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ABSTRACT 
 
Automatic detection and classification of operation conditions in large diesel engines is of significant 
importance. This paper investigates an independent component analysis (ICA) framework for 
unsupervised detection of changes in and possibly classification of operation conditions such as 
lubrication changes and increased wear based on acoustical emission (AE) sensor signals. 
The probabilistic formulation of ICA enables a statistical detection of novel events which do not conform 
to the current ICA model, thus indicating significant changes in operation conditions. Novelty of an 
observation is measured through the likelihood that the model has produced that observation. Evaluation 
of likelihood ratios allows the framework to also handle multiple models, thus enabling classification of 
operation conditions; furthermore the likelihood also serves as a link to traditional change detection.  
The framework is evaluated on measured AE signals in an experiment where the operational condition 
varies. In particular, we compare the performance of mean field ICA, information-maximization ICA, and 
Principal Component Analysis. For detection of changes the performance is also compared to standard 
methods, e.g. mean value step detection. 
 
 
INTRODUCTION 
 
Identification of engine conditions and faults is important for automatic monitoring of critical failures in 
large marine diesel engines and stationary power plants. Early detection of small defects prior to evolving 
into serious breakdowns often reduces the costs for repair significantly. 
The literature suggests that monitoring based on acoustical emission (AE) offer advantages over sensor 
techniques such as pressure and vibration [1, 2]. The signal-to-noise ratio is typically better for AE sensor 
signals, and further a system based on AE is more feasible from an operational point of view. Previous 
work on adaptive signal processing and machine learning [3, 4, 5, 6, 7, 8, 9] has mainly been focusing on 
supervised learning from sensor data and known faults. This paper focuses on unsupervised learning for 
significant detection of changes in measured AE signals, that is, modelling the probability density of the 
AE signal. Since we measure many samples of the AE signal we suggest a model, which also offers a 
compact data representation, such as the Independent Component Analysis (ICA) and Principal 



Component Analysis (PCA) models. The probability density associated with the trained ICA and PCA 
models [10, 11, 12, 13] can be used to identify events which do not conform to the model assumptions 
[14, 15] and thus represent a significant change in engine condition. 
In section 2 the data acquisition and experimental setup is described. Section 3 presents the modelling 
framework and a novel change detection algorithm based on ICA or PCA models. A comparative analysis 
and discussion using the suggested method is provided in section 4, and finally, section 5 state the 
conclusions. 
 
Throughout vectors and matrices are identified by lowercase bold and uppercase bold letters respectively, 
i.e. the vector x and matrix X. 
 
 
EXPERIMENTAL SETUP 
 
The data set consist of two acoustic emission (AE) energy (RMS) signals y1(t), y2(t) acquired at 20 kHz 
with two very sensitive Physical Acoustics Corporation sensors placed on the cylinder liner and cover, 
respectively. The signals are resampled into the crank angle domain to provide 2048 samples per engine 
revolution. Further the two signals are stacked into the d=4096 dimensional feature (row) vector x. 
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In addition, 21 other channels, including top and crank-pulses were acquired from the cylinder at MAN 
B&W Diesel’s Research Engine1 in Copenhagen. 
For each experiment, we consider three data sets: 

• A Training set containing stationary examples under the current engine operation condition H0. 
• Test set 1 containing examples under the same condition as in the training set, H0, which is used 

for model validation. 
• Test set 2 containing examples that are investigated for changed in engine condition, H1. 

 
Thus we are able to check against false rejection of H0 and to some extent also false accept of H1. 
During the experiment, the engine load was changed from 25% to 75%. In the middle of the 25% load 
period the cylinder lubrication was turned off, and in the middle of the 75% load period this system was 
turned on again.  
 
Experiment 1: Shutting Off Lubrication 
 
Initially the engine is stabilized at 25% load. After a while the lubrication to the cylinder is turned off. 
The objective is to detect this change in operation condition shortly after it occurred. 
 
