

Kgs. Lyngby 2003
IMM-THESIS-2003-31

Ingrid Vangkilde

A Web-Portal with
Semantic Web Technologies

Ingrid Vangkilde

A Web-Portal
with Semantic Web

Technologies

Kgs. Lyngby 2003

IMM-THESIS-2003-31

ISSN 1601-233X

i

PREFACE

This report is the documentation of my Master Thesis, which is the culmination of my
Informatics Engineering studies. This thesis has been developed under the Division for
Computer Science and Engineering (CSE), in the department of Informatics and
Mathematical Modeling (IMM), at the Technical University of Denmark (DTU).
Professors Jørgen Fischer Nilsson and Hans Bruun have supervised this project.

The motivation for this thesis is my interest in developing systems, especially web-based
systems, and Internet technologies.

I would like to thank some of my teachers at DTU, for being an inspiration source during
my studies and for motivating and guiding me in finding my areas of interest. These are,
in alphabetical order: Anne E. Haxthausen, Flemming Stassen, Hans Bruun, Hans
Rischel, Jens Thyge Kristensen, Jørgen Fischer Nilsson, Michael R. Hansen, Morten P.
Lindegaard, Rolf Nevald and Tom Østerby.
I would also like to thank the Internet Mobile division of Bording Data A/S, were I
worked during my studies, for giving me the opportunity of realizing the importance and
relevance of my education.

Finally, I would like to thank my beloved Søren Thrane for the emotional support during
the writing of this project.

Kongens Lyngby, 30 April 2003

Ingrid Vangkilde

ii

iii

ABSTRACT

The Semantic Web is an extension of the current web, where its contents contain
information about their own meaning. This is achieved by adding metadata (i.e. data
about data) to web documents. The Semantic Web is supposed to allow machines to
�understand� the data they retrieve from the web.

This thesis will illustrate the development of a web portal that makes use of the Semantic
Web. The web portal will have as main task to assist DTU students to plan semester
courses at IMM. The content of the portal will be data about IMM courses and students,
and of course data about this data.

The web portal being developed in this thesis project is required to extract information
about IMM courses from other web sites (e.g. the DTU Course Catalogue and ACM
Computing Classification System) and allow the people responsible for these courses to
add more information about them. In the same way, DTU students must be able to feed
the system with information about their own profiles. The system must then contain
information about the meaning of this course information and student profiles, and how
they relate to each other. The portal must then use this information to assist students to
plan which courses they should follow in a specific semester. These requirements must be
solved taking advantage of Semantic Web technologies.

In this project, the current possibilities in the area of Semantic Web will be studied. It
will be examined what kind of problems this technology is able to solve, what its
limitations are, etc. Through the development of the portal, the advantages and
disadvantages of this new technology will be shown in its present stage of development,
and how it can be exploited.

Keywords: Semantic web, description logics, XML, RDF, DAML+OIL, web, portal,
Internet, ontology, knowledge base, classification, data constraints.

iv

v

TABLE OF CONTENTS

1 Introduction ...1

1.1 Problem description ...1

1.2 How to read this paper ...2

1.2.1 Notation ...3

2 Semantic Web Technologies..5

2.1 Resource Description Framework (RDF) ...5

2.2 Ontology..7

2.3 RDF Schema (RDFS)...7

2.4 DAML+OIL ..7

2.4.1 Description Logics ...8

3 Domain Analysis ...11

3.1 Term Dictionary...11

3.2 Domain simplifications ..14

3.3 ER-diagrams ..15

3.4 Classifications..18

3.5 Description Logics Model ..21

3.6 Constraints...24

3.7 User Queries ..28

4 Requirements Specification ...31

4.1 Use Case model ...31

4.1.1 Actors ..32

4.1.2 Use Case descriptions...32

4.2 Supplementary Requirements...34

4.3 Screen Mock-ups ...35

4.3.1 Course information interface ..35

4.3.2 Student profile interface ...36

4.3.3 Semester planning interface..38

5 System Design...41

5.1 Analysis classes ...41

vi

5.1.1 Boundary Classes ...41

5.1.2 Entity Classes...42

5.1.3 Control Classes ..42

5.2 Collaboration diagrams ..43

5.2.1 Realization of the Edit Course use case ..43

5.2.2 Realization of the Get Profile use case..43

5.2.3 Realization of the Edit Profile use case ...44

5.2.4 Realization of the Delete Profile use case ...44

5.2.5 Realization of the Create Plan use case ...44

5.2.6 Realization of the Delete Plan use case ...45

5.2.7 Realization of the Get Plan use case ...45

5.2.8 Realization of the Edit Plan use case...46

5.2.9 Realization of the Validate Plan use case ..47

5.2.10 Realization of the Maintain Ontology use case47

5.3 Deployment diagram..48

5.4 Component diagram...49

5.4.1 Security Issues..49

5.5 The Interface Components ...50

5.6 The Knowledge Base ...51

5.7 Class diagram ..52

5.8 Standards and Tools ...53

5.8.1 Creating the knowledge base ..53

5.8.2 Storing the knowledge base ..53

5.8.3 The contents of the knowledge base (the A-box)53

5.8.4 Managing the knowledge base..54

5.8.5 The user interface ...54

5.8.6 The knowledge base validation...54

6 Implementation..57

6.1 Implementing the knowledge base..57

6.2 Installing the tools..67

6.3 The control engine ...69

vii

6.4 Entity classes ...71

6.5 The interface ..72

7 Test ...77

7.1 Test of A-box Validation tools ...77

7.1.1 The Nationality example ..77

7.1.2 The Color Option example ...79

7.2 Checking the syntactical correctness of DAML files81

7.3 Checking that the requirements have been met ...82

7.3.1 Test of Edit Course use case ...82

7.3.2 Test of Get Profile use case ..82

7.3.3 Test of Edit Profile use case ...82

7.3.4 Test of Delete Profile use case..83

7.3.5 Test of Create Plan use case ...83

7.3.6 Test of Delete Plan use case ...83

7.3.7 Test of Get Plan use case ..83

7.3.8 Test of Edit Plan use case ...83

7.3.9 Test of Validate Plan use case ..84

7.3.10 Test of Maintain ontology use case...84

7.3.11 Test of supplementary requirements ...84

7.4 Test Conclusion ...85

8 Conclusion...87

8.1 Semantic Web..87

8.2 Developing a system with new technologies...88

9 References ...89

9.1 Web Resources containing information about Semantic Web90

Appendix A � The DTU Ontology file...91

Appendix B � The Nationality Example File ...109

Appendix C � The Color Option Example File ..111

viii

1

1 INTRODUCTION
This thesis project is about developing a system, more precisely a web-portal, using
Semantic Web technologies. The project has two main points: The development of a
system and the study of a new technology.

The first part of the project, consisting of the development of a system, has as purpose to
put in practice some of the knowledge I acquired during my studies, in such areas as
object-oriented methods, programming techniques and best-practices, logics, Internet
technologies, etc. The second part of the project, consisting of the study of Semantic Web
technologies, has as purpose to exploit my ability to understand and utilize the result of
new research areas of computer science.

This chapter describes the problem to be solved, explains the contents of this document
and suggests what previous knowledge is necessary to take full advantage of it.

1.1 Problem description
The aim of this project is to build a web-portal where DTU students can be assisted in
planning his/her semester schedule, by checking that the chosen courses for a semester
comply with DTU regulations and with the student�s preferences. Even though this
system can be developed using different approaches, it is a requirement of this project
that Semantic Web technologies be used in solving the problem.

The system is to take advantage of course information already available on the Internet
(for example the online version of the DTU course catalogue), and enable teachers and
students to input some more information into the system, if necessary.

The data structure of the system, corresponding to the domain model, will probably
change often, as DTU regulations change almost every year. For this reason, this data
structure must be stored in the system as data1, allowing it to be modified without
alterations to the application.

For simplification purposes, the project will focus on courses taught at the division of
Computer Science and Engineering (CSE). The ontology used in relation to course topics
will therefore be derived from the most recent ACM Computing Classification System
[ACM]. The ontology used to describe DTU courses will only use the DTU regulation for
master studies.

No security issues will be addressed in this project. The amount of information stored
about students and their course choices will for this matter be held to a minimum.

1 This means that the data structure is data about data, also known as metadata. This metadata can be
handled as the rest of the system�s data.

INTRODUCTION

2

1.2 How to read this paper
To be able to fully understand this thesis report, it is required that the reader have a basic
knowledge of logics and XML. Besides, a previous knowledge of the notation used in
this document would ease its reading (see Notation at the end of this chapter).

This document primarily describes the software engineering process of developing a
software system for solving the above mentioned problem, and consists of the following
chapters:

Semantic Web Technologies � accounts for the status of this new technology, what is
available, how it is intended to be used, and so on.

Domain analysis � provides an extensive understanding of the system�s domain,
determines its terminology and formalizes it in a model.

Requirements specification � specifies in detail what is required of the system, in terms of
what it is supposed to solve, what is expected from its performance and how it is intended
to be used.

System design � gives details about the choices made on how to accomplish the
requirements specified in the previous chapter, including what will be used to implement
the solution.

Implementation � accounts for the process of implementing what was intended in the
system design, any problems encountered and considerations taken.

Test � enumerates and describes the tests performed on the system and on one of the tools
that is crucial for its functioning.

Conclusion � states the results of the project and describes what was learned in the
process.

This document finalizes with a references chapter mentioning all the material used to
make this thesis, and the appendix containing all code and results that are too extensive to
include in any of the chapters.

INTRODUCTION

3

1.2.1 Notation

The model in the domain analysis is expressed using ER-diagrams [ER], Hasse diagrams
and SHIQ expressions [DL].

The entity-relationship model is ideal to show relations among concepts. Entity-
relationship models can be visualized graphically by using ER-diagrams. Lattice theory is
ideal to show concept hierarchies, or better said concept classifications. Lattices can be
visualized graphically by using Hasse diagrams.

Description Logics is much more expressive, being able to convey information about
both relations and hierarchies. Unfortunately, there is no graphical visualization for
description logics. A combination of ER-diagrams and Hasse-diagrams can be used to
convey most of the information contained in a description logics model.

The description language used in this report is the subset of the attributive language AL
called SHIQ, i.e. the description language extended with concept constructors negation,
transitive roles, role hierarchies, inverse roles, and quantified number restrictions. SHIQ
has a restriction that roles that have a transitive sub-role must not occur in number
restrictions.

The requirements specification and system design are expressed using UML (Unified
Modeling Language) [USDP] to describe the system, more precisely use cases,
collaboration diagrams and a class diagram.

INTRODUCTION

4

5

2 SEMANTIC WEB TECHNOLOGIES
This chapter has as purpose to give a background on Semantic Web technologies. This
will allow the reader to better understand the development process described in this
report.

The Semantic Web is an activity leaded by the World Wide Web Consortium (W3C)2 that has
as goal to add well-defined meaning to Internet data, thus enabling people and computers
to work in cooperation. The Semantic Web allows both human users and machines to
query the Internet as if it were a database.

The Semantic Web is primarily focused on RDF/XML. RDF (Resource Description
Framework) is a mechanism for describing data in any domain, i.e. data about data
(metadata). RDF separates the semantic data from the rest of the system�s data. RDFS
(RDF Schema) can be used to describe the ontology used in the system. But RDF and
RDFS are not much more than a way to describe the content of web data as if it were a
database.

To make our data yet more powerful, we can make use of description logics to describe
it, so we can do some reasoning with it. In this way, we can find not only information that
is explicitly given, but also reach some new conclusions about the data. For achieving
this extra power, an extension of RDF, called DAML+OIL, can be used.

DAML+OIL is a description logic language disguised in an XML format. DAML+OIL is
developed by the Defense Advanced Research Projects Agency (DARPA) under the
DARPA Agent Markup Language (DAML3) Program.

2.1 Resource Description Framework (RDF)
The web contains information that can be located via URLs4. The amount of information
in the web is huge and grows very fast. One of the biggest problems on handling this
information is how to find what we are searching for.

Web robots go through millions of URLs trying to find words in text that match our
search. For example, if you are looking for fast food, and the page only mentions pizza
and burgers, you won�t find it by using a web robot.

Some people try to classify the web content others generated, by for example creating
subject catalogues and site labels. This task is very ambitious, taking into account the
amount of sites that exist currently, and will surely never be able to classify all the
information. Besides, not everybody will agree on how the web content should be
classified. The best people to classify the web content are the people creating the content.

2 W3C Semantic Web Activity: http://www.w3.org/2001/sw/
3 The DARPA Agent Markup Language Homepage: http://www.daml.org/
4 URL � Uniform Resource Locator.

SEMANTIC WEB TECHNOLOGIES

6

RDF is a framework for describing and interchanging metadata about web content. RDF
is not tied to a specific syntax. The XML serialization syntax of RDF is suitable for the
web and for applications, but is not very human-readable. For that purpose a graphical
syntax is normally used. The graphical syntax represents RDF statements as triplets, and
the whole model is a directed graph.

A RDF Statement consists of the combination of a subject (Resource), a predicate
(Property), and an object (value). An example of a statement is "John is the father of
Jimmy". Here John is the resource, Jimmy the value, and �father of� is the property. This
statement can be viewed as the triple (John, Father of, Jimmy), as a directed
graph or as XML:

<rdf:Description about='http://foo/family.rdf#John'>
<http://foo/family.rdf#Father_of
 rdf:resource='http://foo/family.rdf#Jimmy'/>

</rdf:Description>

Notice that in the above example, both John and Jimmy are resources.

A Resource is anything that can have a URI5 ; this includes all sites on the web (e.g.
http://foo/family.rdf), as well as individual elements of an XML document (e.g.
http://foo/family.rdf#John). Here the symbol # indicates that the element John is
defined in the document http://foo/family.rdf.

URIs in XML tags and property names can be abbreviated by using XML-namespaces.
For instance, we can define the substitution of the namespace prefix fam for
http://foo/family.rdf and then write simply fam:Father_of instead of
http://foo/family.rdf#Father_of:

<rdf:Description about='http://foo/family.rdf#John'>
<fam:Father_of rdf:resource='http://foo/family.rdf#Jimmy'/>

</rdf:Description>

A Value or object can be a resource or a literal. A literal, which is just a string, can not be
the subject of a statement, and therefore has no properties. An example of a statement
where the value is a literal could be (John, Age, 34):

<rdf:Description about='http://foo/family.rdf#John'>
 <fam:Age>34</fam:Age>
</rdf:Description>

5 URI � Uniform Resource Identifier.

John 34Age

John JimmyFather of

SEMANTIC WEB TECHNOLOGIES

7

A Property or predicate relates subjects to objects. A Property is a resource because it may
have properties of its own.

A Statement is also a resource, that again can have properties like who created the
statement, when, etc.

2.2 Ontology
�An ontology is a set of concepts - such as things, events, and relations - that are
specified in some way (such as specific natural language) in order to create an agreed-
upon vocabulary for exchanging information.�6

RDF enables us to create Vocabularies. Anybody can create a vocabulary, but some
organizations or groups of users will probably agree on some vocabularies, and use them
to classify their data.

RDF is simply a standard for creating ontologies. Different software products can use
ontologies created by different people, as they will all be available on the web.

2.3 RDF Schema (RDFS)
RDFS extends RDF to include means to define property domains and ranges, class and
subclass hierarchies, and property and subproperty hierarchies. RDFS also provides some
additional modeling primitives as the rdfs:label that defines a human-readable name
format, and the rdfs:comment that allow the developer to comment his work.

On the downside, RDFS is very weak, as it for example cannot describe simple
constraints as cardinality constraints. An extension to RDFS is then necessary to be able
to describe a complete ontology. More sophisticated languages, as Unified Modeling
Language (UML) and Description Logics can be built on top of RDFS.

2.4 DAML+OIL
DAML+OIL, usually called just DAML, extends RDFS by adding description logics
expressiveness to it. DAML allow to relate complex restrictions to class and property
definitions. DAML extends RDFS in the following ways:
! Support of XML Schema Datatypes rather than just string literals, like dates,

integers, decimals, etc.
! Additional restrictions on properties like cardinality constraints.
! Definition of classes by enumerations of their instances.
! Definition of classes by terms of other classes and properties (class expressions

using unionOf, intersectionOf, complementOf, hasClass and hasValue).

6 Whatis.com � http://whatis.techtarget.com/

SEMANTIC WEB TECHNOLOGIES

8

! Ontology and instance mapping (sameClassAs, samePropertyAs,
sameIndividualAs, differentIndividualFrom) permitting translation between
ontologies.

! Additional hints to reasoners (disjointWith, inverseOf, TransitiveProperty,
UnambiguousProperty).

The requirements specified for DAML prioritize rules and queries very much. Most of
the DAML constructors have been added to support rules and querying. On the other
hand, the support of rules has been a neglected research area and therefore there is not
much information about the subject and it is very difficult to find tools that support it.

Some people consider DAML to still be in its infancy, others consider it to be half way of
its development, but all agree that it is not completely developed yet. Even though it is
actually the recommended ontology language by the World Wide Web Consortium, a
new project called Ontology Web Language (OWL) is being developed to replace
DAML. The OWL project has removed some of the requirements specified for DAML,
as rules, queries and services. Furthermore, there are not many tools available supporting
OWL yet.

2.4.1 Description Logics

Description Logics are knowledge representation languages adapted for expressing
knowledge about concepts and concept hierarchies, and they are very suited for providing
structure to information.

Description Logics is a subset of First Order Logic, which is function-free and does not
allow explicit variables. Description Logics has a reduced expressivity in favor of having
greater decidability in inference procedures, compared to First Order Logic. Besides it
permits a better structuring of the knowledge.

DAML is a description logics language based on XML; more specifically it is a XML
version of SHIQ (Attributive Language with transitive roles (S), role hierarchy (H),
inverse role (I) and qualified number restriction (Q)).

The following table contains the set of constructs available in SHIQ, DAML and their
semantics. The semantics is defined by an interpretation (ΔI, I), where ΔI is a nonempty

set (domain of discourse) and I is a function that maps every concept to a subset of ΔI and

every role to a subset of ΔI x ΔI.

SEMANTIC WEB TECHNOLOGIES

9

Construct SHIQ DAML+OIL Semantics
concept C Class CI ⊆ ΔI
role name R Property RI ⊆ ΔI x ΔI
top ⊤ Thing ΔI
bottom ⊤ Nothing ⌀
union C ⊔ D unionOf CI ⋃ DI
intersection C ⊓ D intersectionOf CI ⋂ DI
negation ⌐C complementOf ΔI \ CI
value restriction ∀R.C toClass {a ∈ ΔI | ∀b.(a,b) ∈ RI → b ∈ CI}
existential
quantification

∃R.C

∃R.{x}

hasClass

hasValue

{a ∈ ΔI | ∃b.(a,b) ∈ RI ∧ b ∈ CI}

{a ∈ ΔI | (a,x) ∈ RI }
collection of
individuals

{a1 ... a2} oneOf {a1 ... a2}

number restrictions ≥n R

≤n R

=n R

minCardinality

maxCardinality

cardinality

{a ∈ ΔI | |{b ∈ ΔI | (a,b) ∈ RI}| ≥n}

{a ∈ ΔI | |{b ∈ ΔI | (a,b) ∈ RI}| ≤n}

{a ∈ ΔI | |{b ∈ ΔI | (a,b) ∈ RI}| =n}
concept agreement C ≐ D sameClassAs C = D
role agreement R ≐ S samePropertyAs R = S
concept hierarchy C ⊑ D subClassOf C ⊆ D
role hierarchy R ⊑ S subPropertyOf R ⊆ S
inverse role

R- inverseOf {(b,a) ∈ ΔI x ΔI | (a,b) ∈ RI}

qualified number
restriction

≥n R.C

≤n R.C

=n R.C

minCardinalityQ

maxCardinalityQ

cardinalityQ

{a ∈ ΔI | |{b ∈ ΔI | (a,b) ∈ RI ∧ b ∈ CI }| ≥n}

{a ∈ ΔI | |{b ∈ ΔI | (a,b) ∈ RI ∧ b ∈ CI }| ≤n}

{a ∈ ΔI | |{b ∈ ΔI | (a,b) ∈ RI ∧ b ∈ CI }| =n}

SEMANTIC WEB TECHNOLOGIES

10

11

3 DOMAIN ANALYSIS
This chapter has as purpose to provide a better understanding of the domain of DTU
courses and semester planning, to initiate the development of the web portal. This is done
by first identifying all terms used in the domain, then finding the relations among these
terms and constraints to these relations.

