
Crane Scheduling on a Plate Storage

Center for Industrial Application of Mathematical Models

Jesper Hansen1

1. April 2002

Introduction
Center for Industrial Application of Mathematical Models (CIAMM) is a virtual center consisting of
several industrial companies and universities. The purpose of the center is to "industrialize” the
research done at the universities within mathematical modeling.

Our work in the project is to extend models and solutions for prototype problems to real world
problems. From a few cases we want to generalize these approaches and methods in order to construct
a "cookbook” for developing optimization software for the industry.

For the remainder of this paper, we will consider a case from Odense Steel Shipyard (OSS).

The Plate Storage Problem
OSS produces the worlds largest container ships. The first process of producing the steel ships is
handling arrival and storage of steel plates until they are needed in production.

The plate storage is organized in 8 times 32 stacks. Approximately 20 plates are stored in each stack on
average. One quarter of the stacks is used for special purpose plates for instance stacks with identical
plates. The rest of the storage is used for plates, which for the main part have different sizes. Each plate
is ordered for a specific purpose and it is known at which date it is needed in production. Changes in
the overall plan for the yard, can however influence the due dates of the plates on the storage, which
means that the due date of a plate can change several times before needed in production.

Two gantry cranes carry out the movements of plates. The cranes share tracks and hence can not pass
each other. For each of the 32 rows the cranes can reach each of the 8 stacks. The cranes are equipped
with an electromagnet which can lift only the top plate from a stack and move it to some other stack or
remove it from the storage. Since the cranes are gantry cranes there is a limit on the height of the
stacks.

Each day a set of plates must leave the storage to be cut up. The plates are put on a conveyer belt with a
capacity of 8 plates, which is called the exit-belt. The exit-belt works as a queue and plates are drawn
from the queue with a time interval depending on the order and dimensions of the plates on the belt.

If a specific plate is requested, which is not on the top of a stack, the plates on top must be moved to
other stacks before the requested plate can be removed from the storage. This procedure introduces a
number of unproductive movements, which we call dig-up movements.

1 Informatics and Mathematical Modelling, Technical University of Denmark, 2800 Lyngby,
email:jha@imm.dtu.dk

The planning task is now to create a schedule of movements for the 2 cranes without collision, that
delivers the plates needed for the given day and minimizes costs.

Many different classes of problems within scheduling and routing have similarities with the problem
considered in this paper. One problem is the Traveling Salesman Problem (TSP) where a salesman
must visit a number of customers or rather nodes in a graph. For the Stacker-Crane Problem (SCP) a
crane must move items from a node to another node in other words visit a subset of arcs in a graph. In
our problem the items are steel plates.

If k plates are to be moved from a stack s to other stacks it means that k arcs going out of s must be
visited. The order in which they are visited must be such that the arc corresponding to the top plate are
visited before the arc corresponding to the next plate and so on. I.e. we have precedence relations
between the arcs leaving s.

In our application a plate may be moved more than once if it is put on a stack from which plates are
going to be moved later on. This means that extra arcs are dynamically inserted in the graph. Insertions
of extra arcs are depending on the order in which the arcs are traversed and we have precedence
relations between arcs corresponding to movements of the same plate. We could restrict ourselves to
solutions where all plates to leave a stack a given day must be removed before plates can be put on the
stack. This again introduces precedence constraints, but could result in problems with no feasible
solutions.

In the SCP the destination is given for a movement, but for our application the destinations for the dig-
up movements are decision variables. In the graph setting it means that the head of an arc out of node s
corresponding to a dig-up movement from stack s is not given, but is part of the optimization problem.

In our application the two gantry cranes share tracks and in our schedule we must avoid collisions of
the two cranes. Extra positioning and wait movements may have to be inserted in the sequence of
movements in order to avoid this.

To cutting

A
r
r
i
v
a
l
s

Crane track

Crane track

Crane 1

Crane 2

Objective Function
Costs include salary to the crane operators, power for the cranes to move and activation of the
electromagnetics as well as maintenance on the cranes. In other words, make-span of the schedule, total
traveled distance and number of movements. Minimization of the time when the last plate is put on the
exit-belt is also important to be able to start the following processes as early as possible. One day of
production is planned at a time, so in order to minimize the long-term costs; we measure the quality of
the state of the storage after each day. The state is evaluated by 3 different criteria:

1. How well are the stacks sorted by plate due date? More specifically, how many dig-ups have to be
done for each stack with the given plate due dates. For stack (2,4) in the figure below plate p2 is the
first to be removed from the storage on the November 1. This requires the dig-up of p1. The next
plate to be removed from the stack is p4, which causes the dig-up of p3. The result is 2 dig-ups. We
have defined the cost of a dig-up to be the sum of the following terms:
a. Estimated cost of power used for lifting and dropping a plate.
b. The cost of power for moving the crane to the nearest stack and back.
c. The cost in salary for operating the crane in the amount of time according to the dig-up

movement.

