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Abstract. The objective of this work is to explore the feasibility of
quantifying textural change between pairs of segmented patterns with-
out registering them. The Multi-variate Alteration Detection (M.A.D.)
Transform is applied to a texture model constructed with the data of
segmented psoriasis lesions images. The texture model is Haralick’s co-
occurrence matrix, which is computed and normalized for each single
band with the equalized data of a given lesion. The contribution of each
single color band to the textural change is analyzed.

1 Introduction

We use a database consisting of a set of 175 images of lesions with psoriasis taken
at the Gentofte Hospital of Denmark during four pilot sessions with three invited
patients. For each patient, three lesions were captured five times during each ses-
sion, along four weeks. The images were labelled with four characters, indicating
patient (1, 2, 3), lesion (A, B, C), session (a, b, ¢, d) and capture (1, 2, 3, 4,
5) respectively. The original RGB images were reduced in size to (576 — 20)/4
rows by (768 — 20)/4 columns of pixels. The images can be assumed to contain
three classes (background, normal skin and lesion), which were segmented with
a two-stage hierarchical classification scheme [9]. This scheme separates, in the
first stage, the skin from the background, and, in the second stage, the lesion
from the normal skin. Since the images are affected by shadows, an illumination
correction scheme was proposed [10].

To evaluate lesion changes between sessions, physicians make scores of a four-
variables set: the redness, the scaling, the thickness and the body area covered
by the lesions. Manual scoring highly depends on the dermatologist, who can
show variations in criteria along sessions due to the huge amount of patients
and lesions observed during each working day. In order to use a set of lesions
like these as input to an automatic system that analyzes their change in time,
it could be helpful to express the data in a way where they are comparable,
without loosing connection with the original data. Registration of classified le-
sions patterns appear as options to possible solutions. However, they could have
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a high computational cost.

To transform pairs of not registered original data to a space were the trans-
formed data have a perfect registration is possible through a textural descriptor
[17], [8], [13], [1], [7], [16], [15] that is invariant to translations and rotations of
patterns, like Haralick’s co-occurrence matrix [3]. On the other hand, a statisti-
cal approach that allows to detect alterations is the M.A.D. Transform (Multi-
variate Alteration Detection Transform) [11], [12]. This scheme transforms two
sets of multi-variate observations into a difference between two linear combina-
tions of the original variables explaining maximal change in all variables simul-
taneously.

The present work consists of the description of the following aspects: the tex-
tural model, the two-set canonical correlation analysis and the M.A.D. Trans-
form. Results show the contribution of each color band to each M.A.D. compo-
nent. Finally, a back-projection approach from the M.A.D. output to the original
data is proposed.

2 The Texture Model

Following [6], let § be a compact and convex set established in the image space
as a circular window and let 5 be a vector position operator relating the rel-
ative spatial location of a pair of pixels in the window; for each single band,
the co-occurrence matrix C' is the estimated probability of having a pair of
pixels (Ap, Ag) in the relative position given by 5. The elements of the @ x @
co-occurrence matrix C'(\p, Aq, 5,9), with @ being the number of quantization
levels, are given by:

O{rlr,r + B € a(d),9(r) = Ap,g(r + B) = Ay} (1)
O{rr + B € 6}

where g(r) is the subset of the RGB image corresponding to the lesion with
psoriasis, o(d) is a translation isometry over the window, O is the order of the
set, and r = (4, ) is the vector position of a pixel.

3 Two-Set Canonical Correlations Analysis

Conceptually, two-set canonical correlations analysis is a technique that finds
corresponding sets of linear combinations -called canonical variables- of two
groups of variables, such that the first canonical variables are the ones with
the largest correlation, and higher order canonical variables are maximally cor-
related subject to orthogonality or uncorrelatedness with lower order canonical
variables [11], [4].
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Formally, let «; and x5 be two sets of variables of dimensions m; and ms
respectively, with m; < ms. The two-set canonical correlation analysis chooses
m1 + mo linear transforms

_ 4T s

Yy =ayr,t=1,...,m
_ 4T -

Yo; = Q5;T2,1 =1,...,ma,

(2)

such that the correlations within groups are

3)

T T _
Corr[aliwl, a; ml] = 6ij

T — 5.
Corr|ay;xs, a2j:1:2] = 0y,

and the correlations between groups are
COT’/‘[aﬂ»iBl,angCg] = pjéij (4)
where ¢ is the Kronecker delta.