The chapter contains a term dictionary containing all the terms found relevant for the
domain. Some simplifications to the domain are stated for clarification purposes. The
relations between those terms are illustrated by Entity-Relationship diagrams (ER-
diagrams). Some of the concepts in the model can and must be classified. To express
these classifications, Hasse-diagrams will be used.

Some of the domain model constraints are not easily illustrated through ER-diagrams or
Hasse-diagrams. These are therefore expressed in natural language. The analysis is
extended to include some questions the system must be able to handle (this is done for
exemplification purposes only). Finally, the whole domain model is formalized through
description logics, which can be easily translated to DAML+OIL in the implementation
phase of the project.

3.1 Term Dictionary
The following list contains all relevant terms used in the domain of this project.

ACM Computing Classification System � taxonomy for describing topics in computer science.
This will be used as a common terminology when describing the topics covered by
courses and the students� topics of interest.

AMS course � a course in the area of work, environment and society (in Danish: Arbejde,
Miljø og Samfund), which students following the complete master study are required to
pass some of.

Any course � a course that is being taught at DTU (see Course) or any course that has ever
been taught at DTU, even if it is not taught any more.

Complete master � the 5-year master study at DTU. Students following this study type may
come directly from high school.

Core course � a course in the areas of mathematics, physics and chemistry, which students
following the complete master study are required to pass (in Danish: Kernestof).

Course � corresponds to any course currently being taught at DTU, contained in the
current online version of the Course Catalogue.

DOMAIN ANALYSIS

12

Course name � the English title of the course.

Course schedule � the periods of time a course is given at. The schedule must correspond
to one or two seasons, and it may have several modules.

Exotic course � (also called a humanistic course) a course that is not in the area of
engineering. Only a few courses at DTU fall under this category.

International mandatory course � a subset of specialization courses that international master
students must pass some of.

International master � the 2-year master study at DTU, aimed at students that have obtained
at least a bachelor degree from a non-Danish university.

International master course � the courses that students following the international master
study are allowed to take.

International specialization course � the specialization courses that are allowed to
international master students.

Language � at the present time, it can only be English or Danish, corresponding to the
language that a course is taught at and the language a student speaks. It is assumed that
students that speak Danish are also able to follow courses in English.

Line package � a group of courses, where all the courses are compulsory for complete
master students (in Danish: Fagpakke). These courses are the first courses that must be
passed, when taking a complete master study of 5 years.

Line package AMS course � an AMS course that is placed in a line package.

Line package core course � a core course that is placed in a line package.

Line package course � the compulsory courses contained in the line package.

Mandatory core course � a mandatory course that is also a core course. Students not
following the complete master may not take courses that are core, but not mandatory
core.

Mandatory course � a group of courses in the areas of mathematics and physics, from
which students following the master study of 2 years must pass some of.

Mandatory line package course � a mandatory course that is also a line package course.
Students not following the complete master may not take courses that are line package,
but not mandatory line package.

DOMAIN ANALYSIS

13

Master � the 2-year master study at DTU (in Danish: Overbygning). Students must have
obtained a title corresponding to a bachelor degree or equivalent degree prior to following
this type of study.

Master course � all the courses that master students are allowed to follow. Courses not in
this group are only allowed to students following the complete master study.

Module � a specific period of time in a week when courses are normally taught. A course
may have a special module, e.g. courses taught at special periods of time, like evening
courses, etc. Examples of modules are 1A, 1B, 2A, 2B, etc.

Overlap � two or more courses overlap when they cover mostly the same topics. If a
student passes two or more courses that overlap with each other, he will only get credit
points for one of them. It is therefore not recommended to take courses that overlap.

Prerequisite � topics that are considered known in the course stating the prerequisite (see
Prerequisite group). Background knowledge assumed in a course.

Prerequisite group � a group of courses representing one prerequisite. The student must
have passed at least one of the courses in the group in order to fulfill the prerequisite.

Profile � Information about the student, including the language he speaks, the courses he
has passed, topics of interest, etc.

Season � either fall or spring.

Semester � the half of the year corresponding to a season, containing courses that the
student plans to take.

Specialization course � a course that students may take in order to specialize themselves in
a specific area.

Student � the main user of the system, person who follows a master study at DTU.

Topic � the content of the courses, or area in which students are interested, expressed in
terms of the ACM classification system.

Type of study � either the whole engineering study (complete master, in Danish:
Civilingeniørstudie), the master part of the engineering study (in Danish: Overbygning)
or the international master in engineering.

DOMAIN ANALYSIS

14

3.2 Domain simplifications
This section contains some of the simplifications that have been assumed when
developing this domain model.

Course schedule � Some courses are only offered in odd or even years, or maybe only in a
specific year. This information has been ignored, as it changes very often and would
require the system to be updated manually every time it happens. The system will then
make no guarantee that the courses planned are actually offered in the year the student
plans to take them.

Line package � In this project we are mostly concerned with the Informatics line package.

Prerequisite � DTU have different kinds of prerequisites (compulsory, recommended and
desired). In this project it will be assumed that all prerequisites are only recommended.

Type of study � There are actually other types of study at DTU (Ph.D. study, Open
University, Dairy and Food Science study and Bachelor study). This project will only
deal with Master Studies.

DOMAIN ANALYSIS

15

3.3 ER-diagrams
The following ER-model has as goal to give a graphical overview of the domain concepts
(or entities) and the relations among them. Every entity class and entity property in the
following diagrams has already been described in detail in the term dictionary. Additional
constraints to the model, not illustrated in the diagram are found in the Constraints
section of this chapter.

The whole ER-model has been divided into 3 diagrams, for readability purposes. The first
diagram shows the most important course relations. The second diagram relates to student
profiles. The last diagram presents the structure of semester plans, which are what the
system must help the student put together.

Figure 3-1: ER-diagram for Course.

Figure 3-1 contains the properties and relations between courses that are relevant for this
project. The AnyCourse entity represents a course that is taught or has been taught at
DTU, while the Course entity represents only the courses that are currently taught at
DTU, and therefore also found in the newest version of the Course Catalogue.

Notice the solution found for course prerequisites. It is not enough to enumerate the
prerequisites of a course, as some times only one prerequisite from a group must have
been fulfilled in order to obtain the required knowledge for the course. Here is an
example of this problem: The course 02110 Algorithms and Data Structures II, has as
prerequisite 02105 Algorithms and Data Structures I, and one of the courses 02100, 02199 or
02115, which are all courses in Introductory Programming. This situation will be mapped to
the course diagram in the following manner: 02110 has two prerequisite groups, the one
containing only 02105, and the other containing 02100, 02199 and 02115.

Course

Prerequisite Group

has prerequisite

at least one of

1

1..*

course name

overlaps with AnyCourse

1

Language

is taught in

1

covers Topic

is a

DOMAIN ANALYSIS

16

Topics covered by courses follow the structure given in the ACM Computing
Classification System [ACM 1998].

The convention used in this project about Course Topic and Student Interest classification is
as follows: The course must be related to topics that are actually covered by the course.
The student specifies the topics he is interested in. Only the courses that cover exactly the
topics he selects or any of its subtopics will comply to the student wishes. An example of
this is a course that covers Memory Structures, which is a subtopic of Hardware. A student
that is interested in Hardware will of course be presented with this course. On the other
hand, if the student has specified his interest to be Virtual Memories, which is a subtopic of
Memory Structures, the student will not be presented with this course, even though it may
cover this topic in some way.

The following diagram expresses the information enclosed in student profiles.

Figure 3-2: ER-diagram for student profiles, their relation to courses and ACM topics.

AnyCourse passed

1

Student

followsLanguage

Type Of Study

speaks

1

is interested in

Topic

DOMAIN ANALYSIS

17

The next diagram represents the semester plan that the student is trying to put together,
with the assistance of the system. Notice that a course can be taught at more than one
schedule. For example a course that is taught both in the fall and spring season, and in
modules 1A and 1B in each season would have the following schedule: Fall 1A, fall 1B,
spring 1A, spring 1B. Some courses may lack the isTaughtAt information, causing them to
have no schedules.

Figure 3-3: ER-diagram for semester plans, their relation to student profiles and courses.

Course

includes

is taught at

Semester
in season

Student

Module plans

is on
1

Season

1

1
Schedule in module

1

DOMAIN ANALYSIS

18

3.4 Classifications
A Hasse diagram is a directed graph for a partially ordered set which does not have loops
and arcs implied by the transitivity. A Hasse diagram is the ideal model to graphically
visualize classification of concepts. Some of the concepts previously shown in the ER-
diagrams have some classifications that will be expressed in the following. The first
diagram is concerned with course classification. Each course at DTU has a well-defined
type, which indicates which students must, may or may not follow it.

The Any Course type refers to all courses at DTU, even those that no longer exist.

Figure 3-4: Hasse diagram for Course classification.

In the Course diagram, there are some course types that are in a sense a little artificial, as
the case of Line Package Core Course. Notice that those types have multiple inheritances.
The model assumes that if two course types are not in an inheritance line, they are
disjoint. An example of this is that there exists no course that is both an AMS Course and a
Specialization Course at the same time (therefore no entity class inherits from both these

Course

Line
Package
Course

Core
Course

AMS
Course

Exotic
Course

Specialization
Course

Master Course

Mandatory
Course

International
Master Course

International Specialization
Course

International Mandatory
Course

Mandatory Core
Course

Mandatory Line
Package Course

Line Package
AMS Course

Line Package
Core Course

⊥

Any Course

DOMAIN ANALYSIS

19

classes), but there are many courses that are both Core Course and Line Package Course at
the same time (namely the Line Package Core Course entities).

Figure 3-5: Part of the Hasse diagram for the ACM Computing Classification System7.

The above classification is the ACM Computing Classification System. This
classification is too large to be displayed graphically, and therefore only the first level
and some examples of the other levels are illustrated here. The whole ACM tree can be
found at the ACM homepage8.

The ACM Computing Classification System contains many classification topics that are
no longer used, but are still present for searching previously classified documents. As all
courses will be classified by the new classification system, the retired topics will not be
included in this project.

7 Copyright 2002, by the Association for Computing Machinery, Inc. Permission to make digital or hard
copies of part or all of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee. Request permission to republish from: Publications Dept.,
ACM, Inc. Fax +1 (212) 869-0481 or E-mail permissions@acm.org.
8 http://www.acm.org/class/1998/ccs98.html

Topic

General
Literature

Hardware

⊥

Computer
Systems

Organization
Software

Data
Theory of

Computation �
Computing

Milieux

�
�

�
�

General The Computer
Industry

� �

�

�

�
Miscellaneous

Markets
Standards

Statistics
Suppliers

DOMAIN ANALYSIS

20

The type of study entity can either be of type Complete Master, Master or International
Master.

Figure 3-6: Hasse diagram for Type of Study classification.

The season entity can either be Fall or Spring.

Figure 3-7: Hasse diagram for Season classification.

The language entity can either be English or Danish.

Figure 3-8: Hasse diagram for Language classification.

Type of Study

Complete Master Master

⊥

International Master

Language

English

⊥

Danish

Season

Fall Spring

⊥

DOMAIN ANALYSIS

21

There are 12 different modules, each corresponding to either morning or afternoon of a
given weekday, or a 3-week course. Some courses are placed at special schedules, as for
example evening courses. These courses are classified as Other.

Figure 3-9: Hasse diagram for Module classification.

3.5 Description Logics Model
The following model is a formalization of the ER-diagrams and the Hasse-diagrams
stated above. This model provides a very formal and precise description of the domain. In
the following it is assumed that the intersection of any pair of concepts not listed in the
model corresponds to the empty set BOTTOM.

The first part of the model simply enumerates all the concepts in the Domain:

⊤ ≐ AnyCourse ⊔ PrerequisiteGroup ⊔ Topic ⊔ Language

 ⊔ Student ⊔ TypeOfStudy ⊔ Semester ⊔ Schedule ⊔ Season

 ⊔ Module

The following part of the model corresponds to diagrams 3-1 to 3-3, i.e. the ER-diagrams:

AnyCourse ⊑ ∀overlapsWith.AnyCourse

 ⊔ ∀atLeastOneOf-.PrerequisiteGroup

 ⊔ ∀passed-.Student

Course ⊑ (= 1 courseName)

 ⊓ ∀hasPrerequisite.PrerequisiteGroup

 ⊓ ∀covers.Topic

 ⊓ (=1 isTaughtIn.Language)

 ⊓ ∀includes-.Semester ⊓ ∀isTaughtAt.Schedule

Module

M1A M1B M2A M2B M3A M3B M4A M4B M5A M5B

⊥

M3-week Other

DOMAIN ANALYSIS

22

PrerequisiteGroup ⊑ (= 1 hasPrerequisite-.Course)

 ⊓ (≥ 1 atLeastOne.AnyCourse)

Topic ⊑ ∀covers-.Course ⊔ ∀isInterestedIn-.Student

Language ⊑ ∀isTaughtIn-.Course ⊔ ∀speaks-.Student

TypeOfStudy ⊑ ∀follows-.Student

Student ⊑ (= 1 follows.TypeOfStudy)

 ⊓ (= 1 speaks.Language)

 ⊓ ∀isInterestedIn.Topic

 ⊓ ∀passed.AnyCourse

 ⊓ ∀plans.Semester

Semester ⊑ (= 1 isOn.Season)

 ⊓ (= 1 plans-.Student)

 ⊓ ∀includes.Course

Schedule ⊑ (= 1 inSeason.Season) ⊓ (= 1 inModule.Module)

Season ⊑ ∀isOn-.Semester ⊔ ∀inSeason-.Schedule

Module ⊑ ∀inModule-.Schedule

The next part of the model corresponds to diagram 3-4, i.e. the Hasse-diagram for Course
classification:

AnyCourse ≐ AnyCourse ⊔ Course

Course ≐ LinePackageCourse ⊔ CoreCourse ⊔ MasterCourse

LinePackageCourse ≐ LinePackageCoreCourse ⊔ LinePackageAMSCourse

 ⊔ MandatoryLinePackageCourse

 ⊔ LinePackageCourse

CoreCourse ≐ LinePackageCoreCourse ⊔ MandatoryCoreCourse

⊔ CoreCourse

MasterCourse ≐ ExoticCourse ⊔ AMSCourse ⊔ MandatoryCourse

DOMAIN ANALYSIS

23

 ⊔ SpecializationCourse ⊔ InternationalMasterCourse

 ⊔ MasterCourse

LinePackageCoreCourse ≐ LinePackageCourse ⊓ CoreCourse

LinePackageAMSCourse ≐ LinePackageCourse ⊓ AMSCourse

MandatoryLinePackageCourse ≐ LinePackageCourse ⊓ MandatoryCourse

MandatoryCoreCourse ≐ CoreCourse ⊓ MandatoryCourse

InternationalSpecializationCourse ≐ SpecializationCourse

 ⊓ InternationalMasterCourse

InternationalMandatoryCourse ⊑ InternationalSpecializationCourse

The next part of the model corresponds to diagram 3-5, i.e. the Hasse-diagram for the
ACM Computing Classification System. Once again, the whole model is too large to be
displayed in this document, and therefore only a part of the model is shown in the
following:

⊤ ≐ GeneralLiterature ⊔ Hardware ⊔ ComputerSystemsOrganization

 ⊔ Software ⊔ Data ⊔ TheoryOfComputation

 ⊔ MathematicsOfComputing ⊔ InformationSystems

 ⊔ ComputingMethodologies ⊔ ComputerApplications

 ⊔ ComputingMilieux

GeneralLiterature ≐ GeneralLiterature ⊔ AGeneral

⊔ IntroductoryAndSurvey ⊔ Reference

⊔ AMiscellaneous

AGeneral ≐ AGeneral ⊔ BiographiesAutobiographies

 ⊔ ConferenceProceedings ⊔ GeneralLiteraryWorks

...

TheoryOfComputation ≐ TheoryOfComputation ⊔ FGeneral

 ⊔ ComputationByAbstractDevices

 ⊔ AnalysisOfAlgorithmsAndProblemComplexity

 ⊔ LogicsAndMeaningsOfPrograms

 ⊔ MathematicalLogicAndFormalLanguages

DOMAIN ANALYSIS

24

 ⊔ FMiscellaneous

...

The next part of the model corresponds to diagrams 6 to 9, i.e. the Hasse-diagrams for the
classification of types of study, seasons, languages, and modules:

TypeOfStudy ≐ CompleteMaster ⊔ Master ⊔ InternationalMaster

 ⊔ TypeOfStudy

Season ≐ Fall ⊔ Spring

Language ≐ English ⊔ Danish

Module ≐ M1A ⊔ M1B ⊔ M2A ⊔ M2B ⊔ M3A ⊔ M3B ⊔ M4A ⊔ M4B ⊔ M5A

 ⊔ M5B ⊔ M3-week ⊔ Other

3.6 Constraints
The constraints stated in this section basically derive from DTU regulations and common
sense.

The following constraints are expressed in natural language, predicate logic (PL) and in
description logics (DL). This is done to obtain a complete understanding of these
constraints, as they are a key aspect of this system. Only constraints not already explicitly
shown in the ER-diagrams and Hasse-diagrams are stated here.

Constraints 1 to 9 are concerned with the semesters being planned by students. These
constraints must be checked to assure that the student is not planning a semester that goes
against DTU regulations or common sense. Constraints 10 and 11 are concerned with
DTU courses, and they must only be checked to assure that all DTU courses comply with
the regulations and common sense. In a sense, the system is only to check that semester
plans are done correctly, and therefore only constraints 1 to 9 are really important in this
context. On the other hand, if constraints 10 and 11 are not fulfilled, it could interfere
with the planning of semesters, for example in the case of a course that can never be
planned. In the latter case, the corresponding authority should be contacted about the
problem.

Constraint 1 - The �overlaps with� relation is symmetric. This constraint is important
when checking for constraint 6.
(PL) ∀(overlapsWith(X,Y) ↔ overlapsWith(Y,X))
This reads: For all courses, if and only if a course overlaps with another then the second
course also overlaps with the first one.
(DL) overlapsWith ≐ overlapsWith-

DOMAIN ANALYSIS

25

This reads: The set of courses that overlap with other courses is equal to the set of the
inverse relation.

Constraint 2 - Students following the master study may only plan to take master courses.
(PL) ∀((follows(X,T) ∧ isMaster(T)) →
 ((plans(X,S) ∧ includes(S,C)) → isMasterCourse(C)))
This reads: For all students, semesters and courses, if a student follows a master type of
study then, if the student plans a semester and the semester includes a course, then the
course is a master course.
 (DL) ∀follows.Master ⊑ ∀plans.(∀includes.MasterCourse)
This reads: The set of all students that follow a master type of study is a subset of the set
of all students that only plan semesters that only include master courses.

Constraint 3 - Students following the international master study may only plan to take
international master courses.
(PL) ∀((follows(X,T) ∧ isInternatMaster(T)) →
 ((plans(X,S) ∧ includes(S,C)) → isInternatMasterCourse(C)))
This reads: For all students, semesters and courses, if a student follows an international
master type of study then, if the student plans a semester and the semester includes a
course, then the course is an international master course.
(DL) ∀follows.InternationalMaster ⊑

∀plans.(∀includes.InternationalMasterCourse)
This reads: The set of all students that follow an international master type of study is a
subset of the set of all students that only plan semesters that only include international
master courses.

