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Abstract

The problem of novelty detection is considered for a set of dermatological image data.
Different points of view are analyzed in detail.

First, novelty detection is treated as a contextual classification problem. Different
learning phases can be detected when the sample size is increased. The detection of
the emergence a new class is considered here. A model that estimates the minimal
amount of information required to recognize structure in the data as a function of
class separability is also proposed.

Secondly, texture alteration detection is considered a novelty detection problem.
The possibility of avoiding pattern registration by transforming the data to a space
invariant of registration is explored through a canonical analysis tool. Problems of
expressing the data in a way they can be compared are also considered here, for in-
stance, pattern registration. An approach for patterns alignment using an algorithm
that iteratively approximates the minimal value of an assumed smooth function is
proposed. Registration outputs are evaluated and analyzed with the Multi-variate
Alteration Detection Transform.
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Resumé

Problemet med detektion af @ndringer (novelty detection) i szt af dermatologiske
billeddata betragtes i denne afhandling. Problemet anskues og analyseres fra forskel-
lige lgsningsmaessige vinkler.

Fgrst bliver novelty detection behandlet som et kontekstuelt klassifikationsprob-
lem. Ved gradvist at gge samplestgrrelsen detekteres forskellige faser af indlaeringen.
Her laegges der isaer vaegt pa detektion af inklusionen af en ny klasse. En model, som
estimerer den mindste ngdvendige maengde information for at opdage struktur i data
som funktion af seperabilitet af klasserne, bliver ogsa foreslaet.

Dernaest betragtes detektion af zendringen i tekstur som et novelty detection prob-
lem. Muligheden for at undga geometrisk registrering af billederne undersgges ved
fgrst at transformere data si det bliver uafhaengigt af registrering. Dernzest analy-
seres de transformerede data ved hjelp af en variant af kanonisk korrelationsanalyse.
Problemer relateret til at udtrykke data pa en made, sa de kan analyseres samlet,
for eksempel som mgnster (co-)registrering, betragtes ogsa her. En metode til reg-
istrering af mgnstre, der baserer sig pa en algoritme, som iterativt approksimerer den
minimale veerdi af en antaget glat funktion foreslas. De registrerede billeder bliver
evalueret og analyseret ved hjxlp af en transformation kaldet: Multivariate Alter-
ation Detection.
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CHAPTER 1

Introduction

There are two main aspects that are considered in the present thesis. The first one,
is novelty detection as a theoretical aspect; the second one, regards the data set used
to test different approaches proposed. Novelty detection is focused on in different
ways, each one presented in a chapter. In each case, the data set consisting of der-
matological images is used to illustrate the schemes proposed. Basically, the present
chapter is a short description of what this thesis is about.

1.1 Novelty Detection

A definition of novelty detection follows.

Definition 1.1 Novelty detection is to find dissimilarities in a set of patterns.

Following [25], a pattern is an array of entities of the same nature; a class of
patterns is a set of patterns with similar characteristics. In image analysis, novelty
detection implies to determine the change in the pixel features quantitatively. A pixel
feature is the value of a pixel attribute, like texture, local spectral mean, etc.. Two
patterns are considered similar if they satisfy the same homogeneity criteria.

There are different problems we could think of as a novelty detection problem.
For instance, the case for which the patterns within a set are ordered according to
some criteria. In Figure 1.1 we have a synthetical example of a set of pixel values
corresponding to an image row. Starting from column 1, we could say that the first 20
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pixels satisfy the same homogeneity criteria, because they are distributed randomly
around the same mean value. At column 21, the pixel values change significantly:
they are, in fact, distributed around a different mean. This change could be con-
sidered the first novelty. The pixels are again similar until the the appearance of a
second novelty, which occurs at column 61.

Figure 1.1: Pixel values of a synthetical image row.

Examples like this are used in Chapter 2, in which novelty detection is considered
a contextual classification problem. Given a set of ordered patterns, we want to find
when the first dissimilarity between those patterns occurs. However, how do we know
what is similar and what is not similar? How do we define the homogeneity criteria of
a class of patterns? When did we learn enough about a given class of patterns to be
able to correctly say that a new pattern satisfies an homogeneity criteria or not? How
does the separability between the densities of two patterns influence the detection of
their dissimilarities? Review of work done about the matter and a new approach is
presented. The problem is formally defined as follows. For a given prototype pixel
-assumed to be surrounded by pixels belonging to the same class-, we want to find
the maximal circular set centered on it for which it is true that all the pixels belong
to the same class as the center one. In other words, we want to detect the emergence
of a new class.

In Chapter 3, the problem is first to find the component showing maximal change
in texture descriptors of pairs of segmented patterns. As an attempt to avoid the
pattern registration task, a statistical approach that detects the maximal alterations
between them is applied to their textural descriptors. The hard work of ordering
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a set of patterns in a way so that they are comparable is also presented. To find
similarities or dissimilarities between pairs of patterns first implies to represent them
in a way so they can be compared. There are approaches to solve the registration
problem given a set of landmarks. What if this set is not known? What if we only
can make assumptions of the region where the landmarks are located? A combined
alignment and registration scheme is proposed. Afterwards, change detection in se-
quences of registered lesion patterns is carried out.

1.2 The Dermatological Images

For the present work, the dermatological images used are RG B captures of malignant
melanomas and psoriasis lesions. The images of malignant melanomas are single im-
ages, this means, one image for each lesion. Some of them are shown in Figure 1.2.
Note the presence of diffuse borders and the difficulty to visually determine the num-
ber of classes present within the melanoma: their distributions seem to have a high
overlap.

Figure 1.2: Original images of malignant melanomas.

With regard to the psoriasis dataset, we use a set of 175 images of lesions of
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this type taken at the Gentofte Hospital, Denmark, during pilot sessions with three
invited patients. Three lesions per patient were followed in a sequence of five RGB
images of 556 pixels by 748 pixels taken each week for at least three weeks. For each
one of those lesions, one image is shown in Figure 1.2. The whole dataset is included
in Appendix A. It has to be mentioned that the dataset used plays a special role
in the present work, because it is very particular and it has not been published in
beforehand. Therefore, some characteristics are described and analyzed in detail.

w N =

Figure 1.3: Set of psoriasis lesions images. Patient number 1, 2, 3. Lesion A, B, C.

Some comments about this dataset follow. Different problems to be solved in
beforehand appear by looking at the images obtained during the pilot sessions: there
are incomplete lesions in some images, a whole session for a given lesion was not
taken; in some cases, the variation if the background clearly introduces errors in the
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estimation of the statistics of the populations; a lesion is partially covered by hair;
in some cases, a green curtain used as the background appears, in others, it does not
appear; etc.. In the following, one problem at time will be treated. Aspects that
could be solved during a future phase at the image analysis level without loosing
generality, and situations that should be avoided by re-considering image acquisition
standards will be evaluated. Avoiding the user-setting of parameters during system-
operation is also an aspect to be considered.

By visual inspection of the pilot dataset, it can be deduced that the size between
lesions has a significant variance: in some images, one clear lesion composed by only
one connected region can be observed, while in other cases, a lesion could be con-
sidered a set of smaller sized but connected regions; finally, there are also examples,
where the number of connected regions is large while the size of the regions is small,
so that the whole could be taken as only one lesion. Dermatologists have noted that
the psoriasis lesions do not significantly change their shape and size along the time:
the change happens within the lesions instead. The variance of the shape between
different lesions is not considered here.

1.3 Thesis Layout

The present work is composed of two parts. The first part is a summary of papers
and technical reports included in the second part. The second part is divided in
published papers and technical reports.
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CHAPTER 2

Novelty Detection in the
Context

2.1 Introduction

In general, a learning process can be treated as a statistical dynamics problem. It
passes through different phases[56]: instability, fluctuations, critical slowing down
and reorganization. First, "it is impossible to detect structure in the data until a
critical number of examples have been presented" [58]. Then, underlying structure
in the data can be recognized [3]; afterwards, "additional information provided is
redundant" [3]. Finally, the reorganization phase starts when a state of new order
emerges [23].

Definition 2.1 Novelty detection in a learning process implies the detection of a
change of its phases.

In the present chapter, novelty detection in the learning process is treated as a
contextual classification problem. In image analysis, contextual classification schemes
place windows on each pixel to be classified, compute descriptors with the values of
the pixels belonging to each window and use them to decide whether or not to assign
a pixel to a given class. In the learning process using windows of increasing size,
we can identify three kinds of optimal windows: the first is related to the minimal
amount of information needed to recognize underlying structure in the data; the sec-
ond is related to the sample size from which no information is added if more data is
added to the sample; and the third optimal window size is related to the maximal
set for which it is true that all the elements belong to the same class as a given one:
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increasing the sample size implies including elements of other classes. Thus, the third
window implies the detection of the emergence of a new class.

To detect the third optimal window size, when circular windows of increasing size
are used, is the main topic of this chapter. Thus, the optimal window will here be the
maximal circular window for which it is true that all the pixels belong to the same
class as the center one. Buhot et al. [4] suggested that the emergence of a state of
higher order can be detected by the minimization of an optimal learning curve that
depends on the fraction of examples. The determination of that optimal learning
curve is here based on the uncertainty principle, more specifically, on the role of the
covariance as a threshold.

Finally, some classification schemes are proposed. A model that relates separa-
bility between classes with the minimal amount of information required to detect
structure in the data is specified. The schemes have been applied to dermatological
images.

2.2 Context

Contextual classification schemes have shown to have a better performance than
punctual classification schemes. A lot of work has been published on the matter.
However, in spite of the term "contextual" being widely used in the image analysis
area, Sowa [50] noted that there is no widely accepted definition of context. He said,
that the term "context" has a basic and derived meaning, given in Definitions 2.2
and 2.3 respectively [50].

Definition 2.2 Context is a section of linguistic text or discourse that surrounds
some word or phrase of interest.

Definition 2.3 Context is a non-linguistic situation, environment, domain, setting,
background, or milieu that includes some entity, subject, or topic of interest.

The context has the following formal functions:
e Syntax: to group, delimit, or package a section of text.
e Semantics: to describe or refer to some real or hypothetical situation.

e Pragmatics: the reason or purpose for distinguishing the section of linguistic
text or non-linguistic situation.

Based on Sowa’s work, the following definition of the term window is given:

Definition 2.4 A window defines a subset of an entity with spatially connected
instances.
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It is a subset because it is a group of instances included in a larger set (syntactic
function). An instance is an element of this group, that can be a pixel of an image
or a data of a population. The instances are neighbors in a given space (semantic
function). The dimensions of this space can be location, time, etc. Something -a
theory- needs to be described or concluded regarding this subset: there is a purpose
behind it (pragmatic function). A window has properties like size, shape, etc. From
here, we are focusing on the size of windows of circular shape. As it was pointed by
Hodgson [19], the optimal window size for classification is still an open question. Let
us go further with this topic.

2.2.1 Window Size

In order to find an ideal window size for image classification, Hodgson [19] suggested
the use of a conceptual model of the human perceptual and cognitive interpretation
processes, and -among others-, to take a look at the Feature-Integration Theory of
Attention [54] and the Guided Search Model of Human Visual Search Behavior [59],
in which the relation between location and identification was discussed. A short re-
view about location and identification in visual attention follows.

2.2.2 Location and Identification in Visual Attention

The aim of including this part, is to take knowledge about the state of the art in
psychology about the theories of visual attention. Location and identification are
variables that systematically are mentioned in papers related to this topic. Perhaps
with an erroneous basis, perhaps with a different point of view, the definition of the
relation between these variables is tracked starting with Feature-Integration Theory
of Attention proposed in the '80 by Treisman and Gelade [54] and continuing with
posterior works, some of them, formulated in mathematical terms.

In the Feature-Integration Theory of Attention, it is assumed that features come
first in perception. The features are registered early, automatically, and in parallel
across the visual field, while objects are identified separately and only at a later
stage, which requires focused attention. They claim that attention is necessary for the
correct perception of conjunctions. In the absence of focused attention and of effective
constraints on top-down processing, conjunctions of features could be formed on a
random basis. These unattended couplings will give rise to "illusory conjunctions"
[55],[10]. In their work, they explored the relation between identification and spatial
localization (for details, see Experiments VIII and IX), and they concluded that:

e In the early and parallel process of registration separable features can be de-
tected and identified across a display. Locating any individual feature requires
an additional operation.
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e Conjunctions can not be identified without also being spatially localized.

This could be summarized in the following Table 2.1:

Table 2.1: Features and its Conjunctions

Feature-Integration Identification Search
Theory of Attention and Location
Pre-attentive Stage Separable Features can be Parallel
identified without being located
Attentive Stage Identification and Location Serial
highly correlated

Logan [29] mentioned that the initial assumption of independence between the
pre-attentive stage and the attentive stage in the Feature Integration Theory of Atten-
tion was revised in Treisman and Sato (1990), and an inhibitory interaction between
attentive and preattentive processes -which is more effective when targets differed
more from distractors- was proposed.

Wolfe [59] argued that the output of the Pre-Attentive Stage, actually guides the
attention to the conjunctions. In his "Guided Search Model of Human Visual Search
behavior" he considers two types of parallel feature search components: bottom-up
and top-down. In the first, the subject does not know the identity of the target,
which changes from trial to trial but is always a unique element among homogeneous
distractors. In the second, the identity of the target is known (i.e. searching for a
red item among distractors of a variety of different colors). Bottom-up activation
of an item is based on the differences between the item and its nearest neighbors
in each of several different radial directions. Top-down activation is based on the
match between an item and the known properties of the target. The calculation of
the maps (bottom-up and top-down) produced for each basic feature are relatively
independent of each other. The combination of information from these maps can be
used to guide the attention to conjunctions of features.

Cave [5] pointed out, that the Feature-Integration Theory of Attention and the
Guided Search Model both assume that all selection is done by a single attentional
window, so they both have trouble explaining that in some situations visual atten-
tion takes the form of inhibition of distractor locations, and that two locations can
be selected simultaneously. In fact, he said that, in these models, the selection is
applied to objects more than to locations.

Horowitz et. al. [20], in their work about memory-driven search, clearly separated
the theories of visual search in two types: serial models and parallel theories. The
first ones propose that attention can process the identity of only one item at a time.
The second ones assume that identity is computed in parallel for each item, and that
an items identity becomes gradually more certain over the course of a trial. There
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is also a research line that combines both, suggesting that the conjunction of some
features can be conducted in parallel and the same conjunction consisting of other
features requires some serial search [53] [16].

Theories in visual attention were sub-divided in space-based attention and object-
based attention [29]. In the first ones, it is assumed that the attention selects regions
of space independent of the objects they contain, the case of the same Feature-
Integration Theory of Attention. The second ones argue that attention selects ob-
jects rather than regions of space.

Logan proposed C.T.V.A. (CODE Theory of Visual Attention) [29], which was
formulated in mathematical terms. He associated theories to the components of the
early and later visual process. The early system -in which location and identity in-
formation are combined- is represented by the CO.DE. theory (COntour DEtector
theory of perceptual grouping by proximity). The late system that processes identity
information is represented by Bundesen’s (1990) Theory of Visual Attention and, the
late system that processes location information is represented by it’s Spatial Relation
Theory. In the CO.DE. theory, the location of each item in space is represented by
its own -roughly symmetrical and peaked in the center- distribution. Bottom-up pro-
cesses sum the distributions for the different items producing a CODE surface and
make it available to top-down processes. Perceptual groups are produced by applying
a threshold to the CODE surface. Items residing in the same above-threshold region
of the CODE surface belong to the same perceptual group. Hierarchical grouping is
produced by varying the threshold. As an extension of CO.DE. to attention Logan
assumes that the location is distributed in the sense that information about the fea-
tures of the items is distributed over space.

Cave proposed in 1999 the FeatureGate model of Visual Attention, which is built
around a hierarchy of spatial maps within a neural network framework: a selection
mechanism controls what information -selected according to location- travels from
each level to the next; bottom-up and top-down effects interact to identify selection
targets. Cave’s FeatureGate Model has structural similarities with C.T.V.A..

2.3 Previous Work in Supervised Contextual Clas-
sification

Basically, this Section refers to previous work done in supervised contextual clas-
sification, using region growing algorithms. In [27], [31], the homogeneity criteria
used to generate a statistically valid sample of each class in multi-spectral images
was an estimation of its joint normalized histogram. This scheme expected the user
to provide one single prototype pixel for each class present in the image in order
to generate initial training sets. Afterwards, a region growing algorithm increased
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the classes sample sizes, and finally, the whole image was classified. Then, the main
problem, was that some parameters were empirically set. An attempt to improve
this scheme was the work published in [28], which basically presented a spectral
model of separability of Rayleigh distributed classes and included border detection
to improve the classification of border pixels. The mentioned model was used to
estimate an optimal window size for classification. For the image shown in Figure
4(a) in Section 4.1.5 (|28]), the region growing algorithm of the schemes [27] and [28]
both produced the same samples. However, by visual assessment, the thematic maps
produced by the classification stage in Figure 2.1 improves when the window size for
classification is estimated as a function of class separability (thematic map on the
right).

Figure 2.1: Output of the classification stage in [27] (left) and in [28] (right).

However, some aspects were still left for further considerations.

e After seeding the prototype pixel for a given class, the normalized histogram of
increasing window sizes centered on the prototype pixel was computed. If the
difference of areas of the normalized histograms of two consecutive windows
was smaller than a user-provided threshold, then the initial training set was
assumed to be found (see Equation 5 in Section 4.1.5). The first aspect was
that the user-provided threshold was empirically set. Secondly, the use of this
kind of differential was obviously highly dependant on the location and size of
the neighborhood containing pixels belonging to the same class on which the
prototype was placed.

e To estimate, the thresholds to be used by the region growing algorithm for a
given class (see Equation 8 in Section 4.1.5), again, a parameter without any
physical explanation was set.
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On the other hand, it has been observed that the use of a model of spectral sep-
arability based to estimate an optimal window size for classification improved the
classification results. In that case, synthetical and real examples were composed of
Rayleigh-like distributed classes and square windows were used. Basically, the fol-
lowing was concluded:

e Whenever the classes are completely separated, the maximum precision is ob-
tained using a per-pixel classification.

e (Classes with the same separability measure have more or less the same window
size for classification.

e An inverse relationship exists between the separability of the classes and the
best window size.

From now, the following problems will be considered:

e For a given prototype pixel assumed to be surrounded by pixels belonging to the
same class as itself, we want to estimate the maximal neighborhood centered
on the prototype pixel for which it is true that all the elements belong to the
same class as the center pixel.

e Given the probability density functions of pairs of classes, we want to esti-
mate the optimal window size for classification as a function of the separability
between those classes.

2.4 An Initial Training Set Generation Scheme

This Section considers the work [41]. It starts with some definitions, and then an
initial training set generation scheme is proposed.

Let a specific image with non-correlated bands X = {x[r, ¢|} be defined over the
given lattice:

L:{[T7CH1Srgrmawalgcgcmaz} (2.1)

We assume that X is the realization of a two-dimensional random field X. Notice that
while X (sans serif) is a set of variables, X (italic) is a set of values of those variables.
X is hierarchically defined in terms of the realization Z = {z[r, ]} of an underlying
random field Z such that: Z represents the partition of the domain L in K regions of
different types. Each z[r, ] is a value of the set of labels B = {b1,bs,...,bx } where
z[r, c] = by, indicates that the coordinate [r,c| of a given pixel belongs to the region
k.
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Let W, be given by the shortest Euclidean distance from each pixel to the border:
W, = {w,[r, |} (2.2)

The distance function implicitly defines the radii of discs of maximal size D, [r, c]
included in X for which is true that all the elements of each given realization belong
to the same region k. Then, the optimal window for a given pixel x defines the
realization D,,, of the maximal circular set centered on the position [r,c] of x. This
is an heuristic approach. An example is shown in Figure 2.2.

Figure 2.2: The set indicated as a circle is the maximal disc that can be centered on
the prototype pixel (the marked point) for which it is true that all the pixels belong
to the same class as the center pixel.

We associate a set of weights (2, with values between zero and one to a disc D,
such that w,[i] is the weight corresponding to the i —th element d,,[7] of the disc D,,:

woli € (0,1) C R (2.3)

for all 1 <4 < ny, such that the sum of the weights is one:

i wmli] =1 (2.4)
=1

From now, each time a set of weights named (2 is associated to a disc it is assumed
that Equations 2.3 and 2.4 are satisfied.

Each realization D,, of a disc D,, is a group of n,, elements. Therefore, a group
is a set of numbers.



2.4 An Initial Training Set Generation Scheme 17

We define the estimate y,, of the mean p,, of a realization D,, of a disc D,,
centered on a given position [r, | as the scalar product of the realization D,, with a
set of weights (2,

Yuw|r, c] =< Dylr,c], 2, >= Z oy [Hway 1) (2.5)

where d,,[i] is the i —th element of the realization D,, of the disc corresponding to the
i — th position, w,[i] is the weight of the i — th element of D,, corresponding to the
same {—th position. The estimated mean y,, [r, ¢] within each realization D, [r, c] is an
element of a new synthetical image Y,, = X2, where * is the convolution operator.

The estimated variance UZ) of a realization D, of a disc D,, centered on a given
position [r, ] is defined as:

0121) [T‘, C] =< D12u [T’ C]a -Qw > —yi, [’I“, C] (26)
where each d2[i] € D2 is the square of the element d,,[i] of D,, that is at the same

position 2.

Let the image X be convolved by the set of weights (2,, where the index v in-
dicates a disc of radius v. The output Y, = X * {2, contains the estimated means
within groups computed with the set of weights 2,. Let the synthetical image Y, be
convolved by the set of weights (2,,, where the index m indicates a disc of radius m,
such that:

Yom = Yo 2 =X % 2, % 2, (2.7)

where the subindexes in Y, ,, indicate the original image X is first convolved with a
circular set of weights of radius v and then convolved with a circular set of weights
of radius m. Each single element in Y, ,, is then denoted y, ,,,. For all realizations
of discs of radius m in Y, ., 3D; C X A £2; such that:

Yo,m = Ye(v,m) =< Di, 2 > (2.8)
where

t=tv,m)=v+m (2.9)
and (2 is approximately equal to the convolution of 2, with 2,,:

Qiv,m) = 2 % Q. (2.10)

Equality in Equation 2.10 holds for squares. This is due to the fact that the
domain of the convolution of two functions defined over square domains is also square.
For the case of circles, some small differences can occur because the image is defined
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over a (discrete) lattice (See Equation 2.1). In Figure 2.3, these differences can be
seen for the case of a disc radius ¢ = 8. According to Equation 2.9, the pairs of
discs radius (v, m) that sum to the value 8 are (1,7), (2,6), (3,5), (4,4), (5,3), (6,2)
and (7,1). Let the domain of the convolution of a disc of radius v with a disc of
radius m be given by the values different from zero. As it can be seen in the bottom
part of Figure 2.3, for a given pair of values (v, m), this domain has small differences
compared to the disc of radius ¢.

Figure 2.3: On top, the domain of the convolution of discs of radius v with discs of
radius m. On bottom, the difference between the a disc of radius ¢t with the domain
shown on top.
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2.4.1 Redundancy

We want to obtain an optimal initial training set starting from a seeded prototype
pixel (See Figure 2.2). In this section, we assume that it is located on the position
[k,{] and that its neighbors belong to the same class as it. The neighborhood is
delineated by the realization of a disc D; of (constant) radius ¢, centered on the po-
sition [k, []. For constant disc radius ¢, we define circular groups of data of the same
size. For a given t, the number of groups n,, and the number of elements n, within
a group are variables. We would like to find, for a constant ¢, the optimal pair of
number of groups and number of elements within a group. This is considered here.

The terms location and identification considered in Section 2.2.2 refer us to the
terms position and moment used in Heisenberg’s Uncertainty Principle, from which
we know that the uncertainties o in the position p and moment ¢ of a particle have
a product greater than Planck’s constant. This constant can be interpreted, from
a statistical point of view, as of the order of the absolute value of the covariance
between the position p and the moment ¢ [21]:

Vog?op? > |cov(q, ) (2.11)

The threshold established by the absolute value of this covariance is due to the fact
that the variance-covariance matrix is positive definite [9]. Obviously, if we find a
way to minimize the right side of Equation 2.11, we can think of minimizing the right
side too. For instance, we know the minimizer for the classical uncertainty principle
inequality is the Gaussian [2]. However, in this case, for a given pixel our knowledge
about its neighbors is minimal, in other words, our uncertainty is maximal. This
means that, initially, we should give its neighbors the same weight: we should use
a uniform model. The connection between a uniform model and a Gauss model can
be found in the Central Limit Theorem [46], which can be expressed as a property
of convolutions: the convolution of a large number of positive functions is approxi-
mately a Gauss function.

The specification of the p and the ¢ for our problem follows after a motivating
example.

Motivation

In the present example, we follow with the same notation as before, but the case
considered is for one single dimension. Let the vector of data D; = {d:[1],...,d¢[ns]}
be defined over a lattice L = {c|1 < ¢ < ¢naz = n¢}. The number of elements is
the constant n, = 7. We define the following combinations (7,,n,) of number of
groups n,, and number of elements n, within a group: (6,2), (5,3), (4,4), (3,5)
and (2,6) (See Figure 2.4). For each single group, we assign the set of weights
2, = {wyt]|lwy[i] = %,Vl < i < n,}. We assign to the set of groups the weights
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Qm = {wm[jllwmlj] = L w1 <j<nph

Mo,

Figure 2.4: Set Dy of 7 data for which the combinations
(number of groups, group size): (6,2), (5,3), (4,4), (3,5) and (2,6) are con-
sidered.

The estimated means y, ,, between groups (Equation 2.8) can also be obtained
by summing the elements of a vector G m: Yom = 2oy gm|i]. The vector G, =
Dy Up, n,, is the product of the vector of data D, as a row with a kind of convolution
matrix Up,xn,,. Each column in U represents a weighted group average. For our
example, the matrices U are expressed here for each one of the combinations of
group sizes and number of groups:

1
=0
6x2 6x2
0 &5 &5 0 0 0
Urg = 0 0 45 55 O 0 (2.12)
0 0 0 45 g5 O
0 0 0 0 55 o
L0000 0 g5m |,
- -
= 908
5T3 5T3 1
5X3 b5x3 5x3 0 0
Urs = 0 ﬁ 5i3 ﬁ 0 (2.13)
0 0 55 53 50
0 0 0 =5 =3
|0 0 0 0 ﬁ_m
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1
—%4 (1) 0 0
4x4 4x4 0 0
1 1 1 0
4T4 4T4 4T4 1
U7,4— 4x4 4x4  4x4  4x4 (2-14)
o L 1 1
4x4 4T4 4T4
0 0 4x4 4T4
i 0 0 0 rrz il P
- .
3>1<5 (1) 0
3x5  3x5 0
11 1
3>1<5 3>1<5 3>1<5
U7,3 - 3x5 3x5 3x5 (2-15)
1 1 1
3x5 3x5 3x5
0 1 1
3x5 3{5
L 0 0 3x5 J7x3
-1 .
2X6 0
11
2x6 2X6
11
2T6 2T6
Ur .2 256 6 (2.16)
2x6  2x6
1 1
2x6 2>1<6
L 0 2x6 1 7x2

From Equations 2.12 to 2.16, we can observe that we are dealing with matrices
Uy, n., of different sizes, because the number of groups n,, is variable. Furthermore,
a comparison between the input D; and the output G ,, is difficult, because they do
not have the same size. See top part of Figure 2.5.

However, the value y, ,,, can also be obtained by summing the elements of an-
other vector G/,, = DyU}, ,; this means, yym = >.:"; g;,[i]. The matrix U} , is

a diagonal matrix such that u'[i,i] = >ty uljyd], V1 < i < ny. One column in U’
represents how large a weight each data point receives in the grand mean.
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Figure 2.5: The equivalent weighting functions U and U’.

For our example we have:

[ &% 0 0 0 0 0 0 |
0 % 0 0 0 0 0
0 0 % 0 0 0 0
Usa=| 0 0 0 % 0 0 0 (2.17)
0 0 0 0 &% 0 o
0o 0 0 0 0 %5 0
00 0 0 0 0 g
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= 0 0 0 0 0 0
0 2 0 0 0 0 O
0 0 £ 0 0 0 0
Usz=| 0 0 0 2 g 0 0 (2.18)
0 0 0 0 =23 (2) 0
0 0 0 0 0 2 (1)
|0 0 0 0 0 R
= 0 0 0 0 0 0
0 2 0 0 0 0 O
0 0 £ 0 0 0 0
Uss=1| 0 0 0 — O 0 0 (2.19)
o 0 o0 0 5% (2) 0
0 0 0 0 0 = (1)
0 0 0 0 0 R e
7= 0 0 0 0 0 0
0 2 0 0 0 0 O
0 0 £ 0 0 0 0
Uss=| 0 0 0 2= 2 0 0 (2.20)
0 0 0 0 2 (2) 0
0 0 0 0 0 = (1)
0 0 0 0 0 0 5z |-
75 O 0 0 0 0 0
0 5% 0 0 0 0 0
0 0 52 0 0 0 0
Use = 0 0 0 525 (; 0 0 (2.21)
0 0 0 0 2 (2) 0
0 0 0 0 0 2 (1)
0 0 0 0 0 0 35 |rn

The values of the main diagonal of the matrices from Equations 2.17 to 2.21 can

be seen in Figure 2.6.

From Equations 2.17 to 2.21 we now have matrices of the same size, which are
comparable. As a consequence, the output vector Gt”m also has the same size as the

input vector D;. See bottom part of Figure 2.5.
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Figure 2.6: From left to right, the plot of the values of the main diagonal of the
matrices Ul6,2, U/5,3, U/4747 U/375 and U/276.

With this small example we have seen that, for a given data set, the estimated
mean between groups depends on the weights assigned to the group elements and to
the groups, and also depends on the groups sizes and the number of groups defined.
These variables are implicit in a kind of convolution matrix U, which contains the
contribution of each single group element to the estimated mean between groups. In
an ideal situation we would like to compare the different matrices U, and choose the
optimal for a given data set. We have seen that the size of these convolution matrices
changes when the number of groups n,, changes; in consequence, they can not be
compared. Finally, we have seen that the estimated mean between groups can also
be expressed as a function of the contribution of each single element of the original
data set. In this way, we could generate same sized matrices U’, which are compara-
ble. How the optimal matrix will be chosen for a given data set will be shown later on.

We leave this example for now. A generalization of the approach for discs follows.
Basically we now have circular sets: the first with the original data and second, with
the weighted data (See Figure 2.7).

Our p

The p in Equation 2.11 is given, for our problem, by a disc D; of radius ¢ centered on
the seeded prototype pixel. A disc D, is placed at all pixel locations within D; such
that D, is completely within D,. Here, we will show how the groups and the group
sizes are defined for a given realization D;. The estimated mean between groups is
also expressed as a function of D;.

Given a realization D[k, 1] C X of a disc of radius ¢ centered on the location [k, ]
with n; elements. We assume that the i-th element d;[i] is a value of the correspond-
ing random variable d;[i] € D;[k,[] and that all the random variables d;[i| have a
distribution with mean pu.

Given a sliding disc of radius v and a set of weights (2, we want to specify each
estimated mean y, (see Equation 2.5) within groups D, C D;[k,l] as a function of
Dy[k,1]. Let the realization D,[r,c] C D[k,l] be the j — th group (See Figure 2.8).
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weighted data paint

Dy . data point

Figure 2.7: The circular sets D; and G’y ,.

For the j — th group (1 < j < n,,) we generate a weighting function A;[r,c] =
[a;[1],...,a;[n]]T, which contains zeros for the elements of D,[k,[] not belonging to
D,[r,c] and the corresponding weights (2, for the remaining n, elements. Then

Yo[r, c] =< D[k, 1], Ajr, ¢] > (2.22)

For simplicity we remove the location indexes [k, [] and [r, ¢] and rewrite Equation
2.22 as follows:

yj =< Dy, A; > (2.23)
where the index j indicates the j — th group in D;.

From Equations 2.3 and 2.4 it can be deduced that, for all 1 < ¢ < n; and
1 < j < ny, the new weights A;

a;li] €[0,1) C R (2.24)

are such that Vj
> aili] =1. (2.25)
i=1

We add the following constraints. Each single element d[i] has to belong to at least
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Figure 2.8: The mapping model. To the left, a set of circular discs (in perspective) of
increasing radius ¢ centered on a given pixel is shown. To the right, one of these discs
is shown in detail: overlapping discs of a fixed radius v are placed into the disc of
radius t. A new disc of radius m is constructed with the centers of these overlapping
discs of radio v. The mapping model is completely defined when weights are assigned
to the elements of each disc.

one group:

Mm,

> ali] > 0 Vi. (2.26)

Repetitions of groups are not allowed: for all ¢ # j
Aj # A (2.27)

Note that, by Equations 2.24 and 2.3, the groups can not be sets of one single ele-
ment and n,, > 1. By the constraint in Equation 2.26 and by Equation 2.3 we have
that pairs of groups could have some overlap. However, by constraint 2.27 we are
not allowed to have pairs of groups such that their union is equal to their intersection.

Our ¢

In this section we will define our ¢ in Equation 2.11. It was, in fact, introduced in
the motivating example. The ¢ is given by the random vector G';. The connection
between the vectors G; and G',,, is first formulated.
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Let the disc G,,, be given by n,, functions of D;:

Gtm = [8e,m[U(Dr), -+, 81 yn[nm] (D1)] (2.28)

with m variable. Given a realization D, each single value g;,,[j] is obtained as
follows:

uanld) =< DesomlilAy = nli] 3 a il (229

Note that each single g; ,,[j] is a weighted estimation of the mean p of the random
variables of D;. Rewriting Equation 2.29 we have

Gim = DieUpm (2.30)

with the tensor Uy,

Upm = [Ut,m[l,]]]zgﬁfl = wnll]A ... wm[nmlAn, | (2.31)
of size ng X nyy, ' and R, = [win[1], . .., wim[nm]]T. Each single us ,,[i, j] is the weight

assigned to the i — th element of D, is the j — th group.
Doing things in this way, we have that the tensor U;,, (Equation 2.31) depends

on an vector 8 = [s1,...,5,, | of group sizes ? with n,, specifying the number of
groups. Thus, U, = u(s,t,m). The size of the j — th group is s;:

Zté(aj [Z] > 0) = 8;. (2.32)
i=1

where ¢ is a function that takes the value one if the expression a;[i] > 0 is satisfied,
and zero, in the contrary case.

Applying Equation 2.10, and like it has been shown in the previous example, the
estimated mean y, ,, € Y, n between n,, groups of n, elements is then:

Nm
Yvm = th,m[]] (233)
j=1
which, can be rewritten as a function of the elements d;[i] with some algebraic steps:

Yvm = Zwt(v,m) [Z]dt[z} =< Dta-Qt > (234)
i=1

INote that the index m; is not number of rows in a matrix. It indicates the number of elements
in each single wy, [j]A;.
2For all i € [1,nm] : 5; = Ny-
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with

Mm,

wiomlil = S wmlilasl] = 3t mlisd] (2.35)
Jj=1 Jj=1

Clearly, 27;1 Wt(v,m) [Z] = Z;’L;Ll Zzzl ut,m[i7j] =1

We create a new "diagonal" tensor U

. /
o xn, 10 generate a disc G, ,,, of n; elements:

Gi ., = Di Uy, (2.36)
The i — th element g; ,,[i] in the realization G, is computed as follows:

where Uj ,,[i] is a circular set of weights of radius ¢ = v +m. The circular set of
weights U}, [i] has the value zero for all its elements, except in the ¢ — th location,
which has the value:

i) = Y el (2.39)

Ut m i, j] is the weight that the ¢ — th element of the disc D, has in the j — th group.
Note that w; ,,[i][i] is an element of the "main diagonal" of U; ,,[i]. Note also that
outside of the main diagonal, the elements of U; ,,[i] are zeros.

Then, by Equation 2.35, the estimated mean between groups can also be obtained
as follows:

Yom = Y Gl (2.39)
i=1

Therefore, we have shown that, for a disc D; of constant radius ¢ centered on the
prototype pixel, we can define a set of equal sized matrices U’. These matrices de-
pend on the number of circular groups included in D; and its sizes, and the weighting
function set to the elements of each group and to the groups. Now, we are able to
compare the input D; with the output G;ym.

Our |cov(p,q)|

/

The comparison between the input D; with the output G, ,, will be done through
the following measure |cov(Dy, Gj ,,,)|, where the symbol cov indicates the covariance
function. According to Equation 2.11, it is the threshold in the product of the un-
certainties between D; and Gy ,,,. In this section, we first find an expression for this
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covariance, and then analyze how it can be minimized.

The i —th element g; ,,[i] is a value of the corresponding random variable g; ,,, [1].
It is desired that all the random variables g; ,, [i] have a distribution with mean -
However, this will never be the case, because we do not allow groups of one single
element. Furthermore, the weights €2; result from a convolution of two weighting
functions. Taking into account the limitations of our gross approximation, by the
Central Limit Theorem we know that the shape of the convolution of density func-
tions tends to be Gaussian, and is certainly not uniform.

The mathematical expectation of a random variable g’, ., [4] is:
Elg'smlil] = wili] Bldi[i]] = weliln (2.40)
No matter which combination of number of groups and group sizes we have, we

will always have a small difference between the mean of D; and the estimated mean
between groups *:

e = 1B g mlil] — 4] > 0 (2.41)
=1

. . . . / .
The variance-covariance matrix of the discs D; and G, ,,, is:
,

;1 _ [ cov(Dy,Dy)  cov(Dy,Gy,,)
B[D:Gr ] = [ cov(G;,m,Dt) cov(G;m,G;m) (242)
where cov(Dy, Dy) is the variance-covariance matrix of the disc Dy:
cov(de[1],d¢[1]) -+ cov(di[1],ds[id]) -+ cov(di[l],d¢[ne])
cov(Dy,Dy) = : :
cov(de[ne],de[1]) -+ cov(de[ne], defi]) -+ cov(de[ne, de[ne])
(2.43)
The cov(Dy, Gy ,,) is the covariance between the disc D; and the disc G, given
by:
cov(Dy, Gy ,,,) = cov(Dy, Dy) Uph, = var(Dy) UL, (2.44)

This expression is obtained by substituting Equation 2.36 and applying properties of
covariance [9].

We would like to minimize |cov(Dy, G} ,,,)|. For a given realization Dy, the [var(Dy)|

is constant. Changes in |cov(Dy, Gj )| are introduced by the weights U/, which,

3except in very special situations, e.g., unless all the elements of D; are equal
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in this case, do not depend on the data D,. The solution is deduced quite naturally
from now. We have to minimize the generalized variance (the determinant) of U; ,,,,
what is equivalent to minimizing the product of its eigenvalues. The eigenvalues are
given in Equation 2.38. By Equation 2.35 they are equal to the elements of Q;. A
useful metric that has the same uncertainty connotation as in certain formulations
of statistical mechanics is Shannon’s entropy or average amount of information per
source output. There are certainly other relevant measures, eg. variance, however,
it is interesting that entropy is inversely related to redundancy [43]. In general, the
entropy of a set of weights £2; can be defined as:

B(2) = - Y el loa(eali]) (2.45)

where n; is the number of weights. Following Mgller [43], the redundancy of a set of
weights 2, can be defined as

E($%)
log n¢

R(2)=1- (2.46)
where n; has the same meaning as before. It is noted that equal disc weights imply
maximal entropy and thus minimal redundancy.

According to Equation 2.46, the point of minimal entropy is the point of maxi-
mal redundancy and it corresponds to the combination of number of groups n,, and
groups sizes n, for which the overlap between the n,, groups is maximized. There-
fore, for a given sample size n;, we select the sets of weights 2, and (2,,,, number of
groups n,, and group sizes n, for which the redundancy R(£2;(, ) is maximized. It
is noted that in this direction the estimation y,, , of the mean p has the largest error.

Results of the motivating example can be seen in Table 2.2. The values presented
can be reproduced by looking at the diagonals from Equations 2.17 to 2.21. From
Table 2.2 can be deduced, that the optimal combination of group sizes and number
of groups is given by the pair (4,4).

Table 2.2: Product of the eigenvalues, entropy and redundancy of the matrices U’ of
the example shown in Section 2.4.1

(v,m) | [] Eigenvalues Entropy Redundancy
(6,2) | 9.9306 x 10~7  1.9073 0.0198
(5,3) | 6.3210 x 10~7  1.8640 0.0421
(4,4) | 5.3644 x 1077 1.8407 0.0540
(3,5) | 6.3210 x 107 1.8640 0.0421
(2,6) | 9.9306 x 107 1.9073 0.0198
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Last comments

We have seen, through the Uncertainty Principle that the threshold in the product
of the uncertainties of two random variables is given by the absolute value of the
product of their uncertainties. In the way things were done, by choosing the pair
(v,m) for which |cov(Dy, Gy ,,,)| is minimized, for a given ¢, we are able to decrease this
threshold. We also have seen that, for ¢ constant the cov(Dy, D;) is constant. Finally,
we have to check that the cov(G;,,,Gj,) also decreases. By applying properties of
covariance [9] we have that it equals:

U{ ncov(Dy, DU, (2.47)
We can compute the generalized variance of cov(Gj,,, G} ,,) as a product of deter-
minants. We have also seen that the eigenvalues in Uy, are values between zero
and one. This means that their product, the determinant of Ut’,m will always be

smaller than one. Furthermore, the square of this determinant will be smaller than
the determinant.

Until now, we have sustained that for a given realization Dy, the |cov(Dy,Dy)| is
a constant, but we did not compute its determinant. Equation 2.43 becomes:

@1~ (] =) - (= Wl =) o (del] — ) (el — )
(] — i) @alt) — ) - (dalre] — (el — ) - (dalne] — ) (dalos] — )
(2.48)

Applying properties of determinant, we can compute the determinant as a linear
combination of the elements of the top row with the determinant of their co-factors.
Each co-factor is the array left when the row and column of the given top row
element is removed. This rule can be applied iteratively until the co-factor has a size
2 x 2. Then, for a given realization D;, determinants we express the determinant of
cov(Dy, D) as a sum of terms containing determinants of size 2 x 2:

(deli] = p)(delj] = 1) (de[i] — p) (de[k] = p)
(de[r] = p)(delg] — 1) (delr] — p)(de[k] — o) (2.49)

=

which have the value zero. Thus, for a given realization D, the |cov(Dy, Dy)| is sin-
gular.

In consequence, by maximizing the redundancy, we could say that we have the
"most" singular system. We will see later on, that this is very convenient for detect-
ing the emergence of a new class when windows of increasing size are used.
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Examples of weighting functions
The following weighting functions 2, were tested in [41]:
e uniform(v)-uniform(m)
e uniform(v)-gauss(m)
e gauss(v)-uniform(m)
o gauss(v)-gauss(m)

where the first element of each pair refers to {2, and the second element to (2,, in
Equation 2.10, and

e uniform(h): Q2¢[i] = n—lfVi

e gauss(h): 2;[d] = ea:p(—().5(g—2)) Vd? = (i —7)* + (j — ¢)? and o = b(f). Let
us fix 0 = ¢/3.

The final weighting functions (2; using Equation 2.10 can be seen in Figure 7 in
Section 4.1.1 for one example. The corresponding redundancy values are shown in
Figure 2.9.

018 gauss(v)-gauss(m)

F uniform(v)-gauss(m) gauss(v)-uniform(m)

Redundancy
°

Figure 2.9: Redundancy of a disc Dy~ of fixed radius ¢(v,m) = v +m = 12
using different weighting functions (2; in the estimation of the mean of the
realization of the disc.

As can be observed comparing top with bottom in Figure 2.10, for each constant
radius ¢, the error in the estimation of the real mean is maximal when the redundancy
is maximal. From empirical experiments, we conjecture that this happens no matter
which combination of weighting functions considered is used.
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Vt constant

lim |yt(v,m) — p| = maz(e) (2.50)
t(v,m)—t(vo,mo)
For each fixed disc Dy, there is an optimal pair (v,,m,) such that the error in the
estimation of the mean of the realization D, is maximal.

Then for each fixed radius ¢ we choose the pair (v,, m,) such that the redundancy
is maximal:

(Vo, M) = maz(R(2y(v,my)) Yt(v,m) constant (2.51)

The sets of pairs (v,,m,) for increasing radius ¢ will define the line of maximal re-
dundancy. It has to be mentioned that Mgller [43] has noted that learning algorithms
will work more efficiently in the minimization if the redundancy is increased.

For our weighting functions example, the position of the line of maximum redun-
dancy of the uniform(v)-gauss(m) weighting function is symmetric to the position
of the line of the gauss(v)-uniform(m) weighting function with respect to the plane
v = m, and the values of maximum redundancy are the same for each t constant.

Again, for our weighting functions example, the position of the line of maximum
redundancy of the uniform(v)-uniform(m) weighting function is equal to the position
of the line of the gauss(v)-gauss(m) weighting function, but the values of redundancy
for each t constant of the second are greater than the values of redundancy of the first.

2.4.2 Theory Revision

In this section we follow with the problem of obtaining an optimal initial training
set starting from a seeded prototype pixel (See Figure 2.2) on location [k,1]. We
have seen in previous section that, for each constant disc radius ¢, we can find and
optimal number of circular groups n,, and an optimal number of elements n, within
the groups. Basically, from now, the disc radius ¢, which was considered constant in
Section 2.4.1, now becomes a variable: we consider windows of increasing size.

Following Donoho [11], theory revision integrates inductive learning and back-
ground knowledge by combining training examples with a coarse, perhaps incomplete
or incorrect, theory of the problem domain to produce a refined, more accurate theory.

In statistical dynamical problems [17], the theory revision can be carried out
through a sub-sampling technique called "windowing". Following Fiirnkranz [13], its
goal is to reduce the complexity of a learning problem by identifying an appropriate
subset of the original data, from which a theory of sufficient quality can be learned.
From a statistical point of view, a window defines a sample or the training set for
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Error in the estimation of the real mean
o
s
&

~o

tconstant

Radius m

Radius v

Redundancy

10

Figure 2.10: On top: Error in the estimation of the real mean using the uniform(v)-
uniform(m) model in a Gauss distributed N (128,2?) image of 96 x 96 pixels. On
bottom: Redundancy using the uniform(v)-uniform(m) model.

the learning algorithm, which induces a theory from this sample. This theory is then
tested on the remaining examples. If the quality of the learned theory is not suffi-
cient, the window is adjusted, usually by adding more examples from the training
data, and a new theory is learned. This process is repeated until a theory of sufficient
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quality has been found.

The detection of phase transitions in optimal unsupervised learning using win-
dows of increasing size implies the generation of a set of optimal window sizes. The
first window is such that it contains the critical number of samples that allow to
detect structure in the data. The second window is such that additional samples are
redundant. The third window is the maximal set for which it is true that all the
elements have the same feature as a given one.

We could think of Fiirnkranz’s "theory of sufficient quality" as that produced
by our first optimal window. Since the main topic of this chapter is to obtain the
third window in the set, which is associated with the detection of the emergence of a
new class, let us extend Fiirnkranz’s windowing approach to data-sets composed by
homogeneous regions corresponding to more than one class.

The definition of windows of increasing size is here formalized. Let Xy = {xo[r, ] €
X} be the initial subregion pointing out a class of mean p4. Let us assume that all
the values of the pixels located in the neighborhood of the location [r, ¢] are generated
with the same probability density function as xy. In general, Vs > 0, let X!_;, be the
set of pixels that do not belong to X;_ss but having at least a neighbor with X,_s,
under certain connectivity. Let the set X, be the region jointly formed by X,_ss and
the pixels of X]_;,, with ns being the number of elements of X;. For some s, X!_;,
will include pixels with a mean different to p 4, for instance, pp. Let us assume that,
Vs, the information provided by X!_;_ to detect the emergence of the new class B is
constant and sufficient.

Window size optimization in circular sets

Let us assume that we have a realization D; , centered on the location (r,c) that
changes from an internal class I to an external class E at radius ¢,. Let the mean of
the internal class p; be different from the mean p ;| gy of the union of the internal
and the external class. The former is the statistic to be learned. Let the variance of
the internal class o7 be less than the variance of the union o7 | .

As mentioned before, the index t in Section 2.4.1 becomes a variable. Then, for
each vector D; generated with the elements of the set X; = D; with 0 < ¢(v,,m,) <
tmaz, & corresponding realization G ,,, can be generated according to Equation 2.37.
Note that the values of ¢t = t(v,,m,) are defined over the line of maximum redun-
dancy of the mapping model (See Equation 2.51).

If we compute the estimated means between groups y: = ¥y, m, for increasing
size of t(v,, m,), in each iteration we make an estimation of the real mean of the
union of the internal and the external class p ;) g). However, if we avoid adding
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instances of the external class to the sample, y; is really the estimation of the mean
p of the internal class. For increasing sample size, we expect the estimated variance
of the estimated means within groups to minimize. From a physical point of view, a
system that tends to be singular, tends to be more sensitive to perturbations. The
emergence of external pixels are a clear perturbation to the system. Some estimated
means within groups will be outliers in the set of means. Therefore, it is quite rea-
sonable to expect the estimated variance of the estimated means within groups to
increase, if the amount of external pixels is sufficient.

The emergence of a new class can then be detected at the minimum ¢, of the
estimated variance of the estimated means within groups Z evaluated along the line
of maximum redundancy of the mapping model:

Z= Jgo,mo =< Dgo,mov ‘Qmo > _ylg)o,mo (252)
where each d2_,, [i] € D, is the square of the element dy, i, [i] of Dy, m, that is

at the same position 7. This is equivalent to:

7= 35 el (52 (2.53)
- Ymo i=1 o

with m = m,, and where g; ,,,[i] is defined in Equation 2.29. Then,
to = min[z] € W, (2.54)

where W, is the set of estimates of the elements of W, (see Equation 2.2), and the
internal entropy to external entropy ratio:

IBER = & B(f2—s) IEER, (2.55)

(-Qt - -Qtfs)
were s is the variable increment of the radius-, holds Vi. The reason of putting a
constant threshold for this ratio is that we would like to hold the effect of the new
pixels added to the sample constant. See Section 2.4.2 for more details.

The behavior described before can be observed for the four weighting functions
2, tested on an example that was generated by seeding a pixel in the center of a
Rayleigh-distributed class*. The change of class happens at radius 32. In general, all
the models with overlapping discs have a function that minimizes in the neighborhood
of the border between the external and the internal class. (See Figure 2.11).

Note in figure 2.12 that the real mean y; is estimated faster by the v, ) corre-
sponding to the uniform(v)-uniform(m) model.

4This distribution was used in order to evaluate the performance of this model in non-Gauss
distributed classes too.
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Figure 2.11: Estimated variance of the estimated means within groups using different
weighting functions (2 in the estimation of the mean
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Figure 2.12: The estimated mean 3, using different weighting functions 2

The internal to external entropy ratio

An experiment reported in Section 4.1.1([41]) has shown that, for large expected
optimal window sizes in synthetical images, the gauss(v)-gauss(m) generates window
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sizes greater than the real ones, which were known. This is due to the fact that
the internal entropy to external entropy ratio grows faster in that model than in the
others. (See Figure 2.13 and note the difference in the scale of the y-axis.) For this
reason, excluding the case in which the internal entropy to external entropy ratio is
less than 1, we can conclude that the uniform(v)-uniform(m) weighting function has
the best performance at detecting the emergence of a new class. It should be taken
into account, that if the ratio is much greater than 1 the emergence of a new class will
be detected with a delay, and wrong examples will be included in the initial sample
generated. This means, that in the first iterations the amount of information that
the new pixels provide is significantly larger than in the next iterations. Therefore, to
improve the performance of the scheme proposed, variable and increasing increments
of the disc radius have to be used. The increment can depend on a constant internal
to external entropy ratio set by the user.

