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samples to obtain the unweighted measure
{

x̃
(i)
t−1, N

−1
}

which is an ap-

proximation ofp(xt−1|y1:t−1). Finally, the sampling step introduces vari-

ety giving the measure
{

x̃
(i)
t , N−1

}
which is an approximation ofp(xt|y1:t−1)

(from [26]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
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Resume

I dette eksamensprojekt prœsenteres the Extended Kalman Filter (EKF), Unscented Kalman
Filter (UKF), generic Particle Filter (PF, a.k.a. condensation, survival of the fittest, boot-
strap filter, SIR, sequential Monte Carlo, etc.), Particle Filter med MCMC steps (PFMC),
Particle Filter med EKF proposal (PFEKF) og MCMC steps (PFEKFMC), Particle Filter
med UKF proposal (PFUKF) og MCMC steps (PFUKFMC).

En teoretisk gennemgang af filtrene afsluttes med opskrivning af pseudo-koden (fra
[26]) for en implementering af det enkelte filter.

Desuden implementeres de forskellige filtre i et Dynamisk Bayesiansk netvœrks (DBN)
framework vha. Matlab og vi demonstrerer og sammenligner teknikkerne vha. et simpelt
en-dimensionalt state estimations problem og en større og mere kompleks simulation af et
vandtankssystem. Endelig anvendes udvalgte filtre på et problem fra den virkelige verden,
hvor vi anvender en cyberglove til at inferere vinkel, vinkelhastighed og vinkelaccelera-
tion for et enkelt fingerled i bevœgelse og anvender disse variable som skjulte knuder i et
2T-DBN med EMG m̊alinger fra underarmen som observationer.

I rapporten vises, hvorledes de enkelte filtre adskiller sig fra hinanden i såvel teori
som i praksis, og hvorn̊ar og hvordan deres styrker og svagheder kommer til udtryk. Desu-
den konkluderes hvilke filtre, der er mere eller mindre anvendelige i forskellige praktiske
scenarier og under forskellige forudsœtninger.

Teori og implementering er baseret p teorien og pseudo-koden i [26].

Keywords: Hybrid Bayesian Networks, Dynamic Bayesian Networks, Particle Filter-
ing, Extended Kalman Filter, Unscented Kalman Filter, Markov Chain Monte Carlo
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Abstract

In this thesis we describe the use of the Extended Kalman Filter (EKF), Unscented Kalman
Filter (UKF), generic Particle Filter (PF, a.k.a. condensation, survival of the fittest, boot-
strap filter, SIR, sequential Monte Carlo, etc.), Particle Filter with MCMC steps (PFMC),
Particle Filter with EKF proposal (PFEKF) and MCMC steps (PFEKFMC), Particle Fil-
ter with UKF proposal (PFUKF) and MCMC steps (PFUKFMC) in theory as well as in a
practical framework.

We present pseudo-code (from [26]) for all algorithms and implement the filters in
a Dynamic Bayesian Network (DBN) framework using Matlab. Furthermore, we demon-
strate and compare the implementations on a simple one-dimensional state estimation prob-
lem, a more complex simulation of a watertank system and finally on a real-life problem in
which we use a cyberglove to infer the angle, angular velocity and angular acceleration of
a single fingerjoint during movement and use these variables as hidden nodes in a 2T-DBN
with EMG measurements from the lower arm as observations.

Furthermore, we show how the filters differ theoretically as well as practically and
when and how their strengths and weaknesses become visual. Finally, we conclude which
filters are superior under different conditions and in different practical scenarios.

Theory and implementation is based on the theory and pseudo-code presented in [26].

Keywords: Hybrid Bayesian Networks, Dynamic Bayesian Networks, Particle Filter-
ing, Extended Kalman Filter, Unscented Kalman Filter, Markov Chain Monte Carlo
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Chapter 1

Introduction

Dealing with uncertainty is a common phenomenon in everyday life, e.g. trying to predict
the weather forecast etc. Probability theory provides us with clear semantics for main-
taining our beliefs giving only partial information and how to update our beliefs if new
evidence arrives. However, probabilistic models has not had the impact in the AI com-
munity as one might expect, perhaps as a consequence of the lack of ways to represent
probability distributions and ways to reason with them.

In a combined approach to dealing with uncertainty, probability and graph theory
joins forces inBayesian networks(BN) [Pea88] exploring properties of both worlds. In
a Bayesian network, probability distributions are represented in a graphical model as a
Directed Acyclic Graph (DAG). Nodes in the graph corresponds to random variables con-
nected via arcs representing Conditional Probability Distributions (CPD). A Bayesian net-
work is an intuitively plausible and compact way of representing probability distributions
and have been used in a variety of problem domains, expanding from fault diagnosis sys-
tems, medical expert systems and Microsoft Windows troubleshooting assistancec© Mi-
crosoft, see http://freelock.com/technical/KE.pdf for details. However, a lot of published
literature is very sparse and often the described problems are very simple, e.g. much of the
work has been focused on discrete BN’s, where all nodes can take on only discrete values.

One of the main issues in BN’s is the problem of inference. As an example, one might
like to know the probability of having a cold giving that one has observed a running nose,
fever and headache, i.e. calculating the probability distribution of a random variableX
representing ’cold’ given some observations or evidence

P (X|E = e) e = (running nose, fever, headache) (1.1)

Inference may be divided into two broad categories: exact and approximate inference. The
former giving an exact answer to a probabilistic query whereas the latter algorithms only
provide an approximate answer. In many applications, approximate inference is adequate

4
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and as exact inference is often intractable, approximate inference is a very attractive re-
search area allowing for much more complex models to be investigated.

In this work we focus on the use of approximate inference.

In most real life applications, systems involve combinations of discrete and continuous
attributes. In the medical domain, blood pressure, skin conductance and temperature are
just a few examples of continuous observations.

In this project we keep all observations in their ’true’ domain leading to models with
both discrete and continuous valued nodes, so calledHybrid Bayesian Networks(HBN).
Hybrid models may also be divided into submodels. First, models are labelled according
to their CPD’s, depending on whether the models are restricted to linear relations between
continuous relations or if they allow non-linear relations. An example of the former is a
temperature sensor that is a linear combination of the actual temperature and some colored
noise

sensor = temperature + W W ∈ N(0, σ2) (1.2)

Secondly, models may or may not allow continuous parents to have discrete children. All
continuous observations can be mapped into a finite set of discrete values e.g. using a soft-
max distribution, but this approach is quite difficult and artificial and the error introduced
often leads to poor performance.

In this work, we investigate models having linear as well as non-linear relations, but
do not allow continuous parents to have discrete children.

Finally, models can exhibit either static or temporal behavior depending on whether
the relations between network variables vary over time. Such temporal models, denoted
Dynamic Bayesian Networks(DBN, [6]) allow for much more complex scenarios reflecting
real-life behavior. As an example, the effects of a drug injected into a patient may change
over time or change if the patient eats, falls asleep etc.

In this work we assume a Markovian, stationary model and setup a 2 Time-slice Dy-
namic Bayesian Network (2T-DBN) in which nodes given at timet is dependent only on
other variables at timet andt− 1.

As an outline, our objective is to give the reader an easy-to-read overview of the
involved theory.

From an experimental point of view, the first major contribution of this paper is an
introduction to a practical realization of the different filtering techniques through a very
simply simulation of a one-dimensional state estimation problem in which the issues treated
in the theory are visualized.

Next, the second major contribution follows in which we model a complicated physi-
cal system by a hybrid 2T-DBN. In the system, two watertanks, in which water is flowing
into one of the tanks from an external source, are interconnected via pipes and also has
pipes leading the water away from each tank. In this simulation we apply different filtering
techniques in an attempt to setup a simulated fault detection system to report the state of the
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system - especially to report if any of the pipes have started drifting or has bursted or if the
measurement equipment is failing. We thoroughly compare the different implementations
to expose advantages and weaknesses of each implementation in an attempt to understand
their validity in a real-life simulation.

The final major contribution is a real-life application in which we attempt to track the
angle, angular velocity and angular acceleration of finger movements using EMG signals
from surface electrodes placed on the lower arm and a cyberglove that measures the ground
truth. This is a very interesting application as one would be able to interact with a virtual
environment which could have an enormous impact on the computer science society. Today
a great number of people are suffering from injuries caused by repeated use of a standard
keyboard, mouse and joystick etc. which puts a lot of stress on joints and muscles.

The thesis is structured as follows:

First, we introduce the basic theory of Bayesian networks and Hybrid Bayesian net-
works. Next, we introduce the filtering concept and describe the 8 different filtering tech-
niques.

In the experimental part we start off with the simple one-dimensional simulation in
which we demonstrate characteristics of the different implementations. Then we move on
to a detailed treatment of the more complex watertank problem and end our work with a
presentation of our real-life application.
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Chapter 2

Bayesian Networks

2.1 Notation

P (X) denotes the probability distribution of the random variable (RV)X andP (X = x)
or P (x) is the probability thatX takes on the valuex. Furthermore,P (X,Y ) is the joint
distribution ofX andY , P (X|Y ) is the conditional distribution ofX givenY andP (X|y)
the conditional distribution ofX givenY = y.

2.2 Representation

As mentioned, Bayesian networks form a joint probability distribution over a set of random
variablesX using

• A directed acyclic graphG with nodes corresponding to RV’sXi ∈ X

• A set of Conditional Probability Distributions, one for each node inG, represented
graphically by directed arcs between nodes

Thus, each nodeXi depends directly upon its parentsPa(Xi) as parameterized in the CPD
for Xi.

As such, every node is independent of its non-descendants given its parents. These
conditional independencies are captured by the graphical structure and are easily identified.

8
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Figure 2.1: Example of simple Bayesian network illustrating a model in which a bachelor

is dating single women. The variables or nodes are Date (D): Excellent, Average, Disaster;

Physical Attraction (PA): True, False; Offer Rose (OR): True, False; Accept Rose (AR):

True, False; Rich (R): True, False; Married (M): True, False

The joint distribution is computed via the Chain Rule. For a BN withn nodesX1, ..., Xn

we have

P (X1, ..., Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (2.1)

A simple example is depicted in figure 2.1.

In this network, a bachelor is dating 25 women. After each date he has to offer a
rose to the woman if he wants to keep seeing her. If she accepts the rose, they go on
another date, but if she rejects the rose or is not offered one, she leaves. In the end, the
bachelor may choose to propose to the woman who makes it to the final date. Two factors
influence the bachelors decision on whether or not to offer a girl a rose: TheDate (D)
with the girl, which may have been Excellent, Average or a Disaster and hisPhysical
Attraction (PA)to her, which is either present or not. Our Bachelor is assumed to increase
his desire toOffer Rose (OR)if the date went well and also if he is physically attracted
to her. Similarly, the women are more likely toAccept Rose (AR)if the date went well,
but their decision is positively affected if the Bachelor isRich (R)rather than by physical
attraction. Finally, the chances ofMarriage (M) are non-zero if and only if the woman is
offered a rose and accepts it. Note that the probability ofMarriage (M) is not independent
of Rich (R)andPhysical attraction (PA), but it is independent ofRich (R)andPhysical
Attraction (PA)given its parents,Accept Rose (AR)and Offer Rose (OR). Furthermore,
Rich (R)andPhysical Attraction (PA)are independent, which is a fair assumption.
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The CPD’s parameterize the probability distribution, e.g.P (R = True) = 0.8 and
P (AR = True|Rich = False) = 0.1.

Inference in the network corresponds to answering different queries, say, what is the
probability of marriage and a disastrous date, that the Bachelor is rich, is attracted to the
woman and offers her a rose, but she rejects it?

This query may be answered using the Chain Rule:

P (D = Disaster, R = True, PA = True, OR = True, AR = False,M = True)
= P (D = Disaster) · P (R = True) · P (PA = True)·
P (OR = True|D = Disaster, PA = True)·
P (AR = False|D = Disaster, R = True,OR = True)·
P (M = True|OR = True, AR = False)
= . . .

A less specific query could be the probability of marriage and a disaster date:

P (D = Disaster,M = True)
=

∑
r,pa,or,ar P (D = Disaster, R = r, PA = pa, OR = or, AR = ar,M = True)

=
∑

r,pa,or,ar P (D = Disaster) · P (R = r) · P (PA = pa)·
P (OR = or|D = Disaster, PA = pa)·
P (AR = ar|D = Disaster, R = r, OR = or)·
P (M = True|OR = or, AR = ar)

with r, pa, or andar eitherTrue or False. Note that although this is a very simple and dis-
crete valued network, this computation requires summing over 16 possible events. Hence,
inference becomes very computationally challenging in large and complex networks.

Having computed the joint distribution we are able to infer the conditional distribution
using Bayes theorem:

P (X|Y ) =
P (X, Y )

P (Y )
(2.2)

In our example this would yield

P (M = True|D = Disaster) =
P (D = Disaster,M = True)

P (D = Disaster)
(2.3)
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2.3 Inference

Inference in a BN over the variablesX typically involves computing the distribution over
somequery variablesQ given someevidenceor observationsE = e, i.e.
P (Q|E = e),Q,E ⊆ X. As the conditional distribution can be expressed as the ratio
of the two marginals (the joint distribution andP (E = e)), we take as the simplest case
E = ∅. However, even then inference is NP-hard.

Theorem 2.1 Given a Bayesian network overX and some variablesQ⊆ X then in general

computingP (Q) is NP-hard, even if|Q| = 1

[4]

Fortunately, we can take advantage of the structure or the parameters of the Bayesian
network making exact or approximate inference possible.

In the exact case, techniques s.a.variable eliminationor theJunction Treealgorithm
which is a more advanced techniquebased onvariable elimination exist, e.g. [23], sec. 2.3
and 2.4. However, when the factors involved in the variable elimination of the Junction
Tree algorithm become too large to handle efficiently due to the many parameters involved
in large and/or complex networks, e.g. using both discrete and continuous valued nodes,
approximate inference techniques become an attractive alternative. Even though in general
approximate inference in Bayesian networks is NP-hard ([7]), there are many important
cases in which there exist efficient approximate inference algorithms that lead to provable
good approximations.

In this work we focus onsamplingbased techniques. The basic idea of these algo-
rithms is to randomly assign values to the random variables (samples) and estimate proper-
ties of the joint distribution using these samples. We will discuss these techniques in details
in section A.4.



Chapter 3

Hybrid Bayesian Networks

As mentioned, most real-life applications involve both discrete and continuous variables.
Bayesian networks allowing both kind of node domains are known asHybrid Bayesian
Networks (HBN). Initially, we will review the properties of the normal distribution which
forms the basis of our (and many other) models.

3.1 The normal distribution

The family of normal or Gaussian distributions is very common and popular for several
reasons:

• If Xi, ..., Xn are i.i.d. random variables andY =
∑

i Xi, the distribution ofY con-
verges to a normal distribution forn →∞ (under some weak technical conditions)

• Normal distributions arise naturally in many real-life applications

• The mathematical theory is simple and tractable, e.g. the normal distribution is closed
under operations s.a. summation, multiplication and conditioning

In the univariate case the normal distribution is characterized by the parametersµ andσ2

yielding the density function of a random variable X:

P (X) = N (µ, σ2) =
1√
2πσ

e(− (x−µ)2

2σ2 ) (3.1)

i.e. X follows a normal distribution with meanµ and varianceσ2. The mean parameter
is responsible for the location of the Gaussian (the value where the Gaussian obtains its

12
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maximum) and the variance parameter expresses how peaked the Gaussian is: the larger
the variance, the less peaked it is. Formally, these parameters corresponds to the first two
moments, i.e.µ = E[X] andσ2 = E[X2]− E[X]2.

In the multivariate case, the normal distribution has a mean vectorµ and a covariance
matrixΣ as parameters:

P (X) = N (µ,Σ) =
1√

(2π)n|Σ|e
(− 1

2
(x−µ)T Σ−1(x−µ)) (3.2)

ForX = X1, ..., Xn, µ is a vector of lengthn andΣ is a symmetric positive-definite matrix
of sizen×n with Σi,i being the variance ofXi andΣi,j = Σj,i, (i 6= j) being the covariance
betweenXi andXj.

Next, we outline some of the important properties of the normal distribution, for more
properties and proof of theorems, see for example [31], esp. sec. 5.7 and 6.7.

The joint normal distribution overX,Y whereX,Y ∈ Rn we have

P (X,Y ) = N
((

µX

µY

)
,

[
ΣXX ΣXY

ΣY X ΣY Y

])
(3.3)

whereµX ∈ <n,µY ∈ <m,ΣXX is a matrix of sizen× n, ΣXY is sizen×m, ΣY X =
ΣT

XY is sizem× n andΣY Y is sizem×m.

Theorem 3.1 Let X, Y have a joint normal distribution as defined in eq. 3.3. The

marginal distribution overY is a normal distributionN (Y ; µY , ΣY Y )

Theorem 3.2 LetX = X1, ..., Xn have a joint normal distributionN (X; µ, Σ).

Letβ0 ∈ <,β = (β1, ..., βn) ∈ <n whereβ 6= 0 and letσ2
W > 0.

DefineY = β0 + βT X + W whereP (W ) = N (0, σ2
W ). Then:

• The conditional distributionP (Y |x) ∼ N

P (Y |x) = N (Y ; β0 + βT x, σ2
W )

• The distribution of Y is a normal distributionP (Y ) = N (Y ; µY , σ2
Y ) where

µY = β0 + βT µ

σ2
Y = σ2

W + βTΣβ
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Theorem 3.3 LetX, Y have a joint normal distribution as defined in eq. 3.3. The condi-

tional distributionP (Y |X) is a normal distributionN (Y ; µ
′
Y , Σ

′
Y Y ) where

µ
′
Y = µY + ΣY XΣ−1

XX(x− µX)

Σ
′
Y Y = ΣY Y −ΣY XΣ−1

XXΣXY

Corollary 3.1 LetX, Y have a joint normal distribution as defined in eq. 3.3. The condi-

tional distributionP (Y |X) is a normal distributionN (Y ; β0 + βT X, σ2) where

β0 = µY −ΣY XΣ−1
XXµX

β = ΣY XΣ−1
XX

σ2 = ΣY Y −ΣY XΣ−1
XXΣXY

3.2 Linear Gaussians

Corollary 3.1 is a way to convert a multivariate Gaussian distribution into a Bayesian net-
work by ordering the variablesX1, ..., Xn topologically (parents before children). The
distribution of a child conditioned on its parents is computed as

P (Xi|X1, ..., Xi−1) = N
(

Xi; βi,0 +
i−1∑
j=1

βi,jXj, σ
2
i

)
(3.4)

An edge fromXj to Xi(1 ≤ j < i) corresponds toβi,j 6= 0.

The CPD ofXi is called alinear CPD . If Xi is a root node, the CPD is simply a
univariate Gaussian. A BN with linear CPD’s is alinear Gaussian (LG).
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Figure 3.1: Example of simple Bayesian network illustrating how the bodyweight of

Homer Simpson is influenced. The variables or nodes are Weight (W), Donut Price (DP)

∼ N (2, 0.5) and Diet (DIET): True, False

3.3 Conditional Linear Gaussians

Conditional Linear Gaussian’s (CLG) are Bayesian networks combining discrete variables
(denoted∆) and continuous variables (denotedΓ) and thus encapsulates a broader class of
distributions than discrete BN’s and LG’s.

However, the following restrictions apply:

• A continuous node can not have discrete children (this is theoretically possible, but
would involve a discretization, say using a soft-max function, but this approach is
artificial and involves discretization error)

• The CPD of a continuous variable is a linear CPD given any combination of its
discrete parents. Formally, a continuous nodeY with parentsX = X1, ..., Xk ⊆ Γ
andD = D1, ..., Dl ⊆ ∆ has a CPD parameterized as:

∀d ∈ Dom(D), P (Y |x,d) = N
(

Y ; βd,0 +
k∑

i=1

βd,ixi, σ
2
d

)
(3.5)

Hence, if all discrete variables are known, the CPD’s of the continuous variables are
all linear CPD’s and the CLG is reduced to a LG. In other words, a CLG is a mixture of
Gaussian’s where every mixture component corresponds to an instantiation of the discrete
variables.

As a simple example, consider the network given in figure 3.1 which follows the
usual notation that discrete variables are depicted as squares or rectangles and continuous
variables are depicted as circles or ellipsoids.
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Figure 3.2: Joint distribution ofW,DP after marginalizing outDIET

In this model, the bodyweight of Homer Simpson (character in the cartoon seriesThe
Simpson) in kg (continuous variableW ) is dependent on the continuous variableDP cor-
responding to the unit price (in US dollars) on donuts at Apu’s (supermarket inThe Simp-
sons) (prior distributionN (2, 0.5)) and the discrete variableDIET indicating whether or
not Homer is presently on a diet (True with probability 0.01 and False with prob. 0.99).

Homer’s bodyweight is modelled using the following CPD:

P (W |DIET, DP ) =

{ N (200 + 1
DP

, 100) DIET = FALSE
N (200, 25) DIET = TRUE

(3.6)

Hence, Homer’s bodyweight is a normal distribution with a mean value inverse pro-
portional to the unit price on donuts and an increased variance if he is not on a diet. Oth-
erwise, his bodyweight is more stable and does not depend on the donut price (which is
most unlikely). The joint distribution ofW,DP after marginalizing outDIET is a mix-
ture of two Gaussian’s and is shown in Figure 3.2. The peaked Gaussian corresponds to
DIET = TRUE.



17



Chapter 4

Filtering

This chapter is a summary of [26]. A more detailed version is found in Appendix A.

The original technical report can be downloaded at http://www.cs.ubc.ca/ nando.

In general, filtering is the problem of estimating the state of a system using a set
of observations that becomes available on-line. This problem is solved by modelling the
evolution of the system and the noise on the measurements. There exist many modelling
strategies and filtering algorithms, but the resulting models most often show complex non-
linearities and non-Gaussian distributions which rules out analytical solutions.

4.1 Dynamic State Space Model

The general state space model (without control input) consists of astate transition or state
processmodel anda state measurementmodel

p(xt|xt−1) (4.1)

p(yt|xt) (4.2)

wherext ∈ <nx are the states (hidden variables or parameters) of the system at timet and
yt ∈ <ny are the observations. The state transitions are a first order Markov process and
the observations are assumed to be independent given the states.

For example, a non-linear, non-Gaussian model can be expressed as

xt = f(xt−1, vt−1) (4.3)

yt = h(xt, nt) (4.4)

18
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with yt ∈ <ny being the output observations,xt ∈ <nx the states of the system,vt ∈ <nv

the process noise andnt ∈ <nn the measurement noise.

The mappingsf : <nx × <nv andh : <ny × <nn represent the deterministic process
and measurement models andp(x0) is the prior distribution at timet = 0.

Our goal is to compute the filtering densityp(xt|y1:t) recursively to avoid computing
the complete posterior densityp(x0:t|y1:t). Thus we avoid keeping track of the complete
history of the states and are still able to compute estimates of the mean, confidence intervals
etc. of the systems states.

4.2 Extended Kalman Filter

In the Extended Kalman Filter (EKF) the standard Kalman filter (for linear systems) is ap-
plied to non-linear systems with additive white noise by continually updating a linearization
around the previous state estimate, starting with an initial guess, i.e. it is a minimum mean-
square-error (MMSE) estimator based on the Taylor series expansion of the non-linear
functionsf andh around the estimates̄xt|t−1 of the statesxt, e.g.

f(xt) = f(x̄t|t−1) +
∂f(xt)

∂xt

∣∣∣(xt=x̄t|t−1)(xt − x̄t|t−1) + . . . (4.5)

Using only the linear expansion terms, the update equations for the meanx̄ and co-
varianceP of the Gaussian approximation to the posterior distribution of the states become

x̄t|t−1 = f(x̄t−1, 0) (4.6)

Pt|t−1 = FtPt−1FT
t + GtQtG

T
t (4.7)

K t = Pt|t−1HT
t [UtRtUT

t + HtPt|t−1HT
t ]−1 (4.8)

x̄t = x̄t|t−1 + K t(yt − h(x̄t|t−1, 0)) (4.9)

Pt = Pt|t−1 − K tHtPt|t−1 (4.10)

whereK t is the Kalman gain,Q is the variance of the process noise (assumed to be zero-
mean Gaussian),R is the variance of the measurement noise (assumed to be zero-mean

Gaussian),Ft
4
= ∂f(xt)

∂xt

∣∣∣(xt=x̄t|t−1) andGt
4
= ∂f(vt)

∂vt

∣∣
(vt=v̄) are the Jacobians of the process

model andHt
4
= ∂h(xt)

∂xt

∣∣∣(xt=x̄t|t−1) andUt
4
= ∂h(nt)

∂nt

∣∣
(nt=n̄) are the Jacobians of the measure-

ment model.
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4.3 Unscented Kalman Filter

As the EKF only uses the first order terms of the Taylor series expansion of the non-linear
functions, it may introduce significant errors in the estimations of the posterior distribu-
tion of the states. Especially if the models are highly non-linear where the local linearity
assumptions do not hold.

The Unscented Kalman Filter (UKF, [20]) is a recursive MMSE estimator that does
not approximate the non-linear process and measurement models, but uses the true models
and approximates the distribution of the state random variable. The state distribution is
still represented by a Gaussian random variable, but by a minimal set of deterministically
chosen sample points that completely capture the true mean and covariance of the Gaussian
random variable. When this variable is propagated through the true non-linear system, it
captures the true mean and covariance to the second order for any non-linearity.

4.3.1 The scaled unscented transformation

To calculate the statistics of a random variable undergoing a non-linear transformation, as
required by the UKF, the scaled unscented transformation (SUT) is used. SUT is based
on the principle that it is easier to approximate a probability distribution than an arbitrary
non-linear function ([19]).

Let x be anx dimensional random variable propagated through an arbitrary non-linear
functiong to generatey

y = g(x) (4.11)

Assumex to have mean̄x and covariancePx. The first two moments ofy are calculated by
first deterministically choosing2nx + 1 weighted samples orsigma pointsSi = {Wi,χi}
so as to completely capture the true mean and covariance of the prior random variablex as
follows ([26]):
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Let
λ = α2(nx + κ)− nx (4.12)

and select the sigma points using

χ0 = x̄

χi = x̄ +
(√

(nx + λ)Px

)
i
, i = 1, ..., nx

χi = x̄−
(√

(nx + λ)Px

)
i
, i = nx + 1, ..., 2nx

W
(m)
0 = λ/(nx + λ)

W
(c)
0 = λ/(nx + λ) + (1− α2 + β)

W
(m)
i = W

(c)
i = 1/{2(nx + λ)}, i = 1, . . . , 2nx

(4.13)

whereκ, α andβ are positive scaling parameters and
(√

(nx + λ)Px

)
i

is thei’th row or

column of the matrix square root of(nx+λ)Px andWi is the weight associated with thei’th
point s.t.

∑2nx

i=0 Wi = 1. The sigma points are propagated through the non-linear function

Y i = g(χi), i = 0, ..., 2nx (4.14)

The estimated mean and covariance ofy is

y =
2nx∑
i=0

WiY i (4.15)

P y =
2nx∑
i=0

Wi

(
Y i − y

)(
Y i − y

)T

(4.16)

which are accurate to the second order (third order for Gaussian priors) of the Taylor series
expansion ofg(x) for any non-linear function ([26]).

