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Abstract 
 
Sound Quality as a relatively new product parameter has become an important 
competition item among the car manufactures.  Sound Quality metrics is the same as 
Sound Quality parameters, which can reflect most of the psychoacoustic properties of 
the human perception of sound. There are some standardized metrics, such as 
Stationary Loudness, Tone to Noise Ratio, Prominence ratio, but most metrics are not 
standardized. They all have the advantage that they conclude with a single number on 
the characteristic properties of the sound. 
 
Tonality is one of the Sound Quality metrics that is not yet standardized, but it is an 
important parameter affecting Sound Quality because it is proportional to the human 
perception of tonal contents in the sound.  
 
Terhardt’s Tonality, which was proposed in 1892, is an algorithm for extraction of 
pitch and pitch salience from complex tonal signals. It is widely accepted that 
Terhardt’s method is the foundation for Tonality metric definition.  
 
Studying Terhardt’s algorithm is the start point of this thesis project. A MATLAB 
model according to Terhardt’s algorithm is made. AVC++ implementation is also 
made in order to make it ready for Brüel & Kjær Sound Quality Application to use. 
Furthermore, both MATLAB and VC++ programs have been tested, and validated for 
further research work.  
 
An overall study of Stationary Loudness and Aures’s Model of Tonality is also 
provided by our thesis. They broaden our knowledge in psychoacoustics research 
field. 
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Chapter 1 Introduction 
 
This chapter introduces our thesis, and includes what it is about, how it carried out 
and how it is organized in the following chapters.  
 
1.1 Problem definition 
 
 
The B&K PULSE sound quality software, a program that records, analyses and edits 
sounds, that later on can be played back to a panel of listeners, is an application that is 
used by product designers to compare, evaluate and change the sound the product 
makes. 
 
In addition to the standard analysis tools, it has a built-in user-defined cursor reading 
functionality that allows the customers to make their own analysis functions or 
“metrics” as they are often called. That functionality is implemented by supporting 
with a specific interface definition for ActiveX controls. Data can be retrieved from 
the SQ program, analysed in the control and the result sent back and shown as a single 
number in a display in SQ. 
 
In the project carried out by Joseph Emmanuel Ammuah [1.1], a number of user – 
defined Cursor Controls were developed. The focus was on structuring of the code for 
the controls, so it would be easy for SQ customers to develop their own controls. 
Therefore the metrics were chosen not to be too complex. 
 
One metric, however, is very much in demand, namely the “Tonality”. Tonality, as a 
calculation, was proposed in 1982 by Ernst Terhardt, Gerhard Stoll and Manfred 
Seewan from the Technical University of Munich. The value for Tonality is 
proportional to the human perception of tonal contents in the sound. Knowledge about 
the properties of the human auditory system is built into the method making it very 
complex. But also, the method is based on the capabilities of the analysis equipment 
available at that time. Therefore, the whole calculation procedure should be revised, 
so present technology is utilised. 
 
Based on the original article and the present tools and techniques a User – defined 
cursor reading control for the Tonality metric must be implemented and documented. 
Visual C++ is the preferred development environment. 
 
The project requires a basic knowledge of Sound Quality. The tools for the project 
are,  
 

• MATLAB 
• Visual C++ 
• ATL 
• Object modelling tool or data flow design tools 

1.2 Our Difficulties and Strategies  
 
This is our master thesis project, and both of us are master students in computer 
system engineering. Through our course projects at DTU, we learned some 
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knowledge in both software engineering and system design, and also got some 
practical experience with programming and group work. But when we came to this 
project, we realized that our knowledge we learned about software in DTU was only a 
basic requirement for us to be able to fulfil a project like this in a real company. In 
addition, a deep understanding of software development in the real world and some 
basic knowledge used in Sound Quality field is needed in order to fulfil the task. We 
must say that we do not really feel that we have enough basic knowledge in the 
acoustics field before we start this project. So in the beginning of this project we have 
put lots of considerations on how to step-wise gain relevant knowledge, how to make 
plans in each stage and how to work together efficiently.   
 
The different aspects or difficulties, which we need to work on in order to fulfil the 
task through this project period, were highlighted as follows: 
 
• Frequency Analysis: We have the fundamental knowledge of advanced 

mathematics, but we have never touched the field of frequency analysis before we 
start this project. So we decided that we definitely need some time to reach an 
understanding of frequency analysis and more relevant knowledge in the field of 
signal analysis and processing.  