ExlO‘

N

~
T

1+ gauss(v)-gauss(m)

Internal Ent./External Ent.

uniform(v)-gauss(m)= 1
gauss(v)-uniform(m)

0 N | 7
0 2 4 6 8 10 12 14 16 18 20
Radius (*)

00

50+ uniform(v)-uniform(m)

Internal Ent./External Ent.

uniformp(t)

0 — T L

0 2 4 6 8 10 12 14 16 18 20
Radius (*)

Figure 2.13: Internal entropy to external entropy ratio versus disc radius.
(*)The x-axis corresponds to the radius (¢t — 1)/2. The gauss(t) and uniform(t) are
only included as a reference.

2.4.3 Application: An Extension to Mean Shift Detection

A scheme for detecting heterogeneous regions in dermatological images with malig-
nant melanoma is proposed in [40]. The mean shift detection scheme is divided into
two stages: window size optimization and detection. The first stage is carried out
according to Section 2.4. Details of the second are included later in this section.
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In general, the initial training set generation scheme proposed in [41] (see Section
2.4) works well for prototype pixels placed within homogeneous regions. However,
when the optimal window size is estimated for prototype pixels seeded near borders,
very large optimal window sizes can be estimated. This is due to the following facts.
First, since we are working with a rectangular lattice (See Equation 2.1), the smallest
circular 2-D set of weights that can be obtained from a convolution of other two 2-D
sets of weights corresponds to a window of 5 pixels by 5 pixels, or -in our notation- a
disc of radius ¢ = 2. This means, that we can not expect to detect the emergence of
a new class having as center of windows pixels that are, for instance, over borders or
near them. Secondly, in order to arrive at the same constant minimal value, samples
with large values of variance have to be increased in size much more than samples
with small values of variance. Since neighborhoods of pixels belonging to borders
have a large value of variance, the probability of estimating large optimal window
sizes for these kind of pixels increases. The present application takes advantage of
this fact.

Plotting the normalized histogram of the synthetical image containing the values
of minimum estimated variance of the estimated mean within groups (See Equation
2.52), then a bi-modal density function could be appreciated. The peak on the left
corresponding to the probability density function of the homogeneous regions, and
the peak on the right, for larger values of a minimizing energy function, to pixels be-
longing to heterogeneous regions (border pixels). In the second stage, those regions
are detected applying, first, an expectation-maximization algorithm and, afterwards,
automatically defining a threshold between homogeneous and heterogeneous regions.

Detection

The histogram of the synthetic image containing the minimum estimated variance of
the estimated means within groups is constructed. An Expectation-Maximization Al-
gorithm [57] (setting e = 0.0001 in [57]) is expected to provide the parameters (mean
{1, covariance matrix ¥ and a-priori probability p) of two Gauss distributed classes:
the homogeneous region and the heterogeneous region. The threshold between these
classes is obtained using the following discrimination function for Gauss-distributed
classes with different dispersion [9]:

C(h— ) S ) 4 (b= ) S5 (h— aa) > zm(%) (2.56)

where p; is the mean, ¥; is the covariance matrix and p; is the a priori probability
of the i — th class Vi € {1,2}. L(1,2) is the cost of belonging to class 1 and being
classified as belonging to class 2 and viceversa for L(2,1); these can be assumed to
be equal. Pixels whose minimum estimated variance of the means within groups is
greater than the threshold are considered belonging to the heterogeneous regions,
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and viceversa, for the homogeneous regions.

The present scheme was tested on a set of synthetical images. Results can be
appreciated for a real image in Figure 2.14. As an extension of the algorithm to
textural cases, a synthetical example generated with a set of Brodatz’s textures [8]
was used (See Figures 5 and 6 in [40]). The function minimized, in this case, was the
estimated variance of the fractal dimension within groups ®. This was computed for
discs of radius t = 2, 4, 6, 8, 10, 14 and 18.

Figure 2.14: The dermatological image decomposed into homogeneous (left) and
heterogeneous (right) regions using estimated means within groups.

2.5 Window Size for Classification

After estimating, for each single class®, a statistically valid sample, from which the
probability density function of that class can be estimated, it could be useful to es-
timate the minimal sample size needed to classify elements of different classes.

Definition 2.5 Given a pair of classes, the window size for classification is the min-
imal size of a statistically valid sample to be assigned to the correct class with a
certain error rate.

5The fractal dimension fq of a window D,, was defined as:

max(Dy) — min(Dy)

fa(w) = 201 (2.57)

Sfor instance, using the approach presented in Section 2.4, or using region growing algorithms
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In the present work, the critical number of samples for classification is estimated
as a function of the separability between neighbor classes:

10.1541
We = —6.8341 + ——— (2.58)

V2dA

where w, is the radius of the estimated optimal disc for classification and dA is the
weighted sum of the difference of areas of the class density functions:

Q
1
n=1

@ is the number of quantization levels, h(;) and h(y) are the estimated density func-
tions of classes 1 and 2 respectively. It is optimal in the sense that it corresponds
to the best classification rate for a set of experimental data with similar statistical
descriptions. Figure 2.15 shows the graphical behavior of this relation.

T
+ Experimental Data
— Model

g

. . . . . —
0 ol 02 03 04 05 06 07 08 09
Separabilty

Figure 2.15: Separability versus Critical Sample Size

This empirical model was constructed by performing linear regression of exper-
imental data generated as described bellow. A set of 36 pairs (A, B) of synthetical
images of size 1282 pixels was generated. The values of the pixels were generated
using different Gauss weighting functions N(ua,0%) and N(up,0%). The values

of the parameters were 04 = op = 2971,j = 1..6 and puyq = 128 + 2“;) and
U = pa + @,i = 1..6. For each pair of images (A, B), neighborhoods (discs) of

increasing size were centered on the pixels from rows 33 to 96 and columns 33 to 96
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of each one of the images. The radius of the discs varied from 0 to 31.

For each window size:

the normalized histogram of the centered neighborhood of each pixel was com-
puted;

the distance dA from this histogram to the normalized histogram of both classes
was calculated using Equation 2.59.

and the pixel was assigned to the closest class.

The quality of the final classification was measured with Cohen’s Kappa coef-
ficient k (See Equation 7 in Section 4.2.2).

In this case, the optimal radius for each pair of images corresponded to the maximum
Kappa value one.

The following tables show the distances between each considered pairs of classes
and the corresponding optimal disc radii for classification.

Table 2.3: The distance dA between pairs of classes given by the separation between
their means sy and their standard deviation o.

1 2 4 8 16 32

0.2130 0.1035 0.0511 0.0349 0.0345 0.0549
0.3994  0.1998 0.0968 0.0488 0.0411 0.0543
0.6416  0.3720 0.1946 0.1022 0.0659 0.0523
0.9383 0.6797 0.3879 0.1938 0.1046 0.0644
0.9999 0.9493 0.6772 0.3767 0.2111  0.1127
1.0000 1.0000 0.9555 0.6797 0.3790 0.2010

= =1
B DR g

Table 2.4: The disc radius w, corresponding to the best kappa value (one) for each
pair of classes given by the separation between their means su and their standard
deviation o.

c 1 2 4 8 16 32
sp
05 8 14 26 29 31 23
1 5 8 13 28 27 25
2 2 4 10 17 25 26
4 1 2 5 9 16 22
8 0 1 2 4 11 13
6 0 0 1 2 4 10
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2.6 A Contextual Classifier that only requires one
Prototype Pixel for each Class

A three stage scheme for classification of multi-spectral images was proposed in [38§].
In each stage, statistics of each class present in the image are estimated. The user
is required to provide only one prototype pixel for each class to be seeded into a ho-
mogeneous region. The algorithm starts by generating optimal initial training sets,
one for each class according to Section 2.4. Afterwards a region growing algorithm
increases the sample size providing more statistically valid samples of the classes.
Final classification of each pixel is done by comparison of the statistical behavior of
the neighborhood of each pixel with the statistical behavior of the classes. A criti-
cal sample size obtained from the model described in Section 2.5 is used in this stage.

The algorithm was tested with the Kappa coefficient x (See Equation 6 in Sec-
tion 4.2.2) on synthetical images and compared with K-means (F = 0.41) and a
similar scheme that uses spectral means (K = 0.75) instead of histograms (% = 0.90).
Results can be appreciated on a dermatological image with a malignant melanoma
in Figures 2.16 and 2.17.

Figure 2.16: The initial training sets (delineated in green) centered on the seeded
prototype pixels overlayed with the grown regions (delineated in black) of the image
of a malignant melanoma.
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Figure 2.17: The original image overlayed with the thematic map after three itera-
tions of the median filter.
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2.7 Iterative Extended Mean Shift Algorithm

For a given class, it is expected that the probability density function of the esti-
mated means (See Figure 7 2.18) contracts to a single point: "for each pixel of a
multi-spectral image, the fixed point is the center of the cluster to which the pixel in
question belongs" [39].

°
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Figure 2.18: Probability density function of the mean of realizations of discs of radius
t=1,2,3,4.

We have seen in Section 2.4 that for an image with several classes, the scheme
proposed produces a border effect. This behavior can be seen by carrying out the
following procedure. Given an image, we generate a set of synthetical images by
convolving the original image with windows of increasing size. These windows are
weighting functions such that the output of the convolution is, for each single pixel,
the mean of the neighborhood centered on it. We can observe that, for windows
of increasing size, the histogram of the corresponding synthetical image tends to
contract to the class means present in the image. However, for large window sizes,
undesired peaks emerge in the histogram. They correspond to the mean values of
windows centered on border pixels. Basically, this is a consequence of the fact that
the weights do not depend on the data.

For an ideal situation, we would like to have a similar procedure as before, but
replacing each single pixel by the mean of the class it belongs to (See Figure 2.19).
We would like to clearly detect the mean shift between pairs of border pixels. In other

"This Figure was generated with a Gauss distributed synthetical image of 512 x 512 pixels with a
mean of 128 and standard deviation of 8. Circular windows of increasing size were centered on each
pixel. The disc radius was varied from 1 to 4. For each single disc radius the normalized histogram
of the mean of windows with this disc radius was computed. We can appreciate, that "the variance
of the sampling distribution is inversely related to sample size" [22].
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words, we would like to enhance the contrast between image regions. The scheme
proposed in [39] is an attempt to reach this goal and avoid the problem of the border
effect. The main assumption is that the mean of the class a given pixel belongs to,
can be estimated from its neighborhood. In comparison with the scheme proposed
in Section 2.4, each neighborhood pixel is here weighted with a measure of distance
to the neighborhood center pixel.

Original Histogram
o . 0.07

0.06
0.05
0.04
0.03
0.02
0.01

0 5 10 15 20

Filtered Histogram
: 04

0.3

0.2

0.1

Figure 2.19: On left: a synthetical image (top) and the corresponding synthetical
image (bottom) with each pixel replaced by the mean of the class it belongs to. The
bottom image is the truth thematic map where each pixel is labelled with its class
mean. On right: the corresponding image histograms.

Similarly to the scheme of Section 2.4, but now for each pixel in the image, an
optimal circular window size is estimated. The estimated local mean of each single
pixel is saved into a new synthetical image which is the input to the next iteration
of the process just described. The algorithm stops when the difference between two
consecutive synthetical images is smaller than a given threshold.

Also, similarly to the scheme of Section 2.4, for each iteration and for each pixel,
the optimal circular window size from which the pixel mean class is estimated is
obtained through the minimization of the estimated variance of the estimated means
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within groups. However now, the weights used in these functions depend on the data.
In the first iteration it is assumed that each group contains one single element (Equa-
tion 5 in Section 4.1.3): the original image pixel values. The mean between groups
corresponding to an optimal window size is estimated (Equation 9 in Section 4.1.3),
and therefore, an optimal set of groups. The optimal set of groups in one iteration
is a group in the next iteration.

Figure 2.20: The mapping model in the Iterative Extended Mean Shift Algorithm.

Let X be the image to be processed. For each iteration 1 < i < itenq,, the
scheme generates the following synthetical images of the same size as X:

. Z,(,zzn containing for each pixel the value of minimal estimated variance of the
estimated mean within groups in the i — th iteration.

° Y(i), with 1 <4 < iteyqy: the estimated means between groups in the ¢ — th
iteration.

The algorithm can be summarized as follows:
e 1) Set YU = X,
e For each iteration i: window size optimization for each pixel in Y(¥,

— 2) Initialize the the minimal variance image Zr(;zn in maximal values.

— 3) For each pixel, and for each window size: If the estimated variance
(Equation 8 in Section 4.1.3) of the estimated means within groups is
smaller than or equal to the minimum Zfrgn, then update Zn(izn with
the corresponding estimated mean between groups (Equation 9 in Sec-
tion 4.1.3).

— 4) If YO = yG=1 then stop else set Y1) = Y (the optimal set of
groups is a groups in the next iteration) and goto 2).
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Figure 2.21: Output of the Iterative Extended Mean Shift Algorithm for the images
of malignant melanomas shown in Figure 1.2.
From top to bottom and left to right the number of iterations was 7, 7, 7 and 6
respectively.

For the images shown in Figure 1.2, the outputs the Iterative Extended Mean
Shift Algorithms can be seen in Figure 2.21.

The algorithm was also tested with the Kappa coefficient x (See Equation 6 in
Section 4.2.2) on the same set of synthetical images shown in Figure 3 in Section 4.1.2.
For these images, the monotonically increasing behavior of the coefficient can be seen
in Figure 2.22. Compared with the iterative median filter (8 = 0.45), the average
Kappa coefficient for the Iterative Extended Mean Shift Algorithm had a value of
r = 0.68.

Conclusion

Let a K—class image of different means be composed of homogeneous regions. Let
a prototype pixel be seeded in a homogeneous region. We want to find the maximal
prototype centered neighborhood for which it is true that all the pixels belong to the
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Figure 2.22: Kappa values along the iterations of the Iterative Extended Mean Shift

Algorithm for the synthetical images shown in Figure 3 in Section 4.1.3.

same class as the prototype. Let a set of windows of increasing size be centered on
the prototype pixel. If we track the estimated variance of the estimated means within
groups over the line of maximal redundancy we can find that optimal maximal set in
the minimum of this line. The redundancy is computed as a function of the weights
finally assigned to the window elements when the estimated mean between groups is

computed.
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CHAPTER 3

Novelty Detection in
Unregistered and Registered
Patterns

3.1 Introduction

Novelty detection in textural patterns is considered here. First, the detection of
textural changes by avoiding pattern registration is explored. Secondly, changes in
registered patterns are analyzed. Problems related to these aspects, both, are also
considered. These are the lesions segmentation, the illumination correction and the
patterns registration.

The set of psoriasis lesion images mentioned in Section 1.2 is used here. In spite
of being redundant, these images correspond to five repetitions of three psoriasis le-
sions of three patients during at least three weeks. The images taken were labelled
with four characters, indicating patient (1, 2, 3), lesion (A, B, C), session (a, b, c,
d) and capture (1, 2, 3, 4, 5) respectively. Following the notation used in previous
work ([36], [34], [35], [37], [33], [32]), the group of images corresponding to a given
patient and lesion is here called "case (patient, lesion)". As an illustrative example,
the images of the case (1, A) are shown in Figure 3.1. Each row contains the captures
taken during a given session. For this particular case, we have images corresponding
to four weekly sessions. From now, results obtained with the different approaches
introduced in the present work will be shown for this case. For the remaining cases,
details can be found in the technical reports included in Part II.
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Session:1 PATIENT:1 LESION:A

Session:2

Session:3

Session:4

Figure 3.1: Set of Original Images of (Patient 1, Lesion A).

To evaluate lesion changes between sessions, physicians make scores of a four-
variable set: redness, scaling, thickness and body area covered by the lesions. Manual
scoring depends strongly on the dermatologist, who may show variations of criteria
along sessions due to the huge amount of patients and lesions observed during each
working day. In order to use a set of lesions like these as input to an automatic
system that analyzes their change in time, it could be helpful to express the data
in a way so they are comparable, without loosing connection with the original data.
Registration of segmented lesion patterns is a possible solution.

In the present work, the feasibility of quantifying textural change between pairs
of segmented patterns without registering them is first explored (see Section 3.4).
To transform pairs of unregistered original data to a space were they have a perfect
registration is possible through a textural descriptor that is invariant to translations
and rotations of patterns, like Haralick’s co-occurrence matrix [15]. Afterwards, a
within and between sessions of segmented patterns registration scheme is proposed
(see Section 3.5.1). Then, textural changes after pattern registration are found.

As it is pointed out in [33], not only the way the data are presented to a given
distance function is relevant for novelty detection. In order to detect alterations,
the measure of distance between pairs of data sets itself is important. A statistical
approach that allows detection of alterations is the M.A.D. Transform (Multi-variate
Alteration Detection Transform) [44], [45]. This scheme transforms two sets of multi-
variate observations into a difference between two linear combinations of the original
variables explaining maximal change in all variables simultaneously. In the present
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work, the M.A.D. Transform was applied to pairs of registered and unregistered pat-
terns.

This part of the summary starts with a description of the segmentation scheme
used to delineate the lesion patterns [34]. Afterwards, a short section describing
the M.A.D. Transform is included. This is followed by a section about the textural
model used to represent unregistered patterns and the results obtained by applying
the M.A.D. Transform to these data [37]. Finally, a combined alignment and regis-
tration scheme is proposed [33]. Change detection in registered patterns is carried
out [32].

3.2 Lesion Patterns Segmentation

In order to study the variation within and between sessions of lesions, they first have
to be found and matched. In order to find a lesion, the set of image bands, or com-
bination of bands where the lesion is expected to be found has to be specified. A
comparison of different approaches for unsupervised color image segmentation ap-
plied to skin tumors was given in [14]. In this work, it was determined that the
median cut and the adaptive thresholding algorithms applied to the first principal
component provide the lowest average error. The first is a compression scheme. The
second determines valid classes from modes of histograms of scale-space filtered ver-
sions of the original image. For all the cases, the tumor object candidate has to be
selected. Afterwards, a contour encoding algorithm is used to first vectorize and then
smooth the vector data. Border contour are afterwards filled.

Looking at the original images shown in Figure 1.2, we note that, for some cases,
the lesion has a light color, while the skin is dark. For other cases, the opposite
situation is seen. This means, that in the whole set of original images there is no
common lesion pattern homogeneity criteria that can be defined. It could, for in-
stance, be nice, for all the cases, to locate the lesion in the same part of the histogram.
For this reason, the linear combination of the original bands given by the principal
components decomposition, in which lesion patterns satisfy a common homogeneity
criteria, was analyzed in [36].

General results of Principal Components Analysis are presented in Section 3.2.1.
The description of a two-stage hierarchical classification scheme follows [34]. Evalu-
ation of the results motivated the design of an illumination correction scheme [35],
also included here.
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Band | Comp. 1 | Comp. 2 | Comp. 3
Red 0.9907 0.1170 0.0128
Green 0.9741 0.1664 0.0921
Blue 0.9674 0.2077 0.1078

Table 3.1: Average absolute correlation values between bands of single images and
their principal components

3.2.1 Principal Components Analysis

Principal Component Decomposition has been applied to each single psoriasis lesion
image. For all the cases, the variance-covariance matrix was diagonalized. The prin-
cipal components of each single image of our example case, the lesion A of patient
1, are shown in Figure 3.2. From top to bottom, three blocks with the same number
of rows are considered. The first block (first third of the rows) is composed by the
first principal components of the images of the mentioned case (1, A). The second
block (second third of the rows), by the second principal components, and so on,
for the third block (remaining rows). Within a block, the row number indicates the
number of the session, and the column number indicates the capture number within a
session. In general, in order to be able to compare the elements of the sequence given
by the components of the images of a given patient and lesion, for each sequence
composed by the images taken within and between sessions of a given lesion, all the
eigenvectors were pointed to the same sense than the eigenvectors of the first image
of that sequence.

Before studying the variation within and between sessions of lesions patterns, we
need to find and match the lesion patterns first. The component(s) to use in the
search also have to be specified. It has been observed that the lesions look roughly
enhanced from the rest in the last principal component. Taking a look at the values
of the third eigenvectors, it can be deduced that a rough estimation of the third com-
ponent can be obtained by subtracting the green band from the blue band, while the
red band almost does not have any influence. (See Figure 3.3). The estimation of the
third principal components of the images of the cases (1, A) can be seen in Figure 3.4.

Furthermore, for each single image, most of the contribution in its first compo-
nent is given by the red band, which has an average absolute correlation with the
first component of 0.9907. In fact, as it can be seen in Table 3.1, all the bands are
highly correlated with the first component. On the other hand, the average over all
the cases of the percentages of the total variance explained by the first, second and
third principal components is 96.88, 2.61 and 0.51 respectively (These are column
mean values of Table 4 in [36].)



3.2 Lesion Patterns Segmentation 55

K
N

=¥
sl

i

-

RN
e
e

Figure 3.2: Principal Components of the images of the case (Patient 1, Lesion A).
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Figure 3.3: Values of the third eigenvectors of the images of the data-set.
Triangle down indicates the weight for the red band; triangle right, for the green

band; and triangle left, for the blue band.
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Figure 3.4: Set of [B-G| Images of (Patient 1, Lesion A).
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3.2.2 A Hierarchical Classification Scheme

The images of lesions with psoriasis are assumed to contain three classes: background,
normal skin and lesion. As was mentioned before, lesions have high contrast with
the rest in the third principal component. However, in the estimation of the third
principal component, this means, the absolute value of the difference between the
blue and the green band |B — G|, lesions and background are both enhanced from
normal skin. The background has a good contrast with the rest in the red band.
Advantage can be taken of the green color of the curtain used as background during
the image acquisition process. Its density function is seen to be positioned in one
extreme of the red band histogram.

A two-stage hierarchical classification scheme is proposed here. In both stages,
the pixels of the classes are assumed to be Gaussian distributed. Although this is
almost certainly not the case, Clarke et al. have shown that the quadratic method
is fairly robust to deviations from normality, unless we have very skewed marginals
[7]. The red band R is used first to discriminate between the background and the
skin, and then the output of the previous step is combined with the |B — G| band
for segmenting the lesions from the normal skin. In both stages, the use of Wang’s
Expectation-Maximization Algorithm [57] (setting ¢ = 0.0001 in [57]) is proposed.
As was mentioned in Section 2.4.3, this algorithm is expected to provide the pa-
rameters (mean p, covariance matrix Y and a-priori probability p) of two Gaussian
distributed classes: skin and background in the first step, and lesions and normal
skin in the second step. The threshold between these classes is obtained using the
discrimination function for Gaussian-distributed classes with different dispersion [9]
(See Equation 2.56). This function is applied to the output of the convolution of the
image with a circular window of optimal size. The critical number of elements needed
for classification is computed as a function of the minimal separability between the
two classes [38] (See Equation 2.58). The values of this optimal window sum to one;
each element of the window has the value 1/n. corresponding to the inverse of the
size of the window n. given by its number of elements. It is clear that after con-
volving the image, each pixel is replaced with the estimated mean of its neighborhood.

In the first step of this classification scheme, pixels whose estimated local mean is
greater than the threshold are considered belonging to the class skin, and vice-versa,
for the background. In the second step, pixels whose estimated mean of the neighbor-
hood is greater than the threshold are considered belonging to the class normal skin,
and vice-versa, for the lesion. As an illustrative example, the classification outputs
of the images of the case (1, A) are shown in Figures 3.5 and 3.6.

After classification evaluation [48] [52] it was obvious that certain important as-
pects related to the images had not been addressed. This is, for instance, the case
of the shadows, which clearly affect the quality of the classification results. Fur-
thermore, in order to automate the lesion registration process, it is required that
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Session:1 PATIENT:1 LESION:A

Session:2

Session:3

Session:4

Figure 3.5: Overlay of the outputs of the first classification stage with the original
images of the case (1, A).

Session:1 PATIENT:1 LESION:A

Session:2

Session:3

Session:4

Figure 3.6: Overlay of the outputs of the second classification stage with the original
images of the case (1, A).

thematic maps from which the lesion patterns to be registered are selected, contain
a repeated pattern within and between sessions. This is in general not the case when
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the original data set is used. Illumination correction is required in order to improve
the classification output. Hair and lesions occlusions are also aspects mentioned in
[34] not considered further here !. On the other hand, results shown in [34] indicate
that the parameters of the first image of each session could be used to segment the
remaining images of the same session, when the situations mentioned before do not
appear.

3.2.3 Illumination Correction

Thanks to the use of a sphere [1] (see Figure 3.7) with optimal illumination condi-
tions, -which assumes that the captured objects are plane-, some skin images affected
by shadows due to the non-plane shape of the objects can be corrected. Since an arm
or a leg are more similar to a cylinder than to a plane, a quadratic model is assumed
for the captured objects. Details of the illumination correction scheme proposed fol-
low.

Figure 3.7: Sphere with optimal illumination conditions used to capture the images.

Following [25], let i(x,y) be the illumination function affecting the original scene

f(z,y):
g(x,y) =i(z,y) f(z,y) (3.1)

such that g(z,y) is the illumination affected scene. This model assumes that the
output is the product between the amount of arriving light and the original scene
reflectivity. Basically, the region representing a used selected class k is used to model
the illumination function. Within the k-th class we assume as a first approximation
that the original image should be constant:

. _ gk(,y)
i(z,y) = 6 (3.2)

1See in [42] a scheme for registration in presence of occlusions. A hair removal scheme is proposed
in [6].
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where gy, is the observed illumination affected scene in the region representing the
class k, and 8y is a unknown constant.

Pixel values belonging to the region representing the k-th class are replaced by
local means, which are used to estimate an interpolation function. After normaliza-
tion, the interpolation function is assumed to be the illumination function affecting
the scene. This is more precisely defined as follows. Let G, F and I be specific images
of g(z,y), i(x,y) and f(r,c) respectively. Let F = {f[r,c]} and G = {g[r, ]} be hier-
archically defined in terms of Z = {z[r, ¢|} that represents the partition of the scene
in different classes. Each z[r, ] is a value in Q = {1,..., K}, where z[r, ¢] = k means
that the coordinate [r, ] of a pixel belongs to the k — th class. Let u = {u1,..., ux}
be the class means, and M = {m]r, ] = ui/z[r,c] = kVk € Q} be such that mr, ] is
the mean of the class the pixel at location [r,c] belongs to. Let N be defined with
the local means of G such that E[N] = M. Let Nj, be the interpolation function of
sampled values of N, =< N,Z = k > greater than zero 2. Then 7[r, = %:C] and
Oy, is the normalization factor.

Body parts are modelled with a quadratic function. The regression matrix, from
which the coefficients of the interpolation function are adjusted, is given by:

Ypor=| 1px1 T ¢ rec rr cc |[0pn]+ 3 (3.4)

where y; is the local mean value ng[r;, ¢;] for a given band and [r;,¢;] is the loca-
tion of the i-th pixel sampled, which belongs to the k-th class. r = [rq,...,rp]T
c = [e1,...,cp)T and re = [ricy,...,rpep)t, rr = [riry,...,7prp)T and cc =
[c1c1, ..., cpep]T. The normalization factor Oy, is the maximal value of (Gy[r, ] +7)
and + is the minimal constant added to Gg[r, | such that the output is positive.

b

This procedure can be applied to each single image band. Thus, for multi-spectral
images, the output of the present scheme is a multi-spectral estimated illumination
function. See for instance, in Figures 3.8 and 3.9 the estimated illumination functions
and the illumination corrected images for our example case (1, A).

In Appendix C of [35], it can be seen, that the thematic maps of some illumination
corrected images have some repeated patterns within and between sessions. Based
on this, it is considered that the output of the illumination correction is a better
estimation of the expected data. However, in order to be able to automatically select
corresponding objects in the thematic maps of the same lesion, further work needs to

2

<N, Z=k> (3.3)

is the scalar product between the tensor N and the thematic map that has, in a given location the
value one, if the corresponding pixel belongs to the k-th class and the value zero otherwise.
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Figure 3.8: Tllumination functions of the original images of (Patient 1, Lesion A).

Session:1 PATIENT:1 LESION:A
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Figure 3.9: Images of (Patient 1, Lesion A) after illumination correction.

be done 3. Since it is not the main objective of the present work, the cases for which
it was not possible to automatically define corresponding objects, manual selection

3See, for instance, [49], in which a shell-shaped structure of the skin chromaticities cluster was
measured and modelled.
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after visual inspection of the images was done.
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3.3 The M.A.D. Transform

Texture alteration detection in registered and unregistered patterns is going to be
carried out using the Multi-variate Alteration Detection. For completeness, general
aspects of this transform are included here.

Following [44], let X; and Xy be two sets of variables of dimensions m; and mq
respectively, with m; < maq, E{X;} = E{Xy} = 0 transformed with the coefficients
from a standard canonical correlation analysis a; and as in

Yli = aﬂ-Xl,z' = ]., ey M
Ygi :a%;-Xg,i: 1,...,m2. (35)
Further Y; and Y, are positively correlated and with unit variance, such that the
variance of their difference is maximized.

Varlal X, — al X;] = (3.6)
Varlal Xi] + Var[ad Xo] — 2Cov[aT X, a3 Xy] (3.7
=2(1 — Corr[a X1, al X;]) (3.8)

The M.A.D. Transform consists of the variates obtained when the corresponding
canonical variates are subtracted in reverse order, what means that the m!" difference
shows maximum variance among such variables, and the (m; — j)*" difference shows
maximum variance subject to the constraint that this difference is not correlated
with the previous j ones. The M.A.D. variates are invariant to linear and affine
scaling, what is not the case of the Principal Components. The dispersion matrix of
the M.A.D. variates is

Dlal X, —alX;) =2(1 - R) (3.9)

where / is the m; X mq unit matrix and R is the m; X m; matrix containing the
sorted canonical correlations on the diagonal and zeros off the diagonal.

3.4 Novelty Detection in Unregistered Patterns

To express pairs of unregistered patterns in a transformed space were there is a
perfect descriptors registration is possible through a textural descriptor invariant
to translations and rotations of patterns, like Haralick’s co-occurrence matrix [15].
The Multivariate Alteration Detection (M.A.D.) Transform is applied here to a co-
occurrence texture model. The contribution of each single color band to the textural
change is then analyzed.
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3.4.1 The Texture Model

Following [26], let ¢ be a compact and convex set established in the image space as a
circular window and let 8 be a vector position operator relating the relative spatial
location of a pair of pixels in the window; for each single band, the co-occurrence
matrix C' is the estimated probability of having a pair of pixels (A,, A¢) in the relative
position given by 5. The elements of the @ x @ co-occurrence matrix C'(\,, Ay, 3, 9),
with @ being the number of quantization levels, are given by:

O{rlr,r + B8 € 0(8),9(r) = Xp, 9(r + 8) = Ag}
O{r|r+ 0 € ¢}

(3.10)

where g(r) is the subset of the RGB image corresponding to the lesion with psori-
asis, 0(0) is a translation isometry over the window, O is the order of the set, and
r = (i,7) is the vector position of a pixel.

In practice, for each single image, a three band synthetical image of 256 by 256
pixels was constructed in the following way: for each single band, the co-occurrence
matrix of the region indicating the single lesion included was constructed and nor-
malized. The histogram of the pixels belonging to the area of the thematic map
indicating lesion was previously equalized. Logarithms were applied to the normal-
ized co-occurrence matrix values. This was done so, in order to make the histogram
look more Gaussian. After applying logarithms the shape of the histogram is slightly
modified. After that, the values were again normalized. Cell locations in the co-
occurrence matrix were associated to pixel locations of a new synthetical band, and
the probability of occurrence of a given pair of pixel values was the pixel value in the
new synthetical band. See Equation 3.11:

_ x[r, ¢, b]
el = el 310
and

Zk’l(z[k,l,b] x maplk,l, b))

where map]r, ¢, b] is 1 if y[r, ¢, b] > 0 and 0 in the opposite case, and B[b] = max(|z[r, c,
Vr, c. In Figure 3.10, the image regions from which the co-occurrence matrixes shown
in the upper part of Figure 3.11 were computed are shown.

S

3.4.2 The M.A.D. Transform to pairs of Co-occurrence Ma-
trixes

The set of 175 captures obtained at Gentofte Hospital allowed the construction of
650 pairs of captures with the same time increment of one week. Two sets of 650
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Session:1 PATIENT:1 LESION:A
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Figure 3.10: Regions indicating the selected lesion A of patient 1 in the illumination-
corrected images.

pairs of images were used to apply the present scheme: the first set was given by the
original images (See Appendix A.1); the second set, by the illumination-corrected
images (See Appendix B in [35]). For each pair of images of the data-set, the union
of the maps indicating positive values each co-occurrence matrix was generated. The
M.A.D. Transform was only applied to the pixels included in that map. Tables 3.2
and 3.3 show the results obtained for the subsets of the original images indicating
lesions. Tables 3.4 and 3.5 show the results obtained for the subsets of illumination

corrected images indicating lesion 4.

Each single cell value in Tables 3.2 and 3.4 is the average absolute correlation
value between the b — th color bands and the m —th MAD components of all pairs of
images of the [ — th lesion of the p — th patient. It is computed in the following way:

ns—0t ne Ne

1
Elppibm] = m Z ZZap,l,s,i,at,j,b,m (3.13)

s=1 i=1 j=1

where

1
Ap.l,5,i,6¢,5,b,m = 3 (|p[Xp,l,s,i,b7 MADp,l,s,i,&t,j,b, m” + |p[Xp,l,s+6t,j,b7 MADp,l,s,i,zSt,j,b; m} |)
2

4The Tables presented in this section contain values corresponding to what was considered lesion
data. Note that it is a combination of results shown in [37].
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1Aal 1Abl 1Acl 1Ad1

MAD(1AaL, 1Ab1) MAD(1Ab1,1Ac1) MAD(1AcL,1Ad1)

Figure 3.11: Co-occurrence matrixes and M.A.D. Components for the case (1, A).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 1, Lesion A); from top to bottom, the

rows correspond to the red, green and blue band respectively. The lower part shows
the MAD components of pairs of consecutive co-occurrence matrixes; from top to
bottom, the row number is associated with the MAD component number.

(3.14)

and p is the correlation coefficient, 0t is the time increment (in this case, dt
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is one week). The indexes ¢ and j indicate the capture number within a session.
MAD 15..6t,5.6.m equals MAD[Xp 1 5.6, Xp1.st6t.5.0,m]-

Each single cell value in Tables 3.3 and 3.5 is the standard deviation of the
averaged absolute correlation values between the normalized co-occurrence matrix of
the b-th color bands and the m-th MAD components of all pairs of images of the 1-th
lesion of the p-th patient. It is computed in the following way:

ng—o0t ne nNe

1
Slepipml = (ns — 0t)n2 Z Zz(ai,l,s,i,ét,j,b,m) — Elpppml>  (3.19)

C =1 i=1j=1

where the symbols have the same meaning as before.

Table 3.2: Average Absolute Correlation Values per Lesion of RGB lesion data with
the first M.A.D. Component

(Patient,Lesion) | (R,MAD1) (G,MAD1) (B,MAD1)
1,A) 0.228414 0.241037 0.249670
0.087517 0.291845 0.257182
0.021994 0.444337 0.468673
0.117731 0.151841 0.187481
0.021226 0.524634 0.387158
0.111509 0.133244 0.182223
0.038838 0.195560 0.163730
0.032641 0.206640 0.203355
0.043867 0.228722 0.198393
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Table 3.3: Standard Deviation of the Absolute Correlation Values per Lesion of the
RGB lesion data with the first M.A.D. Component

(Patient,Lesion) | (R,MAD1) (G,MAD1) (B,MAD1)
1,A) 0.075189 0.051723 0.120361
0.050564 0.057280 0.092927
0.010095 0.050346 0.045895
0.059834 0.030295 0.014737
0.012165 0.078557 0.100383
0.070107 0.042084 0.076832
0.012120 0.010609 0.013386
0.017749 0.009709 0.013645
0.029494 0.014647 0.023083
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Table 3.4: Average Absolute Correlation Values per Lesion of the illumination-
corrected RGB lesion data with the first M.A.D. Components

(Patient,Lesion) | (R,MAD1) (G,MADI1) (B,MADI1)
(1,A) 0.156864 0.251143 0.306729
(1,B) 0.134858 0.280693 0.287114
(1,C) 0.020100 0.438892 0.477563
(2,A) 0.099910 0.214296 0.151165
(2,B) 0.024732 0.531542 0.375503
(2,C) 0.070576 0.187925 0.195604
(3,A) 0.113855 0.222418 0.142154
(3,B) 0.024691 0.208501 0.202745
(3,C) 0.090282 0.221817 0.190266

Table 3.5: Standard Deviation of the Absolute Correlation Values per Lesion of the
illumination-corrected RGB lesion data with the first M.A.D.

(Patient,Lesion) | (R,MAD1) (G,MAD1) (B,MAD1)
(1,A) 0.073514 0.043622 0.104251
(1,B) 0.084878 0.075100 0.108610
(1,C) 0.012400 0.049313 0.043281
(2,A) 0.032620 0.019728 0.024057
(2,B) 0.011909 0.085662 0.100957
(2,C) 0.045544 0.024256 0.043097
(3,A) 0.027636 0.008405 0.017570
(3,B) 0.021223 0.014558 0.014621
(3,0) 0.033461 0.023677 0.024106

For the pilot dataset, the most significant contribution in the texture change of
lesions with psoriasis is given by the green and blue bands.

3.4.3 Back-projection to the original data

A back-projection scheme from the absolute first M.A.D. component to the original
data was proposed in [37]. The output of this scheme for the pair formed by the first
images of the third and fourth session of the case (1, A) can be seen in Figure 3.12.
The illumination corrected images were used. Note that for each image of the pair,
the segmented regions showing most and least textural change are approximately
correspond to each other. This gives evidence that it is possible to back-project
the M.A.D. Transform output to the original data, such that corresponding regions
showing most and least textural change can be delineated. However, in order to be
able to generalize the approach, the optimization of each single stage of the whole
procedure should be considered.
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1Ac1

1Ad1

Figure 3.12: From the M.A.D. Transform to the Original Data.
From left to right: co-occurrence matrix, back-projection synthetical map, regions
with more textural change and regions with less textural change. From top to
bottom: the first images of the third and fourth session of the case (1, A).

3.5 Novelty Detection in Registered Patterns

Procrustes Analysis is a useful approach for aligning two landmark registered shapes
[12], [18]. However, when these shapes are not landmark registered, the approach
can be extended setting some constraints. For instance, regarding the topology given
by the connectivity between the landmarks. Previous work done in registration of
lesions in skin images can be found in [47]. In this case, an algorithm considers each
lesion as a point. The input to the scheme are multiple lesions skin images. Two
initial matches, called the "baseline", are required in order to find the remaining
correspondent points.

It also might be interesting to include textural information during the registration
process. Previous work that combines shape with textural information was published
in [51].

On the other hand, dermatologists experienced that lesions with psoriasis do not
significantly change their shape and size along the time: instead the change happens
within the lesions. In the present work, it is assumed that the shape of the object is
invariant to scale and that for each pattern, the pixels locations are landmarks that
have to be matched. It is assumed that the objects of largest size in the thematic
map indicating lesions are corresponding, but not aligned. However, they need not
have the same size. Therefore, the most convenient set of pixels that will define
the set of landmarks to be registered has to be found through an alignment process.
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Afterwards, the landmarks can be registered.

This section is composed by the following subsections. A combined alignment
and registration scheme is first proposed. Afterwards, a subsection about change
detection in pairs of registered psoriasis lesion patterns within and between weekly
sessions is included. Color band contribution to the first M.A.D. component is ana-
lyzed.

3.5.1 A Combined Alignment and Registration Scheme

An algorithm that finds the n largest size objects belonging to each one of the the-
matic maps obtained in the segmentation stage was developed. Misclassified pixels
forming holes within regions indicating lesions are assigned to the class lesion. Pairs
of equally scaled corresponding objects are the input of the present scheme.

The combined alignment and registration scheme is composed of two stages: the
first alignment and the registration stage. In the first stage, called first alignment,
global translation and rotation effects of two assumed equally scaled patterns are
removed. The output of the first alignment stage is used by an internal local reg-
istration scheme, which assumes that the local rotation effects in patterns internal
region are not significant. Thus, only local translation effects in the interior of the
patterns are removed.

Following [30], the scheme could be classified as of spatio-temporal dimensionality:
lesions are registered within and between sessions. The nature of registration basis
is intrinsic, because "it is based on image information as generated by the patient":
"no foreign objects were introduced into the imaged space". It is segmentation-based
with a rigid model, because "anatomically the same structures are extracted from
both images to be registered and used as sole input for the alignment procedure".
In the first alignment, the nature of the transformation is rigid: "only translations
and rotations are allowed". In the second stage of the scheme, the nature of the
transformation is affine: "parallel lines are mapped onto parallel lines". The domain
of the transformation is global: "it applies to the entire image" (lesion). The level
of interaction is semi-automatic: "the user needs to initialize the algorithm". The
scheme is monomodal: "the images to be registered belong to the same modality"
(RGB). It is an intra-subject registration scheme: "all the images involved in the
registration task are acquired of a single patient". The object to register is a psoriasis
lesion.

The registration scheme is evaluated afterwards. Results for our example case are
also shown.
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The Initial Alignment

The algorithm that carries out the initial pattern alignment is detailed here. For each
given pattern S and a given reference pattern R, each one of the rotations Rot(R, é)
is centered on the position of each pixel of S, and the angle éopt and location [i,j] € L
for which the difference of volume is minimal is found. L is the lattice on which the
images including the patterns R and S are defined. In practice, pattern objects are
rotated in a range varying from —45 to 45 degrees. For each iteration, this range
is divided into five intervals. Neighboring intervals containing the minimum of an
evaluating function define the range for the next iteration. This minimum is com-
puted using the Extreme Value Detection Algorithm (E.V.D.A.) detailed in the next
paragraph. The algorithm stops when the minimum between two iterations differ by
less than a user-provided threshold g.

The Extreme Value Detection Algorithm (E.V.D.A.) is an iterative process that
assumes that the expected minimum (extreme value) of the distance function between
two objects is near the center of masses of the domains of those objects. In the first
iteration, a mapping template centered on the center of mass of the domain of one
of the objects is used to define the subset of the domain of the distance function for
which their values are going to be estimated. This mapping template includes many
points of the neighborhood of the center of mass, and only few that are far away of
the center. The extreme value of the calculated values of the distance function is ob-
tained, and the same mapping template is centered on that first guess of the extreme
value. This step is repeated until the guessed extreme value does not change anymore.

The output of the first alignment stage is back-projected to the original data
and a new set of images containing the aligned shapes is obtained (See Figure 3.13).
These images can afterwards be registered and realigned. The most important re-
sult produced by this stage is the specification of the number of landmarks to be
registered in a next stage, this means, that the area of the objects is finally forced
to be constant. Since some lesion patterns are occluded in the original images, it
is left up to the user to decide if the number of landmarks is given by the area of
the intersection of the whole set or of a subset of the aligned domains (objects in
thematic maps indicating lesion).

For a given lesion, the expected correlation value of a randomly selected aligned
lesion pattern with any other remaining aligned pattern of the same set (case) is
given in Table 3.6. Details of the computation of each single cell value can be found
in [33].

Registration

After the first alignment it is assumed that the aligned patterns have the same size
and shape. Until now, for a given lesion, elements of pairs of aligned patterns located
at the same position were considered corresponding points. This hypothesis is, from
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Session:1 PATIENT:1 LESION:A

Session:2

Session:3

Session:4

Figure 3.13: First alignment of lesion patterns for the case (Patient 1, Lesion A).

now, more relaxed: we assume that there is some error produced by small internal
displacements. The displacements are assumed to be small translations.

The algorithm that carries out the registration is detailed here. In general, in
order to define the correspondence, two m-dimensional sets of landmarks 7" and Y,
called the source and the target respectively have to be specified [12]. In the present
scheme, m = 1 and, for each given image taken during a given session, the source T’
is given by the locations of pixels belonging to the aligned pattern corresponding to
the first image of the first session, and the target Y should be given by their corre-
spondent locations of pixels, but it is unknown. In order to reduce the computational

Table 3.6: Average correlation and standard deviation of a randomly selected aligned
lesion pattern with the remaining aligned lesion patterns of the same patient and
lesion, per color band, patient and lesion.

(Patient, | ur OR HG oG KB oB | WB-G| O|B-G]
Lesion

1,A) 0.6918 0.0468 | 0.5770 0.0538 | 0.3679 0.0595 | 0.6941 0.0323
1,B) 0.6696 0.0932 | 0.5241 0.0944 | 0.4413 0.0843 | 0.4517 0.1305
1,C) | 0.2534 0.0806 | 0.1651 0.0642 | 0.1138 0.0561 | 0.4211  0.0585
2,A) | 05162 0.0606 | 0.3561 0.0589 | 0.5720 0.0588 | 0.6486 0.0367
2,B)
3,0)

0.6681 0.0227 | 0.5736 0.0331 | 0.7260 0.0219 | 0.4854 0.0432
0.2550 0.0288 | 0.0757 0.0350 | 0.1289 0.0202 | 0.3524 0.0672
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Table 3.7: Average correlation and standard deviation per color band, patient and
lesion of a randomly selected registered lesion pattern with the remaining patterns
of the same patient and lesion.

(Patient, | ur OR e} oG KB 0B | WB-G| O|B-q|
Lesion

1A 0.6853 0.0447 | 0.5689 0.0505 | 0.3666 0.0586 | 0.6728 0.0345
0.6819 0.0790 | 0.5380 0.0814 | 0.4608 0.0743 | 0.4486 0.1209
0.2915 0.0841 | 0.1993 0.0720 | 0.1361 0.0586 | 0.4325 0.0586
0.5781 0.0573 | 0.4222 0.0553 | 0.6204 0.0533 | 0.6499 0.0406
0.6643 0.0258 | 0.5720 0.0394 | 0.7147 0.0252 | 0.4642 0.0369

0.2865 0.0382 | 0.0999 0.0331 | 0.1476 0.0203 | 0.3675 0.0604
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time, for each pattern, only a subset of T" and Y is considered at first. Pixels placed
on a grid composed of square cells with a user-defined number of points form the
subset of T' for which their corresponding points belonging to the given lesion image
will be found. The correspondence between the source subset and the target subset
is established as follows. For each pixel belonging to the grid, a user-defined circu-
lar neighborhood is considered. At the same location in the second image, another
user-defined circular neighborhood® - larger than the previous one®- is taken into ac-
count. The difference of volume values dV of all” the translations of the first window
over the second window are considered. The position of the pixels belonging to the
second image whose neighborhood has the minimal difference of volume compared to
the window of the reference pattern is saved into a new grid. This is done for each
image of a given session.

In each iteration, an average grid is computed. The set of distance vectors from
the grid of the reference pattern image to the average grid is used to translate all
the grids to a new position. This process is repeated for a user-provided number
of iterations. Then, to generate the whole target set Y for each single image, thin
plate splines are applied to the rest of the values of the source T and the rest of
the new lesion image can be generated. At the end of this stage, it is expected that
the pattern correlation within and between sessions increases. Also, when compar-
ing two registered patterns belonging to the same session, their difference should be
randomly distributed Gaussian noise.

Table 3.7 was generated in correspondence with Table 3.6, but using the correla-
tion values of registration outputs.

In Table 3.8, each single cell value is the average per color band of the correlation

5These window sizes are established by visual inspection of the image containing the error between
pairs of images taken during the same session.

SComputed as a function of the spacing between the points on the grid

"In practice, only the points defined by the mapping template used in E.C.V.A. were evaluated
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Table 3.8: Average correlation values within sessions per color band of the outputs
of the first and second stage of the combined alignment and registration scheme.
Stage RED | GREEN | BLUE | |B-G|
Initial Alignment | 0.7288 | 0.6377 | 0.6432 | 0.7040
Registration 0.7412 | 0.6507 | 0.6537 | 0.7412

Table 3.9: Average correlation values within and between sessions per color band of
the outputs of the first and second stage of the combined alignment and registration
scheme.

Stage RED | GREEN | BLUE | |B-G|
Initial alignment | 0.5938 | 0.4935 | 0.5001 | 0.5780
Registration 0.6114 | 0.5021 | 0.5043 | 0.5741

values within sessions (i.e. rows (a,a), (b,b), (¢,c¢) and (d,d) in Tables 10 and 14
of [33]). In Table 3.9, each single cell value is the average per color band of all the
correlation values within and between sessions (this means, from rows (a,a), (a,b)

..to (¢,d), (d,d) in Tables 10 and 14 of [33]). As it can be seen, the correlation
values increased. However, compared to the output of the initial alignment stage,
the improvement done by the registration scheme proposed is not significant.

Note that in Figure 3.14, after the initial alignment for the case (1, A), the kind of
structure that the M.A.D. Transform detects in the lesion center tends to disappear
after registration. However, a small structure appears after registration on the top
left side of the lesion.

3.5.2 The M.A.D. Transform applied to pairs of Registered
Patterns

The contribution of each single color band in showing the lesion change in a period
of one week is analyzed here. Results are compared to the original image data. Le-
sion changes between sessions are also described using the absolute value of the first
M.A.D. component. For our example case (1, A), it can be seen in Figure 3.15 that
most of the change from the first to the second week occurs in the central part of
the lesion. Afterwards, from the second to the third week, it spreads out. From the
third to the fourth week, most of the change occurs near the borders.

The set of 108 registered images produced by the registration scheme (see Ap-
pendix C in [33]) allowed the construction of 377 pairs® of registered lesions with the
same time increment of one week between them. For each image of a given patient

8For each lesion the number of pairs is (1,A) = 25 x 3; (1,B) = 9 x 3; (1,C) = 25 x 2;
(2,A) =25x 35 (2,B) =25 x 3 and (2,C) = 25 x 3 respectively.



3.5 Novelty Detection in Registered Patterns 75

1Aal 1Aa2 1Aa3 1Aa4 1Aa5

(1Aa1,1Aa2) (1Aa2,1Aa3) (1Aa3,1Aa4) (1Aa4,1Aa5)

1Aal 1Aa2 1Aa3

(1Aal,1Aa2) (1Aa2,1Aa3) (1Aa3,1Aa4) (1Aa4,1Aa5)

Figure 3.14: Images of the first session of the case (1, A) before (top) and after
(bottom) registration, and respective first M.A.D. components

and lesion, each one of the images of the next session were associated. For each
pair of synthetic images constructed in the way mentioned, the M.A.D. transform
was applied [24]. The M.A.D. Transform was only applied to the pixels belonging to
the lesion. Tables 3.10 and 3.11 show the results obtained for the sets of registered
images. Each single cell value in Table 3.10 was computed using Equation 3.13. Each
single cell value in Table 3.11 was computed using Equation 3.15

Excluding from Table 3.10 the case for which the registered lesion patterns are
covered by hair (Patient 2, Lesion B) (see [33] for details), we can see for the pilot
data set, most of the contribution to the first M.A.D. component is given by either
the green or the blue band. These results can be verified, by visual inspection of the



76 Novelty Detection in Unregistered and Registered Patterns

1Aal 1Ab1 1Acl 1Ad1

(1Aal,1Ab1) (1Ab1,1Ac1) (1Ac1,1Ad1)

Figure 3.15: Registered Images for the case (1, A) and the First M.A.D. components
per week.

registered lesions image patterns decomposed in its RGB bands (See Figure 3.16).
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Table 3.10: Average Absolute Correlation Values per Lesion of RG B registered lesion
data with their respective M.A.D. Components

(Patient,Lesion) | (R,MAD1) (G,MAD1) (B,MADI1)
(1,A) 0.239941 0.312891 0.479555
(1,B) 0.194602  0.342770  0.404496
(1,0) 0.502525 0.582041 0.602087
(2,A) 0.273979 0.444085 0.298466
(2,B) 0.232567 0.325108 0.154075
(3,0) 0.399863 0.536893 0.529572

Table 3.11: Standard Deviation of the Absolute Correlation Values per Lesion of the
RGB registered lesion data with the M.A.D. Components
(Patient,Lesion) | (R,MAD1) (G,MAD1) (B,MAD1)
(1,A) 0.082760 0.088492 0.076644
(1,B) 0.062977 0.088879 0.101755
(1,0) 0.071854 0.051745 0.044919
(2,A) 0.145003 0.130561 0.081781
(2,B)

3,0

0.043526 0.078260 0.060818
0.120938 0.129143 0.099749

Figure 3.16: RG B bands of registered images of the case (1, A)
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CHAPTER 4

Conclusion

In this thesis the novelty detection problem was focused from three different points
of view:

e In the first chapter, it was treated as a contextual classification problem. Given
a prototype pixel, the maximal set centered on it for which it is true that all
the pixels belong to the same class as the center one was estimated.

o Afterwards, an attempt to avoid the lesion pattern registration was made. Tex-
tural changes of lesion patterns were studied through the application of the
M.A.D. transform to the co-occurrence matrix of lesion patterns.

e Finally, an alignment and registration scheme was developed. Registered lesion
pattern changes were studied by applying again the M.A.D. transform.