4.3.2 Implementation

In the Unscented Kalman Filter (UKF), the SUT is applied to the state random variable
defined as the concatenation of the original state and noise variables, i.e.xa

t =
[
xT

t vT
t nT

t

]T

yielding a sigma point matrixχa
t . The complete pseudo algorithm is given below

1. Initialization

x̄0 = E[x0] (4.17)

P0 = E[(x0 − x̄0)(x0 − x̄0)
T ] (4.18)

x̄a
0 = E[xa] = [x̄T

0 0 0]T (4.19)

Pa
0 = E[(xa

0 − x̄a
0)(x

a
0 − x̄a

0)
T ] =




P0 0 0
0 Q 0
0 0 R


 (4.20)
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2. Fort ∈ {1, . . . ,∞}
(a) Calculate sigma points

χa
t−1 =

[
x̄a

t−1 x̄a
t−1 ±

√
(na + λ)Pa

t−1

]
(4.21)

(b) Time update

χx
t|t−1 = f(χx

t−1,χ
v
t−1) (4.22)

x̄t|t−1 =
2na∑
i=0

W
(m)
i χx

i,t|t−1 (4.23)

Pt|t−1 =
2na∑
i=0

W
(c)
i [χx

i,t|t−1 − x̄t|t−1][χ
x
i,t|t−1 − x̄t|t−1]

T (4.24)

γt|t−1 = h(χx
t|t−1,χ

n
t−1) (4.25)

ȳt|t−1 =
2na∑
i=0

W
(m)
i γv

i,t|t−1 (4.26)

(c) Measurement update

Pỹtỹt
=

2na∑
i=0

W
(c)
i [γi,t|t−1 − ȳt|t−1][γi,t|t−1 − ȳt|t−1]

T (4.27)

Pxtyt
=

2na∑
i=0

W
(c)
i [χi,t|t−1 − x̄t|t−1][γi,t|t−1 − ȳt|t−1]

T (4.28)

K t = Pxtyt
P−1

ỹtỹt
(4.29)

x̄t = x̄t|t−1 + K t(yt − ȳt|t−1) (4.30)

Pt = Pt|t−1 − K tPỹtỹt
KT

t (4.31)

wherexa =
[

xT vT nT
]T

, χa =
[

(χx)T (χv)T (χn)T
]T

, λ is the composite scal-
ing parameter,na = nx +nv +nn, Q is the process noise covariance,R is the measurement
noise covariance,K is the Kalman gain andWi are the weights.

From a computational perspective, the UKF is superior to EKF, as it does not require
explicit calculation of Jacobians (or Hessians), but computes a covariance matrix square
root which can be done using a Cholesky factorization in ordern3

x/6. However, by ex-
pressing the covariance matrices recursively, this can be done in ordern2

x using a recursive
update to the Cholesky factorization ([26]).
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4.4 Particle Filtering

EKF and UKF both rely on a Gaussian approximation. In this section we present a method
that does not require this assumption, but presents other problematic issues. To overcome
some of these problems, the particle filtering strategy is combined with EKF and UKF in
section 4.5 and 4.6.1 resp.

4.4.1 Monte Carlo simulation

In Monte Carlo simulation, the posterior distribution is approximated by an empirical esti-
mate computed using a set ofN weighted particles (samples){x(i)

0:t; i = 1, . . . , N} drawn
from the posterior distribution

p̂(x0:t|y1:t) =
1

N

N∑
1=1

δ
x

(i)
0:t

(dx0:t) (4.32)

whereδ(·) denotes the Dirac delta function. Hence, the expectation

E(gt(x0:t)) =

∫
gt(x0:t)p(x0:t|y1:t)dx0:t (4.33)

is approximated by

E(gt(x0:t)) =
1

N

N∑
i=1

gt(x
(i)
0:t) (4.34)

where the particlesx(i)
0:t are assumed to be i.i.d.

4.4.2 Bayesian importance sampling

However, as it is often impossible to sample from the posterior density, we sample from a
known, easy-to-sample, proposal distributionq(x0:t|y1:t) and use the following substitution

E(gt(x0:t)) =

∫
gt(x0:t)

p(x0:t|y1:t)

q(x0:t|y1:t)
q(x0:t|y1:t)dx0:t

=

∫
gt(x0:t)

p(y1:t|x0:t)p(x0:t)

p(y1:t)q(x0:t|y1:t)
q(x0:t|y1:t)dx0:t

=

∫
gt(x0:t)

ωt(x0:t)

p(y1:t)
q(x0:t|y1:t)dx0:t (4.35)

whereωt(x0:t) are the un-normalized weights

ωt(x0:t) =
p(y1:t|x0:t)p(x0:t)

q(x0:t|y1:t)
(4.36)
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The unknown normalizing densityp(y1:t) is removed as follows

E(gt(x0:t)) =
1

p(y1:t)

∫
gt(x0:t)ωt(x0:t)q(x0:t|y1:t)dx0:t

=

∫
gt(x0:t)ωt(x0:t)q(x0:t|y1:t)dx0:t∫
p(y1:t|x0:t)p(x0:t)

q(x0:t|y1:t)
q(x0:t|y1:t)

dx0:t

=

∫
gt(x0:t)ωt(x0:t)q(x0:t|y1:t)dx0:t∫

ωt(x0:t)q(x0:t|y1:t)dx0:t

=
Eq(·|y1:t)(ωt(x0:t)gt(x0:t))

Eq(·|y1:t)(ωt(x0:t))
(4.37)

whereEq(·|y1:t) means expectation over the proposal distributionq(·|y1:t).

Now, the expectation is approximated by

E(gt(x0:t)) =
1/N

∑N
i=1 gt(x

(i)
0:t)ω

(i)
t (x(i)

0:t)

1/N
∑N

i=1 ω
(i)
t (x(i)

0:t)

=
N∑

i=1

gt(x
(i)
0:t)ω̃t(x

(i)
0:t) (4.38)

where the normalized importance weightsw̃
(i)
t are given by

ω̃t =
ω

(i)
t∑N

j=1 ω
(i)
t

(4.39)

4.4.3 Sequential importance sampling

In this paper our goal is to perform filtering on the given models, i.e. to compute a se-
quential estimate of the posterior distribution at timet without modifying the previously
simulated statesx0:t−1 allowing proposal distributions of the form

q(x0:t|y1:t) = q(x0:t−1|y1:t−1)q(xt|x0:t−1, y1:t) (4.40)

Assuming the states follow a Markov process and that the observations are conditionally
independent given the states yields

p(x0:t) = p(x0)
t∏

j=1

p(xj|xj−1) and p(y1:t|x0:t) =
t∏

j=1

p(yj|xj) (4.41)
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By substituting (4.41) into (4.36) we get a recursive estimate for the importance weights

ωt =
p(y1:t|x0:t)p(x0:t)

q(x0:t−1|y1:t−1)q(xt|x0:t−1, y1:t)

= ωt−1
p(y1:t|x0:t)p(x0:t)

p(y1:t−1|x0:t−1)p(x0:t−1)

1

q(xt|x0:t−1, y1:t)

= ωt−1
p(yt|xt)p(xt|xt−1)

q(xt|x0:t−1, y1:t)
(4.42)

Now, given a proposal distribution and a set of prior samples, we are able to sequentially
sample and evaluate likelihood, transition probabilities and importance weights leading to
estimates such as (4.35).

The transition prior
q(xt|x0:t−1, y1:t) $ p(xt|xt−1) (4.43)

is the most popular choice of proposal distribution (even though it gives higher variance as
it does not include the most recent observations) simply because it is easier to implement.
For an additive Gaussian process noise model the transition prior simplifies to

p(xt|xt−1) = N (f(xt−1, 0),Qt−1) (4.44)

4.4.4 Degeneracy

Unfortunately, in Sequential Importance Sampling (SIS) the variance of the importance
weights increases stochastically over time. This is seen by expanding equation (4.42):

ωt =
p(y1:t|x0:t)p(x0:t)

q(x0:t|y1:t)

=
p(y1:t, x0:t)

q(x0:t|y1:t)

=
p(x0:t|y1:t)p(y1:t)

q(x0:t|y1:t)

∝ p(x0:t|y1:t)

q(x0:t|y1:t)

(4.45)

Thus, the importance weights are proportional to theimportance ratio, which variance
increases over time ([10]).

In practice, what happens is that after a few time steps one of the normalized impor-
tance weights is close to 1 while the rest is close to 0. In other words, a lot of the samples
become useless and are neglected. To avoid this phenomenon,degeneracy, the particles
need to be resampled (selection step) to eliminate particles with low importance weights
and multiply particles with high importance weights.
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Figure 4.1: Illustration of resampling principle where a random measure
{

x(j)
1:t , N

−1
}

is

mapped into an equally weighted random measure
{

x(j)
1:t , N

−1
}

by drawing the indexi

from a uniform distribution (from [26])

4.4.5 Resampling

In resampling, each particlex(i)
0:t is assigned a number of ”children”, sayNi ∈ N, s.t.∑N

i=1 Ni = N . In this paper, we have chosen to implement a number of different sampling
schemes described in the following sections.

Sampling Importance Resampling (SIR) and multinomial sampling

Resampling involves mapping the Dirac random measure
{

x(i)
0:t, w̃

(i)
t

}
into an equally weighted

random measure
{

x(j)
0:t , N

−1
}

by sampling uniformly from the discrete set
{

x(i)
0:t, i = 1, . . . , N

}

with probabilities
{

w̃
(i)
t ; i = 1, . . . , N

}
, see [15]. Figure 4.1 illustrates this principle. Hav-

ing set up the cumulative distribution of the discrete set, a uniformly drawn sampling index
i is projected onto the distribution range and then onto the distribution domain. The new
sample indexj is the intersection with the domain and hence the new sample is the vec-
tor x(i)

0:t. At the end of the day, the larger importance weighted samples will have more
replicates.

SamplingN times from the cumulative discrete distribution
∑N

i=1 w̃
(i)
t δ

x
(i)
0:t

(dx0:t) cor-

responds to samples(Ni; i = 1, . . . , N) from a multinomial distribution with parame-
tersN andw̃

(i)
t with a computational complexity ofO(N), ([9]). The variance becomes

var(Ni) = Nw̃
(i)
t

(
1− w̃

(i)
t

)
as we are sampling from a multinomial distribution.
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Figure 4.2: Illustration of standard particle filter: The filter starts at timet − 1 with an

unweighted measure
{

x̃
(i)
t−1, N

−1
}

providing an approximation ofp(xt−1|y1:t−2). For each

particle the importance weights are calculated using the information at timet − 1 giving

a weighted measure
{

x̃
(i)
t−1, w̃

(i)
t−1

}
which is an approximation ofp(xt−1|y1:t−1). Next, the

resampling step selects the fittest samples to obtain the unweighted measure
{

x̃
(i)
t−1, N

−1
}

which is an approximation ofp(xt−1|y1:t−1). Finally, the sampling step introduces variety

giving the measure
{

x̃
(i)
t , N−1

}
which is an approximation ofp(xt|y1:t−1) (from [26])

Residual resampling

([24] for details). SetÑi = bNw̃
(i)
t c and apply the SIR scheme to compute the remaining

N̄t = N −∑N
i=1 Ñi samples with corresponding weightsw

′(i)
t = N̄−1

t

(
w̃

(i)
t N − Ñi

)
.

The variance
(
var(Ni) = N̄tw̃

′(i)
t

(
1− w̃

′(i)
t

))
is smaller than for the SIR and also com-

putationally cheaper.

Minimum variance sampling

([5] for details). Sample a set ofN pointsU ∈ [0; 1] with a distance ofN−1 apart. The
number of childrenNi is the number of points between

∑i−1
j=1 w̃

(j)
t and

∑i
j=1 w̃

(j)
t .

The variance of this strategy is
(
var(Ni) = N̄tw̃

′(i)
t

(
1− N̄tw̃

′(i)
t

))
and the computational

complexityO(N).
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4.4.6 Implementation

Generic Particle Filter

1. Initialization

• For i = 1, . . . , N , draw the particlesx(i)
0 from the priorp(x0)

2. For t = 1, 2, . . .

(a) Importance sampling step

• Fori = 1, . . . , N , samplêx(i)
t ∼ q(xt|x(i)

0:t−1, y1:t) and set̂x(i)
0:t , (x(i)

0:t−1, x̂(i)
t )

• For i = 1, . . . , N , evaluate the importance weights up to a normalizing
constant

w
(i)
t = w

(i)
t−1

p(yt|x̂(i)
t )p(x̂(i)

t |x(i)
t−1)

q(x̂(i)
t |x(i)

0:t−1, y1:t)
(4.46)

• For i = 1, . . . , N , normalize the importance weights

w̃t
(i) = w

(i)
t

[∑
N
j=1w

(j)
t

]−1

(4.47)

(b) Selection step (resampling)

• Multiply/suppress sampleŝx(i)
0:t with high/low importance weights̃wt

(i), re-
spectively, to obtainN random samplesx(i)

0:t approximately distributed ac-
cording top(x(i)

0:t|y1:t)

• For i = 1, . . . , N , setw(i)
t = w̃t

(i) = 1
N

(c) Output: A set of samples to approximate the posterior distribution as

p(x0:t|y1:t) ≈ p̂(x0:t|y1:t) =
1

N

N∑
i=1

δ
(x

(i)
0:t)

(dx0:t) (4.48)
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4.5 MCMC move step

([12] for details) As mentioned, we are looking for a way of introducing sample variety
after the selection step without affecting the validity of the approximation. One strategy
is to introduce a MCMC step of invariant distributionp(x0:t|y1:t) on each particle ([2]). If
the particles are distributed according to the posteriorp(x̃0:t|y1:t), and we apply a Markov
chain transition kernelK(x0:t|x̃0:t) with invariant distributionp(x0:t|y1:t) s.t.

∫ K(x0:t|x̃0:t)
p(x̃0:t|y1:t) = p(x0:t|y1:t), we still have a set of particles distributed according to the poste-
rior. However, the particles might have been moved to areas of higher likelihood and the
total variance of the current distribution with respect to the invariant distribution can only
decrease ([26]).

The MCMC move step corresponds to sampling from the finite mixture distribution
N−1

∑N
i=1K(x0:t|x̃0:t) (see [14] for convergence issues). This principle can be generalized

by applying MCMC steps on the product space with invariant distribution
∏N

i=1 p(x0:t|y1:t),
i.e. to the entire population of particles. However, in this work we only consider the former
and simpler case. For the standard particle filter we sample from the transition prior and
accept according to a Metropolis-Hastings (MH) step

Smoothing MH step

• Sampleu ∼ U[0,1]

• Sample the proposal candidatex∗(i)t ∼ p(xt|x(i)
t−1)

• If u ≤ min
{

1,
p(yt|x∗(i)t )

p(yt|x̃(i)
t )

}

- then accept move
x(i)

0:t = (x̃(i)
0:t−1, x∗(i)t ) (4.49)

- else reject move
x(i)

0:t = x̃(i)
0:t (4.50)

End If

More complex proposals exist, s.a. mixtures of MH steps to ensure an efficient exploration
of the sample space ([18]) and reversible jump MCMC steps (see [16]) to allow particles to
move from one subspace to other subspaces of, possible, different dimension ([2]).



4.6. EXTENDED KALMAN PARTICLE FILTER 30

4.6 Extended Kalman Particle Filter

One way of generating proposal distributions that are more accurate in their approximation
of the optimal importance distribution islocal linearization. This method incorporates the
most current observation with the optimal Gaussian approximation of the state ([9]), and
is based on the first order Taylor series expansion of the likelihood and transition prior as
described in section 4.1 and a Gaussian assumption on all RV’s. In this work, the EKF
approximates the optimal MMSE estimator of the system state by computing the condi-
tional mean of the state given all observations. This is done recursively through time by
propagating the Gaussian approximation of the posterior distribution and combining it with
the new observation available at each time step. That is, the EKF computes the recursive
approximation of the true posterior filtering density given by

p(xt|y1:t) ≈ pN (xt|y1:t) = N
(

x̄t, P̂t

)
(4.51)

Using the EKF in particle filtering, a separate EKF is used to generate and propagate a
Gaussian proposal distribution for each particle

q(x(i)
t |x(i)

0:t−1, y1:t)
.
= N (xt|y1:t) i = 1, . . . , N (4.52)

i.e. at timet−1 the mean and covariance of the importance distribution for each particle are
computed using the EKF equations and the new observation. Thus, we need to propagate
the covariancêP (i) and specify the EKF process and measurement noise covariances. Sec-
ondly, thei-th particle is sampled from this distribution. This filter is called theExtended
Kalman Particle Filterand the pseudo-code is given in the following subsection.

As the EKF is an MMSE estimator, this filter leads to an improved annealed sampling
algorithm in which the variance of each proposal distribution changes over time. Optimally,
the search is based on a large region of the error surface and moved towards regions of
lower error as time progresses. However, even though the EKF moves the prior towards
the likelihood, we are still faced with the Gaussian assumption on the form of the posterior
and linearization approximations. Comparing equation (4.51) with the Gaussian transition
prior in equation (4.44), it is noted that the proposal distribution generated by the EKF
includes the most current observation at timet. In general though, the true form of this
density will not be Gaussian - even with Gaussian process and measurement noise - which
can be shown using a Bayes rule expansion of the proposal distribution. This implies that
we are left with an experimental judgement of the gain versus the loss of filter performance.



4.6. EXTENDED KALMAN PARTICLE FILTER 31

4.6.1 Implementation

Extended Kalman Particle Filter

1. Initialization

• For i = 1, . . . , N , draw the particlesx(i)
0 from the priorp(x0)

2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

- Compute the JacobiansF(i)
t , G(i)

t of the process model andH(i)
t , U(i)

t of
the measurement model

- Update the particles with EKF

x̄(i)
t|t−1 = f(x(i)

t−1) (4.53)

P(i)
t|t−1 = F(i)

t P(i)
t−1F

T (i)
t + G(i)

t QtG
T (i)
t (4.54)

K t = P(i)
t|t−1H

T (i)
t [U(i)

t RtU
T (i)
t + H(i)

t P(i)
t|t−1U

T (i)
t ]−1 (4.55)

x̄(i)
t = x̄(i)

t|t−1 + K t(yt − h(x̄(i)
t|t−1)) (4.56)

P̂
(i)

t = P(i)
t|t−1 − K tH

(i)
t P(i)

t|t−1 (4.57)

- Samplêx(i)
t ∼ q(x(i)

t |x(i)
0:t−1, y1:t) = N (x̄(i)

t , P̂
(i)

t )

• For i = 1, . . . , N , evaluate the importance weights up to a normalizing
constant

w
(i)
t ∝ p(yt|x̂(i)

t )p(x̂(i)
t |x(i)

t−1)

q(x̂(i)
t |x(i)

0:t−1, y1:t)
(4.58)

• For i = 1, . . . , N , normalize the importance weights

w̃t
(i) = w

(i)
t

[∑
N
j=1w

(j)
t

]−1

(4.59)

(b) Selection step

• Multiply/suppress samples(x̂(i)
0:t, P̂

(i)

0:t) with high/low importance weights

w̃t
(i), respectively, to obtainN random samples(x̃(i)

0:t, P̃
(i)

0:t)

(c) MCMC step (optional)

• Apply a Markov transition kernel with invariant distribution given byp(x(i)
0:t|y1:t)

to obtain(x(i)
0:t, P(i)

0:t)

(d) OutputSee ’Generic Particle Filter’
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EKF MH step

• Sampleu ∼ U[0,1]

• Compute the JacobiansF∗(i)t , G∗(i)
t of the process model andH∗(i)

t , U∗(i)
t of the mea-

surement model

• Update the particles with EKF

x̄∗(i)t|t−1 = f(x̃(i)
t−1) (4.60)

P∗(i)t|t−1 = F∗(i)t P̃
(i)

t−1F
∗T (i)
t + G∗(i)

t QtG
∗T (i)
t (4.61)

K t = P∗(i)t|t−1H
∗T (i)
t [U∗(i)

t RtU
∗T (i)
t + H∗(i)

t P∗(i)t|t−1U
∗T (i)
t ]−1 (4.62)

x̄∗(i)t = x̄∗(i)t|t−1 + K t(yt − h(x̄∗(i)t|t−1)) (4.63)

P∗(i)t = P∗(i)t|t−1 − K tH
∗(i)
t P∗(i)t−1 (4.64)

• Samplex∗(i)t ∼ q(xt|x̃(i)
0:t−1y1:t) = N (x̄∗(i)t , P̂

∗(i)
t )

• If u ≤ min

{
1,

p(yt|x∗(i)t )p(x∗(i)t |x̃(i)
t−1)q(x̃(i)

t |x̃(i)
0:t−1,y1:t)

p(yt|x̃(i)
t )p(x̃(i)

t |x̃(i)
t−1)q(x∗(i)t |x̃(i)

0:t−1,y1:t)

}

- then accept move
x(i)

0:t = (x̃(i)
0:t−1, x∗(i)t ) (4.65)

P(i)
0:t = (P̃

(i)

0:t−1, P∗(i)t ) (4.66)

- else reject move
x(i)

0:t = x̃(i)
0:t (4.67)

P(i)
0:t = P̃

(i)

0:t (4.68)

End If
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4.7 Unscented Filter

As described in section 4.2, the UKF propagates the mean and covariance of the Gaussian
approximation to the state distribution more accurately than the EKF and tends to generate
better estimates of the true covariance of the state ([26]). Furthermore, the distributions
generated by the UKF generally have a broader overlap with the true posterior distribution
compared to the EKF estimates which is partly due to the fact that the UKF computes the
posterior covariance accurately to the third order (Gaussian prior) whereas the EKF uses
a first order biased approximation. The UKF also includes the latest observations, but in
a more accurate way. Furthermore, the UKF is able to scale the approximation errors in
higher order moments of the posterior distribution allowing heavier tailed distributons. As
the sigma points in the UKF are deterministically designed to capture certain characteristics
of the prior distribution, it is possible to explicitly tune the algorithm to work on distribu-
tions that have heavier tails than Gaussian distributions, e.g. Student-t distributions. All
in all, the UKF is more likely to generate more accurate proposal distributions within the
particle filtering framework. Using the UKF as proposal distribution generator leads to the
Unscented Filter, [26], (in this work abbreviated PFUKF). The pseudo-code for this filter
is shown below.

4.7.1 Implementation

Unscented Filter

1. Initialization

• For i = 1, . . . , N , draw particlesx(i)
0 from the priorp(x0) and set

x̄(i)
0 = E[x(i)

0 ] (4.69)

P(i)
0 = E[(x(i)

0 − x̄(i)
0 )(x(i)

0 − x̄(i)
0 )T ] (4.70)

x̄(i)a
0 = E[x(i)a] = [(x̄(i)

0 )T 0 0]T (4.71)

P(i)a
0 = E[(x(i)a

0 − x̄(i)a
0 )(x(i)a

0 − x̄(i)a
0 )T ] =




P(i)
0 0 0
0 Q 0
0 0 R


 (4.72)
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2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

- Update the particles with UKF

* Calculate sigma points

χ
(i)a
t−1 =

[
x̄(i)a

t−1 x̄(i)a
t−1 ±

√
(na + λ)P(i)a

t−1

]
(4.73)

* Propagate particle (time update)

χ
(i)x
t|t−1 = f(χ(i)x

t−1,χ
(i)v
t−1) (4.74)

x̄(i)
t|t−1 =

2na∑
j=0

W
(m)
j χ

(i)x
j,t|t−1 (4.75)

P(i)
t|t−1 =

2na∑
j=0

W
(c)
j [χ

(i)x
j,t|t−1 − x̄(i)x

t|t−1][χ
(i)x
j,t|t−1 − x̄(i)

t|t−1]
T (4.76)

γ
(i)
t|t−1 = h(χ

(i)x
t|t−1,χ

(i)n
t−1) (4.77)

ȳ(i)
t|t−1 =

2na∑
j=0

W
(m)
j γ

(i)
j,t|t−1 (4.78)

* Incorporate new observation (measurement update)

Pỹtỹt
=

2na∑
j=0

W
(c)
j [γ

(i)
j,t|t−1 − ȳ(i)

t|t−1][γ
(i)
j,t|t−1 − ȳ(i)

t|t−1]
T (4.79)

Pxtyt
=

2na∑
j=0

W
(c)
j [χ

(i)
j,t|t−1 − x̄(i)

t|t−1][γ
(i)
j,t|t−1 − ȳ(i)

t|t−1]
T (4.80)

K t = Pxtyt
P−1

ỹtỹt
(4.81)

x̄(i)
t = x̄(i)

t|t−1 + K t(yt − ȳ(i)
t|t−1) (4.82)

P̂
(i)

t = P(i)
t|t−1 − K tPỹtỹt

KT
t (4.83)

- Samplêx(i)
t ∼ q(x(i)

t |x(i)
0:t−1, y1:t) = N (x̄(i)

t , P̂
(i)

t )

- Setx̂(i)
0:t , (x(i)

0:t−1, x(i)
t ) andP̂

(i)

0:t , (P(i)
0:t−1, P(i)

t )
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• For i = 1, . . . , N , evaluate the importance weights up to a normalizing
constant

w
(i)
t ∝ p(yt|x̂(i)

t )p(x̂(i)
t |x(i)

t−1)

q(x̂(i)
t |x(i)

0:t−1, y1:t)
(4.84)

• For i = 1, . . . , N , normalize the importance weights

w̃t
(i) = w

(i)
t

[∑
N
j=1w

(j)
t

]−1

(4.85)

(b) Selection step

• Multiply/suppress samples(x̂(i)
0:t, P̂

(i)

0:t) with high/low importance weights

w̃t
(i), respectively, to obtainN random samples(x̃(i)

0:t, P̃
(i)

0:t)

(c) MCMC step (optional)

• Apply a Markov transition kernel with invariant distribution given byp(x(i)
0:t|y1:t)

to obtain(x(i)
0:t, P(i)

0:t)

(d) OutputSee ’Generic Particle Filter’



Chapter 5

Simple simulation

Initially, we apply our algorithms to a simple one-dimensional simulated problem in which
we can control (and hence know) all parameters and values allowing us to validate our
implementation. Furthermore, we can easily compare the algorithms and visualize their
differences and characteristics without having too many unknown parameters and factors
that may influence the outcome of our estimates in various ways.

Our DBN has three nodes and is illustrated in Figure 5.1.

The true process model is a simple noisy AR(1) model given by

xt = 2 + cos(απt) + βxt−1 (5.1)

The measurement model consists of three parts in which the first part is a first order
relation, the second part a second order and the final part a third order relation given by

yt =





θ1xt t <= 20
θ2xt

2 20 < t <= 40
θ3xt

3 t > 40
(5.2)

The measurement model was chosen to illustrate the strengths and weaknesses of the
algorithms for distributions with increasing non-linearity, especially with respect to the

Figure 5.1: DBN for simple one-dimensional problem

36
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comparison of EKF, PFEKF, PFEKFMC vs. UKF, PFUKF, PFUKFMC algorithms as the
estimates of the posterior mean and variance are accurate to the second order of the Taylor
series expansion ofg(x) in the unscented transformation as opposed to the first order
accuracy of the EKF, see section 4.1 and 4.2 resp.

In all experiments the process and measurement equation parameters were set to
α = 0.05, β = 0.5, θ1 = −1, θ2 = 0.05 andθ3 = 0.01 in the data generation.

Furthermore, all experimental results were based on an average over 10 runs to elimi-
nate the statistical influence and all particle filters (i.e. all algorithms except EKF and UKF)
used a fairly low number of particles allowing us to show how the different particle filters
perform without using too many particles. Using a lot more particles we would obtain bet-
ter results all over, but the primary intension with these experiments were to compare the
algorithms and validate them on a simple problem.