 
• Virtual Pitch theory: It is the very basic knowledge in order to understand the 2 

articles which we got as an inspiration for this project which relates very much 
with virtual pitch theory in the psychoacoustics field. So we thought we definitely 
needed some time to read and understand the virtual pitch theory from the 
psychoacoustics point of view. Some help from the experts will also be necessary 
and helpful for us.  

 
• MATLAB Programming: After reading through the two original articles and 

relevant discussions with other developer in Sound Quality group, we were ready 
to design the workflow of the Tonality algorithm in order to implement it in a 
programming language. From Joseph’s final thesis, we got some idea about how 
VC++ or VB used as development tools in B&K SQ Application and what is the 
general procedure to develop a user-defined cursor reading control for B&K SQ 
Application. On the other hand, we feel that comparing to the several metrics that 
Joseph has implemented, our Tonality metric has some specialty which is that 
Tonality Algorithm is not a standard, it is a very general calculation procedure for 
complex tones and there are lots of mathematic formulas involved. Furthermore, 
we want to seek the possibilities to extend this algorithm into some specific 
applied field such as noise control. So we need to make a model in a very flexible 
way in order to let it have the possibility of changing some settings or parameters 
in the model, which will be very much helpful for further research work. In 
addition, VC++ programming is also quite new for us even though we have C 
programming and other language programming experience. MATLAB is more 
function oriented programming language and is one of the best tools designed for 
mathematic modelling purpose, which is coincident to the original algorithm in a 
better way than object oriented programming languages. So we finally decide to 
make a MATLAB model instead of going to VC++ programming directly. One 
can understand that making Tonality MATLAB model is an in-between procedure 
between understanding the algorithm and the VC++ programming for Tonality 
implementation.  
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• VC++ development tools: We do not often use VC++ in our study period in DTU, 

so we need to be familiar with the development tools and the language. It is nice 
for us to have Joseph’s thesis in hand, which provides us some practical 
instruction on using the ATL to make COM programming. ATL makes the COM 
programming simpler and easier, and programmers need not bother too much 
about the concepts behind COM, which is probably why Joseph did not mention 
much about COM in his report. On the other hand, we found that Joseph did not 
really present much detail about how COM Components being used in developing 
new user-defined cursor reading controls. Therefore, we decided to acquaint 
ourselves with some major concepts inside COM before starting ATL COM 
programming and later reach a better understand on the approach that B&K SQ 
Application used in general user-defined cursor reading control development. So 
in this report we will not repeat the same content that Joseph has presented in his 
report, but will mention some COM concepts, which are closely related to our 
project. We think they are very helpful to understand the technology behind VC++ 
COM programming. 

 
• The revision of the method: Ideally, it will be very nice that we could present a 

new way or revision of the Tonality method. But when we really want deep into 
this subject, we found out that the current situation of Tonality is quite 
complicated. Firstly, it is not yet standardised, and the original algorithm is 
actually generally related with complex tones, but not for specific applied field. 
That means if we need to use it in noise control fields for example, or some other 
aspects, we need to consider more about the specific signal characteristics, which 
might influence the revision of the method in different directions. Secondly, 
different Acoustic companies have different implementations in their SQ 
Application, which might be specific to their customer requirement and their 
previous research work, which postpone the standardising work. Thirdly, we only 
have 6 months to work on this project, and knowledge in several fields is needed 
for us to understand. For a new metric definition in Sound Quality at least some 
subjective evaluations need to be carried out. This is both very much time-
consuming and expensive. On the other hand, lacking of psychoacoustics 
knowledge prevent us to be able to present a method to extract a single number for 
Tonality metric. So we decided to do some research work on the relevant field in 
order to reach a better understanding of psychoacoustics. 

 
• Why study Loudness and Aures’s model of Tonality: We must say that Tonality 

algorithm is very complicated because it involves a lot of psychoacoustics 
knowledge. After we got the MATLAB and VC++ code done, we have gain the 
basic understand of the algorithm, which is more from a programmer point of 
view but less from psychoacoustics point of view. At this stage, it is very difficult 
for us to suggest a way to get a single number for Tonality metric based on 
spectral pitch pattern and virtual pitch pattern. While Aures’s model of tonality 
simplifies the tonality procedure and introduces Loudness into Tonality. So we 
decide to study Loudness in order to get some fresh idea and solid understand of 
some psychoacoustics concepts.  
 