The set of dermatological images was composed by images of malignant melanomas
and images of psoriasis lesions.

Regard the first item, it was assumed that pixels belonging to the neighborhood
the prototype pixel belong to the same class as this one. An evaluating function was
minimized over the line of maximal redundancy of the weights. This function was the
estimated variance of the estimated means within groups. The minimum indicated
the maximal set for which it is true that all the pixels belong to the same class as
the center one. The scheme was tested with synthetical and real examples. It was
shown to be a suitable approach for the generation of an initial training set from a
prototype pixel.
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A simple model that relates separability between classes with an optimal circular
window size for classification was also proposed. It was applied to the output of a
developed region growing algorithm that increases the sample size after the initial
training set is generated. It was tested with synthetical and real examples. It was
also used with the output of an Expectation-Maximization Algorithm. For the set of
psoriasis images the results were satisfactory.

With regard to the psoriasis image data set, it has been observed that there is
more contrast between the lesion and the rest in the third component. A rough esti-
mation of the third component of the original images can be done by subtracting the
blue from the green band. The classification of the captures of a given session, given
the parameters of the first image of the first session has shown to have an average
Kappa & error superior to 0.8 in almost all the cases. It has also been shown that
the images have an illumination problem that is not irrelevant. An illumination cor-
rection scheme that uses the image data has been proposed. By visual appreciation,
it can be seen that the classification output improved significantly after illumination
correction.

The application of the Multivariate Alteration Detection Transform to the nor-
malized co-occurrence matrix of psoriasis lesions patterns is a novel approach for
detecting texture changes that avoids the lesion patterns registration. Results indi-
cate that the most significant contribution in the texture change of pairs of psoriasis
lesions patterns is given -for the pilot dataset- by the green and blue bands. Evi-
dence was given that it is possible to back-project the M.A.D. Transform output to
the original data, such that corresponding regions showing most and least textural
change can be delineated. However, in order to be able to generalize the approach,
the optimization of each single stage of the whole procedure has to be considered.

An algorithm that iteratively approximates the extreme value of a smooth func-
tion using a known retinal mapping model was proposed. It was applied to the first
alignment of lesion patterns and has shown to produce satisfactory results, unless
the size of the data sets to be compared present a large variability.

Two lesion pattern registration approaches have been proposed. In both cases,
the normalized pixel values of each lesion pattern were considered as the textural de-
scriptor of the pattern. In spite of increasing both the pattern correlation within and
between sessions, the improvement of the second stage of the proposed scheme was
not significant: the average correlation values within and between sessions per color
band of the first and second stage outputs of the combined alignment and registration
scheme increased less than 2 percent. The average correlation values within sessions
per color band of the first and second stage outputs of the combined alignment and
registration scheme with better performance increased for the red band, from 0.7288
(after the first alignment) to 0.7412 (after the second stage). Basically, it can be
mentioned that the registration of aligned patterns within and between sessions and
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the selection of the measure for registration evaluation are clearly not easy problems.

Visual assessment of the results indicate, at least for the small set of lesions an-
alyzed, that in the beginning, most of the change occurs into the lesion, while it
spreads out after a week it spreads out and is distributed on the whole lesion.

Regarding the contribution of each single color band to the first M.A.D. compo-
nent, using unregistered and registered psoriasis lesions patterns, it has been shown
that, in general, it is mostly the green or the blue and to a lesser extent the red band
which contributes most in showing the change.
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4.1 Published Papers

Papers published during my Ph.D. Studies are included here. This part is organized
as follows. Each single paper has a cover page specifying the list of authors and the
conference or journal in which the work was published.

In spite of being redundant, but in order to have a general overview of the content
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e An Initial Training Set Generation Scheme (S.C.I.A. 2001)

e Mean Shift Detection using Active Learning in Dermatological Images (M.I.
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Iterative Extended Mean Shift Algorithm (C.V.P.R.I.P. 2002)

A contextual classifier that only requires one prototype pixel for each class.
(I.LE.E.E. Transactions on Nuclear Science 2002)

A Supervised Contextual Classifier Based on a Region-Growth Algorithm (Com-
puters & Geosciences 2002).
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ABSTRACT count and, therefore, an initial window of optimum size will
be defined. From a semantic point of view [16], a window
7] defines a subset of an entity in which the instances are
spatially connected. In order to find an ideal window size,
Hodgson [9] suggested the use of a conceptual model of the
fuman perceptual and cognitive interpretation processes.

Supervised classifiers employ a-prioriinformation of eac
determined class. This is usually obtained by means of
training sets interactively generated or with semi-automatic
schemes that still depend on some user input. The purpos
of this work is to generate an initial statistically valid sample
of a class starting from only one single prototype pixel. This

) . In the case of visual perception, "human eyes move and
is done by means of a new mapping model that uses redun- ; ! . . .

; : L ._successively fixate at the most informative parts of the im-
dant contextual information. The initial sample generated is

the maximum size neiahborhood centered on the brotot eage which therefore are processed with the highest resolu-
. , nelg P YPSion" [15]. This resolution can be interpreted as the max-
pixel, which contains pixels that belong to the same class. . : . ! .
s ) : . imum size of a window that contains pixels with the same

as the center one. This is defined by a window of optimum feature

size obtained by minimizing the variance of a learning vari- |
able over the line of maximal redundancy of the mapping
model. The minimum of the function studied corresponds
to the estimation of the point in which a new class emerges.
Additionally, a supervised classifier was designed and im-

plemented as an application of the model proposed.

With respect to the cognitive process, it is well known
that "the learning process can be treated as a statistical dy-
namical problem" [8]. It has typical characteristics [17]
like:

e instability: "Itis impossible to detect structure in data
1. INTRODUCTION until a critical number of examples have been pre-
sented" [18].

Supervised classifiers employ a-priori information of each
determined class. This is usually obtained by means of
training sets defined by an interactive procedure on the im-
age. The quality of the classification can be improved with
the implementation of semi-automatic training and valida-
tion set generation schemes [6][12]. However, these schemes
still require some user-input for the estimation of the param- 4 regrganization: a state of new order emerges and "the
eters of the classes eg. thresholds, window sizes, or require mean-field model exhibits an ergodic to non-ergodic
information about an initially assumed correlation structure transition where full ensemble averages are no longer
of the class. It could be an advantage to develop schemes equal to time averages"[11].
that minimize the amount of information the user is required
to provide. Obtaining the highest resolution implies detecting the
emergence of a state of higher order. This will be done
The aim of the present work is to generate an initial sta- through the minimization of an optimal learning curve that
tistically valid sample of a class starting from a single pro- depends of the fraction of examples [4]. The definition of
totype pixel. This initial sample could be used for the es- the optimal learning curve will be based on the fact that
timation of parameters of a region growing algorithm, for there is a positive correlation between the redundancy and
example. The context of the pixel will be taken into ac- the efficiency in the minimization of a learning algorithm

e fluctuations: underlying structure in the data can be
recognized [1].

e critical slowing down: additional information provided
is redundant [1].



[13]. Thus, a mapping model with overlapping discs in or- is a realization oD,,[r, ¢].

der to generate redundant sets will be defined. The opti-

mum size of the neighborhood of a given prototype pixel The optimum windoww, for a given pixelz defines
will be obtained at the minimum of an energy function eval- the maximal seD,,, centered on the positidn, c] of = for
uated over the line of maximum redundancy of the mapping which is true that all the elements were generated with the
model. This happens when the presence of a new class isame probability density function. This is an heuristic ap-
detected. proach. See an example in Figure 1.

2. WINDOW SIZE OPTIMIZATION

Let us introduce some definitions and notations to be used
in the present work.

Let a specific image with non-correlated bands

X = {alr,c]} 1)

be defined over the given domain L:

L=A{rdl <r <maz,,1<c<maz.} (2

We suppose thaX is the realization of a two-dimensional
random fieldX -notice that whileX (sans serif) is a set of

variables,X is a set of values of those variable-;(jtalic) Fig. 1. The set indicated as a circle ?s the ma>'<imr.:1I disc that

all the pixels belong to the same class as the center pixel.

Z = {z[r,c]} (3)

of an underlying random field such that:.Z represents the
partition of the domain i regions of different types; each
z[r, c] is a value of the set of labels Definition 2: Entropy and Redundancy of a Disc

B = {b1,bs, ..., bk } (4) The disc is a collection of random variables. Based on the
oo ) Theory of Systems, that considers each system as a sub-
wherez[r, ] = by, indicates that the coordinafe,c] of a gy qtem of another system, we now consider the disc itself
given pixel belongs to the regidn In each region of type 55 4 random variable: the random variables that belong to
k the presence ,Of a reql|zat|on of a _d|screte. and ho_moge—the disc, are now values of this new random variable. Then,
neous random fielé, with a probability density function e can associate to that new random variable a probability
P(Hy)is assumed. Then density function or set of weights,,. The set of weighting
Vbi € B : afr,d = he € HVr,c|2[r,d = bx  (5) Iité)r;]ctziolni used in the present work will be mentioned in sec-
Let the probability density functionB(H},) be unique fea-
tures — this doesn't imply that the domains of the random  The entropy of a disc can be defined as:
variablesH}, are disjoint —.

E(Dy) = - Z wa [i])log(wy[i]) (8)
Definition 1: Maximal Disc and Optimum Window =

wheren,, is the number of elements or instances of the disc,

Let Z, in turn, be hierarchically defined in terms of the re- . = .
y wy ] stands for the-th instance of the disc, and

alization

Wo = {wol[i, j]} (6) 0 < wuli] < 1 ©)
of an underlying random fiel@&V, such that¥, represents
the set of radii of{;, homogeneous maximal disbs,, [r, c|. is the weight assigned to thieth instance of the disk

From a syntactic point of view [16], a window defines a re-
alization of a disc. The set

1From that is deduced that a disc can not be an unitary set, and if an
Dy[r,c] = {dy[r —i,c—j]|0 <i* + 5% <w?} (7) element belongs to the disc, it has a probability greater than zero.



Following Mgller [13], the redundancy of a disc of size [14], which can be expressed as a property of convolutions.

n is defined a& The convolution of a large number of positive functions is
approximately a Gauss function. However, strictly speak-
—1_ E(Dy) ing, the Central Limit Theorem only applies under certain
R(Dy) =1 (11) " o
logn, general conditions and for an infinite number of random

where — the same as beforai; denotes the size of a disc  Variables.

given by the number of random variables that it is composed ) .
of. The details of the mapping model follow bellow.

The internal entropy to external entropy rafib E R for
given discs of radiiv and(w — s) centered on the same po- 2 1.1, Estimating the mean within the groups
sition, wheres < w, is defined as the quotient between the
entropy of their intersection and the entropy of their differ- In general, we define the estimatigrof the mean of a real-
ence using the set of weightg,: izationD,, of a discD,, as the projectiof of the realization
D, over the weighting functiow,,:
E(Dy NDy—s)

IEERw,s]) = E(Dy —Dy_,)

(12) yw =Y dylilwyli] € Yoy = {< Dy,ww >} (13)

whered,,[i] is thei-th element of the realizatioP,, of the

disc corresponding to thieth position,w,[¢] is the weight
2.1. The mapping model assigned to the i-th element &f, corresponding to the
samei-th position. Y, is the realization of a random field

we

An active learning process with increasing window size alon
the iterations will be defined. It is expected that at some
point, the beginning of the learning phase of reorganization
is detected (eg. the class boundary is detected). This poin
will be associated to the optimum window size. The statistic
to be learned is the mean of the maximum window, included
in the image, that can be centered on a given prototype pixel.
The way this statistic will be estimated is given by the map-
ping model that is built in the following two steps: the es-
timation of the mean into groups, and the estimation of the
mean between groups.

Let the realization of a disD,,[r,c] be composed by
tthe estimationg,[r — i, c — j] of the means of,,, groups
of sizen,, using the same set of weights.

Several mapping models have been suggested in the last
years [19][3]. Models with overlapping contexts [16] are
attractive because they contain some degree of redundancy
[13]. In the present work a new mapping model based on
the Uncertainty Principle and the Central Limit Theorem
[14] is proposed. From the Heisenberg Uncertainty Princi-
ple we know that, if we want to minimize the uncertainty
of the neighborhood of a pixel, the envelope of the neigh-
borhood or the neighborhood itself has to be a Gauss func-
tion. However, in that case, for a given pixel our knowledge
about its neighbors is minimal, in other words, our uncer-
tainty is maximal. This means that, initially, we should give
its neighbors the same weight: we should use an uniform2.1.2. Estimating the mean between the groups
model. The connection between an Uniform model and a
Gauss model can be found in the Central Limit Theorem

Fig. 2. The mapping model

The dynamics of the learning process will be followed look-
ing at the behavior of the estimation of the megan, of the
20ur aim is only specifying a trajectory. For this reason, in practical realizations of discB, ,,,. This will be the estimation of the
cases we used the following formula as a relative measure: mean between the éroups
- .

E(Dy)
N
whereN is a normalization factor, such that for eaghconstantV is the
maximum value of(D,, ) computed. 3Scalar product is denoted by ., . >

R(Dy)=1—

(10)
Yv,m =< Dv,mawm >€ Yv,m (14)




It can be proved thatD, C X A D, ,, C Y, dD; C
X A wg such that

Yv,m = ﬁ'hm =Yt (15) o3

where

bability of the Mean

t=tlv,m)~v+m (16)

3
°

andw, results from a convolutich

Wt 2 Wi * Wy (17) 005

15 120

The number of elements iB; is n;.

Eachmis an estimation of the meanof the realization iy 3, probability Density Function of the Mean of Real-
of the disc of maximum size centered on a given position jzations of Discs of radius = 1.2. 3. 4

[r, c] thatis included in the imag¥.

lim M, ~m (18) weighting functionw; is not a possible solution here.
Tt — 00

The following weighting functions, will be evaluated:

2.2. The optimization process e uniform)-uniformn)

The mean fieldY, ,,, by itself does not describe the fluc-
tuations of each realization &, ,,. A measure like the
learner variance [5] is a statistical approach for doing that ¢ gaussg)-uniform(n)
job. However, let us introduce some previous comments

about the redundancy in the mapping model. * gauss()-gauss{)

where the first element of each pair refersutp and the
second element to,,, in Equation 17, and

e uniform(v)-gauss{n)

2.2.1. The line of maximal redundancy . . .
e uniform(g):w,[i] = nLsz

In general, we know that "the variance of the sampling dis-

tribution is inversely related to sample size" [10]. Thiscan e gauss(g)w,[d] = exp(—0.5(%)) vd® = i*> + j2 and

be observed in figure 3 for the case of the mean of windows o = f(g). Letusfixo = g/3.

of increasing size. This figure was generated using a Gauss ) ,

distributed image of 512 x 512 pixels with a mean of 128  AAS can be observed comparing Figures 4 and 5, for each
and standard deviation of 8. The means of discs with radiusConstant radius the error in the estimation of the real mean
varying from 1 to 4 centered on each pixel were computed. IS Maximal when the redundancy is maximal. This happens
The normalized histogram for each radius is the probability "© matter which combination of weighting function is used.
density function of the mean of discs with this radius. A
similar behavior can be observed if the test is extended to
other statistics like the variance, etc.. lim Yo.m — 1M = maz(er) (20)

t(v,m)—t(vo,mo)

Vt constant

In our problem, this leads to maximize the size of the

discsD;. For each fixed dis®;, there is an optimum pafo,, m,)

lim e; = |ys — | = 0 (19) such that the error in the estimation of the mearDgfis
t—00 maximal.
However, for each set of disd3, ,, C Y, associated

to a discD; C X of fixed radiust, if we maximize the
size of the disc®, C X, we minimize the size of the disc
D,m C Y, and vice versa (See Equation 16). It has to be
taken into account, that the estimation of the meapf
depends also on the weighting functiopn For eacht an
optimum 3-tuple(v, m, w;) should be found. An uniform

We would like to minimize the error in the worst estima-
tion of the mean and at the same time take advantage of the
fact that the learning algorithm will work more efficiently in
the minimization if the redundancy is increased [13]. Then
for each fixed radiuswe choose the paiw,, m,) such that
the redundancy is maximal.

4Equality holds for square windows. (vo,mo) = max(R(Dy,m))VE(v, m)constant  (21)



Error in the estimation of the real mean

tconstant

Radius m

Radius v

Fig. 4. Error in the estimation of the real mean using
the uniformg)-uniform(@m) model in a Gauss distributed

N(u = 128,0 = 23) image of 96 x 96 pixels.

15 20

Fig. 5. Redundancy using the uniform¢uniform(m)

model

The position of the line of maximum redundancy of the
uniform(v)-gaussf) weighting function is symmetric to the
position of the line of the gausgfuniform(m) weighting
function with respect to the plane= m, and the values of

maximum redundancy are the same for eactnstant.

The position of the line of maximum redundancy of the
uniform(v)-uniform(m) weighting function is equal to the
position of the line of the gaussgfgaussfn) weighting func-
tion, but the values of redundancy for eaatonstant of the
second are greater than the values of redundancy of the first.

018 gauss(v)-gauss(m)

b uniform(v)-gauss(m)

Fig. 6. Redundancy of a disc of fixed radiv&, m) =
v +m = 12 D;—» using different weighting functions;
in the estimation of the mean of the realization of the disc.

2.2.2. The energy function

Let us assume that we have arealizatiop, ., that changes
from an internal class | to an external class E at radius
Let the mean of the internal class be different from the
meanmy; g of the union of the internal and the external
class. The last one is the statistic to be learned. Let the vari-
ance of the internal clag§ be less than the variance of the
uniona‘(ZIUE).

The emergence of a higher order state will be detected at
the minimumto of the following energy function evaluated
along the line of maximum redundancy:

Z[t] =< D;Z)o,mC,?wvmmo > _y;z)o,mo (22)

where eachl; . [i] € D, is the square of the ele-
mentd,, m, [¢] of D, », thatis at the same positian

Then
to = min(Z[t]) € W, (23)

whereW, is the set of estimations of the elementsiBf
(see Equation 6), and the ratio

IEER]t,s] > 1butnot >> 1 (24)

holdsVzt.

For X p-dimensional we will minimize the trace of a
matrix of Z.

The behavior of this energy function will be the follow-
ing:
e In each iteration the; will be the estimation of the

real mean of the union of the internal with the external
classm; | g)-



introduce a perturbation to the system.

e Since "the chances of encountering a more extreme
sample value are greater, the smaller the sample size"
[10], we can expect that if the number of internal pix-
els is big enough, the probability of finding an ex-
treme value will be low and all the variation of the
learned variable will be introduced when we begin
adding external pixels.

e Furthermore, the size of that variation will be increased
because the variance of the union of the external and
the internal class is greater than the variance of the
internal class.

This can be observed for the fowy tried on an exam-
ple that was generated by seeding a pixel in the center of
a Rayleigh-distributed cla&sThe change of class happens
at radius 32. In general, all the models with overlapping
discs have an energy function that minimizes in the neigh-
borhood of the border between the external and the internal
class. (See Figure 8).

¢
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25 uniform(v)-uniform(m)--> ~~ /
/

r <=---gauss(v)-uniform(m) UﬂlfOTm(V)’gaUSS(m)””f’

Energy Z

Uv)- | UV)- | G(v)- | G(v)-
U(m) | G(m) | U(m) | G(m)

Fig. 7. Different weighting functions; for a disc of radius
12 D;—;». From the left to the right, the weighting func- 0
tions correspond to uniformjf-uniform(mn), uniform()- Redus 12
gaussfn), gaussg)-uniform(m) and gauss()-gaussf) re-
spectively (cf. Figure 6). From the top to the bottom, the
number of the row corresponds to the radius v.

Fig. 8. Energy function using different weighting functions
w; in the estimation of the mean

e However, if we avoid adding instances of the external ~ Note in figure 9 that the real meanm is estimated faster
class to the sample, we are going to obtain a good by they, ,, corresponding to the uniformy-uniform(n)
estimation of the meany of the internal class. This model.
means that the variance of the learned mean of the

internal class will be minimized. 3. RESULTS AND DISCUSSION

e From a physics point of view we can think that the hg energy function proposed was evaluated for each of the
system tends to be singular and therefore more sen-q,r \eighting functions; using a set of synthetic images.

sitive to perturbatiorts If we add a small quantity  From these results — and as an application — a supervised
of pixels that belongs to the external class this will

SWe used this distribution in order to evaluate the performance of this
SFurther work will be done in that sense. model in non-Gauss distributed classes too.
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Table 1. Minimum, Average and Maximum Estimated Op-
timum Window Size using combinations of Uniform(U) and
Gauss(G) weighting functions in the Mapping Modglset

of 144 images with internal class with varying radius)(
from 2 to 18 was used. The difference between the mean of
the internal class and the external class was 4 gray levels.
The standard deviations of the classes varied from 1 to 4.

Fig. 9. The estimated meay, ,,, using different weighting
functionsw;.

classifier was designed and implemented. The output of this
classifier is shown in the second part of this section for a real
case.

e The synthetic images:
Experiment: A set of pairs of Gauss-distributed im-
ages of 96 x 96 pixels with separations between means
of four gray levels, and varying standard deviations
from 1 to 4 was generated. In each pair, the first im-
age was assigned to the internal class, and the second
pair was assigned to the external class. With each one
of these pairs, a new set of images of the same size
was built centering a disc of varying radius from 2 to
18 in steps of 2 containing data of the internal class in
the center of the image. The complement of that disc
was filled with the data of the external class. In this
way a total of 144 different images was generated.
Since the optimum window size is known it could be
compared with each one of the estimated optimum
windows generated by the fout used in this work.

Looking at the previous table it seems that the gayss(
gaussfn) model has the best performance. However,

to U(v)- U(v)- G(v)- G(v)-

U(m) G(m) U(m) G(m)
2 2,722 2,2,2|2,11,18] 2,2,2
4 2,2,2| 2,2,2| 4,4,4 4,4,4
6 4,4,4| 2,2,2| 6,6,6 6, 6,6
8 6,8,8| 2,4,8| 6,7,8 8,8,8
10 6,8,8| 2,8,10| 6,7,10| 10,10,10
12 6,8,8]| 2,10,12| 6,7,12| 12,12,12
14| 6,11,12| 2,11,12| 6,11,14| 14,14,16
16 | 12,14,14| 2,11,12| 6,14,16| 14,16,18
18 | 12,14,16| 2,11,12| 6,17,18| 14,18,20

gence of a state of greater order will be detected with
a delay, and wrong examples will be included in the
initial sample generated.

x10'

gauss(v)-gauss(m)

Internal Ent./External Ent.

o

uniform(v)-gauss(m)=
gauss(v)-uniform(m)

T T
10 12 14 16 18 20
Radius (*)

)
~
=k
o
o

- uniform(v)-uniform(m)

Internal Ent./External Ent.

uniform(t)

if we observe the last rows, it starts generating win- Fig. 10. Internal Entropy to External Entropy Ratio versus
dow sizes greater than the expected ones. This isRadius of the Disc. (*)The x-axis corresponds to the radius

in spite of the fact that the internal entropy to ex- (t = 1)/2. The gauss(t) and uniform(t) are only included as
ternal entropy ratio grows faster in that model than @ reference.

in the others. (See Figure 10 and note the differ-
ence in the scale of the y-axis.) For this reason, ex-
cluding the case in which the internal entropy to ex-
ternal entropy ratio is less than 1, we can conclude
that the uniformg)-uniform(m) weighting function

has the best performance at detecting the emergence
of a state of higher order. It should be taken into ac-
count, that if the ratio is much greater than 1 the emer-

e Areal example:

As an application of the uniform§-uniform(m) model,

a supervised classifier that requires only one pixel
seed for each image class was designed and imple-
mented. The seeds are manually selected and should
be located within an homogeneous region. Let us



have K seeds. The algorithm consists of the follow-
ing steps:

-y @
— Initial sample size: For each clags a disc of Sl
maximum radius is centered on the correspond- ]
ing seedy [r, c].For each pixel seed a maximum O\j &
possible disc still included in the image can be Lg

L @ “af
found. In order to treat all classes equally, all the z\\?%
L

discs are now restricted to have a maximum ra-
dius corresponding to the smallest of these. The
optimum window size, (vi,, my) is found for
each clas& using Equation 22. For each class
k, the meamj? and the standard deviatidf}*

are computed from its optimum window.

— Region growing algorithm: The thresholds for
the region growing algorithm are defined for each
class using the previous statistics. A pixét, s)
will be assigned to the grown region correspond-
ing to the k-th class if the difference between
the mean of a window of size, centered on
the pixel p and the meami? of the k-th class is
less than a threshold This is denoted in the
following way:

p(r,s) — k:m, (r,s) —nj’| <e (25)

where

Fig. 11 The initial samples delineated with circles and the
grown regions

e =75y (26)

such thaty € R*. For each clasg the mean
nj and the standard deviatio$i{" are com-
puted from its grown region.

— Final classification: A set of windows of sizes
v1...vg are centered on each pixel to be classi-
fied. The pixel p is assigned to the closest class.

p(r,s) = k : min(|m,, (r,s) — nf"|)\Vk (27)

Fig. 12 The different steps in the classification scheme in-
cluding the final classes generated

An example of an image with a malignant me-
lanoma is presented in Figure 11 and 12. The
principal components of that image were used Of the radius of the discs. It has been shown by introducing

by the classifier. these results in the design and implementation of a super-
vised classifier that, -when the expected optimum window
4. CONCLUSIONS is not too big- the model proposed is a good tool for the gen-

eration of an initial statistically valid sample of the class to

Preliminary investigations have shown that mapping mod- Which the seeded pixel belongs. Further work will be done
els with overlapping discs are useful for detecting the emer- USing the same idea of minimizing the Iearner.vanance over
gence of a state of higher order. An optimum window cen- the line of maximum redundancy of the mapping model.
tered on a given pixel and associated to the disc of max-

imum radius that contains pixels of the same class as the

center pixel, can be obtained at the minimum of an energyACknOW|edgmentS

function that is only evaluated at the line of maximum re-

dundancy of the mapping model. The weighting functions To the SITE Project funded by a grant from the Danish
used in the mapping models are only initial suggestions thatTechnical Research Foundation (Project Number STVF 56-
have a good performance until they are affected by the in-00-0123) for supporting the present work. To The National
creasing size of the internal entropy to external entropy ra- Hospital of Denmark for providing the dermatological im-
tio. This could be improved by using variable increments ages used. To Associate Professor S. E. Quifiones Cisneros



for his disposition to make the concept of maximization of [13] M. Mgller, Supervised Learning on Large Redundant
redundancy understandable.
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Mean Shift Detection using Active Learning
in Dermatological Images

Gabriela M. Maletti, Bjarne K. Ersbgll and Knut Conradsen

Section for Image Analysis and Computer Graphics
Informatics and Mathematical Modelling, Technical University of Denmark

ABSTRACT

A scheme for detecting heterogeneous regions in dermatological images with malignant melanoma is proposed.
This is done without setting any parameter. The mean shift detection problem is divided into two stages: window
size optimization and detection. In the first stage, the maximum circular neighborhood centered on each pixel for
which it is true that all the elements belong to the same class as the central one is estimated using redundant data
sets generated with overlapping groups. Statistics are computed from all these neighborhoods and associated
to the respective central pixels. As expected, larger values of a minimizing energy function are assigned to
pixels belonging to heterogeneous regions. In the second stage, those regions are detected applying first an
expectation-maximization algorithm and, afterwards, automatically defining a threshold between homogeneous
and heterogeneous regions. The present scheme was tested on a set of synthetical images. Results are shown
on synthetical and real images. Extensions of the scheme to textural cases are also shown.

Keywords: Window Size Optimization, Redundancy, Heterogeneous Regions, Dermatological Images

1. INTRODUCTION

Images with malignant melanoma contain non well-defined borders between classes. Generally, the normalized
histograms of the classes present in the image are highly overlapped. This causes difficulty in describing the
characteristics of the classes used for diagnostics with an uniform criteria. Furthermore, the way the classes
present are established is not always obvious. Thus, it is difficult to provide a priori information for classification
purposes by generating a statistically valid sample of the classes present in the image. In order to produce more
homogeneous regions with more contrast between them in the image, we would like to enhance the borders
between the classes by reducing the diffusion that exists in the transition from one class to another. However,
a previous problem has to be solved and it will be the main topic of the present work: the detection of the
heterogeneous regions. This problem can be divided into two subproblems: the estimation for each pixel of the
local mean, and the detection of the mean shift. It will be solved by means of a contextual scheme: centered on
each pixel in the image, we first estimate the maximum window that contains pixels belonging to the same class
as the center one; data computed from the pixels belonging to each window are then used in order to detect the
mean shift.

In the present work, the estimated optimum size of the neighborhood of each pixel is obtained at the minimum
of an energy function computed for the most redundant set that can be generated for each window size. This
stage will be called "Window Size Optimization". Those minimum values will be used in a "Detection" stage,
for the separation of homogeneous regions from heterogeneous regions.
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Figure 1. The set indicated as a circle is the maximal disc that can be centered on the marked point for which it is true
that all the pixels belong to the same class as the center pixel.

2. RATIONALE OF THE SCHEME

The scheme for mean shift detection consists of two stages: Window Size Optimization and Detection. In the
first stage a window of optimum size will be assigned to each pixel of the image. Statistics will be computed
from the pixels belonging to these windows. In the second stage, the output of the first stage will be used to
define homogeneous and heterogeneous regions. We will first introduce some definitions and notations to be
used in the present work.

Let a specific image with non-correlated bands X = {z(r, ¢)} be defined over the given domain L = {(r, ¢)|1 <
r < maz,,1 < c¢ < mazx.}. We assume that X is the realization of a two-dimensional random field X *; X is
hierarchically defined in terms of the realization Z = {z(r,c¢)} of an underlying random field Z such that: Z
represents the partition of the domain L in K regions of different types. Each z(r, ¢) is a value of the set of
labels B = {by,bs,...,bx } where z(r,c) = by, indicates that the coordinate (r,c) of a given pixel belongs to the
region k.

Let Z, in turn, be hierarchically defined in terms of the realization
Wo = {w,(r, )} (1)

of an underlying random field W,, such that W, represents the set of radii of discs of maximal size D, (. ¢)(7, )
included in X for which is true that all the elements of each given realization belong to the same region k. Then,
the optimum window for a given pixel = defines the realization of the maximal set D,, centered on the position
(r,c) of z. This is an heuristic approach. An example is shown in Figure 1.

If we associate a set of weights w,, with values between zero and one to a disc D, such that w, () is the
weight corresponding to the i-th element d,, () of the disc D,,, and such that the sum of the weights is one, then
the entropy of this disc can be defined as:

B(Dy) = =Y wuliloglen(i) )

where n,, denotes the size of a disc given by the number of random variables d,, that it is composed of. Following
Mgller,! the redundancy of a disc D,, can be defined as

~ E(Dy)
logn.,

R(D,) =1 (3)

where n,, has the same meaning as before.

*Notice that while X (sans serif) is a set of variables, X (italic) is a set of values of those variables.



2.1. Window Size Optimization

An active learning process with increasing window size for each iteration will be defined for each pixel in the
image (see left side of Figure 2). It is expected that at some point, the beginning of the learning phase of
reorganization is detected (eg. the class boundary is detected). This point will be associated to the optimum
window size for the given pixel. For each window size, the mean of this window will be estimated in a two-step
procedure. First, the estimation of the means of the realizations of all the discs of the same size that can be
included in this window is computed; secondly, the estimation of the mean between these groups is computed.
The behavior of the estimated variance of the means within groups? is then tracked over the line of maximum
redundancy. The details follow.

In general, we define the estimate y,, of the mean of a realization D,, of a disc D,, centered on a given
position (r,c) as the scalar product of the realization D,, with a set of weights w,,:

Yo (1, ¢) =< Dy (1, €), we >= Zdw(i)ww(i) (4)

where d,,(7) is the ¢ — th element of the realization D,, of the disc corresponding to the i — th position, wy, (i) is
the weight of the ¢ — th element of D,, corresponding to the same ¢ — th position. y,,(r,¢) is an element of the
realization Y,, of a random field Y,,. We define the estimate o2 of the variance of a realization D,, of a disc D,
centered on a given position (r,¢) as:

7 (ry€) =< Dy (r,¢),wu > —ya (7, ) ()

where each d2,(i) € D2 is the square of the element d,, (i) of D,, that is at the same position i.

Now, let D, ,(r, ¢) be the realization of a disc D,,(r, ¢) composed of the estimates of the means y, (r—i, c—j)
of n,, discs of size n,, all computed with the same set of weights w,, and such that 0 <42 + j2 < m? (see right
side of Figure 2). The mean of these means yy, (7, ¢) is also estimated according to equation 4 using the set
of weights w,, and is called the estimation of the mean between groups. Let us call the discs included in X as
low level discs D,,, , and the discs included in Y as high level discs D,,,,. For all D, ,, 3D; C X A w; such that
Yv,m = Y Where

t=tlv,m)~v+m (6)

and wy is approximately equal to the convolution of w, with wy,.

2.1.1. The energy function

Let us assume that we have a realization D,,,, that changes from an internal class I to an external class E
at radius to. Let the mean of the internal class M; be different from the mean M( e of the union of the

internal and the external class. The latter is the statistic to be learned. Let the variance of the internal class
o2 be less than the variance of the union (T(QIU By If we compute the variance of the realizations of the high
level discs for increasing size of ¢t where the mapping model is more redundant, in each iteration the y; will be
the estimation of the real mean of the union of the internal and the external class M RS However, if we

avoid adding instances of the external class to the sample, we are really estimating the mean M of the internal
class. This means that the variance of the learning mean of the internal class will tend to be minimized. Since
"the chances of encountering a more extreme sample value are greater, the smaller the sample size",> we can
expect that if the number of internal pixels is big enough, the probability of finding an extreme value will be
low and all the variation of the learned variable will be introduced when we begin adding external pixels: this
will produce a perturbation in the system. Therefore, the emergence of a higher order state will be detected
at the minimum to of the following energy function Z evaluated along the line of maximum redundancy of the
mapping model:

Z= Ug,,,m,, =< ngmo,wmo > 7y30,m0 (7)

where each d?_,, (i) € D3, is the square of the element dy, s, (i) of D, that is at the same position i. For
each fixed radius ¢ we will choose the pair (v,, m,) such that the redundancy in D; is maximal.

(Vo, Mo) = max(R(Dy(y,m)))Yt(v, m)constant (8)



Figure 2. The mapping model. To the left, a set of discs of increasing radius ¢ centered on a given pixel is shown. To
the right, one of these discs is shown in detail: overlapping discs of a fixed radius v are placed into the disc of radius
t. A new disc of radius m is constructed with the centers of these overlapping discs of radio v. The mapping model is
completely defined when weights are assigned to the elements of each disc.

The set of t = t(v,, m,) defines the line of maximum redundancy of the mapping model. Then
to = min[z) € W, 9)

where W, is the set of estimates of the elements of W, (see Equation 1), and the internal entropy to external
entropy ratio
E(D;_s)
R=———""—~R 10
E(D; — Dy_y) ° (10)
-were s is the variable increment of the radius-, holds V¢. The reason of putting a constant threshold for this
ratio is that we would like to hold the effect of the new pixels added to the sample constant.

The Window Size Optimization stage generates three outputs of the same size as the original image. The
first output is a synthetic image with the radii of the estimated optimum window sizes for all the pixels of
the original images. The second output is a synthetic image with the estimates of the means between groups
corresponding to the estimated optimum windows. The third output is a synthetic image with the values of
minimum estimated variance of the estimated mean within groups corresponding to the estimated optimum
window sizes. The last one is used in the following stage.

2.2. Detection

The histogram of the synthetic image containing the minimum estimated variance of the estimated means within
groups is constructed. An Expectation-Maximization Algorithm* (setting ¢ = 0.0001 in*) is expected to provide
the parameters (mean p, covariance matrix ¥ and a-priori probability p) of two Gauss distributed classes: the
homogeneous region and the heterogeneous region. The threshold between these classes is obtained using the
following discrimination function for Gauss-distributed classes with different dispersion®:

L(27 1)p2

) (11)
L(l? 2)p1
where p; is the mean, ¥; is the covariance matrix and p; is the a priori probability of the i —th class Vi € {1, 2}.

L(1,2) is the cost of belonging to class 1 and being classified as belonging to class 2 and viceversa for L(2,1);
these can be assumed to be equal.

—(h =) ST (h = ) + (h = p2) S5 (h — p2) > 2log(

Pixels whose minimum estimated variance of the means within groups is greater than the threshold are
considered belonging to the heterogeneous regions, and viceversa, for the homogeneous regions.



2.3. Extensions of the Algorithm: A small Note

The present scheme can easily be extended to other spectral cases, or inclusive to textural examples. Instead
of estimating the mean within the groups, other statistical descriptors® can be used. Requirements for the
extension are that the homogeneous regions present in the image have to be separable by this new statistical
descriptor, and that the size of the regions belonging to the image have to be directly proportional to the
dimensionality of that statistical descriptor. See next section for some examples.

3. RESULTS

In order to first evaluate the window optimization stage in images with well defined borders, a set of 15 synthetic
images with signal to noise ratios’ 0, 3, 8, 15 and 26 and number O (from order) of classes 3, 5 and 7 was
generated. The separation between consecutive means of the classes was 5 gray levels for all images. The classes
are Gauss-distributed. The size of the images is 128 by 128 pixels (See Figure 3). The optimum window size
was estimated for each pixel of each synthetic image setting the Internal to External Entropy Ratio R, to an
empirically found value of 10. This means, the energy function was computed for discs of radius t = 2, 4, 6, 8,
10, 14, 18, 24, 32, 42, 56 (the last number of this sequence corresponds to the radius of the disc of maximum
size that can be included in the image still preserving the Internal to External Entropy Ratio). The weight
assigned to each pixel in each disc was the inverse of the size of the respective disc for all the examples treated.
The averaged signal to noise ratio increased from 10.35 in the original images to 30.64 in the estimated means
between groups belonging the homogeneous regions.

SNR=0 O=3 SNR=3 O=3 SNR=8 O=3 SNR=15 O=3 SNR=26 O=3
4

SNR=15 O=5
7 5

SNR=26 O=5

SNR=15 O=7 SNR=26 O=7

re s

Figure 3: The set of original synthetic images

An Expectation-Maximization Algorithm? was applied to the original images and to the images containing
the estimated means between groups.! Thresholds between pairs of neighbor classes were estimated using
Equation 11, where costs were assumed to be equal. Punctual classification was then applied. The average
Cohen’s (1960) Kappa coefficient increased from 0.4878 to 0.7737 using data of the whole images, and more,
from 0.4625 to 0.9612 only taking into account pixels belonging to homogeneous regions (See Figure 4).

As an extension of the algorithm to textural cases, a synthetical example generated with a set of Brodatz’s
textures” was used (See Figures 5 and 6). The energy function - defined as the variance of the fractal dimension

K—1
"The signal to noise ratio is defined as SNR = 201log 21:1}{‘_7”1@6“”” where the p; is the mean of the i-th class, the
means are ordered in increasing size, and o is the standard deviation of the K classes.
#The number of classes of each image was provided; initialization was done with the K-Means Algorithm; the threshold

€ was set in 0.0001.



SNR=0 O=3 SNR=3 0=3 SNR=8 O=3 SNR=15 O=3 SNR=26 O=3

SNR=15 O=5 SNR=26 O=5

Figure 4: The set of synthetic images containing the estimated means between groups of the homogeneous regions.

within groups $-, was computed for discs of radius t = 2, 4, 6, 8, 10, 14 and 18. Weighting functions used were
defined in the same way as before.

alll

Figure 5: The synthetical image 128t14 with three textural classes (left) and the histogram of this image (right).

The real case presented in this work is a dermatological image of a malignant melanoma. This image is
composed of three bands (R, G, B) of 590 rows by 885 columns. Principal component analysis was performed
before starting with the proposed scheme. In decreasing order the eigenvalues obtained were: 0.432, 0.132
and 0.001. Only the first principal component was used. The same parameters as before were used. The
ratio between costs ig;;
computational cost, the scheme was applied to the principal component reduced in scale to 25 percent of its
size. The principal component was also divided into normal skin and ill skin using the scheme proposed in
Section 2.2 and the output was reduced to 25 percent of its size too. Thus, on the right side of Figure 7 the
heterogeneous regions of the ill skin can be appreciated.

in Equation 11 was set in an empirical found value of 40. In order to reduce the

4. CONCLUSIONS

A new scheme for mean shift detection in images with diffuse borders between homogeneous regions has been
proposed. It has been shown that the maximum size of a window containing pixels of the same class as

8The fractal dimension f; of a window D., was defined as:

max (D) — min(D,,)
2w +1

fa(w) = (12)



Figure 6. From the left to the right: the estimated minimum variance of the fractal dimension within the groups, the
estimated means of the fractal dimension within the groups and the map of homogeneous (in red) and heterogeneous
regions (in blue) corresponding to the synthetical image 128t14.

Figure 7. The dermatological image decomposed into homogeneous (left) and heterogeneous (right) regions using
estimated means within groups.

the center one can be estimated without setting any parameters at minimizing the estimated variance of the
estimated means within groups over the line of maximal redundancy of the mapping model. Large values of
minimum estimated variance of the estimated means within groups have been assigned to pixels belonging to
heterogeneous regions. This information has been taken into account first by an expectation-maximization
algorithm that provides statistics of both regions, and then a threshold has been automatically computed in
order to define the regions. The scheme was tested on a set of synthetical images: an improvement in the
average signal to noise ratio from 10.35 to 30.64 was obtained and the average Kappa coefficient increased from
0.4878 to 0.7737 using data of the whole images, and from 0.4625 to 0.9612 only taking into account pixels
detected as belonging to homogeneous regions. Results were satisfactory both in terms of visual appreciation
of the contrast between the classes and in terms of separations of the histograms of the classes in the estimated
homogeneous regions. It has been shown that it is possible to apply this scheme to textural images and it is
encouraging to extend it to multi-spectral images.
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Abstract

An iterative filter for locally estimating the center
of the clusters present in multi-spectral images is
developed. In each iteration and for each pixel, an
energy function computed for windows of increasing
size is evaluated. The initial window size is defined
as a function of the separability between neighbor-
ing pixels. The increments of the window size are
a function of the internal to external entropy ratio
of discs of consecutive radii. For a given pixel, the
minimum value of the energy function is preserved
and used as the initial guess for the next iteration.
This minimum corresponds to the estimated point in
which a state of higher order emerges. The scheme
proposed was tested on a set of synthetical images,
and compared to the output of the iterative median
filter and to the k-Means algorithm, showing better
performance than these ones. Results are shown on
dermatological and fundus digital images.

1 Introduction

Many schemes have been developed in order to de-
fine a set of data points that correspond to local
means of another set of data points. However, in
spite that convergence to a fixed point is guaran-
teed because the contraction principle [4] was shown
to be satisfied ([6], [9], etc.), the user is required
to provide some parameter values (i.e. thresholds,
initial window sizes, learning rate factor or weight-
ing functions, etc.). This can affect the quality of
the results in such a way that for a given class the
estimated cluster center could not be the one ex-
pected due to border effects introduced by the win-
dow size, etc.. Thus, we would like to develop an un-
supervised learning approach which first guarantees
that the contraction principle is satisfied for each
class present in the image: for each pixel of a multi-
spectral image, the fixed point is the center of the
cluster to which the pixel in question belongs to.
Secondly, we would like to reduce the amount of in-
formation the user is required to provide.

The local estimation of the center of the cluster can
be computed from the maximal set D, centered
on the position [r,c] of a given pixel z for which
it is true that all the elements belong to the same
class as the center one [7]. In analogy with sta-
tistical mechanics, this corresponds to the point in
the learning process for which a state of higher or-
der emerges (for instance, when a class border is
detected). The detection of this ergodic to non-
ergodic transition — "where full ensemble averages
are no longer equal to time averages" — [5] - was
suggested to be done through the minimization of
an optimal learning curve that depends on the frac-
tion of examples [2]. Using windows of increasing
size along iterations seems to be the natural imple-
mentation practice. It has to be taken into account
that a minimal fraction of examples is required in
order to start recognizing structure [1]. The sepa-
rability between neighbors could provide an initial
guess of the variance of the noise present in the im-
age, and this could be used for defining the initial
window size, as an extension to [9]. However, during
practical implementations in lattices of models with
constant increments of window size [9] problems ap-
pear when circular neighborhoods are used. This is
added to the fact that, because the amount of in-
formation provided by the pixels introduced to the
sample decreases when the sample size is increased
in a constant way, a delay in the detection of higher
order states will be introduced. For extension, this
also depends on the weighting function used [7]. Au-
tomatically controlling the increments of the radii of
circular neighborhoods using a previously set con-
stant value of external to internal entropy ratio of
discs with consecutive radii, allows for a compromise
solution to previously mentioned practical consider-
ations.

The energy function is required to be such that it
is sensitive to the emergence of a higher order state.
If it depends on sets containing a high degree of re-
dundancy [8], it tends to be more sensitive to per-
turbations and therefore, more efficient in the mini-
mization process. The variance of the mean within



groups has been shown to be a suitable statistic for
this purpose [3].

2 The Iterative Extended Mean
Shift Algorithm

For completeness, let us first write some definitions.
Given a specific B-dimensional image X = {z[r,c] =
z;|1 < i < n} defined over the domain L = {[r, ¢]|1 <
r < max,,1 < ¢ < mazx.An = mazx,maz.}, X hier-
archically defined in terms of the set Z = {z[r,c]} C
X that represents the partition of the domain L in
regions of different types, z[r, c] such that it is the
local estimation of the type mean with a kernel at
position [r, ¢|, we would like to find Z.

From a syntactic point of view, a window defines
a realization D, [r,c] = {dy[r —i,c — j] € X|0 <
i? + j2 < w?} of a disc D, of radius w centered
on the position [r,¢]. Given a set of weights 0 <
wwlt] < 1 assigned to a set of pixels D,,[r, ¢, such
that Y7 wy[i] = 1, where n,, is the number of el-
ements of each one of those sets, and w,[i] is the
weight assigned to the ¢ — th element of the set of
pixels. The entropy of this set of pixels D,, is defined
as:

S(Dw) = =Y wollloglwnli) (1)

The internal entropy to external entropy ratio [EER
for two sets of pixels D,, and D,,_ centered on the
same position, where s < w is defined as the quotient
between the entropy of their intersection and the en-
tropy of their difference using the set of weights w,,:

[EERJw,s) = % @)

2.1 Rationale of the Algorithm

The user is required to provide the maximal admis-
sible internal to external entropy ratio Ry (see Equa-
tion 2) using an uniform weighting function. The set
of disc radii to be used can then be established as
follows:

V ={ry [IEER[ry,ry41 — 1] < RV v € [1;maz,]}
3)
and n,., is the number of elements of the disc D, .!

Set Y = X and then iterate varying t =1,...:
e Initialization:

— The minimal window size min, for the
actual iteration is the minimal disc size

1Ro = 10 is a suitable value empirically found. In this
case: V={1,2,...,23,25,27,29,... 41,44,....62,...}.

min, = min(n,,) for which it is true
that:

1 o 0Y o O
w S min((I PG < e
(4)
— For each pixel i = 1,2, ..., n:
My (min,—1) = Yi (5)

— Initialize the matrix containing the mini-
mal values of energy: miniy; ; = maTyalue Vi

e For each window size v = min,, ..., max, and
for each pixel i = 1,2, ...,n:

mi v = Zw(yj - mi,(vfl);Dv)yj (6)
J

where the kernel similar as defined in [9] is:
w(s; D,) = exp(—s2/ny,) /N (7)

N is a normalization factor.
the energy for the given pixel:

Then compute

Yiw = 5 Zw(yj—mi,(u—l);Du)(yj—mi,(u—l))2

2 £
j
(8)
If Zszl i < miny;; then update:

min; s = Z Vi Zi = M 9)
b

e SetY = 7.

until between two consecutive iterations Z does not
change anymore. The output of the algorithm is Z.

3 Results and Discussion

In order to test the quality of the algorithm outputs
along the iterations, Cohen’s Kappa Coefficient was
used. This global indicator of classification quality
varies from minus one to one, where a perfect classi-
fication would give a value of one, and a completely
erroneous classification would give a value of minus
one. The values z of the pixels belonging to the out-
put were considered labels of classes. Pixels whose
values were equal to the mean of one of the classes
were considered signal pixels and the rest were con-
sidered belonging to a noise class. The confusion
matrix was then constructed with K + 1 classes: K
signal classes labelled with the mean of the original
classes u;, @ = 1..K and a noise class labelled with
values different to the previous ones.



Table 1: Kappa values of the Original and Filtered
Synthetical Immages

[ SNR [ o [ 3 [ 8 [ 15 T 26 |
[ Order O = 3 |
Original 0.0319 0.0378 0.0596 0.1116 0.2065
K-Means | 0.0352 0.0565 0.0911 0.7206 0.9295
Median 0.2567 | 0.3183 0.3926 0.4896 0.7819
I.LE.M.S. 0.4529 0.5194 0.6130 0.7722 0.8786
Order O =5
Original 0.0468 0.0563 0.0771 0.1313 0.2329
K-Means 0.1186 0.1188 0.3172 0.6964 0.9395
Median 0.2751 0.3049 0.3957 0.5564 0.7642
I.LE.M.S. 0.4732 0.5288 0.7326 0.7962 0.9188

Order O =
Original 0.0547 | 0.0650 0.0923 0.1412 0.2536
K-Means | 0.1716 0.2537 | 0.2592 0.4766 0.9347
Median 0.2593 0.3126 0.4012 0.5086 0.7776
I.LE.M.S. 0.4645 0.5825 0.7062 0.8274 0.9307

A set of 15 synthetic images with signal to noise ra-
tios 2 SNR of 0, 3, 8, 15 and 26 and number O
(from order) of classes 3, 5 and 7 was generated.
The separation between consecutive means of the
classes was 5 gray levels for all images. The classes
are Gaussian-distributed. The size of the images is
1282 pixels. The averaged Kappa value of the set of
synthetical images generated was 0.1066.