Let the sets of variables &1 and x be described by the m; + my dimensional
variable
X = [z]x3) (5)

and assume

EX]=0ADX]=X= [211 212}

21 Yoo

with Z;; € R™*™ and
Sy =20 Vi, j=1,2 (7)

and non-singular.
We would like to find the transforms

T
Yyy=ax
v, = afe, ©

with

Varly,] Covly,,y,] ai Yna; af Yiza;
DY} =3y = _ 9
v} Y [Cov[yg,yl] Var[y,] ] [aQTEQlal agﬂggag} ©)

under the constraints

Var[y,] =1
Var[y,) =1 (10)
such that the correlation
Covlyy,
p = Corrly,, yg) = ——2W0 ¥l _ o754, (1)

Var(y,|Var(y,]

is maximized.
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Let A;/2 and A2/2 be Lagrange multipliers introduced in

A A
’L/J = 0{21202 — 71((1{211(11 — 1) — 72(0,%—‘222&2 — 1). (12)

We would like to maximize ¥ with respect to a; and as. Due to the symmetry
condition in Equation 7, the following matrix differentiation property can be
applied

8(aT2iiai)
0a, a (13)
and the partial derivatives of 1) with respect to a; and as are

o
— =X -\ 14
da, 1202 1241101 (14)
N
— =2 — A 15
day 2101 22:22a2 (15)

Note that Equations 14 and 15 could also be obtained by rewriting Equation
12 with A\; and A, as dependent variables: A is derived with respect to a; and
Ao, with respect to as; the derivative of the quotient and the symmetry condition
7 is applied and the huge expressions obtained can easily be simplified because
the main part of each one is only A\; and A, respectively.

Setting the partial derivatives of ¥ to zero and multiplying respectively by
al and a®, we have
alTEuag - )\10,,{2110‘1 =0 (16)

0522101 - )\Qagzggag =0. (17)

Due to a; and as are scalars, the following property can be applied a? Y12a, =
(al ¥15a2)T. The transpose of a product is the product of the transposes with
inverted order, and using Equation 7, the correlation p between the transformed
variables turns to be

p= (1,,{212(1,2 = agﬂzlal =AM =X\ (18)

Substituting Equation 18 in Equations 14 and 15
2hgas — pXliia; =0 (19)
Yora1 — pXagas =0 (20)

and multiplying Equation 20 by ¥,' gives

p= Sty L. (21)
az
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Pre-multiplying Equation 19 with p, substituting it with Equation 21 and re-
writing everything with respect to a; we have

21222_2122101 = ,02211041, (22)

which is recognized as an eigenvalue problem. On the other hand, multiplying
Equation 19 by 21_11 gives
_ a
p=X T—. (23)
ai

Substituting Equation 23 in - previously multiplied by the scalar p- Equation 20
we have
In X Disas = p*Eas. (24)

Rewriting Equations 22 and 24 we have the generalized equations of eigenvalues
and eigenvectors:
[(Z 21955, o1 — p*Ila; =0 (25)

and
(D55 o1 X7 X190 — p?I]az = 0. (26)

The sets y; and y, are obtained by projecting the sets x; and x2 onto the
subspaces spanned by the eigenvectors a; and a, respectively with the corre-
sponding largest eigenvalue equal to the square correlation.

If my = mgo the y,;,i = 1,...,m; are obtained by projecting x; onto the
subspaces spanned by the eigenvectors a, ..., @1m, corresponding to the eigen-
values p} > .. > p2, of ¥12X5,' Yoy, and the yo;,i = 1,...,my are obtained
by projecting x5 onto the subspaces spanned by the eigenvectors asi, ..., @2m,
corresponding to the same eigenvalues. If m; < mo the eigenvalue problem in
Equation 22 degenerates since the last eigenvalue will equal zero with (m2—ml)
multiplicity.

4 The M.A.D. Transform

Again, for completeness, let us follow [11] for describing the M.A.D. Transform.
Let X; and X5 be two sets of variables of dimensions m; and ms respectively,
with my < mg, E{X;} = E{Xy} = 0 transformed with the coefficients from a
standard canonical correlation analysis a; and as in

— 4T M
Yli = alin,z = ]., ceey MY

Ygi = a%;Xg,i = 17 ey M2 (27)

Further, Y; and Y5 are positively correlated and with unit variance, such that
the variance of their difference is maximized.

Varfal X; — a Xy] = (28)
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Varlal X,] + Var[al Xo] — 2Cov[ai Xy, a3 Xs] (29)
= 2(1 — Corr[a] X1, al X3]) (30)

The M.A.D. Transform consists of the variates obtained when the correspond-

ing canonical variates are subtracted in reverse order, what means that the m?%?

difference shows maximum variance among such variables, and the (m; — j)*
difference shows maximum variance subject to the constraint that this difference
is not correlated with the previous j ones. The M.A.D. variates are invariant to
linear and affine scaling, what is not the case of the Principal Components. The

dispersion matrix of the M.A.D. variates is
DlaT X, —alX]) =2(I — R) (31)

where [ is the m; X m; unit matrix and R is the m; X m; matrix containing the
sorted canonical correlations on the diagonal and zeros off the diagonal.