Constraint 4 - A student who does not speak Danish may not plan to take a course taught
in Danish.
(PL) ∀(speaks(X,L) ∧ isEnglish(L) →

 (plans(X,S) ∧ includes(S,C) → isTaughtIn(C,L) ∧ isEnglish(L)))
This reads: For all students, languages, semesters and courses, if a student speaks
English then, if the student plans a semester and the semester includes a course then, the
course is taught in English.
(DL) ∀speaks.English ⊑ ∀plans.(∀includes.(∀isTaughtIn.English))
This reads: The set of all students that speak English is a subset of the set of all students
that only plan semesters that only include courses taught in English.

DOMAIN ANALYSIS

26

Constraint 5 - All courses in a semester plan must be taught in the season corresponding to
that semester.
(PL) ∀(includes(S,C) ∧ isOn(S,Se) →

 ∃Sc(isTaughtAt(C,Sc) ∧ inSeason(Sc,Se))))
This reads: For all semesters, courses and seasons, if the semester includes a course and
the semester is in a given season then there must exist a schedule so that the course is
taught at this schedule and this schedule is in the given season.
(DL) ⊥ ≐ ∃includes-.(∃isOn.Fall) ⊓ ¬(∃isTaughtAt.(∃inSeason.Fall))

⊥ ≐ ∃includes-.(∃isOn.Spring) ⊓ ¬(∃isTaughtAt.(∃inSeason.Spring))

This reads: The intersection of the set of courses included in Fall semesters and the
complement set of courses taught in Fall schedules is empty. The same constraint applies
to Spring semesters and schedules.

The following constraints contain nominals, i.e. variables that must be instantiated to a
particular semester plan in order to be checked. This is a deviation from the Description
Logics, which is necessary in order to express the constraints.

Constraint 6 - A semester plan may not contain two or more courses that overlap with each
other.
(PL) ∀(includes(S,C1) ∧ includes(S,C2) → ¬overlapsWith(C1,C2))
This reads: For all semesters and courses, if the plan includes a course and the plan
includes another course then the first course does not overlap with the second course.
(DL) ⊥ ≐ ∃includes-.(α) ⊓ ∃overlapsWith.(∃includes-.(α))
This reads: The intersection of the set of courses included in a semester α and the set of
courses that overlap with the courses included in the semester α is empty.

Constraint 7 - A semester plan may not contain more than one course at the same module.
(PL) ∀S(includes(S,C1) ∧ includes(S,C2) →

 ¬(isTaughtAt(C1,Sc1) ∧ inModule(Sc1,M) ∧

isTaughtAt(C2,Sc2) ∧ inModule(Sc2,M))
This reads: For all semesters, courses, schedules and modules, if the plan includes a
course and the plan includes another course then, it is not possible that the first course is
taught at a schedule and the second course is taught at another schedule and both
schedules are in the same module.
(DL) ⊤ ⊑ ≤ 1 (∃include-.(α) ⊓ ∃isTaughtAt.(∃inModule.M1A))

⊤ ⊑ ≤ 1 (∃include-.(α) ⊓ ∃isTaughtAt.(∃inModule.M1B)) ...

This reads: There is at most one course in the intersection of the set of courses included
in a semester α and the set of courses taught in a schedule of module M1A. The same
constraint applies to modules M1B, M2A, M2B, etc.

The following constraints also contain nominals, but these must be instantiated to a
particular student plan in order to be checked.

DOMAIN ANALYSIS

27

Constraint 8 - No student may plan to take a course he has already passed.
(PL) ∀(passed(X,Y) → (plans(X,S) → ⌐includes(S,Y)))
This reads: For all students, semester plans and courses, if a student passed a course
then, if the student plans a semester then the semester may not include that course.
(DL) ⊥ ≐ ∃passed-.(α) ⊓ ∃includes-.(∃plans-.(α))
This reads: The intersection of the set of the courses passed by a student α and the set of
the courses included in the semesters planned by the student α is empty.

Constraint 9 - No student may plan to take a course that overlaps with a course he already
passed.
(PL) ∀(plans(X,S) ∧ includes(S,C1) →

 (passed(X,C2) → ⌐overlapsWith(C1,C2)))
This reads: For all students, semester plans and courses, if a student plans a semester
and the semester includes a course then, if the student passed a second course then this
course does not overlap with the first course.
(DL) ⊥ ≐ ∃passed-.(α) ⊓ ∃overlapsWith.(∃includes-.(∃plans-.(α)))
This reads: The intersection of the set of the courses passed by a student α and the set of
the courses that overlap with the courses included in the semesters planned by the student
α is empty.

The last two constraints are not very important to the system, as they will not be used to
validate semester plans or students, but only courses in the Course Catalogue.

Constraint 10 - Prerequisites of a course may not have the course itself as a prerequisite.
(PL) ∀(⌐isPrerequisite(X,X))
This reads: For all courses no course is a prerequisite of itself.
(DL) ⊥ ≐ α ⊓ ∃atLeastOneOf-.(∃hasPrerequisite-.(α))

This reads: The intersection of the set containing a course α and the set of the courses in
a prerequisite group of the course α is empty.

Constraint 11 - The �has prerequisite� relation together with the �at least one of� relation
is transitive. This is to be understood as, if a course A has a prerequisite B in one of its
prerequisite groups, B is considered a prerequisite of A. If C is a prerequisite of B it is
automatically also a prerequisite of A.
(PL) ∀(isPrerequisite(X1,X2) →

 ((hasPrerequisite(X2,G) ∧ atLeastOneOf(G,X1)) ∨

 (isPrerequisite(X1,Z) ∧ isPrerequisite(Z,X2))))
This reads: For all courses and prerequisite groups, if a course is a prerequisite of
another course then, the second course has a prerequisite group and the prerequisite

DOMAIN ANALYSIS

28

group contains the first course, or the first course is a prerequisite of a third course that
in turn is a prerequisite of the second course.
(DL) (∃hasPrerequisite.(∃atLeastOneOf.⊤))+ ⊑

 ∃hasPrerequisite.(∃atLeastOneOf.⊤)

This reads: The relation between courses and the courses included in their prerequisite
groups is transitive.

3.7 User Queries
This section enumerates some of the questions that students may be interested in asking
the system. These questions are only examples of what the system could be able of
answering. And of course, the answer to these questions must comply with the above-
mentioned constraints.

A formalization of these questions in description logics is also given here. The user
queries will contain some specific instances of a concept, also known as nominals. The
nominals in the following questions will be represented by variables. These variables
must be substituted by the according nominals when the results must be found.

1. What courses cover my areas of interest? (Student α)

result ≐ ∀covers.(∀isInterestedIn-. α)

2. What courses are there which I have completely fulfilled their

prerequisites?(Student ψ)

G1 ≐ ∀atLeastOneOf.(∀passed-.(ψ))

C2 ≐ ∀hasPrerequisite.(G1)

G3 ≐ ∀hasPrerequisite-.(C2)

C4 ≐ ∀ hasPrerequisite.(G3 ⊓ ¬G1)

result ≐ C2 ⊓ ¬C4

Question 2 is very complex; therefore an explanation of the description logics statement
is given here. Venn diagrams for the example are found in diagram 3-10:

Each course that the student has passed may be in zero, one or more prerequisite groups.
A set of all the prerequisite groups that has at least one of the courses passed by the
student is stated in G1.

Each prerequisite group in G1 is a prerequisite of exactly one course. A set of all the
courses of the groups in G1 is stated in C2. The courses passed by the student are

DOMAIN ANALYSIS

29

completely disjoint from C2 because of constraint 6. C2 is the set of courses that the
student has fulfilled some prerequisites.

The courses in C2 have one or more prerequisite groups as prerequisites. Some of these
prerequisite groups do not have any of the courses passed by the student, others do. The
set of these groups is stated in the set G3. This set G3 contains the set G1, i.e. G1 is a
subset of G3. If we remove G1 from G3, i.e. G3\G1, we get the set of prerequisite groups
that do not have courses passed by the student.

Each group in the set G3\G1 is a prerequisite of exactly one course. A set of all the
courses of the groups in G3\G1 is stated in C4. C4 is a subset of C2. C4 is exactly the set
of courses that the student has fulfilled some of the prerequisites but not all. If we remove
the set C4 from C2, we obtain the set of all courses that the student has fulfilled exactly
all of the prerequisites, which is what we have been looking for.

Figure 3-10: Venn-diagram for question 3.

passed

Courses

Groups

G1
G3

G3\G1

C4
C2

C2\C4

DOMAIN ANALYSIS

30

31

4 REQUIREMENTS SPECIFICATION
The domain of the system to be developed has been extensively analyzed. Now the
problem to be solved by the system must be specified formally. This chapter contains all
the requirements that the system to be built must fulfill, expressed as a Use Case Model,
Supplementary Requirements and a Mock-up Model. No technical details about how the
requirements are to be met are given here, but in the design section.

The system to be developed is a web portal where students can enter information about
themselves and create semester plans containing the courses they intend to follow. The
system must then warn the student if the planned semester goes against the constraints
described in the domain analysis, corresponding to DTU rules, or against any options the
student has solicited (e.g. topics of interest, prerequisites, etc.).

4.1 Use Case model
The following use case model expresses the functional requirements of the system.

Figure 4-1: Use Case diagram

Create plan

Edit profile

Delete plan

Get plan
Get profile

≪extend≫

Delete profile

≪include≫

Validate plan

Edit course

Maintain ontology

Instructor

Student

System
Administrator

≪extend≫
≪extend≫

≪extend≫

≪include≫

Web Portal

≪extend≫

Edit plan

REQUIREMENTS SPECIFICATION

32

4.1.1 Actors

Instructor � a person who offers one or more courses at DTU, interested in making his
course easy to find for interested students.

Student � a person following a study at DTU, interested in planning a semester.

System Administrator � a person who maintains the system.

4.1.2 Use Case descriptions

Name: Edit Course
Description: The instructor edits the information about which ACM topics are covered
by a course, and classify the course by indicating its type.
Preconditions: The course exists in the DTU course catalogue.
Basic course of action:

1. The instructor gives the course number to the system.
2. The system shows the information about ACM topics related to the course if any.
3. The system shows the course type classification if any.
4. The instructor may change the information about ACM topics related to the

course.
5. The instructor may change the course type.
6. The system saves the changes.

Name: Get Profile
Description: The system shows the student�s profile.
Post conditions: A profile for the given student exists in the system.
Basic course of action:

1. The student gives the student number to the system.
2. The system shows the information about the student saved in the system.

Alternative course of action:
A. At step 2 of the original use case, if no profile for the student exists in the system,

a new one is created.
B. The student must enter a type of study and the language of the student.
C. The new profile is saved.

Name: Edit Profile
Description: The student edits his profile information
Basic course of action:

1. Get Profile use case.
2. The student may add or remove course numbers of the courses he has already

passed.
3. The student may add or remove ACM topics he is interested in.
4. The system saves the changes.

REQUIREMENTS SPECIFICATION

33

Name: Delete Profile
Description: The student removes his profile from the system.
Post conditions: No profile for the given student exists in the system.
Basic course of action:

1. Get Profile use case.
2. The system deletes the profile.

Name: Create Plan
Description: The student creates a new semester plan.
Preconditions: After step 1 of the Edit Profile use case.
Post conditions: A new semester plan exists in the student�s profile.
Basic course of action:

1. The student chooses a season for the semester plan (fall or spring).
2. The student gives a unique name to identify the new plan.
3. The system creates a new empty semester plan for the given season.

Alternative course of action:
A1. At step 1 of the original use case, if the student does not provide a season, a

default one is given (it does not matter which season is given as default).
Alternative course of action:

B1. At step 2 of the original use case, if the student does not provide a name to the
plan, or if the name already exists, the system will show the corresponding error
message.

Name: Delete Plan
Description: The student removes a plan from his profile.
Preconditions: After step 1 of the Edit Profile use case. The plan to be removed already
exists in the student�s profile.
Basic course of action:

1. The student selects a plan from his profile.
2. The system deletes the plan from his profile.

Name: Get Plan
Description: The system shows the selected semester plan.
Preconditions: After step 1 of the Edit Profile use case. The plan already exists in the
student�s profile.
Basic course of action:

1. The student selects a plan from his profile.
2. The system shows the contents of the chosen semester plan.

Name: Edit Plan
Description: The student edits the selected plan.
Preconditions: After step 2 of the Get Plan use case.
Basic course of action:

1. The student may add courses to the semester plan.
2. The student may remove courses to the semester plan.
3. The system saves the changes to the plan.

REQUIREMENTS SPECIFICATION

34

Alternative course of action:
A1. At step 2 of the original use case, if the course to be added does not exist in the
Course Catalogue, or if the course does not have any schedules in the season
corresponding to the semester plan, an error message is issued, and the course is not
added to the plan.

Name: Validate Plan
Description: The system checks if the selected plan complies with DTU rules, and
eventual selected restrictions.
Preconditions: After step 2 of the Get Plan use case.
Basic course of action:

1. The student may select that all courses in the plan must cover the student�s topics
of interest.

2. The student may select that all the prerequisites of the courses in the plan must be
fulfilled by the student�s passed courses.

3. The student asks the system to validate the semester plan.
4. The system answers if the semester plan complies with the given constraints or

not. A list of courses not complying with the constraints, if any, is also given.

Name: Maintain ontology
Description: The system administrator wants to make some changes to the system�s
ontology, e.g. in case of DTU rules having been changed.
Basic course of action:

1. The system administrator makes the necessary changes directly in the file
containing the ontology.

2. The system administrator restarts the system.

4.2 Supplementary Requirements
The following requirements comprise important information about the minimum quality
of the system, concerning performance, security, usability, etc.

1. This first version of the system is to be a prototype only.
2. No security aspects need to be supported in this version of the system. This means

that any user can see, edit and delete each other�s profiles, semester plans and
course information. This is not to be acceptable in the working system, but will
suffice for prototyping purposes.

3. The system should be available through the Internet, and should only require a
web browser to be accessed by the users. At least Internet Explorer v.6 or later
must be supported in this prototype version.

4. Students must be able to plan their semester using the system without the need of
assistance or a user�s manual (i.e. the system must be self explanatory).

5. No user interface need to be provided for the system administrator in this version
of the system. This of course requires that the system administrator is familiar
with the implementation of the system. In a working system, a user friendly
interface for this user should be considered.

REQUIREMENTS SPECIFICATION

35

4.3 Screen Mock-ups
This section specifies the user-interface requirements. There are three interfaces of
interest in this system. The first interface is the one used by the instructors who want to
edit the topics and types related to their courses. The second one is the interface the
student uses to handle his profile. The last one is the one the student uses to handle his
semester plan.

The notation used in these mock-ups is the following:

Buttons or links, indicating an action activator are underlined text.
Choices where only one item can be selected are circles, and the selected circle
has a dot in it.
$ Choices where more than one item can be selected are squares, and the selected
squares have marks in them.
Texts without any formatting are only information labels.
A text field for entering text is a box.

4.3.1 Course information interface

The following mock-up is a model for the interface used by instructors to classify their
courses according to the ACM topics they cover.

The first button, the Get course button, is used to retrieve earlier saved information about
a course, if any. The instructor must first give the course number and click on the Get

COURSE TOPICS

 Course number: 02215 Get course

How to classify

Save course

ACM Classification:
 General Literature
 Hardware
 Computer Systems Organization
 Software
 Data
 Theory of Computation
 Mathematics of Computing

 Numerical Analysis
$ Discrete Mathematics
 Probability and statistics
$ Mathematical software

 Information Systems
 Computing Methodologies
 Computer Applications
 Computing Milieux

Course types:
 Core
 Line Package
 Master

 Exotic
 AMS
 Mandatory

 Specialization
 International

REQUIREMENTS SPECIFICATION

36

course button. If the given course has been classified before, its topics and types are then
shown. If no course number is given an error message is issued.

The second button, the Save course button, saves the given classification for the given
course. This action will overwrite any previous classification of the given course.
To classify a course, some topics of the ACM�s Computing Classification System and
types must be chosen before saving the course. Only the first level of ACM topics and
types are initially shown. If the instructor clicks on an item its sub-items will appear.
Items with no sub-items are not buttons.

The How to classify button links to a page explaining how to classify works using the
ACM�s Computing Classification System9. This guide is aimed to classify published
papers, but can also be used to classify courses.

4.3.2 Student profile interface

The following mock-up is a model for the interface used by students to create and edit
their profiles.

The Get profile button is used to retrieve earlier saved information about a student, if any.
The student must first give his student number and click on the Get profile button.

If the student is using the system for the first time, or if he has deleted his profile, he must
first create a new profile. The student�s type of study and language must be entered, and
the profile must be saved by clicking on the Save profile button.

If the student has created his profile before, his information will be shown. If no student
number is given an error message is issued.

9 http://www.acm.org/class/how_to_use.html

 Student number: c960516

 Type of study:

Do you want to follow courses in Danish?
 Yes No

 master

Get profile Save profile

STUDENT PROFILE

 complete master

 international master

REQUIREMENTS SPECIFICATION

37

The Save profile button saves any changes made to the given profile. This action will
overwrite any previous profile for the given student. The changes in the profile may be
adding or removing courses from the passed courses10 list, editing the topics of interest,
creating or deleting semester plans.

The list of passed courses must contain one course number per line, as shown in the
mock-up. The list can be edited by adding more lines to the list, or by removing any of
the lines.

To indicate areas of interest, the student must choose some topics from the ACM�s
Computing Classification System. Only the first level of ACM topics is initially shown.

10 The list of passed courses may include courses that are no longer in the Course Catalogue. Any courses
containing letters in the course number (e.g. c4912) should be written without the letters (e.g. 4912).

 Student number: c960516

Type of study: master
Language: Danish

 Courses passed: 02115
10013

Get profile

Semester plans:

fall 2003
spring 2004

Create new plan

Save profile

Delete profile

Topics of interest:

STUDENT PROFILE

Delete
Delete

Plan ID: spring 2003

Semester season:

Fall Spring

 General Literature
 Hardware
 Computer Systems Organization
 Software
 Data
 Theory of Computation
 Mathematics of Computing

 Numerical Analysis
 Discrete Mathematics
 Probability and statistics
 Mathematical software

 Information Systems
 Computing Methodologies
 Computer Applications
 Computing Milieux

REQUIREMENTS SPECIFICATION

38

If the student clicks on a topic its sub-topics will appear. Topics with no sub-topics are
not buttons. The student does not have to follow any rules when choosing his topics of
interests. He can choose as many topics as he feels like.

The student profile interface is also used to create, remove and select semester plans. To
create a plan a unique plan ID and a season must be given. To remove a plan the selected
plan�s delete button must be clicked. To select a plan the plan ID button must be clicked,
and the student will be directed to the semester planning interface.

The Delete profile button removes the given profile from the system. This will also remove
any semester plans included in the profile.

4.3.3 Semester planning interface

The following mock-up is a model for the interface used by students to plan a given
semester.

This interface is accessed from the student profile interface by choosing one of the plans
previously created by the student. This interface contains a semester schedule.

The student may add a course to the plan by giving the course number and clicking on the
Add button. If the course does not exist in the Course Catalogue, or if it is not held in the
season corresponding to the plan, an error message will be shown, and the course will not
be added to the plan.

To delete a course from the plan, the Delete button next to the course number must be
clicked.

Add

SEMESTER PLAN

 Plan ID: Fall 2003

1A

Delete

10010

3A

5A

2A

Delete

02115

4A

Jan.

5B

1B

Delete

10010

3B

4B

2B

Other

 Course number:

Back to Profile

Validation must include:
 Topics of interest
 Prerequisites

Validate plan

REQUIREMENTS SPECIFICATION

39

To verify if the semester plan complies with the system constraints (DTU rules), the
Validate plan button should be clicked.

Notice that the information given in the student�s profile will be taken into account when
validating the semester plan (e.g. if the student does not speak Danish, no courses in
Danish will be allowed in the semester plan). The student can also ask the system to
validate topics covered by the courses (according to the student�s topics of interest) and
course prerequisites (according to the student�s passed courses).