The output of the algorithm was compared to the
output of K-Means and the Iterative Median Fil-
ter. The first one generated in each iteration a map
containing the estimated means of the clusters the
pixels were assigned to; the real means of the classes
were provided as the initial guess. The second one
for each iteration used window sizes of 3 pixels by 3
pixels and stopped when the Kappa value did not
change anymore. The averaged Kappa value ob-
tained were 0.4080 for K-Means, 0.4530 for the Itera-
tive Median Filter and 0.6798 for Iterative Extended
Mean Shift Algorithm (see Table 1 and Figure 1 for
details).

As expected, the energy function chosen tends to
be asymptotic to the abscissa for neighborhoods con-
taining pixels that belong to the same class as the
center one along the iterations, and it drastically
separates from it when a higher order state emerges.
The Kappa coefficient monotonically increases along
the iterations, until no more changes occur in the im-
age. This guarantees the noise to be reduced at the
same time that the contraction principle is satisfied
for each class present in the image.

A set of real examples can be appreciated in Fig. 2.

2The signal to noise ratio is defined as SNR =

S i —pigal

20 log W

class, the means are ordered in increasing size, and o is the
standard deviation of the K classes.

where the p; is the mean of the i-th
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Figure 1: The original images (1%, 5** and 9*" row),
and the respective K-Means (2"?, 6! and 10*" row),
Iterative Median (37, 7% and 11" row) and Itera-
tive Extended Mean Shift (4", 8" and 12" row)
Filtered Images.



Figure 2: The original dermatological images
31056706 and 05041807 (top) and the respective out-
puts of the Iterative Extended Mean Shift Algorithm
after 7 iterations (bottom).

4 Conclusions

A new scheme for local estimation of center of clus-
ters has been developed. It has been tested on a set
of synthetical images with varying signal to noise ra-
tios from 0 to 26 and number of classes from 3 to 7
showing better performance than other filters with
the same amount of information the user is required
to provide. The average Kappa value increased from
0.1066 for the original images to 0.6798 for the out-
put of the scheme proposed. The initialization and
control of the window parameter is shown to be ap-
propriate. For each pixel, the proposed energy func-
tion tends to be asymptotic to the abscissa in the
homogenous region along the iterations, and it sepa-
rates from it when a new class appears. The quality
of the output monotonically increases along the it-
erations.
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A Contextual Classifier That Only Requires One
Prototype Pixel for Each Class

Gabriela Maletti, Bjarne Ersbgll, and Knut Conradsen

Abstract—A three-stage scheme for the classification of multi- berg Uncertainty Principle, it can be deduced that this optimal
spectral images is proposed. In each stage, statistics of each clasfearning curve corresponds to cases for which the envelope of
present in the image are estimated. The user is required to provide o signal or the signal itself is a Gaussian function. From the

only one prototype pixel for each class to be seeded into a homo- . .
geneous region. The algorithm starts by generating optimum ini- Central Limit Theorem, we know that the convolution of a large

tial training sets, one for each class, maximizing the redundancy in number of positive functions is approximately a Gaussian func-
the data sets. These sets are the realizations of the maximal discsion. Since consecutive values of the function resulting from
centered on the prototype pixels for which itis true that all the ele- - convolution of two other functions contain a high degree of re-
ments belong to the same class as the center one. Afterwards, a re-y,;ngancy [7], we choose as trajectory for the learning curve the
gion-growing algorithm increases the sample size, providing more . ts f hich th dund in th | f the fracti
statistically valid samples of the classes. Final classification of each points tor w ',C N .re. undancy in tihe envelope ortne rgc il
pixel is done by comparison of the statistical behavior of the neigh- Of €xamples is maximized. In the present work, the estimated
borhood of each pixel with the statistical behavior of the classes. A optimum size of the neighborhood of each prototype pixel is
critical sample size obtained from a model constructed with exper- gptained at the minimum of an energy function computed for
imental data is used in this stage. The algorithm was tested with the most redundant set that can be generated for each window

the K fficient thetical i d d with . . . o .
K‘%mggﬁs (%Oe:m'glf)o;nzyg sierr:ﬁ:r'g:?qgeerﬁea?ha?%?gs r:pevcvtlral size. This stage will be called “the initial training set generation

means(& = 0.75) instead of histograms(& = 0.90). The results Scheme” [8].
are shown on a dermatological image with a malignant melanoma. A statistically valid sample of the class can then be obtained

Index Terms—Prototypes, redundancy, region growing, super- DY increasing the sample size by means of a “region growing” al-
vised classification, window size optimization. gorithm[9]. Once the samples are defined, the minimum amount
of information needed for classifying each pixel in the image
has to be established. This is done based on the relationship
between the window size and separability between classes ob-

PREMISE to a supervised classifier is that the trainingiined from experimental data, which provides a way of com-
sets provided are statistically valid samples of the classgsiting the critical number of examples needed for inferring an
Many semi-automatic training and validation set generatiamderlying structure in the data. Pixels are finally classified by
schemes by means of region-growing algorithms [1], [2] haw®mparison of the statistical behavior of its neighborhood with
been proposed. However, these schemes still require saie statistical behavior of the classes [2].
user-input for the estimation of the parameters of the classes. It
could be an advantage to develop schemes that minimize the [I. RATIONALE OF THE ALGORITHM
amount of information the user is required to provide. On the e .
i . . .. _let a specific image with B noncorrelated bands
other hand, contextual classifiers produce higher cla53|f|catl%1

accuracy. However, the definition of an optimum window size = {z[r, ]} defined over the given _domajb ={lndll=
. e r < M,1 < c < N}with @ quantization levels. LeK be the
for each step of the image analysis is still a problem [4]. ’ -

N i )
From a semantic and pragmatic point of view [5], a windo lumber of prototype pixels;, € X, 1 < & < K, seeded into

, o . ; . ipmogeneous regions.
defines a subset of an entity in which the instances are spatl\élyl&:rom a syntactic point of view [5], let a window,[r, |

connected. From a heuristic point of view, the initial optimun& , L . :

: : : , - efine the realization of a did,, [, ¢] of radiusw centered on
window for a given prototype pixel defines the realization Oftht‘:ﬁe ositionfr, ¢] of a given pixel
maximal disc centered on it for which it is true that all the el*'© P s 9 P
ements belong to the same class as the center one..Thls ca@)g?,,’ o] = {dwlp] = z[r —i,c— j]|0 <
obtained by detecting the emergence of a state of higher order 242 Al <p < )
through the minimization of an optimal learning curve that de- vtsw <p <}

pends on the fraction of examples [6]. Based on the HeiSEWherenw is the number of pixels belonging to the 9@ [r, c].

. INTRODUCTION

Manuscript received November 23, 2001; revised March 22, 2002. Thiswofk The Initial Training Set Generation Scheme

was supported by the SITE Project funded by a grant from the Danish Technical <0 . . .
Research Foundation (Project Number STVF 56-00-0123). For each prototype pixel?, an active learning process with

The authors are with the Section for Image Analysis and Computer Graphiidcreasing window size for each iteration is defined (see the
Informatics and Mathematical Modeling (IMM), Technical University of Denjeft side of Fig. 1)_ It is expected that. at some point the class
mark (DTU), 2800-DK Kgs. Lyngby, Denmark (e-mail: gmm@imm.dtu.dk,; . . . - . ",
be@imm.dtu.dk; ke@imm.dtu.dk). boundary is detected. This point will be associated with the op-

Publisher Item Identifier S 0018-9499(02)06167-1. timum window sizen,, for the given pixel. For each window
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Fig. 1. The mapping model. To the left, a set of discs of increasing radieistered on a given pixel is shown. To the right, one of these discs is shown in detail:
overlapping discs of a fixed radiusare placed into the disc of radiasA new disc of radiusn is constructed with the centers of these overlapping discs of radius
v. The mapping model is completely defined when weights are assigned to the elements of each disc.

size, the means of the realizations of all the discs of the samé-or a given prototype pixel? with position[a, &], the size of
size that can be placed into this window are estimated. The @ initial training set:;, corresponds with the minimum esti-
timated variance of the estimated means within groups is therated variance of the estimated means within groups. This func-
tracked and minimized over the line of maximum redundandipn is computed for each window size for the most redundant
of the mapping model [8]. set
In general, let the estimatiom of the mean of a realization T,
w Of a discD,, be the projection of the realizationD,, over Z2[t(vg, mo)] = Z Wi |90u [P] = Yo, [0: V)12 (B)
the weighting functionw,, ]
Y = Zdw[p]ww [p] (2) Wwhere(v,,m,) is the pair for which the redundancy is max-
imal for each fixed radiug(v,m), || || is the Euclidian norm,
Yu,[P] € D, v, [a,b] are the estimated means within groups,
whered,,[p] is thepth pixel belonging taD., andw.,[p] is the = andy,, ... [a, ] is the estimated mean between groups. The ra-
weight assigned to it. dius ¢ is increased in such a way that the internal-to-external

Let the real|zat|on of a disD,,,, v [7s C] be composed by the entropy ratio [8] is smaller than or equal to a const&ptvt
estimationsy, [r — i,c — j] |0 < % 4+ j2 < m? of the means ysed. Then

within n,,, groupsD, [r — ,¢ — 7] of sizen, using the same
set of weightsv,,. Lety,, [ — ¢,¢ — j] be the estimated mean t, = min(Z*[t(v,, m,)]). (6)

between these groups using the set of weights
Since, for all realizationD,,,3D, A w, such that Note that, in order to simplify the notation, a small change will

t = tvsm) ~ v+ mandw, ~ w, * wy? the redun- be made. Hereafter the notatianandm are substituted for the

dancy of a given pait(v, m) is defined as notationsu, andm, of the optimum radius,.
R(D ) S(Dy) : B. The Region-Growing Algorithm
(B =1- logn, ®) Once the initial training sets are defined, the sample size can

be increased by means of an optimized region-growing algo-
rithm. Following the approach originally proposed in [2], [9],
and [10], for each class, pixels satisfying a homogeneity crite-
N rion are included in the grown region. This criterion is evaluated
_ Z w[p] log(w:[p]) (4) inawindow of optimum size,, obtained in the Initial Training
Set Generation Stage. A pixel is aggregated into the region if
the difference between the homogeneity value of the class and
wheren, is the number of pixels of the disc, add< w:[p] <1 the homogeneity value of the pixel centered window does not
is the weight assigned to thh pixel of the disc. exceed a certain threshold. The growing of a region stops, once
As can be observed, the measure of redundancy used depeRghomogeneity criterion is no longer satisfied. Following the
on the group size,, and the number of groups,,, and itis in-  notation previously introduced, €%, = {z°[a, b]} be the ini-
versely related to the entropy of the weightsand.,,, assigned tial subregion pointing out a class. In genekaj,> 0 let &/,
to the elements of the groups and to the groups, respectivelype the set of pixels that do not belongg_; but having at Ieast
1Scalar product. aneighbor with7,_; under a certain connectivity. The $&} is

2The equality holds for squares but small differences can be obtained in TR region jointly formed by#,_, and the pixels of~_; such
case of discs. that the distance from the estimated mean of the class and the

wheren, is the number of pixels in the diga; andS(D,) is the
entropy of the disc defined as
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Fig. 2. Separabilityl A versus optimum disc radius. for classification.

estimated mean of the neighborhood centered on those pixglered A has the same meaning as before ands the radius
does not differ more than a certain threshold of the estimated optimum disc for classification. It is optimum
in the sense that it corresponds to the best classification rate for
Gy = {z[q,7)? : llyola, 7] — ymola, bl|| < BZ[t,]} (7) a set of experimental data with similar statistical descriptions.
Fig. 2 shows the graphical behavior of this relation.
where|| || is the Euclidian norm and € R*. The growingofa A pixel z[s, t] belonging to the multispectral imagdéis clas-
region continues unti7;; = G. sified according to the following criterion:

C. The Final Classification z(st] = k : dA() (), minimum, Vk (10)
In this last stage, the normalized histograms of the grown r&here, represents the normalized histogramy, of the grown
gions of each class are used. An optimum window size for imatgion corresponding to thigh class and.,, represents the nor-
classification is defined using these histograms. Afterwards, thedlized histogrant,,, of the neighborhood of radius. cen-

following measure of distance from each pixel to each classt@ed on the positiofs, ¢] of the pixelz.
computed; it is the pondered sum of the difference of areas of
pairs of class density functions: . RESULTS AND DISCUSSION

5 0 In order to evaluate the algorithm, a set of 15 synthetic images
1 with signal-to-noise ratios (SNRBPNR of 0, 3, 8, 15 and 26 and
dAo.0) = 35 Z z_:l heo (bl = hiplbndl - 8) yymbero (from order) of classes of 3, 5, and 7 was generated.
b=tn= The separation between consecutive means of the classes was
whereB is the number of bands of the imag@ s the number five gray levelsfor allimages. The classes are Gauss-distributed.
of quantization levels, antl;y andh; are the per band nor- The size of the images i28” pixels (see Fig. 3). The proto-
malized histograms of thih and;jth class, respectively. type pixels were seeded in suitable places. The initial optimum
The critical number of samples for classification is computetindow size was estimated for each prototype pixel of each syn-
as a function of the minimal separability between neighbdh€ticimage setting the internal-to-external-entropy r&tjsg]
classes. This empirical model was constructed doing lind@an empirically found value of 10. The weight assigned to each

regression of experimental data (see Appendix A) pixel in each disc was the inverse of the size of the respective
7 1800 3The SNRis defined as SNR —20[(K — 1)o] ' log 57" [ps — pisa]
we = —6.8341 + — (9) where theu; is the mean of théth class, the means are ordered in increasing

size, andr is the standard deviation of each one of fkieclasses.

VdA
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SNR=0 O=3 SNR=3 O=3 SNR=8 O=3 SNR=15 O=3 SNR=26 O=3

o5

SNR=15 O=5

.

SNR=0 O=7

Fig. 3. The original set of synthetical images.

SNR=0 O=3 SNR=3 O=3 SNR=8 O=3 SNR=15 O=3 SNR=26 O=3

SNR=3 O=5 SNR=8 O=5 SNR=150=5 SNR=26 O=5

&

Fig. 4. Thenitial training sets (in white) centered on the seeded prototype pixels overlayed with the real thematic maps of the syntheticalwmaig&ss!3.

disc for all the examples treated. The initial training sets gestage of the present scheme are presented in Figs. 5 and 6, re-
erated are shown in Fig. 4. The outputs of the second and thékctively.
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SNR=8 O=3 SNR=15 O=3 SNR=26 O=3

1Y

SNR=0 O=3 SNR=3 O=3

SNR=3 O=5

SNR=0 O=7 SNR=3 O=7

Fig. 5. The grown regions (in white) generated using the initial training sets delineated in Fig. 4 overlayed with the real thematic maps of it syatjet
shown in Fig. 3.

SNR=0 O=3 SNR=3 O=3 SNR=8 O=3 SNR=15 0=3 SNR=26 O=3

SNR=0 O=5 SNR=3 O=5 SNR=8 O=5 SNR=15 0=5 SNR=26 O=5

SNR=0 O=7 SNR=3 O=7 SNR=8 O=7 SNR=15 O=7 SNR=26 O=7

Fig. 6. The estimated thematic maps generated by the present classifier for the set of synthetical images shown in Fig. 3 using the trainirsgextis Hedirte

The output of the algorithm for this set of synthetical image® K -means and a scheme similar to the present one, except that
was tested with Cohen’s Kappa coefficientlt was compared in the final classification stage the spectral means of each pixel



MALETTI et al: ACONTEXTUAL CLASSIFIER THAT ONLY REQUIRES ONE PROTOTYPE PIXEL FOR EACH CLASS 705

TABLE |
KAPPA VALUES OF THE DIFFERENT CLASSIFICATION OUTPUTS
SNR 0 3 8 15 26
Order O =3
K-Means 0.0352  0.0565 00911 07206 0.9295
Spectral Means 0.6991 0.8718 0.8692 0.8902 0.9565
Norm. Histograms ~ 0.7967 0.9021 09164 09498 0.9799
Order O =5
K-Means 0.1186 0.1188 0.3172 0.6964 0.9395

Spectral Means 0.5484 05925 0.7812 08281 0.8672
Norm. Histograms 0.7350 0.8884 0.9414 09583 0.9738
Order O = 7

K-Means 0.1716 02537 023592 04766 0.9347
Spectral Means 0.3995 0.6312 06465 0.7225 0.8741
Norm. Histograms  0.7211  0.8511 09204 0.9543 0.9749

Fig. 7. The initial training sets (delineated with circles) centered on the seeded
prototype pixels overlayed with the grown regions (delineated in black) of the
image of a malignant melanoma. (]

centered neighborhOOd "’_‘re CompUted and the distance betv‘ﬁ&.ng. The original image overlayed with the thematic map after three
these means and the estimated means of the classes are userégivns of the median filter.
assigning the pixels to the classes (see Table | for details).

Testing the alg_orlthm fqr der_matologlcal examples |ntrq§85 by 590 pixels. The eigenvalues of the principal components
duced some practical considerations that follow. First, the m re in descending order: 0.209 849, 0.001 498, and 0.000 137
problem in dermatological images is precisely defining he two principal components of th;a original i;11age reduced
) . L o Y% in size were used as input to the algorithm. Five proto-
pixels is crucial in the sense that this will set the paramet e pixels pointing each one to a class were seeded into ho-
for _the region-growing aIgorith.m. Too homogeneousl)_/ grow, ogeneous regions. The scheme produced a thematic map con-
regions will produce classes with almost total separability anlI%’ining misclassified pixels (see Fig. 8), the number of which
therefore, the final classification will be done with too Smal/vas reduced by applying an iterative rr;edian filter to the the-
window sizes not defining representative real large variatiq]r;{atic map (see the overlay with the original image reduced by

neighborh_oods. On the other hand, i.f the pixels are seede_d i_%% in Fig. 9). Pixels with no overlap to one of the classes were
regions with large heterogeneity, a high overlap in the statlstlggsigned to a reject class

of the grown regions can occur, and the final classification stage
will have to handle with large neighborhoods in order to make
a good dlscrmlnatlon, but bprder effects can be mtrodqced. IV. CONCLUSION
Secondly, since all the pixels are classified, thematic maps
produced for real examples can contain misclassified pixelsA new contextual classifier for multispectral images has been
(healthy skin classified as ill and vice versa). This can h#eveloped. The scheme has been tested for synthetic and real
considered as a kind of noise that can be reduced by applysm@mples. It has been shown that the application of the iterative
an iterative median filter to the thematic map. median filter to the thematic map can improve the quality of the
An image of a malignant melanoma is the real case presentedults in real examples. In general, results are satisfying with
in this paper (see Fig. 7). The size of the original image wasspect to both numerical evaluation and visual appreciation.
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TABLE I
DISTANCE d A BETWEEN PAIRS OF CLASSESGIVEN BY THE SEPARATION
BETWEEN THEIR MEANS spt AND THEIR STANDARD DEVIATION o

spfo 1 2 4 [ 16 32
05 02130 01035 0.0511 0.0349 00345 0.0549
1 03994  0.1998 0.0968 0.0488 0.0411 0.0543
2 06416 03720 0.1946  0.1022 0.0659  0.0523
4 09383  0.6797 03879 0.1938 0.1046 0.0644
8 0.9999 09493 06772 03767 02111  0.1127
16 1.0000  1.0000 09555 0.6797 03790 0.2010

TABLE I
Disc RADIUS w,. CORRESPONDING TO THEBEST KAPPA VALUE (ONE) FOR
EACH PAIR OF CLASSESGIVEN BY THE SEPARATION BETWEEN THEIR MEANS
$4t AND THEIR STANDARD DEVIATION o

spfc 1 2 4 8§ 16 32
0.5 8 14 26 29 31 23
1 5 8 13 28 27 25
2 2 4 10 17 25 26
4 1 2 5 9 16 22
8 0 1 2 4 11 13
16 0 0 1 2 4 10
APPENDIX A

A. The Empirical Relation Window Size for
Classification—Separability Between Classes

A set of 36 pairg A, B) of synthetic imageg28? pixels in

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 3, JUNE 2002

« the quality of the final classification was measured with
Cohen’s Kappa coefficient.

The optimum radius for each pair of images corresponded to the
maximum Kappa value of one.

Tables lI-Ill show the distances between each considered
pairs of classes and the corresponding optimum disc radii for
classification.
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Abstract

A supervised classification scheme to segment optical multi-spectral images has been developed. In this classifier,
an automated region-growth algorithm delineates the training sets. This algorithm handles three parameters: an initial
pixel seed, a window size and a threshold for each class. A suitable pixel seed is manually implanted through
visual inspection of the image classes. The best value for the window and the threshold are obtained from a spectral
distance and heuristic criteria. This distance is calculated from a mathematical model of spectral separability. A pixel
is incorporated into a region if a spectral homogeneity criterion is satisfied in the pixel-centered window for a given
threshold. The homogeneity criterion is obtained from the model of spectral distance. The set of pixels forming a region
represents a statistically valid sample of a defined class signaled by the initial pixel seed. The grown regions therefore
constitute suitable training sets for each class. Comparing the statistical behavior of the pixel population of a sliding
window with that of each class performs the classification. For region-growth, a window size is employed for each class.
For classification, the centered pixel of the sliding window is labeled as belonging to a class if its spectral distance is a
minimum to the class. The window size used for classification is a function of the best separability between the classes.
A series of examples, employing synthetic and satellite images are presented to show the value of this classifier. The
goodness of the segmentation is evaluated by means of the x coefficient and a visual inspection of the results.
© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Region growing; Context classification; Homogeneity criterion; Spectral; Distance; Spectral separability

1. Introduction

Segmentation is a partition of the image into a number
of regions (Cohen and Fam, 1992), each region related to
class objects of the scene. The regions may be labeled as
pertaining to a certain class of objects, hence generating a
classification. The final product is therefore a thematic
map useful for scene understanding. The first classifiers
labeled the pixels of the image into classes using only
their spectral properties and ignoring their context. This
approach, named per-pixel classification, proved to be

*Corresponding author. Tel.: +52-55-5622-4211; fax: +52-
55-5550-2486.

E-mail addresses: lira@tonatiuh.igeofcu.unam.mx (J. Lira),
gmm@imm.dtu.dk (G. Maletti).

limited in nature and applicable only to spectrally well-
differentiated cases. In the last years, efforts have been
devoted to develop contextual classifiers (Arai, 1993;
Khazenie and Crawford, 1990; Gong and Howarth,
1992; Kontoes and Rokos, 1996). Classifiers that
incorporate contextual information into the classification
have been reported in the literature as well (Chica-Olmo
and Abarca-Hernandez, 2000; Atkinson and Lewis,
2000). A contextual classifier consistently produces
higher classification accuracies than the per-pixel classi-
fier (Gonzalez Alonso et al., 1991; Kontoes and Rokos,
1996; Stuckens et al., 2000). In the approach of this
paper, a pixel is labeled to a class by taking into account
its spectral properties and the context of its location.

A supervised classifier employs a priori information of
each determined class; this is usually done by means of

0098-3004/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
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training sets. These training sets are defined through
closed polygons outlined on the image by some
interactive procedure. In this definition, there is not a
clear criterion to assume that the training sets are valid
statistical samples of the classes (Cetin and Levandows-
ky, 1991). However, some work on the purification of
training samples has been reported that improves the
quality of classification (Buchheim and Lillesand, 1989;
Bolstad and Lillesand, 1991; Arai, 1992). Region-
growth-based algorithms for image segmentation and
region classification have been reported in literature
Raafat and Wong (1988) and Gahegan and Flack
(1999). However, further work is required to use an
optimized region-growth algorithm as a preliminary step
in a contextual classification scheme.

As a basic premise to a classifier, a procedure should
be established to assure that the training sets are
representative samples of the classes. A second premise
is that the classification of a pixel should be performed
by direct comparison between the statistical behavior of
the classes and that of the pixel-centered window. A
third premise is to make no assumption on the particular
statistical behavior of the density function of the classes.
This model-based approach yields the automated
determination of the set of parameters handled by the
classifier; the only exception is the locations of the initial
seeds.

In this work, a new contextual classifier is proposed
that determines statistical samples of defined classes
as a result of an automated region-growth algorithm.
A pixel is then classified by comparing the density
function of the pixel-centered window population to
those of the classes. The comparison is done by means of
a measure of similarity between such density functions.
The growth of each region is performed by employing a
window size and a threshold value suitable for each
class. The measure of similarity is utilized to calculate
best values for such parameters. The window used for
classification is a function of the best separability
between the classes. As explained in the next sections,
this scheme of classification is valid for a spectral
contextual classifier, even though extension to a textural
classifier is easy. In brief the goals of this research are the
following: (a) develop a new supervised contextual
classifier to segment an image into a number of classes,
(b) derive the statistics of the classes from a region-
growth algorithm, (c) determine the goodness of such
classifier.

2. Contextual classifier

2.1. Region-growth scheme

The contextual classifier uses the training sets
determined by an automated region-growth algorithm

(Lira and Frulla, 1998). This algorithm begins by
seeding pixels in suitable places of the image where the
existence of a class is known. This task is done manually
by visual inspection of the image with the support of
ancillary data. Once the seeds are determined, one per
class, the growth of the class regions starts. The growth
is performed by pixel aggregation satisfying a homo-
geneity criterion. The criterion is evaluated in a window
with the best size for each class. A pixel is aggregated
into the region provided the difference between the
homogeneity value of the seed- and the pixel-centered
window does not exceed a certain threshold. The growth
of a region is terminated when this homogeneity
criterion is no longer satisfied. The homogeneity
criterion and the threshold are both derived from a
measure of separability and heuristic criteria; details of
this are given in the next paragraphs.

Let ¢g(r) be a multi-spectral image and pg.eg, and let
{Ry = pg-} be the initial sub-region signaling a given
class. The pixel pg- is known as the seed related to Ry.
The vector r defines the coordinates of the pixel pg. in
the image, i.e. r = (i,/). In general, the pixel p?/- is formed
by the tuple {p1, p2, ...,p;};j, where y is the number of
bands of the multi-spectral image. Let R}, be the set of
pixels that do not belong to Ry but having at least a
neighbor with Ry under certain connectivity. Let E(Ry),
be the value of the homogeneity criterion applied to the
window v of Ry. The set R; is the region jointly formed
by Ry and the pixels p},e R, for which E(p},), differs
from E(pg)v in less than a threshold . In other words, R,
is the following set:

Ry = 1oy 1B @), — E@.I<e), M

The real number ¢ is known as the parameter of
uniformity, directly related to the homogeneity criterion.
Once R; has been determined the previous step is
repeated; so, in general the region R, is given by

Ry = {0t LEG), — B3| <e}. (@)

The homogeneity criterion E is always tested facing the
original sub-region window of Ry. The growth of a
region continues until no change occurs from one step to
the next: Ry.; = Ri. The above is easily generalized for
a number of initial regions, i.e. for a set of classes. Thus,
aggregation of a tested pixel py; is carried out as

P —region 1 |E(py,), — E(p) <é. 3)

where E(py,)} is the homogeneity criterion applied to the
tested pixel, and the region ¢ is identified as the training
set of class ¢.

2.2. Estimation of region-growth parameters
The best values for the window v and the threshold ¢

are obtained as follows. An odd-sized window is
assumed for each seeded pixel. Beginning from v =3
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pixels, the windows are systematically incremented in
size. Only squared odd windows are considered. The
density function is estimated. Let .#;(i) be the density
function of the pixel population in a window v for
spectral class a. Such a function is normalized to unity
according to

Z F430) = 1. 4)

The above is assuming 256 quantization levels in the
image, and i is a vector with dimension equal to
the number of bands of the multi-spectral image. Let «
be any spectral class in the image, then

he =D 1710 = S0 ®)

On the grounds of extensive tests with several images,
the best window for class a is set whenever 03, <0.3. A
similar condition is established for the set of classes. The
size of the window must satisfy a two-fold condition:
large enough for statistical validity, and small enough
for maximum spatial resolution. In this sense, the
window size is adjusted according to class heterogeneity
(Hodgson, 1998). A homogeneous class requires a small
window size; a heterogeneous class requires a larger
window size. Therefore, a window size is determined for
each class. As v increments, the density function of a
class experiments a great variation, until the number of
pixels is enough to represent a valid statistical sample of
the class. While the window size is further incremented,
the density function is approximately constant as long as
the window is entirely included in the class. If the
window population is a mixture of two or more classes,
the density function changes again. The condition
4, <0.3 is a heuristic rule to measure such change.

The second parameter handled in the region-growth
algorithm is a threshold & named the uniformity
parameter. This parameter is set in the following way.
Let d* be the distance between any two classes @ and b
for a given window size v:

d® =174 - S|, Va#b. (6)

The distance d{f” is of spectral separability. Let a be a
spectral class in the image; thus, given the set
{vg, Up, ..., v,} of windows of the classes, the following
minimum is determined:

., Va#b. (7)

Ug

d“ = min {d”b = Z’ya @ - y/’;b(i)

On the grounds of extensive tests with several images,
the threshold corresponding to the class j is given by the
following criterion:

¢ =0.75d 8)

and so on for the set of window classes: {v,, vp, ..., Uy}

The region-growth is performed on the grounds of a
homogeneity criterion defined in terms of the distance
determined by Eq. (6). Thus, given the best window for
class j:

Py — class; : Z]y{,“(i) - 75 ()| <e, ©)

where p, is the pixel seed for class j. In brief, Egs. (5), (8)
and (9) determine the best window, the threshold and
the homogeneity criterion, respectively. This means that,
once the seed pixels are determined, the classification
process is fully automated.

2.3. Rationale of spectral classifier

The contextual classifier uses a pixel-centered window
to estimate the density function associated to a pixel.
This function is compared to the density function of the
classes determined by the training classes in the region-
growth process. A pixel is classified to that class where
the comparison is the best. However, a tested pixel
window may share pixels from two or more classes. In
this situation the density function is a composite of
various classes. The pixels having windows located in
more than one class are named border pixels. To avoid
misclassification, the border pixels must be treated
separately, labeled as such, and classified to the nearest
class in a separate process. Once classified, the border
pixels are encoded with the rest of the pixels to form the
final classification of the image. Border pixels are
identified as follows: The pixel-centered window is
displaced on every pixel of the image. In each position
of the window, the density function is obtained. This
function is compared with the density function of the
classes and to the density function of pair of classes. The
result of this comparison leads to the labeling of a
border pixel; details of this are in the classifier algorithm
steps (v) and (viii).

The rationale of the spectral classifier consists of three
stages: (1) construct a model of spectral separability to
calculate the best window to perform the classification,
(2) design an overall block diagram of the classifier, and
(3) list the details of the algorithm for classification. The
construction of such a model now follows.

A set of 36 images with 6 classes is generated. The
density function of the classes is Rayleigh-like (Dough-
erty, 1999). The size of the images is 256 x 192 pixels.
The difference of the mean among these classes ranges in
the interval: [1,2,...,32]. The difference of the standard
deviation ranges in the same interval. This produces a
set of 216 classes with varying spectral separability
among them. The normalized density function of each
class is obtained according to Eq. (4). In each class, a
pixel-centered window is considered. This window is
systematically incremented from 1 x 1 to 23 x 23 pixels.
The distance between the density function of this



954 J. Lira, G. Maletti | Computers & Geosciences 28 (2002) 951-959

Table 1

Separability as a function of window size

Window Separability Window Separability Window Separability

1 1.9997-2.0000 7 1.1606-1.6299 17 0.3406-0.3746
3 1.9187-1.9997 11 0.6772-1.1606 21 0.2293-0.3405
5 1.6299-1.9186 15 0.3746-0.6771 23 0.2193-0.2293

Determine the
number of classes

each class

Seed a pixel signaling

Perform the region-growth

U algorithm from seeded pixels

From the grown regions,
determine %! (i) for each 0

class and for each pair of pixels
classes

Determine class
pixels and border| O |pixels to produce a final

Encode class pixels and border

classification

Fig. 1. Block diagram of contextual classifier.

window and the one from each other class is derived
(Eq. (6)). A pixel-centered window is classified into a
class where this distance is the least. The precision of
classification is calculated for each window size. The best
window is the one yielding the highest precision. Table 1
condenses this model of spectral separability. In this
model, the following is observed:

(1) Whenever the separability is complete, the max-
imum precision is obtained using a per-pixel
classification, i.e. a 1 x 1 pixel window.

(ii) Classes with similar separability have a similar
window size for classification.

(iii) An inverse relationship exists between the separ-
ability of the classes and the best window size.

The overall block diagram of the classifier is given in
Fig. 1. According to this, the details of the classifier
algorithm are the following:

(1) Let g(r) be the image to be classified. The bands
selected for classification are loaded into RAM
memory. Decorrelated bands resulting from prin-
cipal component analysis are usually employed in
this step.

(i1) Pixels are seeded in selected places of each spectral
class defined for segmentation. Let £ = {a, b, ..., u}
be the set of spectral classes.

(iii)) The best window is derived for each class
according to Eq. (5). Let n = {v,, vp, .., v,} be the
set of windows.

(iv) On the grounds of the region-growth algorithm,
the normalized density function Vf;/(i) for each
training set is obtained Vje¢.

(v) A matrix of the average of density functions for a
pair of classes is constructed. Let &"(i) be the

elements of such a matrix for any two spectral
classes 7 and s, V#s. The function (i) is named
as the density function of a border formed by a
pair of distinct classes.

(vi) The distance d — zi]yju(i) - y’;b(i)), Vaztbeé
is obtained as a function of class window uv;,
Yv;en. For classification, the best window v is
obtained from Table 1 using d = min[d*],
Ya#beé.

(vii) For every pixel p;, to be classified, the normalized
density function H’fl(i) is generated, where (k,/)
are the coordinates of the pixel in the image: r =
(k,l), and v is the best window obtained in step
(vi).

(viii) A pixel p;; of the multi-spectral image is classified
according to the following procedure:

(a) The distance between the density function Y’;I (i) of
the pixel-centered window and the density function
of the classes ,va] (i) is calculated

d, = Z’V’;l(i)fyf;/_(i), Vk, leg, | = V€.

(10)

(b) The distance between the density function V{f[ (i) of
the pixel-centered window and the density function
of the pair of classes (i) is calculated

=D |70 - S0, ke, V(s)e.

1

(1
(c) The distances d,’;l and dj are sorted out by value.

Let d = {d;;l, dijtv be the ordered set of such
distances.
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(d) If min {d};l, dfj}v, is a distance to a border, a new
window v' for py,; is considered. The size of this
window is the one providing the best separability
(Table 1) between the density function of such
border and the density function corresponding to
the second smallest distance of 4.

(e) A new set of distances 6’ = {d,,, d}}}, is calculated
for v'. If min{d,,, dfj}, is a distance to the border
found in step (d), then py, —border.

) If min{d,’d,d}j,}v is the distance to a class ¢, then
Py —class ¢.

(g) If p,,—border, its average density function is
considered. Let this border be the one formed by
classes ¢ and r. The following distances are
calculated:

dy =780 - 7@, Vkleg 1=(q et (12)

Then py; is labeled as border-class ¢ if df, = min{d.,},
1= (¢, r)el.

This algorithm generates a segmentation of the image
in classes and borders. The encoding of class pixels and
border pixels produces a final classification of the image
as shown in Section 4. This algorithm is not computa-
tionally demanding: the density functions and the
images are loaded into the RAM memory, the whole
procedure for the multi-spectral classification presented
in this research takes approximately 2 min on a Pentium

(a)

™~

IV @ 700 MHz. The following section describes the test
images used in the classifier.

3. Test images

Two types of examples are presented in this paper.
These examples are worked out on the grounds of:

(a) A set of two synthetic images (Figs. 2a and 3a) with
well-known statistical parameters for each class.
These synthetic images are single band and contain
five (Fig. 2a) and three (Fig. 3a) barely discernible
classes. The class separation, in both images, is five
gray levels between means. In Fig. 2a, each class
has a variance of 11.26. In Fig. 3a, each class has a
variance of 24.92. The dimension of these images is
128 x 128 and 96 x 96 pixels, respectively. The
density function of the classes in both the images
is Gaussian-like. Fig. 2a shows an image with low
content of noise: snr=7.9586 dB. Fig. 3a depicts a
relatively high level of noise: snr=0.3719dB. The
formula to calculate the noise is

RS i — 1
ZZOlog[i”a '], (13)
i=1

c—1
where Nc is the number of classes, y; and ¢ are the
mean and the standard deviation of the classes,

snr =

(c)

Fig. 2. (a) Synthetic image with five classes and signal-to-noise ratio of 7.9586 dB, (b) border pixels of synthetic image depicted in
Fig. 2a, (c) encoding of border pixel and class pixels of the synthetic image depicted in Fig. 2a.

(a)

(b) ©

Fig. 3. (a) Synthetic image with three classes and signal-to-noise ratio of 0.3719 dB, (b) border pixels of the synthetic image depicted in
Fig. 3a, (3) encoding of border pixel and class pixels of synthetic image depicted in Fig. 3a.
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(a)

Fig. 4. (a) RGB composite of SPOT image overlain with training fields defined by region-growth, (b) RGB composite of the SPOT
image overlain with borders of spectral classes defined in classification process.

respectively. The means are sorted by the value:
Hig1 2 1y

(b) A satellite SPOT multi-spectral (Fig.4a) image.
The dimension of this image is 512 x 512 pixels,
covering a region of Central México. This image is
not geocoded.

4. Results and discussion

Results are organized in two categories: for the
synthetic images final results are provided. For the
SPOT image full details are given.

The synthetic images are considered an extreme case
to test the validity of the classification scheme. Fig. 2b
shows the border pixels of Fig. 2a, while Fig. 2¢ shows
the encoding of class and border pixels with the final
segmentation achieved. The finite size of the window
employed in this process reduces the size of the images
by (v—1)/2 pixels per side. The border pixels and the
segmentation achieved for Fig.3a are presented in
Fig. 3b and 3c, respectively. The high content of noise
in Fig. 3a produces a less precise segmentation than in
Fig. 2a. The synthetic nature of the images used in this
work allows a quick quantification of the classification
accuracy. The region of the image occupied by each class
is well known. The confusion matrices related to the
segmentation of Figs. 2a and 3a are given in Tables 2

and 3. From these matrices, the k coefficient is easily
calculated (Landis and Koch, 1977; Smits et al., 1999).
For Fig. 2a, « is 0.8586, and for Fig. 3a, it is 0.7937.

The second example deals with a multi-spectral SPOT
image covering a region of Central México. A principal
component analysis was applied to this image, only the
first two components were retained for the classification
process.

By visual inspection on this image, and with the help
of ancillary data, six pixels were seeded signaling six
spectral classes. Fig. 4a shows the region growth for the
six classes overlain with an RGB color composite of the
image. The color composite is, [RGB]=[Principal
component 1, Principal component 2, Band 3]. These
regions define the training fields for the spectral classes.
From upper left in Fig. 4a, and going in clockwise
direction, the classes defined in the classification process
are: shadows, soil/herbage, microphylum thicket, oak/
pine woods, river bed/herbage, and submontane thicket/
oak. The distance (Eq. (6)) among the density functions
of the regions measures the separability matrix of such
classes. This separability matrix is shown in Table 4. The
least separability in Table 4 is 1.8028; therefore, based
on the values of Table 1, this classification was
performed using a window of 5 x 5 pixels. To classify
the border pixels, the distance among the pair of classes
is calculated. The least separability in Table 5 is 0.9014;
therefore, based on the values of Table 1, this classifica-
tion is performed using a window of 11 x 11 pixels.
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Table 2
Confusion matrix of classification for synthetic image 1

957

Class 1 2 3 4 5 Region size (pixels)
1 1862 175 73 43 49 2202

2 76 3410 133 104 41 3764

3 62 178 2710 86 20 3056

4 33 48 85 2556 58 2780

5 13 41 80 94 1426 1654

Total 2046 3852 3081 2883 1594 13456

Kk Coefficient: 0.8586.

Table 3

Confusion matrix of classification for synthetic image 2

Class 1 2 3 4 5 6 Region size (pixels)
1 6436 158 189 0 0 0 6783

2 253 6367 47 42 0 0 6709

3 100 57 7189 222 81 0 7649

4 0 227 127 7045 161 75 7635

5 0 0 94 23 6543 167 6827

6 0 0 0 43 239 6461 6743

k Coefficient: 0.7973.

Table 4

Distance among the class density functions in SPOT image

Class 1 2 3 4 5 6

1 0.0000 2.0000 2.0000 2.0000 1.9895 1.8028
2 2.0000 0.0000 1.8359 1.9873 2.0000 2.0000
3 2.0000 1.8359 0.0000 1.8931 1.9499 1.9919
4 2.0000 1.9873 1.8931 0.0000 2.0000 2.0000
5 1.9895 2.0000 1.9499 2.0000 0.0000 1.9925
6 1.8028 2.0000 1.9919 2.0000 1.9925 0.0000

The classification procedure generates a segmentation of
the multi-spectral image. Fig. 4b shows the result of the
segmentation once the class and border pixels are encoded.
The overlay of the RGB composite plus the border of the

regio
spect

ns (Fig. 4b) shows a precise segmentation of the
ral classes defined in this process. The evaluation of

the goodness of this segmentation is as follows:

(i)

(if)

(i)

A visual inspection of the overlay of the class
borders to the RGB composite. This inspection
shows a precise segmentation of the image accord-
ing to the classes defined.

A verification of each region growth with ancillary
data. The ancillary data was used to corroborate
that each region contains the class signaled by the
seed pixels. The resulting classification map was
also corroborated with ancillary data.

A comparison of the k coefficient for the contextual
vs. a per-pixel classification (Richards and Jia,

1999). The x coefficient is calculated from the
confusion matrix resulting from the contextual
classification process (Table 6). The value of the k
coefficient is 0.98823. On the other hand, using the
grown regions as training sets as input to a per-
pixel classifier, the first two principal components
of the SPOT image were classified into six classes.
A mode filter employing windows of 5x 5 and
7 x 7 pixels was applied to this classification. The
resulting x coefficient for this set of images is:
0.81198 for no filter, 0.91169 for the 5 x 5 filter, and
0.93382 for the 7 x 7 filter. Increasing the size of the
window in the mode filter did not bring a significant
improvement to the x coefficient. The contextual
classification was performed with a window of 5 x 5
pixels. The spatial detail achieved in this classifica-
tion is comparable with that obtained from the per-
pixel classifier employing a mode filter of 5x 5
pixels.
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Table 5

Distance among pair of classes and class density functions in SPOT image

Class, Class pair 1 2 3 4 5 6

1,2 1.0000 1.0000 1.8887 1.9875 1.9948 1.8773
1,3 1.0000 1.8913 1.0000 1.9204 1.9697 1.8701
1,4 1.0000 1.9936 1.9262 1.0000 1.9948 1.8773
1,5 0.9948 2.0000 1.9504 2.0000 0.9948 1.8710
1,6 0.9014 2.0000 1.9960 1.9078 1.9910 0.9014
23 2.0000 0.9180 0.9180 0.9936 1.9749 1.9928
2.4 2.0000 0.9936 1.8148 1.9875 2.0000 2.0000
2,5 1.9895 1.0000 1.8391 1.9875 1.0000 1.9925
2,6 1.8507 1.0000 1.8846 1.9875 1.9963 1.0000
3,4 2.0000 1.8849 0.9466 0.9466 1.9749 1.9928
3,5 1.9895 1.8913 0.9749 1.9204 0.9749 1.9882
3,6 1.8507 1.8913 0.9960 1.9204 1.9712 0.9960
4,5 1.9895 1.9936 1.8766 1.0000 1.0000 1.9925
4,6 1.8507 1.9936 1.9222 1.0000 1.9963 1.0000
5,6 1.8407 2.0000 1.9478 2.0000 0.9963 0.9963
Table 6

Confusion matrix for classification of SPOT image

Class 1 2 3 4 5 6 Region size (pixels)
1 730 0 0 0 18 15 763

2 0 199 6 0 0 0 205

3 0 0 918 0 0 0 918

4 0 0 13 772 0 0 785

5 0 0 0 0 122 0 122

6 0 0 0 0 1 3475 3476

Total 730 199 937 772 141 3490 6269

K Coefficient: 0.98823

k Coefficient: 0.98823.

5. Conclusions

A new contextual classifier based upon an automated
region-growth algorithm has been developed and tested.
This algorithm provides valid statistical samples of
defined classes as input into a contextual spectral
classifier. Even though the grown regions do not encircle
pure spectral objects, the resulting classification is better
compared to the one from a per-pixel classifier. The
contextual classifier is semi-automatic, embracing only
two parameters derived from heuristic criteria. More
work is needed regarding the estimation of these
parameters though. In order to avoid the heuristic
determination of their value, a model-based approach
may be adequate. The best location to seed the initial
pixels for region growth requires some attention too.

The classification and growth of the regions are
performed employing best windows for each class. No a
priori assumptions are made concerning the density
functions of the classes. This is a basic premise since,
based on experimentation, in a multi-spectral image

some classes show a Gaussian behavior and some a
Rayleigh behavior. A classifier is prone to produce
wrong classification results whenever a particular
density function is assumed and the image classes
show a different statistical behavior. The synthetic
images have a set of classes barely discernible due
to the noise content. However, the contextual classifier
produces good results, generating segmentation
where the classes are clearly differentiated. The classi-
fication results concerning the SPOT image are good as
well. The x coefficient shows a greater spectral separ-
ability of the contextual classifier compared to a per-
pixel classifier. Our contextual classifier performs well
for multi-spectral images; a direct application might be
in the classification of satellite images for remote sensing
of the environment. The classification results in our
classifier show a x coefficient competitive with any other
contextual classifier. Finally, the rationale of classifica-
tion presented in this work is of general nature and
might be adapted to new models of texture and spectral
separability.
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Abstract. A set of RGB images of psoriasis lesions is used. By visual
examination of these images, there seem to be no common pattern that
could be used to find and align the lesions within and between sessions.
It is expected that the principal components of the original images could
be useful during future lesion segmentation and alignment purposes.

1 Introduction

We use a set of 175 RG B psoriasis lesions images, of size 556 x 748 pixels, taken
at the Gentofte Hospital, Denmark, during pilot sessions with three invited pa-
tients. For each patient, three lesions were were followed once a week during at
least three weeks. In each session, five images of each lesion were taken. The
images were labelled with four characters, indicating patient (1, 2, 3), lesion (A,
B, C), session (a, b, ¢, d) and capture (1, 2, 3, 4, 5) respectively.

In order to study the variation within and between sessions of a lesions, they
first have to be found and matched. In order to find a lesion, the set of image
bands, or combination of bands where the lesion is expected to be found has
to be specified. Looking at the original images, we can appreciate that for some
cases, the lesion has a light color, while the skin is dark, while, for other cases, the
opposite situation is seen. This means, that in the whole set of original images
there is no common pattern of lesions that could be defined. It could be nice,
for instance, to locate the lesion in the same part of the histogram for all the
cases. For this reason, in order to be able to define a common pattern of lesion,
the linear combination of the original bands given by the principal components
is here explored.

Much of the present work was done with the program maf [1], which is avail-
able at the server of the Institute of Informatics and Mathematical Modelling.
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2 Principal Component Analysis

The borders of the original images were cut by 10 pixels on each side on before
hand. This was done, because of camera problems. Some artefacts appeared on
the image borders.

Principal Component Decomposition has been applied to each single psoriasis
lesion image. For all the cases, the variance-covariance matrix was diagonalized.
For each single image, most of the contribution in its first component is given by
the red band, which has an average absolute correlation with the first compo-
nent of 0.9907. When the correlation matrix is diagonalized, all the bands have
almost the same weight in the first component. In Figure 1 and Table 1, it can
be seen that all the bands are highly correlated with the first component.
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Fig. 1. Average absolute correlation per lesion between bands of single images and
their principal components.

Band |Comp. 1|Comp. 2|Comp. 3
Red | 0.9907 | 0.1170 | 0.0128
Green| 0.9741 | 0.1664 | 0.0921
Blue | 0.9674 | 0.2077 | 0.1078
Table 1. Average absolute correlation values between bands of single images and their
principal components

For a given patient and lesion, the captures taken within and between sessions
are ordered in a sequence. In order to be able to compare the elements of the
sequence given by the corresponding principal components, all the eigenvectors
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were oriented to the same sense than the eigenvectors of the first image of that
sequence'. For each image in the sequence, two scalar products were computed
and compared. The first one, was the scalar of the eigenvectors provided by the
program maf by the eigenvectors of the first image of the first session of that
patient and lesion. The second scalar product, was the same as before, but the
first eigenvector had the sign 2 changed. The eigenvectors sign, for which the
scalar product was positive was selected. The images whose components there-
fore had to be flipped were: 1Cb1, 1Cb2, 1CBH3, 1Cb4, 1CDH5, 1Cc2, 1Cc3, 2Bdl,
2Bd3, 2Bd4, 2Bd5, 3Ca3, 3Ca4, 3Ca5, 3Cb1, 3CH2, 3CH3, 3CHh4, 3Cb5, 3Ccl,
3C¢c2, 3Ce3, 3Cc4, 3Cch, 3Cdl, 3Cd2, 3Cd3, 3C'd4 and 3Cd5.

2.1 Eigenvector Values

Tables 2 and 3 show the average and standard deviation values of the eigenvec-
tors. This can be found in detail as one table per patient and lesion, in Appendix
B. For a given patient and lesion, each single cell value in Table 2 is the corre-
sponding column data average of the table, with the eigenvector values of the
images for this patient and lesion, included in the Appendix B. For a given pa-
tient and lesion, each single cell value in Table 3 is the corresponding column
data standard deviation of the table, with the eigenvector values of the images
for this patient and lesion, included in Appendix B.

Table 2. Average Eigenvector Values

(Patient,| Red Green Blue | Red Green Blue | Red Green Blue
Lesion) | 1°fC. 1°tC. 1%'C.|2™*C. 2™C. 2™C.| 3™C. 3™C. 3"iC.
(1,A) ]0.8083 0.4781 0.3429|-0.5847 0.6401 0.4845|-0.0517 -0.5922 0.7975

0.8260 0.3830 0.3932|-0.5452 0.6376 0.5251(-0.0539 -0.6606 0.7464
0.7781 0.4480 0.4370|-0.6181 0.6483 0.4331|0.0868 0.6077 -0.7843

(1,B) |0.8279 0.4660 0.3111|-0.5422 0.6864 0.4192|-0.0977 -0.5171 0.8207
(1,C) ]0.7814 0.4999 0.3732|-0.5463 0.4249 0.5698|-0.2980 -0.6469 0.6070
(2,A) 1]0.7334 0.4909 0.4650|-0.6098 0.2071 0.7475|-0.2738 0.8339 -0.4552
(2,B) (0.8252 0.4582 0.3271|-0.5191 0.4052 0.7443|0.2107 -0.7843 0.5744
(2,C) ]0.7781 0.4859 0.3964|-0.6119 0.4708 0.6260| 0.1190 -0.7293 0.6655
(3,A) ]0.7303 0.5049 0.4497|-0.6741 0.4937 0.5403| 0.0504 -0.7052 0.7068

)

)

2.2 Eigenvalues

In order to evaluate how much of the total variance is explained by each of the
eigenvalues, Table 4 was constructed using the data of Table 16. Each cell in

! The eigenvectors give a direction, which has two senses or orientations.
2 This means, that the other orientation of the eigenvector was tested.
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Table 3. Standard Deviation of the Eigenvector Values

(Patient,
Lesion)

Red Green Blue
15tC. 15tC. 1%tC.

Red Green Blue
2ndC, ndC, 2miC,

Red Green Blue
3riC. 3. 3miC.