5 Results and Discussion

In order to evaluate the color band contribution in the textural change of the
lesions, the following experiment was designed. The set of 175 captures obtained
at Gentofte’s Hospital allowed the construction of 650 pairs of captures with the
same time increment of one week between them. For each image of a given pa-
tient and lesion, each one of the five images of the next session were associated.
For each one of the 175 images, the histogram of the pixels belonging to the
area of the thematic map indicating a lesion was first equalized. For each single
image, a three band synthetical image of 256 by 256 pixels was constructed in
the following way: for each single band, the co-occurrence matrix of the region
indicating the single lesion included was constructed and normalized.

Two sets of 650 pairs of images were used to apply the present scheme: the
first set was given by the original images; the second set, by the illumination-
corrected images (see Figures 13 to 21 in [10]). For each single image, the co-
occurrence matrix of the equalized region indicating skin was generated. For
each pair of original and illumination-corrected images of the same capture, the
same thematic map indicating skin was used (See Figures 2 to 8 in [9]). In
order to reduce the influence of very high values, logarithms were applied to the
normalized co-occurrence matrix values:

xlr,c, b]

SRR 98 SRRk .

After that, the values were again normalized:

log(y[r, ¢, b] * map[r, ¢, 1] + (1 — mapl[r, ¢, b)) + B[b]) * map[r, c|
> k1 (2[k, 1, b] x maplk, 1, b])

z[r, ¢, b] = (
(33)
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where map[r, ¢,b] is 1 if y[r,¢,b] > 0 and 0, otherwise, and
Bb] = max(|z[r, c, b]]) (34)
vr, c.

The matrix is now an image. For each pair of synthetical images constructed
in the way mentioned, the M.A.D. transform was applied. For this stage, it was
helpful to use the following programs: fhist [2], gclm [2] [14] and maf [5]. For
each pair of images of the data-set, the union of the maps indicating positive
values for each co-occurrence matrix was generated; the M.A.D. Transform was
only applied to the pixels included in that map. Tables 1 and 2 show the results
obtained for the sets of original images. Tables 3 and 4 show the results obtained
for the sets of illumination-corrected images®.

Each single cell value in Tables 1 and 3 is the average absolute correlation
value between the normalized co-occurrence matrix of the b—th color bands and
the m — th MAD components of all pairs of images of the [ — th lesion of the
p — th patient. It is computed in the following way:

ns—0t ne ne

1
Eppib,m] = m Z Zzap,l,s,i,ét,j,b,m (35)

s=1 i=1j=1

where

1
Qp.l,5,i,8¢,5,b,m — 5 (|p[Xp,l,s,i,ba MADp,l,s,i,zSt,j,b; m] |+|p[Xp,l,s+5t,j,ba MADp,l,s,i,ét,j,bv m] D
(36)
and p is the correlation coefficient, 6t is the time increment (in this case, 6t

is one week). The indexes ¢ and j indicate the capture number within a session.
MAD, i sist5bm equals to MAD[X,, s b, Xp.1,st6t,5,b, M.

Each single cell value in Tables 2 and 4 is the standard deviation of the av-
eraged absolute correlation values between the normalized co-occurrence matrix
of the b — th color bands and the m —th MAD components of all pairs of images
of the [ — th lesion of the p — th patient. It is computed in the following way:

ng—0t Ne nNe

1
S[op,ibm] = (= otz SN N (@2 is, jbm) — Elopisml*  (37)

s=1 i=1j=1
where the symbols have the same meaning as before.

! The original HIPS formatted images were used in combination with the TIFF for-
matted illumination function to produce the illumination-corrected images in HIPS
format. These images were equalized and then the co-occurrence matrix was com-
puted.
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Table 1. Average Absolute Correlation Values per Lesion of RGB skin data with their
respective M.A.D. Components

(Patient,Lesion) |(R,MAD1) (G,MAD1) (B,MAD1)
(1,A) 0.163069 0.181529  0.052689

(1,B) 0.093642 0.216019  0.109057
(1,C) 0.150723  0.199478  0.137738
(2,A) 0.117731 0.151841 0.187481
(2,B) 0.094710  0.230283  0.130987
(2,C) 0.111509 0.133244 0.182223
(3,A) 0.038838 0.195560 0.163730
(3,B) 0.032641  0.206640 0.203355
(3,C) 0.043867 0.228722  0.198393
(Patient,Lesion) |(R,MAD2) (G,MAD2) (B,MAD?2)
(1,A) 0.149579  0.083112  0.188200
(1,B) 0.236058  0.085506  0.155400
(1,C) 0.261095 0.131136 0.178398
(2,A) 0.238930 0.149425 0.080667
(2,B) 0.247828  0.052757 0.160879
(2,C) 0.233855 0.098236 0.082241
(3,A) 0.252858 0.062821  0.119769
(3,B) 0.280739  0.109337  0.099062
(3,C) 0.285794 0.086110 0.127319
(Patient,Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
@A) 0.167162 0.170654  0.168428
(1,B 0.184625 0.193093 0.195325
(1,C 0.226380  0.242602  0.240919
(2,A 0.244500 0.255134  0.260686