If the student wants to see more information about a course, he just has to click on the
number of the corresponding course in the schedule, and the course page in the course
catalogue will be shown.

When the student is finished working on his schedule he must click on the Back to Profile
button. This will return the student to the profile interface.

REQUIREMENTS SPECIFICATION

40

41

5 SYSTEM DESIGN
The previous chapter described what the system must be able to solve. This chapter
describes how the system must do it.

Due to the low level of complexity of the system, there is no need to separate the analysis
phase from the design phase of this project. This chapter thus contains an analysis model
consisting of collaboration diagrams realizing the use cases described in the previous
chapter, and the corresponding analysis classes. Besides this chapter contains a design
model consisting of the deployment diagram, the component diagram and the class
diagram.

This chapter also contains details on how the system database, or more specifically the
knowledge base, is to be built. At the end of the chapter a discussion about the tools to be
used in the development of the system is presented.

5.1 Analysis classes
This section recognizes the classes necessary to achieve the requirements specified in the
previous chapter. The analysis classes are divided into Boundary classes, Entity classes
and Control classes.

5.1.1 Boundary Classes

The CourseUI class supports the interaction between the Instructor actor and the Edit
Course use case. This class allows an instructor to classify courses according to their type
and the topics they cover.

The ProfileUI and PlanUI classes support the interaction between the Student actor and the
Edit Profile and Delete Profile use cases. The ProfileUI class allows a student to create a new
profile, edit a profile, delete a profile, create a semester plan and delete a semester plan.
The PlanUI class allows a student to edit and validate a semester plan.

Instructor CourseUI

Student

ProfileUI

PlanUI

SYSTEM DESIGN

42

5.1.2 Entity Classes

The Course class is used to represent DTU courses. The Course class contains information
about course classification given by the Instructor, as well as schedule information
derived from the DTU Course Catalogue. The Schedule class holds information about
when a course is taught.

The Profile class is used to represent a student�s profile. All information provided by the
student is contained in this class. The Profile class may contain zero, one or more semester
plans, which are represented by their corresponding Plan class. The Plan class contains
information about the semester season and the courses contained in the plan.

5.1.3 Control Classes

The DBManager class is the only control class in the system, and is used to coordinate all
transactions among the boundary classes and the Knowledge Base. This class is also
responsible for the Validate Plan use case.

Schedule Course
*

Plan Profile
*

Course
*

DBManager

SYSTEM DESIGN

43

5.2 Collaboration diagrams
The following collaboration diagrams realize each of the use cases specified in the system
requirements.

5.2.1 Realization of the Edit Course use case

T
he instructor indicates which course he wants to edit (1). The DBManager retrieves the
course from the knowledge base and creates the corresponding Course instance (2, 3).
The instructor then classifies the course with respect to its type and its covered topics
(4, 5). Finally the newly classified course is saved (6).

5.2.2 Realization of the Get Profile use case

T
he student requests for his profile (1). The DBManager retrieves the profile from the
knowledge base and creates the corresponding instance (2, 3). If the profile does not exist
in the knowledge base, instead of step (3) the student must enter his type of study and
language (A). A new profile instance for the student is created (B) and saved in the
knowledge base by the DBManager (C).

Student ProfileUI

1. get profile
2. get profile

DBManager

Profile
3. New

A. enter type of
study and
language

B. New

C. Save profile

Instructor CourseUI DBManager

1. get course

2. get course 4. classify

6. save course

Course 5. classify 3. New

SYSTEM DESIGN

44

5.2.3 Realization of the Edit Profile use case

After the execution of the Get Profile use case, the student may add or remove passed
courses and topics of interest (1, 2). The modified profile is saved in the knowledge base
by the DBManager (3).

5.2.4 Realization of the Delete Profile use case

After the execution of the Get Profile use case, the student requests the deletion of the
profile (1). The profile is removed from the knowledge base by the DBManager (2).

5.2.5 Realization of the Create Plan use case

T
he student requests the creation of a new semester plan by entering a season and a plan ID
(1, 2). The plan is added to the student�s profile (3) and the profile is saved in the
knowledge base by the DBManager (4).

Student ProfileUI

4. save profile

DBManager

Profile

1. create plan

3. add plan

Plan

2. New

Student ProfileUI

2. delete profile

DBManager

1. delete profile

Student ProfileUI

3. save profile

DBManager

Profile 1. edit passed
courses and topics

of interest

2. edit

SYSTEM DESIGN

45

5.2.6 Realization of the Delete Plan use case

T
he student requests the deletion of a given plan in his profile (1). The plan is removed
from the student�s profile (2) and the profile is saved in the knowledge base by the
DBManager (3).

5.2.7 Realization of the Get Plan use case

The student requests to see the given semester plan. The PlanUI class retrieves the plan
from the profile instance and shows it to the student.

Student ProfileUI

Profile 1. get plan 3. get plan

Plan

2. show plan

PlanUI

Student ProfileUI

3. save profile

DBManager

Profile

1. delete plan

2. delete plan

SYSTEM DESIGN

46

5.2.8 Realization of the Edit Plan use case

The student may add a course to the semester plan (1). The course is retrieved from the
knowledge base by the DBManager (2) and added to the plan (3). The profile that
contains the modified plan is saved in the knowledge base by the DBManager (4).

The student may remove a course from the semester plan (1, 2). The profile that contains
the modified plan is saved in the knowledge base by the DBManager (3).

Student PlanUI

4. save profile

DBManager

Profile

1. add course

Plan

3. add course

2. get course

Course

Student PlanUI

3. save profile

DBManager

Profile

1. remove course

Plan

2. remove course

SYSTEM DESIGN

47

5.2.9 Realization of the Validate Plan use case

T
he student may request for the plan shown to be validated, eventually indicating if topics
of interest and prerequisites must be included in the validation (1). The DBManager
validates the plan (2); if any courses do not comply with the system ontology, they are
listed to the student as not complying courses.

5.2.10 Realization of the Maintain Ontology use case

T
he system administrator changes a given ontology by accessing the ontology file and
editing it. No interface is provided for this purpose. The DBManager must be restarted
after the ontology has been modified.

When the ontology file is modified, its contents must be checked for syntax errors and
validated (i.e. checked for consistency). If there are consistency errors, the system
administrator must check the new ontology for mistakes. If no mistakes are found, the
proper DTU instances should be contacted, so that DTU rules can be checked for
consistency.

The ACM Computing Classification System is assumed not to change very often. If the
changes are only the addition of new topics in the tree, and not removal, they will have
very little importance in the current system being developed. On the other hand, if topics
are removed, all data concerning course topics and students� interests will have to be
revised. This latter case is assumed here never to occur.

Student DBManager

1. restart

Student PlanUI

2. validate plan

DBManager

1. validate plan

Plan

SYSTEM DESIGN

48

5.3 Deployment diagram

The Web Portal will execute in one server node and a number of client nodes. Instructors
will access the portal through Instructor Clients, while students will access it through
Student Clients. The System Administrator accesses the system directly through the Web
Portal Server.

The clients must be provided with web browsers, and the server will be provided with a
web server. The clients communicate with the server using the Internet, and will only
receive HTML pages and send HTTP requests to the server. The HTML pages sent to the
clients must be dynamically generated at the request time.

Instructor
Client

Student
Client

Web Portal
Server

Internet

*

*

System
Administrator

Student

Instructor

Internet

SYSTEM DESIGN

49

5.4 Component diagram

The Instructor and Student users will access the system through web browsers, which will
communicate with our Web server via the Internet. The Web server has access to three
kinds of components: Static HTML pages, dynamically generated HTML pages and the
files in the knowledge base.

The static HTML pages and the files in the knowledge base are sent as they are to the
Web browser requesting them. The dynamically generated HTML pages are created at
request time, according to the contents of the knowledge base at that time.

The dynamically generated HTML pages communicate only with the boundary classes to
interact with the knowledge base. Only through them is it possible to change the contents
of the knowledge base (or by editing the files directly on the server, which is only
allowed for the system administrator).

Furthermore, the control class communicates with a reasoner that has as purpose to
validate semester plans according to the system ontology. This reasoner has access to the
knowledge base.

5.4.1 Security Issues

Even though security is not required in the prototype version of this system, some issues
are worthwhile mentioning.

Security in the system should be enforced at the Web Server level, through SSL
communication. Access to different components should then require authentication. Static
HTML pages and the part of the knowledge base corresponding to the ontology and
courses should be visible for all. The part of the knowledge base corresponding to student
profiles should only be visible by the corresponding profile owners. The dynamically

Web
server

Static HTML

Dynamically generated
HTML

Web
browser

Knowledge
Base Control class

Boundary
classes

Entity classes

Web
browser

Web
browser

 Reasoner

SYSTEM DESIGN

50

generated HTML pages allow users to create, remove and delete contents of the
knowledge base. The dynamically generated HTML pages that correspond to course
classification should only be accessed by instructors, and all instructors should be able to
modify any course. The pages that correspond to profiles and plans should only be
accessed by the owner of the corresponding profile.

5.5 The Interface Components

The Interface of the Web portal consists of static HTML pages and dynamically
generated HTML pages. The entrance of the Web portal is a static HTML page that links
to the course classification interface and the student profile interface. The student
interface links to the plan interface. The CourseUI class generates the dynamic part of the
course interface, the ProfileUI class the dynamic part of the student interface and the
PlanUI class the dynamic part of the plan interface.

Both the course interface and the student interface must also contain information about
classifications. For example, the type of the course is a course classification, the topics
covered by the course too, as well as the type of study and the topics of interest. These
classifications have as purpose to help the instructor or student enter information about a
course or profile. All these classifications are contained in the ontology of the system, in
the knowledge base. These classifications can be visualized as trees, where each tree node
is a concept class11 together with a human readable label for the class.

11 There is a very important difference between a concept class and a design class. Concept classes are the
classes forming a classification, e.g. Course class, AMSCourse class, CoreCourse class, etc. Design classes,
which also correspond to analysis and implementation classes, are the boundary, entity and control classes
of the system, e.g. DBManager class, ProfileUI class, etc.

Web Portal Entrance

Course
interface

Plan interface

Student
interface

PlanUI

CourseUI
ProfileUI TreeUI

DBManager ClassificationTree

TreeNode

SYSTEM DESIGN

51

The TreeUI class is a boundary class that generates a classification tree to be displayed in
the corresponding HTML page. This boundary class makes use of a ClassificationTree
entity class to hold the information about the classification. The classes forming the
classification are accessed through the DBManager control class. Each classification class
becomes an instance of the TreeNode entity class.

5.6 The Knowledge Base

The knowledge base design is mostly determined by the ER-diagrams, Hasse diagrams
and Description Logics model shown in the Domain Analysis. What should be considered
in this section is exactly where the content of the knowledge base comes from and how it
is maintained and used by the system.

Every time the system is restarted, the DTU file containing information about DTU rules
(ontology) and courses must be generated, so that it reflects any changes to these
information sources.

The system will handle 3 kinds of data. The first kind will be the data given to the
system, through a graphical interface (Profile files and Course files). The Course files are not
part of the knowledge base directly, but contain additional information about courses,
stored in XML format. This information will be inserted in the DTU file every time the file
is generated. This kind of data is stored permanently in the knowledge base until the users
modify or delete them.

The second type is the Ontology file (the metadata, the T-box). This ontology is also stored
permanently in the database, and is given by the system administrator directly into system

DTU file Profile file
Profile file

Profile file

Knowledge
Base

ACM CCS

Course
Catalogue

Course file
Ontology

file

SYSTEM DESIGN

52

files. The difference here is that there is no graphical interface for data input and the user
itself is responsible for the correctness and consistency of the input files.

The last kind of data is all the data that is extracted from other sources. This is the data
about courses, which is found in the Course Catalogue, and the data about ACM CSS topics.
This data must be updated often, as changes in the course catalogue happen frequently.
ACM topics are not changed so often though. The data contained in the course catalogue
must be periodically extracted and transformed to match the schema given by the model
in the Domain Analysis. The course part of the knowledge base is in this way a Data
Warehouse, and the periodicity of the data update must depend on how often the course
catalogue changes and the time needed for each update.

The graphical interface must make sure that no inconsistent data is inserted in the
knowledge base. Any changes in the ontology must be checked to maintain consistency
with existing data.

5.7 Class diagram
From the above sections it is possible to extract the final class diagram. The necessary
methods for each class were recognized from the collaboration diagrams. No attributes
are given here, because all attributes should be accessed through the corresponding get
and set methods. Only public methods are shown.

The first part of the class diagram represents the entity classes of the system. These
classes repeat some of the information contained in the knowledge base. This is necessary
because the interface is not dynamically generated according to the knowledge base
content.

Course

getCourseNr()
getLanguage()
getSchedules()
getCourseType()
setCourseType()
getTopics()
setTopics()

Schedule

getSeason()
getModule()

Profile

getLanguage()
getTypeOfStudy()
getPassedCourses()
setPassedCourses()
getTopics()
setTopics()
getPlans()
addPlan()
removePlan()

Plan

getPlanID()
getSeason()
getCourses()
addCourse()
removeCourse()

*

*

*

ClassificationTree

getRoot()

TreeNode

getId()
getLabel()
getNodes()
addNode()

1..*

SYSTEM DESIGN

53

The second part of the class diagram represents the boundary and control classes of the
system.

5.8 Standards and Tools
In the following the standards and tools chosen for the development of the system will be
mentioned. More details about how those standards and tools are used in this project can
be found in the implementation chapter of this document.

5.8.1 Creating the knowledge base

The choice of standards is practically defined by the project title itself: Semantic Web
Technologies. This means that all of the system data (i.e. the knowledge base) will be
stored in DAML+OIL. The current version of DAML+OIL, which was the one chosen for this
system, is the version of March 2001.

5.8.2 Storing the knowledge base

The knowledge base will not contain a large amount of data, at least not in the prototype
phase of the system. Therefore there is no need for an efficient database management
system, why the knowledge base will be directly implemented as text files. These files
can be edited with any text editor available.

5.8.3 The contents of the knowledge base (the A-box)

Part of the knowledge base content will come from other web resources, these being the
courses from the DTU course catalogue and the topics from the ACM Classification.
These resources are accessed through HTML pages. To automate the extraction of the
necessary information from these resources, Compaq�s Web Language (WebL) has been
chosen. WebL is a scripting language for processing documents in the web that has built-

DBManager

getCourse()
saveCourse()
getProfile()
saveProfile()
createProfile()
deleteProfile()
validatePlan()

CourseUI

getTopics()
setTopics()
getType()
setType()

ProfileUI

getProfile()
createProfile()
deleteProfile()
saveProfile()
getTopics()
setTopics()
createPlan()
deletePlan()
getPlans()

PlanUI

getSeason()
getCourses()
addCourse()
deleteCourse()
validate()

TreeUI

getTree()

SYSTEM DESIGN

54

in knowledge of web protocols and markup documents. This tool is also known as a
�screen scraper�.

5.8.4 Managing the knowledge base

To build the control engine of the system the Jena Toolkit, from HP Labs Semantic Web
Research, has been chosen. This toolkit contains parsers that support RDF/XML and
DAML+OIL, and a query language (RDQL) for RDF documents. It also provides an
extensive application program interface (API) supporting general manipulation of RDF
and DAML+OIL documents, including inference. The Jena Toolkit is completely written
in Java12, which is also the programming language chosen for developing the control
engine.

5.8.5 The user interface

The graphical user interface will be developed using Java Server Pages (JSP), and
therefore a JSP enabled web-server must be used, as for example the Apache Tomcat web-
server. The user will interact with the system through a web-browser. The web-browser
that will be used to test this prototype version of the system will be the MS Internet
Explorer version 6.0.

5.8.6 The knowledge base validation

Validation of the knowledge base is the key functionality of the Semantic Web Portal.
This is the part of the system that actually checks if the semantics (T-box) of the
knowledge base are being complied by its instances (A-box), i.e. if the semester plan
created by a student complies with DTU rules.

Validation of the knowledge base is necessary in two situations: when creating the
knowledge base (syntax and T-box coherence check), and when adding new instances to
the knowledge base (A-box consistency check). As the knowledge base is implemented in
DAML+OIL, two tools were considered to validate it. The first one was DAML Validator,
which is provided and recommended by the DARPA Agent Markup Language
Program13, and the second one was RACER, a description logics reasoner provided by
Volker Haarslev and Ralf Möller that started to support DAML since December 2002.

DAML Validator is much more user friendly than RACER, and is very useful when creating
the knowledge base. That is because RACER does not provide helpful error messages,
making it almost impossible to find what is causing a syntax error. DAML Validator
provides explanatory error messages containing even the position of the syntax errors.

The creation of the DAML files could also be done using OILED, which also supports
DAML+OIL. Oiled is a graphical interface for creating a knowledge base correctly and
exporting it to DAML. On the other hand, DAML files created by OILED are not easily
read by humans. I preferred to create the files manually using a common text editor and

12 The version of Java used in this project is 1.4.
13 DAML Program � http://www.daml.org

SYSTEM DESIGN

55

validating them using the DAML Validator, so that I would get a better understanding of the
language itself.

When checking the A-box for consistency I found out that DAML Validator was not able to
check for certain inconsistencies, and that RACER was. Some inconsistencies are not able
to be checked by any of the tools, as in the case of insufficient information about the used
concepts. RACER uses Open World Assumption, i.e. what cannot be proven is not
considered to be false. This means that when concepts are not sufficiently defined, and
the consistency cannot be proven to be right, it simply answers that consistency cannot be
proven. DAML Validator uses the Closed World Assumption, i.e. that when concepts are not
sufficiently defined it may provide wrong answers about the A-box consistency.

A concept is sufficiently defined in DAML when sufficient conditions are stated in order
for concept membership to be established. This is achieved by using enumeration of
concept instances, or by stating that a concept is equal to other concept sufficiently
defined, or by Boolean combinations of these.

A test was made to check the validation abilities of both tools. In the test, very simple
models were used. See the test description and results in the Test chapter of this
document. After the test, the choice of A-box validation tools was RACER version 1.7.6,
and the choice of syntax checker was DAML Validator version 2003.03.18. Be aware that
the DAML Validator is still under development and improvements are made regularly. The
chosen version of DAML Validator supports the rdf:parseType=�daml:collection�14,
which was not supported by previous versions. RACER also supports this feature.

For accessing the services of RACER using methods a Java API called JRACER can be
used.

14 DAML+OIL needs to represent unordered collections of items in a number of
constructions, such as intersectionOf, unionOf, oneOf, disjointUnionOf and Disjoint.
DAML+OIL exploits the rdf:parseType attribute to extend the syntax for RDF with a
convenient notation for such collections. Whenever an element has the rdf:parseType
attribute with value "daml:collection", the enclosed elements must be interpreted as
elements in a list structure.

SYSTEM DESIGN

56

57

6 IMPLEMENTATION
This chapter concentrates on the implementation of the knowledge base, which is the core
of the Semantic Web content of the system. Every step of the implementation of the
knowledge base will be described in detail. The rest of the implementation will not be so
detailed, as it is very similar to other system development projects, and not so interesting
in the context of this project. Nevertheless, special considerations to the system
implementation will be depicted as thoroughly as necessary. Furthermore, the installation
of the tools to be used is described here.

6.1 Implementing the knowledge base
The implementation of the knowledge base consists of the conversion of the description
logics model from the domain analysis into a DAML+OIL file, and the insertion of the
instances that are not related to course classification or student profiles (these are to be
inserted via the graphical interface).