(1,A)
(1,B)
(1,C)
(2,A)
(2,B)
(2,0)
(3,A)
(3,B)
3.0

0.0138 0.0153 0.0126
0.0129 0.0164 0.0149
0.0076 0.0045 0.0103
0.0459 0.0244 0.0498
0.0243 0.0283 0.0277
0.0220 0.0258 0.0128
0.0684 0.0470 0.0563
0.0585 0.0869 0.0791
0.0330 0.0260 0.0337

0.0177 0.0736 0.0423
0.0312 0.1270 0.2125
0.0162 0.2958 0.3502
0.0488 0.1421 0.0731
0.0355 0.0932 0.0548
0.0216 0.0906 0.0627
0.0731 0.0429 0.0573
0.1177 0.0651 0.0582
0.0445 0.0724 0.0580

0.0666 0.0765 0.0589
0.1023 0.1738 0.1072
0.0445 0.2727 0.2385
0.1076 0.0314 0.1048
0.0592 0.0421 0.0758
0.0726 0.0446 0.0666
0.0148 0.0127 0.0133
0.0403 0.0402 0.0344

0.0452 0.0653 0.0460
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Fig. 2. Values of the third eigenvectors of the images of the data-set.

Triangle down indicates the weight for the red band; triangle right, for the green

band; and triangle left, for the blue band.




I.M.M. Technical Report Number 5 5

Table 4 is computed as follows:

Ns MNec

1 )\p l,s,c,r
Pplr = 100 S 4 L Lkl L (1)

where p is the patient number, [ corresponds to the lesion and r to the number
of the principal component. The index s varies over the sessions and the index
¢, over captures from the given session. A, s . is the eigenvalue of the r — th
principal component of the ¢ — th capture taken during the s — th session of
lesion [ of patient p.

Table 4. Average and standard deviation per patient and lesion of the percentage of
the explained total variance of the principal components of the original images

(Patient,| Mean Std. Dev.|Mean Std. Dev.|Mean Std. Dev.
Lesion) 15t C. 1 C. |24 C. 2" C. |37 C. 3™ C.
(1,A) [97.65 0.74 1.92 0.62 0.43 0.15

) 198.65 0.72 1.08 0.74 0.27 0.08

) 199.19  0.19 0.56 0.16 0.25 0.07

) |94.70  1.96 3.47 1.13 1.83 0.90

) 9842  0.76 1.41 0.73 0.17 0.06
(2,C) |98.26 1.01 1.58 0.97 0.16 0.05

)

)

)

93.42  2.20 6.10 2.13 0.48 0.11
95.76  2.52 3.97 2.52 0.27 0.06
95.88  1.38 3.41 1.23 0.71 0.31

3 Discussion

From Table 4 it can be deduced, that, for all the cases, almost all the total vari-
ance is explained by the first principal component.

If we think of the images as being composed of three classes: background,
normal skin and lesion, looking at the images shown in Appendix A we can de-
duce that for the cases (1, A), (1, B) and (1,C) the first component histogram
peak corresponding to the lesion is the central one, while for the remaining cases,
it is in one of the extremes. On the other hand, it is interesting to observe that
there is more contrast between the lesions and the rest in the third principal
component. In fact, they are roughly enhanced from the rest. This allowed us,
for instance, to find out, that the visual registration of some lesions, during the
image acquisition process, was of regular quality. This detail that can not easily
seen in the first principal component. Compare, for instance, the images of the
first and third session of the case (2,C).
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Taking a look at the values of the third eigenvectors, it can be deduced that
a rough estimation of the third component can be obtained by subtracting the
green band from the blue band, while the red band almost does not have any
influence (See Figure 2). Note also in Table 5, that the large variance of the
third eigenvector values for the case (1, C) is due to the fact that the magnitude
of the weights for the B and G band are kind of flipped. For the blue bands of
the first session, the magnitude of the weights -in the third component- is more
similar to the magnitude of the weights for the green band in the next sessions,
and viceversa.

The |B — G| bands do not have, for all the cases, the probability density
function of the lesion class located in one extreme of the normalized histogram.
However, the contrast between the lesion and the normal skin is still significant.
See, for instance, the case (2, C), or note in the case (2, A) how clear the lesions
are enhanced from the rest.

4 Conclusions

The R,G,B bands are highly correlated with the first principal component,
where the largest contribution is given by the red band. There is high contrast
between the lesions and the rest in the third principal component. This compo-
nent could roughly be estimated by subtracting the blue from the green band.
In this estimation, there is a high contrast between the lesion and normal skin.
It is tempting to use this estimation of the third principal component as input
for a classification scheme. On the other hand, it has been shown that it could
be useful to provide the person who carries out the image acquisition with the
third principal component in order to do a better visual registration of the lesion
to be captured.
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Appendix
A Principal Components

In this section, for the set of images corresponding to a given patient and lesion,
the principal components are shown in one single figure. Each figure is arranged
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as follows. From top to bottom, three blocks are considered. All the blocks have
the same number of rows. The number of rows of the block is the number of
sessions for which images of the same patient and lesion has been taken. The
first block (first third of the rows) is composed by the first principal components
of the images of the given patient and lesion. The second block (second third of
the rows), by the second principal components, and so on, for the third block
(remaining rows). Within a block, the row number indicates the number of the
session, and the column number indicates the number of capture within a session.
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Fig. 3. Principal Components of the images of the case (Patient 1, Lesion A).
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Fig. 4. Principal Components of the images of the case (Patient 1, Lesion B).
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Fig. 5. Principal Components of the images of the case (Patient 1, Lesion C).
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Fig. 6. Principal Components of the images of the case (Patient 2, Lesion A).
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Fig. 7. Principal Components of the images of the case (Patient 2, Lesion B).
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Fig. 8. Principal Components of the images of the case (Patient 2, Lesion C).
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Fig. 9. Principal Components of the images of the case (Patient 3, Lesion A).
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Fig. 10. Principal Components of the images of the case (Patient 3, Lesion B).
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Fig. 11. Principal Components of the images of the case (Patient 3, Lesion C).
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B Eigenvector Values of the Original Images

Table 5. Eigenvectors Values of the original images of (Patient 1, Lesion A)

Image

Red Green Blue
15t C. 1%t C. 1% C.

Red Green Blue
ond @, 2nd . 2 (.

Red Green Blue
3rd . 37 C. 3" C.

al
a2
a3
ad
ad
bl
b2
b3
b4
b5
cl
c2
c3
c4
ch
d1
d2
d3
d4
d5

0.7938 0.5007 0.3452
0.8216 0.4642 0.3308
0.8048 0.4871 0.3392
0.8051 0.4827 0.3446
0.8398 0.4434 0.3133
0.8017 0.4847 0.3498
0.8277 0.4564 0.3265
0.8273 0.4570 0.3267
0.8133 0.4712 0.3413
0.8179 0.4662 0.3371
0.8009 0.4904 0.3437
0.8024 0.4863 0.3459
0.8084 0.4784 0.3431
0.7968 0.4911 0.3521
0.8189 0.4665 0.3344
0.8061 0.4760 0.3516
0.7904 0.4942 0.3620
0.8041 0.4803 0.3504
0.7852 0.4993 0.3662
0.7988 0.4857 0.3550

-0.6015 0.7302 0.3241
-0.5692 0.6986 0.4336
-0.5858 0.7440 0.3215
-0.5869 0.7321 0.3457
-0.5408 0.7333 0.4120
-0.5977 0.6576 0.4586
-0.5584 0.6131 0.5588
-0.5609 0.6398 0.5254
-0.5805 0.6177 0.5306
-0.5735 0.6145 0.5417
-0.5981 0.6830 0.4193
-0.5968 0.6532 0.4661
-0.5887 0.6566 0.4715
-0.6043 0.6545 0.4545
-0.5739 0.6638 0.4795
-0.5906 0.6092 0.5292
-0.6085 0.5650 0.5573
-0.5875 0.5517 0.5920
-0.6069 0.5029 0.6155
-0.5835 0.4820 0.6536

-0.0898 -0.4649 0.8808
-0.0298 -0.5445 0.8382
-0.0957 -0.4574 0.8841
-0.0854 -0.4806 0.8728
-0.0470 -0.5154 0.8556
-0.0077 -0.5767 0.8169
0.0549 -0.6449 0.7623
0.0311 -0.6179 0.7856
0.0392 -0.6297 0.7759
0.0455 -0.6364 0.7700
-0.0291 -0.5414 0.8403
0.0008 -0.5804 0.8143
0.0003 -0.5832 0.8124
-0.0073 -0.5749 0.8182
0.0017 -0.5846 0.8113
0.0377 -0.6342 0.7722
0.0709 -0.6607 0.7473
0.0910 -0.6819 0.7258
0.1232 -0.7055 0.6979
0.1464 -0.7292 0.6684

17
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Table 6. Eigenvectors Values of the original images of (Patient 1, Lesion B)

Image

Red Green Blue
1%t C. 1%t C. 1%t C.

Red Green Blue
ond ¢, 2nd ¢ 27 (.

Red Green Blue
3rd C. 3 C. 37 C.

al
a2
a3
ad
ad
bl
b2
b3
b4
b5
cl
c2
c3
c4
cH
d1
d2
d3
d4

d5

0.8089 0.4881 0.3279
0.8169 0.4822 0.3165
0.8170 0.4759 0.3257
0.8244 0.4669 0.3199
0.8218 0.4737 0.3166
0.8472 0.4299 0.3122
0.8351 0.4739 0.2793
0.8372 0.4512 0.3092
0.8366 0.4544 0.3062
0.8452 0.4453 0.2954
0.8271 0.4611 0.3215
0.8184 0.4741 0.3248
0.8188 0.4745 0.3230
0.8268 0.4719 0.3062
0.8276 0.4704 0.3062
0.8387 0.4548 0.2996
0.8297 0.4633 0.3113
0.8090 0.4870 0.3291
0.8151 0.4852 0.3165
0.8568 0.4366 0.2745

-0.5361 0.8413 0.0700
-0.4924 0.8688 -0.0529
-0.5299 0.8423 0.0987
-0.5485 0.7985 0.2480
-0.5379 0.8282 0.1573
-0.5292 0.7353 0.4235
-0.4483 0.2921 0.8448
-0.5469 0.6992 0.4605
-0.5477 0.7078 0.4461
-0.5342 0.6901 0.4882
-0.5617 0.6577 0.5020
-0.5692 0.5908 0.5718
-0.5652 0.5680 0.5983
-0.5584 0.6227 0.5481
-0.5568 0.6193 0.5536
-0.5443 0.6804 0.4907
-0.5580 0.6751 0.4826
-0.5877 0.6801 0.4383
-0.5789 0.6615 0.4767

-0.5131 0.6688 0.5380

-0.2416 -0.2324 0.9421
-0.3005 -0.1126 0.9471
-0.2274 -0.2532 0.9403
-0.1396 -0.3799 0.9144
-0.1877 -0.2996 0.9354
-0.0475 -0.5240 0.8504
0.3188 -0.8307 0.4564
-0.0085 -0.5546 0.8321
-0.0141 -0.5408 0.8410
0.0135 -0.5705 0.8212
0.0200 -0.5957 0.8029
0.0792 -0.6528 0.7534
0.1004 -0.6725 0.7333
0.0680 -0.6241 0.7784
0.0708 -0.6287 0.7745
0.0193 -0.5746 0.8182
0.0134 -0.5741 0.8187
-0.0104 -0.5480 0.8364
0.0220 -0.5718 0.8201
0.0513 -0.6018 0.7970

Table 7. Eigenvectors Values of the original images of (Patient 1, Lesion C)

Image

Red Green Blue
1%t C. 15t C. 1%t C.

Red Green Blue
ond @, 24 @, 2™ C.

Red Green Blue
3mC. 37 C. 37 C.

al
a2
a3
ad
ad
bl
b2
b3
b4
b5
cl
c2
c3
c4
ch

0.7917 0.4946 0.3585
0.7923 0.4928 0.3598
0.7913 0.4922 0.3626
0.7860 0.4991 0.3647
0.7889 0.4967 0.3620
0.7741 0.5027 0.3848
0.7763 0.5015 0.3819
0.7714 0.5054 0.3867
0.7717 0.5049 0.3866
0.7702 0.5071 0.3868
0.7842 0.4977 0.3706
0.7796 0.5016 0.3751
0.7802 0.5009 0.3747
0.7815 0.5005 0.3724
0.7817 0.5012 0.3711

-0.5512 0.8314 0.0703
-0.5519 0.8302 0.0783
-0.5541 0.8281 0.0850
-0.5673 0.8168 0.1050
-0.5687 0.8132 0.1236
-0.5107 0.1369 0.8488
-0.5222 0.1723 0.8353
-0.5387 0.1950 0.8196
-0.5311 0.1774 0.8285
-0.5382 0.1915 0.8208
-0.5473 0.2736 0.7909
-0.5482 0.2567 0.7960
-0.5445 0.2491 0.8009
-0.5557 0.2871 0.7802
-0.5642 0.3148 0.7633

-0.2633 -0.2533 0.9309
-0.2601 -0.2606 0.9298
-0.2584 -0.2682 0.9281
-0.2455 -0.2895 0.9252
-0.2329 -0.3034 0.9240
0.3740 -0.8536 0.3627
0.3531 -0.8478 0.3956
0.3388 -0.8406 0.4227
0.3498 -0.8447 0.4051
0.3421 -0.8404 0.4204
0.2922 -0.8231 0.4870
0.3030 -0.8262 0.4750
0.3078 -0.8289 0.4671
0.2836 -0.8167 0.5025
0.2657 -0.8060 0.5289




Table 8. Eigenvectors Values of the original images of (Patient 2, Lesion A)

I.M.M. Technical Report Number 5

Image

Red Green Blue
1%t C. 1%t C. 1% C.

Red Green
ond ¢, 2md C,

Blue
ond .

Red Green Blue
34 . 3" C. 3 C.

al
a2
a3
ad
ad
bl
b2
b3
b4
b5
cl
c2
c3
c4
cH
d1
d2
d3
d4
d5

0.7357 0.4960 0.4611
0.7226 0.4835 0.4940
0.7002 0.4862 0.5227
0.6893 0.4940 0.5299
0.7205 0.5208 0.4578
0.7558 0.4836 0.4415
0.7917 0.4609 0.4009
0.7804 0.4649 0.4182
0.7805 0.4655 0.4173
0.7434 0.4822 0.4636
0.6783 0.5409 0.4974
0.6758 0.5230 0.5194
0.6790 0.5200 0.5182
0.6831 0.5192 0.5136
0.6524 0.5192 0.5521
0.7510 0.4804 0.4530
0.7844 0.4682 0.4068
0.7884 0.4686 0.3986
0.7838 0.4697 0.4062
0.7716 0.4712 0.4273

-0.6460 0.3094
-0.6898 0.4574
-0.7123 0.4275
-0.6160 0.0147
-0.6413 0.2493
-0.5923 0.2174
-0.5524 0.2601
-0.5571 0.2133
-0.5652 0.2400 0.7893
-0.6380 0.3029 0.7080
-0.5692 -0.0414 0.8212
-0.5789 -0.0596 0.8132
-0.6357 0.0633 0.7693
-0.6447 0.0981 0.7581
-0.6771 0.0721 0.7323
-0.5957 0.1968 0.7788
-0.5583 0.2473 0.7919
-0.5533 0.2570 0.7923
-0.5687 0.2802 0.7733
-0.6049 0.3358 0.7220

0.6978
0.5613
0.5566
0.7876
0.7257
0.7758
0.7920
0.8026

-0.2035 0.8113 -0.5480
-0.0454 0.7463 -0.6640
-0.0472 0.7621 -0.6457
-0.3812 0.8694 -0.3144
-0.2638 0.8164 -0.5137
-0.2792 0.8479 -0.4507
-0.2607 0.8485 -0.4605
-0.2839 0.8593 -0.4254
-0.2672 0.8519 -0.4504
-0.2010 0.8220 -0.5328
-0.4647 0.8401 -0.2798
-0.4563 0.8503 -0.2625
-0.3672 0.8518 -0.3735
-0.3433 0.8490 -0.4018
-0.3404 0.8516 -0.3986
-0.2850 0.8547 -0.4339
-0.2702 0.8483 -0.4554
-0.2689 0.8452 -0.4619
-0.2494 0.8372 -0.4868
-0.1967 0.8156 -0.5441

Table 9. Eigenvectors Values of the original

images of (Patient 2, Lesion B)

Image

Red Green Blue
1°t C. 1t C. 1t C.

Red Green Blue
ond ¢, 2nd C. 27 C.

Red Green Blue
34 C. 3¢ C. 37 C.

al
a2
a3
ad
ad
bl
b2
b3
b4
b5
cl
c2
c3
c4d
ch
d1
d2
d3
d4
ds

0.8076 0.4736 0.3514
0.8015 0.4789 0.3582
0.8050 0.4757 0.3547
0.8002 0.4788 0.3612
0.7937 0.4831 0.3696
0.8928 0.3729 0.2527
0.8767 0.3961 0.2729
0.8305 0.4508 0.3273
0.8316 0.4499 0.3256
0.8460 0.4342 0.3095
0.8167 0.4751 0.3275
0.8158 0.4761 0.3282
0.8148 0.4737 0.3342
0.8122 0.4770 0.3359
0.8179 0.4718 0.3293
0.8334 0.4572 0.3107
0.8299 0.4589 0.3173
0.8282 0.4598 0.3204
0.8241 0.4606 0.3299
0.8263 0.4599 0.3250

-0.5486 0.3846 0.7423
-0.5583 0.3847 0.7351
-0.5528 0.3842 0.7395
-0.5607 0.3836 0.7338
-0.5678 0.3706 0.7350
-0.4424 0.6201 0.6479
-0.4698 0.5835 0.6625
-0.5312 0.4637 0.7091
-0.5360 0.4964 0.6829
-0.5178 0.5305 0.6711
-0.5312 0.3973 0.7483
-0.5360 0.4094 0.7383
-0.5406 0.4123 0.7334
-0.5444 0.4127 0.7303
-0.5165 0.3499 0.7815
-0.4745 0.3033 0.8264
-0.4883 0.3223 0.8110
-0.4884 0.3119 0.8150
-0.5002 0.3183 0.8053
-0.4768 0.2642 0.8384

0.2164 -0.7923 0.5705
0.2142 -0.7891 0.5757
0.2155 -0.7913 0.5722
0.2128 -0.7897 0.5754
0.2181 -0.7932 0.5685
0.0849 -0.6903 0.7185
0.1032 -0.7090 0.6976
0.1679 -0.7627 0.6245
0.1455 -0.7424 0.6540
0.1272 -0.7280 0.6737
0.2254 -0.7851 0.5769
0.2172 -0.7782 0.5892
0.2096 -0.7782 0.5920
0.2097 -0.7760 0.5949
0.2535 -0.8093 0.5299
0.2836 -0.8361 0.4697
0.2699 -0.8279 0.4916
0.2747 -0.8315 0.4829
0.2659 -0.8286 0.4926
0.2997 -0.8478 0.4376
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Table 10. Eigenvectors values of the original images of (Patient 2, Lesion C)

Image

Red Green Blue
1%t C. 1%t C. 1% C.

Red Green Blue
ond ¢, 2md . 2™ C.

Red Green Blue
3rd . 3" C. 3 C.

al
a2
a3
ad
ad
bl
b2
b3
b4
bb
cl
c2
c3
c4d
cH
d1
d2
d3
d4
d5

0.7914 0.4704 0.3904
0.8022 0.4589 0.3820
0.8000 0.4597 0.3857
0.7922 0.4686 0.3910
0.8019 0.4596 0.3819
0.7794 0.4841 0.3977
0.8021 0.4558 0.3859
0.8006 0.4591 0.3850
0.8011 0.4582 0.3851
0.8144 0.4459 0.3715
0.7603 0.5052 0.4083
0.7580 0.5083 0.4087
0.7564 0.5125 0.4064
0.7618 0.5162 0.3914
0.7573 0.5138 0.4032
0.7614 0.5056 0.4057
0.7622 0.4993 0.4121
0.7563 0.5098 0.4101
0.7506 0.5173 0.4111
0.7533 0.5105 0.4146

-0.6060 0.5195 0.6025
-0.5863 0.4841 0.6496
-0.5917 0.4971 0.6347
-0.6023 0.4972 0.6244
-0.5903 0.5101 0.6256
-0.6155 0.4730 0.6305
-0.5962 0.5723 0.5631
-0.5979 0.5696 0.5639
-0.5972 0.5703 0.5639
-0.5798 0.5985 0.5528
-0.6453 0.5156 0.5637
-0.6498 0.5342 0.5408
-0.6474 0.4981 0.5769
-0.6254 0.4284 0.6522
-0.6419 0.4718 0.6045
-0.6016 0.3179 0.7328
-0.6095 0.3390 0.7166
-0.6039 0.3029 0.7372
-0.6181 0.3299 0.7135

-0.6319 0.3872 0.6714

0.0806 -0.7133 0.6962
0.1131 -0.7451 0.6573
0.1000 -0.7359 0.6697
0.0982 -0.7302 0.6762
0.0927 -0.7270 0.6803
0.1171 -0.7362 0.6666
0.0358 -0.6817 0.7308
0.0396 -0.6817 0.7306
0.0388 -0.6818 0.7305
0.0241 -0.6656 0.7459
0.0742 -0.6921 0.7180
0.0565 -0.6755 0.7352
0.0932 -0.6995 0.7086
0.1690 -0.7416 0.6492
0.1204 -0.7166 0.6870
0.2416 -0.8020 0.5463
0.2181 -0.7974 0.5627
0.2517 -0.8052 0.5370
0.2334 -0.7897 0.5674
0.1822 -0.7678 0.6142

Table 11. Eigenvectors Values of the original images of (Patient 3, Lesion A)

Image

Red Green Blue
1°t C. 1t C. 1t C.

Red Green Blue
ond ¢, 2nd C. 27 C.

Red Green Blue
34 C. 3¢ C. 37 C.

al
a2
a3
ad
ad
bl
b2
b3
b4
b5
cl
c2
c3
c4d
ch
d1
d2
d3
d4
ds

0.6940 0.5265 0.4911
0.6707 0.5414 0.5070
0.7409 0.4924 0.4567
0.6766 0.5371 0.5037
0.6724 0.5378 0.5085
0.6686 0.5498 0.5007
0.6618 0.5542 0.5048
0.6518 0.5608 0.5106
0.6220 0.5830 0.5227
0.6196 0.5839 0.5245
0.7944 0.4652 0.3907
0.7911 0.4687 0.3931
0.7896 0.4693 0.3952
0.7802 0.4744 0.4078
0.7929 0.4644 0.3946
0.7985 0.4512 0.3986
0.7962 0.4565 0.3970
0.7955 0.4583 0.3964
0.7957 0.4587 0.3955
0.7928 0.4634 0.3959

-0.7185 0.4628 0.5192
-0.7402 0.4449 0.5042
-0.6701 0.4968 0.5514
-0.7341 0.4383 0.5186
-0.7383 0.4390 0.5120
-0.7431 0.4680 0.4783
-0.7491 0.4627 0.4742
-0.7580 0.4593 0.4631
-0.7824 0.4354 0.4453
-0.7844 0.4375 0.4396
-0.6040 0.5368 0.5891
-0.6092 0.5449 0.5762
-0.6114 0.5475 0.5714
-0.6228 0.5279 0.5774
-0.6067 0.5410 0.5824
-0.5992 0.5316 0.5986
-0.6011 0.5227 0.6045
-0.6021 0.5242 0.6022
-0.6019 0.5267 0.6003
-0.6056 0.5262 0.5969

0.0461 -0.7132 0.6995
0.0474 -0.7135 0.6991
0.0447 -0.7146 0.6981
0.0577 -0.7207 0.6909
0.0522 -0.7197 0.6923
0.0287 -0.6919 0.7214
0.0292 -0.6920 0.7213
0.0252 -0.6889 0.7245
0.0321 -0.6859 0.7270
0.0273 -0.6838 0.7291
0.0643 -0.7039 0.7074
0.0559 -0.6952 0.7166
0.0518 -0.6928 0.7192
0.0587 -0.7045 0.7073
0.0570 -0.7011 0.7107
0.0582 -0.7168 0.6949
0.0684 -0.7200 0.6906
0.0682 -0.7177 0.6930
0.0670 -0.7157 0.6952
0.0683 -0.7130 0.6978




Table 12. Eigenvectors Values of the original images of (Patient 3, Lesion B)

I.M.M. Technical Report Number 5

Image

Red Green Blue
15t C. 1%t C. 1% C.

Red Green Blue
ond @, 2nd . 2™ (.

Red Green Blue
3rd . 37 C. 3" C.

al
a2
a3
ad
ad
bl
b2
b3
b4
b5
cl
c2
c3
c4
cH
d1
d2
d3
d4

d5

0.7766 0.4496 0.4412
0.7863 0.4414 0.4323
0.7884 0.4395 0.4304
0.8175 0.4012 0.4132
0.8167 0.4029 0.4132
0.7753 0.4399 0.4532
0.7775 0.4386 0.4506
0.7534 0.4648 0.4652
0.7923 0.4254 0.4374
0.7959 0.4219 0.4342
0.8104 0.4167 0.4119
0.8126 0.4139 0.4104
0.8914 0.2994 0.3404
0.8933 0.3009 0.3338
0.9297 0.2380 0.2811
0.8128 0.4098 0.4140
0.8134 0.4105 0.4122
0.8438 0.3701 0.3886
0.9875 0.1063 0.1164
0.8461 0.3693 0.3843

-0.6298 0.5683 0.5295
-0.6178 0.5680 0.5438
-0.6151 0.5695 0.5453
-0.5744 0.6188 0.5358
-0.5760 0.6143 0.5394
-0.6268 0.6240 0.4666
-0.6244 0.6238 0.4701
-0.6543 0.6002 0.4601
-0.6059 0.6330 0.4819
-0.6012 0.6356 0.4844
-0.5851 0.5370 0.6077
-0.5822 0.5440 0.6042
-0.4434 0.7321 0.5171
-0.4397 0.7392 0.5102
-0.3577 0.7651 0.5353
-0.5786 0.6507 0.4917
-0.5772 0.6573 0.4846
-0.5298 0.6899 0.4933
-0.1575 0.6951 0.7015

-0.5271 0.6870 0.5003

-0.0127 -0.6891 0.7245
-0.0055 -0.6946 0.7193
-0.0054 -0.6946 0.7193
-0.0408 -0.6754 0.7364
-0.0365 -0.6785 0.7337
-0.0775 -0.6458 0.7596
-0.0748 -0.6469 0.7589
-0.0653 -0.6510 0.7563
-0.0719 -0.6468 0.7593
-0.0716 -0.6466 0.7594
0.0320 -0.7335 0.6790
0.0268 -0.7299 0.6830
-0.0944 -0.6118 0.7853
-0.0932 -0.6025 0.7926
-0.0877 -0.5983 0.7965
-0.0679 -0.6392 0.7660
-0.0720 -0.6321 0.7715
-0.0855 -0.6221 0.7782
-0.0063 -0.7111 0.7031
-0.0793 -0.6258 0.7759

Table 13. Eigenvectors Values of the original images of (Patient 3, Lesion C)

Image

Red Green Blue
1°t C. 1t C. 1t C.

Red Green Blue
ond ¢, 2nd C. 27 C.

Red Green Blue
3¢ C. 3™ C. 3 C.

al
a2
a3
ad
ad
bl
b2
b3
b4
b5
cl
c2
c3
c4d
ch
d1
d2
d3
d4
ds

0.7756 0.4380 0.4546
0.7624 0.4475 0.4675
0.7834 0.4302 0.4485
0.7655 0.4446 0.4652
0.7691 0.4399 0.4637
0.7525 0.4748 0.4564
0.7385 0.4868 0.4665
0.7608 0.4624 0.4554
0.7097 0.5041 0.4921
0.7117 0.5038 0.4896
0.7836 0.4473 0.4311
0.7816 0.4488 0.4332
0.8154 0.4151 0.4034
0.7977 0.4367 0.4160
0.7939 0.4410 0.4186
0.7993 0.4397 0.4096
0.8095 0.4262 0.4038
0.8280 0.4149 0.3772
0.8212 0.4236 0.3823

0.8036 0.4352 0.4060

-0.6307 0.5665 0.5303
-0.6455 0.5776 0.4997
-0.6190 0.6050 0.5009
-0.6405 0.5957 0.4847
-0.6357 0.6022 0.4830
-0.6580 0.5699 0.4922
-0.6742 0.5375 0.5064
-0.6455 0.6121 0.4569
-0.7017 0.5678 0.4303
-0.7001 0.5664 0.4348
-0.6083 0.6935 0.3861
-0.6089 0.6999 0.3734
-0.5669 0.7134 0.4119
-0.5875 0.7186 0.3722
-0.5924 0.7162 0.3690
-0.5825 0.7343 0.3485
-0.5696 0.7367 0.3644
-0.5540 0.7087 0.4367
-0.5623 0.7146 0.4160
-0.5791 0.7290 0.3649

0.0252 0.6980 -0.7156
0.0464 0.6827 -0.7292
0.0558 0.6700 -0.7403
0.0616 0.6690 -0.7407
0.0668 0.6663 -0.7427
0.0264 0.6707 -0.7412
0.0042 0.6885 -0.7252
0.0675 0.6415 -0.7641
0.0625 0.6507 -0.7567
0.0582 0.6522 -0.7558
0.1263 0.5648 -0.8155
0.1356 0.5556 -0.8203
0.1168 0.5646 -0.8170
0.1364 0.5412 -0.8297
0.1370 0.5409 -0.8298
0.1475 0.5172 -0.8431
0.1422 0.5250 -0.8391
0.0861 0.5706 -0.8167
0.0970 0.5566 -0.8251

0.1372 0.5284 -0.8379
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B.1 The estimations of the third component using the |Blue-Green|
band

Session:1 PATIENT:1 LESION:A

» =
Y 238 =

Session:2

Session:3

7
WL

Session:4

%

Fig.12. Set of |B-G| Images of (Patient 1, Lesion A).

Session:1 PATIENT:1 LESION:B |B-G|
T - T

Session:2

Session:3

Session:4

e

Fig. 13. Set of |B-G| Images of (Patient 1, Lesion B).
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Session:1 PATIENT:1

Fig. 14. Set of |B-G| Images of (Patient 1, Lesion C).

Session:1 PATIENT:2 LESION:A

kS

Session:2

Session:3

Sabt,

Session:4

Fig. 15. Set of |B-G| Images of (Patient 2, Lesion A).
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Session:1 PATIENT:2 LESION:B |1B-G|

Session:2

Session:3

Session:4

Fig. 16. Set of |B-G| Images of (Patient 2, Lesion B).

Session:1 PATIENT:2 LESION:C |1B-G|

Session:2

Session:3

Session:4

Fig. 17. Set of |B-G| Images of (Patient 2, Lesion C).
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Session:1 PATIENT:3 LESION:A |1B-G|

Session:2

Session:3

Session:4

Fig. 18. Set of |B-G| Images of (Patient 3, Lesion A).

Session:1 PATIENT:3 LESION:B |B-G|

Session:2

Session:3

Session:4

Fig. 19. Set of |B-G| Images of (Patient 3, Lesion B).

25



26 Maletti et al.

Session:1 PATIENT:3 LESION:C 1B-G|

Session:2

9

Session:3

Session:4

Fig. 20. Set of |B-G| Images of (Patient 3, Lesion C).
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Table 14. Eigenvalues of the original images of Patient 1

Image Lesion A Lesion B Lesion C
tc. 1feo 1tojeme 2me 2me) 3. 3C. 3 C.
al |1444.88 54.42 12.75(3596.48 25.48 8.42 |2285.39 7.31 4.86
a2 (2526.04 70.61 12.69(3106.99 20.41 9.27 12005.87 7.32 4.44
a3 |1749.43 57.12 9.73 |3388.21 28.69 8.09 [1874.55 7.30  5.01
ad |1992.79 47.79  9.95 |2880.91 34.18 11.33|1372.19 847  5.64
ab |2372.88 52.13 9.93 |3138.65 22.62 10.86 [1346.64 8.75 5.44
bl |1691.89 36.36  9.69 [2401.09 34.23  9.49 |1675.95 12.83  3.96
b2 |2458.85 39.03 9.38 [3148.66 36.86 10.86 |1764.73 12.44  3.83
b3 |1739.71 33.00 9.82 [2776.68 23.46 9.34 |1559.24 12.29  3.93
b4 [1499.85 30.12 10.46 (3188.71 21.02  7.69 |1588.07 12.27  3.80
b5 |1729.61 25.50 9.33 |2682.42 32.03 8.49 [1510.40 12.10 3.94
cl [2208.10 44.47 7.72 |2703.60 31.40 10.15(1824.84 7.52 3.39
c2 [2282.69 39.09 7.80 |2835.99 21.76  9.30 |1597.96 7.41 3.24
c3 |2484.93 42.24 741 |3227.58 17.70  8.18 |1597.69 7.47  3.18
cd4 |1772.81 34.85 7.41 |3146.52 20.15  5.72 |1637.90 7.53  3.20
ch (235296 41.59 7.68 |3075.80 21.01  5.83 |1499.40 7.05 3.41
dl |2333.76 35.34 6.41 |1888.44 28.28 5.62
d2 |1851.65 2893 6.75 (2363.85 30.98  5.26
d3 |2856.83 40.40 6.70 (2834.36 24.25  4.53
d4 |2138.39 26.13 6.67 |2726.42 24.39 3.88
d5 |2849.13 29.47  6.37 (2766.16 117.89 3.25
References
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Table 15. Eigenvalues of the original images of Patient 2
Image Lesion A Lesion B Lesion C

**C. 1** ¢ rrfef2ce. 2mce. 2maf3dce. 3C. 3C.
al |172.33 7.81 3.93 |2231.70 46.91 3.21 |2513.00 106.44 8.49
a2 |152.58 6.55  4.19 |1819.39 43.95 3.32 |3383.01 81.88 4.73
a3 |148.49 5.64  4.88 |2042.38 45.60 3.19 |3324.11 76.87 5.82
ad |147.52 5.66  4.86 |1783.37 44.10  3.20 |3327.13 75.38  6.18
a5 (156.78 7.12  4.00 |1686.52 44.73  3.35 |3316.42 82.44  5.58
bl |321.17 9.76  4.75 |2346.98 55.01  3.64 (2898.91 37.79 4.93
b2 |553.82 10.70 4.36 [2040.16 44.42  3.72 |2778.70 67.35 5.62
b3 [389.53 9.83  4.38 |1763.97 26.64 5.30 [2857.95 69.98 5.08
b4 |395.31 10.89 4.21 [1728.86 30.87 4.94 (2823.23 68.87 4.99
b5 1226.90 9.76  4.84 [2079.96 35.50  5.87 (3238.57 87.96 5.20
cl |154.41 9.17 4.51 {3790.00 20.12 3.21 |3262.82 27.35 4.61
c2 15791 8.50  4.54 |3445.74 20.91  3.55 |3536.77 24.82 4.70
c3 [154.56 8.36 4.58 (2434.32 24.07  4.28 |4381.46 24.73 441
c4 |160.29 8.33 4.60 |2347.57 24.22  4.01 |4176.64 27.17 4.29
c5 |175.15 7.76  4.85 |3457.68 24.17  3.66 |5274.74 26.34  4.09
dl (339.97 11.56 4.19 |3054.50 16.41 3.58 [3244.15 24.45 4.09
d2 (624.10 11.73 3.66 |3466.72 16.08  3.37 |2823.77 22.74  5.52
d3 |[655.37 12.13  3.71 |2346.85 17.96  3.84 |3222.69 25.79  3.86
d4 |(582.09 12.45 3.72 |2407.31 20.74  3.99 |3216.34 30.16 3.78
d5 |[459.18 12.29  3.98 |2602.88 25.12  4.13 |3388.39 28.01 5.53

Table 16. Eigenvalues of the original images of Patient 3
Image Lesion A Lesion B Lesion C

1**C. 1 C. 1fejemce. v 2mal3te. 3Ye. 3C
al |432.79 3848 2.39 |1118.61 32.33  2.23 |945.99 39.22 6.37
a2 |383.62 36.70 2.38 |1283.75 32.68 2.32 |810.32 34.82 6.43
a3 |598.55 41.30 1.99 |1261.05 33.08 2.35 |749.23 44.51 6.75
a4 |350.66 38.99 1.88 |1444.51 56.44 2.35 |698.18 39.69 6.81
a5 |352.76 38.41 1.84 |1451.91 50.91 2.46 |815.85 39.76 5.70
bl |545.49 31.44  2.52 (1353.42 67.05 3.61 |2080.46 57.52 6.34
b2 1523.02 31.61 2.59 |1347.74 65.91 3.63 |1713.35 52.22 7.51
b3 [525.11 32.61 2.12 {986.75 54.96  3.57 [1587.72 83.14 6.21
b4 |443.85 31.12 2.32 |1267.77 6297  3.31 [1196.66 47.50 7.07
b5 [438.80 31.44 2.36 (1344.24 64.67 3.39 |1234.96 46.53 7.22
cl |388.04 19.31 2.15 |1054.96 11.68 3.62 |588.61 20.91 7.73
c2 |339.61 21.80 2.24 |916.67 12.92 3.47 |527.21 21.09 7.69
c3 |316.48 23.07 2.17 |874.05 7791 2.63 |796.43 29.10 7.17
c4 |246.08 23.08 1.97 | 83544 95.21 2.76 |694.37 2410 7.31
c5 |311.00 22.75 1.91 |923.03 93.51 3.19 |585.96 24.98 7.14
dl |616.06 15.92 1.98 |1387.41 1947 3.66 |825.42 16.95 6.34
d2 |[527.81 16.37 1.90 |1384.15 20.19  3.61 |1230.42 17.53 5.56
d3 [491.69 16.99 1.92 |1095.60 29.06 3.70 |1940.85 27.61 6.49
d4 (47231 17.18 1.93 |1130.25 29.10  3.69 |1968.43 24.25 6.59
d5 (44091 1775 2.01 |1038.86 28.94  3.67 |770.58 20.26 5.84
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Abstract. A two-stage hierarchical classification scheme of psoriasis le-
sion images is proposed. These images are basically composed of three
classes: normal skin, lesion and background. The scheme combines con-
ventional tools to separate the skin from the background in the first stage,
and the lesion from the normal skin in the second stage. These tools are
the Expectation-Maximization Algorithm, the quadratic discrimination
function and a classification window of optimal size. Extrapolation of
classification parameters of a given image to other images of the set is
evaluated by means of Cohen’s Kappa coefficient.

1 Introduction

We use a set of 175 RG B psoriasis lesions images, of size 556 pixels by 748 pix-
els, taken at the Gentofte Hospital, Denmark, during pilot sessions with three
invited patients. For each patient, three lesions were followed once a week dur-
ing at least three weeks. In each session, five images of each lesion were taken.
Examples can be seen in Figure 1.

The images of lesions with psoriasis can be assumed to contain three classes:
background, normal skin and lesion. Lesions have high contrast with the rest
of the image in the third principal component. Principal Component Analysis
has shown that a rough estimation of the third component can be obtained sub-
tracting the green band from the blue band, while the red band almost does not
have any influence [6]. Alternatively, in the absolute difference |B — G|, lesions
and background are both enhanced from the normal skin. The background has a
good contrast with the rest in the red band: advantage can be taken of the green
color of the curtain used as background during the image acquisition process, be-
cause its density function is positioned in one extreme of the red band histogram.

The present classification scheme consists of two stages. In the first stage, the
skin is separated from the background using the red band, and, in the second
stage, the lesion is separated from the normal skin using the absolute value of
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Fig. 1. Set of Psoriasis Lesions. From top to bottom, the row number corresponds with
the patient number. From left to the right, columns correspond to the labelled lesions
A, B and C, respectively.

the difference between the blue and the green bands.

For future alignment purposes, it is expected that, for a given lesion, the
classification scheme produces thematic maps with a repeated pattern indicat-
ing that lesion within and between sessions.

2 Lesion Classification

As mentioned before, the hierarchical classification scheme is composed of two
stages. In both steps, the pixels of the classes are assumed to be Gaussian dis-
tributed. Although this is almost certainly not the case, Clarke et al. have shown
that the quadratic method is fairly robust to deviations from normality, unless
we have very skewed marginals [2]. The red band R is first used to discriminate
between the background and the skin, then the output of the previous step is
combined with the |B — G| band for segmenting the lesions from the normal
skin. In both stages, the use of Wang’s Expectation-Maximization Algorithm
[11] (setting € = 0.0001 in [11]) is proposed. This algorithm is expected to pro-
vide the parameters (mean p, covariance matrix X and a-priori probability p)
of two Gaussian distributed classes: skin and background in the first step, and
lesions and normal skin in the second step. The threshold between the classes
is obtained using the following discrimination function for Gaussian distributed
classes with different dispersion [3]:
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_ _ L2,1)p2
—(@ = ) I e =) + (0= ) Ty o - pe) 2 20g(7022) (1)
(1,2)P1
where p; is the mean, X; is the covariance matrix and p; is the a priori proba-
bility of the i —th class Vi € {1,2}. L(; o) is the cost of belonging to class 1 and
being classified as belonging to class 2 and vice-versa for L3 1).

The discrimination function is applied to the output of the convolution of the
image with a circular window of optimal size. The critical number of elements
needed for classification is computed as a function of the minimal separability
between the two classes [7]:

7.1800
VAdA@),2)

where w is the radius of the estimated optimal disc for classification and dA is
the weighted sum of the difference of areas of the class density functions:

w(1),(2) = —6.8341 + (2)

Q
1
dAw). @) = dA)@) = 5 Y 1hon] = he ) (3)
n=1

@ is the number of quantization levels, h(;) and h(y) are the estimated density
functions of classes 1 and 2 respectively.

The values of this optimal window sum to one; each element of the window
has the value 1/n. corresponding to the inverse of the size of the window n,.
given by its number of elements. It is clear that after convolving the image, each
pixel is replaced with the estimated mean of its neighborhood.

In the first step of this classification scheme, pixels whose estimated local
mean is greater than the threshold are considered belonging to the class skin,
and vice-versa, for the background. In the second step, pixels whose estimated
mean of the neighborhood is greater than the threshold are considered belonging
to the class normal skin, and vice-versa, for the lesion. Note that, in both cases,
the discrimination function is constructed with the original data, but it is applied
to the pixels belonging to the output of the convolution. A set of thematic maps
indicating the clases, the lesions and the rest, is obtained at the end of this stage.

2.1 Results and Discussion

During the classification stage: for the first step, the costs were L4 gy = 500
and Lp 4y = 1; for the second step, L4 gy = 1 and L(p 4) = 1 was set. These
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values were empirically found. Setting individual parameters depending on the
lesions could obviously improve the results obtained. However, to set the same
values for all the cases was helpful for comparison purposes. The Expectation-
Maximization Algorithm was applied to each single image. Classification outputs
are presented for each single image and classification stage in Appendix A.

By visual assessment of the classification output of the first stage, it can
be noted that the results are satisfactory, except for the set of images of the
third session of the case (2, '), which is a lesion partially covered by hair. With
regard to the output of the second classification stage, which is the desired out-
put, comments to each particular case follow. For the first patient, the output of
the classification scheme proposed has shown to be enough to define a smaller
searching and alignment area of the lesion patterns with satisfactory results, in
spite of some border effects produced by the window size. On the other hand,
it could be said that for the case (2, A) the expected common pattern roughly
appears in the thematic maps, however, it does not correspond to the lesion. The
shadows present on the image borders clearly are influencing the classification
results. In fact, the presence of shadows did not affect the output of the first
classification stage very much, which contained for a given lesion, a repeated
skin pattern within and between sessions. However, it clearly affects the output
of the second classification stage for the cases (2, B), (2,C), (3,4), (3,B) and
(3,0).

An aspect that has to be put under consideration during the alignment pro-
cess, is the size of the lesion pattern. By visual inspection of the original data-set,
it can be deduced that the size between lesions has a significant variance: in some
images, one clear lesion composed by only one connected region can be observed,
while in other cases, a lesion can consist of a set of smaller size connected re-
gions; finally, there are also examples, where the number of connected regions is
so large while the size of the regions is so small, that the whole can be taken as
only one lesion. It is clear that a good definition of the lesion does not avoid the
illumination problem.

In order to reduce the processing time, one aspect considered was the use of
the output of the first image of each session as input for the remaining images
of the session. In the following, the uncertainty of using the parameters of a
randomly selected image for a given patient, lesion and session, to segment the
remaining images of the same session is evaluated. Since the images are not
registered, a descriptor that is invariant to translations and rotations is required.
This is the case of the normalized histogram. Table 1 is based on data presented
in Table 4. Each single u cell value in Table 1 was computed according to the
following Equation:

1 &
Hpds =~ > Elelhp i hpis,ebl] (4)
¢ =1
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where Elcorr(h(nXps,ip), h(nXp15.5))] is calculated using Equation 13 and
p is the index for patient, [, for lesion, s, for session, i, for capture, b for color
band. The symbol n. is the number of captures of the s —th session. The session
s takes values in {’a’,’b’,’c’,’d’}, where the order in the sequence indicates the
session week. The color band b takes values in {'R’,G’,'B’}.

In a similar fashion, for the standard deviation, each single o cell value is
obtained by computing the following:

Ne

Z(E[C[hp,l,syiyba Pp,t,s,:0]] = Hip,t,s)?

i=1

1

()

Op,l,s = T

where the indexes have the same meaning as in Equation 4.

Table 1. Average and dispersion correlation value between the normalized histogram
of a normalized image red band and the normalized histogram of the normalized red
bands of the images belonging to the same session.

(Patient,| pa Oa o o He Oc Hd 0d
Lesion)
(1,A) 1]0.8525 0.0260[0.8618 0.0328]0.8521 0.0391|0.8448 0.0258
(1,B) [0.8055 0.0248/0.8107 0.0348|0.7264 0.0210(0.7342 0.0305
(1,C) (0.8413 0.0061|0.8876 0.0192|0.8650 0.0156
(2,A) 1]0.7991 0.0113]0.8777 0.0174|0.8486 0.0215(0.8774 0.0673
(2,B) (0.8937 0.0110/0.7312 0.0438|0.8326 0.0100(0.8841 0.0464
(2,C) (0.8345 0.0151/0.7924 0.0231|0.8535 0.0145(0.7906 0.0514
(3,A) 1]0.8477 0.0094/0.9072 0.0155|0.8675 0.0204|0.8731 0.0186
(3,B) [0.7708 0.0372|0.8776 0.0292|0.7498 0.0310{0.9062 0.0329
(3,C) (0.8749 0.0265|0.9057 0.0098|0.8799 0.0362(0.8074 0.0233

Table 2 was constructed in the same fashion as in Table 1, but using the skin
data of the |B-G| band.

Results presented in Tables 1 show that in general, the normalized histograms

of red bands of images belonging to the same sessions are have a correlation su-
perior to 0.8. Exceptions are, for instance, the cases for which the lesion presents
occlusions. See the last captures of the the third and fourth session of the case
(1, B). See also the first and fifth capture of the second session of the case (2, B).
Note that in the first session of the case (3, B), the two last captures show a large
translation on the focused region. For the images of the third session of the case
(3, B), it can be observed that the shadows are not presented in the same way,
for all the captures. Shadows, hairs and occlusions seem not to be irrelevant.

With regard to the results presented in Table 2, which was generated using
only the values of pixels belonging to the class skin, it has to be mentioned,
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Table 2. Average and standard deviation correlation value between the normalized
histogram of a normalized | B — G| band skin data and the normalized histogram of the
normalized |B — G| bands skin data of the images belonging to the same session.

(Patient,| pa Oa b op e O hd o4
Lesion)
(1,A) 1]0.6472 0.0819(0.5790 0.0353]0.5011 0.1946|0.5387 0.0735
(1,B) [0.6170 0.1594|0.7657 0.1718(0.3759 0.0752(0.5461 0.0437
(1,C) (0.6166 0.1483|0.7061 0.0502|0.6569 0.0272
(2,A) 1]0.7306 0.0474/0.6279 0.0227]0.6916 0.1287|0.6956 0.0678
(2,B) [0.5881 0.1014|0.5786 0.1156|0.5373 0.0678|0.6598 0.1591
(2,C) (0.5877 0.1490/0.5755 0.1130(0.6440 0.1524/0.6296 0.1287
(3,A) 1]0.6199 0.0732(0.6602 0.0604|0.5344 0.0787[0.5798 0.0727
(3,B) [0.6797 0.0457|0.5004 0.0695|0.4920 0.1040(0.4405 0.0782
(3,C) (0.8134 0.1557|0.7117 0.0653|0.7988 0.1681|0.5462 0.0851

that the average correlation values decrease for all the cases, which is not very
encouraging. However, as mentioned before, there is more contrast between the
lesion and the rest in these bands.

The application of the discrimination function generated with the parame-
ters produced by the Expectation-Maximization Algorithm for the first image
of each session to the remaining images of the same session is evaluated here.
Cohen’s Kappa coefficient [9], [10] was used to compare pairs of thematic maps
produced for each given single image. For each pair, the first thematic map was
produced with the discrimination function depending on the given image data.
The second thematic map was produced with the discrimination function of the
first image of the session the given image belongs to. For each pair, the first
thematic map was used as the ground truth. The Kappa coefficient is a global
indicator of classification quality, which varies from minus one to one, where
a perfect classification would give a value of one, and a completely erroneous
classification would give a value of minus one. For each pair of corresponding
thematic maps, the confusion matrix C' [5] was constructed assuming two classes
(k = 2). For the first classification stage, these classes were the curtain and the
skin. For the second classification stage, the normal skin and the lesion.

The Kappa coefficient is defined as:
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where
k
d= Z Ciyi
=1

o Zim(Ejn ) (e 0)) o
N

N = Z Ci,j

i=1 j=1

and c; ; is the element of the confusion matrix located at the ¢ — th row and
j — th column.

Each single cell value in Tables 6 and 7 is a Kappa value £, s ., where
p means patient, [, lesion, s, session, ¢, capture and r is for Table 6 equal to
"SKIN" and for Table 7 equal to "LESION".

The average and standard deviation of the Kappa coefficient was computed
for each patient and lesion, first using the thematic maps indicating skin (the
output of the first classification stage), and then using the thematic maps indi-
cating lesions (the output of the second classification stage). The estimation of
the average of Kappa is defined as:

Ns  Nec

1
E[’ip,l,r] = m Zzﬂp,l,s,c,r (8)

s=1 c=2

where p is the patient, [, the lesion, s, the session, ¢ the capture and r takes
values in {'SKIN'/ LESION'}. Note that the Kappa value of the first image
of each session is not included, because it is supposed to be one. The standard
deviation of ,; , is defined as:

Ns  Nec

1
Slkpir] = P F— SO K2 wen — B2lipasl: 9)

s=1c=2
Results can be seen in Table 3, which is based on data of Tables 6 and 7.

Excluding the six captures where the lesion (1, B) is occluded (the last two
captures from the second to the fourth session), the mean Kappa (see Equation 8)
increases from 0.7805 to 0.9081 and from 0.6687 to 0.8769, and its standard de-
viation reduces from 0.1974 to 0.0601 and from 0.3223 to 0.0969, for the first
and second classification stage respectively!. The bad classification outputs in
the case (2,C) are partly due to the fact that the lesion is partially covered by
hair. On the other hand, by visual assessment of the incomplete thematic maps

! See in [8] a scheme for registration in presence of occlusions.
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Table 3. Classification Stage: Kappa values x of the classification outputs using the
parameters of each single image compared with the classification output by using the

parameters of the first image of each session.

N is the number of processed images.