2. How close are the plates to the exit-belt compared to the due date of the plates? When minimizing
traveling distance it is better always to move plates in direction of the exit-belt and when the due
date of a plate is close in time, we want it to be close to the exit-belt. More formally the cost for a
given plate is: (distance to exit-belt)/(diff(plate due date, today) + 1) where diff(date1, date2) returns
the difference in days between two dates. Let us assume that the exit-belt is located at the
coordinates (1,4), then stack (2,4) is 1 closer than (3,4). If for instance today is 01/11/2001 then the
cost for plate p1 is 1/4, for p4: 1/6 and p6 it is 1/3. The above exit distance can be converted to time
and the cost is then achieved by multiplying with the salary of the operators.

3. How many plates are there in each stack? We want the plates to be as evenly spread out on the
stacks as possible, which will result in less dig-ups when changes in due dates occur. Generally the
cost for a stack is: (no. of plates in stack)2/(max. no. of plates in stack), where the maximum no. Of
plates in a stack is a user supplied upper limit on the number of plates common for all stacks. We
observe that the cost per stack will be in the interval from 0 to the maximum number of plates in the
stacks. If we have an upper limit of 10 plates, then the stacks in the figure below will have a cost of
(16+4+4)/10=2.4 while if p1 was moved to stack (3,4), the cost would be (9+9+4)/10=2.2, and
hence better. What we are minimizing is in some sense the worst case number of dig-ups if a plate in
the bottom of a stack is requested. The cost of a dig-up in 1. is therefore used here as well.

We have managed to convert all criteria functions into a common unit, which is then minimized. All
the user has to supply are the operating costs of the crane and the salary of the operators.

(1,4)

P1: 04/11/01

P2: 01/11/01

P3: 07/11/01

P4: 06/11/01

(2,4)

P5: 05/11/01

P6: 06/11/01

(3,4)

P8: 05/11/01

P7: 01/11/01

(4,4)

Solution Procedure
Each day we know which plates must leave the storage. These movements of plates out of the storage
are called exit movements. Given these movements we can identify plates that have to be dug up during
that day. Note that these plates can be identified before scheduling any movements.

When plates arrive by ship they are registered in a database and the system must handle the scheduling
of picking up the plates from the quay and where to put it in the storage online.

In order to improve the state of the storage, we may perform some sorting of the stacks. We call these
movements for sort movements. The reason for doing sorting is that in the future less dig-ups will be
necessary, and less time will be spent removing plates from the storage. If the due dates of the plates
change frequently there is a risk of doing a lot of sorting that later turn out to be wasted. Experiments
show that sorting such that plates to leave the storage the next day are on top of the stacks is an
appropriate amount of sorting, since no dig-ups will be necessary the day after if the due dates are not
changed.

Until now we have implemented a construction heuristic and local search heuristics for improving the
initial plan. The times for lifting and dropping plates, moving the crane and speed of the exit-belt are
not constant, but for the purpose of planning they are considered constant. During execution of the plan
changes in times may cause the plan to be infeasible. In that case the plan must be revised. One
approach, which is under development, is to adjust the plan to the changes and the other approach is to
use the construction heuristic as an on-line algorithm.

It has shown to be difficult to construct neighbourhood structures where local changes can easily be
propagated to global changes in the objective-value. Therefore the first attempt was to evaluate the
change in objective by ”simply’’ simulating the crane movements from start to end for every new
neighbour solution. This is off course computationally expensive and we are now trying to estimate the
change in costs instead.

The solution achieved by the construction heuristic mentioned earlier can be seen as a path from the
root to a leave in a search tree, where the branches correspond to choices on which move to perform.
Until now we have only found one solution in the search tree, but we consider introducing a search
mechanism to further explore the tree. This could turn out to be a better approach than local search,
since it does not depend on estimation of costs. Because of the combinatorial explosion it will still need
to be an incomplete search of the solution space.