)

)

)

) 0.192198 0.197892  0.200079
(2,C) 0.279305 0.296285 0.289731

) 0.165526  0.181658  0.180395

) 0.204145 0.216882 0.217735

) 0.192946  0.202501  0.202845
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Table 2. Standard Deviation of the Absolute Correlation Values per Lesion of the
RGB skin data with the M.A.D. Components

(Patient,Lesion) |(R,MAD1) (G,MAD1) (B,MAD1)
(1,A) 0.025971  0.016633  0.030963

(1,B) 0.028369 0.019309  0.026687
(1,C) 0.031737 0.014496 0.019820
(2,A) 0.059834 0.030295 0.014737
(2,B) 0.040232  0.010890 0.029503
(2,C) 0.070107  0.042084 0.076832
(3,A) 0.012120  0.010609 0.013386
(3,B) 0.017749  0.009709  0.013645
(3,C) 0.029494  0.014647 0.023083
(Patient,Lesion) |(R,MAD2) (G,MAD2) (B,MAD?2)
(1,A) 0.028772  0.023656 0.017764
(1,B) 0.026801 0.043394 0.016797
(1,C) 0.022621  0.023489  0.020474
(2,A) 0.033550 0.029944 0.027297
(2,B) 0.018773  0.023604 0.023727
(2,C) 0.059343  0.032142  0.047481
(3,A) 0.011745 0.019359 0.008171
(3,B) 0.017558  0.016535 0.030054
(3,C) 0.022625 0.032087 0.036531
(Patient,Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
(1,A) 0.013872  0.012831 0.012198
(1,B 0.024374 0.025512  0.028243
(1,C 0.011900 0.014789 0.014719
(2,A 0.031265 0.031427 0.034579

)

)

)

) 0.014287 0.013550 0.014184
(2,C) 0.038647 0.043020 0.036207

) 0.021784 0.021555 0.022279

) 0.021174 0.023636 0.023704

) 0.012659 0.014226 0.016471
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Table 3. Average Absolute Correlation Values per Lesion of the illumination-corrected
RGB skin data with their respective M.A.D. Components

(Patient,Lesion) |(R,MAD1) (G,MAD1) (B,MAD1)
(1,A) 0.170079  0.176821  0.073168

(1,B) 0.183584 0.193015 0.093375
(1,C) 0.208084  0.204445 0.076428
(2,A) 0.099910 0.214296 0.151165
(2,B) 0.150016  0.196696  0.171897
(2,C) 0.070576  0.187925 0.195604
(3,A) 0.113855 0.222418 0.142154
(3,B) 0.024691  0.208501  0.202745
(3,C) 0.090282  0.221817 0.190266
(Patient,Lesion) |(R,MAD2) (G,MAD2) (B,MAD?2)
(1,A) 0.154035 0.074054 0.201950
(1,B) 0.203793 0.137015  0.198929
(1,C) 0.186940 0.094268 0.245279
(2,A) 0.249320  0.059774  0.159474
(2,B) 0.229558  0.132791  0.145819
(2,C) 0.282807 0.088674 0.073255
(3,A) 0.255834 0.040157  0.182085
(3,B) 0.276600 0.100579  0.105682
(3,C) 0.285825 0.080852  0.142917
(Patient,Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
(1,A) 0.177938  0.183928  0.178287
(1,B 0.214027  0.220947 0.222161
(1,C 0.200914  0.208052  0.203250
(2,A 0.181045 0.188425 0.187791

)

)

)

) 0.202083  0.209892  0.211410
(2,C) 0.220413  0.235589  0.234932

) 0.179750 0.188971  0.186960

) 0.208101  0.217542  0.217578

) 0.198283  0.208827  0.208337
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Table 4. Standard Deviation of the Absolute Correlation Values per Lesion of the
illumination-corrected RGB skin data with the M.A.D. Components

(Patient,Lesion) |(R,MAD1) (G,MAD1) (B,MAD1)
(1,A) 0.039767 0.018222  0.036756

(1,B) 0.043357 0.034397  0.047152
(1,C) 0.017927  0.021666 0.017569
(2,A) 0.032620 0.019728  0.024057
(2,B) 0.088681  0.040340 0.058499
(2,C) 0.045544  0.024256  0.043097
(3,A) 0.027636  0.008405 0.017570
(3,B) 0.021223 0.014558 0.014621
(3,C) 0.033461  0.023677  0.024106
(Patient,Lesion) |(R,MAD2) (G,MAD2) (B,MAD?2)
(1,A) 0.045084 0.031534 0.017648
(1,B) 0.045152  0.059842  0.043288
(1,C) 0.024923  0.029271  0.006875
(2,A) 0.023577 0.043846 0.027413
(2,B) 0.075262 0.052789  0.051839
(2,C) 0.033527 0.032352  0.030808
(3,A) 0.017790 0.018396 0.011767
(3,B) 0.018079  0.021996 0.018503
(3,C) 0.021804 0.046565 0.038868
(Patient,Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
(1,A) 0.014500 0.015754 0.014663
(1,B 0.028974  0.029582  0.035410
(1,C 0.006570  0.005675  0.006290
(2,A 0.009182  0.010115 0.010683