In all experiments the valuesα = 1, β = 0 andκ = 2 were used, as these are the
optimal for the scalar case ([26]) and the choice of resampling algorithm did not seem
to influence the results significantly and hence residual resampling was chosen arbitrarily
(they are allO(N) algorithms, [26]).

In our study of the different algorithms and different scenarios, we have chosen to
divide our experiments into three scenarios presented in the following subsections.

First, we experiment with ’optimal’ conditions, i.e. by adding Gaussian noise to the
data which is the basic assumption (on the additive noise) for EKF and UKF and use the true
process and measurement models as proposal models. This allows us to see and compare
the outcome of the different algorithms when applied to a problem in which they do not
use approximate process and measurement models which could affect their performance.

Next, we violate the Gaussian noise assumption and draw process noise samples from
a Gamma distribution allowing us to compare the robustness of the EKF and UKF imple-
mentations when the basic assumptions are not true and compare with PF/PFMC which do
not assume Gaussian distributed noise.

Finally, in most real life applications it is not possible to model the data generation
exactly using a DBN which is a probabilistic model expressing our beliefs of how data
is generated and how variables are related and even if it was, the true process and mea-
surement models would often be unknown. Thus our model becomes an approximation to
the ground truth. In the previous experiments we were only faced with the challenge of
tracking in a noisy environment as we generated the data using the exact same DBN with
the same process and measurement models. Hence, to really expose the capability of the
different algorithms we propose a process model different from the true one to simulate an
approximate model.

In [26] experiments using a similar network are presented, but the process and mea-
surement models are different. Most importantly, the measurement model in [26] does not
include a third order relation and experiments are only performed using the true process and
measurement models and using Gamma process noise and Gaussian measurement noise.



38

True process and measurement proposal models, Gaussian process/measurement noise

In this experiment we expect all algorithms to perform well as the basic noise assumption
of EKF and UKF are true and we propose the same process and measurement models as
used in the data generation. Hence, to see any difference we use a low number of particles
and apply a fairly large process noise compared to the actual values of the data thereby
lowering the signal-to-noise ratio making the state estimation more difficult.

Using 100 particles and drawing the process and measurement noise samples from
the Gaussian distributionsN (0, 1) andN (0, 1e− 4) resp. and using the same noise levels
as proposal noise levels, we get the summarizing values in Table 5.1 of the average Root
Mean Square Error (RMSE) of the state mean estimates (which can only be calculated as
were are doing a simulation and so the hidden state variables are - practically - not hidden).
The second column is the variance of the RMSE over the 10 runs.

Algorithm RMSE

mean var

Extended Kalman Filter (EKF) 0.2711 0

Unscented Kalman Filter (UKF) 0.2593 0

Particle Filter - generic (PF) 0.7621 0.0099

Particle Filter - Metropolis-Hastings move (PFMC) 0.6797 0.0023

Particle Filter - EKF proposal (PFEKF) 0.2543 4.97e-06

Particle Filter - EKF proposal and MH move (PFEKFMC)0.2478 3.79e-05

Particle Filter - UKF proposal (PFUKF) 0.1034 3.12e-05

Particle Filter - UKF proposal and MH move (PFUKFMC)0.1003 4.46e-05

Table 5.1: Mean and variance of RMSE values of state mean estimates using the true

process and measurement models and Gaussian process/measurement noise
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Even in these ’optimal’ conditions we still see a significant difference in performance,
but to get further insight we need to see the variations over the three stages in the measure-
ment model.

The corresponding plots of the state mean estimates vs. the true values are shown in
Figure 5.2, 5.3 and 5.4.
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Figure 5.2: True state values, EKF and UKF estimates using the true process and measure-

ment models and Gaussian process/measurement noise

In Figure 5.2 we notice how EKF and UKF are giving the same state mean estimates in
the first order stage of the measurement model in accordance with our expectations, as both
filters capture the true posterior mean and variance (of the Gaussian approximation to the
true posterior), see sec. 4.1 and 4.2. In the second and third order stages we start to notice
a difference in their estimates. Sometimes EKF is overestimating while UKF is accurate
(e.g. t = 30) and at other times EKF is more accurate while UKF is underestimating (e.g.
t = 53). This does not surprise us as we expect EKF to have a lower state variance estimate
as it uses a first order Taylor series approximation of the non-linear models and thus it is
not able to move its predictions as far as UKF which uses the true non-linear models and
approximates the distribution of the state random variable. However, UKF’s ability to move
its predictions further tends to cause situations in which UKF movestoo far.
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Figure 5.3: True state values, PF, PFEKF and PFUKF estimates using the true process and

measurement models and Gaussian process/measurement noise
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Figure 5.4: True state values, PFMC, PFEKFMC and PFUKFMC estimates using the true

process and measurement models and Gaussian process/measurement noise
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Now, in Figure 5.5, 5.6 and 5.7 the noise level and the RMS error for the EKF/UKF
and PFEKF/PFUKF state mean estimates are shown. The figures illustrate how EKF conse-
quently overestimates (negative error value) in the higher order stages of the measurement
model due to its 1. order Taylor series approximation of the process and measurement
models and the error amplitude follows the noise amplitude in a consistent manner. In
comparison, UKF tends to underestimate when the noise sample is low (e.g.t = 26, 41),
but is able to make accurate estimates for larger noise samples taking advantage of its abil-
ity to capture the true posterior mean and variance (e.g.t = 49).
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Figure 5.5: Noise level and RMS error for EKF, UKF, PF, PFEKF and PFUKF state mean

estimates fort ≤ 20 using the true process and measurement models and Gaussian pro-

cess/measurement noise

We notice further how PFEKF is not able to correct the mistakes made by EKF in
the higher order stages as sampling from a normal distribution with mean and variance
values proposed by EKF and corresponding low variance does not improve the situation.
In comparison PFUKF is able to correct the mistakes made by UKF by sampling from a
distribution with a more accurate mean and much larger and more accurate variance, i.e.
when the UKF overestimated, PFUKF assigns low weights to samples corresponding to
overestimation and high weights to samples closer to the true state mean.

Finally, PF is the least accurate filter in the first order stage as it does not sample from
a distribution that is guaranteed to encapsulate the true posterior mean and covariance.
Furthermore, the likelihood which is the basis for the weighting of the particles in PF is
very peaked (low measurement error) causing a lot of problems for this simple filter using
the prior as proposal.
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Figure 5.6: Noise level and RMS error for EKF, UKF, PF, PFEKF and PFUKF state mean

estimates for20 < t ≤ 40 using the true process and measurement models and Gaussian

process/measurement noise
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estimates fort > 40 using the true process and measurement models and Gaussian pro-
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It is worth noting how the MC step has a significant positive effect on the estimates in
PFMC by moving the particles towards regions of high likelihood which is crucial for the
generic particle filter. By comparing Figures 5.3 and 5.4 we see how PFMC saves the poor
estimates of PF fort = 8, 21, 49 and52. In comparison, the MC move has very little effect
on PFEKF and PFUKF, but for different reasons. In PFEKFMC we are still troubled by the
very small state variance estimate giving the MC step no chance of moving the particles
far enough to be within reach of the very peaked likelihood. In PFUKFMC the state mean
estimates from PFUKF are already very close to the true value and the MC step has no
significant influence.

In Figure 5.8 the state variance estimates using EKF/UKF, PFEKF/PFUKF and PFEKFMC/
PFUKFMC resp. are shown. The plot illustrates how the UKF based estimates are much
larger than the EKF based estimates in the two final stages of the measurement model
corresponding to the second and third order relations. Recalling that UKF is able to capture
the true mean and covariance to second order (of the Gaussian approximation to the true
posterior) as opposed to only first order in EKF, the fundamental difference between the
two approaches which makes UKF a much better proposal generator is visualized.
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PFEKFMC/PFUKFMC using the true process and measurement models and Gaus-
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To illustrate some of the up- and downsides of the different filters and how this in-
fluences the performance, we include a few examples from the experiment showing the
sampling steps in PF, PFEKF and PFUKF in different situations. Each plot has three sub-
plots, the first showing the true statex(t) (black dot), the mean estimateµ(t) (blue dot), the
99% confidence interval ofp(xt|yt) (red line) and the predicted statexpred(t) (green dot).

Next subplot shows how the first 10 particles are weighted and the final subplot shows
how one of the particles of particular interest is evaluated.

In Figure 5.9 corresponding tot = 17 it is illustrated how PFUKF can make matters
worse when the UKF estimate is very close to the true state. In this case the proposal
overlaps completely with the likelihood (the prior has no influence), but the measurement
noise assigns particle 7 a low likelihood and the particle ends up having the lowest weight
even though it is very close to the true state. We compare this with Figure 5.2 fort = 17
and notice how the estimate of PFUKF is slightly worse than UKF’s, but not significantly
as all the particles are close to the true state.
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Figure 5.9: Illustration of sampling and weighting of particles in PFUKF fort = 17.

Note thatx(t) and µpfukf (t, i) are not visible as they hidden below Noisyx(t) and

xparticlePredpfukf (t, i).
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Figure 5.10 showing the sampling step in PFUKF att = 30 illustrates how the pro-
posal distribution captures the likelihood and produce a lot of good particles close to the
true state. However, the peaked likelihood means that particle 7 has a very high likeli-
hood and corresponding weight as the prior is without influence and the proposal is small
compared to this single likelihood value. A MC step would have been helpful to move the
remaining particles closer to the likelihood distribution to obtain a broader representation
of particles. However, as particle 7 was also the one closest to the true value we obtain a
more accurate estimate compared to UKF which is seen in Figure 5.3 as a decrease in error
at t = 30.
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Figure 5.10: Illustration of sampling and weighting of particles in PFUKF fort = 30. Note

thatx(t) andxparticlePredpfukf (t, i) are not visible as they hidden below Noisyx(t).

Figure 5.11 illustrates how PF suffers severely from a peaked likelihood positioned
in the tail of the prior, i.e. the probability of generating samples from the prior within the
likelihood distribution is very, very low. As illustrated fort = 52, all 10 particles have 0
likelihood and the particles are weighted equally even though it is clear that some particles
are very close to the true value, esp. particle 4 as illustrated. This is where the Metropolis-
Hastings move is very useful as it is capable of moving the particles to regions of higher
likelihood. In Figure 5.3 this gives rise to a poor estimate for PF att = 52 which is turned
into a much more accurate estimate in PFMC in Figure 5.4.
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For comparison, the sampling step for PFEKF att = 52 is shown in figure 5.12. We
notice how the variance of the proposal distribution is very low making sampling within
reach of the likelihood distribution impossible. As the prior is very far away, PFEKF pri-
marily bases the weighting on the proposal and it has no change of correcting its poor
predictions. In Figure 5.4 we notice a significant error for PFEKF att = 52 about the same
size as the errorbar for EKF.

PFUKF on the other hand has a much larger state variance estimate and its proposal
captures the likelihood distribution as illustrated in Figure 5.13 fort = 24. All the proposed
particles are close to the true state and most are within reach of the likelihood distribution
and as shown in Figure 5.4 the error introduced in UKF is removed by PFUKF as it manages
to move the estimates even closer to the true state and evaluate them in a sensible way using
a combination of the prior, likelihood and proposal. It is important that several particles
are within reach of the likelihood to give a broad representation of particles as the particle
giving the highest likelihood (particle 1 as illustrated) isnot the one closest to the true state
due to the measurement noise.

Figure 5.14 summarizes the results of this experiment illustrating the distribution of
the state estimation error over the three stages of the measurement model and shows how
the error in the EKF based filters are introduced in the higher order stages, how PFUKF in
general improves the basic UKF approach (especially in the higher order stages) and how
the MC step manages to move the PF estimates towards regions of higher likelihood.
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Figure 5.12: Illustration of sampling and weighting of particles in PFEKF fort = 52
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Figure 5.14: Distribution of error over the three stages of the measurement equation using

the true process and measurement models and Gaussian process/measurement noise

Finally, Figure 5.15 shows the influence of the proposed noise variance on the state
variance estimates in EKF and UKF for the three stages in the measurement model. The
plots illustrate how EKF can benefit from larger proposals of process as well as measure-
ment noise thus increasing its state variance estimates which in the experiment proved to
be a major drawback of this filter. We have chosen not to propose larger noise variances
in these simple experiments to be able to compare the filters using the same noise propos-
als, i.e. not ’helping anyone along’. But we include the plot to show that it is possible to
tune the performance of the filters in different ways. UKF is comparable to EKF in the
first order stage, but in the second order stage its estimates of the state variance seem to
be independent of the proposed measurement noise and in the third order stage the effect
is dramatically reduced. We keep these results in mind when we apply any of the filters to
problems where our main objective is not to compare, but to maximize performance.
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Figure 5.15: State variance estimate of EKF and UKF for the three stages of the measure-

ment model as a function of process and measurement noise variance proposal multipliers
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X andσ2
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Y resp.
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True process and measurement models, Gamma process noise/Gaussian measurement

noise

In this experiment we violate the Gaussian assumption (on the additive noise) and draw
process noise samples from a Gamma distributionG(3, 1), i.e. µ = 3, σ2 = 3, but keep
drawing measurement noise samples from the Gaussian distributionN (0, 1e− 4). We pro-
pose Gaussian noise levelsN (0, 3) andN (0, 1e− 4) resp. The results using 500 particles
are shown in Table 5.2.

Algorithm RMSE

mean var

Extended Kalman Filter (EKF) 1.9503 4.93e-32

Unscented Kalman Filter (UKF) 0.6080 0

Particle Filter - generic (PF) 0.2044 0.0379

Particle Filter - Metropolis-Hastings move (PFMC) 0.1185 0.0133

Particle Filter - EKF proposal (PFEKF) 1.9503 2.25e-06

Particle Filter - EKF proposal and MH move (PFEKFMC)1.9518 2.42e-06

Particle Filter - UKF proposal (PFUKF) 0.0291 5.44e-04

Particle Filter - UKF proposal and MH move (PFUKFMC)0.0290 0.0030

Table 5.2: Mean and variance of RMSE values of state mean estimates using the true

process and measurement models and Gamma process noise/Gaussian measurement noise

Initially, we notice how the error levels have all changed compared to the experiment
in section 5. The error level of EKF and UKF have increased due to the violation of the
Gaussian assumption (on the additive noise), but this has a much more significant influence
on the performance of EKF. The lower estimate of the state variance becomes much more
visual in this non-Gaussian noise environment. This is well illustrated in Figure 5.16 which
shows how EKF and UKF have the same state mean estimates for the first order stage of the
measurement model, but in the second order and especially the third order stage, EKF keeps
overestimating the state mean (due to the non-negative Gamma noise, i.e. the true state
value giving a certain measurement is always lower) and the low state variance estimates
make it impossible for the algorithm to correct its wrong predictions. In comparison, the
UKF state mean estimates are much better taking advance of the higher state variance
estimates. The effect is most evident fort = 59, where the true state is very different from
the noisy state (corresponding to a high process noise sample as illustrated in Figure 5.19,
subplot 1 andt = 59) and thus EKF needs to correct its prediction, but fails to do this.
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UKF also fails to estimate the state mean correctly primarily because the Gaussian
approximation to the true posterior is not adequate in the higher order parts of the measure-
ment model and the violation of the Gaussian noise assumption, but makes a much better
approximation than EKF.

The generic particle filter has a lower error level in this experiment compared to the
previous experiment which seems reasonable as it does not make any assumptions of Gaus-
sian noise and thus the effect of using more particles is seen. The estimates from PF are
even more accurate than the EKF and UKF estimates, especially when used in conjunction
with a Metropolis-Hastings move in PFMC. The significant influence of the MH move,
primarily due to the very peaked likelihood density, becomes even more evident than in the
previous experiment as we are using more particles.

Once again, the effect of using EKF as proposal generator in a particle filter setup does
not seem to improve the state mean estimates as the state variance estimates are simply too
small (with the proposed noise level that is).

Finally, PFUKF and PFUKFMC still proves to be the preferred solution taking ad-
vantage of the principles of the particle filter setup which does not assume Gaussian dis-
tributed noise and using a proposal generator with more accurate state variance estimates
and broader overlap with the posterior density.

The filter estimates vs. the true states for PF, PFEKF and PFUKF are shown in Figure
5.17. Notice how PFUKF have ’saved’ all the poor estimates of UKF while PFEKF is still
failing. At t = 59 an interesting event occurs. Having drawn a large process noise sample,
PFEKF is over-estimating dramatically, while PFUKF samples from an improved proposal
distribution with much larger variance that captures the true state. In comparison, the PF
estimate is less accurate as it weights its samples based on the likelihood only which in this
case is not only peaked (σ2 = 1e − 4), but has no overlap with the prior due to the large
noise.
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In Figure 5.18 and 5.19 the level of the noise samples and the corresponding estimation
errors are shown for the higher order stages of the process model. Notice how the size of the
EKF/PFEKF estimation error follows the level of noise and how they keep overestimating
the state mean corresponding to a negative value of the estimation error. In comparison,
UKF only overestimates when the noise level is high and to a much lower extent, but when
the noise level is low, it underestimates. These results are in accordance with the higher
state variance estimates of UKF. In conclusion, UKF clearly outperforms EKF when the
process noise sample is large, whereas EKF makes more accurate estimates for small noise
samples, but the relative difference between gain and loss of accuracy using UKF makes
it by far the preferred filter. And as illustrated, using the UKF as proposal generator in a
particle filter setup improves the accuracy for both small an higher levels of noise making
PFUKF/PFUKFMC filters much more reliable.

In Figure 5.20 the summed estimation error for each stage of the measurement model
is shown and visualizes the effect of the Gaussian violation leading EKF and UKF to per-
form poorly and the increasing influence on the performance of the EKF due to the poor
state variance estimates for higher order non-linearities.
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surement models and Gamma process noise/Gaussian measurement noise
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Figure 5.17: True state values, PF, PFEKF and PFUKF estimates using the true process

and measurement models and Gamma process noise/Gaussian measurement noise
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Figure 5.19: Noise level and RMS error for PF, PFEKF and PFUKF state mean esti-

mates fort > 40 using the true process and measurement models and Gamma process

noise/Gaussian measurement noise
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Figure 5.20: Distribution of error over the three stages of the measurement model using the

true process and measurement models and Gamma process noise/Gaussian measurement

noise
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False process model and true measurement model, Gaussian process/measurement

noise

In this final experiment we propose a false process model to test the robustness of each
filter when the proposed model does not fit the actual data generation.

The proposed process model was

xt = 2 + cos(απt) + β̃xt−1 (5.3)

usingα = 0.05 andβ̃ = 0.2.

In the data generation we draw process and measurement noise samples from the
Gaussian distributionsN (0, 1) andN (0, 1e− 4) resp. and propose similar noise levels.

The results of this experiment using 500 particles are shown in Table 5.3 and the
tracking plots in Figure 5.21 and 5.22. In Figure 5.23 and 5.24 the noise level and the RMS
error for the EKF/UKF and PFEKF/PFUKF state mean estimates are shown. And finally
in Figure 5.25 the summed estimation error for each stage of the measurement model is
shown.

Algorithm RMSE

mean var

Extended Kalman Filter (EKF) 0.8120 4.11e-33

Unscented Kalman Filter (UKF) 0.3682 0

Particle Filter - generic (PF) 0.9666 0.0084

Particle Filter - Metropolis-Hastings move (PFMC) 0.9640 0.0016

Particle Filter - EKF proposal (PFEKF) 0.7977 3.85e-06

Particle Filter - EKF proposal and MH move (PFEKFMC)0.7961 2.95e-05

Particle Filter - UKF proposal (PFUKF) 0.0823 0.0014

Particle Filter - UKF proposal and MH move (PFUKFMC)0.0821 0.0011

Table 5.3: Mean and variance of RMSE values of state mean estimates using the false

process and true measurement models and Gaussian process/measurement noise
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Figure 5.21: True state values, EKF and UKF estimates using the false process and true

measurement models and Gamma process noise/Gaussian measurement noise
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and true measurement models and Gamma process noise/Gaussian measurement noise
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Figure 5.23: Noise level and RMS error for PF, PFEKF and PFUKF state mean estimates

for 20 < t ≤ 40 using the false process and true measurement models and Gamma process

noise/Gaussian measurement noise
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Figure 5.24: Noise level and RMS error for PF, PFEKF and PFUKF state mean estimates

for t > 40 using the false process and true measurement models and Gamma process

noise/Gaussian measurement noise
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Figure 5.25: Distribution of error over the three stages of the measurement model using the

false process and true measurement models and Gaussian process/measurement noise

Initially, we notice how all algorithms have introduced a higher estimation error using
the false process model compared to the experiment in section 5 even though we are using
a lot more particles, except for PFUKF/PFUKFMC. The use of a false process model natu-
rally makes it a lot harder for the algorithms to estimate the state mean values as our beliefs
of how the data was generated are no longer true. As mentioned, this is the most likely
situation in real-life applications and thus we need a filter which does not fail dramatically
when our beliefs are wrong.

By further inspection we notice how the generic particle filter is no longer capable of
making better state mean estimates than EKF and UKF (with this number of particles) as
sampling from the prior using a false process model leads to rather poor results for obvious
reasons. And the MC move is not enough to improve the situation significantly as the prior
is too far from the likelihood using the proposed noise level.

However, it is interesting to see how the main loss of accuracy compared to EKF is in
the first order stage of the measurement model which is seen by comparing the estimates
of EKF in Figure 5.21 and the estimates of PF in Figure 5.22. This is the stage where EKF
is able to capture the true posterior mean and covariance. In the higher order stages PF is
actually giving better state mean estimates than EKF.

PFEKF/PFEKFMC perform slightly better than EKF taking advantage of the particle
filtering principles as the state variance estimates of EKF are now even worse partly based
on the Jacobian of a false process model. It is still capable of tracking in the first order
stage of the measurement model though as illustrated in Figure 5.21, but its limitations are
shown in the higher order stages.
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And finally, PFUKF and PFUKFMC prove their superiority once again by keeping the
estimation error on a very low level. UKF itself is suffering from the use of a false process
model in the higher-order stages of the measurement model, but is still capable of working
as proposal generator in a particle filter setup.

In conclusion, we note that if our assumptions and beliefs are true there is not much
difference between EKF and UKF using this simple network and first order models, but
when the model order is increased, UKF makes more accurate estimates using its ability
to capture the true posterior mean an variance up to second order whereas EKF tends to
underestimates the noise. However, UKF can sometimes overestimate the noise when the
noise samples are small compared to the proposed noise levels. Furthermore, PFUKF can
save poor estimates from UKF, but can also make matters worse if the UKf estimates are
close to the true states. We also noticed that PF was the least accurate filter, but significant
improvements were made using an MC step. In general, the use of an MC step is very
important in the standard particle filter setup, but has less influence when we use EKF or
UKF as proposal generator (in this setup).

Furthermore, we showed how the use of UKF as proposal generator in a particle filter
seems to be the all over recommended solution as it is capable of making much more
accurate estimates and is a much more robust solution in scenarios where assumptions
(e.g. using Gamma process noise) and beliefs (e.g. using a false process model) are wrong
causing other algorithms to fail.

Finally, we note that (PF)EKF is much more dependent of a good noise proposal than
(PF)UKF.



Chapter 6

Watertank simulation

6.1 Problem outline

In this chapter we move on to a more complex problem in which we apply our filtering
techniques to a model commonly used as a benchmark in the fault diagnostics community
([21]). The physical system is shown in Figure 6.1 and the 2T-DBN structure is shown in
Figure 6.2.

Figure 6.1: Physical illustration of the watertank system
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Figure 6.2: DBN for the watertank system

The system consists of two water tanksTank1 andTank2 in which the pressure is
P1 andP2 resp. The tanks are connected via a pipe with resistanceR12 and the flow in the
pipe isF12. Each tank has a pipe from which water flows out of the tank. The pipes have
resistanceR10 andR20 and the flow isF10 andF20 resp. The first tank also has a constant
flow of waterFin going into it. We get measurementsM10, M12 andM20 of the flows in
each of the three pipes.

Flow, pressure and pipe resistance are related to each other as described in equation 6.1.

F10 =
P1

R10 ∗ ρ ∗ g

F12 =
P1 − P2

R12 ∗ ρ ∗ g

F20 =
P2

R20 ∗ ρ ∗ g
(6.1)

whereρ is the density of the water andg is the gravity.
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The dynamics of the physical system follows a set of differential equations corre-
sponding to the mass balance equations:

dh1 =
Fin − F10 − F12

A1ρ

dh2 =
F12 − F20

A2ρ
(6.2)

wheredh1 anddh2 corresponds to small changes in the water level in tank 1 and 2 resp.
A1 andA2 are the surface areas of tank 1 and 2.

dh1 anddh2 are proportional todp1 anddp2:

dp1 = dh1ρg

dp2 = dh2ρg (6.3)

Combining equations 6.1, 6.2 and 6.3 provides us with a set of differential equations based
on the pressure in tank 1 and 2:

dP1 =
Fing

A1

− P1

A1R10ρ
− P1 − P2

R12ρA1

dP2 =
P1 − P2

A2R12ρ
− P2

R20ρA2

(6.4)

Instead, an approximation of the physical system was used in which both pressures are
updated based on the previous pressures allowing the dynamics of the system to be incor-
porated in a 2T-DBN.

The differential equations describe how flow, pressure and resistance are related in
theory. Practically, the process and measurement models and the measurements themselves
are noisy. Furthermore, there are three possible type of failures in the system:

Measurement failure Usually measurements are quite reliable, but in the case of a mea-
surement failure, the measurement becomes extremely noisy. In this case the value
of the measurement has almost nothing to do with the actual flow; thus, to track the
system correctly, it is necessary to identify these measurement failures and ignore
them

Pipe bursts A pipe can suddenly burst and change its resistance to some unknown value

Drifts The resistance of the pipe can drift, which gradually increases or decreases the
pipe’s resistance
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The 2T-DBN modelling the two-tank system is shown in Figure 6.2 and follows the usual
notation that discrete variables are depicted as squares or rectangles and continuous vari-
ables are depicted as circles or ellipsoids. The nodes labelledRF indicate faults in the
resistance of the pipes (drifts or bursts) and the nodes labelledMF indicate measurement
failures. TheP , F andR nodes are continuous valued and indicate pressure, flow and pipe
resistance resp. Finally, nodes labelledM indicate flow measurements and are observation
nodes. All other variables are hidden, i.e. their values are not available at any time (in
theory that is).

6.2 Implementation

Initially, we experiment using the true process and measurement models, i.e. the same
relations as used in the data generation. The network structure which is intuitively plau-
sible allows us to approximate the true differential equations expressed in terms of DBN
relations.

6.2.1 Modeling issues

By explicitly modelling the pipe resistance, we accurately model the physical system. How-
ever, since the flow is the ratio between the pressure and the resistance, the system is not a
linear system. Dealing with ratios is difficult, especially when the values are close to zero.
Therefore instead of modelling the resistances we choose to model the conductances (the
conductance is defined as the reciprocal of the resistance). This transformation results in
products rather than ratios. The system is still non-linear, but this does not pose a problem
for our algorithms, which are general enough to deal with non-linear CPD’s.