Experiment 2: Unstable Revolution Speed 
 
The engine is running at 50% load and the lubrication system is turned off. Inspection of the revolution 
speed obtained from timing signal indicated that the engine undergo some sudden changes in the middle 
of this period. This is possibly caused by engine load fluctuations. We aim to detect the start and end of 
this period. 
 
 
Experiment 3: Increased wear and re-establishment of lubrication 
 
                                                 
1Test bed, 4 cylinders, 500 mm. bore, 10.000 BHP. 
 



The engine is running at 75 % load without lubrication. After 30 minutes lubrication is re-established, 
lowering the wear rate. We aim to detect this change of AE activity. 
 

 
Figure 1, Time line of experiment. The stair like curve shows the increasing load 
as function of time. The numbered boxes refer to the three experiments described 
in the previous sections. The two vertical lines indicate when the lubricating 
system was turned off and on. 

 
 
MODELING FRAMEWORK 
 
Novelty detection 
 
A general treatment of change detection is presented in e.g., [16, 17] here we deploy the novelty detection 
method proposed in [14, 15] which makes it possible to evaluate whether new examples conform to the 
model trained on the training set T . The novelty detection is based on input density  of the 
trained model. Consider the cumulative distribution of density values over the training set for all 
thresholds t. By selecting a low threshold Q  identifying the corresponding t Q , 

novel events are detected as those where Q(t) is less than , see further figure 2. 
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So Q(t) is the probability that the example x is under the same condition H0 as examples in the training 
set. The presented method assumes that examples, x, in the training set, i.e. drawn from the normal 
condition model H0, share underlying hidden sources, and that we are able to identify those (or linear 
combinations) correctly. As usual, we are faced with the problem of over fitting, where too many sources 
allow the model to adapt to the noise in the training examples, and too few sources prohibits the model in 
learning the different variations. With test set 1 we are able to detect over fitting, as it contains examples 
that should be accepted as H0, like the training set. 
For an example x in the training set with mixing matrix A and corresponding source vector s the log-
likelihood2 is given by 
  log ( | ) log ( | , , ) log ( | , , , ) ( )p p pΣ = Σ p d∫ε s ε sx x A Σ x A Σ s sT s

                                                

 (3) 

 
2 The probability density of x given the estimated model parameters. 
 



Where   is the covariance of the residuals from the training set, and s is the covariance of the sources 
estimated from the training set. 
Define { }1, , N=X x x… as the set of N examples3 and the number of used sources/components, K. 

 
Figure 2, Cumulated log-likelihood densities, Q(t), from experiment 2 using ICA 
with 2 components. The solid (and smooth) line shows the cumulated density for 
the training examples. The dotted line show the cumulated density for test set 1 
and is close to the training set. The dash-dotted line show the cumulated density 
for test set 2 and is above the training set curve, showing that many of these 
examples are rejected. The vertical (dashed) line show the threshold tmin together 
with the corresponding (horizontal) lines at the different rejection levels. 

 
3.2. PCA 
 
 =X UDV  (4) 
Where X is d×N, U is d×d, D is d×N, and V is N×N. We identify the mixing matrix as the K first columns 
of U, A = UK, and the source matrix SK as the first K principal components DKVK. Given a new example 
x we get the corresponding source s = Ax, and the residual ε= x-As. We assume that the residual is 
Gaussian with diagonal covariance, and that the source distribution p(s) can be approximated by a 
Gaussian with zero mean and known diagonal covariance given by DK. Under these assumptions Eqn. (3) 
is analytically tractable [10, 11] and is given by 

 ( )1 1 11 1log ( | , , ) (log log log ) log 2
2 2

p 1
2
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Where 
 ( ) 11 1 −Τ − −= ε sΣ A Σ A + Σ  (6) 
 
 
Information-maximization ICA (IM ICA) 
 

                                                 
3 Each example corresponds to one revolution of the engine, for which two AE signature waveforms of 2048 samples are 
acquired. 