)

)

)

) 0.009957 0.011238 0.011484
(2,C) 0.020532  0.024252  0.025135

) 0.007396  0.007803  0.009210

) 0.030657 0.033255 0.033002

) 0.015375 0.017395 0.019219
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Looking at the upper part of Table 1, it seems that for some cases, most of
the contribution in the textural change is given by the red and the green bands
(cases (1,A) and (1,C)), and in others, by the green and the blue bands (the
remaining cases). On the other hand, after illumination correction, the values
reported in Table 3 indicate that for all the cases of the patient 1, most of the
contribution in the textural change is given by the red and the green band and,
for instance, the contribution of the red band in the textural change of the case
(3, A) is quite significant.

There is an aspect that was not taken into account during the design of the
experiment. This was the lesion to skin ratio. As was mentioned in Section 2.1
of |9], the size between lesions ? has a significant variance. In other words, the
proportion of the area covered by the lesion with respect to the area covered by
the skin is quite variable. On the other hand, there are cases for which the skin
is completely covered by very small lesions, such that the whole classified region
indicating skin could be considered part of the class lesion, and the second stage
of the classification scheme, is not necessary. This means, that it may be neces-
sary to redesign the experiment in order to compare more homogeneous data.

The same procedure as before was repeated for the cases (1, A), (1, B), (1,C)
and (2, B), now using thematic maps indicating lesions. This means, that the
normal skin was excluded. For patient 1, the thematic maps indicating lesions
generated after illumination correction of the original images were used (see Fig-
ures 22 (case (1, A)), 23 (case (1, B)) and 24 (case (1,¢)) in [10]). The objects
were selected using an automated algorithm developed that assumes that the
object of largest size in the thematic map is the desired lesion. The outputs are
presented in Section A. For patient 2, the thematic maps used were produced
with user-interaction assuming circular shape of the lesion. The user was re-
quired to provide for each single image, one single point, which was assumed to
be the lesion center. A radius of that circle was also required. It was assumed
that for a given lesion, all the shapes had the same radius. This was done for the
lesion B (see Figure in Section A). Lesion C was excluded because it is partically
covered by hair and the manual selection of one small homogeneous region turns
to be difficult. For patient 3, the procedure was not applied, because it can be
considered that the whole region indicating skin, is covered by lesion.

As illustration examples, some co-occurrence matrixes computed with data
of illumination corrected images are shown in Appendix B. For the cases (1, A),
(1,B), (1,C) and (2, B), the co-occurrence matrixes were computed using the
data indicated in Appendix A. To compute the co-occurrence matrixes of the
cases (2,C), (3,B) and (3,C) the corresponding data sets used can be seen in
Figures 6 to 8 of [9] respectively. For the cases (2, A) and (3, A) an artificial map
for the down-sampled version of the original images was generated, indicating

2 This means the size between the lesions of the different cases: (1, A), (1, B), (1,C),
(2,4), (2,B), (2,C), (3,A4), (3, B) and (3, C).
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Table 5. Average Absolute Correlation Values per Lesion of RGB lesion data with
their respective M.A.D. Components

(Patient,Lesion)

(R,MADI1) (G,MADI) (B,MADI)

(LA)
(1B)
(1,C)
(2,B)

(Patient,Lesion)

(LA)
(1B)
(1,C)
(2,B)

(Patient,Lesion)

(LA)
(1B)
(1,C)
(2,B)

0.228414 0.241037 0.249670
0.087517  0.291845  0.257182
0.021994  0.444337  0.468673
0.021226 0.524634 0.387158

(R,MAD2) (G,MAD2) (B,MAD2)
0.209963  0.154635  0.242142
0.334106  0.108684 0.195718
0.101731  0.469909  0.454413
0.061194  0.400099  0.518758

(R,MAD3) (G,MAD3) (B,MAD3)
0.268627 0.300383  0.275886
0.270752  0.272509  0.266351
0.449892  0.046755  0.039726
0.399107  0.017429  0.019905

Table 6. Standard Deviation of the Absolute Correlation Values

RGB lesion data with the M.A.D.

