e.g., sampling techniques for computing the MAP estimate for multi-
dimensional densities, or Reversible jump Markov chain Monte Carlo methods [1] for
exploring different sizes of the parameter subspaces (i.e. allowing comparison of
different model sizes).

Specifically concerning the tracking capabilities, it is believed that improvements
are possible using techniques from Hidden Markov Models (HMM).
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APPENDIX A

Probability Densities

A.1 Probability Density Function for a Harmonic
Signal
A harmonic signal is deterministic and not stochastic, but therefore it is still pos-

sible to compute the probability density function for a randomly sampled sinusoid.
Assuming that the harmonic signal is given by

y = Asin(z) (A1)

we first note that y is symmetric around = = 0 and periodic in 27. It therefore suffices
to compute the PDF for only half a period, z €] — n/2; 4+n/2[. In this interval y is
rising monotonously and it is found that

Pr{YSy}:%JrSin_lﬂw (A.2)

The PDF of Y is found by differentiation of Eq. (A.2) with respect to y which gives,

() = ——a——, lyl< A (A3)

The PDF has discontinuities for |y| = A. Figure A.1 shows the PDF for a sine wave
with unit amplitude.
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Figure A.1: PDF for sine wave with unit amplitude

A.2 Probability Density Function for a Linear Re-
gression Tracking Prior

For tracking a slowly changing frequency, a normally distributed Gaussian can be
chosen. The width of the PDF is specified by the tracking variance, 02, and the
mean, pr, is predicted from a linear regression over the previous P estimates of the
fundamental frequency. The linear regression problem is defined by:

wgl_k):ak—i—w}n)—f—e(n—k), e~N(0,02), 1<k<P (A4)

Written in matrix notation and assuming the estimates are given in equidistant time

steps, then the predicted mean value of w;ﬂn) is is derived as follows.

W = [w%nfl) w}nip)}T (A.5)
x - [ (A6)
u = [o pr" (A7)
e = le(n—1) en—P)", e~N(0,02 (A.8)
W = Xu+e (A.9)

Eq. (A.9) corresponds to Eq. (A.4). « is the slope and p7 is the bias of the line fitted
through the previous estimates. Since time n is chosen as the reference point then

pr = wg,n). Minimizing the least square error, e e, results in

X'™W = X'Xu (A.10)
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where
P (n—Fk)
— _kw
XTW _ [ %}Iglw(nl—?k) ] (All)
k=1"F
P 9 P 2P+1 _
Ek:l —k P 2 Pl

From this, the mean of the prior distribution, u7, is found to be

2 2P3+1 - Zlf:l kwgrn_k)
PP+ -1 ka—1 ngk)
HT = 2PEl 4
3 2 (A.13)
P+1

Y (22P+1) - 6k)w'n ")
- P(P—1)
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APPENDIX B

Frequency Estimation
Formulas

In this appendix some of the formulas for frequency estimation are derived.

B.1 Hanning Window Fourier Interpolation

Here the equations for fourier interpolation using the Hanning window are derived.
First, recalling the definition of the rectangular window, Wx(f) and the Hanning

window, Wy (f):

We(s) — 2L
Wa(f) = 5Walf)+ 5 Walf — 1/T)+ Wa(f +1/T)

Writing out eq. (B.2) using eq. (B.1) gives

1

Wu(f) = WR(f)W

(B.3)

For a Hanning weighted sinusoid with the frequency, Fy = (m + §)AF = (m+0)/T,

the Fourier coefficients thus becomes

_ Asin(r(m —1m —90)) 1
2 w(m—m—0) 1—(m—m—20)>2

Gm

(B.4)
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Evaluating Eq. (B.4) for the two values of m surrounding the peak, m = m and
m =m+ 1 gives

_ Asin(m)) 1
G = T A=A+ (B-5)
Gt A sin(wd) 1 (B.6)

2 7 0(1-6)(2-9)

The fractional part of the interpolated value of the true frequency, d, is easily obtained
from the ratio of the two equations,