The implemented process and measurement models are given below:

PROCESS MODEL

Flow in pipe 10 (from tank 1 and out)

F10(new) =
P1(new) ∗ C10(new)

ρ ∗ g
(6.5)

Flow in pipe 12 (from tank 1 towards tanks 2)

F12(new) =
(P1(new)− P2(new)) ∗ C12(new)

ρ ∗ g
(6.6)

Flow in pipe 20 (from tank 2 and out)

F20(new) =
P2(new) ∗ C20(new)

ρ ∗ g
(6.7)



6.2. IMPLEMENTATION 64

Pressure in tank 1

P1(new) = P1(old) +
(Fin − F10(old)− F12(old)) ∗ g

Atank1

(6.8)

Pressure in tank 2

P2(new) = P2(old)− (F20(old) + F12(old)) ∗ g

Atank2

(6.9)

Conductance in pipe 10 (from tank 1 and out)

C10(new) =





C10(old) normal
C10(old) + drift positive drift
C10(old)− drift negative drift
C10(max) burst

(6.10)

Conductance in pipe 12 (from tank 1 towards tanks 2)

C12(new) =





C12(old) normal
C12(old) + drift positive drift
C12(old)− drift negative drift
C12(max) burst

(6.11)

Conductance pipe 20 (from tank 2 and out)

C20(new) =





C20(old) normal
C20(old) + drift positive drift
C20(old)− drift negative drift
C20(max) burst

(6.12)

MEASUREMENT MODEL

Measurement of flow in pipe 10 (from tank 1 and out)

M10(new) =

{
F10(new) no measurement failure
F10(new) + error measurement failure

(6.13)

Measurement of flow in pipe 12 (from tank 1 towards tanks 2)

M12(new) =

{
F12(new) no measurement failure
F12(new) + error measurement failure

(6.14)

Measurement of flow in pipe 20 (from tank 2 and out)

M20(new) =

{
F20(new) no measurement failure
F20(new) + error measurement failure

(6.15)
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Note the difference between the measurement failure nodes and the pipe faults. The
pipe faults are persistent and therefore appear both at timet and timet+1. In fact, the pipe
faults are a part of the belief state. Measurement failures, on the other hand, are transient
and therefore appear only at timet + 1 and need not be included in the belief state. As
a result, the network has six pipe fault variables and three measurement failure variables,
leading to 32,768 different discrete states.

The physical system is modelled using the following restrictions:

• The flow into Tank 1 is constant

• Measurement failures occur with a constant probability

• Drifting (pos. or neg.) begins with a constant probability and persists with a higher,
constant probability. Drifting is modelled by adding (or subtracting) a constant value
from the previous resistance (conductance).

• Pipe bursts occur with a constant probability and is modelled by setting the given
pipe resistance (conductance) to a specific value for the remaining time. To simplify
things, the pipe connecting the two tanks can not burst. This would imply writing a
new set of mass balance equations to model the physical system. As a consequence,
the discrete variable state space is reduced to 18,432 states

• The model can not handle negative values (except for the flow between the two tanks
which implies a flow from tank 2 towards tank 1) as this is not valid from a real-world
perspective.

Unfortunately, this network is still far too complicated to be able to use exact infer-
ence. In fact, the belief state at timet is a mixture of Gaussian’s with a number of mixture
components that grows exponentially witht, and with the number of discrete variables in
each time slice.

Suboptimally, we would like to sample all discrete indicator variables, i.e. conduc-
tance and measurement failures, which can be grouped into two vector-valued nodesCF t

andMF t with dimensionality 3, and apply exact inference on the remaining continuous
valued nodes, which we group into a single vector-valued node,X t with dimensionality
8. The observation nodes are likewise grouped into a single vector-valued nodeY t with
dimensionality 3 allowing a transformation of the fairly complicated network into a simple
network as illustrated in Figure 6.3. The network corresponds exactly to the original net-
work as all connections are expressed in form of the transition matricesA (dimensionality
8x8),C (dimensionality 3x3) andB (dimensionality 8x3) as described in equation 6.16.

X t = A ·X t−1 (6.16)

CF t = C ·CF t−1 (6.17)

Y t = B ·X t (6.18)
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Figure 6.3: Simplified DBN for the watertank problem

This transformation allows us to sample part of the network and apply exact inference
algorithms to the remaining part. A technique known asRao-Blackwellisation.

Unfortunately, in this model, although the noise is Gaussian, the dynamics are non-
linear, making it hard to integrate outX t. Hence, we apply our approximate inference
techniques, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF), but we
are no longer doing strict Rao-Blackwellisation. Furthermore, we apply particle filtering
to both the discrete and the continuous valued nodes in form of the generic Particle Filter
(PF), Particle Filter with Metropolis-Hastings step (PFMC), Particle Filtering with EKF
proposal (PF-EKF) and Particle Filtering with UKF proposal (PF-UKF).

Particle Filtering with EKF proposal and Metropolis-Hastings step (PF-EKFMC) and
Particle Filtering with UKF proposal and Metropolis-Hastings step (PF-UKFMC) were
not applied to the watertank problem. Based on the observations in chap. 5 and the fact
that we are working on a first order system with Gaussian noise we found the increased
computational complexity of these two filters to be too large compared to our expectations
of increased estimation accuracy.

6 programs were created in Matlab implementing the 6 algorithms mentioned above
and named accordingly. All programs except PF and PFMC are designed as a two-step se-
rial process. The first process samples the discrete nodes using a PF algorithm, but without
updating the continuous state variables. The continuous states are then estimated (for each
particle) in the second process using EKF, UKF, PFEKF or PFUKF. This two-step process
was used as all the EKF and UKF based algorithms were able to give good estimates of
the continuous nodes based on poor estimates of the discrete nodes due to the correction
step, see sec. 4.1 and 4.6.1. Merging the two processes into one process updating both
discrete and continuous variables simultaneously would make tracking of the conductance
and measurement failures very hard as e.g. a particle with a wrong combination of conduc-
tance and measurement failures could still give a better state mean estimate than a particle
with the true conductance and measurement failure combination. PF and PFMC do not
use an EKF or UKF proposal and hence we update both discrete and continuous variables
simultaneously.
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The pseudo-code for the modified particle filter used to sample the discrete failure
nodes is given below:

Modified Particle Filter

1. Initialization

• For i = 1, 2, ..., N

- initialize x(i)
t=0, CF(i)

t=0 andMF (i)
t=0.

2. For t = 1, 2,...

(a) Importance sampling step

• For i = 1, ..., N

- sampleĈF
(i)

t ∼ q(CFt|CFt−1) and setĈF
(i)

0:t , (CF(i)
0:t−1, ĈF

(i)

t )

- sampleM̂F
(i)

t ∼ q(MF t) and setM̂F
(i)

0:t , (MF (i)
0:t−1, M̂F

(i)

t )

- samplêx(i)
t ∼ q(xt|x(i)

t−1, ĈF
(i)

t , M̂F
(i)

t ) and set̂x(i)
0:t , (x(i)

0:t−1, x̂(i)
t )

- evaluate the importance weights up to a normalizing constant

w
(i)
t = p(x̂(i)

t |yt)

- normalize the importance weights

w̃t
(i) = w

(i)
t

[∑
N
j=1w

(j)
t

]−1

(b) Selection step (resampling)

• Multiply/suppress sampleŝx(i)
t−1,ĈF

(i)

t andM̂F
(i)

t with high/low importance
weightsw̃t

(i) resp.

(c) Estimate continuous state variables using an EKF or UKF based algorithm

• For i = 1, ..., N

- estimatex̂(i)
t based on̂x(i)

t−1,ĈF
(i)

t and M̂F
(i)

t using an EKF or UKF
based algorithm
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6.3 Results

Using the true process and measurement models and the true initial values the algorithms
are expected to perform well. This is a nice way of testing the validity of the algorithms:
If they do not perform well using the true process and measurement models they are hardly
expected to perform well using other model proposals.

Obviously, the choice of process and measurement model is most critical. In a real-life
simulation as opposed to simulations, the true models are not known (and may not exist if
the data generation can not be expressed as a 2T-DBN) and need to be approximated using
a variety of techniques, e.g. using statistical tools. At the end of the day, one needs to
do a thorough a priori study of the problem and the data in order to come up with a valid
network structure and process/measurement models.

6.3.1 Parameters

There is a number of parameters which influence the filtering algorithms ability to estimate
the continuous state variables and track the discrete conductance and measurement failures.
These parameters can be divided in two categories. One set of parameters which change
the physical problem making prediction easier or harder and one set of parameters which
influence the algorithms ability to deal with the given problem.

System parameters

In PFEKF and PFUKF the particles are weighted according to a ratio between the likeli-
hood, the prior and the proposal of a given particle, see equation 4.58 and 4.84.

For a multi-dimensional Gaussian distributed state and observation variable with co-
variance matricesΣx andΣy resp. the likelihood, prior and proposal are calculated using
the following equations in whichP xx

t is the estimated covariance matrix of the state vari-
ables at timet:

p(yt|xt) =
1

|Σy|1/2
e((yt−ȳt)·Σy ·(yt−ȳt)

T )

p(xt|xt−1) =
1

|Σx|1/2
e((xt−xt−1)·Σy ·(xt−xt−1)T )

p(xt|x̄t) =
1

|P xx
t |1/2

e((xt|x̄t)·P xx
t ·(xt|x̄t)T )
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In the watertank simulation, the prior was often below the numerical precision of Mat-
lab. To avoid underflow 1e-99 was added. The prior is calculated based on the difference
between the state variables at timet − 1 and timet. Large changes in the state variables
from time step to time step implies a small prior, especially if the covariance matrix is
small. In the watertank simulation, pressure and conductance undergo large changes in
the beginning of the simulation until an equilibrium is reached yielding underflow in the
computation of the prior. Typically, all prior calculations at a given time step were ’saved’
by adding 1e-99 and the weights were thus based on the likelihood and the proposal only.
If all the priors have the same value they will not have any effect on the weights as these
are numerated. One way to deal with the prior problem is to evaluate the weights based on
the log values of the likelihood, prior and proposal.

w
(i)
t ∝ log

(
p(yt|x̂(i)

t )
)

+ log
(
p(x̂

(i)
t |x(i)

t−1)
)
− log

(
q(x̂

(i)
t |x(i)

0:t−1,y1:t)
)

(6.19)

However, this non-linear transformation of the weights left no chance of returning to
the true weights as these values also turned out to be below the numerical precision of
Matlab due to the very low prior values.

One way of avoiding the underflow problem was to change the system so that the
changes of the state variables for each time step were reduced. This could easily be done
by increasing the resistance in the pipes reducing the changes in flow and hence pressure.
Increasing the resistance corresponds to decreasing the conductance which would effect the
conductance drifts as they would have to be decreased to avoid negative conductance. Re-
strictions to keep the conductance positive would complicate matters unnecessarily leaving
the filtering algorithms with a small change of estimating the true state space values and
tracking conductance failures.

A small drift also implies the use of a smaller conductance process noise level to keep a
fair signal-to-noise ratio leaving the filtering algorithms with a fair chance of distinguishing
conductance drifts from noise. A smaller conductance process noise level unfortunately
also resulted in underflow problems as the proposal and prior are both calculated using the
inverse of the state covariance matrix (see eq. 6.19). To avoid the low conductance process
noise level, a scaling parameter was introduced in the process and measurement models
scaling the actual value of the conductance used in the calculation of the pressure and flow
resp. This allowed the conductance to have values in the same domain as the pressure
and flow and thus a small conductance process noise level was avoided. Increasing the
conductance scaling parameter corresponds to decreasing the conductance without actually
changing the conductance node values and without changing the conductance process noise
level.
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Initially, the algorithms are given optimal conditions in the sense that they are using
the exact same models as was used to generate the data. Sections 6.3.6 and 6.3.7 describe
what happens when the algorithms are not given the optimal conditions. But for now, all
filtering algorithms use the true process and measurement models and the same parameters
as used in the data generation. The problem is still fairly complex as changes in flow
can be explained by a number of events: Conductance failure causing a drift or a burst,
measurement failure, process and measurement noise.

The probability of a pipe starting to drift and the probability of a drift persisting effects
the complexity of the problem. A high probability of drifting and a low probability of
persisting obviously make the problem more difficult with drifting frequently beginning
and ending. It is not hard to imagine a number of wrong conductance failure combinations
being able to explain a change in the flow almost as well as the true conductance failure
combination.

In the case of a conductance drift, a constant value is added or subtracted from the
previous conductance value at timet − 1 to give the conductance value at timet. This
constant value should be compared with respect to the process noise levels as it would be
nearly impossible to track a drift if the change in conductance is smaller than the noise
level. In that case, the filtering algorithms would just explain the conductance drift with
noise. In order to recognize conductance failures, the drifting value has to be (much) larger
than the process noise levels. Of course, a large measurement noise also makes it hard to
recognize a small change in conductance caused by drifting.

The change in flow caused by a conductance drift will also be more obvious for large
flow values as the flow is the product of the pressure and the conductance. The watertank is
initialized to contain a much larger amount of water than the amount of water corresponding
to the equilibrium where the flow output is equal to the flow input inTank1. This means
that the flow changes are large in the beginning of the simulation and then decreases until an
equilibrium is reached were the flow only varies due to conductance failures, measurement
failures and noise. The length of the simulation thus becomes important as prediction and
tracking becomes harder due to the decreased flow change. A short simulation time might
give good results whereas the results are poor for a long time period. The simulation time
was chosen to allow the system to reach its equilibrium phase.

When a pipe bursts, the pipe conductance is set to a maximum value. This makes
it very easy to track a burst as this event is not easily explained by other events and visa
versa, unless the conductance actually drifts close to the maximum conductance during the
simulation or the flows are close to zero. A high probability of a pipe burst makes the
problem easier as it is easy to track a bursts and once a pipe bursts, the pipe remains in that
state reducing the number of possible failure combinations. However, if a pipe bursts, the
flow increases dramatically and may cause the system to reach another equilibrium very
fast making tracking of the discrete failures very hard.

Measurement failures occur with a constant probability and when a failure occurs, a
constant value is added to the true measurement node. This event can be explained by
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almost any other event which implies that the constant value added to the true flow mea-
surement has to be a fairly large number to give the algorithms a fair chance of recognizing
measurement failures. As mentioned earlier, noise is added to both the hidden nodes (pro-
cess noise) and the observation nodes (measurement noise). If the noise levels are too high,
tracking of measurement and conductance failures would be impossible. All in all, there
are a number of parameters to play around with making the problem easier or harder.

In all experiments the following event probabilities were used:

• The probability of a measurement failure: 0.03

• The probability of a pipe burst: 0.01

• The probability of a drift beginning: 0.1

• The probability of a drift persisting: 0.9

This choice of probabilities ensured that a lot of events (drift, burst, measurement failure)
happened even for relative small time periods.

6.3.2 Initialization

The watertank problem consists of two watertanks which are initialized with a certain
amount of water at timet = 1 (see Figure 6.1). The amount of water determines the pres-
sure in the bottom of each watertank labelledP1 andP2 in Figure 6.1. The conductance
had to be initialized with restrictions to ensure that the conductance would not drift below
zero or drift over a preset maximum conductance value corresponding to a pipe burst. It
does not make any sense to have negative conductance which would imply that the pipes
were able to suck in water. If a pipe bursts, the conductance is set to a maximum value
which should not be possible to reach by simple drifting during the simulation leaving the
filtering algorithms with a less than fair chance of distinguishing between a burst and a
drift. At initialization point there is no flow in any of the three pipes and there is no water
flowing into Tank1. At time t = 2 all the pipes are ’opened’ and water flows out of the
two tanks, between the tanks and intoTank1.

No flow activity makes it impossible for the filtering algorithms to track conductance
failures. If a certain event does not have any influence on the flow (which is the case if
the flow is zero), it is impossible to detect the event as the algorithms attempt to estimate
the states based on the flow measurements. In general, low flow values makes it hard to
estimate the states and high flow values makes tracking easier. If the amount of water in
the two tanks is initialized to the same value there will be no pressure difference between
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the two watertanks and no water would flow between the tanks at initialization point. This
could of course also happen doing the simulation whenever the flow between the tanks
chances direction.

It would also not make any sense to have negative conductance or negative pressure.
After generating the data a data check was performed to ensure that conductance and pres-
sure values were all positive.

6.3.3 Network design

In the proposed network structure, the flow nodes are the only nodes directly connected to
the observation nodes (see Figure 6.1). This design favors a good estimation of the flow
over the pressure and conductance using EKF and PF.

The Kalman gain using EKF is partly based on the Jacobian of the measurement model
(see equation 4.6). As the Jacobian is calculated by taking the derivative of the measure-
ment model with respect to the 8 continuous state variables, only the flow variables will be
represented in the Jacobian. Even though pressure and conductance are highly correlated
with the flow, the Kalman gain only influences the flow estimates. As pressure at timet
is calculated using pressure and flow at timet − 1, a good flow estimate corresponds to a
good pressure estimation. However, this is only guaranteed if the pressure nodes are ini-
tialized correctly and if there is no noise added to the pressure in the process model. A
poor pressure initialization leaves EKF with little chance of correcting this later on as well
as it has little chance of correcting for the noise. Same story goes for the estimation of
the conductance although it is not calculated based on the flow. The conductance at time
t is only based on the conductance at timet − 1 and the conductance failure at timet.
Assuming the right conductance failures are chosen in the PF step, EKF will produce fairly
good estimates of the conductance if it is initialized well and if the level of noise is low.
Otherwise, EKF will not be able to correct for a poor initialization or noise. Figure 6.4
shows the relative RMSE of the flow, conductance and pressure estimates for a typical run
using EKF with correct initialization of all state variables. Both process and measurement
noise samples were drawn from a Gaussian distributionN (0, 0.1) which is a fairly high
noise level compared to the drifting factor of 2. Figure 6.5 shows the results of the same
experiment, but with an initialization 10% off the true initial values. 150 time steps and 50
particles were used in both experiments.

Figure 6.4 illustrates that EKF is making poor conductance and pressure estimates
whereas the flow estimates are very accurate for all time steps. The relative RMSE for
conductance and pressure seems to increase with an almost constant slope corresponding
to the noise added in each time step in the data generation, i.e. the conductance and pressure
estimates are slowly drifting away from the true values as EKF can not correct for the noise.
Figure 6.5 shows that EKF only accurately estimates the flow nodes after a bad initialization
of all state variables.
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Figure 6.4: Relative RMSE for conductance (red graph), pressure (black graph) and flow

(blue graph) estimates for a typical run using EKF with correct initialization. EKF only

makes good estimation of the flows.
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Figure 6.5: Relative RMSE for conductance (red graph), pressure (black graph) and flow

(blue graph) estimates for a typical run using EKF with an initialization 10% off the true

initial values. Notice that EKF only correct the flow after a bad initialization of all variables
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In PF, a number of particles are produced by sampling from the true process model
(true prior). In each time step, all particles are weighted according to their likelihood using
equation 4.46 and then normalized. The likelihood is based on the difference between the
true and predicted values of the observation nodes. With only the flow nodes connected to
the observation nodes, a particle with correct flow values will thus give a high likelihood
and a corresponding high weight regardless of whether the particle has poor conductance or
pressure estimates. This problem is illustrated in figure 6.6 which shows how 10 particles
are weighted for a given time step using PF. The plot shows three different weights for the
particles: The weights used in PF (blue bars), the optimal weights based on the distance
from the true continuous state values (green bars) and the weights based on the distance to
the true flow values (red bars).
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Figure 6.6: The weights used in PF (blue bars), the optimal weights based on the distance

from the true continuous state values (green bars) and the weights based on the distance to

the true flow values (red bars) for 10 particles using PF

The weights used in PF follow the weights based on the flow values and not the optimal
weights. A large process noise would make this problem even worse.
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As mentioned, both PF and EKF make poor estimates of the continuous state variables
that are not directly connected to the observation nodes. This is not the case in UKF which
makes good estimates of all continuous state variables regardless of the network structure.
Instead of using the Jacobian of the process and measurement models, the Kalman gain in
UKF is based on a number of sigma points that are propagated trough the network using
the true process and measurement models capturing the true posterior mean and covariance
up to second order (see 4.2), which are then used to calculate the Kalman gain (see 4.3.1).
UKF uses the true non-linear models and approximates the distribution of the state random
variable whereas EKF approximate the non-linear process and observation models. Hence,
UKF is able to capture the true covariance up to second order between all continuous state
variables and observation nodes and incorporate this in the Kalman gain. Both pressure
and conductance are highly correlated with the observation nodes, even though they are
not directly connected, which makes UKF able to updates all continuous state variables.

With the current network, PF and EKF make accurate estimates of the flow values, but
poor pressure and conductance estimates. One of the objectives in the watertank problem
is to track conductance failures making accurate estimation of the conductance a crucial
point. With this in mind, a new network was proposed by eliminating the flow nodes
from the continuous state variables allowing conductance and pressure nodes to be directly
connected to the observation nodes (see Figure 6.7).

The flow measurements are still used as observations nodes, but instead of adding
noise to the flow nodes, the observations are now predicted using the calculated flow based
on pressure and conductance plus noise. The equations used to calculate the flow in the old
network were then changed into the measurement model in the new network. In summary,
the new network introduces three major changes:

• The dimension of the continuous state space is reduced from 8 to 5 nodes making
the Matlab programs more robust with regards to overflow and underflow issues and
also a lot faster

• Connecting all continuous state variables with the observation nodes allows for better
estimation of all continuous state variables using EKF and PF

• The level of noise added to the data is reduced
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Figure 6.7: Proposed 2T-DBN for the watertank problem eliminating the flow nodes from

the continuous state variables allowing conductance and pressure nodes to be directly con-

nected to the observation nodes

The first two points improve the modelling whereas the third point actually makes the
problem simpler. When data is generated using the old network, noise is added to the flows
making the data more noisy than data generated in the new network. In order to compare
the two networks, the old network was used to generate data used in both networks. The
flow values were simply removed from the data when used in the new network. One would
expect the old network to make more accurate estimates than the new network using a data
set generated by itself. Hence, if the new network performs better on a data set generated
by the old network, it is definitely the obvious choice of network.

Figure 6.8 shows the average RMSE for the conductance and pressure estimates from
the two networks using PF, EKF and UKF. The results are based on 10 different data sets
using 10 runs for each data set. The process and measurement noises samples were drawn
from a Gaussian distributionN (0, 1e−1) which is fairly high compared to a drifting factor
of 2.
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Figure 6.8: Average RMSE for conductance and pressure estimates using the old network

(red bars) and the new network (blue bars) with PF, EKF and UKF resp.

As expected, the new network outperforms the old network for all continuous state
mean estimates using PF and EKF (see Figure 6.8). The difference in performance using
EKF becomes even more obvious using a poor initialization of the pressure and conduc-
tance values. The performance of UKF does not depend on the network structure and the
two networks perform equally well.

Figure 6.9 and 6.10 show the estimates of the pressure and conductance variance over
time for both networks using UKF. Both variance estimates were based on the same data
set generated by the old network. The two variance estimates have similar shape, but are
shifted horizontally due to the extra noise added to the flow in the old network.



6.3. RESULTS 78

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

time

va
ria

nc
e

Conductance − C10

new network
old network

0 20 40 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

va
ria

nc
e

Conductance − C12

new network
old network

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time

va
ria

nc
e

Conductance − C20

new network
old network

Figure 6.9: Estimates of conductance variance using UKF in the old and the new network
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Figure 6.10: Estimates of pressure variance using UKF in the old and the new network

Figure 6.11 and 6.12 show the estimates of conductance and pressure variance resp. of
both networks using the EKF algorithm. The pressure and conductance variance estimates
increase with a constant slope using the old network whereas the new network design makes
EKF capable of tracking the conductance and the pressure.
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Figure 6.11: Estimates of conductance variance using EKF in the old and the new network
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Figure 6.12: Estimates of pressure variance using EKF in the old and the new network

All in all, the change of network has no real effect on the performance of UKF. The
performances of EKF and PF, however, are increased for all continuous state mean esti-
mates even though the old network was used to generate the data. Based on the experi-
ments, the new network structure was preferred and used in all forthcoming experiments.

Furthermore, we noticed how UKF was once again superior compared to EKF and in
all forthcoming experiments the three EKF based implementations were discarded. Based
on the simple simulation in 5 and the presented experiment showing how the network struc-
ture is critical for EKF we see no further reason to include the EKF based implementations
also having in mind that later on we will introduce more noise and a false process model. In
the simple simulation it was shown how the UKF based algorithms were much less affected
by these changes than the EKF based algorithms. Having settled for a network structure
and the process/measurement models, our implementations still leaves us with a variety of
parameters to adjust.
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These are outlined below and are treated in the forthcoming sections.

Number of particles Number of particles used in the particle filtering algorithms

Noise Process and measurement noise

Process and measurement modelsProposed process and measurement models

Furthermore, in all experiments the valuesα = 1, β = 0 andκ = 0 were used, as
the choice of these parameters did not seem to influence the results significantly (as we are
working on a first order system). Same reasoning goes for the choice of resampling algo-
rithm and hence residual resampling was chosen arbitrarily (they are allO(N) algorithms,
[26]).

6.3.4 Deeper insight

Before we continue our experiments, we would like to give the reader a little more in-
sight into how the particle filters using UKF as proposal generators work in practice in our
simulation.

Before we go into details with the algorithm some implementation issues are dis-
cussed. First, a straightforward implementation of the PFUKF algorithm was done by
simply drawing one sample from the UKF proposal for each particle from the modified PF
step and then performing an extra importance sampling step based on the likelihood, prior
and the proposal for each particle (see equation 4.84). This turned out to be crucial for the
estimation of the discrete failure nodes as PFUKF was able to make good state estimates
for particles with a wrong discrete failure combination.

Now, we could have chosen to update only the continuous state variables in the PFUKF
part, but this implied completely breaking the link between the continuous state variables
and the discrete failure nodes. A wrong combination of discrete failure nodes can of course
still lead to poor state estimates using PFUKF and visa versa. The link between the contin-
uous and discrete nodes are lost if we perform a separate updating step for the continuous
variables and one of the main objectives is to be able to track failures.
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Instead, a different approach was used in which the discrete and continuous state vari-
ables for each particle were updated independently: A set of so called subparticles were
drawn for each particle and the PFUKF algorithm was applied to each particle indepen-
dently. The UKF algorithm estimates the mean and covariance matrix for each subparticle
and these values form the proposal distribution from which a new subparticle is drawn.
The subparticles are then resampled according to the importance ratio. Thus, a particle is
defined by a set of subparticles. In the modified PF step, the mean of the resampled sub-
particles is used to generate a new particle. Figure 6.13 illustrate the different steps in our
approach. Notice that even though the mean of the subparticles is used in the modified PF
step, each particle saves the subparticles.

Figure 6.14, 6.15 and 6.14 illustrate the steps in the PFUKF algorithm for a given time
t. The plots show the pressure P1 and conductance C10 for a particlei using PFUKF. The
figure contains 6 plots which evolves from plot to plot illustrating the different steps in the
PFUKF algorithm.
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Figure 6.13: Illustration of the different steps in the PFUKF algorithm and serve to give a

better understanding of how the subparticles are used
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Figure 6.14: Steps in the PFUKF algorithm (black dot = true state value, red dot = PF state

estimate, blue dots = UKF state estimates, blue ellipse = 95% confidence interval contour
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Figure 6.15: Subparticles (blue stars) drawn from a Gaussian distribution for a particle

using PFUKF with mean values (blue dots) and 95% confidence interval contours (blue

ellipsoids) estimated by a separate UKF. The black dot is the true state value and the red

dot is the PF state estimate.
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(blue dot) and PFUKF state estimate (green dot) for one time step
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Step 1 The first plot in Figure 6.14 shows the pressure P1 and conductance C10 for particlei
at time stept represented by a black dot. The objective is to come as close as possible
to the true state (black dot).