Using PCA as a pre-processing dimensionality reduction step onto K dimensions, we can the apply 
Infomax ICA with square mixing matrix [18, 12]. 
  (7) KX = U AS
Where X is d×N, U is d×K, A is K×K and S is K×N. We use the ICA-ML DTU:toolbox [19] for training 
 
Mean Field ICA with Positive Constraints on Source and Mixing Matrices (MF ICA) 
 
An advanced Bayesian ICA using mean field training [13] enables the possibility of avoiding PCA as a 
pre-processing step as well as imposing priors on the sources and mixing matrix. 
The AE signals is the observable result of an additive process combining energy from various sources in 
the cylinder. If we want to model this, both source- and mixer matrix must only contain non-negative 
elements. We estimate a positive source matrix S, where the elements of each column are exponential 
distributed, and a mixer matrix A having non-negative elements using the ICA-ADATAP DTU:toolbox 
[19]. 
 =X AS  (8) 
X is d×N, A is d×K and S is K×N. Given a new example and the trained model the code provides 
estimates of sources and the associated log-likelihood. The returned log-likelihood (as well as the 
sources) is a mean field approximation to Eqn. (3) obtained by minimizing a Kullback-Leibler divergence 
[13]. 
 
 
RESULTS 
 
We have selected the number of components that reject the expected number of examples from test set 2 
while still accepting examples from test set 1. The following tables show these results and the obtained 
performance. Figures 3-6 show Q(t) for individual examples in different experiments using the 
algorithms. Looking at these figures, the condition changes are easily spotted. 
Generally mean field ICA and PCA works best, which is due to the fact that their log-likelihood also 
depends on the noise. These algorithms are both able to detect that the sources are changing and/or the 
yielding those examples is evaluated using both the sources and the residuals. 
 
 PCA IM ICA MF ICA
Test set 1 10 % 13 % 10 % 
Test set 2 93 % 80 % 89 % 
No. of components 3 27 3 

Table 1, Experiment 1: detecting oil off. The expected rejection rate of test set 2 is 93%. 

 
 PCA IM ICA MF ICA
Test set 1 6 % 4 % 5 % 
Test set 2 35 % 31 % 33 % 
No. of components 5 12 2 

Table 2, Experiment 2: Detecting temporary external condition change. The expected rejection rate of test 
set 2 is 34 %. 

 
 PCA IM ICA MF ICA
Test set 1 13 % 5 % 10 % 
Test set 2 98 % 94 % 98 % 
No. of components 97 12 1 

Table 3, Experiment 3: Detecting oil on. The expected rejection rate of test set 2 is 100% 



Figure 3, Q(t) for each example using PCA in experiment 1. The probability of 
coming from the normal condition clearly drops after the oil was cut off.  

 

 
Figure 4, Q(t) for each example using mean field ICA in experiment 1. The 
probability of coming from the normal condition clearly drops after the oil was cut 
off. 

 



 
Figure 5, Q(t) for each example using Infomax ICA in experiment 2. The 
probability of coming from the normal condition clearly drops and returns thus 
indicating that the engine return to the previous condition. 

 

Figure 6, Q(t) for each example using mean field ICA in experiment 3. The 
probability of coming from the normal condition clearly drops after the oil was 
put back. 

 
 



Simpler schemes 
 
With ICA and PCA we are able to detect the changes. Experiments with the CUSUM algorithm [16] and 
Bayesian step detection [20] using means of the revolutions4, show that simpler schemes also detect some 
of these condition changes. In settings where the amount of data is too large, these simples schemes can 
be used to pre-select time-windows for further analysis.  
 
 
CONCLUSION 
 
We have demonstrated the ability to detect changes in the operating parameters, including some 
parameters that where not monitored, for instance an external parameter. Furthermore we detect transitory 
condition changes, where the engine quickly returns to the previous condition.  
In future we’ll exploit this fact and extend the method aiming for classification, based on likelihood 
ratios. This should fix the apparent problems with only detecting changes namely, indication of causes as 
well as verification of fixes – when the condition returns after repair. Given vast amounts of data, 
segmented by simpler schemes our extended method should also be able to classify and group the 
segments. 
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