The contents of the file must be wrapped inside the following tags, which indicate that
this is an XML file, that the namespaces rdf, rdfs and daml are used in the file, that the file
is placed at http://localhost/DAML_FILES/T-box/dtu.daml and that this file
contains an ontology that imports daml+oil:

 <?xml version="1.0" encoding="UTF-8"?>
 <rdf:RDF
 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns ="http://localhost/DAML_files/T-box/dtu.daml#"
 >

 <daml:Ontology rdf:about="">
 <rdfs:comment>
 An ontology about DTU course planning. This plan only takes into
 account course classification, languages and types of study.
 </rdfs:comment>
 <daml:imports rdf:resource="http://www.daml.org/2001/03/daml+oil"/>
 </daml:Ontology>

 <!-- The rest of the file comes here ... -->

</rdf:RDF>

IMPLEMENTATION

58

The conversion of the part of the description logics model corresponding to the ER-
diagrams is very straightforward. All the relations in the ER-diagram become DAML
properties with specific range and domain entities. Here is an example of the speaks
property:

 <daml:ObjectProperty rdf:ID="speaks">
 <rdfs:label>speaks</rdfs:label>
 <rdfs:comment>The language the student speaks.</rdfs:comment>
 <rdfs:domain rdf:resource="#Student"/>
 <rdfs:range rdf:resource="#Language"/>
 </daml:ObjectProperty>

The label and comment tags are only included to add human-readability. All other
properties in the ER-diagrams are expressed in this way. Properties that are unambiguous,
i.e. they can only appear in a relation once, have the UnambiguousProperty type. Here is
an example of an unambiguous property, where a semester plan belongs to only one
student:

 <daml:ObjectProperty rdf:ID="plans">
 <rdfs:domain rdf:resource="#Student"/>
 <rdfs:range rdf:resource="#Semester"/>

<rdf:type rdf:resource=
"http://www.daml.org/2001/03/daml+oil#UnambiguousProperty"/>

 </daml:ObjectProperty>

The only attribute in the ER-diagram is the course name attribute, which is a string:

 <daml:DatatypeProperty rdf:ID="courseName">
 <rdfs:label>Course name</rdfs:label>
 <rdfs:domain rdf:resource="#AnyCourse"/>

<rdfs:range
 rdf:resource="http://www.w3.org/2000/10/XMLSchema#string"/>

 </daml:DatatypeProperty>

The entities in the ER-diagrams become concept classes in the DAML file:

 <daml:Class rdf:ID="Language">
 <rdfs:label>Language</rdfs:label>
 </daml:Class>

The cardinality constraints expressed in the ER-diagrams are also expressed in the
corresponding concept class:

 <daml:Class rdf:ID="PrerequisiteGroup">
 <rdfs:subClassOf>
 <daml:Restriction daml:minCardinality="1">
 <daml:onProperty rdf:resource="#atLeastOneCourse"/>
 </daml:Restriction>
 </rdfs:subClassOf>
 </daml:Class>

IMPLEMENTATION

59

The whole ER-model can be expressed using the above mentioned DAML+OIL
constructs.

The Hasse-diagrams are easier to implement in DAML+OIL than the ER-diagrams. In
this part of the model we simply express which concept classes are subclasses of other
concept classes:

 <daml:Class rdf:ID="English">
 <rdfs:label>English</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Language"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <English rdf:ID="EN">
 <rdfs:label>English</rdfs:label>
 </English>
 </daml:oneOf>
</daml:Class>

Because of the limitations of the validation tools used, all classes must be sufficiently
defined, i.e. defined using the oneOf construct as seen in the example above. This is very
easy to achieve with classes containing only one instance, as the one above. Other
classes, as for example the Course class, are more complicated.

Courses are classified while the system is being used, by the instructors. This means that
one concept class that is defined with a set of courses (e.g. Core courses) may suddenly
have one more instance included in its enumeration (oneOf construct), or maybe even
removed from it. This implies that the concept class definition must be changed during
the use of the system.

The final DAML file containing the domain model is dynamically created when the
system is started, so that it reflects any changes made to the Course Catalogue at start
time. But the requirement of sufficiently defined classes also requires that the DAML file
be re-created every time a course is classified.

Before describing how the final version of the DAML file, containing all courses, is
dynamically created, the rest of the static part of the knowledge base must be
implemented. Let�s continue with the rest of the Hasse-diagrams.

One of the largest classifications used in this system is the ACM topic classification.
Even though this classification could be implemented manually into DAML, this would
be a fastidious job because of its extent. A WebL script has been implemented in this
project in order to read the HTML page containing the ACM topic classification and
creating the corresponding part of the DAML file we need.

The WebL script, called topic_reader.webl in this project, has been implemented by
identifying the template of the HTML page containing the ACM classification, and the
information that should be extracted from it, then elaborating on how this information
should be transformed into DAML.

IMPLEMENTATION

60

Here is an example of a part of the HTML page containing the ACM classification:

 A. General Literature

 A.0 GENERAL

 Biographies/autobiographies
 Conference proceedings
 General literary works (e.g., fiction, plays)

 A.1 INTRODUCTORY AND SURVEY

A.2 REFERENCE (e.g., dictionaries,
 encyclopedias, glossaries)

 A.m MISCELLANEOUS

The topics in the ACM classification can be found in a hierarchy of HTML lists, where
most topics have both an id and a name (label), e.g. A.0 and General, and some have only
a name (label), e.g. Conference proceedings. The latter are always at the bottom of the
topic hierarchy.

The names (labels) of concept are not unique, but the IDs are. As we need unique names
to identify the ACM topic classes we are going to create, the IDs will be used for this
purpose. This means that topics that do not have an ID must get one from our WebL
script at generation time, that will always be the same and unique for each of them. The
script simply takes the ID of the parent of the topics and adds an extra numeration to
them. This would cause the topics without IDs in the example above to receive the
following ids:

<a>A.0.1 Biographies/autobiographies
<a>A.0.2 Conference proceedings
<a>A.0.3 General literary works (e.g., fiction, plays)

The DAML content corresponding to the example would then be like beneath. Notice that
here the concept classes are also sufficiently defined, with exactly one instance per topic:

 <daml:Class rdf:ID="A">
 <rdfs:label>General Literature</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Topic"/>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class>

 <daml:oneOf rdf:parseType="daml:collection">
 <A rdf:ID="topic-A"/>
 </daml:oneOf>

 </daml:Class>
 <daml:Class rdf:about="#A.0"/>
 <daml:Class rdf:about="#A.1"/>
 <daml:Class rdf:about="#A.2"/>
 <daml:Class rdf:about="#A.m"/>
 </daml:unionOf>
 </daml:Class>

IMPLEMENTATION

61

 <daml:Class rdf:ID="A.0">
 <rdfs:label>GENERAL</rdfs:label>
 <rdfs:subClassOf rdf:resource="#A"/>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class>

 <daml:oneOf rdf:parseType="daml:collection">
 <A.0 rdf:ID="topic-A.0"/>
 </daml:oneOf>

 </daml:Class>
 <daml:Class rdf:about="#A.0.1"/>
 <daml:Class rdf:about="#A.0.2"/>
 <daml:Class rdf:about="#A.0.3"/>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="A.0.1">
 <rdfs:label>Biographies/autobiographies</rdfs:label>
 <rdfs:subClassOf rdf:resource="#A.0"/>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class>

 <daml:oneOf rdf:parseType="daml:collection">
 <A.0.1 rdf:ID="topic-A.0.1"/>
 </daml:oneOf>

 </daml:Class>
 </daml:unionOf>
 </daml:Class>

 ...

After generating this part of the DAML file, it can be included manually to the static part
of the DAML file.

The last static part of the DAML file is the one corresponding to the constraints expressed
in the description logics model. Most of the constraints were not implemented, because
they contain existential quantifications (constraints 5 to 11), which can not be handled by
RACER, the tool for validating A-boxes (see 7.1 Test of A-box Validation Tools). If they
were implemented, the running time of the A-box validation would only be increased,
with no additional functionality in the system.

Constraint 1 is very easily implemented using the inverseOf construct in DAML. This
constraint indicates that the overlapsWith relation is symmetric:

 <daml:ObjectProperty rdf:ID="overlapsWith">
 <rdfs:label>overlaps with</rdfs:label>
 <rdfs:comment>

Course that can not give credit points together with the other
course.

 </rdfs:comment>
 <rdfs:domain rdf:resource="#AnyCourse"/>
 <rdfs:range rdf:resource="#AnyCourse"/>
 <daml:inverseOf rdf:resource="#overlapsWith"/>
 </daml:ObjectProperty>

IMPLEMENTATION

62

Constraints 2 and 3 have been reformulated and embedded in the definition of the student
concept class. This definition expresses that there are three types of students, Complete
Master students, Master students and International Master students. Complete Master
students have as only requisite to follow the Complete Master type of study. Master
students correspond to constraint 2 and International Master students correspond to
constraint 3. The whole definition becomes as follow:

 <daml:Class rdf:ID="Student">
 <rdfs:label>Student</rdfs:label>
 <rdfs:comment>A DTU student.</rdfs:comment>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#CompleteMasterStudent"/>
 <daml:Class rdf:about="#MasterStudent"/>
 <daml:Class rdf:about="#InternationalMasterStudent"/>
 </daml:unionOf>
 </daml:Class>

<daml:Class rdf:ID="CompleteMasterStudent">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#follows"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#follows"/>
 <daml:toClass rdf:resource="#CompleteMaster"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#plans"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#includes"/>
 <daml:toClass rdf:resource="#Course"/>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

 <daml:Class rdf:ID="MasterStudent">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#follows"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#follows"/>
 <daml:toClass rdf:resource="#Master"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#plans"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#includes"/>
 <daml:toClass rdf:resource="#MasterCourse"/>
 </daml:Restriction>
 </daml:toClass>

IMPLEMENTATION

63

 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

 <daml:Class rdf:ID="InternationalMasterStudent">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#follows"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#follows"/>
 <daml:toClass rdf:resource="#InternationalMaster"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#plans"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#includes"/>
 <daml:toClass

rdf:resource="#InternationalMasterCourse"/>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

Constraint 4 has been implemented in a similar manner. The student concept class has
been modified to express that besides being either Complete Master, Master or
International Master, the student has furthermore to belong to either English student or
Danish student, corresponding to the language the student speaks. As in constraint 4,
English students (students that speak English) may only plan to take courses taught in
English. Danish students on the other hand may take courses taught in any language. The
whole definition becomes as follows:

<daml:Class rdf:ID="Student">
 <rdfs:label>Student</rdfs:label>
 <rdfs:comment>A DTU student.</rdfs:comment>
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Class>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#CompleteMasterStudent"/>
 <daml:Class rdf:about="#MasterStudent"/>
 <daml:Class rdf:about="#InternationalMasterStudent"/>
 </daml:unionOf>
 </daml:Class>
 <daml:Class>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#EnglishStudent"/>
 <daml:Class rdf:about="#DanishStudent"/>
 </daml:unionOf>
 </daml:Class>
 </daml:intersectionOf>
 </daml:Class>

IMPLEMENTATION

64

<daml:Class rdf:ID="EnglishStudent">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#speaks"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#speaks"/>
 <daml:toClass rdf:resource="#English"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#plans"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#includes"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#isTaughtIn"/>
 <daml:toClass rdf:resource="#English"/>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

 <daml:Class rdf:ID="DanishStudent">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#speaks"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#speaks"/>
 <daml:toClass rdf:resource="#Danish"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#plans"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#includes"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#isTaughtIn"/>
 <daml:toClass rdf:resource="#Language"/>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

This concludes the implementation of the static part of the DAML file.

The dynamic part of the DAML file is the one containing course information. This part of
the file is to be generated every time the system is restarted or every time a course is

IMPLEMENTATION

65

classified. A WebL script has been developed for generating the complete DAML file to
be used by the system, having as input the static parts of the file, the HTML pages of the
DTU Course Catalogue and XML files containing any classification information about
courses. This script is called course_reader.webl. The final DAML file generated by this
script is called dtu.daml.

Figure 6-1: Step 1 is done manually. Step 2 is done by creating the ACM Tree with topic_reader.webl
and adding it manually to the knowledge base. Step 3 is done by course_reader.webl every time the
system is restarted.

Any changes done to course classifications are not directly saved in the file dtu.daml. All
information about courses that are not already in the DTU Course Catalogue is saved in a
separate file for each course. These files will be used by the course_reader.webl script to
create the course instances every time the DAML file is generated.

Figure 6-2: course_reader.webl reads information from the course catalogue and from XML files
containing course classifications to create the course instances.

T-box

ACM
Tree

Courses

T-box

ACM
Tree

Step 3

T-box

Step 1 Step 2

topic reader.webl

course reader.webl

02100
02110

02115
02220

XML files with course
classification information

Courses
A-box

Course
Catalogue

IMPLEMENTATION

66

Here is an example of the content of a XML file with course classification information.
The name of the file is the course number that identifies the course being classified:

 <?xml version='1.0' encoding='UTF-8'?>
 <xml>
 <type>MasterCourse</type>
 <covers>A.1</covers>
 <covers>A.2</covers>
 </xml>

The Course Catalogue contains two kinds of HTML pages that are interesting for our
system. The first one lists all existing courses at IMM, and is found at the URL
http://shb.dtu.dk/default.asp?institut=imm&soeg=S%F8g+i+studieh%E5ndbogen. The
only information of interest in this page is the course numbers for IMM courses. Other
courses where this department is involved are not included in the courses of interest, as
they belong to other institutes.

For each course number found in the above mentioned HTML page, another HTML page
from the Course Catalogue is found at the URL
http://shb.dtu.dk/default.asp?page=3&detail=f&lang=uk&kurser=x, where x is the course
number. From this page, information about the course, as course name, language,
schedules, prerequisites, overlapping courses, are retrieved.

The DAML content produced by the course_reader.webl script will be the course instances
containing the information from the Course Catalogue and the XML files with
classification information. Finally this script will also define the course concept classes
sufficiently by enumerating all the courses that belong to each class. This is done to
enable the system to check consistency of the semester plans according to the constraints
implemented above. Here is an example of a course type concept class with exactly one
course:

 <daml:Class rdf:ID="CoreCourse">
 <rdfs:subClassOf rdf:resource="#Course"/>
 <rdfs:label>Core course</rdfs:label>
 <rdfs:comment>
 Mandatory course for complete master students.
 </rdfs:comment>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#LinePackageCoreCourse"/>
 <daml:Class rdf:about="#MandatoryCoreCourse"/>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>

 <CoreCourse rdf:ID='c02220'>
 <courseName>Concurrent Systems</courseName>
 <isTaughtIn rdf:resource='#EN'/>
 <isTaughtAt rdf:resource='#E-1A'/>
 <isTaughtAt rdf:resource='#E-1B'/>
 <hasPrerequisite>
 <PrerequisiteGroup>

IMPLEMENTATION

67

 <atLeastOneCourse rdf:resource='#c02130'/>
 </PrerequisiteGroup>
 </hasPrerequisite>
 <hasPrerequisite>
 <PrerequisiteGroup>
 <atLeastOneCourse rdf:resource='#c02140'/>
 </PrerequisiteGroup>
 </hasPrerequisite>
 <covers rdf:resource='#topic-A'/>
 </CoreCourse>

 </daml:oneOf>
 </daml:Class>
 </daml:unionOf>
 </daml:Class>

Course types that contain no courses, because no course has been classified as that type
yet, may not be empty, as they will then not be sufficiently defined. A dummy15 course
has been created to solve this problem, but the interface of the system must ensure that
this course never be included in a semester plan or list of passed courses. Here is an
example of an empty course type:

 <daml:Class rdf:ID="ExoticCourse">
 <rdfs:subClassOf rdf:resource="#MasterCourse"/>
 <rdfs:label>Humanistic course</rdfs:label>
 <rdfs:comment>Exotic course.</rdfs:comment>
 <daml:sameClassAs>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:sameClassAs>
 </daml:Class>

This concludes the implementation of the whole dtu.daml file.

6.2 Installing the tools
The prototype of this system is being run on a Microsoft Windows XP platform equipped
with a JavaTM 2 Platform, Standard Edition, v 1.4.1.

The first tool to be installed is the Tomcat web-server. Tomcat v. 4.1.24 for Windows can
be downloaded from http://jakarta.apache.org/builds/jakarta-tomcat-
4.0/release/v4.1.24/bin/jakarta-tomcat-4.1.24.exe. This is quite straightforward to install.
After installation the file TOMCAT_HOME/conf/server.xml16 must be modified in the line

15 A dummy course is an unexistent course, whose ID differs from other courses� by not containing digits.
This course is of type AnyCourse, as it should never be permitted in a semester plan. The dummy course is
included in the enumeration of every course type to prevent empty enumerations.
16 TOMCAT_HOME refers to the directory where Tomcat has been installed.

IMPLEMENTATION

68

containing port=�8080� to port=�80�. This will configure the web-server to use port 80
as the default HTTP port. Use the Start Tomcat script to start the web-server.
The root of our system will then be TOMCAT_HOME/webapps/ROOT. The DAML file
dtu.daml must be placed in TOMCAT_HOME/webapps/ROOT/DAML_files/T-box. The
directories TOMCAT_HOME/webapps/ROOT/DAML_files/A-box/courses and
TOMCAT_HOME/webapps/ROOT/DAML_files/T-box/students must be created, so that
the XML files containing course classification and the profile DAML files can be placed
there.

The WebL tool is needed to produce the dtu.daml file. The dynamic part of the file is
generated when the system is started. For the system to be able to run WebL scripts, the
WebL.jar file must be placed in the TOMCAT_HOME/webapps/ROOT/WEB-INF/lib/
directory. This jar file can be found in the WebL package that can be downloaded from
http://www.research.compaq.com/SRC/WebL/WebL3.0h.html. To run a WebL script
manually just follow the instructions in the Readme.txt file included in the package.

Now that the web-server is running, and the dtu.daml file has been generated and placed
correctly, it can be syntax checked using the DAML Validator. If your web-server has
access to the Internet (as it should have), you should change the local namespace in the
dtu.daml file from "http://localhost/DAML_files/T-box/dtu.daml#" to
"http://xxx.xx.xx.xxx/DAML_files/T-box/dtu.daml#" where xxx.xx.xx.xxx is
the IP address of your machine. Then go to the web page http://www.daml.org/validator/
and input http://xxx.xx.xx.xxx/DAML_files/T-box/dtu.daml in the URI textbox
and click Submit. The result of the syntax check with eventual warnings and error
messages will then be presented in HTML format.

Next you will need the jar files contained in the JENA Toolkit, which can be downloaded
from http://www.hpl.hp.com/semweb/download/Jena-1.6.1.zip. Place the files jena.jar,
xerces.jar, icu4j.jar, concurrent-1.3.0.jar, jakarta-oro-2.0.5.jar,
antlr.debug.jar and sesame-client.jar in the TOMCAT_HOME/webapps/ROOT/WEB-
INF/lib/ directory. These can be found in the /lib/ directory of the JENA Toolkit package.

Finally the reasoner RACER must be installed and started. It can be downloaded from
http://www.fh-wedel.de/~mo/racer/racer-1-7.zip. Unzip the file in any directory, here
called RACER_HOME, and start RACER by entering the following line in a DOS console:
RACER_HOME/racer.exe -http 0 -p 8088. This will enable the TCP interface of
RACER at port 8088 to be used by the system, and will disable the HTTP interface. The
JRACER Java layer to access RACER services through Java methods must also be
available to the web-server. Just unzip the JRACER package, which can be downloaded
from http://www.fh-wedel.de/~mo/racer/jracer-1-7.zip, to the
TOMCAT_HOME/webapps/ROOT/WEB-INF/classes/ directory.

Now all tools are installed and ready to be used, and we can implement the rest of the
system.

IMPLEMENTATION

69

Figure 6-3: The directory structure of the web-server, with its main components.

6.3 The control engine
The control engine consists basically of the DBManager Java class. DBManager is a static
class and all its public methods are synchronized to handle concurrency problems when
managing the knowledge base. This class contains a number of static attributes holding
information about files location, web-server address, ports, etc.