Step 2 The first step in the algorithm samples the particle with respect to the discrete failure
nodes. This is done using a modified PF algorithm (see section 6.1). The discrete
failure nodes are sampled for each particle and used to calculate new continuous state
estimates. The particles are then resampled according to their likelihood, but instead
of using the estimated continuous states for the resampled particles, a PFUKF algo-
rithm is used to make better continuous state estimates for the resampled particles.
So it is actually the continuous state estimates at timet − 1 which are resampled in
the modified PF step with the new samples of the discrete failures at timet. The red
dot in plot 2, Figure 6.14 represents the estimate of P1 and C10 for particlei at time
stept if we had used the resampled state estimate for timet.

Step 3 Each particle corresponds to a set of subparticles which are used in the following
steps. First, a separate UKF step is used to generate a Gaussian proposal distribution
for each subparticle. The UKF algorithm estimates the mean and covariance matrix
of the importance distribution for each subparticle based on the subparticle at time
t − 1. The mean of the subparticles corresponding to one particlei is shown in plot
3, Figure 6.14 (blue dots). In this example, only three different subparticles are used.

Step 4 PFUKF approximates a Gaussian proposal distribution for each subparticle based
on the mean values (blue dots) and a covariance matrix proposed by the UKF step.
The 95% confidence interval contours are illustrated with blues ellipsoids for each
subparticle in plot 4, Figure 6.14.

Step 5 Figure 6.15 shows the next step in the PFUKF algorithm for particlei. Each sub-
particle is represented by an approximated Gaussian distribution from which a single
subparticle is drawn. The subparticles are marked as blue stars.

Step 6 The final step for particlei is shown in Figure 6.16. The new subparticles are
weighted according to the importance ratio and resampled, see eq. 4.58. In this
example the resampling scheme selects the three subparticles marked with green cir-
cles to represent the next set of subparticles for particlei. Again, there are only tree
different subparticles representing particlei.

The process illustrated in Figure 6.14, 6.15 and 6.16 is applied to all particles inde-
pendently. Figure 6.17 shows the mean state estimate of P1 and C10 of all particles for the
different steps in the PFUKF algorithm. The PF step (red dot), UKF step (blue dot) and
PFUKF (green). For this particular timet, PFUKF manages to move the particle towards
the true values of P1 and C10 (black dot), i.e. PFUKF outperforms both the PF-step and
the UKF-step in the estimate of P1 and C10 at timet.
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6.3.5 Number of particles

As mentioned, all implementations of the UKF based algorithms use a separate modified
PF step to sample the discrete failure nodes. The particles are resampled as in the normal
PF (based on the likelihood), but instead of using the continuous state estimates proposed
by the PF step, UKF or PFUKF is used to give a better estimate of the state spaces for the
resampled particles. The estimates of the continuous states do not depend directly on the
number of particles in the sense that an increased number of particles automatically implies
an improved state estimate. Rather, the state estimates depend on accurate estimates of the
discrete failure nodes whichdo depend directly on the number of particles. And hence
the estimates of the state variables depend indirectly on the number of particles. Correct
tracking of the discrete failure nodes should - to some extent of course - make the estimates
of the continuous states better and visa versa.

The crucial point is thus to have just enough particles to be able to track the correct
values of the failure nodes. Using more particles does not have any significant influence on
the RMSE as shown in Figure 6.18 illustrating the RMSE and the total number of wrong
failure nodes as a function of the number of particles using UKF and PFUKF. Data was
generated by drawing process and measurement noise samples from the Gaussian distribu-
tionN (0, 0.1) which is a fairly high noise level compared to the drifting level set to 1 (i.e.
drifting one unit). 15 subparticles were used and the simulation period included 30 time
steps. The relatively short time period was chosen to reduce the total experimental time.
Each point is based on 10 different data sets using 10 runs for each data set. Outliers were
removed.

The left plot in Figure 6.18 shows the RMSE as a function of the number of particles
using UKF and PFUKF. The right plots show the number of failure tracking errors as a
function of the number of particles. UKF and PFUKF is able to track the discrete failure
nodes correctly using approximately 16 particles. As soon as the algorithms get the con-
ductance failures right there is hardly any RMSE reduction on the state estimates to see by
increasing the number of particles further using UKF as well as PFUKF.

Notice that PFUKF only improves the UKF state estimates when UKF is making poor
estimates which happens using a small numbers of particles (see Figure 6.18). PFUKF
actually makes the UKF estimates a little worse for a large number of particles. In order
to investigate this behavior a number of experiments were performed which focus on the
importance sampling of the UKF subparticles with respect to the RMSE.

Each subparticlei is weighted in PFUKF using the importance ratio described in sec-
tion 4.6.1.

ratioi =
likelihoodi · priori

proposali
(6.20)

The prior only influences the importance ratios when the changes in the continuous states
over time are not too large (or the noise level is very high), otherwise they become smaller
than the numerical precision in Matlab. Hence, the prior will not influence the ratio signif-
icantly in a very dynamic system. The watertank simulation is a highly dynamic system
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Figure 6.18: RMSE and number of failure-tracking errors as a function of the number of

particles using UKF (blue) and PFUKF (red)

until it reaches the equilibrium phase, i.e. the importance ratio for each subparticle is often
based only on the likelihood and the proposal.

˜ratioi =
likelihoodi

proposali
(6.21)

As the proposal appears in the denominator of the ratio, it increases the weights of the sub-
particles when they appear in the tails of the proposal. In a way it ensures a more broad
distribution of samples. If the subparticles were only based on a narrow likelihood appear-
ing in the tail of the proposal, only a few subparticles would get a significant importance
weight. It is therefore important to move the particles towards the likelihood distribution.

Figure 6.19 illustrates how PFUKF moves particles with respect to the likelihood and
the RMSE compared to UKF. The bars in Figure 6.19 represent the absolute difference
in RMSE between the UKF and the PFUKF. For each plot, the four bars represent the 4
combinations between increased/decreased likelihood and increased/decreased RMSE (in-
creased likelihoodand increased RMSE(green bars),increased likelihoodanddecreased
RMSE(blue bars),decreased likelihoodandincreased RMSE(red bars),decreased likeli-
hoodanddecreased RMSE(yellow bars)). I.e. the green and red bars represent the total
improvement in RMSE using PFUKF compared to UKF and the blue and yellow bars rep-
resent how much PFUKF decreases the RMSE compared to UKF.
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Figure 6.19: Relative particle movement using PFUKF compared to UKF with respect to

increased/decreased likelihood and increased/decreased RMSE. Left plot corresponds to 4

particles whereas right plot corresponds to 40 particles. 15 subparticles were used in both

cases

Increased or decreased RMSEand likelihood (green and yellow bars) makes sense,
but how is it possible to improve the likelihood and disprove the RMSE (blue bars) and
visa versa (red bars)?

First of all, the measurement noise which moves the likelihood away from the true
continuous states: As the likelihood calculation is based on the noisy measurements, the
true continuous states do not correspond to the highest likelihood. This implies that we
can select particles with higher likelihood that are further away from the true state (blue
bars). Furthermore, it is possible to have higher likelihood values for state estimates far
away from the true continuous states as the prediction of the observation node (flow) given
as the product of the conductance and the pressure (plus measurement noise) can be close
to the true value using wrong conductance and pressure values, e.g. a too high pressure and
a too low conductance or vice versa would still give the correct flow.

It is also possible to move away from the noisy state and come close to the true state
(red bars) as the importance ratio also includes the proposal and hence we do not weight
only on behalf of the likelihood. It could also happen if we use a small number of subpar-
ticles and hence we may have to select between a few number of subparticles where all, by
coincidence, are further away from the noisy state and close to the true state.

The left plot in Figure 6.19 was made using 4 particles and the right plot corresponds to
40 particles. In both cases the same data set and 15 subparticles were used. A small number
of particles makes it difficult to track the true failure combination. As the UKF is not able
to make up for the wrong failure estimates a lot of improvement is left for PFUKF. With
the UKF estimate far from the true state a solid connection between increased likelihood
and decreased RMSE exists. Using only 4 particles, PFUKF is able to move a lot of the
particles towards regions of higher likelihood and more accurate state estimates (green bar).
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It is also able to decrease the RMSE without decreasing the likelihood (red bar). This is
due to the measurement noise which moves the likelihood away from the true state. Almost
no RMSE increase is seen using PFUKF compared to UKF (low blue and yellow bar).

Using enough particles to make the modified PF step capable of tracking the true
failures, the UKF makes accurate estimates of all state variables leaving little improvement
to PFUKF. This is illustrated in the right plot in Figure 6.19. Notice the different z scale
on the two plots. Almost no change in RMSE is seen using 40 particles compared to using
only 4 particles. In fact, PFUKF makes the estimates worse! The yellow and blue bars
become larger than the red and green bars, i.e. PFUKF is making more bad moves than
good moves with respect to the RMSE. The modified PF step is tracking all the failures
correctly and UKF is able to make very accurate state estimates. PFUKF is making just as
many moves decreasing the likelihood (red bars) as moves which are fitting the noise (blue
bars). The green bar corresponding to a decreased RMSE and increased likelihood is no
longer the primary bar. Instead, a lot of moves are made increasing both the RMSE and the
likelihood (yellow bar).
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Figure 6.20: Relative particle movement using PFUKF compared to UKF with respect to

increased/decreased likelihood and increased/decreased RMSE. 40 particles and 40 sub-

particles were used.

One explanation might be that PFUKF is sampling from a too large proposal distribu-
tion. Sampling from a Gaussian distribution with a too large covariance matrix decreases
the probability of making small moves towards the true state. If this explanation is true,
using a large number of subparticles should turn some of the bad moves represented by the
yellow bar into good moves represented by the green bar. Figure 6.20 shows the results of
the same experiment using 40 subparticles and 40 particles. By increasing the number of
subparticles, PFUKF was able to reduce the number of bad moves and increase the number
of good moves.



6.3. RESULTS 90

PF and PFMC update the estimates of the discrete and continuous variables simul-
taneously making the RMSE directly dependent on the number of particles as shown in
Figure 6.21. Data was generated by drawing process and noise samples from a Gaussian
distributionN (0, 0.1) and a drift factor of 1. The simulation period included 30 time steps.
The relatively short time period was chosen to reduce the total experimental time.

0 10 20 30 40
0

10

20

30

40

50

60

70
PF and PFMC

R
M

S
E

number of particles

PF
PFMC

0 10 20 30 40
0

5

10

15

20

25

30
PF and PFMC

C
F

/M
F

 e
rr

or
s

number of particles

PF
PFMC

Figure 6.21: RMSE and number of failure estimation errors as a function of the number of

particles using PF (blue) and PFMC (red)

Even though PF and PFMC are able to track the conductance and measurement fail-
ures, the RMSE is decreased by increasing the number of particles further. By comparing
Figure 6.3.5 and Figure 6.21 it is seen that UKF and PFUKF are making better estimates
than PF and PFMC for any number of particles below 40. These experiments clearly indi-
cate that the UKF based algorithms are performing much better than the simple PF algo-
rithm. Using a MC step improves the PF algorithm, but UKF and PFUKF are still superior.
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6.3.6 Noise

Simulations allow us to have access to most information about the given problem. In real
life we have to propose a network structure, process and measurement models describing
our beliefs about the generation of the ground truth before we apply our filters. So what
happens if one proposes a wrong model? How robust are the algorithms if they are not
given optimal conditions? This section concerns the algorithms capability to deal with a
’wrong’ proposal of the process and measurement noise compared to the noise levels used
in the data generation. Section 6.3.7 investigates the filters robustness when we propose a
wrong measurement model.

UKF assumes Gaussian process and measurement noise. Initially, one has to propose
a certain process and measurement noise covariance matrix which is incorporated into the
Kalman updating step. Hence, it would be interesting to see the effect of proposing wrong
process and measurement noise covariance matrices.

The UKF algorithm initializes the covariance matrix based onN samples from the
prior p(x0) which follows the Gaussian process noise distribution (see section 4.6.1). Fur-
thermore, the dimension of the process noise covariance matrix is 5x5 and we therefore
expect the process noise to influence the UKF variance estimation more than the mea-
surement noise covariance matrix of dimension 3x3. Figure 6.22 shows the UFK variance
estimates for all 5 state space variables using 9 different process noise proposals (left plots)
and 9 different measurement proposals (right plots) for 100 time steps. While changing
the process noise proposals the true measurement noise was used as measurement noise
proposal and visa versa. 10, 25, 50, 75, 100, 125, 150, 175 and 200 % of the true noise
covariance was used in both experiments. A diagonal covariance matrix with elements
1e − 1 was used for both the process and the measurement noise covariance matrix in all
experiments to generate data. The same data set was used in both tests for comparison.

As expected, the process noise proposal has a greater effect on the UKF variance
estimates (left plots in Figure 6.22) compared to the UKF variance estimates for the same
relative changes in measurement noise proposal (right plots in Figure 6.22). Changing the
measurement noise hardly has any effect on the UKF variance estimates. Especially the
variance estimates of C10, P1 and P2 change so little for the different measurement noise
proposals that it is hard to see more than one line.

As shown, the UKF posterior covariance estimates seem to depend on our process
noise proposal. But how does this influence the estimates of the continuous states in UKF
as well as PFUKF? As mentioned in section 4.6.1, PFUKF approximates Gaussian filtering
densitiesp(xt|y1:t) using the mean and covariance matrix proposed by UKF. Furthermore,
the importance weights are partly based on the prior and the likelihood which is based on
the process and measurement noise proposals resp.

Figure 6.23 shows the result of two experiments using UKF and PFUKF. The two left
plots correspond to a change in the process noise proposal while using the true measure-
ment noise level. The opposite situations are shown in the two plots to the right. The top
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Figure 6.22: UFK variance estimates for all state variables using 10 different process noise

proposals (left plots) and 10 different measurement proposals (right plots). The noise pro-

posals were 10%, 25%, 50%, 75%, 100%, 125%, 150%, 175% and 200% of the true noise

level

plots show the RMSE for UKF and PFUKF and the lower plots show the relative particle
movement in PFUKF compared to UKF. The lower plots illustrate the relative movement
in PFUKF compared to UKF with respect to increasing/decreasing the RMSE and increas-
ing/decreasing the likelihood.

The results presented in Figure 6.23 were based on 10 different data sets and 10 runs
for each data set. 60 particles and 30 subparticles were used in every simulation which
lasted 30 time steps. Outliers were removed. The UKF state estimates seem independent
of the choice of measurement and process noise proposal and has almost the same RMSE
value for all different noise proposal combinations (see blue line in the two top plots in
Figure 6.23). Whereas the RMSE using PFUKF is slowly increasing with the increased
process noise proposal (see lower left plot). The RMSE is constant for changes in the mea-
surement noise proposal below the true noise level and seems to increase with a constant
slope using measurement noise proposals above the true noise level.
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Figure 6.23: The plots correspond to experiments using UKF and PFUKF with ten process

noise proposals (left plots) and ten different measurement noise proposals (right plots). The

top plots show the RMSE for UKF (blue line) and PFUKF (red line) and the lower plots

show the relative particle movement in PFUKF compared to UKF)

The two lower plots in Figure 6.23 showing the relative particle movement in PFUKF
illustrates how PFUKF is affected by the different process and measurement noise propos-
als. PFUKF samples from the approximated Gaussian posterior distribution using the UKF
covariance and mean estimates for each time step. The UKF mean estimate is not affected
by changes in the noise proposals so apparently it is only the covariance estimate which is
affected by changes in the noise proposals in the range of 10% to 200% of the true noise
level. With a UKF mean estimate fairly close to the true state we would prefer a smaller
noise covariance matrix rather than a larger noise covariance matrix (compared to the true
noise level). A lot of samples are needed to improve a good mean estimate using a too large
covariance matrix.

Now, let us discuss the relative movement changing the process noise proposal (lower
left plot Figure 6.23). Using a smaller process noise proposal (left plots) making the pos-
terior covariance estimates small allows us to take small steps towards the true state. Some
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good moves are made with decreasing RMSE and increased likelihood (green area) using a
small process noise proposal. However, a lot of the subparticles seem to be fitting the true
measurement noise represented by the blue area (increased RMSE and likelihood). The
likelihood moves the subparticles away from the true state when the UKF state estimate
is too close to the true state. This trend disappears with a larger process noise proposal
making the UKF variance estimates larger (see lower left plot in Figure 6.23). PFUKF now
samples from a Gaussian distribution that is too large and draw subparticles that are further
away from the true state. This is represented by the yellow colored area corresponding to
increased RMSE and decreased likelihood. All subparticles are worse estimates than the
ones proposed by UKF with regard to RMSE as well as likelihood.

Using a too small process noise proposal the subparticles tend to fit the measurement
noise (blue area) whereas a too large process noise proposal allows sampling from areas
far away from the true state (yellow area). No improvements were seen using PFUKF. It
is better to sample using a too small process noise proposal rather than a too large process
noise proposal if UKF makes good state estimates.

The plots to the right in Figure 6.23 show the results of changing the measurement
noise proposal. The relative movements stay the same for all nine measurement noise pro-
posals even though the RMSE value changes. The UKF estimates of the state covariance
are hardly effected (see Figure 6.22) changing the measurement noise proposal. The same
holds for the UKF mean estimates and the PFUKF therefore samples from the same Gaus-
sian distribution. Hence, it is no surprise that the relative movements stay the same for the
different measurement noise proposals. But what makes the RMSE increase? PFUKF re-
samples the subparticles based on the importance ratio and by increasing the measurement
noise proposal we increase the likelihood distribution making it more and more difficult to
distinguish between good and poor subparticles. The prior is not affecting the importance
ratio due to numerical problems, but the proposal appears as the inverse in the importance
ratio moving the subparticles towards the tails of the proposal distribution.

All in all, the experiment indicates that it is difficult to improve an accurate UKF
estimate in a 5 dimensional space by sampling further from an approximated Gaussian
posterior. Of course, increasing the number of subparticles and particles might improve
the outcome of PFUKF. Furthermore, the experiments show that it is better to propose too
small a noise rather than too large if UKF is making accurate state estimates. In a real life
simulation, however, where the true process and measurement models are not known, the
UKF is most likely to make poor estimates leaving a lot of improvement for the PFUKF.

One of the main objectives in the watertank problem is to be able to track conduc-
tance and measurement failures. To evaluate the performance of our estimates of the true
failure values we need to compare the process and measurement noise levels with the ex-
tent to which a certain failure influences the flow. To give an indication of how robust the
algorithms are with regards to the noise level, experiments were performed changing the
noise level for both the process and the measurement noise. Only UKF and PFUKF were
used as these algorithms showed superior performance in the previous experiments. In all
experiments the true noise levels were used as process and measurement noise proposals.
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A positive/negative conductance drift factor of 2 was used, the conductance was set to 600
in case of a burst and 100 was added to the measurement in case of a measurement failure.
Four different process and measurement noise levels were used (0.01, 0.1, 0.2 and 0.4)
giving 16 different combinations. The RMSE and the number of wrong conductance and
measurement failure estimates as a function of the process and measurement noise levels
are shown in Figure 6.24. A time period of 100 time steps were used in all tests. The results
were based on 20 different data sets using 10 runs for each data set. Outliers were removed.
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Figure 6.24: Surface plots showing the RMSE (top plots) and CF/MF estimation errors

(lower plots) using UKF (left plots) and PFUKF (right plots) based on 16 different mea-

surement and process noise combinations

First of all, notice the nice correlation between the RMSE and the number of wrong
failure estimates for UKF (two left plots in Figure 6.24) and PFUKF (two right plots in
Figure 6.24). An accurate state estimate corresponds to a small RMSE making it easier to
track the discrete failures and vice versa. Both the RMSE and the number of wrong failure
estimates using UKF and PFUKF are more influenced by the level of the measurement
noise than the process noise. This does not come as a surprise as the state estimates are
updated based on their connection to the observation nodes. A noisy connection between
state variables and observation variables is more crucial than a noisy connection between
the previous and present set of continuous states. The filtering algorithms are estimating
the noisy continuous states and the algorithms have to make up for the noise added to the
observation nodes. It is clearly more difficult to remove noise from the observation nodes
than to estimate noisy continuous states based on a noise-less connection to the observation
nodes. Furthermore, Figure 6.24 once again illustrates the relationship between UKF and
PFUKF. PFUKF is doing much better than UKF for large measurement noise levels, but
notice that the RMSE increases using the smallest process noise level (0.01) and is actually



6.3. RESULTS 96

doing worse than UKF. This behavior corresponds to the observations made in the previous
experiments: When UKF makes accurate estimates PFUKF can make matters worse by
either fitting the measurement noise or sampling from a Gaussian distribution that is too
large.

Similar experiments were performed using PF and PFMC with different process and
measurement noise combinations. As in the experiments with UKF and PFUKF, the mea-
surement noise proved to dominate the RMSE and the number of wrong failure estimates
in both PF and PFMC. Figure 6.25 shows the RMSE and the number of wrong failure es-
timates as a function of the measurement noise level. The results are shown only for the
process noise level 0.1. A time period of 100 time steps was used in all four tests. The
results were based on 20 different data sets using 10 runs for each data set and removing
outliers.
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Figure 6.25: RMSE (left plot) and wrong CF/MF failure estimates (right plot) using PF

(blue) and PFMC (red) based on four different measurement noise levels. The process

noise level was constantly set to 0.1.

PFMC is able to make improvements of the poor PF estimates (see Figure 6.25) with
respect to a reduction of the RMSE and the number of wrong failure estimates. PFMC is,
however, still performing worse than UKF and PFUKF.

Let us recapture some of the main observations in this section. First of all, if UKF
is making accurate estimates it is difficult to make improvements by further sampling us-
ing PFUKF. Often, PFUKF makes the state estimates worse. The performance of UKF
and PFUKF with respect to the state estimates seemed to depend more on the measure-
ment noise level than the level of process noise. Large measurement noise levels made the
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UKF estimates poor and PFUKF was able to move the particles towards the true state, i.e.
reducing the RMSE. Both PF and PFMC were performing worse than UKF and PFUKF
with respect to RMSE and the number of wrong failure estimates for all tests with different
measurement noise levels.

6.3.7 Choice of process and measurement model

In a real life simulation one of the major challenges is to come up with reasonable process
and measurement models. Simulating the actual data gives us all the knowledge about the
problem we need and makes us capable of providing our algorithms with optimal condi-
tions. That is why UKF is able to make very accurate state estimates leaving no real space
for improvement by sampling from the approximated Gaussian distributions proposed by
UKF as it is done in PFUKF. So far we have seen that PFUKF is able to improve the UKF
estimates if the measurement noise level is high or if a small number of particles is used
making it difficult to track the discrete failure nodes. Hence, PFUKF really proves its supe-
riority in scenarios where UKF is not given optimal conditions. To further investigate this
relationship, we experiment by changing the proposed measurement model. This should
affect UKF negatively leaving a lot of space for improvement to PFUKF. PF and PFMC
were also included in the experiments for the sake of comparison.

There is a number of different ways to ”sabotage” the measurement model. In this
case it was done by simply adding 5% to all the flow estimates.

100 particles and 30 subparticles were used over a time period of 60 time steps.
The process and measurement noise samples were drawn from the Gaussian distribution
N (0, 0.1). Table 6.1 shows the mean RMSE and variance using ten different data sets and
10 runs for each data set. The second column shows the average number of incorrect failure
estimates.

PFUKF is not surprisingly the filtering algorithm that is most capable of dealing with
a wrong measurement model as this was already indicated in the simple simulation in chap.
5. PFUKF is able to move the particles towards regions of higher likelihood which reduces
the RMSE and makes tracking of the discrete failure nodes easier (see Figure 6.26). PFUKF
is hardly making any bad moves with respect to the RMSE. We might be able to further
improve PFUKF estimates using more particles or subparticles. As shown in sec. 6.3.6,
it is possible to change the size of the approximated Gaussian distribution (proposed by
UKF) by proposing higher noise levels.

The experiment once again showed that PFUKF is capable of making more accurate
state estimates than UKF when the algorithms are not performing under optimal conditions.
Furthermore, UKF and PFUKF made more accurate state estimates than PF and PFMC.
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Figure 6.26: Relative particle movement using PFUKF compared to UKF with respect to

increased/decreased likelihood and increased/decreased RMSE. The relative movement is

based on a number of experiments using a wrong measurement model

6.3.8 Tracking

The watertank simulation operates with two kinds of failures, conductance failures and
measurement failures. Both type of failures are sampled in a modified PF step. Given op-
timal conditions, the PF algorithm should be able to weight the particles according to the
true failure combination. Now, what does optimal conditions imply for the PF step? First
of all, to track the true failure combination at least one sample of the discrete failure node
combinations corresponding to the true combination has to be drawn. The probability of

Algorithm RMS CF/MF errors

mean var

Particle Filter - generic (PF) 256 204 56.3

Particle Filter - Metropolis-Hastings move (PFMC) 227 187 33.8

Unscented Kalman Filter (UKF) 208 43 30.1

Particle Filter - UKF proposal (PFUKF) 178 76 23.4

Table 6.1: Mean and variance of RMSE values of state estimates and average conductance

and measurement failure errors (CF/MF errors) using a wrong measurement model. The

results were based on 10 different data sets using 10 runs for each data set
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doing this increases with the number of particles. Hence, to provide the modified PF with
optimal conditions a large number of particles should be chosen. Secondly, we want the
modified PF step to weight and resample the particles based on a good estimate of the con-
tinuous states from the previous time step. A good estimate of the continuous states for all
particles should make it easier for the modified PF step to distinguish between good or bad
particles with respect to the discrete failure combination. This is realized by implementing
a high-performance filtering algorithm serial linked with the modified PF step, which is
able to make good estimates of all continuous states.

In [21], Daphne Koller and Uri Lerner apply a generic particle filter to the watertank
problem using the old network structure, see sec. 6.3.3, but propose as future work an
implementation of a combination of PF (sampling the discrete failure nodes) and a more
sophisticated particle filter to sample the continuous variables as we have done in this work.
It is impossible to make direct comparisons between this work and the work of Koller
and Lerner as they use the old network structure, use different probabilities for the events
and probably model various aspects differently (s.a. pipe bursts or measurement failures).
However, as we are also using the PF algorithm in our network a comparison between the
other filtering techniques and PF can be made. As mentioned, in this work the network
structure was changed, but as shown in section 6.3.3 the transformation only improves the
performance of PF. Still, UKF and PFUKF have outperformed both PF and PFMC in every
single experiment and have proved to be the best choice of filtering technique.

So provided with a good state estimate using UKF or PFUKF and using a large number
of particles, the modified PF step should have a very good chance of tracking the true failure
combination by sampling from a proposal distribution close to the true one (which is known
in a simulation).

Figure 6.27, 6.28 and 6.29 show the tracking of C10, C20 and P2 for a simulation
of 100 time steps using the UKF algorithm. A drift factor of 1 was used and both process
and measurement noise samples were drawn from the Gaussian distributionN (0, 0.5). The
results are based on ten runs with one data set using 300 particles.

Table 6.2 lists the different events occurring doing the simulation.