Components

per Lesion of the

(Patient,Lesion)

(R,MADI1) (G,MADI) (B,MADI)

(LA)
(1B)
(1,C)
(2,B)

(Patient,Lesion)

(LA)
(1B)
(1,C)
(2,B)

0.075189  0.051723  0.120361
0.050564  0.057280  0.092927
0.010095 0.050346  0.045895
0.012165  0.078557  0.100383
(R,MAD2) (G,MAD2) (B,MAD2)
0.068989 0.070599 0.110723
0.091141  0.094951  0.078275
0.022922  0.034339  0.042043
0.014210  0.087458  0.069111

(Patient,Lesion)

(LA)
(1B)
(1,C)
(2,B)

(R,MAD3) (G,MAD3) (B,MAD3)
0.015704 0.025307 0.022419
0.077885  0.095661 0.094163
0.024233  0.025523  0.019999
0.014610  0.009277  0.008870
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Table 7. Average Absolute Correlation Values per Lesion of the illumination-corrected

RGB lesion data with their respective M.A.D. Components

(Patient, Lesion)|(R,MADI) (G,MAD1) (B,MAD1)
(1,A) 0.156864 0.251143  0.306729
(1,B) 0.134858 0.280693 0.287114
(1,C) 0.020100  0.438892 0.477563
(2,B) 0.024732  0.531542  0.375503

(Patient,Lesion) |(R,MAD2) (G,MAD2) (B,MAD?2)
(1,A) 0.356152  0.151465 0.151860
(1,B) 0.326464 0.178192 0.196218
(1,C) 0.103229  0.475666  0.448373
(2,B) 0.064307 0.391578  0.524883

(Patient, Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
(1,A) 0.263711  0.298394 0.279176
(1,B) 0.292042 0.290461 0.282628
(1,C) 0.449129 0.048744  0.041427
(2,B) 0.400400 0.015945 0.019321

Table 8. Standard Deviation of

the Absolute Correlation Values per Lesion of the
illumination-corrected RGB lesion data with the M.A.D. Components

(Patient, Lesion)|(R,MADI) (G,MAD1) (B,MAD1)
(1,A) 0.073514  0.043622 0.104251
(1,B) 0.084878 0.075100 0.108610
(1,C) 0.012400 0.049313  0.043281
(2,B) 0.011909 0.085662  0.100957

(Patient, Lesion) |(R,MAD2) (G,MAD2) (B,MAD2)
(1,A) 0.069711  0.055424 0.111003
(1,B) 0.094358 0.099449 0.092184
(1,C) 0.022383  0.033330 0.039751
(2,B) 0.017439  0.090638 0.071341

(Patient,Lesion) |(R,MAD3) (G,MAD3) (B,MAD3)
(1,A) 0.013473  0.022410 0.021080
(1,B) 0.068711  0.085562  0.081845
(1,C) 0.022226  0.023979  0.019838
(2,B) 0.013120 0.008677  0.009668
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the whole image as being lesion. The contribution of each single color band to
the first M.A.D. component of these examples can be seen in Table 9.

According to the added results (see upper part of Tables 5 and 7), it is sur-
prising to see that while in the medical area the redness is the variable used
for measuring change in lesions with psoriasis, it is mostly the green if not the
blue band which contributes most significantly to the first M.A.D. component.
These results have to be interpreted with caution, because of the small size of
the data-set used.

6 Back-projection to the original data

To back-project the output of previous Section to the original data the following
aspects have to be taken into account:

— For each pixel in the image and for each single band value, co-occurrences
were computed with neighbors in eight directions. The output of the M.A.D.
Transform is referred to these directions. There is not a one-to-one correspon-
dence that allows to back-project the output of the M.A.D. Transform to the
original data. Therefore, some constraints have to be set.

— The M.A.D. Transform is a difference of canonical variables, which come
from an eigen-decomposition. Eigenvectors give a direction, but not a sense.
The constraint for the M.A.D. Transform is that the eigenvectors are chosen
so that the correlation between the canonical variables is positive ([11], page
85). However, an aspect not considered here, but that could be explored
further, is if there are real cases for which the a negative correlation be-
tween canonical variables could be more interesting to analyze; for instance,
a region that in a given time is normal and in a next time is ill, and viceversa.

— Again, the M.A.D. Transform is a difference of canonical variables. For the
case of the co-occurrence matrix, each one of these variables are a new co-
occurrence matrix corresponding to a new (unknown) texture.

To back-project the data from the M.A.D. Transform to the original images,
the following criterion was applied. As it was mentioned, the M.A.D. components
are computed with the co-occurrence matrix of each single band of two equal-
ized images. For each pixel in each equalized image, co-occurrence pairs in eight
directions were formed for each single band value. Each pair is used as index
in a weighting function given by the absolute value of the first M.A.D. compo-
nent. This was done, because only the magnitude of the change was considered
of interest. For a given pixel, the M.A.D. absolute values corresponding to each
co-occurrence pair formed by the pixel with its neighbors pixel in 8-connectivity
3, are summed and saved in a synthetical image. The histogram of this image
is finally divided in two parts by a user set threshold. The segmentation output

3 3 bands by 8 pairs gives 24 weights



16 Maletti et al.

obtained is composed by a region indicating more textural change and region
indicating less textural change.