Gt 149 200 — 1
L R 5 = B.
“T TG, 20 T a1 (B.7)
B.2 Prony Method
Considering a noise-free signal being a summation of sinusoids,
M
y(t) = Z Ap, cos(wmt + dm)
m=1
The one-sides Z transform is defined by
Xt(z) = Z z(n)z="
n=0
Using Xt on y(t),
x+
y(t) — Y (z)
gives
M Am [COS(d)m) - COS(wm - Qbm)zil}
Y(z) = Z 1_2 B
— —2cos(wm)z7t + 2z
1
= M - — X (B.8)
Hnm:l(l - 2cos(wm)z ! +z 2)
M M
Z Ay, [cos(dm) — cos(wm — ¢m)2 "] H (1 —2cos(w)z™ ' +272)
m=1 l#m

Defing the polynomail ¢(z) by

M 2M

c(z) = H (1 —2cos(wm)z ™t +272) = Z ez " (B.9)
k=0

m=1
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and mutiplying it onto both sides of eq. (B.8) gives

M

c(2)Y(z) = Z A, [co8(¢m) — cos(wm — ¢m)2 "] H (1 —2cos(w;)z ™ 4+ 272)
m=1 l#m
2M—1

_ Z dpz* (B.10)
k=0

Since both ¢(z) and Y (z) are polynomials in z, then their product is the convolution
of the two,

c(2)Y(z) = Z diz™t

where

2M
di = Z Cky(t - k?)
k=0

From eq. (B.10) we find that d; = 0 for t > 2M, Le.

2M

chyt—k =0,t>2M
k=0

The one-sided z-transform allows arbitrary starting points, to therefore ¢t > 2M + tq
and the expression is valid for all ¢. Finally, with the coefficient in ¢(z) defined in
eq. (B.9), we find

oM oM
chytfk =0 =y(t)=- Z cry(t — k)
k=0 k=1

which proves that a sum of M sinusoids can be written as a diffence equation of order
2M.

B.3 Quinn & Fernandez

The derivation given here is similar to that of Quinn [43]. The Q&F algorithm is a
simple iterative procedure to fit an ARMA(2,2) model to the signal

d(t) = Acos(wt + ¢) + e(t) (B.11)

where e(t) is additive white Gaussian noise.
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Writing out the cosine expression in Eq. (B.11) for ¢t — 1 and ¢ + 1 using the
addition formulas gives,

u(t) = cos(wt+ @) (B.12)
u(t+1) = cos(wt+ ¢+ w)=u(t)cos(w) — sin(wt + ¢) sin(w)
u(t—1) = cos(wt+ ¢ —w) = u(t) cos(w) + sin(wt + ¢) sin(w)

Adding them results in
u(t+ 1)+ u(t — 1) = 2 cos(w)u(t)
This shows that Eq. (B.12) is a 2nd order difference equation:
u(t) = 2cos(w)u(t — 1) — u(t — 2) (B.13)

First by substituting Eq. (B.12) into Eq. (B.11) we find,

From the difference equation, Eq. (B.13), the ARMA(2,2) model is derived,
dit) —pdt—1)+dt—2)=e(t) —ae(t—1)+e(t —2) (B.14)

with the constraint o = 3, and 8 = 2 cos(w).

The objective is to determine 3 from a sequence of observations d(t),t = 0,1,..., N—
1. The motivation behind the QF algorithm is best explained by transforming
Eq. (B.14) into the Z-domain.

Cl-—azt4272

DE)=1—p =

D(z) is the Z-tranformation of the observed noisy sinusoid and E(z) is the Z-
transform of the noise. Assuming we have a qualified estimate for «, then applying
the transfer function

1

He(z) = 1—az"14+272

gives

1
1t
E) = d(t) +ag(t—1) &t - 2)

where D¢ (z) and £(t) are the filtered sinusoid in the Z-domain and sample domain
respectively. The problem is now reduced to an AR(2) problem. This is illustrated

De(z) = He(2)D(2) E(2)
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below where applying the FIR filter represented by the transfer function, Hes(z),
restores the original noise.
Hi(z) = 1-p2"+27
E(z) He(2)De(z) = E(2)
et) = &) —pEt—1)+&(t—2) =d(t) + (= B)§(t — 1)

Finding 3 is equivalent to minimizing the sum of squared errors on n(t) with respect
to B, which is a simple regression problem.

ey d = Nd)et — 1)
. ~ 2 el ~ 2 _ —_ t=0
mﬁln tz:; é(t)” = T tz:; ét)*=0=p0=a+ Ei\]:f)l 1)

The procedure is repeated with a = 3, until the newly found value of § is sufficiently
close to a.