Every time DBManager is loaded by the web-server, an initialization method is run,
executing the course_reader.webl script to create the dtu.daml file, loading the knowledge
base into RACER (RACER must be running before this class may be loaded) and reading
the DAML files into a Java model (using the DAML+OIL parser in Jena Toolkit). This
initialization method is also run every time the course classifications are modified, to
generate the correct dtu.daml file and to reinitialize the knowledge base held by RACER.

The files containing student and semester plan instances can only be created by
DBManager. These files are maintained independently of each other, as one student
profile with plans should not have any influence on other students� profiles and plans.

TOMCAT HOME

conf

webapps

ROOT

DAML files

WEB-INF

lib

classes

WebL.jar

server.xml

T-box

courses

students

A-box

dtu.daml

jracer

Jena Toolkit

IMPLEMENTATION

70

The file names contain the student number, making them unique, as every student may
have at most one profile. For example, a student with the student number c960516 will
have the DAML file c960516.daml. Here is an example of a DAML file containing a
profile:

<?xml version='1.0' encoding='WINDOWS-1252'?>
<rdf:RDF
 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 xmlns:daml='http://www.daml.org/2001/03/daml+oil#'

xmlns:dtu='http://localhost/DAML_files/T-box/dtu.daml#'
>

<daml:Ontology
rdf:about='http://localhost/DAML_files/T-box/dtu.daml'/>

<dtu:Student rdf:about='http://localhost/DAML_files/
A-box/students/c960516.daml#c960516'>

 <dtu:follows rdf:resource='http://localhost/DAML_files/
T-box/dtu.daml#international-master'/>

 <dtu:speaks rdf:resource='http://localhost/DAML_files/
T-box/dtu.daml#EN'/>

 <dtu:plans>
 <dtu:Semester rdf:about='http://localhost/DAML_files/

A-box/students/c960516.daml#loi'>
 <dtu:includes rdf:resource='http://localhost/DAML_files/

T-box/dtu.daml#c02335'/>
 <dtu:isOn rdf:resource='http://localhost/DAML_files/

T-box/dtu.daml#E-'/>
 </dtu:Semester>
 </dtu:plans>
 <dtu:plans>
 <dtu:Semester rdf:about='http://localhost/DAML_files/

A-box/students/c960516.daml#sp09'>
 <dtu:isOn rdf:resource='http://localhost/DAML_files/

T-box/dtu.daml#F-'/>
 <dtu:includes rdf:resource='http://localhost/DAML_files/

T-box/dtu.daml#c02262'/>
 </dtu:Semester>
 </dtu:plans>
 </dtu:Student>
</rdf:RDF>

The public methods of DBManager are:

Course getCourse(String courseNr) � This method returns the Course
instance that has the given course number as ID.

String saveCourse(String courseNr, String type, String[]
selectedTopics) � This method saves the course instance that has the given
course number as ID. The course type and covered topics are eventually replaced
by the given ones, if they are not null. If the course type or covered topics are
changed from previous values, the XML file containing the classification is
created or modified (if already existent) and the initialization of the class is run.

IMPLEMENTATION

71

Profile getProfile(String studentNr) � This method returns the Profile
instance that has the given student number as ID. DAML files containing a
student profile are only read and included in the Java model if this method is
called with their student number.

String saveProfile(String studentNr, String passedCourses,
Iterator plans, String[] topics) � This method saves the profile instance
that has the given student number as ID. The passed courses, semester plans and
topics of interest are eventually replaced by the given ones, if they are not null.
The DAML file corresponding to the student profile is modified.

String createProfile(String studentNr, String language, String
typeOfStudy) � This method creates a new student profile with the given student
number, language and type of study. The corresponding DAML file is created.

String deleteProfile(String studentNr) � This method deletes the DAML
file corresponding to the given student number, and removes the profile from the
Java model.

String validatePlan(String studentNr, Plan plan) � This method checks
if the plan is consistent with the T-box and the profile of the student who planned
it. The profile and plan information are entered in RACER, the consistency of the
A-box is checked, and finally the profile and plan information are removed from
RACER again, so that it is ready for the next validation. Unfortunately, the only
information returned by this method is if the plan is consistent or not. No
explanatory messages are given.

6.4 Entity classes
The entity classes were implemented to hold information from the knowledge base that
will be used by the interface. These classes have mostly get and set methods that assist
the interface classes in performing their job. These classes are the Course class, the
Schedule class, the Profile class and the Plan class.

A special entity class is the ClassificationTree class, which holds information about a class
hierarchy of a concept in the knowledge base. This class contains a tree structure of the
classes, where each node of the tree (TreeNode class) contains the ID of the class and its
label.

The entity classes contain as little information from the knowledge base as possible,
limiting themselves to containing only what is needed by the interface. This allows the T-
box of the knowledge base to be modified to a certain extent, i.e. this maintains a certain
flexibility to the knowledge base structure.

IMPLEMENTATION

72

6.5 The interface
The interface of the system consists of Java Server Pages generating HTML and
Boundary classes assisting the JSP in their tasks. The boundary classes send requests
from the user to the DBManager and convert the responses to HTML code, which is then
used by the corresponding JSP to generate the whole HTML page.

Figure 6-4: The structure of the Java Server pages.

The Course interface starts at course.jsp. If this page is called without a course number,
it simply displays a HTML page asking for a course number.

Figure 6-5: course.jsp without a course number.

course.jsp course.jsp

course.jsp student.jsp

plan.jsp

student-
plans.jsp

student-
topics.jsp

course-
type.jsp

course-
topics.jsp

student-main.jsp course-title.jsp

hyperlink

IMPLEMENTATION

73

If the course number is given, this page will display a HTML page with frames
containing course-title.jsp, course-topics.jsp and course-type.jsp. The
course-title.jsp simply displays information about the course. The course-
topics.jsp shows the classification tree for ACM topics, where the topics covered by
the course are selected. The course-type.jsp shows the classification tree for course
types, where the course type is selected. The selected items in course-topics.jsp and
course-type.jsp can be changed and saved.

Figure 6-6: course.jsp with course number 02260.

The Student interface starts at student.jsp. If this page is called without a student
number, it simply displays a HTML page asking for a student number.

Figure 6-7: student.jsp without a student number.

If the student number is given, this page will display a HTML page with frames
containing student-main.jsp, student-topics.jsp and student-plans.jsp.

If no profile for the given student yet exists, the student-topics.jsp and
student-plans.jsp will be blank, and the student-main.jsp will display a HTML
page that enables the creation of a student profile. This page will request the student�s
language and type of study and the profile may be created.

IMPLEMENTATION

74

Figure 6-8: student.jsp with a student number that does not have a profile yet.

If a profile for the given student already exists, the student-main.jsp displays
language and course type information and information about passed courses can be
entered and saved here. The student-topics.jsp shows the classification tree for ACM
topics, where the student�s topics of interest are selected. The selected items in
student-topics.jsp can be changed and saved. The student-plans.jsp shows a list
of semester plans that the student has already made. This list may be empty. Besides, this
page allows entering a new plan ID and a season for creating a new semester plan.
Already created plans may also be deleted here. Clicking on a plan ID from the plan list
will link to the Plan interface.

Figure 6-9: student.jsp with a student number that already has a profile.

IMPLEMENTATION

75

The Plan interface consists only of plan.jsp. This page must always be called with a
student number and a plan ID. This page displays a HTML containing a semester
schedule plan. One or more courses can be placed in each schedule. For entering a new
course to the plan, a course number may be entered. The course must exist in the current
version of the Course Catalogue, and it must be taught at the season of the semester plan.
To remove courses from the plan, the delete button next to the course must be clicked. To
check if the semester plan complies with the system constraints, simply click on the
Check plan button.

Figure 6-10: plan.jsp with a course already in the plan.

The interfaces do not permit inconsistent data to be saved through to the knowledge base.
All information entered through the interface is therefore validated for correct input, and
no input is enabled when the input is not allowed in a specific case. Examples of these are
that course numbers must be checked to contain only digits, and courses may only
contain one course type. The semester plan�s consistency, on the other hand, is not
checked by the interface, but must be checked through the validation method.

IMPLEMENTATION

76

77

7 TEST
This chapter contains the tests made during and after the development of the system. The
first test was simply to determine an appropriate tool for solving the A-box validation
part of the system. The following tests were done in order to check the correctness of the
system: A syntax check of the DAML files, a test of system requirements fulfillment, a
unit test and an integration test.

7.1 Test of A-box Validation tools
In order to be able to choose which knowledge base checker could handle A-box
consistency validation, two tests were performed: The Nationality example and The
Color Option example. Both tests had as purpose to check a very simple model with an
inconsistent instance. The DAML+OIL models of the examples are found in the
appendix.

The tools participating in the test were DAML Validator and RACER. Based on the test
results, RACER was chosen as the validation tool.

7.1.1 The Nationality example

The model of this example contains a person entity, a nationality entity and a country
entity. A person has a nationality and is born in a country.

Figure 7-1: The Nationality ER-diagram

The country in this example has been classified as European country and other country.
The nationality as well has been classified as European nationality and other nationality.

Country

Person

Nationality

born_in

has_nationality 1

1

TEST

78

Figure 7-2: The Nationality Hasse diagrams.

The model only requires that persons born in European countries have European
nationalities, and persons born in other countries have other nationalities. No person is
allowed to be both European and other at the same time. Notice that this model does not
exclude the case of a person born in England with a German nationality, but this is only a
simple example.

Person ≐ EuropeanPerson ⊔ OtherPerson

⊥ ≐ EuropeanPerson ⊓ OtherPerson

EuropeanPerson ≐ =1 born_in.EuropeanCountry ⊓

 =1 has_nationality.EuropeanNationality

OtherPerson ≐ =1 born_in.OtherCountry ⊓

 =1 has_nationality.OtherNationality

The following A-box was instantiated:
{german} ⊑ EuropeanNationality

{chinese} ⊑ OtherNationality

{germany} ⊑ EuropeanCountry

{china} ⊑ OtherCountry

{peter} ⊑ Person

{(peter, german)} ⊑ has_nationality

Country

European
Country

Other
Country

Nationality

European
Nationality

Other
Nationality

⊥⊥

TEST

79

{(peter, china)} ⊑ born_in

When asking RACER if this A-box is consistent the answer is True, even though it is not.
DAML Validator did not give any warnings or error messages in this case.

The model was changed so that the concepts of our T-box were sufficiently defined, i.e.
the members of the concepts were enumerated. In this case RACER answered that the A-
box could not be proven to be consistent. DAML Validator did not give any warnings or
error messages in this case either.

EuropeanCountry ≐ {germany}

OtherCountry ≐ {china}

EuropeanNationality ≐ {german}

OtherNationality ≐ {chinese}

This example proofs that if concepts are not sufficiently defined, neither RACER nor
DAML Validator are useful for checking A-box consistency. This test added an
additional requirement to the system, that all concepts in the model be defined
sufficiently before validating the semester plans.

7.1.2 The Color Option example

The model of this example contains a uniform entity, an item entity and a color entity. A
uniform has one color and one or more uniform parts. An item has one or more color
options.

Figure 7-3: The Color Option ER-diagram

Color

Uniform

Item

has_color

has_part

has_color_option

1

1..*

1..*

TEST

80

The color in this example has been classified as dark color and light color.

Figure 7-4: The Color Option Hasse diagram.

This model requires that if the uniform has a light color, then all of its parts exist in a
light color option, and if uniforms have a dark color, its parts must exist in a dark color.
This constraint is to check that a uniform is not formed by parts that are not available in
the uniform�s color. Because of the result of the previous test, the concepts dark color and
light color, as well as the item concept were sufficiently defined.

Color ≐ DarkColor ⊔ LightColor

DarkColor ≐ {blue}

LightColor ≐ {red}

Item ≐ {pants, blouse}

{(blouse, red), (pants, red), (pants, blue)} ⊑ has_color_option

Uniform ≐ DarkUniform ⊔ LightUniform

DarkUniform ≐ =1 has_color.DarkColor ⊓

 ≤1 has_part.(∃has_color_option.DarkColor)

LightUniform ≐ =1 has_color.LightColor ⊓

 ≤1 has_part.(∃has_color_option.LightColor)

The following A-box was instantiated:
{uniform1} ⊑ Uniform

{(uniform1, blue)} ⊑ has_color

Color

Dark Color Light Color

⊥

TEST

81

{(uniform1, pants), (uniform1, blouse)} ⊑ has_part

Figure 7-5: An inconsistent A-box.

When asking RACER if this A-box is consistent the answer is True, even though it is not.
DAML Validator did not give any warnings or error messages in this case.

Relations, also called properties or roles, can not be sufficiently defined in DAML. Only
the domain and range of the property can be sufficiently defined. In our example the
property has_color_option may contain the tuple (blouse, blue), even though it is not defined
in our example. Therefore RACER is unable to find any inconsistency in the given A-
box.

This test added an additional requirement to the system, namely that all constraints in the
model do not contain existential quantifications for properties, as these can not be
validated.

7.2 Checking the syntactical correctness of DAML files
The DAML Validator takes a DAML file as input and produces an HTML output file
containing any warnings or error information about the input file. The dtu.daml file and
example students� DAML files were checked for syntax errors using DAML Validator.

Errors found in students� files were not corrected directly in the DAML file, as these are
created by the interface and the DBManager. Therefore the interface and control engine
were corrected in order to produce syntactically correct DAML files.

TEST

82

Errors found in ACM topic classes or instances, as well as errors found in course
instances were corrected in the corresponding WebL program that generated the files.

These syntax checks should be done every time the T-box or a WebL program or the
interface or the control engine is modified.

7.3 Checking that the requirements have been met
This part of the test checks that the system implemented is able to complete the normal
flow of all use cases from the requirements specification, and that alternative flows are
handled correctly. Besides, this section checks if all supplementary requirements have
been met.

7.3.1 Test of Edit Course use case

Normal flow: The course number of an existing course was entered in the system. Some
course topics were selected and saved. A course type was selected and saved. The system
did not allow more than one course type to be selected. The course classification changes
were saved correctly.

Alternative flow: The course number of a non-existing course was entered in the system.
The system provided an error message indicating the mistake.

7.3.2 Test of Get Profile use case

Normal flow 1: The student number of a non-existing profile was entered in the system. The
student�s language and type of study were selected. The system did not allow more than
one language and one type of study to be selected. The student profile was created
correctly.

Normal flow 2: The student number of an existing profile was entered in the system. The
student profile is shown.

Alternative flow: A student number containing characters that are not acceptable in the
knowledge base was entered. The system provided an error message indicating the
mistake and naming which characters are accepted.

7.3.3 Test of Edit Profile use case

Normal flow: Some passed courses were entered and saved. Some topics of interest were
selected and saved. The changes performed on the profile were saved correctly. Courses
not in the Course Catalogue and not specified as prerequisites or overlapping courses to
the ones in the catalogue were not accepted by the system, as they do not exist in the
knowledge base. This error was corrected.

TEST

83

Alternative flow: Some passed courses containing characters other than digits (which are
not acceptable) were entered. The system provided an error message indicating the
mistake.

7.3.4 Test of Delete Profile use case

Normal flow: The profile was deleted correctly.

7.3.5 Test of Create Plan use case

Normal flow: A plan ID was entered and a season selected. The system did not allow more
than one season to be selected. The system did not allow that a season not be selected.
The semester plan was created correctly.

Alternative flow 1: When no plan ID was entered the system provided an error message
indicating the mistake.

Alternative flow 2: When the plan ID already existed the system provided no error message
indicating the mistake. The plan though was not created again. But if different seasons
were given, the semester plan contains two seasons, which is inconsistent with the
knowledge base. This error was corrected.

Alternative flow 3: When a plan ID containing characters that are not acceptable in the
knowledge base was entered the system provided an error message indicating the mistake
and naming which characters are accepted.

7.3.6 Test of Delete Plan use case

Normal flow: The plan was deleted correctly.

7.3.7 Test of Get Plan use case

Normal flow: The plan was shown correctly.

7.3.8 Test of Edit Plan use case

Normal flow: Courses were added to the plan and saved correctly. Courses were not
removed from the plan and therefore not saved correctly. This error only occurs when
clicking the OK button too fast. The cause of this error could not be found and therefore was
not corrected. This is not considered a serious problem, as clicking on the delete button
again successfully deletes the course from the plan.

Alternative flow 1: When a course that does not exist was added the system provided an
error message indicating the mistake.

Alternative flow 2: When a course that has no schedules at the season of the plan was added
the system provided an error message indicating the mistake.

TEST

84

7.3.9 Test of Validate Plan use case

Normal flow 1: When a valid plan was validated the answer was correct17 but the answering
time was unacceptably long.

Normal flow 2: When an invalid plan was validated the answer was correct but the
answering time was unacceptably long.

7.3.10 Test of Maintain ontology use case

Normal flow: When the system was restarted it continued to function correctly.

7.3.11 Test of supplementary requirements

The system functions as specified in the supplementary requirements on a MS Internet
Explorer v.6.0. The system has a very simple graphical interface and error messages are
helpful in assisting the user correct eventual mistakes.

One of the requirements that were not accomplished in its detail was the updating of the
course instances in the knowledge base. It was required that this part of the knowledge
base is updated periodically in order to reflect changes made to the Course Catalogue.
The system only updates course instances when one of the courses is classified or when
the system is restarted, and this does not guarantee a periodical updating. Even though
this error is not severe for a prototype version, it should not be accepted in a running
version of the system.

The dynamic parts of the dtu.daml file were correctly generated every time it was tested.
One of the tests though revealed an error. The test consisted of restarting the system when
there was no connection to the Internet, and therefore the Course Catalogue could not be
accessed. This locked the system that stopped responding, even after the Internet
connection was re-established. The lock could only be removed by restarting the web-
server. This error is not acceptable for a running version of the system.

During the usability test, a not severe error was found. The error is that only the entrance
of the web portal issues a message if the knowledge base is being loaded (as this action
may take several minutes to complete). All other pages simply take very long to appear in
this situation.

17 The validation only included the constraints 2, 3 and 4, as the other constraints could not be
implemented.

TEST

85

7.4 Test Conclusion
The system requirement of validating semester plans, which can be considered the most
crucial one for the system, was not satisfactorily met. This problem could not be solved
and therefore the system is unacceptable.

Because the number of concept instances in the system has influence on the running time
of the validation function, the ACM classification was not added to the T-box in its whole
extent, but only a very little part of it was added for exemplification purposes only. This
did not solve the problem, but allowed the response time to be reduced for test purposes.

The further implementation of validation functions (the addition of a check of topics of
interest and prerequisites) was not completed, as the main validation already was
estimated to be unsolvable in a satisfactorily manner.

Some of the errors found in the test were not corrected either. These errors are not severe
in a prototype version, but are not acceptable in a running version of the system. As the
main function of the system could not be implemented, a running version of the system is
not realistic, and therefore correcting these errors was simply not worth the effort.

TEST

86

87

8 CONCLUSION
The goal of this thesis was to develop a system using a new technology. This conclusion
is divided in two parts. The first part describes what was learnt about this new technology
during the project. The second part refers more specifically to developing a Web system
using new technologies.

8.1 Semantic Web
The semantic web element in this project is the knowledge base. The contents of the
knowledge base comprise not only the system data but also the data schema (i.e.
metadata). The knowledge base is available through the Internet and can therefore be
accessed in a XML format by other systems and agents that will be able to understand
and process its contents.

It was possible to augment this knowledge base with some complex description logics
expressing additional constraints to the data. This is normally not possible when working
with standard database systems.

The downside of the semantic web is that even though we can express very intricate
information with this new technology, there has not been much advance in developing the
tools that actually handle the information. Especially the description logics contained in
semantic web documents can not be exploited satisfactorily with the tools available at the
moment.

The part of the semantic web content that can be used in its full potential can also be
created with simpler, less expressive languages or well-known database systems.
DAML+OIL is intended to be both dynamic and flexible. A certain tension exists
between the use of restrictions for validation purposes versus its use for inference
purposes. In this project validation was favored, but it seems that most of DAML+OIL
researchers and developers give preferentiality to inference. In any of the cases, handling
extensive and complex DAML+OIL documents require a lot of computation. Obviously,
further research is necessary before we will be able to actually implement systems with
this technology. But it seems that the project around the Semantic Web is becoming less
ambitious, thus removing a great part of the requirements specified for DAML+OIL to
develop a new language (OWL).