The output of the back-projection scheme proposed is shown for two ex-
amples: the lesions (1, A) and (1, B). In both cases, the illumination corrected
images with the lesion region equalized were used. The output of the M.A.D.
Transform was back-projected to the original data in the way previously de-
scribed. Note in each case that for each image of the pair, the segmented regions
showing more and less textural change are approximately corresponding. This
gives the evidence that it is possible to avoid the alignment and registration
of images applying the M.A.D. transform to multi-spectral descriptors that are
invariant to rotations and translations.

&
s
%

1Act

1Ad1

1Ba1

1Bb1

Fig. 1. From the M.A.D. Transform to the Original Data.

From left to right: co-occurrence matrix, back-projection synthetical map, regions
with more textural change and regions with less textural change. From top to
bottom: the first two rows are data for the case (1, A) (the first images of the third
and fourth session) and the last two rows, for the case (1, B) (the first images of the
first and second session).
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However, it has to said that, in general, the output of the back-projection ap-
proach was not satisfactory. Each step and constraints set for the back-projection
should be revised. The first M.A.D. component is the difference of canonical vari-
ables of the co-occurrence matrixes, that, in fact, correspond to a new textural
version of the original images. For the back-projection, a combination of the
original data and the first M.A.D. component was used, what could have been
an unappropriate mixture of information. As it was mentioned in [12], the sim-
ple difference of the spectral bands, turns to be difficult to show the change
in all the bands simultaneously. Thus, may be, for simplicity, in order to ob-
tain a more suitable back-projection scheme, to start with a single difference of
one pair of co-occurrence matrixes could be more a more fortunate way to follow.

7 Conclusions

The application of the Multi-variate Alteration Detection Transform to the nor-
malized co-occurrence matrix of lesions with psoriasis patterns is a suitable ap-
proach for detecting texture changes in time that avoids the interaction with the
user and the lesion pattern registration. The most significant contribution in the
texture change of lesions with psoriasis is given -for the pilot data-set- by the
green and blue bands. There is evidence that it is possible to back-project the
M.A.D. Transform output to the original data, such that corresponding regions
showing more and less textural change can be delineated. However, in order to
be able to generalize the approach, the optimization of each single stage of the
whole procedure has to be considered.
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Session:1 PATIENT:1 LESION:A

Session:2

Session:3

Session:4

Fig. 2. Regions indicating the selected lesion A of patient 1 in the illumination-
corrected images.

Session:1 PATIENT:1 LESION:B

Session:2

Session:3

Session:4

Fig. 3. Regions indicating the selected lesion B of patient 1 in the illumination-
corrected images.
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Session:1 PATIENT:1 LESION:C

Session:2

Session:3

Fig. 4. Regions indicating the selected lesion C of patient 1 in the illumination-
corrected images.

Session:1 PATIENT:2 LESION:B

Session:2

Session:3

Session:4

Fig. 5. Regions indicating the selected lesion B of patient 2 in the illumination-
corrected images.
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B Co-occurrence matrix of selected pairs of images and
their MAD Transform

1Aal 1Abl 1Acl 1Ad1

MAD(1AaL,1Ab1) MAD(1AbL, 1Ac1) MAD(1AcL, 1Ad1)

Fig. 6. Co-occurrence matrixes and M.A.D. Components for the case (1, A).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 1, Lesion A); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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1Bd1

1Bal 1Bbl 1Bcl

MAD(1Ba,1Bb1) MAD(1Bb1,1Bc1) MAD(1BcL, 1Bd1)

Fig. 7. Co-occurrence matrixes and M.A.D. Components for the case (1, B).

The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 1, Lesion B); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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1Cal 1Cb1 1Cc1

MAD(1Cat, 1Ch) MAD({Ch1,1Cc1)

Fig. 8. Co-occurrence matrixes and M.A.D. Components for the case (1,C).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 1, Lesion C); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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2Aal 2Abl 2Acl 2Ad1

MAD(2Aa1,2Ab1) MAD(2Ab1,2Ac1) MAD(2Ac1,2Ad1)

Fig. 9. Co-occurrence matrixes and M.A.D. Components for the case (2, A).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 2, Lesion A); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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2Bal 2Bbl 2Bcl 2Bd1

MAD(2Ba1,2Bb1) MAD(2Bb1,2Bc1) MAD(2Bc1,2Bd1)

Fig. 10. Co-occurrence matrixes and M.A.D. Components for the case (2, B).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 2, Lesion B); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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2Cal 2Cb1 2Ccl 2Cd1