B.4 Adaptive Comb Filter

The adaptive comb filter with zeros constrained to the unit circle and the poles inside
is defined by

Alg™")

_ —1\, _ -1
et = mdt & Alpg e = Alg )ds (B.15)
where ¢~! is the unit delay operator and the polynomial A(q) is defined by
M
Alg) = JJQ+big "t +q7?) (B.16)
i=1
2M 4
= Zaiq_z, ap =1 (B.17)
i=0
and the coefficients, b; = —2 cos(k;w). When the orders of the harmonic frequencies,

k;, are all integer multiplicands of the frequency w, the cosine expressions in the b; co-
efficients can be expressed as a polynomials of cos(w) using the general trigonometric
formula,

cos(kjw) = % {(2 cos(w))k — %(2 cos(w))F 2+

The M products in Eq. (B.16) of the polynomials in ¢, thus involves multiplication of
the polynomials in b = 2 cos(w) corresponding to b; coefficients. Polynomial multipli-
cation is accomplished by convolution of the coefficients. Each of the a; coefficients
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will therefore also be polynomials in b and as a result the a; coeflicient in A(q) can
be expressed as a matrix multiplication of a constant matrix, K, with the vector b
containing the powers of b:

b = —2cos(w)

a = Jaray - Gy - ay 1]’

a = Kb (B.18)
b = [1bb*--bFT (B.19)

K solely depends on the harmonic sequence and need only be computed once for
each configuration. It is noted that all the polynomials in ¢ are symmetric, why their
product, A(q) is also symmetric. Therefore, only the M first a; coeflicients need to
be computed. Matlabl scripts to compute K for a given harmonic sequence are
listed in Section B.4.1.

Introducing the matrix notation:

Al = 14" ¢ ?*a
Alpg™") = 1+4g "¢ *"|Ha
o = diaglpp? - p*"
d; = [dic1di—o - diom)’
€ = [etfl €t—2 - et72m]—r

and inserting into Eq. (B.15) gives,

e + aTHet dt + aTdt.

< 1

dt + aTdt - aTHet
dt + aT (dt — Het)

€t

The gradient is computed by taking % on both sides (d; independent of b):

de; Oa' T 0ey

—_— = = —Ile;) —a II— B.2

o~ g e -allm (B.20)
where

Oe;  [Dei—1 Oep—a Oei—_am

ob ob b ob
From Egs. (B.18,B.19), the derivative of a is found:

Oa db

an - o

ob 1

B EDkb

D, = diag[01 --- k]
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Inserting it all into Eq. (B.20) gives the gradient,

0 . 1 T T 8et
%et = bb DkK b

and the rest of the algorithm follows Eqs. (3.47-3.49) and the update step in Eq. (3.52).

(d;, —TIe;)) —b'K'II

B.4.1 Matlab Code

The following two Matlab functions compute the constant matrix K for a given
harmonic sequence. The example below shows how to invoke the scripts to compute
K for the harmonic sequence, [1, 2, 2.5], with the common frequency 0.5.

>> K=harmcoef (harmpoly(.5,[1,2,2.5]))

K =
0 5 3 -5 -1 1 0 0 0 0 0 0
-1 0 10 15 -6 -20 1 8 0 -1 0 0
0 -10 6 60 -2 -82 0 45 o -11 0 1
>>

function B=harmpoly(n0O, k)
% Synopsis:

2

B=harmpoly(nO, k)

Description:

Input:

Generates the polynomial coefficients for computing the
harmonic components specified in ’k’. The polynomials are a
function of b=-2%cos(w*n0) where ’n0’ is the greatest
common divisor of the orders in ’k’, I.e for the harmonic
sequence
k

[1, 2, 2.5]
then

n0= 0.5

n0 - Order of the fundamental frequency tracked.
k - [Mx1] Vector with orders of notches in filter.

OQutput:

B - [MxN] Polynomial coefficients for computing the
harmonic orders in k. Each row corresponds to a

value in k.