(Patient,

Lesion) |N|E[xkp1,sx1n]|S[kp1,sx1n]|El5p1,LES10N]|SKp,1,LESTON]
(1,A) |20 0.9171 0.0580 0.8966 0.0710
(1,B) |20 0.7805 0.1974 0.6687 0.3223
(1,C) |15 0.9428 0.0470 0.8224 0.0902
(2,A) |20 0.7244 0.1100
(2,B) [20| 0.8916 0.0848 0.6124 0.1641
(2,C) |20 0.7630 0.2013 0.4579 0.4043
(3,A) |20 0.8606 0.1005
(3,B) |20 0.9082 0.0810 0.7551 0.1955
(3,C) |20 0.9082 0.0810 0.9297 0.0516

of the third session of the same case (2,C), they could, in fact, be considered
not qualified for being ground truth: the revision of the standards of the image
acquisition procedure is suggested?. Related work on controls during the image
acquisition time can be found in [4]. Note, that, in general, in spite of being
related to descriptors completely different, the results presented in Tables 1 and
2 predict the classification results presented in Table 3 quite well.

3 Conclusions

The combination of conventional tools like the Expectation-Maximization Algo-
rithm, the quadratic discriminant function and a classification window of optimal
size has shown to be a suitable approach to segment images of psoriasis lesions.
There are aspects related to the image data that are not irrelevant. This is, for
instance, the case of the shadows, which clearly affect the quality of the clas-
sification results. For a correct lesions registration, it is required that thematic
maps to be used to select the lesion patterns to be registered, -if they are au-
tomatically generated- have to contain a repeated pattern within and between
sessions. This is, in general, not the case when the original data set is used.
Illumination correction is required in order to improve the classification output.
Hair and lesions occlusion are aspects to consider during the revision of the im-
age acquisition standards.

On the other hand, results indicate that the parameters of the first image of

each session could be used to segment the remaining images of the same session,
when the situations mentioned before do not appear.

2 A hair removal scheme is proposed in [1].
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Appendix
A Expectation-Maximization Algorithm to each image

A.1 The output of the first classification stage

Session:1 PATIENT:1 LESION:A

Session:2

Session:3

Session:4

Fig. 2. Overlay of thematic maps with original images for (Patient 1, Lesion A).
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Session:1 PATIENT:1 LESION:B

Session:2

Session:3

Session:4

Fig. 3. Overlay of thematic maps with original images for (Patient 1, Lesion B).

Session:1 PATIENT:1 LESION:C

Session:2

Session:3

Fig. 4. Overlay of thematic maps with original images for (Patient 1, Lesion C).
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Session:1 PATIENT:2 LESION:B

Session:2

Session:3

Session:4

Fig. 5. Overlay of thematic maps with original images for (Patient 2, Lesion B).

Session:1 PATIENT:2 LESION:C

Session:2

Session:3

Session:4

Fig. 6. Overlay of thematic maps with original images for (Patient 2, Lesion C).
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Session:1 PATIENT:3 LESION:B

Session:2

Session:3

Session:4

Fig. 7. Overlay of thematic maps with original images for (Patient 3, Lesion B).

Session:1 PATIENT:3 LESION:C

Session:2

Session:3

Session:4

Fig. 8. Overlay of thematic maps with original images for (Patient 3, Lesion C).
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A.2 The output of the second classification stage

Session:1 PATIENT:1 LESION:A

Session:2

Session:3

Session:4

Fig. 9. Overlay of thematic maps with original images for (Patient 1, Lesion A).

Session:1 PATIENT:1 LESION:B

Session:2

Session:3

Session:4

Fig. 10. Overlay of thematic maps with original images for (Patient 1, Lesion B).
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Session:1 PATIENT:1 LESION:C

Session:2

Session:3

Fig. 11. Overlay of thematic maps with original images for (Patient 1, Lesion C).

Session:1 PATIENT:2 LESION:A

Session:2

Session:3

Session:4

Fig. 12. Overlay of thematic maps with original images for (Patient 2, Lesion A).
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Session:1 PATIENT:2 LESION:B

Session:2

Session:3

Session:4

Fig. 13. Overlay of thematic maps with original images for (Patient 2, Lesion B).

Session:1 PATIENT:2 LESION:C

Session:2

Session:3

Session:4

Fig. 14. Overlay of thematic maps with original images for (Patient 2, Lesion C).
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Session:1 PATIENT:3 LESION:A

Session:2

Session:3

Session:4

Fig. 15. Overlay of thematic maps with original images for (Patient 3, Lesion A).

Session:1 PATIENT:3 LESION:B

Session:2

Session:3

Session:4

Fig. 16. Overlay of thematic maps with original images for (Patient 3, Lesion B).
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Session:1 PATIENT:3 LESION:C

Session:2

Session:3

Session:4

Fig. 17. Overlay of thematic maps with original images for (Patient 3, Lesion C).
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B Classification output analysis

In Table 4 the average correlation values of the normalized histogram of the
normalized red band of each single image with the normalized histogram of the
normalized red bands of the rest of the images of the same session are shown.

Details of the computation of each single cell value follow. The discrete cor-
relations between pairs of normalized histograms of images of the same session
was first computed:

mazx(h; o hj)
clhyisiv, hpisibl = J 10
iy s it \/max(hi o hi)maz(h; o hj) (10)

where -
(hiohp)n) = > hpsislk] Ppisjln + K] (11)
k=—o0
where hp,l,s,i,b = h(nXp,l,s,i,b) and hp,l,s,j,b = h(nXp,l,SJ,b) are the normalized
histograms of the normalized original images according to Equation 12:
round(255. % (Xp 15,0 — Min(Xp 1.s.c.0))
(maz(Xp1s,eb) — min(Xpis.ep)) +1 .

nXpls.eh = (12)
The nX images are the input to the Expectation-Maximization Algorithm. Each
single cell value in Table 4 is the average correlation between each single image
band and the rest of the images of the same session:

1
— O neclhpisibshpisgps) = 1), (13)
j=1

Elclhp.,s,ir hp.t,s.:0]l =
C

It has to be mentioned that the X images used to compute these values
were the "TIFF" format version of the original acquired "HIPS" format images,
from which 10 rows and columns were removed from the borders, and then sub-
sampled every four columns and rows.

Afterwards, with the same meaning as before, but now using the data of the
region indicating skin Table 5 was generated.
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Table 4. Average correlation values of the normalized histogram of the red band of
each single image with the normalized histogram of the red band of the images that
belong to the same session than that.

Capture| (1, A) [ (1, B) [ (1,0) [ (2, A) [ (2, B)[(2,C) [ (3, A) [ (3, B) | (3,C)
al  |0.8189]0.7957]0.8316]0.8024]0.8816]0.81910.8530]0.8086]0.8500
a2 |0.8516]0.8369|0.8481|0.7829|0.9027|0.8578|0.8353|0.7687|0.8919
a3 [0.8871/0.7765|0.8421|0.8143(0.9027|0.8346|0.8410|0.8082|0.8433
ad  [0.8388]0.7934|0.8404|0.7969(0.8819|0.8237/0.8585(0.7322(0.9027
a5 |0.8662(0.8251|0.8442(0.7990|0.8999|0.8376|0.8505|0.7361|0.8866
bl |0.8929/0.7868|0.9063|0.8581|0.7149|0.8088|0.9177|0.8734|0.9052
b2 |0.8894/0.7624|0.9104|0.8867|0.7719|0.8190|0.8999|0.8406|0.9053
b3 |0.8327/0.8357|0.8765(0.8975/0.6648|0.7632(0.88350.9065|0.9124
b4 |0.82160.8242(0.8756(0.88550.7673(0.7753(0.9213|0.8603|0.8901
b5 |0.8722|0.8442(0.8693(0.8607|0.7373(0.7955(0.9136/0.9074|0.9157
¢l |0.8358]0.6901(0.8783]0.8683|0.8240(0.8644|0.8755|0.7955|0.8318
2 |0.8855(0.7340(0.8633|0.8155|0.8275(0.8636|0.8865|0.7167|0.9079
3 |0.8799(0.7445(0.8829/0.8387|0.83960.8308|0.8842|0.7560(0.9007
¢4 |0.8680(0.7322(0.85350.8591|0.8252(0.8473|0.8428|0.7553|0.8504
5 |0.7913(0.7310(0.8467/0.8613|0.8466|0.8613|0.8487|0.7257(0.9087

dl  |0.8026|0.6896 0.9136(0.9044|0.7447{0.8956|0.9084|0.8189
d2  |0.8452|0.7172 0.8950(0.8018/0.7256|0.8541|0.8490|0.8321
d3  |0.8689|0.7646 0.9085(0.9078(0.8180{0.8614|0.9275|0.7794
d4 |0.8450(0.7534 0.9122(0.9111{0.8344(0.8641|0.9278|0.8207

d5  |0.8623|0.7463 0.7577/0.8953|0.8304|0.8905(0.9181|0.7860
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Table 5. Average correlation values of the normalized histogram of the |B-G| band
skin data of each single image with the normalized histogram of the |B-G| band skin
data of the images that belong to the same session than that.

Capture| (1, A) | (L, B) [(L, OV (2, A) [ (2, B) [(2,C)] (3, A) [ (3, B) [ (3,C)
al |0.6747|0.7358|0.7299|0.6528]0.6746|0.6895|0.6899|0.7057]0.8840
a2 [0.6866]0.4658|0.7075(0.7703|0.5487|0.6706|0.6906|0.6957|0.5348
a3 |0.6573|0.7413(0.7321|0.7358|0.6035|0.3545(0.5158|0.5983| 0.8833
ad  |0.5051|0.7211(0.4225(0.7671|0.4346|0.7017|0.6030|0.7016|0.8812
a5 |0.7122|0.4212(0.4908(0.7272]0.6792(0.5224|0.6002|0.69730.8837
b1 [0.5920[0.4590|0.6418|0.6617|0.5848|0.3785|0.6737/0.3939|0.7666
b2 [0.5681]0.8282(0.7505]0.6029|0.4627|0.6018|0.6868|0.4781|0.7572
b3 [0.5227(0.8355(0.7631|0.6373|0.4604|0.5970|0.7039|0.50690.6391
b4 [0.6121[0.8588|0.6823]0.6230/0.6854|0.6525(0.5539|0.5619/0.7541
b5 [0.6000[0.8470(0.6929]0.6147|0.6996|0.6477|0.6828/0.5610|0.6415
el [0.2272/0.3549|0.6809|0.7719(0.4226/0.7562|0.6255|0.3718(0.4981
2 |0.3616/0.3713|0.6213|0.5366|0.5482/0.7568|0.5076|0.4608|0.8747
3 |0.6340]0.2635|0.6814|0.7889|0.5825/0.4534|0.6097|0.6005|0.8747
¢4 |0.6382/0.4448|0.6356]0.7944|0.5925)0.5020|0.4510|0.6004|0.8747
5 |0.6445)0.4449|0.6653|0.5660|0.5404/0.7504|0.4782|0.4266(0.8717

dl  |0.4177|0.4937 0.7435(0.7712(0.7371{0.6559|0.4613|0.5106
d2 |0.5616|0.5653 0.6118/0.7674|0.6809|0.6586|0.3015|0.6386
d3 |0.6008|0.5882 0.7371/0.4272|0.7338|0.5211|0.4771|0.4917
d4 |0.5256|0.5784 0.6323(0.5592(0.5559{0.5552|0.4761|0.6350

d5  |0.5877|0.5049 0.7532|0.7739|0.4405|0.5085(0.4865|0.4552
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C Expectation-Maximization Algorithm to the first
image of each section

Table 6. Kappa values kp,i,s.c,sxrn of the classification outputs pointing skin using
the Expectation-Maximization Algorithm for all the images of each sessions and for
only the first image of each session.

Capture] (LA) [(LB) [(1,0) | 2.B) | 2.0) | 3.B) [ 3.0)
al 1.0000{1.0000{1.0000{1.0000|1.0000{1.0000|1.0000
a2 0.8716(0.9087(0.9846|0.9898(0.5030{0.8906|0.8906
a3 0.8717(0.9039|0.9519(0.9904|0.3547|0.8463|0.8463
ad 0.9786(0.8591(0.8795|0.9778(0.7077{0.9011|0.9011
ad 0.8707(0.8332|0.8645|0.9429(0.3407{0.9081|0.9081
bl 1.0000{1.0000{1.0000{1.0000{1.0000{1.0000|1.0000
b2 0.8976(0.8192{0.9925|0.9734(0.8306|0.9995(0.9995
b3 0.8775(0.8846(0.9792|0.8318(0.8233|0.8718|0.8718
b4 0.9967(0.7799(0.9609(0.7741{0.8199|0.9251{0.9251
b5 0.98910.7217]0.8593(0.9483(0.7019[0.9242|0.9242
cl 1.0000{1.0000{1.0000{1.0000|1.0000{1.0000|1.0000
c2 0.8714(0.9695(0.9328(0.9748(0.9033|0.9761|0.9761
c3 0.8795(0.9355(0.9916|0.8448(0.8353|0.6875(0.6875
c4d 0.8368|0.4858(0.9433|0.8595[0.8788(0.7995(0.7995
cH 0.9791(0.4762|0.9730(0.9195(0.8372|0.8946|0.8946

dl  |1.0000{1.0000 1.0000{1.0000{1.0000{1.0000
d2 ]0.9889(0.9759 0.8966|0.7557(0.9712|0.9712
d3  ]0.8823(0.9912 0.7813]0.9807|0.9773|0.9773
d4 ]0.9935/0.3843 0.7408]0.9960(0.9776|0.9776

d5 ]0.8878(0.5585 0.8196|0.9400{0.9808]0.9808
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Table 7. Kappa values kp,s,c,cEsron of the classification outputs pointing lesions
using the Expectation-Maximization Algorithm for all the images of each sessions and
for only the first image of each session.

Capture| (1,A) | (1,B) | (1,C) | (2,A) | (2B) | (2,€) |(3,A) | (3,B) | (3,C)
al |1.0000{1.0000{1.0000{1.0000|1.0000|1.0000 |1.0000{1.0000{1.0000
a2 ]0.9122|0.9405|0.8717{0.9225|0.6138|-0.2457(0.9812{0.9234(0.9072
a3 [0.9638(0.9483|0.7589(0.6850(0.8012(-0.2721]0.7832|0.8886|0.9790
a4 [0.9245(0.9044|0.8364|0.9156|0.3756| 0.1033 [0.9351]0.6703|0.9382
ad  ]0.9235|0.8978|0.7821{0.5262|0.8730|-0.3099(0.9713|0.8554|0.9356
bl {1.0000|1.0000{1.0000{1.0000{1.0000| 1.0000 |1.0000|1.0000|1.0000
b2 ]0.8202]0.7448|0.9560(0.8165|0.8760| 0.5099 |0.9406|0.7988|0.9552
b3 |0.7717]0.7573|0.9104/0.5856|0.3908| 0.5731 |0.9093|0.7724|0.8910
b4 |0.7699]0.6711|0.8282(0.7383|0.6498| 0.6802 |0.7837|0.7712|0.8828
b5 |0.7684]|0.6160|0.7628/0.8145|0.5664| 0.6141 |0.8890|0.7509|0.8627
cl  |1.0000{1.0000{1.0000{1.0000{1.0000{ 1.0000 {1.0000|1.0000|1.0000
c2 0.9449|0.9388|0.6406|0.6720|0.7954| 0.8951 |0.9111/0.9803{0.9822
c3  |0.9087|0.7187(0.9521|0.6532|0.4063| 0.6506 |0.9807(0.6579/0.9858
c4  10.9334/0.2057]0.7234/0.7160(0.4181] 0.5518 0.7379|0.2495|0.9844
c¢d  |0.9100/0.1663(0.8468]0.7315|0.6587| 0.6263 |0.8478|0.3693|0.9747

dl  {1.0000{1.0000 1.0000{1.0000{ 1.0000 |{1.0000{1.0000{1.0000
d2 ]0.9308|0.9565 0.72490.5826| 0.7522 |0.6218|0.7755|0.9456
d3  ]0.9606/0.9624 0.5918(0.6335| 0.6579 |0.7978|0.8724|0.8503
d4 ]0.9520(0.1097 0.7147(0.6157| 0.6424 |0.7971]0.8483|0.8335

d5 ]0.9515/0.1614 0.7818/0.5416| 0.8976 |0.8822(0.8970(0.9665
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Abstract. An approach to automatically correct illumination problems
in dermatological images is presented. The illumination function is esti-
mated after combining the thematic map indicating skin -produced by
an automated classification scheme- with the dermatological image data.
The user is only required to specify the class for which its thematic map
is most suitable to be used in the illumination correction. Results are
shown for real examples. It is also shown that the classification output
improves after illumination correction.

1 Introduction

We use a set of 175 RG B psoriasis lesion images, of size 556 pixels by 748 pixels,
taken at the Gentofte Hospital, Denmark, during pilot sessions with three in-
vited patients. For each patient, three lesions were followed once a week during
at least three weeks. In each session, five images of each lesion were taken. Ex-
amples can be seen in Figure 3. The skin images are affected by shadows due to
the non-plane shape of the objects. Thanks to the use of an integrating sphere
[1] (see Figures 1 and 2 ) with optimal illumination conditions some skin images
[6] could be corrected. The sphere assumes that the captured objects are plane.
A quadratic model is assumed for the objects, because, for instance, an arm or
a leg, as a first approximation, is similar to a cylinder than to a plane.

On the other hand, in an ideal situation, for a given lesion, the classification
output should contain a repeated pattern within and between sessions. It could
be nice to count with an algorithm that selects automatically, from the thematic
maps, the objects to be aligned. However, as it was reported in [4], for many
examples without any illumination correction, this is not a possibility. Thus,
alignment and registration could turn to be a difficult -if not impossible- task.
In order to be able to produce valid results regarding the actual data-set, an
illumination correction scheme is proposed here.

This report is organized as follows. The first part is composed by the pro-
posed Ilumination Correction Scheme and the general results. The second part
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Fig. 1. Integrating sphere with optimal illumination conditions used to capture the
images.

Fig. 2. Sketch of the sphere integrating lighting technology with camera technology.
Thanks to Videometer [1] for providing this Figure.

is composed by the Appendix, which contains results for each psoriasis image
belonging to the data set. It is included for the reader interested on analyzing
the results in detail.

2 Illumination Correction Scheme

A set of data for which it can be assumed that in each neighborhood the data
have the same distribution is required. The images of lesions with psoriasis can
be assumed to contain three classes: background, normal skin and lesion. In order
to segment the lesions, a two-stage hierarchical classification scheme -originally
reported in [4]- has been proposed. The user is required to select the class which
he considers most suitable to be used as input to the Illumination Function Es-
timation scheme. Neighborhoods of pixels belonging to that class are assumed
to satisfy the same homogeneity criteria. Data are interpolated and the illumi-
nation function is estimated from these data. Details follow.
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2.1 Classification Scheme

For completeness, general aspects of the scheme proposed in [4] are given here.
Basically, in the first stage, the skin is separated from the background, and, in
the second stage, the lesion is separated from the normal skin. In both stages,
the classes are assumed to be Gaussian distributed. In each stage, means, stan-
dard deviations and prior probabilities of the classes were estimated with an
Expectation-Maximization Algorithm [7]. These statistics were introduced in a
discrimination function [2], which was applied to the output of the convolution
of the image with a circular window of optimal size [5].

2.2 Illumination Function Estimation

Following [3], let i(x,y) be the illumination function affecting the original scene
f(z,y): .
g9(z,y) = i(z,y) f(2,y) (1)

such that g(z,y) is the illumination affected scene. This model assumes that
the output is the product between the amount of arriving light and the original
scene reflectivity. Basically, the region representing a used selected class & is used
to model the illumination function. Within the k-th class we assume as a first
approximation that the original image should be constant:

. _ gr(w,y)

where gj is the observed illumination affected scene in the region representing
the class k, and (3 is a unknown constant.

Pixel values belonging to the region representing the k-th class are replaced
by local means, which are used to estimate an interpolation function. After nor-
malization, the interpolation function is assumed to be the illumination function
affecting the scene. This is more precisely defined as follows. Let G, F and /
be specific images of g(z,y), i(x,y) and f(r,c) respectively. Let F = {f[r, |}
and G = {g[r, ]} be hierarchically defined in terms of Z = {z[r, |} that rep-
resents the partition of the scene in different classes. Each z[r,c] is a value in
2 ={1,...,K}, where z[r,c] = k means that the coordinate [r,c] of a pixel
belongs to the k — th class. Let p = {u1,...,ux} be the class means, and
M = {m[r,c] = pr/z[r,c] = k¥k € 2} be such that m|r,c] is the mean of the
class the pixel at location [r,c] belongs to. Let N be defined with the local
means of G such that E[N] = M. Let Ny be the interpolation function of sam-
pled values of N =< N,Z = k > greater than zero '. Then 7[r, = %’;’C] and
Oy, is the normalization factor.

<N, Z=k> (3)
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Body parts are modelled with a quadratic function. The regression matrix,
from which the coefficients of the interpolation function are adjusted, is given
by:

Ypg = [lpxlrcrcrr cc] Op.1]+ X (4)

where y; is the local mean value ng[r;, ¢;] for a given band and [r;, ¢;] is the loca-
tion of the i-th pixel sampled, which belongs to the k-th class. r = [r1,...,rp]T
c = [e1,...,cp)T and re = [ricy,...,rpep)t, v = [rir1,...,rprp)T and
cc = [cic1, ..., cpep]T. The normalization factor Oy, is the maximal value of
(Gi[r,c] +~) and + is the minimal constant added to Gy[r,¢] such that the out-
put is positive.

b

This procedure can be applied to each single image band. Thus, for multi-
spectral images, the output of the present scheme is a multi-spectrally estimated
illumination function.

3 Results and Discussion

The algorithm that estimates the illumination function requires that, for each
single image, a map of an expected homogeneous region must be provided. On
the other hand, the problem is precisely that the classification can not be done
in a uniform way and for this reason, the illumination correction is needed. As
was mentioned before, it is assumed that the images of lesions with psoriasis
contain three classes: curtain, normal skin and lesion. The best candidate to be
interpolated is the normal skin, because it usually appears in different parts of
the image. However, there are cases for which we could consider that the whole
image is pure lesion. For this reason, each set of images corresponding to the
same lesion was treated separately. For the images of the first patient, it was
possible to provide a rough estimation of the maps corresponding to the normal
skin. These maps were the output of the second stage of the classification scheme
used. However, for the remaining cases, the maps of the skin, including lesions?,
were used to estimate the illumination function. The thematic maps produced
in the classification scheme combined with the original images used as input for
the illumination correction stage are shown in Figure 3. As it can be seen, for
the cases 14, 1B and 1C, the region mapping normal skin was used. For the
cases 24 and 34, a map indicating the whole image was generated. For the cases
2B, 2C, 3B and 3C' the thematic map indicating skin was selected.

The image region to be modelled was convolved with a circular window with
a diameter of eleven pixels, empirically found. In order to reduce, during the

is the scalar product between the tensor N and the thematic map that has, in a
given location the value one, if the corresponding pixel belongs to the k-th class and
the value zero otherwise.

2 This means the output of the first stage of the classification scheme
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convolution, the influence of pixel values belonging to other classes in the region
borders, pixel values to be excluded from the model were previously replaced
with the mean value of the data to be modelled. This was also done in order
to preserve the correct shadow information of the region to be modelled. An
artificial grid was placed on the whole image, and grid pixels belonging to the
region to be modelled were sampled.

The estimated multi-spectral illumination functions and the corresponding
estimated illumination-corrected images can be seen in Figure 4. The estimated
illumination function for each single image of the psoriasis image set can be
found in Appendix A. Note that the extrapolation errors mostly occur in the
background, which really does not contain information of interest anyhow.

Fig. 3. Examples of original images of lesions with psoriasis (left) and the thematic
maps (right) outputs of the classification scheme used in the illumination function
estimation.

Comments based on visual assessment of the illumination functions of each
group of images of the same lesion follow. It is quite obvious that a quadratic
model is not very representative of an object like a hand. This is reflected in the
illumination function, which does not include the shadows between the fingers.
Continuing with the next lesion, we can observe that part of the lesion B of pa-
tient 1 is covered by shadow in the original images. In spite of the illumination
function being almost the same for all the captures, it has to be noted, that the
lesion presents occlusions in some cases, which means that, along the captures,
the shadow is not affecting a given part of the lesion in the same way. With re-
spect to lesion C of patient 1, which is placed in the center of the image, it seems
that the illumination correction would not improve future alignment and regis-
tration outputs very much. However, note in the illumination corrected images,
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Fig. 4. Estimated illumination functions of the images of Figure 3 (left) and the cor-
responding illumination corrected images (right).

that the shadows are not removed. Note in [4] that the provided thematic maps
indicating skin do not include the regions covered by shadows. Results could be
improved finding better the cost values for the discrimination function in the
classification scheme. For the lesion A of patient 2 it is noted that the illumina-
tion model represents the shadows that appear on the left of the images in the
second and fourth session quite well. Comparing the classification output after
illumination correction with the classification output using the original data (see
[4]), it can be deduced, that, for this case, the illumination correction is clearly
necessary. Looking at the illumination corrected images of patient 2, lesion B it
can be noted that the illumination model does not correct the shadows in some
captures well. This is due to the fact that the thematic map of the skin does
not include parts of the shadows, which were assigned to the class curtain in
the first classification stage: changes in the cost values could improve the results
obtained. For the case (2,C), it is noted that the classification output improves
when the illumination is corrected. In spite of being extrapolation errors in the
curtain, they obviously do not affect the classification between normal skin and
lesion. The illumination functions of the case (3, A) seem to represent the shad-
ows on the original images well. This case is quite difficult, because it is hard
to identify correspondent points in the images by visual assessment. Therefore,
to evaluate the classification output is difficult. However, for same pairs of ses-
sions, some kind of repeated structure can be observed. The classification output
within sessions after illumination correction of the images of the case (3, B) does
not look very convincing. This may be due to the spherical shape of the illumi-
nation function, which is not representative of the body part modelled. Note in
the illumination corrected images the light areas on the image corners. A better
thematic map of the region to be modelled could improve the results obtained.
For the case (3,C), skin displacements attained after folding the elbow allow to
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identify corresponding points visually. By comparing the classification outputs
after illumination correction within sessions, in general, they contain a repeated
pattern. However, for some pairs of sessions, particularly the last ones, is not
quite obvious how the correspondence should be.

The normalized histograms of the region indicating skin was again calcu-
lated for each single |B-G| band. Table 1, comparable to Table 2 in [4], was
constructed. 2. Details can be found in Table 2. As it can be observed, in gen-
eral, the correlation values are smaller than before. The large correlation values
before illumination correction could be due to the illumination itself and the
actual correlation values are more real for the skin data. It is suggested to ex-
trapolate statistics from one single image to another only after normalization.

Table 1. Average and standard deviation correlation value between the histogram of
a normalized illumination-corrected image band and the normalized histogram of the
normalized bands of the illumination-corrected images belonging to the same session.

(Patient,| pq Oa b op e o¢ hd Od
Lesion)
(1,A) 1]0.6031 0.1133]0.5716 0.0760(0.5757 0.1365(0.5989 0.1250
(1,B) [0.5354 0.1547|0.3669 0.1081|0.3671 0.0933|0.3551 0.0745
(1,C) (0.6550 0.1090/0.6850 0.0869|0.7539 0.1096
(2,A) 1]0.6149 0.1154/0.7712 0.0542{0.4616 0.0846|0.4831 0.1299
(2,B) (0.4000 0.0547|0.5591 0.1029|0.4901 0.0693(0.3961 0.0262
(2,C) (0.3421 0.0441/0.4627 0.1523|0.5447 0.0915(0.4285 0.0573
(3,A) 1]0.5196 0.0717]0.6408 0.1374|0.3968 0.0896|0.4179 0.0456
(3,B) [0.5913 0.0636/0.4585 0.0818|0.3425 0.0239|0.3450 0.0821
(3,C) (0.4813 0.1172|0.4678 0.0337|0.5518 0.0994(0.4702 0.0626

The same thematic maps indicating skin generated in the previous classi-
fication using the original images, were assumed to be the output of the first
classification stage using the images with illumination correction. The outputs
of the second stage of the classification scheme are shown in Subsection C. In
order to avoid extrapolation errors, the discrimination function was computed
for each single image separately.

As it can be seen, thematic maps of some lesions, have some repeated patterns
in common. Based on this, it is considered that the output of the illumination
correction is a better estimation of the expected data. However, in order to be
able to automatically select corresponding objects in the thematic maps of the
same lesion, further work needs to be done. Since it is not the main objective of
the present work, the cases for which it was not possible to automatically define
corresponding objects, manually selection after visual inspection of the images

3 For computational details, see Equations 4 and 5 in [4]
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is suggested.

It should to be mentioned that in many cases, shadows in the skin were
assigned to the class curtain. This did not allow the introduction of the correct
slope of the surface that represents the skin in the illumination model. Finding
better cost values to use use in the discrimination functions is encouraged in
order to improve the obtained results.

4 Conclusions

A new scheme for illumination correction in dermatological data that combines
conventional tools has been proposed. The classification scheme used has been
shown to produce suitable thematic maps to be used in the estimation of the
illumination function affecting the scene. It has also been shown that the illumi-
nation corrected images are a better input for the second stage of the classifica-
tion scheme. After illumination correction, the classification results improved in
cases for which it was not possible to produce thematic maps with a repeated
pattern previously. By visual assessment of the results, it is encouraging to ex-
tend the scheme to other application areas.

Acknowledgments

To the SITE Project funded by a grant from the Danish Technical Research
Foundation (Project Number STVF 56-00-0123) for supporting the present work.
To the dermatologists Lone Skov and Bo Bang of the Gentofte Hospital of Den-
mark and to the anonymous patients, for their collaboration during the image
acquisition sessions.

Appendix

A TIllumination functions



I.M.M. Technical Report Number 7

Session:1 PATIENT:1 LESION:A

e B oo b
CL

Session:3

—
Session:4

B E k B

i
F
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Fig. 11. Ilumination functions of the original images of (Patient 3, Lesion A).
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Fig. 13. Illumination functions of the original images of (Patient 3, Lesion C).
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B Illumination corrected images

Session:1 PATIENT:1 LESION:A

Session:2

Session:3

Session:4

Fig. 14. Images of (Patient 1, Lesion A) after illumination correction.
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Fig. 15. Images of (Patient 1, Lesion B) after illumination correction.



I.M.M. Technical Report Number 7

Session:1 PATIENT:1 LESION:C

Session:2

Session:3

Fig. 16. Images of (Patient 1, Lesion C) after illumination correction.
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Session:3
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Fig. 17. Images of (Patient 2, Lesion A) after illumination correction.
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Session:1 PATIENT:2 LESION:B
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Session:4

Fig. 18. Images of (Patient 2, Lesion B) after illumination correction.
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Fig. 19. Images of (Patient 2, Lesion C) after illumination correction.
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Session:1 PATIENT:3 LESION:A

Session:2

Session:3

Session:4

Fig. 20. Images of (Patient 3, Lesion A) after illumination correction.

Session:1 PATIENT:3 LESION:B
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Fig. 21. Images of (Patient 3, Lesion B) after illumination correction.
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Session:1 PATIENT:3 LESION:C

Session:2

Session:3

Session:4

Fig. 22. Images of (Patient 3, Lesion C) after illumination correction.
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Table 2. Average correlation values of the normalized histogram of the |B-G| band
skin data of each single corrected image with the normalized histogram of the |B-G|
band skin data of the corrected images that belong to the same session than that.

Capture| (1, A) | (1, B) [ (L, C) | (2, A) [ (2, B) [(,C)] (3, A) [ (3, B) [ (3,C)
al  |0.6155|0.3172|0.7399|0.7006]0.4071|0.3594]0.5819|0.6503]0.5928
a2 |0.6107|0.6505(0.7344|0.6982|0.4515|0.2797|0.4596|0.5422|0.4386
a3 |0.6944|0.4272(0.7096|0.6887|0.4162|0.3514|0.4640|0.6583|0.6006
ad  |0.4121|0.6614[0.6049|0.5386|0.3060|0.3222(0.6117|0.5608|0.4538
a5 |0.6828|0.6205(0.4861|0.4483|0.4184|0.3978|0.4810|0.5267|0.3208
bl [0.5682(0.1986]0.7548]0.7964|0.6628(0.3162|0.7402|0.4282/0.4367
b2 [0.4687(0.4596]0.6169|0.8109/0.6593(0.5622|0.7367|0.36800.4961
b3 [0.6497(0.4624|0.7436|0.74430.4637(0.6063|0.4906|0.5456 0.5097
b4 [0.5311[0.3413]0.7426]0.68860.4475|0.5486|0.4900/0.5441|0.4369
b5 [0.6405(0.3727]0.5669]0.8157|0.5621|0.2799|0.7464/0.4065|0.4595
¢l |0.3731/0.2717|0.8276|0.3583|0.56860.4148|0.3528|0.3160|0.5978
2 |0.6779)0.3465|0.6987|0.4786(0.3974|0.6229(0.4282|0.3344|0.5948
3 |0.4952/0.2880|0.5855|0.5422|0.4491/0.4847|0.4726|0.3351|0.5897
cd  |0.6554/0.4677|0.8287|0.5392|0.5425)0.6186|0.2616|0.3461|0.6024
5 |0.67680.4615(0.8288|0.3900(0.4931|0.5826(0.4685(0.3807|0.3742

dl  |0.6438|0.3840 0.3499|0.3912|0.4589|0.3807(0.4331|0.4318
d2 |0.6685(0.3044 0.3363(0.4080(0.4788(0.4702|0.3092|0.5418
d3  |0.6429|0.2590 0.5912|0.3533|0.4002|0.4609(0.2485|0.4083
d4 |0.6630(0.3779 0.5395|0.4066|0.4633|0.4072(0.3055|0.5336

d5  ]0.3763|0.4502 0.5988(0.4214|0.3410{0.3706|0.4289|0.4355
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C Image classification after illumination correction

Session:1 PATIENT:1 LESION:A

Session:2

Session:3
; ¥ -

Session:4

Fig. 23. Overlay of the thematic maps with the images for (Patient 1, Lesion A) after
illumination correction.
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Session:1 PATIENT:1 LESION:B

Session:2

Session:3

Session:4

Fig. 24. Overlay of the thematic maps with the images for (Patient 1, Lesion B) after
illumination correction.

PATIENT:1 LESION:C

Fig. 25. Overlay of the thematic maps with the images for (Patient 1, Lesion C) after
illumination correction.
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Session:1 PATIENT:2 LESION:A

Session:2

Session:3

Session:4

Fig. 26. Overlay of the thematic maps with the images for (Patient 2, Lesion A) after
illumination correction.

Session:1 PATIENT:2 LESION:B

Session:2

Session:3

Session:4

Fig. 27. Overlay of the thematic maps with the images for (Patient 2, Lesion B) after
illumination correction.
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Session:1 PATIENT:2 LESION:C

Session:2

Session:3

Session:4

Fig. 28. Overlay of the thematic maps with the images for (Patient 2, Lesion C) after
illumination correction.

Session:1 PATIENT:3 LESION:A

Session:2

Session:3

Session:4

Fig. 29. Overlay of the thematic maps with the images for (Patient 3, Lesion A) after
illumination correction.
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Session:1 PATIENT:3 LESION:B

Session:2

Session:3

Session:4

Fig. 30. Overlay of the thematic maps with the images for (Patient 3, Lesion B) after
illumination correction.

Session:1 PATIENT:3 LESION:C

Session:2

Session:3

Session:4

Fig. 31. Overlay of the thematic maps with the images for (Patient 3, Lesion C) after
illumination correction.
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Abstract. The objective of this work is to explore the feasibility of
quantifying textural change between pairs of segmented patterns with-
out registering them. The Multi-variate Alteration Detection (M.A.D.)
Transform is applied to a texture model constructed with the data of
segmented psoriasis lesions images. The texture model is Haralick’s co-
occurrence matrix, which is computed and normalized for each single
band with the equalized data of a given lesion. The contribution of each
single color band to the textural change is analyzed.

1 Introduction

We use a database consisting of a set of 175 images of lesions with psoriasis taken
at the Gentofte Hospital of Denmark during four pilot sessions with three invited
patients. For each patient, three lesions were captured five times during each ses-
sion, along four weeks. The images were labelled with four characters, indicating
patient (1, 2, 3), lesion (A, B, C), session (a, b, ¢, d) and capture (1, 2, 3, 4,
5) respectively. The original RGB images were reduced in size to (576 — 20)/4
rows by (768 — 20)/4 columns of pixels. The images can be assumed to contain
three classes (background, normal skin and lesion), which were segmented with
a two-stage hierarchical classification scheme [9]. This scheme separates, in the
first stage, the skin from the background, and, in the second stage, the lesion
from the normal skin. Since the images are affected by shadows, an illumination
correction scheme was proposed [10].

To evaluate lesion changes between sessions, physicians make scores of a four-
variables set: the redness, the scaling, the thickness and the body area covered
by the lesions. Manual scoring highly depends on the dermatologist, who can
show variations in criteria along sessions due to the huge amount of patients
and lesions observed during each working day. In order to use a set of lesions
like these as input to an automatic system that analyzes their change in time,
it could be helpful to express the data in a way where they are comparable,
without loosing connection with the original data. Registration of classified le-
sions patterns appear as options to possible solutions. However, they could have
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a high computational cost.

To transform pairs of not registered original data to a space were the trans-
formed data have a perfect registration is possible through a textural descriptor
[17], [8], [13], [1], [7], [16], [15] that is invariant to translations and rotations of
patterns, like Haralick’s co-occurrence matrix [3]. On the other hand, a statisti-
cal approach that allows to detect alterations is the M.A.D. Transform (Multi-
variate Alteration Detection Transform) [11], [12]. This scheme transforms two
sets of multi-variate observations into a difference between two linear combina-
tions of the original variables explaining maximal change in all variables simul-
taneously.

The present work consists of the description of the following aspects: the tex-
tural model, the two-set canonical correlation analysis and the M.A.D. Trans-
form. Results show the contribution of each color band to each M.A.D. compo-
nent. Finally, a back-projection approach from the M.A.D. output to the original
data is proposed.

2 The Texture Model

Following [6], let § be a compact and convex set established in the image space
as a circular window and let 5 be a vector position operator relating the rel-
ative spatial location of a pair of pixels in the window; for each single band,
the co-occurrence matrix C' is the estimated probability of having a pair of
pixels (Ap, Ag) in the relative position given by 5. The elements of the @ x @
co-occurrence matrix C'(\p, Aq, 5,9), with @ being the number of quantization
levels, are given by:

O{rlr,r + B € a(d),9(r) = Ap,g(r + B) = Ay} (1)
O{rr + B € 6}

where g(r) is the subset of the RGB image corresponding to the lesion with
psoriasis, o(d) is a translation isometry over the window, O is the order of the
set, and r = (4, ) is the vector position of a pixel.

3 Two-Set Canonical Correlations Analysis

Conceptually, two-set canonical correlations analysis is a technique that finds
corresponding sets of linear combinations -called canonical variables- of two
groups of variables, such that the first canonical variables are the ones with
the largest correlation, and higher order canonical variables are maximally cor-
related subject to orthogonality or uncorrelatedness with lower order canonical
variables [11], [4].
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Formally, let «; and x5 be two sets of variables of dimensions m; and ms
respectively, with m; < ms. The two-set canonical correlation analysis chooses
m1 + mo linear transforms

_ 4T s

Yy =ayr,t=1,...,m
_ 4T -

Yo; = Q5;T2,1 =1,...,ma,

(2)

such that the correlations within groups are

3)

T T _
Corr[aliwl, a; ml] = 6ij

T — 5.
Corr|ay;xs, a2j:1:2] = 0y,

and the correlations between groups are
COT’/‘[aﬂ»iBl,angCg] = pjéij (4)
where ¢ is the Kronecker delta.

Let the sets of variables &1 and x be described by the m; + my dimensional
variable
X = [z]x3) (5)

and assume

EX]=0ADX]=X= [211 212}

21 Yoo

with Z;; € R™*™ and
Sy =20 Vi, j=1,2 (7)

and non-singular.
We would like to find the transforms

T
Yyy=ax
v, = afe, ©

with

Varly,] Covly,,y,] ai Yna; af Yiza;
DY} =3y = _ 9
v} Y [Cov[yg,yl] Var[y,] ] [aQTEQlal agﬂggag} ©)

under the constraints

Var[y,] =1
Var[y,) =1 (10)
such that the correlation
Covlyy,
p = Corrly,, yg) = ——2W0 ¥l _ o754, (1)

Var(y,|Var(y,]

is maximized.
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Let A;/2 and A2/2 be Lagrange multipliers introduced in

A A
’L/J = 0{21202 — 71((1{211(11 — 1) — 72(0,%—‘222&2 — 1). (12)

We would like to maximize ¥ with respect to a; and as. Due to the symmetry
condition in Equation 7, the following matrix differentiation property can be
applied

8(aT2iiai)
0a, a (13)
and the partial derivatives of 1) with respect to a; and as are

o
— =X -\ 14
da, 1202 1241101 (14)
N
— =2 — A 15
day 2101 22:22a2 (15)

Note that Equations 14 and 15 could also be obtained by rewriting Equation
12 with A\; and A, as dependent variables: A is derived with respect to a; and
Ao, with respect to as; the derivative of the quotient and the symmetry condition
7 is applied and the huge expressions obtained can easily be simplified because
the main part of each one is only A\; and A, respectively.

Setting the partial derivatives of ¥ to zero and multiplying respectively by
al and a®, we have
alTEuag - )\10,,{2110‘1 =0 (16)

0522101 - )\Qagzggag =0. (17)

Due to a; and as are scalars, the following property can be applied a? Y12a, =
(al ¥15a2)T. The transpose of a product is the product of the transposes with
inverted order, and using Equation 7, the correlation p between the transformed
variables turns to be

p= (1,,{212(1,2 = agﬂzlal =AM =X\ (18)

Substituting Equation 18 in Equations 14 and 15
2hgas — pXliia; =0 (19)
Yora1 — pXagas =0 (20)

and multiplying Equation 20 by ¥,' gives

p= Sty L. (21)
az
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Pre-multiplying Equation 19 with p, substituting it with Equation 21 and re-
writing everything with respect to a; we have

21222_2122101 = ,02211041, (22)

which is recognized as an eigenvalue problem. On the other hand, multiplying
Equation 19 by 21_11 gives
_ a
p=X T—. (23)
ai

Substituting Equation 23 in - previously multiplied by the scalar p- Equation 20
we have
In X Disas = p*Eas. (24)

Rewriting Equations 22 and 24 we have the generalized equations of eigenvalues
and eigenvectors:
(D12 X5 X 5t — p*lay =0 (25)

and
[Do1 X2 210555 — p*T]ay = 0. (26)

The sets y; and y, are obtained by projecting the sets x; and x2 onto the
subspaces spanned by the eigenvectors a; and a, respectively with the corre-
sponding largest eigenvalue equal to the square correlation.

If m; = mgy the yy,,7 = 1,...,m; are obtained by projecting x; onto the sub-
spaces spanned by the eigenvectors a1, ..., @1m, corresponding to the eigenvalues
p; > ... > p2,, of Y1255, o1 with respect to X1 , and the y,;,7 = 1,...,mq
are obtained by projecting s onto the subspaces spanned by the eigenvectors
asi, ..., Gam, corresponding to the same eigenvalues. If m; < mqy the eigenvalue
problem in Equation 22 degenerates since the last eigenvalue will equal zero with
(m2 — m1) multiplicity.

4 The M.A.D. Transform

Again, for completeness, let us follow [11] for describing the M.A.D. Transform.
Let X; and X5 be two sets of variables of dimensions m; and ms respectively,
with my < mg, E{X;} = E{Xy} = 0 transformed with the coefficients from a
standard canonical correlation analysis a; and as in

— 4T M
Yli = alin,z = ]., ceey MY

Ygi = a%;Xg,i = 17 ey M2 (27)

Further, Y; and Y5 are positively correlated and with unit variance, such that
the variance of their difference is maximized.

Varfal X; — a Xy] = (28)
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Varlal X,] + Var[al Xo] — 2Cov[ai Xy, a3 Xs] (29)
= 2(1 — Corr[a] X1, al X3]) (30)

The M.A.D. Transform consists of the variates obtained when the correspond-

ing canonical variates are subtracted in reverse order, what means that the m?%?

difference shows maximum variance among such variables, and the (m; — j)*
difference shows maximum variance subject to the constraint that this difference
is not correlated with the previous j ones. The M.A.D. variates are invariant to
linear and affine scaling, what is not the case of the Principal Components. The

dispersion matrix of the M.A.D. variates is
DlaT X, —alX]) =2(I — R) (31)

where [ is the m; X m; unit matrix and R is the m; X m; matrix containing the
sorted canonical correlations on the diagonal and zeros off the diagonal.

5 Results and Discussion

In order to evaluate the color band contribution in the textural change of the
lesions, the following experiment was designed. The set of 175 captures obtained
at Gentofte’s Hospital allowed the construction of 650 pairs of captures with the
same time increment of one week between them. For each image of a given pa-
tient and lesion, each one of the five images of the next session were associated.
For each one of the 175 images, the histogram of the pixels belonging to the
area of the thematic map indicating a lesion was first equalized. For each single
image, a three band synthetical image of 256 by 256 pixels was constructed in
the following way: for each single band, the co-occurrence matrix of the region
indicating the single lesion included was constructed and normalized.

Two sets of 650 pairs of images were used to apply the present scheme: the
first set was given by the original images; the second set, by the illumination-
corrected images (see Figures 13 to 21 in [10]). For each single image, the co-
occurrence matrix of the equalized region indicating skin was generated. For
each pair of original and illumination-corrected images of the same capture, the
same thematic map indicating skin was used (See Figures 2 to 8 in [9]). In
order to reduce the influence of very high values, logarithms were applied to the
normalized co-occurrence matrix values:

xlr,c, b]

SRR 98 SRRk .

After that, the values were again normalized:

log(y[r, ¢, b] * map[r, ¢, 1] + (1 — mapl[r, ¢, b)) + B[b]) * map[r, c|
> k1 (2[k, 1, b] x maplk, 1, b])

z[r, ¢, b] = (
(33)
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where map[r, ¢,b] is 1 if y[r,¢,b] > 0 and 0, otherwise, and
Bb] = max(|z[r, c, b]]) (34)
vr, c.

The matrix is now an image. For each pair of synthetical images constructed
in the way mentioned, the M.A.D. transform was applied. For this stage, it was
helpful to use the following programs: fhist [2], gclm [2] [14] and maf [5]. For
each pair of images of the data-set, the union of the maps indicating positive
values for each co-occurrence matrix was generated; the M.A.D. Transform was
only applied to the pixels included in that map. Tables 1 and 2 show the results
obtained for the sets of original images. Tables 3 and 4 show the results obtained
for the sets of illumination-corrected images®.

Each single cell value in Tables 1 and 3 is the average absolute correlation
value between the normalized co-occurrence matrix of the b—th color bands and
the m — th MAD components of all pairs of images of the [ — th lesion of the
p — th patient. It is computed in the following way:

ns—0t ne ne

1
Eppib,m] = m Z Zzap,l,s,i,ét,j,b,m (35)

s=1 i=1j=1

where

1
Qp.l,5,i,8¢,5,b,m — 5 (|p[Xp,l,s,i,ba MADp,l,s,i,zSt,j,b; m] |+|p[Xp,l,s+5t,j,ba MADp,l,s,i,ét,j,bv m] D
(36)
and p is the correlation coefficient, 6t is the time increment (in this case, 6t

is one week). The indexes ¢ and j indicate the capture number within a session.
MAD, i sist5bm equals to MAD[X,, s b, Xp.1,st6t,5,b, M.

Each single cell value in Tables 2 and 4 is the standard deviation of the av-
eraged absolute correlation values between the normalized co-occurrence matrix
of the b — th color bands and the m —th MAD components of all pairs of images
of the [ — th lesion of the p — th patient. It is computed in the following way:

ng—0t Ne nNe

1
S[op,ibm] = (= otz SN N (@2 is, jbm) — Elopisml*  (37)

s=1 i=1j=1
where the symbols have the same meaning as before.