Notice the large error bar at time step 31 in figure 6.27 and 6.29 corresponding to the
burst of pipe 3 at time step 30 (only every second error bar was plotted for visual reasons).
Apparently, UKF had no problem recognizing the measurement failures as these events are
not seen in the error bars for any of the three variables, as this would have caused very
large errorbars at the given points in time. Furthermore, notice the larger error bars in
Figure 6.27 when the drifting ends att = 52 which might indicate that the system in some
runs estimated positive/negative drift ofC10 as this is not crucial for the flow measurements,
when the conductance is very high (low resistance). Att = 80 it locates the burst of pipe 1
and stays at the bursting level.
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Event Event time

Positive conductance drift begins for C10 t=27

Pipe 3 bursts t=30

End of positive conductance drift for C10 t=52

Measurement failure for flow F12 t=56

Measurement failure for flow F10 t=66

Pipe 1 bursts t=80

Table 6.2: Event sequence for a typical run using 300 particles and drawing noise samples

from the Gaussian distributionN (0, 0.5).
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Figure 6.27: Tracking of conductance variable C10 using a process and measurement noise

level of 0.5 (variance in Gaussian distribution with mean 0). The estimated conductance

C10 (red line) using UKF is plotted with confidence intervals (plus, minus two standard

deviations from the mean estimate) and the true conductance C10 (black line).
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Figure 6.28: Tracking of conductance variable C20 using a process and measurement noise

level of 0.5 (variance in Gaussian distribution with mean 0). The estimated conductance

C10 (red line) using UKF is plotted with confidence intervals (plus, minus two standard

deviations from the mean estimate) and the true conductance C20 (black line).
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Figure 6.29: Tracking of pressure variable P2 using a process and measurement noise level

of 0.5 (variance in Gaussian distribution with mean 0). The estimated conductance C10 (red

line) using UKF is plotted with confidence intervals (plus, minus two standard deviations

from the mean estimate) and the true conductance P2 (black line).



Chapter 7

Cyberglove

Having demonstrated and compared our implemented algorithms in a simulated physical
setup, we would like to investigate their validity on a real-life problem, where we can only
approximate the data generation by expressing our beliefs in a DBN, but where we are still
able to collect the ground truth and measure the performance of the algorithms.

In Neuro Engineering Lab (NEL) at NASA Ames Research Center, California, they
use acyberglove, which is a glove equipped with strain gage sensors that are able to register
the angle of the three joints on every finger. Angular velocity and angular acceleration can
be derived.

Our ultimate objective is to be able to predict the values of the glove sensors by setting
up a DBN in which the hidden nodes are the joint angles, angular velocities and angular
accelerations for each finger and the observed nodes are measured EMG signals from sur-
face electrodes on the arm, i.e. being able to compute the exact movement of the fingers
using electrodes placed on the surface of the arm. If this is possible, one would be able to
interact with a virtual environment which e.g. would have an enormous impact in the com-
puter science society. Today, a great number of people are suffering from injuries caused
by repeated use of an ordinary keyboard, mouse and joystick which puts a lot of stress on
joints and muscles.

However, with a limited amount of time available we must constrain our problem as
the modelling itself, the data acquisition and the required a priori studies of the system
and the data asks for much more time. With 3 measurements for each joint it adds up
to 9 variables for each finger, i.e. 45 variables for the entire hand. Creating a model
with a hidden state variable for each of the joint and using EMG signals as measurement
variables, say 4 signals corresponding to 4 pair of electrodes, one would need a DBN with
49 variables, which leads to computations in a very high dimensional space.

102
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Figure 7.1: Physical setup for acquisition of cyberglove and EMG data

Hence, in this work we ’remove’ the thumb by keeping it steady during the movements
and keeping the four remaining fingers close together to form a ’single finger’ to make a
single movement of all four fingers at the same time.

7.1 Data acquisition

In Figure 7.1 the physical setup of the data acquisition is illustrated.

The subject wore the cyberglove on his left hand and 8 pairs of dry surface electrodes
were attached to the lower part of the left arm. For each pair, the two electrodes were placed
next to each other. 4 pairs were placed on the upper side of the lower arm and the remaining
4 on the underside. First pair on both sides were placed approximately 2 centimeters from
the lower arm bone and 7 centimeters from the elbow tip. The other pairs were then placed
accordingly as illustrated in Figure 7.2 and numbered 1-8 so electrode pair 1 is on the upper
side, closest to the bone and electrode pair 8 is on the underside, closes to the bone. The
reference electrode was placed on the elbow tip.

In the recordings we used a sampling frequency of 1024 Hz. for the EMG signals as
well as for the cyberglove. Furthermore, the glove measurements were filtered during the
recordings using a Hamming windowed low-pass filter of order 1024 with a 5 Hz. cut-off
frequency to obtain smooth signals. These values were then shifted accordingly to match
the EMG measurements.
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Figure 7.2: Electrode configuration for acquisition of cyberglove and EMG data

Next, the absolute EMG measurements were calculated and filtered using a Hamming
windowed low-pass filter of order 1024 with a 7 Hz. cut-off frequency. This was done to
remove noise and to work on signals with a non-zero mean value.

Finally, the glove angle measurements were smoothed further using a Hamming win-
dowed low-pass filter of order 1024 with a 4 Hz. cut-off frequency to remove remaining
noise and artifacts.

Instead of filtering the velocity and acceleration we used the filtered angle measure-
ments and calculated the velocity and acceleration using the forward-backward relations

v(t) =
x(t + ∆t)− x(t−∆t)

2∆t
(7.1)

and

a(t) =
v(t + ∆t)− v(t−∆t)

2∆t
(7.2)
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The subject was asked to move his fingers from an extended position and bending
them to make a fist (without using excessive force to tighten the fist, i.e. just touching
the palm) and then move the fingers back to the extended position. These movements
were repeated forty times without interruptions in each of three data recording sessions
and divided into two subcategories from here on known asClose handcorresponding to
moving the fingers from the extended position and down andOpen handcorresponding to
the opposite movement. Furthermore, the subject was asked to do approximately the same
movements over and over again in a consistent manner, i.e. to attempt to use roughly the
same amount of time for each movement and not changing the extreme positions too much.
This was done to keep the domain of gestures within reasonably boundaries for this simple
first-time approach to the problem.

7.2 Model selection

The model was developed in an attempt to setup a very simple mechanical model of a finger
movement. As we keep the fingers together we can imagine the system as the movement
of a single finger as illustrated in Figure 7.3.

In the model, the movement of each joint is viewed as a mechanical system consisting
of a wheel which turns when the finger is bended or stretched. The finger moves when the
muscles in the arm are extended corresponding to pulling strings attached to the wheel. In
the Figure (resembling a finger on the left hand), the finger is stretched using the muscles
on the upper side of the lower arm and it is bended using the muscles on the underside of
the lower arm.

Using the basic physical principle of

Force = Mass ∗ Acceleration (7.3)

the registered EMG signals were assumed to be proportional to the acceleration of the
wheel. However, we acknowledge the fact that the acceleration is zero if one is keeping
the fingers in an extended position or by keeping a solid fist, but the force one is using is
definitely not zero! This is due to the fact that the resting position of the hand is in neither
of these positions, but somewhere in between. We model this fact by attaching a couple
of springs to the wheel, both trying to keep the wheel in a resting positionα radians from
a horizontal line. However, during a movement one does not expect to see a dip in the
EMG recordings when the fingers are passing the resting position as the fingers are still
accelerating and hence a force is needed.

So far, we imagine the EMG measurements as a force being the sum of the acceleration
of the wheel times a proportionality constant (representing the mass of the wheel) and a
spring force with opposite sign.
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Figure 7.3: Mechanical model of finger movement

However, during our data acquisition we noticed that the EMG signals overlapped as
illustrated in Figure 7.10. One would expect the signals to be well separated as it seems
intuitively plausible that the upper side muscles are resting when the fingers are bended and
vice versa leaving it to the springs to move to the resting position, but human muscles do
not work in nice, isolated units responsible for specific movements. Just imagine bending
your hand very slowly. This takes a force from muscles on both sides of the arm which
is easily felt. And one can not expect to obtain EMG signals measuring the extension of
specific muscles without measuring the activity of surrounding muscles. This makes EMG
measurements quite noise and difficult to model.

Hence, we need to add a contribution from the opposite muscles for both movements.
As we do not have the necessary physiological knowledge to model this contribution in a
more detailed way, we simply add the oppositely measured force times a constant.

We model this physical setup in a DBN using only a single joint (for simplicity rea-
sons - the system can easily be extended to include all three joints of the finger). As
the proposed model involves a large amount of uncertainty due to the simplified physical
model and especially the contribution from the opposite muscles, we choose to predict only
one observable node (its value corresponding to the EMG measurement from an electrode
placed on the side of the arm measuring the primary muscles used in the given movement)
and using the values from an electrode placed on the opposite side of the arm as observable
input to the prediction.

By assigning the extended position the angular value 0 and assigning angles between
this position an the fist position negative values (in accordance with the data acquisition)
we end up with the following measurement model:
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Close hand gesture

a2 =
α− θ

2π
rk2 − θ̈

r

2π
+ k3a1 θ ∈ [α; 0] (7.4)

a2 =
α− θ

2π
rk1 − θ̈

r

2π
+ k3a1 θ ∈ [−π; α] (7.5)

Open hand gesture

a1 =
−α + θ

2π
rk1 − θ̈

r

2π
+ k4a2 θ ∈ [α; 0] (7.6)

a1 =
−α + θ

2π
rk2 − θ̈

r

2π
+ k4a2 θ ∈ [−π; α] (7.7)

wherer is the radius of the wheel,α is the (negative) angle from the extended position to
the resting position,k1 andk2 are the spring constants corresponding to spring 1 and 2 resp.,
θ is the angle,̈θ is the angular acceleration andk3 andk4 are proportionality constants. We
would of course have to write another set of equations fora2 during an open hand gesture
and fora1 during a close hand gesture, but as mentioned we predict only one electrode to
keep things simple.

As the measurement model is dependent on the performed gesture, we choose to in-
clude the gesture (Close handor Open hand) as a discrete valued node which we sample
by drawing from a uniform distribution on a binary interval

P (G = OpenHand) = 0.5

P (G = CloseHand) = 0.5 (7.8)

Having settled for a measurement model expressing the connections between the hid-
den nodes at timet and the observed nodes at timet, we need to propose a process model,
i.e. a model expressing how the the hidden variables at timet − 1 and timet are related.
The angular acceleration is modelled using two different proposal distributions based on
the study of the measured glove data (prior knowledge):

Sine curve:

θ̈t = At ∗ sin(Pt ∗ π ∗ (t̃ + 1) +
π

2
) (7.9)

t̃ = sin−1

(
θ̈t−1

At

)
1

Ptπ
− π

2
(7.10)
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Figure 7.4: DBN structure for cyberglove model

Linear approximation of sine curve:

θ̈t = θ̈t−1 ± At

Pt

(7.11)

whereAt is the amplitude and slope resp. andPt the period at timet, i.e. the former is based
on a strong assumption of a sine formed angular acceleration curve. It is calculated using
the angular acceleration from timet− 1 as input to computẽt representing the position on
the proposed sine curve for timet. The acceleration at timet is found as the evaluation of
the proposed sine curve at timet̃ + 1.

The latter approach is a simple linear approximation to a sine curve and computes the
angular acceleration at timet by adding a small amount±At

Pt
(depending on the gesture) to

the acceleration at timet− 1. This proposal is less explicit as it does not base its estimate
at timet on a computed index.

The angle and the angular velocity are calculated as follows:

θ̇t = θ̇t−1 + θ̈t−1 (7.12)

θt = θt−1 + θ̇t−1 (7.13)

The resulting graphical structure of the DBN is illustrated in Figure 7.4.

The combination of external nodes attached to a Kalman structure implies that we
use a modified PF step to sample the external nodes and apply the different filters to the
remaining nodes, just as in the watertank simulation (see chap. 6).
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Note that, based on the experiments described in sec. 6.3.3, we are aware of the
fact that the angular velocity node isnot connected to the measurement nodes. This has
a significant effect on PF and PFEKF. In PF the particles are weighted according to their
likelihood. As the angular velocity is only indirectly linked to the measurement nodes
through the angle node, PF is considering the angle and angular acceleration nodes to be
the ’most important’ as they directly influence the predicted measurement and thus the
likelihood. This might imply incorrect particle weighting although an accurate angular
velocity estimate is more likely to give a more accurate angle estimate.

In PFEKF the situation is much worse as the filter will not update the angular velocity
estimates as the Kalman gain is 0 for this node (as the Jacobian of the measurement model
is 0 for non-linked nodes, see sec. 4.5). Furthermore, it will influence the state covariance
estimates for all nodes as the update of this value is also based on the Jacobian of the
measurement model (see sec. 4.5). This implies that even when we are proposing a linear
acceleration curve and thus have first order process and measurement models, we will
observe different state covariance estimates in PFEKF and PFUKF.

7.3 Parameter selection

The reason for using two proposal distributions is that during our study of the angular
acceleration curves we found that signals of high quality, i.e. where the subject managed to
move his fingers in a nice, smooth way and thus keeping the maximal amount of signal info
after the filter has been applied, the angular acceleration curves could be well fitted using
sine curves with different amplitudes and periods. However, to not limit ourselves to this
domain of signals, we also choose a very simple first order process model proposal which
seemed to make a fair approximation to most of the curves of lower quality. Thus, we have
a more explicit approach that relies on sine curves and asks for high quality signals and
a more general approach that does not ask for the computation of a curve index and thus
should have a better ’all-round’ chance of fitting signals of various quality.

In both process models we need to know the period and the amplitude of the sine curve
resp. the slope of the linear approximation. Once again, we choose to sample these values
by drawing from a normal distribution with a predetermined mean and variance calculated
as the mean and variance of the periods and amplitudes/slopes of 6 curves for the sine case
(three for each gesture) and 12 curves for the linear case. These curves were manually fitted
curves to 6 signals of high quality resp. 12 signals of lower quality.

Sine/high quality
A ∼ N (0.8, 0.1) (7.14)

P ∼ N (250, 25) (7.15)
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Linear/lower quality
A ∼ N (0.7, 0.2) (7.16)

P ∼ N (250, 25) (7.17)

Furthermore, we could have sampled all other unknown constants in the physical mea-
surement model, but this would make things too complicated for this simple approach.
Instead we find a Minimum Mean Square estimate of the parameters for each of the two
gestures using the measurement model to fit a curve taken as the mean of the same signals
used in the sampling of the gesture and amplitude nodes.

Hence, our domain of gestures is based on an average of 18 gestures (aTraining Set
as it forms our prior knowledge) and it will therefore influence our results significantly.
Optimally, we would like to do our parameter estimation based on a much larger number
of signals without having to constrain ourselves to ’nice’ manually selected signals, but the
data recording showed that it was quite difficult to perform these movements in a consistent
manner, especially keeping the signal length fairly constant and to make a smooth move-
ment as one tends to make somewhat ’shaky’ movements, i.e. the filtering had a significant
influence as they were too strong for some signals removing part of the signal and too soft
for others leaving noise and artifacts.

7.4 Results

As EMG measurements we used values from electrode pair 2 and 6 (see Figure 7.2) as they
proved to be the most useful electrodes (most signal value and least noise).

An example of a data recording is shown in Figure 7.5, 7.6 and 7.7 illustrating the
glove measurements (hidden values in the DBN) and the EMG measurements for the two
electrodes used in the DBN in their raw and filtered form in Figure 7.8 and 7.9. In Figure
7.10 the EMG measurements are plotted in the same figure, notice how the signals overlap.

With the previous experiments in mind we limit ourselves to the use of the PF, PFEKF
and PFUKF filters. Moving on to a real-life problem as opposed to the simulations we ac-
knowledge the fact that our model structure, process/measurement equations and assump-
tions are very simple and approximate we find it useless to apply EKF and UKF as they
have proven to be most valuable in scenarios where the model resembles the ground truth.
Furthermore, we do not apply a Metropolis-Hastings move in any of the particle filters as
this is a very computationally expensive procedure and is most valuable when we expect
the filters to favor single particles and need to jitter the particles or move them to regions
of higher likelihood. In this initial approach there is no guarantee that a MH move will
improve our estimates and the computational trade-off is too large using signals of length
∼ 250.
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Figure 7.5: Example of glove angle and filtered glove angle measurements
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Figure 7.6: Example of angular glove velocity and filtered angular glove velocity measure-

ments
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Figure 7.7: Example of angular glove acceleration and filtered angular glove acceleration

measurements
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Figure 7.8: Example of raw and filtered value of abs. EMG measurements from electrode

on the upper side of the lower arm, electrode 2
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Figure 7.9: Example of raw and abs. filtered EMG measurements from electrode on the

underside of the lower arm, electrode 6
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We do not discard PF and PFEKF based on our previous experiences. First of all,
PFEKF and PFUKF are computationally much more expensive than PF, so if PF is able to
estimate within reasonably boundaries we might not need to use the advanced algorithms.
Secondly, evaluating on the likelihood only, PF will be a good indicator of the validity of
our model as it is not able to move its predictions using a Kalman gain as PFEKF and
PFUKF. PFEKF was included to make a non-simulated comparison of its performance
with the PFUKF without the knowledge of the ’true’ models. Furthermore, even though
the measurement model is a first order relation, the process model is only a first order model
when the angular acceleration proposal is linear. When the proposal is a sine curve, PFEKF
relies on a first order Taylor approximation of the posterior mean and variance whereas
PFUKF uses the true non-linear models (see sec. 4.1 and 4.2 resp.) and approximates the
state random variable.

In Figure 7.11 a first (as used in EKF) and third order (for comparison) Taylor series
approximation to a sine curve is shown. It is clear that a first order approximation is very
poor and introduce estimation error in PFEKF.

Finally, the network structure may play a significant role as mentioned previously.
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Figure 7.11: First and third order (for comparison) Taylor series approximation of a sine

curve

The objective of these experiments is three-some:

• The main objective is to test whether any of our filters is able to recognize the per-
formed gesture and estimate the glove measurements without too much error using
our simple model
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• Secondly, we would like to compare the PF, PFEKF and PFUKF filters on a real-life
problem as they are very different approaches

• Finally, we would like to investigate the influence of the two angular acceleration
proposal curves using signals of different quality

All tests were performed on signals not included in the Training Set and were con-
ducted using residual resampling and 500 particles as the signals are computationally de-
manding with signals of length∼ 250. The final results were based on an average over 5
runs and in all experiments the valuesα = 1, β = 0 andκ = 0 used in the UKF (see sec.
4.2) were used.

Our experiments are divided into subcategories to cross-validate our signals vs. angu-
lar acceleration curve proposal and gesture, i.e. a total of 8 tests as listed below:

- Open/close hand gesture, high-quality signal, sine curved angular acceleration process
model

- Open/close hand gesture, high-quality signal, linear angular acceleration process model

- Open/close hand gesture, semi-quality signal, sine curved angular acceleration process
model

- Open/close hand gesture, semi-quality signal, linear angular acceleration process model

Each case is treated in the order listed.

7.4.1 Open/close hand gesture, high-quality signal, sine curved angu-

lar acceleration process model

Using an open hand signal of high quality and proposing a sine curve as angular accelera-
tion process model, we get the results shown in Table 7.1 showing the Mean Square Error
of the glove measurement estimates and the percentage of correct gesture classifications.
The tracking plot of the glove measurement estimates vs. their true values is shown in
Figure 7.12.

The results using a close hand signal are shown in Table 7.2 and Figure 7.13.

Initially, by inspection of Table 7.1, Table 7.2 and Figure 7.12, Figure 7.13, we see
that PFEKF and PFUKF are able to recognize the performed gesture in more than 93% of
the time, which is more than acceptable. We also notice that both filters are able to track the
angle with low estimation error though PFUKF and is the most accurate. In comparison,
PF makes consistently less accurate estimates and in the close hand signal the estimates are
rather poor.
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Algorithm RMS True gesture recog.

Angle Vel. [1e-3] Acc. [1e-3]

Particle Filter - generic (PF) 0.0650 0.6363 0.0137 92.8%

PF - EKF proposal (PFEKF) 0.0521 1.0432 0.0095 93.6%

PF - UKF proposal (PFUKF) 0.0494 0.2557 0.0056 94.1%

Table 7.1: RMS values of state estimates and true gesture recognition percentage using a

high quality open hand signal and proposing a sine curve as angular acceleration process

model
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Figure 7.12: True angular, angular velocity and angular acceleration values vs. PF, PFEKF

and PFUKF estimates resp. using a high quality open hand signal and proposing a sine

curve as angular acceleration process model
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Algorithm RMS Correct gesture recog.

Angle Vel. [1e-3] Acc. [1e-3]

Particle Filter - generic (PF) 0.3283 2.0025 0.0165 72.5%

PF - EKF proposal (PFEKF) 0.0731 1.0536 0.0224 93.7%

PF - UKF proposal (PFUKF) 0.0455 0.3245 0.0066 95.2%

Table 7.2: RMS values of state estimates and true gesture recognition percentage using a

high quality close hand signal and proposing a sine curve as angular acceleration process

model
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Figure 7.13: True angular, angular velocity and angular acceleration values vs. PF, PFEKF

and PFUKF estimates resp. using a high quality close hand signal and proposing a sine

curve as angular acceleration process model
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The estimation of the angular velocity shows a somewhat different picture as only
PFUKF is able to track the angular velocity within reasonable error boundaries. PFEKF’s
estimates of the state covariance are lower than PFUFK’s due to the 1. order Taylor series
approximation of the sine curve angular acceleration proposal and the missing link from
the angular velocity node to the measurements causing the Jacobian of the measurement
model w.r.t. this variable to be 0, see sec. 4.5. This implies that PFEKF is not able to
correct its estimates of the angular acceleration as much as necessary. The error introduced
in the angular acceleration estimates thus affects the estimates of the angular velocities as
these arebasedon the angular acceleration estimates, see Figure 7.4.

Furthermore, the missing link from the angular velocity node to the measurements and
the corresponding Jacobian of the measurement model implies that PFEKF is not updating
the estimates of the angular velocity, see sec. 4.5. Hence, the angular velocity is based
entirely on the angular acceleration value and follows the angular acceleration estimates
nicely as seen in Figure 7.12, but this also implies that when ever it makes a poor estimate
of the angular acceleration the error is directly transferred to the angular velocity. From
t ∼ 60 in Figure 7.12 and fort ∼ 150−200 in Figure 7.13, the PFEKF angular acceleration
estimates are consistently too high resp. too low and the angular velocity estimates become
very inaccurate.

In PF, the poor angular velocity estimates are partly due to inaccurate angular acceler-
ation estimates, but also due to the selected network structure. As explained previously, the
missing link from the angular velocity node to the measurements implies that PF is weight-
ing its particles based primarily on the angle and the angular acceleration estimates in the
calculation of the likelihood and only weights the angular velocity indirectly through its
connection to the angle. However, the missing link has less influence in PF than in PFKEF
and the PF estimates of the angular velocity are thus more accurate than PFKEF’s in the
open handcase. In theclose handcase, PFEKF’s estimates are saved by the more accurate
estimates of the angular acceleration compared to PF except fort ∼ 150− 200.

Once again, PFUKF makes the most accurate estimates of all hidden nodes taking
advantage of its ability to capture the true posterior mean and covariance to second order
and thus making a much better estimate of the sine curve. Furthermore, as demonstrated
in the simple one-dimensional simulation in sec. 5 and the watertank problem in sec. 6.3.3
it is not suffering from the chosen network structure with its ’missing’ link between the
angular velocity node and the observation node. Finally, as also demonstrated in sec. 5 and
6.3.7 it is a much more robust filter when the proposed process and measurement models
are far from the ’true’ models.
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7.4.2 Open/close hand gesture, high-quality signal, linear curved an-

gular acceleration process model

Using an open hand signal of high quality and proposing a linear curve as angular acceler-
ation process model, we get the results shown in Table 7.3 showing the Mean Square Error
of the glove measurement estimates and the percentage of correct gesture classifications.
The tracking plot of the glove measurement estimates vs. their true values is shown in
Figure 7.14.

The results using a close hand signal are shown in Table 7.4 and Figure 7.15.

Algorithm RMS Correct gesture recog.

Angle Vel. [1e-3] Acc. [1e-3]

Particle Filter - generic (PF) 0.2625 1.0761 0.0294 80.3%

PF - EKF proposal (PFEKF) 0.0492 0.7465 0.0226 93.4%

PF - UKF proposal (PFUKF) 0.0460 0.6453 0.0184 93.9%

Table 7.3: RMS values of state estimates and true gesture recognition percentage using a

high quality open hand signal and proposing a linear curve as angular acceleration process

model

Algorithm RMS Correct gesture recog.

Angle Vel. [1e-3] Acc. [1e-3]

Particle Filter - generic (PF) 0.7852 5.072 0.0384 74.4%

PF - EKF proposal (PFEKF) 0.0485 1.2955 0.0260 93.4%

PF - UKF proposal (PFUKF) 0.0476 0.9552 0.0227 94.7%

Table 7.4: RMS values of state estimates and true gesture recognition percentage using a

high quality close hand signal and proposing a linear curve as angular acceleration process

model

When we compare the results of the sine curve proposal with the linear proposal, we
notice how the much simpler linear proposal has a dramatic influence on the performance
of the generic particle filter as the RMS values increase significantly all over and the recog-
nition percentage drops to around 80%. This implies that our proposal is too simple to be of
much use, when we are working on high quality signals and can not update our estimates.
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Figure 7.14: True angular, angular velocity and angular acceleration values vs. PF, PFEKF

and PFUKF estimates resp. using a high quality open hand signal and proposing a linear

curve as angular acceleration process model
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Figure 7.15: True angular, angular velocity and angular acceleration values vs. PF, PFEKF

and PFUKF estimates resp. using a high quality close hand signal and proposing a linear

curve as angular acceleration process model
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The linear curve proposal also affect the results of the PFEKF and PFUKF algorithms,
but in a less dramatic way. The angular acceleration estimates are less accurate in both cases
and the angular velocity estimates are also less accurate in the PFUKF case, but actually
more accurate in the PFEKFopen handcase compared to the sine curve proposal. This is
because the angular velocity estimates are based on the angular acceleration estimates that
are too low compared to the ground truth and even though they are less accurate, they make
the angular velocity estimates smaller and thus closer to the ground truth.

It is also interesting to notice how the estimates of the angle have not changed much
for PFKEF and PFUKF with the linear curve proposal. Both algorithms seem to be able to
correct the angle estimates fairly independent of the choice of angular acceleration curve
proposal as the angle itself is directly connected to the measurements. In comparison, PF
does not update its estimates and is not able to recognize the true gesture using a poor
angular acceleration curve proposal.

7.4.3 Open/close hand gesture, semi-quality signal, sine curved angu-

lar acceleration process model

Using an open hand signal of semi-high quality and proposing a sine curved angular ac-
celeration process model, we get the results shown in Table 7.5 showing the Mean Square
Error of the glove measurement estimates and the percentage of correct gesture classifica-
tions. The tracking plot of the glove measurement estimates vs. their true values is shown
in Figure 7.16.

The results using a close hand signal are shown in Table 7.6 and Figure 7.17.

Algorithm RMS Correct gesture recog.