MAD(2Ca1,2Cb1) MAD(2Ch1,2Cc1) MAD(2Cc1,2Cd1)

Fig. 11. Co-occurrence matrixes and M.A.D. Components for the case (2,C).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 2, Lesion C); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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3Aal 3Abl 3Acl 3Ad1

MAD(3Aa1,3Ab1) MAD(3Ab1,3Ac1) MAD(3Ac1,3Ad1)

Fig. 12. Co-occurrence matrixes and M.A.D. Components for the case (3, A).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 3, Lesion A); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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3Bal 3Bbl 3Bcl 3Bd1

MAD(3Ba1,3Bb1) MAD(3Bb1,3Bc1) MAD(3Bc1,3Bd1)

Fig. 13. Co-occurrence matrixes and M.A.D. Components for the case (3, B).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 3, Lesion B); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.



28 Maletti et al.

3Cal 3Cb1 3Ccl 3Cd1

MAD(3Cal,3Ch1) MAD(3Cb1,3Cc1) MAD(3Cc1,3Cd1)

Fig. 14. Co-occurrence matrixes and M.A.D. Components for the case (3,C).
The upper part shows the co-occurrence matrixes of the lesion region of selected
illumination-corrected images of (Patient 3, Lesion C); from top to bottom, the rows
correspond to the red, green and blue band respectively. The lower part shows the
MAD components of pairs of consecutive co-occurrence matrixes; from top to bottom,
the row number is associated with the MAD component number.
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Table 9. Correlation values between the Color Bands and the respective first MAD
component for the images of previous Figures

LESION|t, [t2 |RED(t1)|GREEN (t)|BLUE(t1)| RED(t2) [GREEN (t2)| BLUE (t2)
1A |al[b1[-0.043395] -0.281037 | 0.368620 |0.076882| 0.296416 |-0.397385
1A [bllc1|0.157975 | 0.259383 |-0.401074 |-0.009873| -0.281179 | 0.280133
1A [c1|d1]0.092474 | -0.275296 | 0.272046 |0.360614 | -0.083418 |-0.280742
1B |al|b1]0.305761| -0.230549 | 0.054734 |-0.120127| -0.198322 | 0.343047
1B |bl|c1|0.088509 | -0.316239 | 0.258445 |0.320800| -0.068653 |-0.275978
1B |c1|d1]0.312352| -0.252936 | 0.015724 [0.163600 | -0.290688 | 0.204880
1C  |al[b1/0.001901 | -0.378092 | 0.510217 |-0.069119| 0.390545 | -0.540887
1C  [bl|c1|-0.009486| -0.449951 | 0.490224 [0.001886 | 0.456618 |-0.472794
2A  |al[b1]-0.043036| 0.239584 |[-0.185652 |0.216014 | -0.191849 | 0.097690
2A  |bl|c1|0.324745 | -0.083721 |-0.018579 |-0.001702| 0.211669 | -0.210786
2A  |c1|d1]0.042016 | -0.227695 | 0.187835 |0.266919 | -0.140662 | 0.097644
2B |al|b1|-0.007383| 0.543504 |-0.394928 |0.019575 | 0.638896 | -0.266538
2B [bl|c1|0.001548 | 0.637515 |-0.242365 |-0.047060| -0.669888 | 0.171656
2B [c1|d1/-0.028495| 0.500740 |-0.460677 |-0.056241| -0.664664 | 0.193865
2C  |al[b1]-0.015721| -0.194092 | 0.227168 |0.194830| 0.101938 |-0.189855
2C  |b1[c1|0.038893 | 0.194974 |-0.199133 |0.048887 | 0.194801 |-0.246159
2C  |c1]d1]0.071718 | 0.195087 |-0.221466 |0.048802| -0.219207 | 0.138725
3A  |al|b1]0.083018 | -0.214939 | 0.163499 |0.117317| -0.231709 | 0.145831
3A  |bl|c1[0.087001 | -0.224819 | 0.167746 |0.143994 | -0.213472 | 0.115006
3A  |c1|d1]0.100927 | -0.222693 | 0.149637 |-0.087361| 0.226875 |-0.149954
3B |al|b1]0.029576 | -0.227130 | 0.222873 |-0.001799| 0.225008 | -0.224343
3B |bl|c1]-0.023228| 0.256221 |-0.183855 |-0.011463| -0.186459 | 0.174127
3B |c1|d1]0.004763 | -0.193600 | 0.189768 |0.011727| 0.192159 | -0.204803
3C  |al[b1]0.095635 | 0.177159 |-0.248092 |-0.110164| 0.262144 | -0.176593
3C  |bllc1[0.062883 | -0.255678 | 0.199650 |0.105009 | -0.224865 | 0.158335
3C  |c1]d1]0.073072 | -0.232236 | 0.174764 |0.133484| -0.244558 | 0.131380
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