! The original HIPS formatted images were used in combination with the TIFF for-
matted illumination function to produce the illumination-corrected images in HIPS
format. These images were equalized and then the co-occurrence matrix was com-
puted.
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Table 1. Average Absolute Correlation Values per Lesion of RGB skin data with their
respective M.A.D. Components

(Patient,Lesion) |(R,MAD1) (G,MAD1) (B,MAD1)
(1,A) 0.163069 0.181529  0.052689

(1,B) 0.093642 0.216019  0.109057
(1,C) 0.150723  0.199478  0.137738
(2,A) 0.117731 0.151841 0.187481
(2,B) 0.094710  0.230283  0.130987
(2,C) 0.111509 0.133244 0.182223
(3,A) 0.038838 0.195560 0.163730
(3,B) 0.032641  0.206640 0.203355
(3,C) 0.043867 0.228722  0.198393
(Patient,Lesion) |(R,MAD2) (G,MAD2) (B,MAD?2)
(1,A) 0.149579  0.083112  0.188200
(1,B) 0.236058  0.085506  0.155400
(1,C) 0.261095 0.131136 0.178398
(2,A) 0.238930 0.149425 0.080667
(2,B) 0.247828  0.052757 0.160879
(2,C) 0.233855 0.098236 0.082241
(3,A) 0.252858 0.062821  0.119769
(3,B) 0.280739  0.109337  0.099062
(3,C) 0.285794 0.086110 0.127319
(Patient,Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
@A) 0.167162 0.170654  0.168428
(1,B 0.184625 0.193093 0.195325
(1,C 0.226380  0.242602  0.240919
(2,A 0.244500 0.255134  0.260686

)

)

)

) 0.192198 0.197892  0.200079
(2,C) 0.279305 0.296285 0.289731

) 0.165526  0.181658  0.180395

) 0.204145 0.216882 0.217735

) 0.192946  0.202501  0.202845
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Table 2. Standard Deviation of the Absolute Correlation Values per Lesion of the
RGB skin data with the M.A.D. Components

(Patient,Lesion) |(R,MAD1) (G,MAD1) (B,MAD1)
(1,A) 0.025971  0.016633  0.030963

(1,B) 0.028369 0.019309  0.026687
(1,C) 0.031737 0.014496 0.019820
(2,A) 0.059834 0.030295 0.014737
(2,B) 0.040232  0.010890 0.029503
(2,C) 0.070107  0.042084 0.076832
(3,A) 0.012120  0.010609 0.013386
(3,B) 0.017749  0.009709  0.013645
(3,C) 0.029494  0.014647 0.023083
(Patient,Lesion) |(R,MAD2) (G,MAD2) (B,MAD?2)
(1,A) 0.028772  0.023656 0.017764
(1,B) 0.026801 0.043394 0.016797
(1,C) 0.022621  0.023489  0.020474
(2,A) 0.033550 0.029944 0.027297
(2,B) 0.018773  0.023604 0.023727
(2,C) 0.059343  0.032142  0.047481
(3,A) 0.011745 0.019359 0.008171
(3,B) 0.017558  0.016535 0.030054
(3,C) 0.022625 0.032087 0.036531
(Patient,Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
(1,A) 0.013872  0.012831 0.012198
(1,B 0.024374 0.025512  0.028243
(1,C 0.011900 0.014789 0.014719
(2,A 0.031265 0.031427 0.034579

)

)

)

) 0.014287 0.013550 0.014184
(2,C) 0.038647 0.043020 0.036207

) 0.021784 0.021555 0.022279

) 0.021174 0.023636 0.023704

) 0.012659 0.014226 0.016471
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Table 3. Average Absolute Correlation Values per Lesion of the illumination-corrected
RGB skin data with their respective M.A.D. Components

(Patient,Lesion) |(R,MAD1) (G,MAD1) (B,MAD1)
(1,A) 0.170079  0.176821  0.073168

(1,B) 0.183584 0.193015 0.093375
(1,C) 0.208084  0.204445 0.076428
(2,A) 0.099910 0.214296 0.151165
(2,B) 0.150016  0.196696  0.171897
(2,C) 0.070576  0.187925 0.195604
(3,A) 0.113855 0.222418 0.142154
(3,B) 0.024691  0.208501  0.202745
(3,C) 0.090282  0.221817 0.190266
(Patient,Lesion) |(R,MAD2) (G,MAD2) (B,MAD?2)
(1,A) 0.154035 0.074054 0.201950
(1,B) 0.203793 0.137015  0.198929
(1,C) 0.186940 0.094268 0.245279
(2,A) 0.249320  0.059774  0.159474
(2,B) 0.229558  0.132791  0.145819
(2,C) 0.282807 0.088674 0.073255
(3,A) 0.255834 0.040157  0.182085
(3,B) 0.276600 0.100579  0.105682
(3,C) 0.285825 0.080852  0.142917
(Patient,Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
(1,A) 0.177938  0.183928  0.178287
(1,B 0.214027  0.220947 0.222161
(1,C 0.200914  0.208052  0.203250
(2,A 0.181045 0.188425 0.187791

)

)

)

) 0.202083  0.209892  0.211410
(2,C) 0.220413  0.235589  0.234932

) 0.179750 0.188971  0.186960

) 0.208101  0.217542  0.217578

) 0.198283  0.208827  0.208337
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Table 4. Standard Deviation of the Absolute Correlation Values per Lesion of the
illumination-corrected RGB skin data with the M.A.D. Components

(Patient,Lesion) |(R,MAD1) (G,MAD1) (B,MAD1)
(1,A) 0.039767 0.018222  0.036756

(1,B) 0.043357 0.034397  0.047152
(1,C) 0.017927  0.021666 0.017569
(2,A) 0.032620 0.019728  0.024057
(2,B) 0.088681  0.040340 0.058499
(2,C) 0.045544  0.024256  0.043097
(3,A) 0.027636  0.008405 0.017570
(3,B) 0.021223 0.014558 0.014621
(3,C) 0.033461  0.023677  0.024106
(Patient,Lesion) |(R,MAD2) (G,MAD2) (B,MAD?2)
(1,A) 0.045084 0.031534 0.017648
(1,B) 0.045152  0.059842  0.043288
(1,C) 0.024923  0.029271  0.006875
(2,A) 0.023577 0.043846 0.027413
(2,B) 0.075262 0.052789  0.051839
(2,C) 0.033527 0.032352  0.030808
(3,A) 0.017790 0.018396 0.011767
(3,B) 0.018079  0.021996 0.018503
(3,C) 0.021804 0.046565 0.038868
(Patient,Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
(1,A) 0.014500 0.015754 0.014663
(1,B 0.028974  0.029582  0.035410
(1,C 0.006570  0.005675  0.006290
(2,A 0.009182  0.010115 0.010683

)

)

)

) 0.009957 0.011238 0.011484
(2,C) 0.020532  0.024252  0.025135

) 0.007396  0.007803  0.009210

) 0.030657 0.033255 0.033002

) 0.015375 0.017395 0.019219
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Looking at the upper part of Table 1, it seems that for some cases, most of
the contribution in the textural change is given by the red and the green bands
(cases (1,A) and (1,C)), and in others, by the green and the blue bands (the
remaining cases). On the other hand, after illumination correction, the values
reported in Table 3 indicate that for all the cases of the patient 1, most of the
contribution in the textural change is given by the red and the green band and,
for instance, the contribution of the red band in the textural change of the case
(3, A) is quite significant.

There is an aspect that was not taken into account during the design of the
experiment. This was the lesion to skin ratio. As was mentioned in Section 2.1
of |9], the size between lesions ? has a significant variance. In other words, the
proportion of the area covered by the lesion with respect to the area covered by
the skin is quite variable. On the other hand, there are cases for which the skin
is completely covered by very small lesions, such that the whole classified region
indicating skin could be considered part of the class lesion, and the second stage
of the classification scheme, is not necessary. This means, that it may be neces-
sary to redesign the experiment in order to compare more homogeneous data.

The same procedure as before was repeated for the cases (1, A), (1, B), (1,C)
and (2, B), now using thematic maps indicating lesions. This means, that the
normal skin was excluded. For patient 1, the thematic maps indicating lesions
generated after illumination correction of the original images were used (see Fig-
ures 22 (case (1, A)), 23 (case (1, B)) and 24 (case (1,¢)) in [10]). The objects
were selected using an automated algorithm developed that assumes that the
object of largest size in the thematic map is the desired lesion. The outputs are
presented in Section A. For patient 2, the thematic maps used were produced
with user-interaction assuming circular shape of the lesion. The user was re-
quired to provide for each single image, one single point, which was assumed to
be the lesion center. A radius of that circle was also required. It was assumed
that for a given lesion, all the shapes had the same radius. This was done for the
lesion B (see Figure in Section A). Lesion C was excluded because it is partically
covered by hair and the manual selection of one small homogeneous region turns
to be difficult. For patient 3, the procedure was not applied, because it can be
considered that the whole region indicating skin, is covered by lesion.

As illustration examples, some co-occurrence matrixes computed with data
of illumination corrected images are shown in Appendix B. For the cases (1, A),
(1,B), (1,C) and (2, B), the co-occurrence matrixes were computed using the
data indicated in Appendix A. To compute the co-occurrence matrixes of the
cases (2,C), (3,B) and (3,C) the corresponding data sets used can be seen in
Figures 6 to 8 of [9] respectively. For the cases (2, A) and (3, A) an artificial map
for the down-sampled version of the original images was generated, indicating

2 This means the size between the lesions of the different cases: (1, A), (1, B), (1,C),
(2,4), (2,B), (2,C), (3,A4), (3, B) and (3, C).
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Table 5. Average Absolute Correlation Values per Lesion of RGB lesion data with
their respective M.A.D. Components

(Patient,Lesion)

(R,MADI1) (G,MADI) (B,MADI)

(LA)
(1B)
(1,C)
(2,B)

(Patient,Lesion)

(LA)
(1B)
(1,C)
(2,B)

(Patient,Lesion)

(LA)
(1B)
(1,C)
(2,B)

0.228414 0.241037 0.249670
0.087517  0.291845  0.257182
0.021994  0.444337  0.468673
0.021226 0.524634 0.387158

(R,MAD2) (G,MAD2) (B,MAD2)
0.209963  0.154635  0.242142
0.334106  0.108684 0.195718
0.101731  0.469909  0.454413
0.061194  0.400099  0.518758

(R,MAD3) (G,MAD3) (B,MAD3)
0.268627 0.300383  0.275886
0.270752  0.272509  0.266351
0.449892  0.046755  0.039726
0.399107  0.017429  0.019905

Table 6. Standard Deviation of the Absolute Correlation Values

RGB lesion data with the M.A.D.

Components

per Lesion of the

(Patient,Lesion)

(R,MADI1) (G,MADI) (B,MADI)

(LA)
(1B)
(1,C)
(2,B)

(Patient,Lesion)

(LA)
(1B)
(1,C)
(2,B)

0.075189  0.051723  0.120361
0.050564  0.057280  0.092927
0.010095 0.050346  0.045895
0.012165  0.078557  0.100383
(R,MAD2) (G,MAD2) (B,MAD2)
0.068989 0.070599 0.110723
0.091141  0.094951  0.078275
0.022922  0.034339  0.042043
0.014210  0.087458  0.069111

(Patient,Lesion)

(LA)
(1B)
(1,C)
(2,B)

(R,MAD3) (G,MAD3) (B,MAD3)
0.015704 0.025307 0.022419
0.077885  0.095661 0.094163
0.024233  0.025523  0.019999
0.014610  0.009277  0.008870
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Table 7. Average Absolute Correlation Values per Lesion of the illumination-corrected

RGB lesion data with their respective M.A.D. Components

(Patient, Lesion)|(R,MADI) (G,MAD1) (B,MAD1)
(1,A) 0.156864 0.251143  0.306729
(1,B) 0.134858 0.280693 0.287114
(1,C) 0.020100  0.438892 0.477563
(2,B) 0.024732  0.531542  0.375503

(Patient,Lesion) |(R,MAD2) (G,MAD2) (B,MAD?2)
(1,A) 0.356152  0.151465 0.151860
(1,B) 0.326464 0.178192 0.196218
(1,C) 0.103229  0.475666  0.448373
(2,B) 0.064307 0.391578  0.524883

(Patient, Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
(1,A) 0.263711  0.298394 0.279176
(1,B) 0.292042 0.290461 0.282628
(1,C) 0.449129 0.048744  0.041427
(2,B) 0.400400 0.015945 0.019321

Table 8. Standard Deviation of

the Absolute Correlation Values per Lesion of the
illumination-corrected RGB lesion data with the M.A.D. Components

(Patient, Lesion)|(R,MADI) (G,MAD1) (B,MAD1)
(1,A) 0.073514  0.043622 0.104251
(1,B) 0.084878 0.075100 0.108610
(1,C) 0.012400 0.049313  0.043281
(2,B) 0.011909 0.085662  0.100957

(Patient, Lesion) |(R,MAD2) (G,MAD2) (B,MAD2)
(1,A) 0.069711  0.055424 0.111003
(1,B) 0.094358 0.099449 0.092184
(1,C) 0.022383  0.033330 0.039751
(2,B) 0.017439  0.090638 0.071341

(Patient,Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
(1,A) 0.013473  0.022410 0.021080
(1,B) 0.068711  0.085562  0.081845
(1,C) 0.022226  0.023979  0.019838
(2,B) 0.013120 0.008677  0.009668
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the whole image as being lesion. The contribution of each single color band to
the first M.A.D. component of these examples can be seen in Table 9.

According to the added results (see upper part of Tables 5 and 7), it is sur-
prising to see that while in the medical area the redness is the variable used
for measuring change in lesions with psoriasis, it is mostly the green if not the
blue band which contributes most significantly to the first M.A.D. component.
These results have to be interpreted with caution, because of the small size of
the data-set used.

6 Back-projection to the original data

To back-project the output of previous Section to the original data the following
aspects have to be taken into account:

— For each pixel in the image and for each single band value, co-occurrences
were computed with neighbors in eight directions. The output of the M.A.D.
Transform is referred to these directions. There is not a one-to-one correspon-
dence that allows to back-project the output of the M.A.D. Transform to the
original data. Therefore, some constraints have to be set.

— The M.A.D. Transform is a difference of canonical variables, which come
from an eigen-decomposition. Eigenvectors give a direction, but not a sense.
The constraint for the M.A.D. Transform is that the eigenvectors are chosen
so that the correlation between the canonical variables is positive ([11], page
85). However, an aspect not considered here, but that could be explored
further, is if there are real cases for which the a negative correlation be-
tween canonical variables could be more interesting to analyze; for instance,
a region that in a given time is normal and in a next time is ill, and viceversa.

— Again, the M.A.D. Transform is a difference of canonical variables. For the
case of the co-occurrence matrix, each one of these variables are a new co-
occurrence matrix corresponding to a new (unknown) texture.

To back-project the data from the M.A.D. Transform to the original images,
the following criterion was applied. As it was mentioned, the M.A.D. components
are computed with the co-occurrence matrix of each single band of two equal-
ized images. For each pixel in each equalized image, co-occurrence pairs in eight
directions were formed for each single band value. Each pair is used as index
in a weighting function given by the absolute value of the first M.A.D. compo-
nent. This was done, because only the magnitude of the change was considered
of interest. For a given pixel, the M.A.D. absolute values corresponding to each
co-occurrence pair formed by the pixel with its neighbors pixel in 8-connectivity
3, are summed and saved in a synthetical image. The histogram of this image
is finally divided in two parts by a user set threshold. The segmentation output

3 3 bands by 8 pairs gives 24 weights
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obtained is composed by a region indicating more textural change and region
indicating less textural change.

The output of the back-projection scheme proposed is shown for two ex-
amples: the lesions (1, A) and (1, B). In both cases, the illumination corrected
images with the lesion region equalized were used. The output of the M.A.D.
Transform was back-projected to the original data in the way previously de-
scribed. Note in each case that for each image of the pair, the segmented regions
showing more and less textural change are approximately corresponding. This
gives the evidence that it is possible to avoid the alignment and registration
of images applying the M.A.D. transform to multi-spectral descriptors that are
invariant to rotations and translations.

&
s
%

1Act

1Ad1

1Ba1

1Bb1

Fig. 1. From the M.A.D. Transform to the Original Data.

From left to right: co-occurrence matrix, back-projection synthetical map, regions
with more textural change and regions with less textural change. From top to
bottom: the first two rows are data for the case (1, A) (the first images of the third
and fourth session) and the last two rows, for the case (1, B) (the first images of the
first and second session).
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However, it has to said that, in general, the output of the back-projection ap-
proach was not satisfactory. Each step and constraints set for the back-projection
should be revised. The first M.A.D. component is the difference of canonical vari-
ables of the co-occurrence matrixes, that, in fact, correspond to a new textural
version of the original images. For the back-projection, a combination of the
original data and the first M.A.D. component was used, what could have been
an unappropriate mixture of information. As it was mentioned in [12], the sim-
ple difference of the spectral bands, turns to be difficult to show the change
in all the bands simultaneously. Thus, may be, for simplicity, in order to ob-
tain a more suitable back-projection scheme, to start with a single difference of
one pair of co-occurrence matrixes could be more a more fortunate way to follow.

7 Conclusions

The application of the Multi-variate Alteration Detection Transform to the nor-
malized co-occurrence matrix of lesions with psoriasis patterns is a suitable ap-
proach for detecting texture changes in time that avoids the interaction with the
user and the lesion pattern registration. The most significant contribution in the
texture change of lesions with psoriasis is given -for the pilot data-set- by the
green and blue bands. There is evidence that it is possible to back-project the
M.A.D. Transform output to the original data, such that corresponding regions
showing more and less textural change can be delineated. However, in order to
be able to generalize the approach, the optimization of each single stage of the
whole procedure has to be considered.
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Session:1 PATIENT:1 LESION:A

Session:2

Session:3

Session:4

Fig. 2. Regions indicating the selected lesion A of patient 1 in the illumination-
corrected images.

Session:1 PATIENT:1 LESION:B

Session:2

Session:3

Session:4

Fig. 3. Regions indicating the selected lesion B of patient 1 in the illumination-
corrected images.
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Session:1 PATIENT:1 LESION:C

Session:2

Session:3

Fig. 4. Regions indicating the selected lesion C of patient 1 in the illumination-
corrected images.

Session:1 PATIENT:2 LESION:B

Session:2

Session:3

Session:4

Fig. 5. Regions indicating the selected lesion B of patient 2 in the illumination-
corrected images.
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B Co-occurrence matrix of selected pairs of images and
their MAD Transform

1Aal 1Abl 1Acl 1Ad1

MAD(1AaL,1Ab1) MAD(1AbL, 1Ac1) MAD(1AcL, 1Ad1)

Fig. 6. Co-occurrence matrixes and M.A.D. Components for the case (1, A).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 1, Lesion A); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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1Bd1

1Bal 1Bbl 1Bcl

MAD(1Ba,1Bb1) MAD(1Bb1,1Bc1) MAD(1BcL, 1Bd1)

Fig. 7. Co-occurrence matrixes and M.A.D. Components for the case (1, B).

The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 1, Lesion B); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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1Cal 1Cb1 1Cc1

MAD(1Cat, 1Ch) MAD({Ch1,1Cc1)

Fig. 8. Co-occurrence matrixes and M.A.D. Components for the case (1,C).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 1, Lesion C); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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2Aal 2Abl 2Acl 2Ad1

MAD(2Aa1,2Ab1) MAD(2Ab1,2Ac1) MAD(2Ac1,2Ad1)

Fig. 9. Co-occurrence matrixes and M.A.D. Components for the case (2, A).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 2, Lesion A); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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2Bal 2Bbl 2Bcl 2Bd1

MAD(2Ba1,2Bb1) MAD(2Bb1,2Bc1) MAD(2Bc1,2Bd1)

Fig. 10. Co-occurrence matrixes and M.A.D. Components for the case (2, B).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 2, Lesion B); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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2Cal 2Cb1 2Ccl 2Cd1

MAD(2Ca1,2Cb1) MAD(2Ch1,2Cc1) MAD(2Cc1,2Cd1)

Fig. 11. Co-occurrence matrixes and M.A.D. Components for the case (2,C).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 2, Lesion C); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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3Aal 3Abl 3Acl 3Ad1

MAD(3Aa1,3Ab1) MAD(3Ab1,3Ac1) MAD(3Ac1,3Ad1)

Fig. 12. Co-occurrence matrixes and M.A.D. Components for the case (3, A).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 3, Lesion A); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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3Bal 3Bbl 3Bcl 3Bd1

MAD(3Ba1,3Bb1) MAD(3Bb1,3Bc1) MAD(3Bc1,3Bd1)

Fig. 13. Co-occurrence matrixes and M.A.D. Components for the case (3, B).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 3, Lesion B); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.



28 Maletti et al.

3Cal 3Cb1 3Ccl 3Cd1

MAD(3Cal,3Ch1) MAD(3Cb1,3Cc1) MAD(3Cc1,3Cd1)

Fig. 14. Co-occurrence matrixes and M.A.D. Components for the case (3,C).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 3, Lesion C); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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Table 9. Correlation values between the Color Bands and the respective first MAD
component for the images of previous Figures

LESION|t, [t2 |RED(t1)|GREEN (t)|BLUE(t1)| RED(t2) [GREEN (t2)| BLUE (t2)
1A |al[b1[-0.043395] -0.281037 | 0.368620 |0.076882| 0.296416 |-0.397385
1A [bllc1|0.157975 | 0.259383 |-0.401074 |-0.009873| -0.281179 | 0.280133
1A [c1|d1]0.092474 | -0.275296 | 0.272046 |0.360614 | -0.083418 |-0.280742
1B |al|b1]0.305761| -0.230549 | 0.054734 |-0.120127| -0.198322 | 0.343047
1B |bl|c1|0.088509 | -0.316239 | 0.258445 |0.320800| -0.068653 |-0.275978
1B |c1|d1]0.312352| -0.252936 | 0.015724 [0.163600 | -0.290688 | 0.204880
1C  |al[b1/0.001901 | -0.378092 | 0.510217 |-0.069119| 0.390545 | -0.540887
1C  [bl|c1|-0.009486| -0.449951 | 0.490224 [0.001886 | 0.456618 |-0.472794
2A  |al[b1]-0.043036| 0.239584 |[-0.185652 |0.216014 | -0.191849 | 0.097690
2A  |bl|c1|0.324745 | -0.083721 |-0.018579 |-0.001702| 0.211669 | -0.210786
2A  |c1|d1]0.042016 | -0.227695 | 0.187835 |0.266919 | -0.140662 | 0.097644
2B |al|b1|-0.007383| 0.543504 |-0.394928 |0.019575 | 0.638896 | -0.266538
2B [bl|c1|0.001548 | 0.637515 |-0.242365 |-0.047060| -0.669888 | 0.171656
2B [c1|d1/-0.028495| 0.500740 |-0.460677 |-0.056241| -0.664664 | 0.193865
2C  |al[b1]-0.015721| -0.194092 | 0.227168 |0.194830| 0.101938 |-0.189855
2C  |b1[c1|0.038893 | 0.194974 |-0.199133 |0.048887 | 0.194801 |-0.246159
2C  |c1]d1]0.071718 | 0.195087 |-0.221466 |0.048802| -0.219207 | 0.138725
3A  |al|b1]0.083018 | -0.214939 | 0.163499 |0.117317| -0.231709 | 0.145831
3A  |bl|c1[0.087001 | -0.224819 | 0.167746 |0.143994 | -0.213472 | 0.115006
3A  |c1|d1]0.100927 | -0.222693 | 0.149637 |-0.087361| 0.226875 |-0.149954
3B |al|b1]0.029576 | -0.227130 | 0.222873 |-0.001799| 0.225008 | -0.224343
3B |bl|c1]-0.023228| 0.256221 |-0.183855 |-0.011463| -0.186459 | 0.174127
3B |c1|d1]0.004763 | -0.193600 | 0.189768 |0.011727| 0.192159 | -0.204803
3C  |al[b1]0.095635 | 0.177159 |-0.248092 |-0.110164| 0.262144 | -0.176593
3C  |bllc1[0.062883 | -0.255678 | 0.199650 |0.105009 | -0.224865 | 0.158335
3C  |c1]d1]0.073072 | -0.232236 | 0.174764 |0.133484| -0.244558 | 0.131380
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Abstract. A two-stage registration scheme of psoriasis lesion patterns
is proposed. In the first stage, global rotation and translation effects
of assumed equally scaled psoriasis lesion patterns are removed. In the
second stage, only local translation effects are removed. In both stages
a novel algorithm for extreme value detection is applied. The output of
each stage is evaluated with the M.A.D. transform and the correlation
coefficient. Results are shown for real examples.

1 Introduction

We use a set of segmented psoriasis lesion patterns from RGB images taken
at the Gentofte Hospital, Denmark, during pilot sessions with three invited pa-
tients. For each patient, three lesions were followed once a week for at least
three weeks. In each session, five images of each lesion were taken. Following the
notation used in previous work ([13], [11], [12], [14]), the group of images corre-
sponding to a given patient and lesion is here called "case (patient, lesion)". Part
of the mentioned segmented patterns' was generated by a two-stage hierarchical
classification scheme [11], and another part, was produced by user-interaction®.
This was done so, in order to exclude shadow effects in the captured objects
[12]. One case® was excluded, because corresponding points between sessions
were hard to find, by visual assessment.

Once a spacial pattern has been segmented, morphological descriptors like
area, perimeter, compactness, perimeter roughness, eccentricity, shape and tex-
ture can be estimated ([9], page 340). In order to register two spatial patterns,
it is required that the descriptors are sensitive to the transformations (rota-
tions, translations and/or changes of scale) whose effect we want remove trough
a distance minimization process. This minimal distance between two objects is

! For the cases (1, A), (1, B) and (1,C) see Figures 2 to 4 in [14]. For the cases (3, B)
and (3, C), see Figures 7 and 8 respectively in [11]

2 See Figure 5 in [11] for the case (2, B). Case (2, A) was generated in the same way.

3 The case (2,C) was hair all over.
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assumed to be referred to the position, angle and scale for which the patterns are
matching. When this distance is Euclidean and the minimization is done over
rotations and scale of equally centered objects then we have the full Procrustes
distance [3]; when the same is only done over rotations, then we have the par-
tial Procrustes distance. Procrustes Analysis is a useful approach for aligning
two landmark registered shapes [8]. For the case that these shapes are not land-
mark registered, the approach could be extended by setting some constraints,
for instance, with regard to the topology given by the connectivity between the
landmarks. A list of references to landmark-free approaches can be found in [3],
page 305.

It could be nice to include textural information [6], [10], [1], [7], [20], [19] dur-
ing the registration process. Previous work that combines shape with textural
information was published in [18]. In the present work, it is assumed that the
shape of the object is invariant to scale and that, for each pattern, the pixels lo-
cations are landmarks that have to be matched. It is assumed that the objects of
largest size in the thematic map indicating lesions are corresponding. However,
they could not have the same size. Therefore, the most convenient set of pixels
that will define the set of landmarks to be registered has to be found through a
distance minimization process.

The basic approach could be to compare the pixel values in their original
form. However, there are many ways to transform the data and present them to
a distance function. A review of linear and non linear decomposition approaches
can be found in [8]. Since the red band of each single image is the most corre-
lated with the first principal component of the image [13], it is from this band
the pattern values are compared.

This work is composed of the following sections. First, a review of measures
of distances and similarities is given. Secondly, a general algorithm to obtain the
minimal distance between two patterns is proposed. In many cases, the cost of
the estimation of the values of a function is expensive. Therefore, to obtain one
of its extreme values (for instance, its minimum) could be carried out on a small
representative data-set. Then, a section detailing a scheme that uses this algo-
rithm to carry out the initial alignment of patterns follows. The initial alignment
implies removing global translation and rotation effects of two assumed equally
scaled patterns. The output of the initial alignment scheme is used by an internal
local registration scheme described afterwards. In this case, it is assumed that
the local rotation effects in the interior of the patterns are not significant, and
only local translation effects in the interior of the patterns are removed.
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2 Distances and Similarities

A mathematical representation of how close or similar two objects or data-sets
or groups of observations are, is given by the distance. The selection of the mea-
sure of distance used changes the results. A short review of definitions follows
from [15].

Definition 1. Given two points x and y, a real-valued function d(x,y) is a
distance function if it has the following properties:

— symmetry: d(z,y) = d(y, @);
— non-negativity: d(x,y) > 0;
— identification mark: d(x,x) =0

Definition 2. A metric is a distance for which also the following properties are
satisfied:

— definiteness: d(x,y) = 0 if and only if x = y;
— triangle inequality: d(x,y) < d(z, z) + d(z,y).

Definition 3. A measure of similarity s(x,y) is such that it satisfies the fol-
lowing properties:

B S(Q:a y) = s(va);
— s(xz,y) >0
— s(x,y) increases as the similarity between x and y increases.

Some frequently used measures of distances between two data-sets  and y
are [21], [15]:

Distance of Minkowsky
d(@,y) = (Y |e: —y:l")" (1)
i=1

Euclidean Distance

— Distance of Manhattan
d(x,y) = |z —yil (3)
i=1

— Distance of Camberra

d(w’y) =
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Distance of Chebychev
d(x,y) = max;l, |z — yil (5)

Quadratic Distance

d(z,y) = (x—y)" Q(z —y) (6)

where @) is a positive definite m x m matrix of weights.
— Distance of Mahalanobis

dz,y) = (z—y) "V '(z-y) (7)

where V' is the covariance of x and y.
— One minus Correlation

i@ —T)(yi —7)

dlxz,y)=1-—
(#9) | Ve (@ —T)2 Y (v — §)? |

— Scalar Product [9]
d(z,y) =< =,y > 9)

which can be standardized in different ways, like range, standard deviation or
number of elements. Some more distance measures can be found in [17]. Similar-

ity measures can be transformed into dissimilarity measures by means of tricks
like [5]:

s(z,y) = m (10)
S(iL’,y) :C_d(w7y> (11)

with ¢ a constant.

In order to evaluate, for our registration problem, the appropriateness in
using one of the measures of distances previously listed, the following aspects
are considered:

— Feature space properties: results of clustering depend on the choice of the
measure of distance.

— Set elements correspondence: the way the elements of two sets are ordered
affects the measure of distance between the sets.

— Computational time: the number of mathematical operations required to ob-
tain each given measure of distance is counted.

With respect to the feature space, Duda and Hart ([4], page 213) pointed
out that the selection of the Euclidean distance (See Equation 2) implies that
the feature space is isotropic: the clusters will be invariant to translations or ro-
tations; however, they will not be invariant to linear transformations in general
or to transformations that distort the distance relationship. In order to achieve
invariance the data can be normalized prior to clustering. Normalization im-
plies the introduction of information that gives the procedure meaning. Some
normalization suggestions given in [4] are, for instance:
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— invariance to displacements and scale changes: translate and scale the axes so
that all the features have zero mean and unit variance. This prevents certain
features from dominating distance calculations. This approach is appropriate
if the spread of the values is due to normal random variation. The problem
with our data set is that, for instance, changes in the class variances could
be of interest to detect lesion changes in time. For instance, when scaling
appears in the lesion, the variance of the distribution changes. This means,
that a normalization by variance of the original data is not the most ap-
propriate decision. Furthermore, changes in the redness of the lesions, which
imply mean class displacements along the time, are also of interest for the
dermatologists.

— invariance to rotation: rotate the axes so that they coincide with the sample
covariance matrix (transformation to principal components). This can be
preceded or followed by normalization for scale.

Many other normalized distance or similarity functions could be used to nor-
malize the data.

With respect to the pixel correspondence, the following is considered. When
data sets are compared, the order given to the elements of each single set (i.e.
the correspondence established between pairs of same indexed elements, one of
each set) plays a relevant role. Note, for instance, in the equations of distances
given, that the index ¢ establishes the correspondence between the i —th element
of the set x and the i — th element of the set y. For our case, by placing a ro-
tated and translated version of a pattern over another pattern, and computing a
measure of distance, location correspondence of pixels could be assumed. On the
other hand, as it was mentioned before, spatial registration of patterns requires
descriptors sensitive to the transformations that are expected to be removed.
However, for prediction purposes, it could be nice to use descriptors invariant
to the transformations that need to be removed in order to achieve registration
of patterns, like the normalized histogram or the co-occurrence matrix (See [14]).

Results obtained regarding to the computational time can be seen in Table 1.
As it can be deduced, Equation 3 has the smallest computational cost.

3 The Extreme Value Detection Algorithm

The Extreme Value Detection Algorithm (E.V.D.A.) is an iterative process that
assumes that the expected minimum (extreme value) of the distance function
between two objects is near the center of masses of the domains of those objects.
In the first iteration, a mapping template centered on the center of mass of the
domain of one of the objects is used to define the subset of the domain of the
distance function for which their values will be estimated. This mapping tem-
plate includes many points of the neighborhood of the center of mass, and only
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Table 1. Number of operations required for the computation of each measure of dis-
tance between two d—dimensional vectors  and y of m elements, with d = 1.

Distance |[+|—1| = [/]||] 7~ [if || Order
Minkowsky || m | m 1/m|m+1 4m+2
Euclidean ||m |m m+1 3m-+1
Manhattan || m | m m 3m
Camberra ||2m|m m|2m 6m
Chebychev m m 2m|| 4m
Quadratic ||2m|m | 2m 5m

Mahalanobis||3m|2m|2+m| 3 6m-+5
Correlation ||5m|4m|{m-+1|1 2m-—+2 12m-+4

few that are far away of the center. The extreme value of the calculated values
of the distance function is obtained, and the same mapping template is centered
on that first guess of the extreme value. This step is repeated until the guessed
extreme value does not change anymore.

Formally, the Extreme Value Detection Algorithm (E.V.D.A.) is an algorithm
that iteratively approximates the extreme value fe; (minimum or maximum)
of a smooth and discrete function F defined over a subset Lg of a lattice L =
{[r,c]|]1 <r < M,1 <¢< N}, such that the location of fe.; is [r, ¢]ert and feqt
is unique. For each iteration, a mapping template is centered on the position
of the actual guess [r, c],,, of the location of that extreme value. This template
is Bolduc and Levine’s [2] three parameters retinal mapping model M (rf,w, o),
where:

— 7y is the foveal radius,

— w is the receptive field overlap factor, and

— « is the receptive field size-to-eccentricity ratio, (the size of the receptive field
is the diameter of the receptive field circle, and the eccentricity of a receptive
field is, in our case, the radial distance from the center of the receptive field
to the actual guess [r, c]..; of the location the extreme value).

The initial actual guess of the location of the extreme value can be any element of
L (the use of the center of mass of the domain is suggested). Following Bolduc
and Levine’s model, receptive field centers are arranged along rays originated at
[7": ¢|,.;» and along circles also placed at the same location (See Eq. 1-3 of [2] for
details of the derivation of the positioning parameters # and k, where 6 is the
angle between adjacent rays and k is the ratio of radii of adjacent circles). The
circle of radius 7, is such that it is the circle of maximum radius for which at
least one point belongs to L. The function F' is computed for each center of
receptive fields placed on the rings and for each element belonging to the fovea.
The location of f.,; guessed for the next iteration is given by the location of the
extreme value fmt of F' computed until now. If more than one element of Lz can
be the actual guess, then one of them is randomly selected. The algorithm stops

when the values of [r, c|.,; between two consecutive iterations do not change
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anymore. The convergence is guaranteed.

E.V.D.A. has a maximal processing time of O(n,, + nr * (round(%7))) per
iteration, where n,., is the number of elements of the fovea, nr is the number of
rings and round((=5")) is the number of receptive fields placed on each ring. Tt
has a fast convergence because, for each iteration, a local neighborhood of the
estimated minimum value composed of the elements of the fovea is analyzed in
detail, at the same time other parts of the whole domain are taken into account
by sampling the centers of receptive fields placed over rings of increasing radius
at a logarithmic scale.

Some examples of mapping templates are shown in Figure 3.

The E.V.D.A. has been tested using Wilson’s Model [22] parameters (w = 0.5
and a = 0.25) on lattices of 100 by 100 elements. The foveal radius was increased
from 1 to 50. For each foveal radius, the algorithm was tested 20 times. The initial
guess of the location of the extreme value was randomly set. The minimum values
of the following functions were found:

Table 2. Tested functions

Nr. Function Domain

1 Z=(X24Y?"2 Lz={[rd]-99<r<0,-99<c<0}
2 Z=(X?4Y?) Lz={rd|l—49<r<50,-49 <c <50}
3 Z:l—m)Lz:{[r,c]|—49§r§50,—49§c§50}
4 Z:l—ﬁ)LZ:{[r,c]|—89§r§10,—69§c§30}

For each function and foveal radius, the number of estimated function values
and the average number of iterations is shown in Fig. 2. Note that for all the
testing functions, being the convergence guaranteed, the percentage of evalu-
ated points increases unnecessarily when the foveal radius increases. The cases
for which the function is not smooth, contextual information could be useful.

4 Initial alignment

Some definitions to be used in the present section are first introduced. After-
wards, an algorithm to carry out the initial alignment is proposed.

Given a set of segmented patterns of a given lesion, in the initial alignment
stage, global translations and rotations effects between pairs of patterns are
removed. For comparison purposes, it is assumed that the dispersion of the el-
ements of the data-sets is of interest, while the mean differences are not. Some
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1f=5 theta=60

1f=10 theta=60

1f=15 theta=60

1f=5 theta=60

1f=10 theta=60
1f=15 theta=60

1f=5 theta=40

1=10 theta=40

1f=15 theta=40

1f=5 theta=40

1=10 theta=40

1f=15 theta=40

1f=5 theta=30

1=10 theta=30

1f=15 theta=30

1f=5 theta=30

1f=10 theta=30

1f=15 theta=30

Fig. 1. Mapping templates
They are shown on a domain of 100 by 100 pixels of size with different foveal radius
(ry = 5,10, 15 pixels) and different angles between adjacent rays of (6 = 60, 40, 30
degrees) for the positioning parameter k = 0.4 (first three rows) and k = 1 (last three
rows).
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Fig. 2. Tested functions and results of the Extreme Value Detection Algorithm for
foveal radius varying from 1 to 50.

definitions follow:

Definition 4. Let two windows A and B of size ng, = ny with domains L and
Lp such that 3t A\ 0 for which:

Lp = Rot[Trans[L 4, t],0] (12)

where Rot and Trans are the rotation and translation function respectively de-
fined in a 2-D discrete space. Rot and Trans are commutative.

For each window, we compute a texture descriptor, and then take a measure
of distance between pairs of windows. The measure of distance used is Manhat-
tan distance (See Equation 3). The texture descriptor is the volume under the
surface formed by the normalized values of the pixels of the window. In this way,
the quantization level information is removed, while the texture is preserved.

Definition 5. The difference of volume dV 4 ) between the windows A and
B is, in general, defined as:

MNANB

1 . .
Vi) = Vis)a) = 5 D el —ws ] (13)
i=1

where, in the present work,
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wioli = o ] (14)

21 2]
x(7)[i] is the value of the pizel located at the i —th position of the J —th window
of ny elements. Note that 0 < dV < 1.

During the initial alignment, it is assumed, for a given lesion, that Equa-
tion 12 is true for the intersection of the translated and rotated versions of the
pair of pattern domains, for which the distance (see Equation 13) between the
corresponding pixel values is minimal. It is also assumed that the objects to
be aligned have the same scale. However, as mentioned before, the input of the
initial alignment stage is a set of segmented patterns (this means, the overlaps
between segmented objects indicating lesion and the original data), which may
not have the same area. (See, for instance, Figures 2 to 4 in [14]). The most
important result produced by this stage is the specification of the number of
landmarks to be registered in a next stage, this means, that the area of the ob-
jects is finally forced to be constant. Since some lesion patterns are occluded in
the original images, it is left to the user to decide if the number of landmarks is
given by the area of the intersection of the whole set or of a subset of the aligned
domains (objects in thematic maps indicating lesion).

The algorithm that carries out the initial pattern alignment is detailed here.
First, the n largest sized objects belonging to each of the thematic maps ob-
tained in the previous stage are found. Misclassified pixels forming holes within
regions indicating lesions are previously assigned to the class lesion*. Correspon-
dence by decreasing object area is assumed. From now, it is assumed that the
overlay of the object with the pixel values is a window. For each given window
S and a given reference window R, each of the rotations Rot(R,6) is centered
on the position of each pixel of S, and the angle éopt and location [¢, j] € L for
which the difference of volume is minimal is found. L is the lattice on which the
images including the patterns R and S are defined. In practice, pattern objects
are rotated in a range varying from —45 to 45 degrees. For each iteration, this
range is divided into five intervals. Neighboring intervals containing the mini-
mum of the evaluating function dV' (Equation 13) define the range for the next
iteration. This minimum is computed using the Extreme Value Detection Algo-
rithm (E.V.D.A.) detailed in Section 3. The algorithm stops when the minimum
between two iterations differ with less than a user-provided threshold g.

The output of the initial alignment stage is back-projected to the original

data and a new set of images containing the aligned shapes is obtained. These
images can afterwards be registered and realigned.

4 The function bwfill of Matlab Version 6.1.0.450 (R12.1) is used.
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4.1 Results and Discussion
The following parameters were set for the initial alignment of the lesions:

— The threshold § for the minimal angle was 1 degree.

— One object per thematic map was tracked within and between sessions re-
lated to the same lesion.

— For all the cases, the mapping template used was M (0.3,0.5,0.25). The first
parameter in M is a percentage of the smallest side of the smallest rectangle
that includes the lesion. The last parameters correspond to Wilsons’s Model.

— The lesion pattern of the first image of each sequence was the reference
window S.

— The initial alignment with original red band data is presented here.

The Algorithm E.V.D.A. defines searching areas starting from the center of
mass of the pattern domain, because it is expected that the maximum overlap
between a pair of pattern domains will be near their center of masses.

The number of computations of values of the minimizing function F decreases
along the iterations, because values of previous iterations can be preserved.

The set of aligned lesion patterns can be seen in Section A. For all the cases,
10 rows and columns were removed from the borders. For the cases (1, A), (1, B),
(1,C), (3, B) and (3, C) the classification outputs were used; this means that the
image data were down-sampled with a factor of 4 5. For the cases (2, A) and (2, B)
no down-sampling was done.

The Extreme Value Detection Algorithm used on average 3 iterations. Clearly,
the use of a template providing the same amount of information for each ring,
while the spacing between rings is given at a logarithmic scale, is advantageous
for the fast detection of the emergence of an extreme value in the sampled do-
main. On the other hand, looking for the extreme value in the same location as
the center of the domain of the reference window is a reasonable criteria, that
helps to reduce the convergence time. This is added to the fact that the sampling
rate is increased in the foveal region. However, it has to be mentioned that some
extended tests have shown that if the initial guess of the position of the extreme
value was too far away from the real value, the algorithm stopped in a local
extreme value.

In general, it can be said that, by visual examination, the results are satis-
factory. Looking through some of the alignment results, it is obvious that the
illumination problem is greater than expected. See, for instance, how much the
shadow location varies in the case (3, A). In fact, as it was reported in [12],
the shadows do affect the classification results. However, a comparison of the
alignment results before and after illumination correction, which is shown in

5 One pixel every four columns and rows was selected.
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Appendix B, is given only as an illustrative example 6. Correlation values before
and after illumination correction are compared in Table 3. Details can be found
in Table 9.

Table 3. Average correlation and standard deviation of a randomly selected aligned
lesion pattern of the lesion A of the patient 2 with the remaining aligned lesion patterns
of the same patient and lesion.

(2,A) | pr ORrR | MG og | BB 0B
Before|0.5650 0.1195|0.3819 0.1103|0.4824 0.0755
After |0.3173 0.0568(0.2292 0.0489/0.1919 0.0470

Even when the illumination was corrected, the initial alignment results did
not improve. May be the measure of distance used gets a bit confused in large
data-sets. Note in the fourth and fifth capture of the first session of the case
(3, B), that the E.V.D.A. clearly stopped in a local minima, and it was not able
to align the data correctly. This could imply that the measure of distance is less
sensitive to changes when the data set is too large. This alignment problem is,
in fact, not trivial. The intersection of the pattern domains was used to define
the region for which the measure of distance is computed. When the pattern
domains are (almost) overlapping, the area of this region is maximal. We expect
a minimal difference of volume near the center of masses of the domains. For this
reason, the initial alignment of the pattern corresponding to the first patient,
for which the pattern domains were very similar, worked very well. However,
for the most of the remaining cases, the patterns do not have a common shape:
some lesion borders are given by the image border. We could think of different
scale-shapes, or what is more precise, after an ideal alignment, the intersection
of the domains is far from being equal to the union of the domains. Therefore,
the E.V.D.A. finds a minimum when the overlap of the patterns domains is near
a maximal and not where the patterns have a maximal overlap. To find the min-
imal intersection sample size prior to the alignment could probably improve the
results.

On the other hand, it is mentioned only as a comment, that the initial align-
ment output using the |B — G| lesion data was satisfactory for the cases (1, A),
(1,B), (1,C) and (3,C). However, particularly for the cases (3, A) and (3, B) it
was not possible to align the whole data set in an acceptable way. May be due
to the same reasons as explained before.

5 Due the high contrast between the lesion and the rest, in both cases, the |B — G|
band. The images where down-sampled a factor of 16: one pixel every 16 columns
and rows was selected.
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For a given lesion, the expected correlation value of a randomly selected
aligned lesion pattern with any other remaining aligned pattern of the same
set (case) is given in Table 4. The values of each single 1 cell were computed
according to the following equation:

1 Nng MNe
Holb = - Z; Z; Elcorr(Xp,1ij,b, Xp.1,:.:.0)] (15)
1=1 7=
where Elcorr(Xp 15,6 Xpi,:.:p)] is defined as:
1 Nns Ne
Elcorr(Xp,,s.e,6, Xp,i,i,:0)] = m(;;Corr(Xp,l,s,c,bvXp,l,i,j,b) -1
(16)

and p is the index for patient, [, for lesion, s, for session, ¢, for capture, b for color
band. The symbol n. is the number of captures of the s —th session. The session
s takes values in {’a’,’b’,’c’,’d’}, where the order in the sequence indicates the
session week. The symbol ng is the number of sessions. The color band b takes
values in {'R’,’G’,’B’}.

The values of each single o cell were computed according to the following
Equation:

1 ns MNe

Z Z(E[COTT(Xp,l,i,j,b, Xp,l:0)] = Hp,1p)?-

i=1 j=1

(17)

Op,l,b =
Dl NaNe

where the sub-indices have the same meaning as before.

Table 4. Average correlation and standard deviation of a randomly selected aligned
lesion pattern with the remaining aligned lesion patterns of the same patient and lesion,
per color band, patient and lesion.

(Patient,| ur OR na oa 0B OB |MB-G| O|B—G|
Lesion
(1,A) [0.6918 0.0468|0.5770 0.0538|0.3679 0.0595|0.6941 0.0323
(1,B) [0.6696 0.0932|0.5241 0.0944|0.4413 0.0843|0.4517 0.1305
(1,C) (0.2534 0.0806|0.1651 0.0642|0.1138 0.0561|0.4211 0.0585
(2,A) (0.5162 0.0606|0.3561 0.0589|0.5720 0.0588|0.6486 0.0367
(2,B) [0.6681 0.0227|0.5736 0.0331|0.7260 0.0219|0.4854 0.0432
(3,C) (0.2550 0.0288|0.0757 0.0350|0.1289 0.0202|0.3524 0.0672

5 Combined registration and alignment

According to the experience of the dermatologist that lesions with psoriasis do
not significantly change their shape and size along the time: the major change
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happens within the lesions instead. After the initial alignment it is assumed that
the aligned patterns have the same size and shape. Until now, for a given lesion,
elements of pairs of aligned patterns located at the same position were consid-
ered corresponding points. This hypothesis is now refined: we assume that there
is some error produced by small internal displacements. These displacements are
assumed to be small translations only.

In the first part of the present Section, a novel registration scheme is pro-
posed. This scheme uses the E.V.D.A. (See Section 3) and thin plate spline
interpolations, the theory of which was included for completeness. A subsection
of results and discussion follows.

5.1 A registration scheme

In general, in order to define the correspondence, two m-dimensional sets of
landmarks 7" and Y, called the source and the target respectively have to be
specified [3]. In the present scheme, m = 1 and, for each given image taken dur-
ing a given session, the source T is given by the locations of pixels belonging to
the aligned pattern corresponding to the first image of the first session, and the
target Y should be given by their corresponding but unknown locations of pixels.
In order to reduce the computational time, for each pattern, only a subset of T’
and Y is considered at first. Pixels placed on a grid composed of square cells
with a user-defined number of points form the subset of T" for which their cor-
responding points will be found. The correspondence between the source subset
and the target subset is established as follows. For each pixel belonging to the
grid, a user-defined circular neighborhood is considered. At the same location in
the second image, another user-defined circular neighborhood” - larger than the
previous one®- is taken into account. See an example in Figure 3. The difference
of volume values dV of all® the translations of the first window over the second
window are considered. The position of the pixels belonging to the second im-
age whose neighborhood has the minimal difference of volume compared to the
window of reference the pattern is saved in a new grid.

Afterwards, two different approaches are considered:

— Approach 1: The window sizes defining the searching areas in the target
image are reduced along the iterations. The process is repeated, but a target
pixel is moved to a new position only if the difference of volume between
the source window and the new guess of the estimated corresponding target
window is smaller than the difference of volume between the source window

" These window sizes are established by visual inspection of the image containing the
error between pairs of images taken during the same session.

8 Computed as a function of the spacing between the points on the grid

9 In practice, only the points defined by the mapping template used in E.C.V.A. were
evaluated
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Fig. 3. Pair of corresponding grids for two segmented lesions of the case (1, B)
.On the right, the user-defined grid with one example neighborhood delineated in
black. On the left, the corresponding grid with the evaluating neighborhood of the

example on the right.

and the actual guess of the estimated corresponding window. The user is
repeated for a user-provided number of iterations.

— Approach 2: The average grid is computed. The set of distance vectors from
the grid of the reference pattern image to the average grid is used to translate
all the grids to a new position. This process is repeated for a user-provided
number of iterations.

Then, to generate the whole target set Y for each single image, thin plate splines
are applied to the rest of the values of the source T and the rest of the new lesion
image can be generated (See Section 5.2).

At the end of this stage, it is expected that the pattern correlation within
and between sessions increases. Also, when comparing two patterns belonging to
the same session, randomly Gaussian noise should be observed in their difference.

5.2 Pairs of thin-plate splines

This topic is described following Dryden and Mardia [3]. Conceptually, the thin-
plate spline is the most natural interpolating function for data in two dimensions,
because it minimizes the amount of bending in transforming between two con-
figurations.

Let the set of 2-dimensional landmarks be T = [t1t,...t;]T, on the first figure
mapped exactly into Y = [y;y2...yx] on the second figure, with m = 2. There
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are 2k interpolation constraints:

(yj)r = ¢r(tj),r=1,2,7=1,..,k (18)
and ¢ = (¢1(t;), #2(t;))” for the 2-dimensional deformation.

A set of k pairs of thin-plate splines is given by k bivariate functions

O[T] = (:1[T], o[ T)" (19)
where
Yiz2 = [Stoe Lt Tha2) [WarCor1Asza]” (20)
where S;; = o(t; — t;) and o(h) = ||h|[*log(||h||) if ||h]| > 0 and O in the
contrary case. Obviously, S = ST. In order to define the bending energy, six
more constraints are introduced:

[17,:0121010] [Wah 1 €201 Azza]” = 0140 (21)
(T30 0221 022 ) [Woh €1 Agia] T = 020 (22)

Pairs of thin-plate splines which satisfy the constraints of Equation 21 and 22
are called natural thin-plate splines. Let the matrix symmetric positive definite
matrix [(j3)z(k+3) be defined with the left side matrix of Equations 20, 21 and
22 as follows:

ST1T
r=( 100 (23)
TT00

The inverse of v exists if S~! exists. Writing the partition of y~! as:

I-ll I—12
< lfzwlk ,—22) (24)
we have that Wigoe = L Yio and M2Y Yio = [, AT )

5.3 Results and Discussion
The following parameters were set to produce the outputs:

— The number of points in the grid was set to a multiple of 10. The minimum
side of the smallest rectangle that includes the lesion was divided in ten
pieces; the size of each piece defined the size of square cells forming the grid.

— The radii of the circular window sizes used for the registration were a function
of the separation between points in the grid. For the source image, the radius
was 1 times the separation between points in the grid; for the target image,
it was 2.
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The mapping template was M (0.30,0.5,0.25).

The user-defined number of iterations was 10.

— The red band values were used for both approaches.

— For each case, the lesion pattern of the first image of the first session was
used as the reference window.

Initially, occluded lesions were handled in the same way as the others. How-
ever, this considerably affected the results. After removing them from the sets
to be registered, the algorithm was again applied and the results were more sat-
isfactory.

Clearly, the separation between points in the grid is crucial during the reg-
istration stage, because the size of the source and target window depends on it:
if the window size for the target image is too small, the error in the registration
is not randomly distributed within the lesion and some structure appears. Too
large window sizes, in some cases, only increased the computational time. Thus,
they have to be selected after visual inspection of the difference between pairs of
initially aligned lesions belonging to the same session. Setting these parameters
per lesion could improve the results.

The registration outputs of the second approach are presented in Section C.
Each single cell value in these tables was computed using Equation 16. In corre-
spondence with Table 4, but using the correlation values of registration outputs,
Tables 5 and 6 were generated.

Table 5. Average correlation and standard deviation per color band, patient and lesion
of a randomly selected registered (with Approach 1) lesion pattern with the remaining
patterns of the same patient and lesion.

(Patient, UR OR [i%e} oG UB 0B |U|B—G| O|B—G]|
Lesion
(1,A) [0.6917 0.0458|0.5670 0.0438|0.3682 0.0557|0.6582 0.0319
(1,B) [0.6772 0.0724|0.5364 0.0769|0.4605 0.0697|0.4086 0.1129
(1,C) (0.2768 0.0723|0.1902 0.0582|0.1313 0.0452|0.4150 0.0586
(2,A) [0.5451 0.0635|0.3686 0.0629|0.5779 0.0619|0.6031 0.0535
(2,B) [0.6624 0.0235/0.5737 0.0328|0.7097 0.0195(0.4107 0.0367
(3,C) [0.2811 0.0396|0.0821 0.0292|0.1410 0.0225|0.3246 0.0515

Averages per color band of the values of the Tables included in Section C are
shown in Tables 7 and 8. In Table 7, each single cell value is the average per color
band of only the correlation values within sessions (i.e. rows (a,a), (b,b), (c,c)
and (d,d)). In Table 8, each single cell value is the average per color band of all
the correlation values within and between sessions (this means, from rows (a, a),
(a,b) ...to (c,d), (d,d)). Note that the second registration approach has a better
performance than the first registration approach. However, the improvement in
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Table 6. Average correlation and standard deviation per color band, patient and lesion
of a randomly selected registered (with Approach 2) lesion pattern with the remaining

patterns of the same patient and lesion.