Angle Vel. [1e-3] Acc. [1e-3]

Particle Filter - generic (PF) 0.2067 1.0752 0.0219 83,0%

PF - EKF proposal (PFEKF) 0.0941 3.0848 0.0194 94,0%

PF - UKF proposal (PFUKF) 0.0584 1.0070 0.0288 94,1%

Table 7.5: RMS values of state estimates and true gesture recognition percentage using

a semi-high quality open hand signal and proposing a sine curve as angular acceleration

process model
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Figure 7.16: True angular, angular velocity and angular acceleration values vs. PF, PFEKF

and PFUKF estimates resp. using a semi-high quality open hand signal and proposing a

sine curve as angular acceleration process model

Algorithm RMS Correct gesture recog.

Angle Vel. [1e-3] Acc. [1e-3]

Particle Filter - generic (PF) 0.5827 2.6583 0.0384 58,0%

PF - EKF proposal (PFEKF) 0.4045 2.8022 0.0312 59,6%

PF - UKF proposal (PFUKF) 0.0555 0.9170 0.0244 96,4%

Table 7.6: RMS values of state estimates and true gesture recognition percentage using

a semi-high quality close hand signal and proposing a sine curve as angular acceleration

process model
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First, we notice the effect of the poor angular acceleration process model as the PF
estimates are very inaccurate all over. PFEKF and PFUKF are also suffering from the poor
process model, especially PFEKF in the estimation of the angular velocity in the open hand
signal and the angle and angular velocity in the close hand signal. PFUKF’s ability to up-
date the angular velocity estimates is once again demonstrated and affects the estimation of
the angle significantly. The results might imply that in general (not distinguishing between
signals of different quality) we are better off using a simpler angular acceleration curve
process model as the more complex sine curve process model introduces significant error
when the signal is of lower quality.

However, we also notice that the angular estimation in PFUKF is still very accurate
and the gesture recognition percentage in PFEKF and PFUKF remains above 90% showing
that the choice of angular acceleration process model does not influence the angle estimates
significantly. The angular velocity estimates in PFUKF are also rather accurate whereas the
estimates in PFEKF suffer from the poor angular acceleration estimates and the missing
link.
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Figure 7.17: True angular, angular velocity and angular acceleration values vs. PF, PFEKF

and PFUKF estimates resp. using a semi-high quality close hand signal and proposing a

sine curve as angular acceleration process model
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7.4.4 Open/close hand gesture, semi-quality signal, linear curved an-

gular acceleration process model

Using an open hand signal of semi-high quality and proposing a linear curved angular ac-
celeration process model, we get the results shown in Table 7.5 showing the Mean Square
Error of the glove measurement estimates and the percentage of correct gesture classifica-
tions. The tracking plot of the glove measurement estimates vs. their true values is shown
in Figure 7.16.

The results using a close hand signal are shown in Table 7.6 and Figure 7.17.

Algorithm RMS Correct gesture recog.

Angle Vel. [1e-3] Acc. [1e-3]

Particle Filter - generic (PF) 0.1441 0.9416 0.0190 89,4%

PF - EKF proposal (PFEKF) 0.0635 0.6256 0.0207 94,1%

PF - UKF proposal (PFUKF) 0.0612 0.5946 0.0127 94,2%

Table 7.7: RMS values of state estimates and true gesture recognition percentage using a

semi-high quality open hand signal and proposing a linear curve as angular acceleration

process model

Algorithm RMS Correct gesture recog.

Angle Vel. [1e-3] Acc. [1e-3]

Particle Filter - generic (PF) 0.5261 2.6449 0.0391 58,1%

PF - EKF proposal (PFEKF) 0.0572 1.4562 0.0285 96,1%

PF - UKF proposal (PFUKF) 0.0569 0.8239 0.0198 96,4%

Table 7.8: RMS values of state estimates and true gesture recognition percentage using a

semi-high quality close hand signal and proposing a linear curve as angular acceleration

process model



7.4. RESULTS 125

0 50 100 150 200 250
−1

−0.5

0

0.5

An
gle

 [ra
d]

Filter estimates (posterior means) vs. true state − Position

0 50 100 150 200 250
−5

0

5

10
x 10

−3

An
gu

lar
 ve

loc
ity

 [ra
d/s

]

Filter estimates (posterior means) vs. true state − Angular velocity

0 50 100 150 200 250
−2

0

2
x 10

−4

An
gu

lar
 ac

ce
ler

ati
on

 [ra
d/s

2 ]

Time

Filter estimates (posterior means) vs. true state − Angular acceleration

True x
PF estimate
PFEKF estimate
PFUKF estimate

Figure 7.18: True angular, angular velocity and angular acceleration values vs. PF, PFEKF

and PFUKF estimates resp. using a semi-high quality open hand signal and proposing a

linear curve as angular acceleration process model
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Substituting the sine curve process model with a linear curve has a significant effect on
the accuracy of the state estimates. Especially PF in the open hand signal takes advantage
of the much simpler process model that does not ask for a high quality signal with assump-
tions of a sine formed angular acceleration curve. However, it still fails to make accurate
estimates in the close hand signal which implies that using a simple angular acceleration
process model, improved estimation accuracy isnotguaranteed, but depends heavily on the
signal and if PF is able to sample in areas of high likelihood. A higher number of particles
or a MC step might improve the situation.

PFEKF and PFUKF also show comparable or as in most cases increased estimate
accuracy with reference to the previous experiment. Most dramatic improvements are seen
in the angle estimates in PF and the angle and angular velocity estimates on PFEKF where
the estimates were very poor using the sine curve process model.

The outcome is a highly improved gesture recognition percentage for PF and slightly
improved results for PFEKF and PFUKF as the recognition percentages for these algo-
rithms were already very high.

7.5 Discussion

In conclusion, we notice that once again PFUKF seems to outperform PF and PFEKF in
almost every instance. Its superiority is especially evident in the estimation of the angular
velocity where PF and PFEKF fail as the angular velocity is not directly linked to the
observation node. It is also a much more accurate estimator when the proposed process
model is vague and not able to account for the generation of the ground truth.

As a consequence, we note that the network and process/measurement model design
is very critical for the effectiveness of PF and PFEKF, but less significant for PFUKF.

Furthermore, we notice that our proposed network structure and process/measurement
models need improvement as we are not able to make accurate estimates using PF and
PFEKF. Especially PF is a good indicator of the validity of the chosen network/models as
the algorithm does not update its estimates and thus relies heavily on a well chosen net-
work/model. However, it seems as if our proposed network/models is adequate enough to
make reliable, accurate estimates using PFUKF as we are able to track all glove measure-
ments and especially recognize the performed gesture with acceptable error margin.
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To improve the model, we suggest that the angular velocity node is linked to the mea-
surements for several reasons: First of all, the structure would be a great advantage for
PF and PFEKF as explained earlier. Secondly, we notice in Figure 7.7 that our filtering of
the angular acceleration values might be the reason for observing app. sine curved angular
acceleration curves. If we take a look at the original angular acceleration curve (subplot
1) we notice an indication of a curve that could be divided into three: First the angular
acceleration increases, then it is app. constant (besides from the dip that could be artifacts)
and then it decreases. Hence, we have indications that we need to improve our data acqui-
sition and our filtering, that we might need a more complex angular acceleration process
model and that we definitively need to link the angular velocity node to the observation
node. And it does seem intuitively plausible that there is a relation between the angular
velocity and the measured EMG if we extend our mechanical view of muscular activity.
When the muscles fibres are extended, it is not a frictionless movement which suggests that
there is proportionality between the force necessary to move the wheel and the velocity of
the wheel: Higher velocity implies increased friction and thus more force is needed.



Chapter 8

Conclusion

In this thesis we have made a theoretical treatment of the Extended Kalman Filter (EKF),
Unscented Kalman Filter (UKF), generic Particle Filter (PF, a.k.a. condensation, survival
of the fittest, bootstrap filter, SIR, sequential Monte Carlo, etc.), Particle Filter with MCMC
steps (PFMC), Particle Filter with EKF proposal (PFEKF) and MCMC steps (PFEKFMC),
Particle Filter with UKF proposal (PFUKF) and MCMC steps (PFUKFMC).

We have also provided pseudo-code for implementations of all filtering techniques.

In our practical applications we have applied the different filters to a 2T-DBN in a sim-
ple simulation of a one-dimensional state estimation problem with a measurement model
consisting of a first, second and third order stage. First, we experimented using the true pro-
cess and measurement models and added Gaussian process and measurement noise which is
the basic noise assumption of EKF and UKF. We showed how the EKF and UKF performed
equally well in the first order stage, where EKF’s first order Taylor series approximation
was adequate to capture the true posterior mean and covariance (of the Gaussian approxi-
mation to the true posterior). In the second and third order stages, UKF was EKF superior
due to its ability to completely capture the true posterior mean and variance to second order
(of the Gaussian approximation to the true posterior).

Furthermore, it was shown that PFUKF was capable of saving the poor estimates from
the core UKF by sampling from a Gaussian distribution with mean and variance proposed
by UKF. In this scenario PF did not perform as well using a fairly low number of particles,
but it was shown how the use of a Markov transition kernel could move the particles toward
regions of higher likelihood and improve the estimates of PF. Finally, PFUKF proved to be
by far the best filter of all and did not seem to gain much using the computationally expen-
sive MCMC step. PFEKF and PFEKF was not capable of improving the EKF estimates as
it was sampling from a proposal distribution with low, inaccurate variance.
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Next, we violated the Gaussian noise assumption of EKF and UKF and draw process
noise samples from a Gamma distribution. This scenario clearly demonstrated the low
flexibility of EKF and UKF and showed that PF and especially PFMC was able to outper-
form these filters when the Gaussian assumption was violated. Furthermore, it was now
even more obvious that the PFUKF (PFUKFMC) was the most reliable, robust and flexible
filter.

Finally, we used a process model different from the true one and demonstrated how
PFUKF (PFUKFMC) was the only filter to make accurate estimates. This was the most
important indication of the superiority of this filter as most real-life applications involves
approximations to the ’true’ (unknown) process and measurement models.

Next, we applied 6 of the 8 filters to a 2T-DBN simulation of a watertank problem.

We commented on implementational issues as well as parameter selections and ini-
tialization issues.

Initially, we compared two network designs and showed that PF and EKF only made
good estimates of those continuous state variables that were connected directly to the ob-
servation nodes. UKF was able to update all state space variables regardless of their con-
nection to the observation nodes and UKF thus performed equally well in both networks.

On behalf of this experiment, one network structure was discarded and the EKF based
algorithms not used in the remaining experiments.

Next, we experimented using an increasing number of particles. Even though we
experimented with a relatively small simulation time, we observed how PF and PFMC
improved their tracking and estimation using an increased number of particles as the dis-
crete failure nodes and the continuous state variables are updated simultaneously. We also
noticed how UKF and PFUKF were able to track the true failure nodes and make more ac-
curate estimates of the continuous state variables using a smaller number of particles than
PF and PFMC. Finally, we observed that if we used enough particles to track the discrete
failure nodes, the PFUKF could be less accurate than those obtained using core UKF as the
UKF estimates were so close to the true state values that further sampling would move the
sample mean away from the true state mean. This could be avoided using a large number
of subparticles.

In the noise experiments, changing both process and measurement noise proposals did
not influence the continuous state mean estimates using UKF. However, the UKF continu-
ous state variance estimates increased with the size of the noise proposals. And the vari-
ance estimates depended more on the process noise proposal than the measurement noise
proposal. Experiments also indicated that PFUKF should sample using a small posterior
variance estimate, i.e. a small noise proposal, when UKF itself made accurate estimates to
avoid moving the sample mean away from the true state mean.
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The continuous state mean estimates using PF, PFMC, UKF and PFUKF were de-
pending much more on the measurement noise level than the level of process noise. Large
measurement noise levels made the UKF estimates poor and PFUKF was able to move the
particles towards the true state, i.e. reducing the RMSE. Both PF and PFMC were perform-
ing worse than UKF and PFUKF with respect to RMSE and the number of wrong failure
estimates for all tests with different measurement noise levels.

Finally, we experimented using a measurement model different from the true one by
adding 5% to all the flow estimates. Again, PFUKF was capable of making more accurate
state estimates than UKF when the algorithms were not working under optimal conditions.
Furthermore, UKF and PFUKF were making more accurate state estimates than PF and
PFMC.

Section 6.3.8 showed that we were able to track the discrete failure nodes with a fairly
low number of particles using UKF. These results are to some extent is comparable with the
work of Koller and Lerner in [21] in which a core PF algorithm is applied to the watertank
problem using the old network structure, see Figure 6.2. We have shown that a different
network structure and the use of UKF and PFUKF significantly improves the ability to
track the true failure nodes and estimate the continuous state variables with a low number
of samples.

In our real life application we applied PF, PFEKF and PFUKF to a 2T-DBN with angle,
angular velocity and angular acceleration of a moving finger as hidden state variables and
EMG measurements as observations. We showed that we were able to estimate the state
variables and track the discrete valued gesture, amplitude and period nodes using a very
simple mechanical model as process and measurement model. Especially, we were able
to identify the performed gesture in more than 90% of the time using PFUKF. It was also
shown that once again PFUKF was the most accurate filter in all instances and especially it
did not suffer from the choice of network structure in which the angular velocity node is not
directly connected to the observation node, see Figure 7.4. Furthermore, it was the most
robust algorithm with regards to the choice of angular acceleration curve process model.

It was also realized that our model needs to be improved and a suggestion was made
in which the angular velocity node is directly connected to the observation node proposing
a relation between the angular velocity and the measured EMG.
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Appendix A

Filtering

In general, filtering is the problem of estimating the state of a system using a set of obser-
vations that becomes available on-line. This problem is solved by modelling the evolution
of the system and the noise on the measurements. There exist many modelling strategies
and filtering algorithms, but the resulting models most often show complex non-linearities
and non-Gaussian distributions which rules out analytical solutions.

A.1 Dynamic State Space Model

The general state space model (without control input) consists of astate transition or state
processmodel anda state measurementmodel

p(xt|xt−1) (A.1)

p(yt|xt) (A.2)

wherext ∈ <nx are the states (hidden variables or parameters) of the system at timet and
yt ∈ <ny are the observations. The state transitions are a first order Markov process and
the observations are assumed to be independent given the states.

For example, a non-linear, non-Gaussian model can be expressed as

xt = f(xt−1, vt−1) (A.3)

yt = h(xt, nt) (A.4)

with yt ∈ <ny being the output observations,xt ∈ <nx the states of the system,vt ∈ <nv

the process noise andnt ∈ <nn the measurement noise.
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The mappingsf : <nx × <nv andh : <ny × <nn represent the deterministic process
and measurement models andp(x0) is the prior distribution at timet = 0.

Our goal is to compute the filtering densityp(xt|y1:t) recursively to avoid computing
the complete posterior densityp(x0:t|y1:t). Thus we avoid keeping track of the complete
history of the states and are still able to compute estimates of the mean, confidence intervals
etc. of the systems states.

A.2 Extended Kalman Filter

In the Extended Kalman Filter (EKF) the standard Kalman filter (for linear systems) is ap-
plied to non-linear systems with additive white noise by continually updating a linearization
around the previous state estimate, starting with an initial guess, i.e. it is a minimum mean-
square-error (MMSE) estimator based on the Taylor series expansion of the non-linear
functionsf andh around the estimates̄xt|t−1 of the statesxt, e.g.

f(xt) = f(x̄t|t−1) +
∂f(xt)

∂xt

∣∣∣(xt=x̄t|t−1)(xt − x̄t|t−1) + . . . (A.5)

Using only the linear expansion terms, the update equations for the meanx̄ and co-
varianceP of the Gaussian approximation to the posterior distribution of the states become

x̄t|t−1 = f(x̄t−1, 0) (A.6)

Pt|t−1 = FtPt−1FT
t + GtQtG

T
t (A.7)

K t = Pt|t−1HT
t [UtRtUT

t + HtPt|t−1HT
t ]−1 (A.8)

x̄t = x̄t|t−1 + K t(yt − h(x̄t|t−1, 0)) (A.9)

Pt = Pt|t−1 − K tHtPt|t−1 (A.10)

whereK t is the Kalman gain,Q is the variance of the process noise (assumed to be zero-
mean Gaussian),R is the variance of the measurement noise (assumed to be zero-mean

Gaussian),Ft
4
= ∂f(xt)

∂xt

∣∣∣(xt=x̄t|t−1) andGt
4
= ∂f(vt)

∂vt

∣∣
(vt=v̄) are the Jacobians of the process

model andHt
4
= ∂h(xt)

∂xt

∣∣∣(xt=x̄t|t−1) andUt
4
= ∂h(nt)

∂nt

∣∣
(nt=n̄) are the Jacobians of the measure-

ment model.
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A.3 Unscented Kalman Filter

As the EKF only uses the first order terms of the Taylor series expansion of the non-linear
functions, it may introduce significant errors in the estimations of the posterior distribu-
tion of the states. Especially if the models are highly non-linear where the local linearity
assumptions do not hold.

The Unscented Kalman Filter (UKF, [20]) is a recursive MMSE estimator that does
not approximate the non-linear process and measurement models, but uses the true models
and approximates the distribution of the state random variable. The state distribution is
still represented by a Gaussian random variable, but by a minimal set of deterministically
chosen sample points that completely capture the true mean and covariance of the Gaussian
random variable. When this variable is propagated through the true non-linear system, it
captures the true mean and covariance to the second order for any non-linearity.

A.3.1 Unscented Transformation

To calculate the statistics of a random variable undergoing a non-linear transformation,
as required by the UKF, the unscented transformation (UT) is used. UT is based on the
principle that it is easier to approximate a probability distribution than an arbitrary non-
linear function ([19]).

Let x be anx dimensional random variable propagated through an arbitrary non-linear
functiong to generatey

y = g(x) (A.11)

Assumex to have mean̄x and covariancePx. The first two moments ofy are calculated by
first deterministically choosing2nx + 1 weighted samples orsigma pointsSi = {Wi,χi}
so as to completely capture the true mean and covariance of the prior random variablex as
follows ([26])

χ0 = x̄ W0 = κ/(nx + κ) i = 0

χi = x̄ +
(√

(nx + κ)Px

)
i

Wi = 1/{2(nx + κ)} i = 1, . . . , nx

χi = x̄−
(√

(nx + κ)Px

)
i

Wi = 1/{2(nx + κ)} i = nx + 1, . . . , 2nx

(A.12)

whereκ is a scaling parameter and
(√

(nx + κ)Px

)
i

is the i’th row or column of the

matrix square root of(nx + κ)Px andWi is the weight associated with thei’th point s.t.∑2nx

i=0 Wi = 1. The sigma points are propagated through the non-linear function

Y i = g(χi), i = 0, ..., 2nx (A.13)
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The estimated mean and covariance ofy is

y =
2nx∑
i=0

WiY i (A.14)

P y =
2nx∑
i=0

Wi

(
Y i − y

)(
Y i − y

)T

(A.15)

which are accurate to the second order (third order for Gaussian priors) of the Taylor series
expansion ofg(x) for any non-linear function ([26]). The errors introduced in higher order
terms are scaled by the parameterκ.

Figure A.1: Unscented Transformation vs. the linearization approach in EKF. 5000 Gaus-

sian distributed samples are propagated through a non-linear function and the true posterior

mean and covariance is calculated in the left plot. In the middle plot, the posterior mean

and covariance is approximated by the linearization approach in EKF with significant er-

ror. Finally, the right plot shows the much more accurate UT estimates with almost no bias

error (from [26]).

In the above selection scheme, the radius of the sphere bounding the sigma points
increases as the dimension of the state space increases. Thus, in order to preserve the true
mean and covariance, we are sampling non-local effects, which may cause problems if we
are working with severe non-linearities. To address this matter, the sigma points can be
scaled towards or away from the mean of the prior distribution depending of the value ofκ:
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The distance of thei’th sigma point fromx̄, |χi − x̄|, is proportional to
√

(nx + κ).
With κ = 0, the distance is proportional to

√
nx, with κ > 0 the points are scaled away from

x̄ and withκ < 0 the points are scaled towardsx̄. In the case ofκ = 3−nx, the dimensional
scaling invariance is obtained by cancelling the effect ofnx, but if κ = 3 − nx < 0, the
weight W0 < 0 may cause the covariance to be non-positive semidefinite. To solve this
problem, the scaled unscented transformation (SUT) was developed ([20]).

A.3.2 The scaled unscented transformation

In SUT, the original sigma points are replaced by a transformed set given by

χ
′
i = χ0 + α(χi − χ0), i = 0, . . . , 2nx (A.16)

whereα is a positive scaling parameter. Choosing a low value forα decreases the effect
of higher order terms. By applying the UT to an auxiliary random variable propagation
problem related to the original model of equation (A.11) as given below

z = g’(x) =
g[x̄ + α(x− x̄)]− g(x̄)

α2
+ g(x̄) (A.17)

the sigma point scaling can be controlled without the risk of a non-positive semidefinite
covariance matrix. The Taylor series expansion ofz̄ andPz corresponds to that of̄y and
Py to the second order and the higher order term scaling determined byα. Thus, the same
accuracy is obtained with the scaled transformation with the advantage that higher order
terms can be appropriately scaled by the choice ofα.

Combining the sigma point selection and scaling into a single step as follows can
reduce the number of calculations.

Let
λ = α2(nx + κ)− nx (A.18)

and select the sigma points using

χ0 = x̄

χi = x̄ +
(√

(nx + λ)Px

)
i
, i = 1, ..., nx

χi = x̄−
(√

(nx + λ)Px

)
i
, i = nx + 1, ..., 2nx

W
(m)
0 = λ/(nx + λ)

W
(c)
0 = λ/(nx + λ) + (1− α2 + β)

W
(m)
i = W

(c)
i = 1/{2(nx + λ)}, i = 1, . . . , 2nx

(A.19)
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The weighting on the zero’th sigma point directly affects the errors in the fourth and
higher order terms for symmetric prior distributions ([20]). As the parameterβ affects the
weighting of the zero’th sigma point for calculation of the covariance, this parameter allows
for control of higher order errors if prior knowledge of the distribution ofx is available.

In summary, the SUT is as follows

1. Chooseκ ≥ 0 to ensure positive semi-definiteness of the covariance matrix. Choose
0 ≤ α ≤ 1 to control the size of the sigma point distribution which should not be
too large to avoid sampling non-local effects. Choose the weighting termβ ≥ 0 to
incorporate prior knowledge (for Gaussian prior the optimal choice isβ = 2, [26]).

2. Compute the2nx + 1 scaled sigma points and weightsS = {W ,χ} using (A.18)
and (A.19).

3. Propagate the sigma points using (A.13).

4. Compute the mean̄y and covariancēPy using (A.14).

A.3.3 Implementation

In the Unscented Kalman Filter (UKF), the SUT is applied to the state random variable
defined as the concatenation of the original state and noise variables, i.e.xa

t =
[
xT

t vT
t nT

t

]T

yielding a sigma point matrixχa
t . The complete pseudo algorithm is given below

1. Initialization

x̄0 = E[x0] (A.20)

P0 = E[(x0 − x̄0)(x0 − x̄0)
T ] (A.21)

x̄a
0 = E[xa] = [x̄T

0 0 0]T (A.22)

Pa
0 = E[(xa

0 − x̄a
0)(x

a
0 − x̄a

0)
T ] =




P0 0 0
0 Q 0
0 0 R


 (A.23)

2. For t ∈ {1, . . . ,∞}
(a) Calculate sigma points

χa
t−1 =

[
x̄a

t−1 x̄a
t−1 ±

√
(na + λ)Pa

t−1

]
(A.24)
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(b) Time update

χx
t|t−1 = f(χx

t−1,χ
v
t−1) (A.25)

x̄t|t−1 =
2na∑
i=0

W
(m)
i χx

i,t|t−1 (A.26)

Pt|t−1 =
2na∑
i=0

W
(c)
i [χx

i,t|t−1 − x̄t|t−1][χ
x
i,t|t−1 − x̄t|t−1]

T (A.27)

γt|t−1 = h(χx
t|t−1,χ

n
t−1) (A.28)

ȳt|t−1 =
2na∑
i=0

W
(m)
i γv

i,t|t−1 (A.29)

(c) Measurement update

Pỹtỹt
=

2na∑
i=0

W
(c)
i [γi,t|t−1 − ȳt|t−1][γi,t|t−1 − ȳt|t−1]

T (A.30)

Pxtyt
=

2na∑
i=0

W
(c)
i [χi,t|t−1 − x̄t|t−1][γi,t|t−1 − ȳt|t−1]

T (A.31)

K t = Pxtyt
P−1

ỹtỹt
(A.32)

x̄t = x̄t|t−1 + K t(yt − ȳt|t−1) (A.33)

Pt = Pt|t−1 − K tPỹtỹt
KT

t (A.34)

wherexa =
[

xT vT nT
]T

, χa =
[

(χx)T (χv)T (χn)T
]T

, λ is the composite scal-
ing parameter,na = nx +nv +nn, Q is the process noise covariance,R is the measurement
noise covariance,K is the Kalman gain andWi are the weights.

From a computational perspective, the UKF is superior to EKF, as it does not require
explicit calculation of Jacobians (or Hessians), but computes a covariance matrix square
root which can be done using a Cholesky factorization in ordern3

x/6. However, by ex-
pressing the covariance matrices recursively, this can be done in ordern2

x using a recursive
update to the Cholesky factorization ([26]).
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A.4 Particle Filtering

EKF and UKF both rely on a Gaussian approximation. In this section we present a method
that does not require this assumption, but presents other problematic issues. To overcome
some of these problems, the particle filtering strategy is combined with EKF and UKF in
section A.7 and A.8 resp.

A.4.1 Monte Carlo simulation

In Monte Carlo simulation, the posterior distribution is approximated by an empirical esti-
mate computed using a set ofN weighted particles (samples){x(i)

0:t; i = 1, . . . , N} drawn
from the posterior distribution

p̂(x0:t|y1:t) =
1

N

N∑
1=1

δ
x

(i)
0:t

(dx0:t) (A.35)

whereδ(·) denotes the Dirac delta function. Hence, the expectation

E(gt(x0:t)) =

∫
gt(x0:t)p(x0:t|y1:t)dx0:t (A.36)

is approximated by

E(gt(x0:t)) =
1

N

N∑
i=1

gt(x
(i)
0:t) (A.37)

where the particlesx(i)
0:t are assumed to be i.i.d. Using the law of large numbers we get

E(gt(x0:t))
a.s.−−−−→

N→∞ E(gt(x0:t)) (A.38)

where a.s.−−−−→
N→∞ denotes almost surely converge.