DAML+OIL is the currently recommended standard for adding description logics to
semantic web documents. It is difficult to say if DAML+OIL is based on knowledge
about description logics, or if it simply coincided in its purpose and ended as a
description logics language. But my impression is that the people promoting the use of
DAML+OIL try to hide from users that it actually is description logics. Description
Logics is a very complex discipline that requires an extensive knowledge of logics
theory, while DAML+OIL is intended to be used by the general public to add metadata
markup to their web documents. My opinion is that this is a very ambitious vision.

CONCLUSION

88

Semantic Web technologies are still in an early stage of research. Many of the tools and
standards have been modified and improved in the same period this project was being
made. Semantic Web technologies are not mature enough for system developers to take
full advantage of them yet.

8.2 Developing a system with new technologies
The system developed in this project is able to assist students (and course instructors) to
add semantic data to documents available through the Web. Unfortunately it was not
possible to meet the requirement that the system be able to assist students plan their
semesters. Only very few of DTU rules can be checked by the system, and the running
time of this function is unsatisfactorily long.

The cause of the development failure was the absence of proper tools to solve the
problem. Adding the creation of a proper tool to the scope of this project is unrealistic, as
it would require a more extensive period of time and more resources.

Many optimizations of the system could be suggested, in order to make the system faster,
more secure, more user-friendly, etc. None of these suggestions would make this system
usable, without solving the problem around semester plan validation.

The system requirements could have been changed to include search of courses instead of
validation. The course search requirement was actually considered as an extension of the
current requirements. But in an ideal system development, the original requirements
should always be met before implementing extensions, and this could not be
accomplished in this project. Other technologies could have been considered to meet the
system requirements, but this would also fall out of the scope of this project.

The main failure of this project is that it was allowed to extend itself to the point of a
prototype, without being sure that the objectives of the project were possible or not. Too
many resources were used in vain. But this conclusion is only in a system development
point of view. This project contributed to a better understanding of Semantic Web
technologies. It became clearer what the limitations of these technologies are and what
they are capable of actually solving.

I would not recommend the use of new technologies, which are still in a research stage, to
be used in developing commercial systems, as the risk of failure is too great. They should
only be used if there are enough resources available to contribute to the research.

89

9 REFERENCES

[ACM] The ACM Computing Classification System [1998 Version] Valid in 2002

http://www.acm.org/class/1998/

[DAML] F.V. Harmelen, P.F. Patel-Schneider, I. Horrocks, Reference
 description of the DAML+OIL (March 2001) ontology markup

language, http://www.daml.org/2001/03/reference

[DAML2] M. Dean, DAML+OIL for Application Developers: An Introduction to the
 Semantic Web, SPAWAR Systems Center, 2002,
 http://www.daml.org/2002/03/tutorial/slide1-0.html

[DL] F. Baader, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider,
The Description Logic Handbook: Theory, implementation, and
applications, Appendix I, 2002.

[DL2] Semantic Web Chalk Talk � Amateur Intro to Description Logics,
 HP Labs, 2001,
 http://www.hpl.hp.com/semweb/download/DescriptionLogicsIntro.pdf

[ER] H. Garcia-Molina, J. D. Ullman, J. Widom, Database Systems The
Complete Book, Prentice Hall, 2002.

[XML] K. Ahmed et al., Professional XML meta data, Wrox Press, 2001

[RACER] V. Haarslev, R. Möller, RACER Users� Guide and Reference Manual
 Version 1.7.6, 2002

[RDF] T. Bray, What is RDF?, O�Reilly XML.com, 2001,

http://www.xml.com/pub/a/2001/01/24/rdf.html

[UML] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Modeling Language

User Guide, Addison-Wesley Pub Co, 2000.

[USDP] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development

Process, Addison-Wesley Pub Co, First edition, 1999.

[WEBL] H. Marais, WebL � A Programming Language for the Web, Compaq
 Systems Research Center (SRC), 1999

REFERENCES

90

9.1 Web Resources containing information about Semantic Web
daml.org � http://www.daml.org/

W3C Semantic Web Activity � http://www.w3.org/2001/sw/

W3C Web Ontology (WebOnt) Working Group � http://www.w3.org/2001/sw/WebOnt/

semanticweb.org (Semantic Web news) � http://www.semanticweb.org/

OntoWeb (European Semantic Web Thematic Network) � http://www.ontoweb.org

HP Labs Semantic Web Research � http://www.hpl.hp.com/semweb/

91

APPENDIX A � THE DTU ONTOLOGY FILE
This copy of the dtu.daml file does not contain the courses from the Course Catalogue,
but only the static part of the file.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns ="http://localhost/DAML_files/T-box/dtu.daml#"
>

 <daml:Ontology rdf:about="">
 <rdfs:comment>
 An ontology about DTU course planning.
 This plan only takes into account course classification,
 languages and types of study.
 </rdfs:comment>
 <daml:imports rdf:resource="http://www.daml.org/2001/03/daml+oil"/>
 </daml:Ontology>

 <!-- ************************ PROPERTIES ************************ -->

 <daml:ObjectProperty rdf:ID="follows">
 <rdfs:label>follows</rdfs:label>
 <rdfs:comment>The type of study the student follows.</rdfs:comment>
 <rdfs:domain rdf:resource="#Student"/>
 <rdfs:range rdf:resource="#TypeOfStudy"/>
 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="plans">
 <rdfs:label>plans</rdfs:label>
 <rdfs:comment>The semester the student is planning to take.</rdfs:comment>
 <rdfs:domain rdf:resource="#Student"/>
 <rdfs:range rdf:resource="#Semester"/>

<rdf:type
 rdf:resource="http://www.daml.org/2001/03/daml+oil#UnambiguousProperty"/>

 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="includes">
 <rdfs:label>includes</rdfs:label>
 <rdfs:comment>The courses included in the semester plan.</rdfs:comment>
 <rdfs:domain rdf:resource="#Semester"/>
 <rdfs:range rdf:resource="#Course"/>
 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="isTaughtIn">
 <rdfs:label>is taught in</rdfs:label>
 <rdfs:comment>The language the course is taught in.</rdfs:comment>
 <rdfs:domain rdf:resource="#AnyCourse"/>
 <rdfs:range rdf:resource="#Language"/>
 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="speaks">
 <rdfs:label>speaks</rdfs:label>
 <rdfs:comment>The language the student speaks.</rdfs:comment>
 <rdfs:domain rdf:resource="#Student"/>
 <rdfs:range rdf:resource="#Language"/>
 </daml:ObjectProperty>

APPENDIX A

92

 <daml:ObjectProperty rdf:ID="isOn">
 <rdfs:label>is on</rdfs:label>
 <rdfs:comment>The season of the semester.</rdfs:comment>
 <rdfs:domain rdf:resource="#Semester"/>
 <rdfs:range rdf:resource="#Season"/>
 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="isTaughtAt">
 <rdfs:label>is taught at</rdfs:label>
 <rdfs:comment>A course schedule.</rdfs:comment>
 <rdfs:domain rdf:resource="#Course"/>
 <rdfs:range rdf:resource="#Schedule"/>
 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="inSeason">
 <rdfs:label>in season</rdfs:label>
 <rdfs:domain rdf:resource="#Schedule"/>
 <rdfs:range rdf:resource="#Season"/>
 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="inModule">
 <rdfs:label>inModule</rdfs:label>
 <rdfs:domain rdf:resource="#Schedule"/>
 <rdfs:range rdf:resource="#Module"/>
 </daml:ObjectProperty>

 <daml:DatatypeProperty rdf:ID="courseName">
 <rdfs:label>Course name</rdfs:label>
 <rdfs:domain rdf:resource="#Course"/>
 <rdfs:range rdf:resource="http://www.w3.org/2000/10/XMLSchema#string"/>
 </daml:DatatypeProperty>

 <daml:ObjectProperty rdf:ID="overlapsWith">
 <rdfs:label>overlaps with</rdfs:label>

<rdfs:comment>
 Course that can not give credit points together with the other course.
</rdfs:comment>

 <rdfs:domain rdf:resource="#AnyCourse"/>
 <rdfs:range rdf:resource="#AnyCourse"/>
 <daml:inverseOf rdf:resource="#overlapsWith"/>
 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="hasPrerequisite">
 <rdfs:label>has prerequisite</rdfs:label>
 <rdfs:comment>A prerequisite group of this course.</rdfs:comment>
 <rdfs:domain rdf:resource="#Course"/>
 <rdfs:range rdf:resource="#PrerequisiteGroup"/>

<rdf:type
 rdf:resource="http://www.daml.org/2001/03/daml+oil#UnambiguousProperty"/>

 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="atLeastOneCourse">
 <rdfs:label>at least one</rdfs:label>
 <rdfs:comment>A course in this prerequisite group.</rdfs:comment>
 <rdfs:domain rdf:resource="#PrerequisiteGroup"/>
 <rdfs:range rdf:resource="#AnyCourse"/>
 </daml:ObjectProperty>

APPENDIX A

93

 <daml:ObjectProperty rdf:ID="covers">
 <rdfs:label>covers</rdfs:label>
 <rdfs:comment>A topic covered by this course.</rdfs:comment>
 <rdfs:domain rdf:resource="#Course"/>
 <rdfs:range rdf:resource="#Topic"/>
 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="passed">
 <rdfs:label>passed</rdfs:label>
 <rdfs:comment>The courses the student has passed.</rdfs:comment>
 <rdfs:domain rdf:resource="#Student"/>
 <rdfs:range rdf:resource="#AnyCourse"/>
 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="isInterestedIn">
 <rdfs:label>is interested in</rdfs:label>
 <rdfs:comment>The topics the student is interested in.</rdfs:comment>
 <rdfs:domain rdf:resource="#Student"/>
 <rdfs:range rdf:resource="#Topic"/>
 </daml:ObjectProperty>

 <!-- ************************ TYPE OF STUDY ************************ -->

 <daml:Class rdf:ID="TypeOfStudy">
 <rdfs:label>Type of study</rdfs:label>

<rdfs:comment>One of the types of study a student can follow at DTU.
</rdfs:comment>

 </daml:Class>

 <daml:Class rdf:ID="Master">
 <rdfs:label>Master</rdfs:label>
 <rdfs:subClassOf rdf:resource="#TypeOfStudy"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <Master rdf:ID="master">
 <rdfs:label>Master</rdfs:label>
 <rdfs:comment>The master of 2 years.</rdfs:comment>
 </Master>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="CompleteMaster">
 <rdfs:label>Complete master</rdfs:label>
 <rdfs:subClassOf rdf:resource="#TypeOfStudy"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <CompleteMaster rdf:ID="complete-master">
 <rdfs:label>Complete master</rdfs:label>
 <rdfs:comment>The complete master of 5 years.</rdfs:comment>
 </CompleteMaster>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="InternationalMaster">
 <rdfs:label>International master</rdfs:label>
 <rdfs:subClassOf rdf:resource="#TypeOfStudy"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <InternationalMaster rdf:ID="international-master">
 <rdfs:label>International master</rdfs:label>
 <rdfs:comment>
 The master of 2 years for international students.
 </rdfs:comment>
 </InternationalMaster>
 </daml:oneOf>
 </daml:Class>

APPENDIX A

94

 <!-- ************************ LANGUAGE ************************ -->

 <daml:Class rdf:ID="Language">
 <rdfs:label>Language</rdfs:label>
 </daml:Class>

 <daml:Class rdf:ID="English">
 <rdfs:label>English</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Language"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <English rdf:ID="EN">
 <rdfs:label>English</rdfs:label>
 </English>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="Danish">
 <rdfs:label>Danish</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Language"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <Danish rdf:ID="DA">
 <rdfs:label>Danish</rdfs:label>
 </Danish>
 </daml:oneOf>
 </daml:Class>

 <!-- ************************ SEMESTER ************************ -->

 <daml:Class rdf:ID="Semester">
 <rdfs:label>Semester</rdfs:label>
 <rdfs:comment>A semester plan.</rdfs:comment>
 <daml:subClassOf>
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#isOn"/>
 </daml:Restriction>
 </daml:subClassOf>
 </daml:Class>

 <!-- ************************ STUDENT ************************ -->

 <daml:Class rdf:ID="CompleteMasterStudent">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#follows"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#follows"/>
 <daml:toClass rdf:resource="#CompleteMaster"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#plans"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#includes"/>
 <daml:toClass rdf:resource="#Course"/>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

APPENDIX A

95

 <daml:Class rdf:ID="MasterStudent">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#follows"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#follows"/>
 <daml:toClass rdf:resource="#Master"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#plans"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#includes"/>
 <daml:toClass rdf:resource="#MasterCourse"/>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

 <daml:Class rdf:ID="InternationalMasterStudent">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#follows"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#follows"/>
 <daml:toClass rdf:resource="#InternationalMaster"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#plans"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#includes"/>
 <daml:toClass rdf:resource="#InternationalMasterCourse"/>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

 <daml:Class rdf:ID="EnglishStudent">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#speaks"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#speaks"/>
 <daml:toClass rdf:resource="#English"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#plans"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#includes"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#isTaughtIn"/>
 <daml:toClass rdf:resource="#English"/>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>

APPENDIX A

96

 </daml:toClass>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

 <daml:Class rdf:ID="DanishStudent">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#speaks"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#speaks"/>
 <daml:toClass rdf:resource="#Danish"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#plans"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#includes"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#isTaughtIn"/>
 <daml:toClass rdf:resource="#Language"/>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

 <daml:Class rdf:ID="Student">
 <rdfs:label>Student</rdfs:label>
 <rdfs:comment>A DTU student.</rdfs:comment>
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Class>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#CompleteMasterStudent"/>
 <daml:Class rdf:about="#MasterStudent"/>
 <daml:Class rdf:about="#InternationalMasterStudent"/>
 </daml:unionOf>
 </daml:Class>
 <daml:Class>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#EnglishStudent"/>
 <daml:Class rdf:about="#DanishStudent"/>
 </daml:unionOf>
 </daml:Class>
 </daml:intersectionOf>
 </daml:Class>

 <!-- ************************ PREREQUISITE GROUP ************************ -->

 <daml:Class rdf:ID="PrerequisiteGroup">
 <rdfs:label>Prerequisite group</rdfs:label>

<rdfs:comment> A group of subjects where one of them must be passed to
 fullfil the prerequisite.</rdfs:comment>

 <rdfs:subClassOf>
 <daml:Restriction daml:minCardinality="1">
 <daml:onProperty rdf:resource="#atLeastOneCourse"/>
 </daml:Restriction>
 </rdfs:subClassOf>
 </daml:Class>

APPENDIX A

97

 <!-- ************************ SEASON ************************ -->

 <daml:Class rdf:ID="Season">
 <rdfs:label>Season</rdfs:label>
 <rdfs:comment>Either fall or spring.</rdfs:comment>
 </daml:Class>

 <daml:Class rdf:ID="Fall">
 <rdfs:comment>Fall season, including January.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Season"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <Fall rdf:ID="E-">
 <rdfs:label>Fall</rdfs:label>
 </Fall>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="Spring">
 <rdfs:comment>Spring season, including June.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Season"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <Spring rdf:ID="F-">
 <rdfs:label>Spring</rdfs:label>
 </Spring>
 </daml:oneOf>
 </daml:Class>

 <!-- ************************ MODULE ************************ -->

 <daml:Class rdf:ID="Module">
 <rdfs:label>Module</rdfs:label>
 <rdfs:comment>A period of time in a week.</rdfs:comment>
 </daml:Class>

 <daml:Class rdf:ID="M1A">
 <rdfs:label>1A</rdfs:label>
 <rdfs:comment>Monday 8:00 - 12:00.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Module"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <M1A rdf:ID="m-1A">
 <rdfs:label>1A</rdfs:label>
 </M1A>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="M2A">
 <rdfs:label>2A</rdfs:label>
 <rdfs:comment>Monday 13:00 - 17:00.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Module"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <M2A rdf:ID="m-2A">
 <rdfs:label>2A</rdfs:label>
 </M2A>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="M3A">
 <rdfs:label>3A</rdfs:label>
 <rdfs:comment>Tuesday 8:00 - 12:00.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Module"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <M3A rdf:ID="m-3A">

APPENDIX A

98

 <rdfs:label>3A</rdfs:label>
 </M3A>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="M4A">
 <rdfs:label>4A</rdfs:label>
 <rdfs:comment>Tuesday 12:00 - 17:00.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Module"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <M4A rdf:ID="m-4A">
 <rdfs:label>4A</rdfs:label>
 </M4A>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="M5A">
 <rdfs:label>5A</rdfs:label>
 <rdfs:comment>Wednesday 8:00 - 12:00.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Module"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <M5A rdf:ID="m-5A">
 <rdfs:label>5A</rdfs:label>
 </M5A>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="M1B">
 <rdfs:label>1B</rdfs:label>
 <rdfs:comment>Thursday 12:00 - 17:00.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Module"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <M1B rdf:ID="m-1B">
 <rdfs:label>1B</rdfs:label>
 </M1B>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="M2B">
 <rdfs:label>2B</rdfs:label>
 <rdfs:comment>Thursday 8:00 - 12:00.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Module"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <M2B rdf:ID="m-2B">
 <rdfs:label>2B</rdfs:label>
 </M2B>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="M3B">
 <rdfs:label>3B</rdfs:label>
 <rdfs:comment>Friday 12:00 - 17:00.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Module"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <M3B rdf:ID="m-3B">
 <rdfs:label>3B</rdfs:label>
 </M3B>
 </daml:oneOf>
 </daml:Class>

APPENDIX A

99

 <daml:Class rdf:ID="M4B">
 <rdfs:label>4B</rdfs:label>
 <rdfs:comment>Friday 8:00 - 12:00.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Module"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <M4B rdf:ID="m-4B">
 <rdfs:label>4B</rdfs:label>
 </M4B>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="M5B">
 <rdfs:label>5B</rdfs:label>
 <rdfs:comment>Wednesday 12:00 - 17:00.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Module"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <M5B rdf:ID="m-5B">
 <rdfs:label>5B</rdfs:label>
 </M5B>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="M3-week">
 <rdfs:label>3-week</rdfs:label>
 <rdfs:comment>3-week period</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Module"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <M3-week rdf:ID="m-3week">
 <rdfs:label>3-week</rdfs:label>
 </M3-week>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="Other">
 <rdfs:label>Other</rdfs:label>
 <rdfs:comment>Period outside any of the other periods.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Module"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <Other rdf:ID="m-other">
 <rdfs:label>other</rdfs:label>
 </Other>
 </daml:oneOf>
 </daml:Class>

 <!-- ************************ SCHEDULE ************************ -->

 <daml:Class rdf:ID="Schedule">
 <rdfs:label>Schedule</rdfs:label>

<rdfs:comment>
 The time of the week and season a course is taught at.
</rdfs:comment>

 <rdfs:subClassOf>
 <daml:Class>
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#inSeason"/>
 </daml:Restriction>
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#inModule"/>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>
 </rdfs:subClassOf>