(Patient,
Lesion

KR OR

ue oG

U OB

HB-G| 9|B~G|

(LA)
(1,B)
(1,0)
(2,A)
(2,B)
€AY

0.6853 0.0447
0.6819 0.0790
0.2915 0.0841
0.5781 0.0573
0.6643 0.0258
0.2865 0.0382

0.5689 0.0505
0.5380 0.0814
0.1993 0.0720
0.4222 0.0553
0.5720 0.0394

0.0999 0.0331

0.3666 0.0586
0.4608 0.0743
0.1361 0.0586
0.6204 0.0533
0.7147 0.0252
0.1476 0.0203

0.6728
0.4486
0.4325
0.6499
0.4642

0.0345
0.1209
0.0586
0.0406
0.0369

0.3675 0.0604

the correlation values, compared with the output of the initial alignment stage,
is not significant.

Table 7. Average correlation values within sessions per color band of the outputs of
the first and second stage of the combined alignment and registration scheme.

RED
0.7288
0.7197
0.7412

GREEN
0.6377
0.6235
0.6507

BLUE
0.6432
0.6329
0.6537

Stage
Initial Alignment
Registration (Approach 1)
Registration (Approach 2)

|B-G|
0.7040
0.6751
0.7412

Table 8. Average correlation values within and between sessions per color band of
the outputs of the first and second stage of the combined alignment and registration
scheme.

RED
0.5938
0.5998
0.6114

GREEN
0.4935
0.4937
0.5021

BLUE
0.5001
0.4915
0.5043

Stage
Initial alignment
Registration (Approach 1)
Registration (Approach 2)

[B-G|
0.5780
0.5408
0.5741

Regarding the distribution of the noise by comparing pairs of images within
a given session, the first session of the registered examples is presented in Ap-
pendix E. For the case (1, A), the kind of structure that the M.A.D. Transform
[16] detects on the lesion center after the alignment tends to disappear after the
registration, however a small structure appears after registration on the top left
side of the lesion. For the case (1, B), there is a set of three points that appear on
the first absolute M.A.D. component of the first and second capture, that tends
to disappear after registration, but at the same time, it tends to appear on the
first absolute M.A.D. component of the second and third capture, while it was
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not there after the initial alignment. For the case (1,C'), structure tends to be
noise after registration, but not significantly. Note also that near the borders,
the results do not improve much; this is due to the fact that the input to the
registration algorithm does not include skin data near the lesion. For the case
(2, A) it could be said that the noise tends to be more randomly distributed
after registration, the same for the case (2, B). Particularly, for the case (2, B) it
has to be mentioned that, by visual assessment, the registration within sessions
of images not belonging to the first session look seriously corrupted due to the
presence of hair partially covering the lesion. For the case (3,C) it seems that
a kind of structure appear after registration, in spite of having increased the
correlation within sessions (See Table 14).

Conclusions

The application of the Extreme Value Detection Algorithm during the initial
alignment has shown to produce satisfactory results. Results analysis indicates
that large variability in the data sets sizes influences the detection of the extreme
value.

Two different approaches for pattern registration were proposed. Results indi-
cate that using an average grid (approach 2) produces better registration results
than using the first pattern of a given sequence as reference (approach 1) in the
registration process. Compared to the outputs of the initial alignment scheme, it
has been shown that the second approach used in the second stage of the present
scheme improves the correlation between the registered patterns. However, this
improvement is not significant. The registration of aligned patterns within and
between sessions is clearly not an easy problem.
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Session:1 PATIENT:1 LESION:A

Session:2

Session:3

Session:4

Fig. 4. Initial alignment of lesion patterns for the case (Patient 1, Lesion A).

Session:1 PATIENT:1 LESION:B

Session:2

Session:3

Session:4

Fig. 5. Initial alignment of lesion patterns for the case (Patient 1, Lesion B).
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Session:1 PATIENT:1 LESION:C

Session:2

Session:3

Fig. 6. Initial alignment of lesion patterns for the case (Patient 1, Lesion C).

Session:1 PATIENT:2 LESION:A

Session:2

Session:3

Session:4

Fig. 7. Initial alignment of lesion patterns for the case (Patient 2, Lesion A).

21
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Session:1 PATIENT:2 LESION:B

Session:2

Session:3

Session:4

Fig. 8. Initial alignment of lesion patterns for the case (Patient 2, Lesion B).

Session:1 PATIENT:3 LESION:A

Session:2

Session:3

Session:4

Fig. 9. Initial alignment of lesion patterns for the case (Patient 3, Lesion A).
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Session:1 PATIENT:3 LESION:B

Session:2

Session:3

Session:4

Fig. 10. Initial alignment of lesion patterns for the case (Patient 3, Lesion B).

Session:1 PATIENT:3 LESION:C

Session:2

Session:3

Session:4

Fig. 11. Initial alignment of lesion patterns for the case (Patient 3, Lesion C).
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B TIllumination Correction: an example.

Session:1 PATIENT:2

T

Fig. 12. Initial alignment of lesions for not illumination corrected images of (Patient
2, Lesion A).
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Fig. 13. Initial alignment of lesions for illumination corrected images of (Patient 2,

Lesion A).

Table 9. Within and between sessions average correlation and standard deviation of
randomly selecting an aligned lesion as reference image for the registration per color
band for the case (Patient 2, lesion A).

Before

KR OR

UG OG

B 0B

(a,a)
(ab)
(ac)
(a,d)
(b,b)
(bc)
(b,d)
(c,0)
(c,d)
(d,d)

0.6807 0.1722
0.6114 0.0792
0.4123 0.0678
0.6231 0.0885
0.8538 0.0851
0.3705 0.0930
0.8313 0.0456
0.5420 0.2715
0.3623 0.0926
0.8896 0.0677

0.5122 0.2510
0.3953 0.0667
0.2339 0.0470
0.4071 0.0795
0.6993 0.1660
0.2052 0.0625
0.6579 0.0726
0.4259 0.3230
0.1963 0.0689
0.7763 0.1262

0.5945 0.2114
0.4696 0.0544
0.3856 0.0442
0.5023 0.0630
0.7093 0.1566
0.3597 0.0548
0.6649 0.0533
0.5309 0.2694
0.3831 0.0557
0.7674 0.1284

After

UR OR

[Je: oG

©“B oB

(a,a)
(ab)
(ac)
(a,d)
(b,b)
(be)
(b,d)
(¢,0)
(c,d)
(d.d)

0.5015 0.2620
0.2607 0.0819
0.2810 0.1361
0.2535 0.0763
0.4755 0.2707
0.2837 0.1233
0.3484 0.1030
0.5849 0.2579
0.3281 0.1006
0.5510 0.2403

0.4086 0.3048
0.1782 0.0687
0.2136 0.1071
0.1758 0.0565
0.4010 0.3036
0.2179 0.0899
0.2475 0.0721
0.5039 0.2913
0.2343 0.0863
0.4355 0.2881

0.4218 0.2966
0.1491 0.0685
0.2031 0.1059
0.1562 0.0538
0.3429 0.3332
0.1712 0.0904
0.1756 0.0723
0.4614 0.3127
0.2001 0.0805
0.3798 0.3145
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C Registration

Session:1 PATIENT:1 LESION:A

Session:2

Session:3

Session:4

Fig. 14. Registered pattern for the case (Patient 1, Lesion A).
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1Bal 1Ba2 1Ba3

1Bb1 1Bb2 1Bb3

1Bcl 1Bc2 1Bc3

1Bd1 1Bd2 1Bd3

Fig. 15. Registered pattern for the case (Patient 1, Lesion B).

Session:1 PATIENT:1 LESION:C

Session:2
Session:3

Fig. 16. Registered pattern for the case (Patient 1, Lesion C).

27
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Session:1 PATIENT:2 LESION:A

Session:2

Session:3

Session:4

Fig. 17. Registered pattern for the case (Patient 2, Lesion A).

Session:1 PATIENT:2 LESION:B

Session:2

Session:3

Session:4

Fig. 18. Registered pattern for the case (Patient 2, Lesion B).
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Session:1 PATIENT:3 LESION:C

Session:2

Session:3

Session:4

Fig. 19. Registered pattern for the case (Patient 3, Lesion C).
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D Result Evaluation
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Table 10. Within and between sessions average correlation values of randomly selecting
an aligned lesion as reference image for the registration per color band.

Sessions| (1,A) (1,B)"® (1,C) (2,A) (2,B) (3,C)
RED
(a,a) ]0.8305 0.8785 0.5349 0.8612 0.9605 0.5010
(a,b) ]0.6642 0.6850 0.1342 0.6632 0.5556 0.2969
(a,c) |0.5949 0.7029 0.2424 0.4274 0.6500 0.1010
(a,d) 10.6055 0.7247 0.3704 0.5728 0.2619
(b,b) |0.8186 0.6231 0.3872 0.8314 0.7772 0.5089
(b,c) ]0.6415 0.6096 0.1497 0.4730 0.6796 0.0723

(b,d) |0.5888 0.6129 0.4438 0.6543 0.3045

(c,c) 10.9421 0.8213 0.7540 0.7376 0.8376 0.7408

(c,d) ]0.8183 0.6835 0.3676 0.6850 0.1876

(d,d) |0.8973 0.7943 0.7260 0.7847 0.4772
GREEN

(a,a) [0.7908 0.7915 0.4754 0.7958 0.9609 0.2962
(a,b) ]0.5011 0.5695 0.0620 0.4698 0.4892 0.0509
(a,c) 10.5917 0.5108 0.1245 0.2391 0.5475 -0.0291
(a,d) (0.5300 0.5956 0.2302 0.4893 0.0077
(b,b) ]0.6839 0.5944 0.3617 0.7490 0.6794 0.3118
(b,c) ]0.5128 0.4492 0.0421 0.2439 0.5803 -0.0463

(b,d) |0.4150 0.5050 0.2926 0.5270 0.0962
(c,c) 10.8539 0.6684 0.6921 0.6683 0.7708 0.6197
(c,d) ]0.6632 0.4967 0.1903 0.5698 0.0914
(d,d) |0.8133 0.7120 0.6683 0.7022 0.3814
BLUE

(a,a) ]0.6664 0.7584 0.4385 0.8829 0.9692 0.3748
(a,b) ]0.3283 0.5201 0.0347 0.7156 0.6348 0.1470
(a,c) |0.3114 0.4066 -0.0106 0.4841 0.6962 0.0296
(a,d) |0.2267 0.4946 0.4555 0.6469 0.0890
(b,b) ]0.6092 0.5605 0.3456 0.8528 0.7927 0.3505
(b,c) ]0.2874 0.3651 0.0160 0.5204 0.7468 0.0655

(b,d) ]0.1183 0.4215 0.5192 0.7149 0.1555
(c,c) 10.7839 0.6090 0.6920 0.7593 0.8653 0.5334
(c,d) |0.5173 0.4063 0.4233 0.7524 0.0944
(d,d) 10.7538 0.6495 0.7626 0.8239 0.3388
[B-G|

(a,a) [0.8757 0.7140 0.6136 0.8598 0.8423 0.6066
(a,b) 10.7071 0.4475 0.4054 0.7181 0.3133 0.3197
(a,c) |0.7234 0.5563 0.4604 0.6792 0.3059 0.3719
(a,d) [0.6361 0.4538 0.4971 0.3368 0.4287
(b,b) ]0.8156 0.5339 0.4991 0.7951 0.6708 0.5283
(b,c) ]0.6941 0.4281 0.3274 0.6511 0.5717 0.0902

(b,d) |0.6052 0.3616 0.5642 0.5380 0.2546
(c,c) 10.8232 0.6938 0.6379 0.7986 0.7470 0.7904
(c,d) [0.6730 0.4662 0.5778 0.5499 0.3575

(d,d) 10.7582 0.5891 0.8307 0.6875 0.5860
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Table 11. Within and between sessions standard deviation correlation values of ran-
domly selecting an aligned lesion as reference image for the registration per color band.

Sessions| (1,A) (1,B) (1,C) (2,A) (2,B) (3,C)
RED
(a,a) [0.1077 0.1067 0.2948 0.0821 0.0241 0.2542
(a,b) ]0.0478 0.1849 0.0766 0.0341 0.0238 0.0665
(a,c) |0.1074 0.0633 0.0385 0.0179 0.0255 0.0317
(a,d) [0.1142 0.0889 0.0253 0.0233 0.0925
(b,b) |0.0994 0.3662 0.4070 0.1050 0.1306 0.2461
(b,e) (0.0750 0.1142 0.0520 0.0240 0.0407 0.0209

(b,d) |0.0801 0.1816 0.0180 0.0265 0.1064

(c,c) 10.0303 0.1396 0.1464 0.1937 0.0919 0.1745

(c,d) |0.0400 0.0676 0.0479 0.0294 0.1081

(d,d) |0.0845 0.1612 0.2042 0.1221 0.2985
GREEN

(a,a) [0.1151 0.1689 0.3293 0.1345 0.0249 0.3535
(a,b) 10.0337 0.1825 0.0511 0.0526 0.0122 0.0294
(a,c) 10.0697 0.0769 0.0376 0.0259 0.0285 0.0128
(a,d) 10.0929 0.0953 0.0322 0.0261 0.0489
(b,b) 0.1608 0.3508 0.4100 0.1632 0.1882 (0.3444
(b,c) (0.0393 0.1180 0.0516 0.0368 0.0398 0.0142

(b,d) |0.0580 0.1752 0.0145 0.0342 0.0650
(c,c) 10.0754 0.2435 0.1838 0.2631 0.1327 0.2504
(c,d) [0.0456 0.0849 0.0522 0.0365 0.0910
(d,d) |0.1246 0.2135 0.2623 0.1651 0.3341
BLUE

(a,a) [0.1774 0.1889 0.3422 0.0749 0.0193 0.3137
(a,b) ]0.0508 0.1681 0.0450 0.0395 0.0157 0.0262
(a,c) |0.0898 0.0775 0.0250 0.0276 0.0223 0.0197
(a,d) ]0.1322 0.0824 0.0334 0.0261 0.0412
(b,b) |0.2006 0.3679 0.4304 0.0991 0.1214 0.3250
(b,c) (0.0357 0.1028 0.0406 0.0302 0.0282 0.0121

(b,d) 10.0654 0.1333 0.0182 0.0237 0.0514
(c,c) ]0.1112 0.2858 0.1833 0.1911 0.0783 0.3022
(c,d) 10.0497 0.0822 0.0527 0.0229 0.0272
(d,d) 10.1513 0.2553 0.1852 0.0964 0.3476
[B-G|

(a,a) [0.0641 0.2177 0.2457 0.0767 0.0806 0.2062
(a,b) ]0.0279 0.2555 0.1691 0.0467 0.0345 0.0881
(a,c) ]0.0196 0.0771 0.0819 0.0217 0.0237 0.0548
(a,d) ]0.0296 0.1434 0.0306 0.0185 0.0957
(b,b) |0.0951 0.3882 0.3351 0.1172 0.1811 0.2422
(b,e) (0.0359 0.2225 0.0755 0.0383 0.0398 0.0558

(b,d) |0.0537 0.2142 0.0190 0.0321 0.1128
(c,c) 10.0897 0.2252 0.1933 0.1177 0.1297 0.1154
(c,d) [0.0213 0.1245 0.0475 0.0565 0.1500

(d,d) |0.1313 0.3032 0.0963 0.1625 0.2351
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Table 12. Average Correlation Values between pairs of Sessions per Patient, Lesion
and Color Band of the outputs of the Registration Approach 1

Sessions

(1,A) (1,B) (1,0) (2,A) (2,B)

€AY

RED

(aa)
(ab)
(a)
(a,d)
(b,b)
(bsc)
(b,d)
(c,c)
(c,d)
(d,d)

0.8176 0.8753 0.5962 0.8446 0.9246
0.6584 0.6875 0.1892 0.7030 0.5979
0.5902 0.6904 0.2724 0.4994 0.6634
0.6294 0.7384 0.4391 0.6213
0.8030 0.6537 0.3545 0.8044 0.7555
0.6222 0.6123 0.1968 0.5354 0.6509
0.6062 0.6318 0.4699 0.6366
0.9289 0.8168 0.6575 0.6460 0.7953
0.8251 0.6864 0.4061 0.6597
0.9011 0.8256 0.6855 0.7330

0.5469
0.3246
0.1512
0.2980
0.5378
0.1002
0.3388
0.6500
0.2088
0.4948

GREEN

(aa)
(a,b)
(ax)
(a,d)
(b,b)
(bsc)
(b,d)
(c,)
(c,d)
(d,d)

0.7641 0.8139 0.5423 0.7589 0.9176
0.5118 0.5832 0.1110 0.4900 0.5501
0.5650 0.5065 0.1710 0.2717 0.5489
0.5196 0.6106 0.2887 0.5466
0.6900 0.6184 0.3260 0.7038 0.6565
0.4957 0.4549 0.0921 0.3140 0.5474
0.4229 0.5244 0.3157 0.5333
0.8308 0.6739 0.5809 0.5229 0.7155
0.6480 0.4956 0.2217 0.5578
0.8074 0.7438 0.6134 0.6625

0.3445
0.0473
-0.0177
0.0189
0.3322
0.0269
0.1131
0.5174
0.0941
0.3957

BLUE

(aa)
(ab)
(a)
(a,d)
(b,b)
(bsc)
(b,d)
(c,c)
(c,d)
(d,d)

0.6284 0.7868 0.5087 0.8732 0.9374
0.3351 0.5340 0.0754 0.7275 0.6651
0.2945 0.4119 0.0318 0.5228 0.6964
0.2450 0.5326 0.4749 0.6768
0.5957 0.5862 0.2989 0.8195 0.7614
0.2634 0.3680 0.0509 0.5747 0.7027
0.1555 0.4477 0.5137 0.6914
0.7542 0.6188 0.5790 0.6702 0.8150
0.5389 0.4102 0.4376 0.7150
0.7531 0.6871 0.7184 0.7793

0.4220
0.1530
0.0583
0.1045
0.3665
0.0913
0.1690
0.4418
0.1052
0.3499

|B-G|

(aa)
(a,b)
(a)
(a,d)
(b,b)
(bsc)
(b,d)
(c,)
(c,d)
(d,d)

0.8638 0.7247 0.6234 0.8574 0.7736
0.7012 0.4244 0.4127 0.7097 0.2698
0.6794 0.4944 0.4469 0.6754 0.2608
0.6005 0.3927 0.4274 0.2702
0.8005 0.5111 0.4937 0.7636 0.5829
0.6335 0.3810 0.3303 0.6355 0.4647
0.5608 0.3064 0.4561 0.4486
0.7854 0.6755 0.5892 0.7572 0.6817
0.6309 0.4144 0.4947 0.4749
0.7418 0.5884 0.7919 0.6264

0.5611
0.2867
0.3194
0.3604
0.5148
0.0873
0.2876
0.7298
0.3389
0.5672




34 Maletti et al.

Table 13. Standard Deviation of the Correlation Values between pairs of Sessions per
Patient, Lesion and Color Band of the outputs of the Registration Approach 1

Sessions| (1,A) (1,B) (1,C) (2,A) (2,B) (3,C)
RED
(a,a) [0.1072 0.0980 0.2416 0.0799 0.0457 0.2467
(a,b) ]0.0443 0.1484 0.0890 0.0228 0.0220 0.0656
(a,c) 10.0991 0.0500 0.0540 0.0358 0.0266 0.0288
(a,d) ]0.0915 0.0610 0.0565 0.0266 0.0973
(b,b) |0.1074 0.3228 0.3550 0.1019 0.1306 0.2319
(b,c) (0.0744 0.0787 0.0691 0.0344 0.0581 0.0315

(b,d) |0.0723 0.1465 0.0408 0.0389 0.1115

(c,c) 10.0375 0.1379 0.1795 0.1874 0.1078 0.1862

(c,d) (0.0281 0.0612 0.0442 0.0332 0.1048

(d,d) |0.0706 0.1301 0.1670 0.1421 0.2855
GREEN

(a,a) [0.1262 0.1388 0.2704 0.1251 0.0514 0.3468
(a,b) ]0.0285 0.1364 0.0687 0.0404 0.0236 0.0369
(a,c) 10.0650 0.0705 0.0359 0.0440 0.0223 0.0131
(a,d) ]0.0716 0.0625 0.0698 0.0265 0.0617
(b,b) 0.1575 0.3197 0.3560 0.1530 0.1847 0.3342
(b,e) (0.0357 0.0931 0.0680 0.0491 0.0402 0.0200

(b,d) |0.0555 0.1439 0.0552 0.0296 0.0735
(c,c) 10.0865 0.2377 0.2195 0.2563 0.1485 0.2499
(c,d) [0.0351 0.0760 0.0509 0.0326 0.0774
(d,d) |0.1206 0.1868 0.2096 0.1754 0.3218
BLUE

(a,a) (0.1941 0.1549 0.2821 0.0662 0.0384 0.3041
(a,b) ]0.0401 0.1142 0.0667 0.0269 0.0168 0.3041
(a,c) 10.0944 0.0674 0.0539 0.0319 0.0168 0.0232
(a,d) ]0.1069 0.0562 0.0563 0.0322 0.0490
(b,b) |0.2066 0.3340 0.3763 0.0941 0.1269 0.3170
(b,c) (0.0418 0.0725 0.0442 0.0350 0.0309 0.0178

(b,d) ]0.0639 0.1046 0.0526 0.0194 0.0569
(c,c) ]0.1251 0.2753 0.2200 0.1803 0.0961 0.2875
(c,d) 10.0380 0.0721 0.0424 0.0273 0.0186
(d,d) 10.1431 0.2253 0.1512 0.1149 0.3356
[B-G|

(a,a) [0.0699 0.2020 0.2336 0.0721 0.1202 0.2393
(a,b) 10.0247 0.2405 0.1730 0.0355 0.0403 0.0829
(a,c) ]0.0221 0.0762 0.0656 0.0187 0.0373 0.0620
(a,d) 10.0317 0.0917 0.0276 0.0380 0.0807
(b,b) 0.1012 0.4065 0.3426 0.1223 0.2168 0.0807
(b,c) (0.0305 0.2088 0.0737 0.0318 0.0396 0.0541

(b,d) |0.0533 0.1721 0.0336 0.0596 0.1229
(c,c) 10.1094 0.2375 0.2095 0.1265 0.1633 0.1229
(c,d) (0.0262 0.0889 0.0609 0.0574 0.1412

(d,d) |0.1435 0.2987 0.1131 0.1903 0.2487
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Table 14. Average Correlation Values between pairs of Sessions per Patient, Lesion
and Color Band of the outputs of the Registration Approach 2

Sessions

(1,A) (1,B) (1,0) (2,A) (2,B)

€AY

RED

(aa)
(ab)
(a)
(a,d)
(b,b)
(bsc)
(b,d)
(c,c)
(c,d)
(d,d)

0.8250 0.8922 0.6495 0.9003 0.9636
0.6719 0.6866 0.1831 0.7215 0.5699
0.5981 0.6911 0.2977 0.5147 0.6606
0.5972 0.7488 0.4643 0.6060
0.8092 0.6412 0.3612 0.8457 0.7605
0.6299 0.5996 0.1686 0.5429 0.6568
0.5760 0.6348 0.4982 0.6300
0.9290 0.8543 0.7393 0.7548 0.8154
0.8145 0.6987 0.4422 0.6717
0.8778 0.8276 0.7182 0.7676

0.5667
0.3209
0.1492
0.3074
0.5333
0.0907
0.3319
0.6925
0.2241
0.5144

GREEN

(aa)
(a,b)
(ax)
(a,d)
(b,b)
(bsc)
(b,d)
(c,)
(c,d)
(d,d)

0.7785 0.8244 0.5844 0.8599 0.9650
0.5124 0.5774 0.1089 0.5268 0.5209
0.5947 0.5096 0.1745 0.3343 0.5596
0.5198 0.6188 0.3088 0.5361
0.6795 0.6061 0.3288 0.7683 0.6610
0.5028 0.4351 0.0595 0.3299 0.5444
0.4031 0.5178 0.3501 0.5068
0.8271 0.7162 0.6751 0.6879 0.7275
0.6526 0.5130 0.2730 0.5586
0.7918 0.7331 0.6548 0.6887

0.3761
0.0600
0.0004
0.0391
0.3309
0.0326
0.1139
0.5767
0.1269
0.4191

BLUE

(aa)
(ab)
(a)
(a,d)
(b,b)
(bsc)
(b,d)
(c,c)
(c,d)
(d,d)

0.6528 0.7969 0.5471 0.9189 0.9726
0.3419 0.5264 0.0621 0.7517 0.6416
0.3245 0.4076 0.0343 0.5558 0.6988
0.2304 0.5305 0.5258 0.6704
0.5966 0.5750 0.3050 0.8648 0.7701
0.2723 0.3508 0.0164 0.5802 0.7090
0.1142 0.4407 0.5583 0.6890
0.7514 0.6714 0.6658 0.7739 0.8348
0.5358 0.4292 0.4855 0.7314
0.7331 0.6783 0.7582 0.8063

0.4414
0.1600
0.0524
0.1160
0.3651
0.0757
0.1680
0.4935
0.1178
0.3631

|B-G|

(aa)
(a,b)
(a)
(a,d)
(b,b)
(bsc)
(b,d)
(c,)
(c,d)
(d,d)

0.8701 0.7391 0.6490 0.8715 0.8455
0.6960 0.4479 0.4141 0.7355 0.3003
0.7084 0.5506 0.4755 0.6811 0.3018
0.6240 0.4588 0.5097 0.3445
0.8021 0.5310 0.4797 0.7971 0.6276
0.6640 0.4185 0.3429 0.6593 0.5243
0.5886 0.3559 0.5416 0.4965
0.7955 0.7039 0.6391 0.7956 0.7214
0.6291 0.4492 0.5739 0.5254
0.7384 0.5778 0.8129 0.6750

0.6351
0.3535
0.3826
0.4076
0.5532
0.1153
0.3061
0.7548
0.3608
0.5915
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Table 15. Standard Deviation of the Correlation Values between pairs of Sessions per
Patient, Lesion and Color Band of the outputs of the Registration Approach 2

Sessions| (1,A) (1,B) (1,C) (2,A) (2,B) (3,C)
RED
(a,a) [0.1085 0.0879 0.2196 0.0525 0.0207 0.2369
(a,b) ]0.0450 0.1529 0.0729 0.0199 0.0149 0.0742
(a,c) ]0.1049 0.0549 0.0429 0.0125 0.0242 0.0365
(a,d) ]0.1201 0.0668 0.0276 0.0280 0.0938
(b,b) |0.1046 0.3420 0.3705 0.0850 0.1410 0.2349
(b,c) (0.0817 0.0915 0.0539 0.0182 0.0465 0.0264

(b,d) |0.0946 0.1492 0.0266 0.0466 0.1017

(c,c) 10.0371 0.1114 0.1419 0.1375 0.0995 0.1641

(c,d) (0.0435 0.0662 0.0254 0.0299 0.1052

(d,d) |0.0986 0.1320 0.1804 0.1293 0.2712
GREEN

(a,a) (0.1204 0.1352 0.2655 0.0782 0.0202 0.3337
(a,b) ]0.0338 0.1489 0.0617 0.0437 0.0128 0.0383
(a,c) 10.0706 0.0674 0.0260 0.0227 0.0284 0.0138
(a,d) ]0.0954 0.0808 0.0386 0.0329 0.0637
(b,b) 0.1629 0.3404 0.3722 0.1288 0.1871 0.3354
(b,c) (0.0348 0.0971 0.0659 0.0288 0.0439 0.0170

(b,d) |0.0682 0.1429 0.0343 0.0463 0.0670
(c,c) 10.0887 0.2079 0.1767 0.1797 0.1457 0.2215
(c,d) [0.0548 0.0784 0.0361 0.0288 0.0797
(d,d) |0.1390 0.1966 0.2288 0.1672 0.3089
BLUE

(a,a) [0.1828 0.1516 0.2785 0.0429 0.0156 0.2986
(a,b) 10.0517 0.1311 0.0660 0.0279 0.0212 0.0287
(a,c) ]0.0958 0.0651 0.0332 0.0156 0.0214 0.0245
(a,d) ]0.1356 0.0753 0.0319 0.0285 0.0471
(b,b) |0.2050 0.3543 0.3936 0.0757 0.1284 0.3186
(b,e) (0.0351 0.0797 0.0473 0.0251 0.0387 0.0168

(b,d) {0.0828 0.1154 0.0353 0.0423 0.0485
(c,c) 10.1267 0.2383 0.1821 0.1324 0.0882 0.2629
(c,d) 10.0554 0.0790 0.0282 0.0228 0.0280
(d,d) 10.1656 0.2361 0.1543 0.1040 0.3298
[B-G|

(a,a) [0.0668 0.1926 0.2155 0.0658 0.0785 0.1927
(a,b) 10.0334 0.2376 0.1468 0.0412 0.0717 0.0917
(a,c) |0.0190 0.0684 0.0695 0.0242 0.0411 0.0514
(a,d) [0.0314 0.1222 0.0238 0.0224 0.0783
(b,b) 0.1031 0.3907 0.3391 0.1076 0.1990 0.2360
(b,c) (0.0308 0.2195 0.0693 0.0299 0.0388 0.0703

(b,d) |0.0535 0.2001 0.0128 0.0476 0.1310
(c,c) 10.1037 0.2167 0.1870 0.1094 0.1427 0.1275
(c,d) (0.0348 0.1167 0.0452 0.0498 0.1400

(d,d) |0.1423 0.3082 0.1083 0.1653 0.2322
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E First M.A.D. Component of pairs of registered
patterns of the same session

1Aal 1Aaz2 1Aa3 1Aa4 1Aa5

(1Aa1,1Aa2) (1Aa2,1Aa3) (1Aa3,1Aa4) (1Aa4,1Aa5)

1Aal 1Aa2 1Aa3

(1Aal,1Aa2) (1LAaz2,1Aa3) (1Aa3,1Aa4) (1LAa4,1Aa5)

Fig. 20. Images of the first session of the case (1, A) before (top) and after (bottom)
registration, and respective first M.A.D. components
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Fig. 21. Images of the first session of the case (1,C) before (top) and after (bottom)
registration, and respective first M.A.D. components

3.

4.

I. Dryden and K. Mardia. Statistical Shape Analysis, volume 1. John Wiley and
Sons Ltd., West Sussex, England, 1998.

R. Duda and P. Hart. Pattern Classification and Scene Analysis. ISBN 0-471-
22361-1. John Wiley & Sons, California, 1973.

A. Gordon. Classification. Monographs on Applied Probability and Statistics. ISBN
0-412-22850-5. Chapman and Hall and Methuen, Inc., London, 1981.

R. Haralick. Statistical and structural approaches to texture. Proceedings of the
IEEE, 67(5):786-804, May 1979.

D. He and L. Wang. Texture features based on texture spectrum. Pattern Recog-
nition, 24(5):391-399, 1991.

K. Hilger. Ezploratory Analysis of Multivariate Data. Ph.d. thesis, Informatics and

Mathematical Modelling. Technical University of Denmark., Kgs. Lyngby, Novem-
ber 2001.



I.M.M. Technical Report Number 9 39

1Ca1l 1Caz2 1Ca3 1Ca4 i1Cas

(1Cail,1Ca2) (1Ca2,1Ca3) (1Ca3,1Ca4) (1Ca4,1Ca5)

1ca1l 1caz 1Cca3 1Ca4 1cas

(1cai,1ca2) (1caz,1Ca3) (1ca3,1Ca4) (1ca4,1Ca5)

Fig. 22. Images of the first session of the case (1,C) before (top) and after (bottom)
registration, and respective first M.A.D. components

9.

10.

11.

12.

13.

J. Lira. Introduccion al Tratamiento Digital de Imdgenes. Instituto Politécnico Na-
cional, Universidad Nacional Auténoma de México, Fondo de Cultura Econémica.,
Meéxico D.F., 1 edition, September 2002.

J. Lira and G. Maletti. A supervised classifier for multispectral and textured
images based on an automated region growing algorithm. Furopean Space Agency
Publications, SP-434:153-158, 1998.

G. Maletti and B. Ersbgll. A hierarchical classification scheme of psoriasis images.
Technical Report 6, Department of Informatics and Mathematical Modelling. Tech-
nical University of Denmark., Kgs. Lyngby. Denmark., March 2003.

G. Maletti and B. Ersbgll. Illumination correction in psoriasis lesions images. Tech-
nical Report 7, Department of Informatics and Mathematical Modelling. Technical
University of Denmark., Kgs. Lyngby. Denmark., March 2003.

G. Maletti and B. Ersbgll. Principal component analysis of psoriasis lesions im-
ages. Technical Report 5, Department of Informatics and Mathematical Modelling.



40

Maletti et al.

2Aal1 2Aaz2 2Aa3 2Aa4 2Aas5

(2Aal,2Aa2) (2Aaz2,2Aa3) (2Aa3,2Aa4) (2Aa4,2Aa5)

2Aa1 2Aa2 2Aa3 2Aa4 2Aas5

(2Aal,2Aa2) (2Aa3,2Aa4)

Fig. 23. Images of the first session of the case (2, A) before (top) and after (bottom)
registration, and respective first M.A.D. components

14.

15.

16.

17.

Technical University of Denmark., Kgs. Lyngby. Denmark., March 2003.

G. Maletti and B. Ersbgll. Texture alteration detection in bitemporal images of
lesions with psoriasis. Technical Report 8, Department of Informatics and Math-
ematical Modelling. Technical University of Denmark., Kgs. Lyngby. Denmark.,
March 2003.

K. Mardia, J. Kent, and J. Bibby. Multivariate Analysis. Academic Press, Inc.,
San Diego, CA92101, 10 edition, 1979.

A. Nielsen, K. Conradsen, and J. Simpson. Multivariate alteration detection
(m.a.d.) and m.a.f. postprocessing in multispectral, bitemporal image data: New
approaches to change detection studies. Remote Sens. Environ., 64:1-19, 1998.
M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis and Machine
Vision. Brooks Cole Publishing Company, Pacific Grove, CA 93950, USA., 2nd
edition, 1999.



I.M.M. Technical Report Number 9 41

2Bal 2Ba2 2Ba3 2Ba4 2Bas

(2Bal,2Ba2) (2Baz,2Ba3) (2Ba3,2Ba4) (2Ba4,2Ba5)

2Bal 2Baz 2Ba3 2Ba4 2Bas

(2Ba2,2Ba3) (2Ba3,2Bad) (2Ba4,2Ba5)

Fig. 24. Images of the first session of the case (2, B) before (top) and after (bottom)
registration, and respective first M.A.D. components

18.

19.

20.

21.

22.

M. Stegmann. Active appearance models: Theory, extensions and cases. Master’s
thesis, Informatics and Mathematical Modelling, Technical University of Denmark,
DTU, 2000.

L. Wang. Vector choice in the texture spectrum approach. International Journal
of Remote Sensing, 15(18):3823-3829, 1994.

L. Wang and D. He. Texture classification using texture spectrum. Pattern Recog-
nition, 23(8):905-910, 1990.

R. Wilson and T. Martinez. Improved heterogeneous distance function. Journal
of Artificial Intelligence Research, (6):1-34, 1997.

S. Wilson. On the retino-cortical mapping. International Journal of Man-Machine
Studies, 18(4):361-389, 1983.



42 Maletti et al.

3Cal 3Caz2 3Ca3 3Ca4 3Cas

(3Ca2,3Ca3) (3Cas,3Ca4d) (3Ca4,3Ca5)

(3Cai,3ca2)

(3cai,3ca2) (3Ca2,3Ca3) (3Cas,3Cad) (3Ca4,3Ca5)

Fig. 25. Images of the first session of the case (3, C) before (top) and after (bottom)
registration, and respective first M.A.D. components
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Abstract. The M.A.D. Transform is applied to pairs of registered pso-
riasis lesion patterns within and between weekly sessions. Color band
contribution to the first M.A.D. component is analyzed.

1 Introduction

We use a set of registered psoriasis lesion patterns segmented from a set of images
taken at the Gentofte Hospital, Denmark during four pilot sessions with three
invited patients. On those occasions, three lesions per patient were captured five
times during each session, along four weeks. The images were labelled with four
characters, indicating patient (1,2,3), lesion (A, B, C), session (a, b, ¢, d) and
capture (1, 2, 3, 4, 5) respectively. From a subset of these images, lesion patterns
were segmented and registered within and between sessions using the schemes
reported in [4] and [3] respectively.

To evaluate lesion changes between sessions, physicians make scores of a four-
variable set: redness, scaling, thickness and body area covered by the lesions.
Manual scoring depends strongly on the dermatologist, who can show criteria
variations along sessions due to the huge amount of patients and lesions observed
during each working day.

The main objective of the present work is to analyze changes in time [8], [10],
[1] from a statistical point of view of the registered data sets mentioned. A suit-
able statistical approach for analyzing changes in time in a multi-variable fashion
is the Multi-variate Alteration Detection Transform (M.A.D.) [9]. It transforms
two sets of multi-variate observations into a difference between two linear com-
binations of the original variables explaining maximal change in all variables
simultaneously. The magnitude of the lesion changes in time could be shown
using the absolute value of the first M.A.D. component. Alternatively, the color
band contribution to the change could be calculated.

The present work is composed of the following sections. First, a short de-
scription of the registration algorithm is given. Secondly, general aspects of the
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M.A.D. Transform are described. Then, an experiment to compute the color
band contribution in the lesions change in time is designed. A section of results
and discussion follows. Results for each single case can be found in the Appendix.

2 Registration Scheme

For completeness, the registration scheme used to align the patterns is briefly
described. Details can be found in [3]. The registration scheme is composed of
two stages. In the first stage, global rotation and translation effects of assumed
segmented patterns of equally scaled psoriasis lesions are removed. In the second
stage, it is assumed that there are no local rotation effects and, therefore, only
local translation effects are removed. In both stages, the Extreme Value Detec-
tion Algorithm (E.V.D.A.) is applied to compute the minimal distance between
pairs of translated and rotated patterns.

E.V.D.A. is an iterative process that expects the translation effects between
two objects to be matched are removed when their center of masses match. In
the first iteration, a mapping template centered on the center of mass of the
domain of one of the objects is used to define the subset of the domain of the
distance function for which the values are going to be estimated. This mapping
template includes many points of the neighborhood of the center of mass, and
only few that are far away from the center. The extreme value of the calculated
values of the distance function is obtained, and the same mapping template is
centered on that first guess of the extreme value. This step is repeated until the
guessed extreme value does not change anymore.

3 M.A.D. Transform

Following [8], let X; and X, be two sets of Gaussian distributed variables of
dimension m; and mgy respectively, with m; < mq, E{X;} = E{X2} = 0 trans-
formed with the coefficients from a standard canonical correlation analysis aq
and as in
Yli = alTin,i = 1, ey MY
Ygi = agng,i = 17 ceey M2,

(1)

positively correlated and with unit variance, such that the variance of their
difference is maximized.

Var[alTXl — aQTXQ} = (2)
Varla® X,] + Var[al X5] — 2Cov[aT X, ad Xy] (3)
= 2(1 — Corr[af X1, al X3]) (4)

The M.A.D. Transform consists of the variates to get when the corresponding
canonical variates are subtracted in reverse order, which means that the m?%"
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difference shows maximum variance among such variables, and the (m; — j)*
difference shows maximum variance subject to the constraint that this difference
is not correlated with the previous j ones. The M.A.D. variates are invariant to
linear and affine scaling, which is not the case of the Principal Components. The
dispersion matrix of the M.A.D. variates is

DlaT X, - al Xs] = 2(1 - ) (5)

where I is the m; X m; unit matrix and R is the m X m; matrix containing the
sorted canonical correlations on the diagonal and zeros off the diagonal.

4 Results and Discussion

The contribution of each single color band in showing the lesion change in a
period of one week is analyzed here. Results are confronted with the original im-
age data. Lesion changes between sessions are also described using the absolute
value of the first M.A.D. component.

Following with the notation used in previous work ([6], [4], [5], [7], [3]), the
groups of images corresponding to a given patient and lesion are here called
"case (patient, lesion)". The cases registered in [3] are (1, A4), (1,B), (1,C),
(2,A), (2,B) and (3,C), which can be seen in the Appendix C of the referred
work.

The set of 108 registered images produced by the registration scheme (see
Appendix C in [3]) allowed the construction of 377 pairs! of registered lesions
with the same time increment of one week between them. For each image of a
given patient and lesion, each one of the images of the next session were associ-
ated. For each pair of synthetical images constructed in the way mentioned, the
M.A.D. transform was applied [2]. The M.A.D. Transform was only applied to
the pixels belonging to the lesion. Tables 1 and 2 show the results obtained for
the sets of registered images.

Each single cell value in Table 1 is the average absolute correlation value
between the b — th color bands and the m — th MAD components of all pairs of
images of the [ — th lesion of the p — th patient. It is computed in the following
way':

ng—o0t Ne nNe

Elpp,,p,m] = m Z Zzap,l,s,i,ét,j,b,m (6)

s=1 i=1 j=1

! For each lesion the number of pairs is (1, 4) = 25x 3; (1, B) = 9x 3; (1,C) = 25 x 2;
(2,A) =25 x3; (2,B) =25 x 3 and (2,C) = 25 x 3 respectively.
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where

1
Ap,l,5,i,8,,4,b,;m = §(|p[Xp,l7s,i7ba MADy,s.i.5t.5.6 M| +p[Xp 1 s+8t.5.6, MADyp 1 s i 5t.5.6, M)
(7)
and p is the correlation coefficient, d¢ is the time increment (in this case, ot

is one week). The indexes ¢ and j indicate the capture number within a session.
MAD ,5.i,6t,5,b.m equals to MAD[Xp 1 s, Xp,1,s46t.5,6, M-

Each single cell value in Table 2 is the standard deviation of the averaged
absolute correlation values between the normalized co-occurrence matrix of the
b—th color bands and the m —th MAD components of all pairs of images of the
[ — th lesion of the p — th patient. It is computed in the following way:

ng—ot ne Ne

1
S[ppib,m] = m Z ZZ(ai,z,s,i,at,j,b,m) — Elpp,1,6,m]? (8)

s=1 i=1 j=1

where the symbols have the same meaning as before.

Table 1. Average Absolute Correlation Values per Lesion of RGB registered lesion
data with their respective M.A.D. Components

(Patient,Lesion) |(R,MAD1) (G,MAD1) (B,MAD1)
(1,A) 0.239941  0.312891  0.479555
(1,B) 0.194602  0.342770  0.404496
(1,C) 0.502525 0.582041 0.602087
(2,A) 0.273979  0.444085 0.298466
(2,B) 0.232567  0.325108  0.154075
(3,C) 0.399863  0.536893  0.529572

(Patient,Lesion) |(R,MAD2) (G,MAD2) (B,MAD2)
(1,A) 0.071068 0.267727 0.141211
(1,B) 0.086706 0.122383  0.123006
(1,C) 0.211631 0.176254 0.224510
(2,A) 0.185631  0.198860 0.123149
(2,B) 0.123701  0.157495 0.116539
(3,C) 0.314972  0.258697  0.225947

(Patient, Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
(1,A) 0.246138  0.150544 0.097587
(1,B) 0.324035 0.278036  0.255027
(1,C) 0.254546  0.171539 0.071888
(2,A) 0.246606 0.161208 0.262824
(2,B) 0.302258 0.267418  0.318841
(3,C) 0.212062 0.127252  0.186059

Excluding from Table 1 the case for which the registered lesion patterns are
partially covered by hair (Patient 2, Lesion B), we can observe that, in general,
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Table 2. Standard Deviation of the Absolute Correlation Values per Lesion of the
RGB registered lesion data with the M.A.D. Components

(Patient,Lesion) |(R,MAD1) (G,MAD1) (B,MAD1)
(1,A) 0.082760 0.088492 0.076644
(1,B) 0.062977  0.088879  0.101755
(1,C) 0.071854 0.051745 0.044919
(2,A) 0.145003  0.130561  0.081781
(2,B) 0.043526  0.078260 0.060818
(3,0) 0.120938 0.129143  0.099749

(Patient,Lesion) |(R,MAD2) (G,MAD2) (B,MAD?2)
(1,A) 0.047430 0.051808 0.072253
(1,B) 0.042134  0.102374  0.107343
(1,C) 0.088767 0.095334 0.078513
(2,A) 0.103476 0.125162  0.076504
(2,B) 0.055127 0.103429 0.061193
(3,C) 0.167413 0.165183  0.135105

(Patient,Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
(1,A) 0.021716  0.022367  0.038063
(1,B) 0.074971  0.062505 0.061780
(1,C) 0.052423  0.057971  0.050960
(2,A) 0.023292  0.017698 0.027054
(2,B) 0.027727  0.028042 0.025397
(3,C) 0.069320 0.051744  0.049821

most of the contribution in the first M.A.D. component is given either by the
green or the blue band. These results can be verified, by visual examination of
the registered lesions image patterns decomposed in its RG B bands included in
Appendix B.

Some outputs produced during the experiment mentioned before are shown
in Appendix A. For each case, registered image patterns, corresponding to the
first image of each session, and the absolute first M.A.D. components of pairs of
those patterns with a time separation of one week can be seen. In order to show
the magnitude of the change, the absolute value of the first M.A.D. component
has been computed. Light colors in the figures corresponding to the absolute
value of the first M.A.D. components imply more change in the lesion; dark col-
ors imply the opposite situation. For instance, for the case (1, A), in the upper
part of the figure we have four registered patterns, corresponding to the first,
second, third and fourth week. In the lower part of the same figure, we have from
the left to the right, the absolute value of the first M.A.D. component from the
first to the second week, from the second to the third week, and, from the third
to the fourth week respectively. The figures corresponding to the remaining cases
are presented in the same way. Some comments regarding to visual examination
of the results follow.
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For the case (1, A), it can be seen that most of the change from the first
to the second week occurs in the central part of the lesion. Afterwards, from
the second to the third week, it spreads out. From the third to the fourth week,
most of the change occurs near the borders. The same behavior can be described
for the case (1, B) and for the first three weeks of the case (1,C). In the upper
part of the first M.A.D. component from the first to the second week of the case
(1, B) a large change is indicated. Looking at the original images, it seems that
this aspect could be indicating different illumination conditions [5] between the
captures, more than lesion changes. The reader is reminded that the mentioned
cases do correspond to the same patient. For the case (2, A) an interesting peak
can be observed in the absolute value of the first M.A.D. component from the
first to the second week. This is not easily appreciable in the original images.
Clearly the M.A.D. transform is able to show a change that cannot be seen
in the original images. For the case (2, B), it can again be observed that the
change starts in the center of the lesion and in the next week it spreads out. It
was mentioned in [3], that the registration algorithm gets a bit confused in the
presence of hair. Hair displacements between sessions can not easily be seen in
the absolute value first M.A.D. component. This may be because of the quality
of the registration output itself. For the case (3,C), the presence of scaling in
the second week is clearly indicated by large absolute values of the first M.A.D.
component, from the first to the second week, and, from the second to the third
week. However, peaks appearing in the absolute value of the first M.A.D. com-
ponent from the third to the fourth week are clearly skin displacements attained
after folding the elbow. In general, it could be said that the absolute value of
the first M.A.D. component shows in a very clear manner, the appearing and
disappearing of scaling.

An aspect that was not considered here, because it is not the objective of the
present work, is that the M.A.D. transform, as it was conceived in [9], requires
positive correlation of the canonical variables. The cases for which the canonical
variables are not positively correlated?, could be interesting to analyze. This is
referred to the meaning of the output of the difference of negatively correlated
canonical variables. If the M.A.D. Transform is extended to all the orientations
of the two sets of eigenvectors by flipping the eigenvectors values of the original
variables, a set of four possible solutions is produced.

5 Conclusions

The small number of lesions evaluated is not enough to make general conclu-
sions about the disease behavior. However, for the cases analyzed the following
can be mentioned. Looking at the absolute value of the first M.A.D. component

2 In the psoriasis lesions data set there cases for which the correlation between pairs
of images is negative. See for instance, in Tables 6, 8 and 10 of [3] the values corre-
sponding to the case (3,C).
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of pairs of registered lesion patterns separated by a period of one week, it can
be observed that in the beginning, most of the change occurs within the lesion,
while in the next week it spreads out and is distributed on the whole lesion. In
some cases it has been observed, that in the lasts sessions, the change occurs
near the lesion borders.

Regarding the contribution of each single color band to the first M.A.D. com-
ponent, it has been shown that, in general, it is either the green or the blue band,
and not the red band which contributes most in showing the change.
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1Aal 1Ab1 1Acl 1Ad1

(1Aa1,1Abl) (1Ab1,1Ac1) (1Ac1,1Ad1)

Fig. 1. Registered Images for the case (1, A) and the First M.A.D. components per
week.

1Bal 1Bb1 1Bc1 1Bd1
(1Ba1,1Bb1) (1Bb1,1Bc1) (1Bc1,1Bd1)

Fig. 2. Registered Images for the case (1, B) and the First M.A.D. components per
week.
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1Cal 1Cb1 1Ccl
(1Ca1,1Cb1) (1Cb1,1Cc1)

Fig. 3. Registered Images for the case (1,C) and the First M.A.D. components per
week.

2Aal 2Ab1l 2Acl 2Ad1

(2Aa1,2Ab1) (2Ab1,2Ac1) (2Ac1,2Ad1)

Fig. 4. Registered Images for the case (2, A) and the First M.A.D. components per
week.
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2Bal 2Bb1 2Bcl 2Bd1

(2Ba1,2Bb1) (2Bb1,2Bcl)

(2Bc1,2Bd1)

Fig. 5. Registered Images for the case (2, B) and the First M.A.D. components per
week.

3cal 3Cb1 3Ccl 3cd1
(3Ca1,3Cb1) (3Cb1,3Cc1) (3Cc1,3Cd1)

Fig. 6. Registered Images for the case (3,C) and the First M.A.D. components per
week.
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RGB bands of the registered images

1Aal R G B

Fig. 7. RGB bands of registered images of the case (1, A)
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1Bat R G B

Fig. 8. RGB bands of registered images of the case (1, B)

1Cal

1Cbl R G B

1Cel R G B
. U

Fig. 9. RGB bands of registered images of the case (1,C)
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2Ab1

2Acl

Fig. 10. RGB bands of registered images of the case (2, A)

2Bal R G B

28b1

2Bcl

28d1

Fig.11. RGB bands of registered images of the case (2, B)
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Appendix A

A.1 Set of Original Images

Session:1 PATIENT:1 LESION:B

Session:2

Session:3

Session:4

Figure A.1: Set of Original Images of (Patient 1, Lesion B).
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Session:1 PATIENT:1 LESION:C

Session:2

Session:3

Figure A.2: Set of Original Images of (Patient 1, Lesion C).

Session:1 PATIENT:2 LESION:A

Session:2

Session:3

Session:4

Figure A.3: Set of Original Images of (Patient 2, Lesion A).
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Session:1 PATIENT:2 LESION:B

Session:2

Session:3

Session:4

Figure A.4: Set of Original Images of (Patient 2, Lesion B).

Session:1 PATIENT:2 LESION:C

Session:2

Session:3

Session:4

Figure A.5: Set of Original Images of (Patient 2, Lesion C).
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Session:1 PATIENT:3 LESION:A

Session:2

Session:3

Session:4

Figure A.6: Set of Original Images of (Patient 3, Lesion A).

Session:1 PATIENT:3 LESION:B

Session:2

Session:3

Session:4

Figure A.7: Set of Original Images of (Patient 3, Lesion B).
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Session:1 PATIENT:3 LESION:C

Session:2

Session:3

Session:4

Figure A.8: Set of Original Images of (Patient 3, Lesion C).
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