If the posterior variance ofgt(x0:t) is bounded, i.e.varp(·|y1:t) (gt(x0:t)) < ∞ then

√
N

(
E(gt(x0:t))− E(gt(x0:t))

)
=⇒

N→∞ N (
0, varp(·|y1:t) (gt(x0:t))

)
(A.39)

where =⇒
N→∞ denotes convergence in distribution.
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A.4.2 Bayesian importance sampling

However, as it is often impossible to sample from the posterior density, we sample from a
known, easy-to-sample, proposal distributionq(x0:t|y1:t) and use the following substitution

E(gt(x0:t)) =

∫
gt(x0:t)

p(x0:t|y1:t)

q(x0:t|y1:t)
q(x0:t|y1:t)dx0:t

=

∫
gt(x0:t)

p(y1:t|x0:t)p(x0:t)

p(y1:t)q(x0:t|y1:t)
q(x0:t|y1:t)dx0:t

=

∫
gt(x0:t)

ωt(x0:t)

p(y1:t)
q(x0:t|y1:t)dx0:t (A.40)

whereωt(x0:t) are the un-normalized weights

ωt(x0:t) =
p(y1:t|x0:t)p(x0:t)

q(x0:t|y1:t)
(A.41)

The unknown normalizing densityp(y1:t) is removed as follows

E(gt(x0:t)) =
1

p(y1:t)

∫
gt(x0:t)ωt(x0:t)q(x0:t|y1:t)dx0:t

=

∫
gt(x0:t)ωt(x0:t)q(x0:t|y1:t)dx0:t∫
p(y1:t|x0:t)p(x0:t)

q(x0:t|y1:t)
q(x0:t|y1:t)

dx0:t

=

∫
gt(x0:t)ωt(x0:t)q(x0:t|y1:t)dx0:t∫

ωt(x0:t)q(x0:t|y1:t)dx0:t

=
Eq(·|y1:t)(ωt(x0:t)gt(x0:t))

Eq(·|y1:t)(ωt(x0:t))
(A.42)

whereEq(·|y1:t) means expectation over the proposal distributionq(·|y1:t).

Now, the expectation is approximated by

E(gt(x0:t)) =
1/N

∑N
i=1 gt(x

(i)
0:t)ω

(i)
t (x(i)

0:t)

1/N
∑N

i=1 ω
(i)
t (x(i)

0:t)

=
N∑

i=1

gt(x
(i)
0:t)ω̃t(x

(i)
0:t) (A.43)

where the normalized importance weightsw̃
(i)
t are given by

ω̃t =
ω

(i)
t∑N

j=1 ω
(i)
t

(A.44)

Estimate (A.43) is biased as it contains a ratio of estimates. Asymptotic convergence and a
central limit theorem forE(gt(x0:t)) is obtained using the following assumptions:
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1. x(i)
0:t is a set of i.i.d. samples drawn from the proposal distribution

2. The support of the proposal distribution includes the support of the posterior distri-
bution

3. E(gt(x0:t)) exists and is finite

4. ωt andωtg2
t (x0:t) over the posterior distribution exist and are finite

The fourth condition holds if the variance ofgt(x0:t) and the importance weights are
bounded ([3]), i.e. forN → ∞ the posterior density can be approximated arbitrarily well
by

p̂(x0:t|y1:t) =
N∑

i=1

ω̃
(i)
t δ

x(i)
0:t

(dx0:t) (A.45)

A.4.3 Sequential importance sampling

In this paper our goal is to perform filtering on the given models, i.e. to compute a se-
quential estimate of the posterior distribution at timet without modifying the previously
simulated statesx0:t−1 allowing proposal distributions of the form

q(x0:t|y1:t) = q(x0:t−1|y1:t−1)q(xt|x0:t−1, y1:t) (A.46)

Assuming the states follow a Markov process and that the observations are conditionally
independent given the states yields

p(x0:t) = p(x0)
t∏

j=1

p(xj|xj−1) and p(y1:t|x0:t) =
t∏

j=1

p(yj|xj) (A.47)

By substituting (A.47) into (A.41) we get a recursive estimate for the importance weights

ωt =
p(y1:t|x0:t)p(x0:t)

q(x0:t−1|y1:t−1)q(xt|x0:t−1, y1:t)

= ωt−1
p(y1:t|x0:t)p(x0:t)

p(y1:t−1|x0:t−1)p(x0:t−1)

1

q(xt|x0:t−1, y1:t)

= ωt−1
p(yt|xt)p(xt|xt−1)

q(xt|x0:t−1, y1:t)
(A.48)

Now, given a proposal distribution and a set of prior samples, we are able to sequentially
sample and evaluate likelihood, transition probabilities and importance weights leading to
estimates such as (A.40).
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A.4.4 Optimal proposal distribution

The tricky part of particle filtering is of course to come up with an appropriate proposal dis-
tribution. It has been shown that the optimal proposal distribution minimizing the variance
of the importance weights is ([10]):

Proposition 1 The proposal distributionq(xt|x0:t−1, y1:t) = p(xt|x0:t−1, y1:t) minimizes the

variance of the importance weights conditional onx0:t−1 andy1:t.

However, the transition prior

q(xt|x0:t−1, y1:t) $ p(xt|xt−1) (A.49)

is the most popular choice of proposal distribution (even though it gives higher variance as
it does not include the most recent observations) simply because it is easier to implement.
For an additive Gaussian process noise model the transition prior simplifies to

p(xt|xt−1) = N (f(xt−1, 0),Qt−1) (A.50)

As illustrated in figure A.2, only a few particles will dominate and have high importance
weight values by evaluation of the likelihood, if we do not use the latest available infor-
mation. Thus, it is very important that we move the particles towards regions of high
likelihood. And as a consequence, if the prior distribution is too wide compared to the like-
lihood function, the particles are more likely to be outside the region of high likelihood. On
the other hand, the prior distribution should be able to include the likelihood distribution.
The bottom line is once again, that the choice of proposal distribution is crucial.

A.4.5 Degeneracy

Unfortunately, in Sequential Importance Sampling (SIS) the variance of the importance
weights increases stochastically over time. This is seen by expanding equation (A.48):

ωt =
p(y1:t|x0:t)p(x0:t)

q(x0:t|y1:t)

=
p(y1:t, x0:t)

q(x0:t|y1:t)

=
p(x0:t|y1:t)p(y1:t)

q(x0:t|y1:t)

∝ p(x0:t|y1:t)

q(x0:t|y1:t)

(A.51)

Thus, the importance weights are proportional to theimportance ratio, which variance
increases over time ([10]).
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Figure A.2: Using the optimal importance distribution the samples in the prior are moved

towards regions of high likelihood which is important when the likelihood is peaked (i.e.

low measurement error) (from [26])

Proposition 2 The unconditional variance (that is, when the observations are regarded as

random) of the importance ratio increases over time

Optimally, we would like to sample from the posterior, i.e. we would like the proposal
density to be very close to the posterior. In this case, the mean and variance are ([8])

Eq(·|y1:t)

(
p(x0:t|y1:t)

q(x0:t|y1:t)

)
= 1

and

varq(·|y1:t)

(
p(x0:t|y1:t)

q(x0:t|y1:t)

)
= Eq(·|y1:t)

((
p(x0:t|y1:t)

q(x0:t|y1:t)
− 1

)2
)

= 0

Hence, a reasonable estimate implies a variance close to 0, i.e. if the variance increases
over time the accuracy decreases.

In practice, what happens is that after a few time steps one of the normalized impor-
tance weights is close to 1 while the rest is close to 0. In other words, a lot of the samples
become useless and are neglected. To avoid this phenomenon,degeneracy, the particles
need to be resampled (selection step) to eliminate particles with low importance weights
and multiply particles with high importance weights.
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Figure A.3: Illustration of resampling principle where a random measure
{

x(j)
1:t , N

−1
}

is

mapped into an equally weighted random measure
{

x(j)
1:t , N

−1
}

by drawing the indexi

from a uniform distribution (from [26])

A.4.6 Resampling

In resampling, each particlex(i)
0:t is assigned a number of ”children”, sayNi ∈ N, s.t.∑N

i=1 Ni = N . In this paper, we have chosen to implement a number of different sampling
schemes described in the following sections.

Sampling Importance Resampling (SIR) and multinomial sampling

Resampling involves mapping the Dirac random measure
{

x(i)
0:t, w̃

(i)
t

}
into an equally weighted

random measure
{

x(j)
0:t , N

−1
}

by sampling uniformly from the discrete set
{

x(i)
0:t, i = 1, . . . , N

}

with probabilities
{

w̃
(i)
t ; i = 1, . . . , N

}
, see [15]. Figure A.3 illustrates this principle. Hav-

ing set up the cumulative distribution of the discrete set, a uniformly drawn sampling index
i is projected onto the distribution range and then onto the distribution domain. The new
sample indexj is the intersection with the domain and hence the new sample is the vec-
tor x(i)

0:t. At the end of the day, the larger importance weighted samples will have more
replicates.

SamplingN times from the cumulative discrete distribution
∑N

i=1 w̃
(i)
t δ

x
(i)
0:t

(dx0:t) cor-

responds to samples(Ni; i = 1, . . . , N) from a multinomial distribution with parame-
tersN andw̃

(i)
t with a computational complexity ofO(N), ([9]). The variance becomes

var(Ni) = Nw̃
(i)
t

(
1− w̃

(i)
t

)
as we are sampling from a multinomial distribution.
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Figure A.4: Illustration of standard particle filter: The filter starts at timet − 1 with an

unweighted measure
{

x̃
(i)
t−1, N

−1
}

providing an approximation ofp(xt−1|y1:t−2). For each

particle the importance weights are calculated using the information at timet − 1 giving

a weighted measure
{

x̃
(i)
t−1, w̃

(i)
t−1

}
which is an approximation ofp(xt−1|y1:t−1). Next, the

resampling step selects the fittest samples to obtain the unweighted measure
{

x̃
(i)
t−1, N

−1
}

which is an approximation ofp(xt−1|y1:t−1). Finally, the sampling step introduces variety

giving the measure
{

x̃
(i)
t , N−1

}
which is an approximation ofp(xt|y1:t−1) (from [26])

Residual resampling

([24] for details). SetÑi = bNw̃
(i)
t c and apply the SIR scheme to compute the remaining

N̄t = N −∑N
i=1 Ñi samples with corresponding weightsw

′(i)
t = N̄−1

t

(
w̃

(i)
t N − Ñi

)
.

The variance
(
var(Ni) = N̄tw̃

′(i)
t

(
1− w̃

′(i)
t

))
is smaller than for the SIR and also com-

putationally cheaper.

Minimum variance sampling

([5] for details). Sample a set ofN pointsU ∈ [0; 1] with a distance ofN−1 apart. The
number of childrenNi is the number of points between

∑i−1
j=1 w̃

(j)
t and

∑i
j=1 w̃

(j)
t .

The variance of this strategy is
(
var(Ni) = N̄tw̃

′(i)
t

(
1− N̄tw̃

′(i)
t

))
and the computational

complexityO(N).
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A.4.7 Implementation

Generic Particle Filter

1. Initialization

• For i = 1, . . . , N , draw the particlesx(i)
0 from the priorp(x0)

2. For t = 1, 2, . . .

(a) Importance sampling step

• Fori = 1, . . . , N , samplêx(i)
t ∼ q(xt|x(i)

0:t−1, y1:t) and set̂x(i)
0:t , (x(i)

0:t−1, x̂(i)
t )

• For i = 1, . . . , N , evaluate the importance weights up to a normalizing
constant

w
(i)
t = w

(i)
t−1

p(yt|x̂(i)
t )p(x̂(i)

t |x(i)
t−1)

q(x̂(i)
t |x(i)

0:t−1, y1:t)
(A.52)

• For i = 1, . . . , N , normalize the importance weights

w̃t
(i) = w

(i)
t

[∑
N
j=1w

(j)
t

]−1

(A.53)

(b) Selection step (resampling)

• Multiply/suppress sampleŝx(i)
0:t with high/low importance weights̃wt

(i), re-
spectively, to obtainN random samplesx(i)

0:t approximately distributed ac-
cording top(x(i)

0:t|y1:t)

• For i = 1, . . . , N , setw(i)
t = w̃t

(i) = 1
N

(c) Output: A set of samples to approximate the posterior distribution as

p(x0:t|y1:t) ≈ p̂(x0:t|y1:t) =
1

N

N∑
i=1

δ
(x

(i)
0:t)

(dx0:t) (A.54)
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A.4.8 Improved proposal distributions

As mentioned, the success of particle filtering is depending on how close the proposal dis-
tribution is to the posterior distribution. In this work we implement the Extended Kalman
Particle Filter (PFEKF) and the Unscented Filter (PFUKF), but for completeness, we men-
tion here a number of other methods. However, all these suffer from numerous inefficien-
cies ([26]) and are not included in our practical work.

Prior editing ([15]). Ad-hoc acceptance test for proposing particles in areas of high like-
lihood.

- After the prediction step, compute the residual erroret = yt − ht

(
x̂(i)

t

)

- If |et]| > Kl

√
r, wherer is the scale of the measurement error model andKl is

a constant chosen to indicate the region of non-negligible likelihood, the sample
x̂(i)

t is rejected.

- Repeat until a selected number of particles is accepted

This method is too heuristic though and computationally expensive unless the rejection rate
is small. Furthermore, it introduces a bias on the distribution of the particles.

Rejection methods Accept/reject method based on the principle that it is possible to sam-
ple from the optimal importance distributionp(xt|xt−1, yt) if the likelihood is bounded
p(yt|xt) < Mt.

- Get a sample from the prior̂x ∼ p (xt | xt−1) and a uniform variableu ∼ U[0,1]

- Accept the sample ifu ≤ p(yt|x̂t)/Mt

- Otherwise reject and repeat untilN samples are obtained

This method requires a random number of iterations at each time step which is computa-
tionally expensive in high-dimensional spaces ([9]).

Auxiliary particle filter Approximate sampling from the optimal importance distribution
using an auxiliary variablek by sampling from the distribution

q(xt, k|x0:t−1, y1:t) ∝ p(yt|µ(k)
t )p(xt|x(k)

t−1)p(x(k)
1:t−1|y1:t−1) (A.55)

whereµ
(k)
t , k = 1, . . . , N is the mean, mode draw or another value associated with

the transition prior.

- Evaluate the marginal auxiliary variable weightsg(k|x0:t−1,y1:t)∝ p(yt|µ(k)
t )

p(x
(k)
1:t−1|y1:t−1) and use them to selectM > N particles from the transition

prior.
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- Evaluate the correction weights

ωt =
p(yt|x(j)

t )

p(yt|µ(kj)
t )

(A.56)

wherekj denotes thek’th ”parent” of particlej.

- Use the correction weights to perform a second selection step to acquireN
particles approximately distributed according to the posterior distribution.

In comparison with the SIR filter, the auxiliary filter introduces extra variance by the ad-
ditional selection step. As a consequence, the auxiliary filter generates better estimates of
the posterior distribution when the likelihood is at one of the prior tails, but visa versa if
the likelihood and prior coincide.

A.5 Improved Particle Filtering

In summary, generic particle filtering is depending on the following assumptions in order
to perform reasonable

Monto Carlo (MC) assumption The Dirac point-mass approximation is an adequate rep-
resentation of the posterior distribution

Importance Sampling (IS) assumption By sampling from a proposal distribution and ap-
plying importance sampling corrections, it is possible to sample from the posterior
distribution

If this is not the case, one needs to improve the algorithm. E.g. the number of samples
used in the resampling stage may eventually end up being just a few samples with high
importance weights or even a single sample with a normalized importance weight close to
1. Hence, the estimate of the posterior density function is based on one sample which
is clearly inadequate. A simple solution would be to increase the number of particles
leading to increased computational effort. A more ’intelligent’ solution is described in
the following section.
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A.6 MCMC move step

([12] for details) As mentioned, we are looking for a way of introducing sample variety
after the selection step without affecting the validity of the approximation. One strategy
is to introduce a MCMC step of invariant distributionp(x0:t|y1:t) on each particle ([2]). If
the particles are distributed according to the posteriorp(x̃0:t|y1:t), and we apply a Markov
chain transition kernelK(x0:t|x̃0:t) with invariant distributionp(x0:t|y1:t) s.t.

∫ K(x0:t|x̃0:t)
p(x̃0:t|y1:t) = p(x0:t|y1:t), we still have a set of particles distributed according to the poste-
rior. However, the particles might have been moved to areas of higher likelihood and the
total variance of the current distribution with respect to the invariant distribution can only
decrease ([26]).

The MCMC move step corresponds to sampling from the finite mixture distribution
N−1

∑N
i=1K(x0:t|x̃0:t) (see [14] for convergence issues). This principle can be generalized

by applying MCMC steps on the product space with invariant distribution
∏N

i=1 p(x0:t|y1:t),
i.e. to the entire population of particles. However, in this work we only consider the former
and simpler case. For the standard particle filter we sample from the transition prior and
accept according to a Metropolis-Hastings (MH) step

Smoothing MH step

• Sampleu ∼ U[0,1]

• Sample the proposal candidatex∗(i)t ∼ p(xt|x(i)
t−1)

• If u ≤ min
{

1,
p(yt|x∗(i)t )

p(yt|x̃(i)
t )

}

- then accept move
x(i)

0:t = (x̃(i)
0:t−1, x∗(i)t ) (A.57)

- else reject move
x(i)

0:t = x̃(i)
0:t (A.58)

End If

More complex proposals exist, s.a. mixtures of MH steps to ensure an efficient exploration
of the sample space ([18]) and reversible jump MCMC steps (see [16]) to allow particles to
move from one subspace to other subspaces of, possible, different dimension ([2]).



A.7. EXTENDED KALMAN PARTICLE FILTER 154

A.7 Extended Kalman Particle Filter

One way of generating proposal distributions that are more accurate in their approximation
of the optimal importance distribution islocal linearization. This method incorporates the
most current observation with the optimal Gaussian approximation of the state ([9]), and
is based on the first order Taylor series expansion of the likelihood and transition prior
as described in section A.2 and a Gaussian assumption on all RV’s. In this work, the
EKF approximates the optimal MMSE estimator of the system state by computing the
conditional mean of the state given all observations. This is done recursively through time
by propagating the Gaussian approximation of the posterior distribution and combining
it with the new observation available at each time step. That is, the EKF computes the
recursive approximation of the true posterior filtering density given by

p(xt|y1:t) ≈ pN (xt|y1:t) = N
(

x̄t, P̂t

)
(A.59)

Using the EKF in particle filtering, a separate EKF is used to generate and propagate a
Gaussian proposal distribution for each particle

q(x(i)
t |x(i)

0:t−1, y1:t)
.
= N (xt|y1:t) i = 1, . . . , N (A.60)

i.e. at timet−1 the mean and covariance of the importance distribution for each particle are
computed using the EKF equations and the new observation. Thus, we need to propagate
the covariancêP (i) and specify the EKF process and measurement noise covariances. Sec-
ondly, thei-th particle is sampled from this distribution. This filter is called theExtended
Kalman Particle Filterand the pseudo-code is given in the following subsection.

As the EKF is an MMSE estimator, this filter leads to an improved annealed sampling
algorithm in which the variance of each proposal distribution changes over time. Optimally,
the search is based on a large region of the error surface and moved towards regions of
lower error as time progresses. However, even though the EKF moves the prior towards
the likelihood, we are still faced with the Gaussian assumption on the form of the posterior
and linearization approximations. Comparing equation (A.59) with the Gaussian transition
prior in equation (A.50), it is noted that the proposal distribution generated by the EKF
includes the most current observation at timet. In general though, the true form of this
density will not be Gaussian - even with Gaussian process and measurement noise - which
can be shown using a Bayes rule expansion of the proposal distribution. This implies that
we are left with an experimental judgement of the gain versus the loss of filter performance.



A.7. EXTENDED KALMAN PARTICLE FILTER 155

A.7.1 Implementation

Extended Kalman Particle Filter

1. Initialization

• For i = 1, . . . , N , draw the particlesx(i)
0 from the priorp(x0)

2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

- Compute the JacobiansF(i)
t , G(i)

t of the process model andH(i)
t , U(i)

t of
the measurement model

- Update the particles with EKF

x̄(i)
t|t−1 = f(x(i)

t−1) (A.61)

P(i)
t|t−1 = F(i)

t P(i)
t−1F

T (i)
t + G(i)

t QtG
T (i)
t (A.62)

K t = P(i)
t|t−1H

T (i)
t [U(i)

t RtU
T (i)
t + H(i)

t P(i)
t|t−1U

T (i)
t ]−1 (A.63)

x̄(i)
t = x̄(i)

t|t−1 + K t(yt − h(x̄(i)
t|t−1)) (A.64)

P̂
(i)

t = P(i)
t|t−1 − K tH

(i)
t P(i)

t|t−1 (A.65)

- Samplêx(i)
t ∼ q(x(i)

t |x(i)
0:t−1, y1:t) = N (x̄(i)

t , P̂
(i)

t )

• For i = 1, . . . , N , evaluate the importance weights up to a normalizing
constant

w
(i)
t ∝ p(yt|x̂(i)

t )p(x̂(i)
t |x(i)

t−1)

q(x̂(i)
t |x(i)

0:t−1, y1:t)
(A.66)

• For i = 1, . . . , N , normalize the importance weights

w̃t
(i) = w

(i)
t

[∑
N
j=1w

(j)
t

]−1

(A.67)

(b) Selection step

• Multiply/suppress samples(x̂(i)
0:t, P̂

(i)

0:t) with high/low importance weights

w̃t
(i), respectively, to obtainN random samples(x̃(i)

0:t, P̃
(i)

0:t)

(c) MCMC step (optional)

• Apply a Markov transition kernel with invariant distribution given byp(x(i)
0:t|y1:t)

to obtain(x(i)
0:t, P(i)

0:t)

(d) OutputSee ’Generic Particle Filter’
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EKF MH step

• Sampleu ∼ U[0,1]

• Compute the JacobiansF∗(i)t , G∗(i)
t of the process model andH∗(i)

t , U∗(i)
t of the mea-

surement model

• Update the particles with EKF

x̄∗(i)t|t−1 = f(x̃(i)
t−1) (A.68)

P∗(i)t|t−1 = F∗(i)t P̃
(i)

t−1F
∗T (i)
t + G∗(i)

t QtG
∗T (i)
t (A.69)

K t = P∗(i)t|t−1H
∗T (i)
t [U∗(i)

t RtU
∗T (i)
t + H∗(i)

t P∗(i)t|t−1U
∗T (i)
t ]−1 (A.70)

x̄∗(i)t = x̄∗(i)t|t−1 + K t(yt − h(x̄∗(i)t|t−1)) (A.71)

P∗(i)t = P∗(i)t|t−1 − K tH
∗(i)
t P∗(i)t−1 (A.72)

• Samplex∗(i)t ∼ q(xt|x̃(i)
0:t−1y1:t) = N (x̄∗(i)t , P̂

∗(i)
t )

• If u ≤ min

{
1,

p(yt|x∗(i)t )p(x∗(i)t |x̃(i)
t−1)q(x̃(i)

t |x̃(i)
0:t−1,y1:t)

p(yt|x̃(i)
t )p(x̃(i)

t |x̃(i)
t−1)q(x∗(i)t |x̃(i)

0:t−1,y1:t)

}

- then accept move
x(i)

0:t = (x̃(i)
0:t−1, x∗(i)t ) (A.73)

P(i)
0:t = (P̃

(i)

0:t−1, P∗(i)t ) (A.74)

- else reject move
x(i)

0:t = x̃(i)
0:t (A.75)

P(i)
0:t = P̃

(i)

0:t (A.76)

End If
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A.8 Unscented Filter

As described in section A.3, the UKF propagates the mean and covariance of the Gaussian
approximation to the state distribution more accurately than the EKF and tends to generate
better estimates of the true covariance of the state ([26]). Furthermore, the distributions
generated by the UKF generally have a broader overlap with the true posterior distribution
compared to the EKF estimates which is partly due to the fact that the UKF computes the
posterior covariance accurately to the third order (Gaussian prior) whereas the EKF uses
a first order biased approximation. The UKF also includes the latest observations, but in
a more accurate way. Furthermore, the UKF is able to scale the approximation errors in
higher order moments of the posterior distribution allowing heavier tailed distributons. As
the sigma points in the UKF are deterministically designed to capture certain characteristics
of the prior distribution, it is possible to explicitly tune the algorithm to work on distribu-
tions that have heavier tails than Gaussian distributions, e.g. Student-t distributions. All
in all, the UKF is more likely to generate more accurate proposal distributions within the
particle filtering framework. Using the UKF as proposal distribution generator leads to the
Unscented Filter, [26], (in this work abbreviated PFUKF). The pseudo-code for this filter
is shown below.

A.8.1 Implementation

Unscented Filter

1. Initialization

• For i = 1, . . . , N , draw particlesx(i)
0 from the priorp(x0) and set

x̄(i)
0 = E[x(i)

0 ] (A.77)

P(i)
0 = E[(x(i)

0 − x̄(i)
0 )(x(i)

0 − x̄(i)
0 )T ] (A.78)

x̄(i)a
0 = E[x(i)a] = [(x̄(i)

0 )T 0 0]T (A.79)

P(i)a
0 = E[(x(i)a

0 − x̄(i)a
0 )(x(i)a

0 − x̄(i)a
0 )T ] =




P(i)
0 0 0
0 Q 0
0 0 R


 (A.80)
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2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

- Update the particles with UKF

* Calculate sigma points

χ
(i)a
t−1 =

[
x̄(i)a

t−1 x̄(i)a
t−1 ±

√
(na + λ)P(i)a

t−1

]
(A.81)

* Propagate particle (time update)

χ
(i)x
t|t−1 = f(χ(i)x

t−1,χ
(i)v
t−1) (A.82)

x̄(i)
t|t−1 =

2na∑
j=0

W
(m)
j χ

(i)x
j,t|t−1 (A.83)

P(i)
t|t−1 =

2na∑
j=0

W
(c)
j [χ

(i)x
j,t|t−1 − x̄(i)x

t|t−1][χ
(i)x
j,t|t−1 − x̄(i)

t|t−1]
T(A.84)

γ
(i)
t|t−1 = h(χ

(i)x
t|t−1,χ

(i)n
t−1) (A.85)

ȳ(i)
t|t−1 =

2na∑
j=0

W
(m)
j γ

(i)
j,t|t−1 (A.86)

* Incorporate new observation (measurement update)

Pỹtỹt
=

2na∑
j=0

W
(c)
j [γ

(i)
j,t|t−1 − ȳ(i)

t|t−1][γ
(i)
j,t|t−1 − ȳ(i)

t|t−1]
T (A.87)

Pxtyt
=

2na∑
j=0

W
(c)
j [χ

(i)
j,t|t−1 − x̄(i)

t|t−1][γ
(i)
j,t|t−1 − ȳ(i)

t|t−1]
T (A.88)

K t = Pxtyt
P−1

ỹtỹt
(A.89)

x̄(i)
t = x̄(i)

t|t−1 + K t(yt − ȳ(i)
t|t−1) (A.90)

P̂
(i)

t = P(i)
t|t−1 − K tPỹtỹt

KT
t (A.91)

- Samplêx(i)
t ∼ q(x(i)

t |x(i)
0:t−1, y1:t) = N (x̄(i)

t , P̂
(i)

t )

- Setx̂(i)
0:t , (x(i)

0:t−1, x(i)
t ) andP̂

(i)

0:t , (P(i)
0:t−1, P(i)

t )
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• For i = 1, . . . , N , evaluate the importance weights up to a normalizing
constant

w
(i)
t ∝ p(yt|x̂(i)

t )p(x̂(i)
t |x(i)

t−1)

q(x̂(i)
t |x(i)

0:t−1, y1:t)
(A.92)

• For i = 1, . . . , N , normalize the importance weights

w̃t
(i) = w

(i)
t

[∑
N
j=1w

(j)
t

]−1

(A.93)

(b) Selection step

• Multiply/suppress samples(x̂(i)
0:t, P̂

(i)

0:t) with high/low importance weights

w̃t
(i), respectively, to obtainN random samples(x̃(i)

0:t, P̃
(i)

0:t)

(c) MCMC step (optional)

• Apply a Markov transition kernel with invariant distribution given byp(x(i)
0:t|y1:t)

to obtain(x(i)
0:t, P(i)

0:t)

(d) OutputSee ’Generic Particle Filter’



160