APPENDIX A

100

 <daml:oneOf rdf:parseType="daml:collection">
 <Schedule rdf:ID="F-1A">
 <rdfs:label>F-1A</rdfs:label>
 <inSeason rdf:resource="#F-"/>
 <inModule rdf:resource="#m-1A"/>
 </Schedule>
 <Schedule rdf:ID="F-2A">
 <rdfs:label>F-2A</rdfs:label>
 <inSeason rdf:resource="#F-"/>
 <inModule rdf:resource="#m-2A"/>
 </Schedule>
 <Schedule rdf:ID="F-3A">
 <rdfs:label>F-3A</rdfs:label>
 <inSeason rdf:resource="#F-"/>
 <inModule rdf:resource="#m-3A"/>
 </Schedule>
 <Schedule rdf:ID="F-4A">
 <rdfs:label>F-4A</rdfs:label>
 <inSeason rdf:resource="#F-"/>
 <inModule rdf:resource="#m-4A"/>
 </Schedule>
 <Schedule rdf:ID="F-5A">
 <rdfs:label>F-5A</rdfs:label>
 <inSeason rdf:resource="#F-"/>
 <inModule rdf:resource="#m-5A"/>
 </Schedule>
 <Schedule rdf:ID="F-1B">
 <rdfs:label>F-1B</rdfs:label>
 <inSeason rdf:resource="#F-"/>
 <inModule rdf:resource="#m-1B"/>
 </Schedule>
 <Schedule rdf:ID="F-2B">
 <rdfs:label>F-2B</rdfs:label>
 <inSeason rdf:resource="#F-"/>
 <inModule rdf:resource="#m-2B"/>
 </Schedule>
 <Schedule rdf:ID="F-3B">
 <rdfs:label>F-3B</rdfs:label>
 <inSeason rdf:resource="#F-"/>
 <inModule rdf:resource="#m-3B"/>
 </Schedule>
 <Schedule rdf:ID="F-4B">
 <rdfs:label>F-4B</rdfs:label>
 <inSeason rdf:resource="#F-"/>
 <inModule rdf:resource="#m-4B"/>
 </Schedule>
 <Schedule rdf:ID="F-5B">
 <rdfs:label>F-5B</rdfs:label>
 <inSeason rdf:resource="#F-"/>
 <inModule rdf:resource="#m-5B"/>
 </Schedule>
 <Schedule rdf:ID="F-3week">
 <rdfs:label>June</rdfs:label>
 <inSeason rdf:resource="#F-"/>
 <inModule rdf:resource="#m-3week"/>
 </Schedule>
 <Schedule rdf:ID="F-other">
 <rdfs:label>F-other</rdfs:label>
 <inSeason rdf:resource="#F-"/>
 <inModule rdf:resource="#m-other"/>
 </Schedule>
 <Schedule rdf:ID="E-1A">
 <rdfs:label>E-1A</rdfs:label>

APPENDIX A

101

 <inSeason rdf:resource="#E-"/>
 <inModule rdf:resource="#m-1A"/>
 </Schedule>
 <Schedule rdf:ID="E-2A">
 <rdfs:label>E-1A</rdfs:label>
 <inSeason rdf:resource="#E-"/>
 <inModule rdf:resource="#m-2A"/>
 </Schedule>
 <Schedule rdf:ID="E-3A">
 <rdfs:label>E-3A</rdfs:label>
 <inSeason rdf:resource="#E-"/>
 <inModule rdf:resource="#m-3A"/>
 </Schedule>
 <Schedule rdf:ID="E-4A">
 <rdfs:label>E-4A</rdfs:label>
 <inSeason rdf:resource="#E-"/>
 <inModule rdf:resource="#m-4A"/>
 </Schedule>
 <Schedule rdf:ID="E-5A">
 <rdfs:label>E-5A</rdfs:label>
 <inSeason rdf:resource="#E-"/>
 <inModule rdf:resource="#m-5A"/>
 </Schedule>
 <Schedule rdf:ID="E-1B">
 <rdfs:label>E-1B</rdfs:label>
 <inSeason rdf:resource="#E-"/>
 <inModule rdf:resource="#m-1B"/>
 </Schedule>
 <Schedule rdf:ID="E-2B">
 <rdfs:label>E-2B</rdfs:label>
 <inSeason rdf:resource="#E-"/>
 <inModule rdf:resource="#m-2B"/>
 </Schedule>
 <Schedule rdf:ID="E-3B">
 <rdfs:label>E-3B</rdfs:label>
 <inSeason rdf:resource="#E-"/>
 <inModule rdf:resource="#m-3B"/>
 </Schedule>
 <Schedule rdf:ID="E-4B">
 <rdfs:label>E-4B</rdfs:label>
 <inSeason rdf:resource="#E-"/>
 <inModule rdf:resource="#m-4B"/>
 </Schedule>
 <Schedule rdf:ID="E-5B">
 <rdfs:label>E-5B</rdfs:label>
 <inSeason rdf:resource="#E-"/>
 <inModule rdf:resource="#m-5B"/>
 </Schedule>
 <Schedule rdf:ID="E-3week">
 <rdfs:label>January</rdfs:label>
 <inSeason rdf:resource="#E-"/>
 <inModule rdf:resource="#m-3week"/>
 </Schedule>
 <Schedule rdf:ID="E-other">
 <rdfs:label>E-other</rdfs:label>
 <inSeason rdf:resource="#E-"/>
 <inModule rdf:resource="#m-other"/>
 </Schedule>
 </daml:oneOf>
 </daml:Class>

APPENDIX A

102

 <!-- ************************ TOPICS ************************ -->

 <daml:Class rdf:ID="Topic">
 <rdfs:label>Topic</rdfs:label>
 <rdfs:comment>A topic from ACM CCS.</rdfs:comment>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#A"/>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="A.0.1">
 <rdfs:label>Biographies/autobiographies</rdfs:label>
 <rdfs:subClassOf rdf:resource="#A.0"/>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class><daml:oneOf rdf:parseType="daml:collection">
 <A.0.1 rdf:ID="topic-A.0.1"/>
 </daml:oneOf></daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="A.0.2">
 <rdfs:label>Conference proceedings</rdfs:label>
 <rdfs:subClassOf rdf:resource="#A.0"/>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class><daml:oneOf rdf:parseType="daml:collection">
 <A.0.2 rdf:ID="topic-A.0.2"/>
 </daml:oneOf></daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="A.0.3">
 <rdfs:label>General literary works (e.g., fiction, plays)</rdfs:label>
 <rdfs:subClassOf rdf:resource="#A.0"/>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class><daml:oneOf rdf:parseType="daml:collection">
 <A.0.3 rdf:ID="topic-A.0.3"/>
 </daml:oneOf></daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="A.0">
 <rdfs:label>GENERAL</rdfs:label>
 <rdfs:subClassOf rdf:resource="#A"/>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class><daml:oneOf rdf:parseType="daml:collection">
 <A.0 rdf:ID="topic-A.0"/>
 </daml:oneOf></daml:Class>
 <daml:Class rdf:about="#A.0.1"/>
 <daml:Class rdf:about="#A.0.2"/>
 <daml:Class rdf:about="#A.0.3"/>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="A.1">
 <rdfs:label>INTRODUCTORY AND SURVEY</rdfs:label>
 <rdfs:subClassOf rdf:resource="#A"/>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class><daml:oneOf rdf:parseType="daml:collection">
 <A.1 rdf:ID="topic-A.1"/>
 </daml:oneOf></daml:Class>
 </daml:unionOf>
 </daml:Class>

APPENDIX A

103

 <daml:Class rdf:ID="A.2">
<rdfs:label>
 REFERENCE (e.g., dictionaries, encyclopedias, glossaries)
</rdfs:label>

 <rdfs:subClassOf rdf:resource="#A"/>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class><daml:oneOf rdf:parseType="daml:collection">
 <A.2 rdf:ID="topic-A.2"/>
 </daml:oneOf></daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="A.m">
 <rdfs:label>MISCELLANEOUS</rdfs:label>
 <rdfs:subClassOf rdf:resource="#A"/>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class><daml:oneOf rdf:parseType="daml:collection">
 <A.m rdf:ID="topic-A.m"/>
 </daml:oneOf></daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="A">
 <rdfs:label>General Literature</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Topic"/>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class><daml:oneOf rdf:parseType="daml:collection">
 <A rdf:ID="topic-A"/>
 </daml:oneOf></daml:Class>
 <daml:Class rdf:about="#A.0"/>
 <daml:Class rdf:about="#A.1"/>
 <daml:Class rdf:about="#A.2"/>
 <daml:Class rdf:about="#A.m"/>
 </daml:unionOf>
 </daml:Class>

 <!-- ************************ COURSE ************************ -->

 <AnyCourse rdf:ID='Dummy'>
 <isTaughtIn rdf:resource='#EN'/>
 </AnyCourse>

 <daml:Class rdf:ID="AnyCourse">
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#Course"/>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="Course">
 <rdfs:label>Course</rdfs:label>
 <rdfs:subClassOf rdf:resource="#AnyCourse"/>
 <rdfs:subClassOf>
 <daml:Class>
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#isTaughtIn"/>
 </daml:Restriction>
 <daml:Restriction daml:cardinality="1">

APPENDIX A

104

 <daml:onProperty rdf:resource="#courseName"/>
 </daml:Restriction>
 <daml:Restriction daml:minCardinality="1">
 <daml:onProperty rdf:resource="#isTaughtAt"/>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>
 </rdfs:subClassOf>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#LinePackageCourse"/>
 <daml:Class rdf:about="#CoreCourse"/>
 <daml:Class rdf:about="#MasterCourse"/>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="LinePackageCourse">
 <rdfs:subClassOf rdf:resource="#Course"/>
 <rdfs:label>Line package course</rdfs:label>
 <rdfs:comment>Course included in a line package.</rdfs:comment>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#LinePackageCoreCourse"/>
 <daml:Class rdf:about="#LinePackageAMSCourse"/>
 <daml:Class rdf:about="#MandatoryLinePackageCourse"/>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="CoreCourse">
 <rdfs:subClassOf rdf:resource="#Course"/>
 <rdfs:label>Core course</rdfs:label>
 <rdfs:comment>Mandatory course for complete master students.</rdfs:comment>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#LinePackageCoreCourse"/>
 <daml:Class rdf:about="#MandatoryCoreCourse"/>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="MasterCourse">
 <rdfs:subClassOf rdf:resource="#Course"/>
 <rdfs:label>Master course</rdfs:label>
 <rdfs:comment>Course at master level.</rdfs:comment>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#ExoticCourse"/>
 <daml:Class rdf:about="#AMSCourse"/>
 <daml:Class rdf:about="#MandatoryCourse"/>
 <daml:Class rdf:about="#SpecializationCourse"/>
 <daml:Class rdf:about="#InternationalMasterCourse"/>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">

APPENDIX A

105

 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="ExoticCourse">
 <rdfs:subClassOf rdf:resource="#MasterCourse"/>
 <rdfs:label>Humanistic course</rdfs:label>
 <rdfs:comment>Exotic course.</rdfs:comment>
 <daml:sameClassAs>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:sameClassAs>
 </daml:Class>

 <daml:Class rdf:ID="AMSCourse">
 <rdfs:subClassOf rdf:resource="#MasterCourse"/>
 <rdfs:label>AMS course</rdfs:label>
 <rdfs:comment>Course in Work, Environment and Society.</rdfs:comment>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#LinePackageAMSCourse"/>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="MandatoryCourse">
 <rdfs:subClassOf rdf:resource="#MasterCourse"/>
 <rdfs:label>Mandatory course</rdfs:label>
 <rdfs:comment>Mandatory course for master students.</rdfs:comment>
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#MandatoryLinePackageCourse"/>
 <daml:Class rdf:about="#MandatoryCoreCourse"/>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="SpecializationCourse">
 <rdfs:subClassOf rdf:resource="#MasterCourse"/>
 <rdfs:label>Specialization course</rdfs:label>

<rdfs:comment>
 Course at master level that gives a specialization.
</rdfs:comment>

 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#InternationalSpecializationCourse"/>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:unionOf>
 </daml:Class>

APPENDIX A

106

 <daml:Class rdf:ID="InternationalMasterCourse">
 <rdfs:subClassOf rdf:resource="#MasterCourse"/>
 <rdfs:label>International master course</rdfs:label>

<rdfs:comment>
 Course at master level for international students.
</rdfs:comment>

 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#InternationalSpecializationCourse"/>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="InternationalSpecializationCourse">
 <rdfs:subClassOf rdf:resource="#SpecializationCourse"/>
 <rdfs:subClassOf rdf:resource="#InternationalMasterCourse"/>
 <rdfs:label>International specialization course</rdfs:label>

<rdfs:comment>
 Specialization course for international students.
</rdfs:comment>

 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#InternationalMandatoryCourse"/>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="InternationalMandatoryCourse">
 <rdfs:subClassOf rdf:resource="#InternationalSpecializationCourse"/>
 <rdfs:label>International mandatory course</rdfs:label>
 <rdfs:comment>Mandatory course for international students.</rdfs:comment>
 <daml:sameClassAs>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:sameClassAs>
 </daml:Class>

 <daml:Class rdf:ID="LinePackageCoreCourse">
 <rdfs:subClassOf rdf:resource="#LinePackageCourse"/>
 <rdfs:subClassOf rdf:resource="#CoreCourse"/>
 <rdfs:label>Line package core course</rdfs:label>

<rdfs:comment>
 Mandatory course for complete master students that is included in a line
 package.
</rdfs:comment>

 <daml:sameClassAs>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:sameClassAs>
 </daml:Class>

APPENDIX A

107

 <daml:Class rdf:ID="LinePackageAMSCourse">
 <rdfs:subClassOf rdf:resource="#LinePackageCourse"/>
 <rdfs:subClassOf rdf:resource="#AMSCourse"/>
 <rdfs:label>Line package AMS course</rdfs:label>

<rdfs:comment>
 Course in Work, Environment and Society that is included in a line
 package.
</rdfs:comment>

 <daml:sameClassAs>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:sameClassAs>
 </daml:Class>

 <daml:Class rdf:ID="MandatoryLinePackageCourse">
 <rdfs:subClassOf rdf:resource="#LinePackageCourse"/>
 <rdfs:subClassOf rdf:resource="#MandatoryCourse"/>
 <rdfs:label>Mandatory line package course</rdfs:label>

<rdfs:comment>
 Mandatory course for master students that is included in a line
 package.
</rdfs:comment>

 <daml:sameClassAs>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:sameClassAs>
 </daml:Class>

 <daml:Class rdf:ID="MandatoryCoreCourse">
 <rdfs:subClassOf rdf:resource="#CoreCourse"/>
 <rdfs:subClassOf rdf:resource="#MandatoryCourse"/>
 <rdfs:label>Mandatory core course</rdfs:label>

<rdfs:comment>
 Mandatory course for master students that is also a core
 course.
</rdfs:comment>

 <daml:sameClassAs>
 <daml:Class>
 <daml:oneOf rdf:parseType="daml:collection">
 <AnyCourse rdf:about='#Dummy'/>
 </daml:oneOf>
 </daml:Class>
 </daml:sameClassAs>
 </daml:Class>

</rdf:RDF>

APPENDIX A

108

109

APPENDIX B � THE NATIONALITY EXAMPLE FILE
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns ="http://www.student.dtu.dk/~c960516/example.daml#"
>
 <daml:Ontology rdf:about="">
 <daml:imports rdf:resource="http://www.daml.org/2001/03/daml+oil"/>
 </daml:Ontology>

 <!-- ************************ INSTANCE ************************ -->

 <Person rdf:ID="Peter">
 <has_nationality rdf:resource="#german"/>
 <born_in rdf:resource="#china"/>
 </Person>

 <!-- ************************ ONTOLOGY ************************ -->
 <daml:Class rdf:ID="EuropeanPerson">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#has_nationality"/>
 <daml:toClass rdf:resource="#EuropeanNationality"/>
 </daml:Restriction>
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#born_in"/>
 <daml:toClass rdf:resource="#EuropeanCountry"/>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

 <daml:Class rdf:ID="OtherPerson">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#has_nationality"/>
 <daml:toClass rdf:resource="#OtherNationality"/>
 </daml:Restriction>
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#born_in"/>
 <daml:toClass rdf:resource="#OtherCountry"/>
 </daml:Restriction>
 </daml:intersectionOf>

</daml:Class>

 <daml:ObjectProperty rdf:ID="has_nationality">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Nationality"/>
 </daml:ObjectProperty>

APPENDIX B

110

 <daml:ObjectProperty rdf:ID="born_in">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Country"/>
 </daml:ObjectProperty>

 <daml:Class rdf:ID="Nationality"/>
 <daml:Class rdf:ID="Country"/>

 <daml:Class rdf:ID="Person">
 <daml:disjointUnionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#EuropeanPerson"/>
 <daml:Class rdf:about="#OtherPerson"/>
 </daml:disjointUnionOf>
 </daml:Class>

 <!-- ************** SUFFICIENT CONCEPT DEFINITIONS ************* -->

 <daml:Class rdf:ID="EuropeanNationality">
 <daml:subClassOf rdf:resource="#Nationality"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <EuropeanNationality rdf:ID="german"/>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="OtherNationality">
 <daml:subClassOf rdf:resource="#Nationality"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <OtherNationality rdf:ID="chinese"/>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="EuropeanCountry">
 <daml:subClassOf rdf:resource="#Country"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <EuropeanCountry rdf:ID="germany"/>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="OtherCountry">
 <daml:subClassOf rdf:resource="#Country"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <OtherCountry rdf:ID="china"/>
 </daml:oneOf>
 </daml:Class>

</rdf:RDF>

111

APPENDIX C � THE COLOR OPTION EXAMPLE

FILE
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns ="http://www.student.dtu.dk/~c960516/example.daml#"
>
 <daml:Ontology rdf:about="">
 <daml:imports rdf:resource="http://www.daml.org/2001/03/daml+oil"/>
 </daml:Ontology>

 <!-- ************************ INSTANCE ************************ -->

 <Uniform rdf:ID="uniform1">
 <has_color rdf:resource="#blue"/>
 <has_part rdf:resource="#pants"/>
 <has_part rdf:resource="#blouse"/>
 </Uniform>

 <!-- ************************ ONTOLOGY ************************ -->

 <daml:ObjectProperty rdf:ID="has_color">
 <rdfs:domain rdf:resource="#Uniform"/>
 <rdfs:range rdf:resource="#Color"/>
 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="has_part">
 <rdfs:domain rdf:resource="#Uniform"/>
 <rdfs:range rdf:resource="#Item"/>
 </daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="has_color_option">
 <rdfs:domain rdf:resource="#Item"/>
 <rdfs:range rdf:resource="#Color"/>
 </daml:ObjectProperty>

 <daml:Class rdf:ID="Color"/>

 <daml:Class rdf:ID="LightColor">
 <daml:subClassOf rdf:resource="#Color"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <Color rdf:ID="red"/>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="DarkColor">
 <daml:subClassOf rdf:resource="#Color"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <Color rdf:ID="blue"/>
 </daml:oneOf>
 </daml:Class>

APPENDIX C

112

 <daml:Class rdf:ID="Item"/>

 <daml:Class rdf:ID="Pants">
 <daml:subClassOf rdf:resource="#Item"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <Item rdf:ID="pants">
 <has_color_option rdf:resource="#red"/>
 <has_color_option rdf:resource="#blue"/>
 </Item>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="Blouse">
 <daml:subClassOf rdf:resource="#Item"/>
 <daml:oneOf rdf:parseType="daml:collection">
 <Item rdf:ID="blouse">
 <has_color_option rdf:resource="#red"/>
 </Item>
 </daml:oneOf>
 </daml:Class>

 <daml:Class rdf:ID="Uniform">
 <daml:unionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="#DarkUniform"/>
 <daml:Class rdf:about="#LightUniform"/>
 </daml:unionOf>
 </daml:Class>

 <daml:Class rdf:ID="DarkUniform">
 <daml:subClassOf rdf:resource="#Uniform"/>
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#has_color"/>
 <daml:toClass rdf:resource="#DarkColor"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#has_part"/>
 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#has_color_option"/>
 <daml:hasClass rdf:resource="#DarkColor"/>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

 <daml:Class rdf:ID="LightUniform">
 <daml:subClassOf rdf:resource="#Uniform"/>
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#has_color"/>
 <daml:toClass rdf:resource="#LightColor"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#has_part"/>

APPENDIX C

113

 <daml:toClass>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#has_color_option"/>
 <daml:hasClass rdf:resource="#LightColor"/>
 </daml:Restriction>
 </daml:toClass>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>

</rdf:RDF>