% TFP 2003-2-16
K=max (k) /n0; % Max power of b=2cos(w_0)
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B=zeros(K,K+1);

B(1,end-

if K>1,

1) =1;

B(2,end-2:end) = [-1 0 2];

for i=

1%
B(1i,
end
end

3:K,
-conv([1 0],B(i-1,:));
:) = p(end-K:end) - B(i-2,:);

% Only keep harmonic polynomials used:
B = B(k/n0,:);

function K=harmcoef (B)
% Synopsis:

K = harmcoef (B)

% Description:

% Input:

Computes the coefficients for the polynomial,
A(q) = Prod(m=1,M)[1 + b_i*q~-1 + q~-2]
= Sum(i=0,2M) [a_i*q~-i], a_0=1
where the coefficents
b_i = -2%cos(w_1i)
are specified by rows of B(i,:) as polynomials of
b_0 = -2*cos(w_0)

A(q) is symmetric, hence only the M coefficients, b_1 ...

are computed.

B - [MxN] b_i coefficients on polynomial form.
M: number of harmonics.
N: maximum polynomial degree.

% Output:

K - [M,Mx(M*x(N-1)+1)]
Matrix where each row, K(i,:), corresponds to the
polynomial in b=-2*cos(w) for the coefficient, a_i.

% TFP 2003-2-16

% M - number of harmonics
% N - polynomial degree

M, N]
D

K
K(1,:)

= size(B);
Mx(N-1) ;
zeros(M,D+1) ;
poln(B(1,:),D);
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for m=2:M,
q = poln(B(m,:));
p3 = poln(0,D);
p2 = poln(1,D);
pl = K(1,:);
for i=1:m-1,
pl = K(i,:);
K(i,:)= p3 + poln(conv(q,p2),D) + pi;
p3 = p2;
p2 = pl;
end;
K(m,:)= 2*p3 + poln(conv(qg,p2),D);
end;

% Reduce K by removing ’empty’ columns:
i = find(K(:)7=0);
if length(i)

cl = fix(i(1)/M); % Column of first non-zero value
K = K(:,cl:end);
end

K = fliplr(X);

function P = poln(p,n)
% Adjust polynomial to fixed length
i =find(p~=0);
if length(i)>0
dp = length(p)-i(1); % Degree of ’p’

P = p(end-dp:end);
else

P = 0;

dp = 0;
end
if exist(’n’) & n>=dp

P = [zeros(1,n-dp),P];

end
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APPENDIX C

Simulation Results

The figures in this appendix supplement the simulation results in Section 3.5 and
Section 4.3.1.

In general only little difference is observed in the simulation results for the average
SNR levels of 30 dB and 0 dB. At the low level, SNR = 0 dB, only the ACF and the
Bayesian estimator have estimates with less than 1 Hz RMS for larger parts of the
signal.
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Figure C.1: Simulation Results for Correlation Methods, SNR=30dB
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Frequency Distribution : ACF, SNR=15, K=1
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Frequency Distribution : ACF, SNR=0, K=1 Estimation Error: ACF, SNR=0, K=1

1
180
160| 0.8
__140] _
N N
£.120 0.6 <
3 3
$ 100] \ S
3 \ =}
g 80 \ 0.4 g
C i [
60 \
40| , \ 0.2
20
- 2|
0 10
0 10 20 30 40 10 20 30 40
Timel/[s] Timel/[s]
(a) (b)
Frequency Distribution : ACF, SNR=0, K=3 ) Estimation Error: ACF, SNR=0, K=3
100 1 10
| o RMSE
+ Std.dev
| —— CRLB
80 x 08 !
i~ ‘ N
ks \ 0.6 <
3 60 | g
c j=
[ 4 [}
3 “‘ 3
g el 2
L 40 [
0.2
20f —
SO
o 107
0 10 20 30 40 10 20 30 40

Frequency/[Hz]

Timel/[s] Timel/[s]

(©) (d)

Frequency Distribution : ACF, SNR=0, K=5 Estimation Error: ACF, SNR=0, K=5

2
1 10
100 o RMSE
+ Std.dev
— CRLB
0.8
80 re;
/ [e2
I~ +
o
60| 0.6 s o
/ “ 5 *
y R = 9
0.4
40 g oy
20 0.2 m
o 107
0 10 20 30 40 10 20 30 40

Timel/[s] Timel/[s]

(e) ()

Figure C.7: Simulation Results for ACF, SNR=0dB
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