The strategies that we applied in the whole project period in order to complete this 
project in an efficient way, are as follows. 
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• The whole project period is divided into several stages. We made a detailed plan 

in the beginning of each stage and wrote relevant progress documents in the end 
of each stage in order to summarize the work done and also keep a good track for 
the final thesis content in the last stage. 

• We tried to balance the practical and theoretical work to make sure that the whole 
project has considerations from both sides. 

• Using all the available possible resources from the company because it is a project 
integrating software development technology and acoustic knowledge in many 
aspects, many problems can be solved in a nice and easy way if you are able to 
exchange your ideas with people working in different field. 

• Understanding the specific knowledge to the extent that we need for using it will 
have higher priority than to deeply understand it, which sometimes is very time-
consuming and you easily get stuck. 

• Co-operation and individual work can be easily and efficiently carried out if both 
of the project partners reach the same understanding of the whole project in a 
correct way, therefore, sharing knowledge is the right and wise thing to do for 
both of us in order to complete this project perfect.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.3 Working Process 
 
Our work has progressed as illustrated in the figure below when read in a bottom-up 
manner. Firstly, we build our knowledge from the basic concepts of sound, frequency 
analysis and psychoacoustics, which are related in a way that lower level is necessary 
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to be understood before you come to the higher level. Secondly, we investigate the 
Tonality method and make a MATLAB model afterwards. Thirdly, we have two 
paths: one is to be familiar with the SQ Application and the development tools, 
implement Tonality metric in VC++ and testing afterwards, the other is to study 
Loudness, Aures’s Model of Tonality, and seek a way of improving the Tonality 
model. Finally, we write our thesis based on the work we have done in this project.  
 
 

Implement Tonality in VC++

Be familiar with 
SQ Application.  

Be familiar with  
developing tools.

Make a MATLAB 
model for Tonality 

Seek improvement way from the 
psychoacoustics point of view. 

Psychoacoustics 

Frequency Analysis 

Basic concepts of sound 

Write Final Thesis 

Study Loudness 

Study Aures’s Model of Tonality 

Understand Tonality Algorithm 

Testing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 General structure of this project 
 
1.4 Thesis Organization 
 
The remainder of this thesis is organized as follows: 
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Chapter 2 provides the specific background knowledge about Sound Quality, 
Psychoacoustics and Sound Quality metrics, which are necessary to know in order to 
understand this thesis.  
 
Chapter 3 reviews the original Tonality Algorithm presented in 1982 by Terhardt, E., 
Stoll,G., and Seewann, M.  
 
Chapter 4 describes how we built Tonality Model in MATLAB according to 
Terhardt’s method. 
 
Chapter 5 describes the technical and practical information in the progress of the 
implementation of Tonality metric for B&K SQ Application in VC++. 
 
Chapter 6 shows how we test our MATLAB and VC++ programs.  
 
Chapter 7 includes some theoretic study in Stationary Loudness and Aures’s Model of 
Tonality.  
 
Chapter 8 summarizes our work and indicates future implementation paths.  
 
Additionally, source code, test data and relevant materials of this project are available 
in Appendix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 2 Specific Background Knowledge for this 
Thesis  
 
According to the specific area of this project, we would like to present the background 
knowledge before we go into our thesis work in detail. This chapter covers the basic 
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concepts of Sound Quality and psychoacoustics, the metrics involved in Sound 
Quality field, the feature of Tonality metric, and some basic concepts. Most of the 
content in this chapter is taken from the relevant B&K Sound Quality Lecture Notes 
and it can be studied as an infrastructure of the whole thesis.   
 
2.1 Sound Quality 
 

2.1.1 What is Sound Quality? 
 
The sound of a product is now a product parameter that needs the same attention as its 
physical design, horsepower, color, weight, price etc. It all started in the automotive 
industry more than 10 years ago and it is still in that area that the most advanced 
Sound Quality developments take place. One reason is the very heavy competition 
between car manufacturers and the fact that most cars are of high quality and have the 
same performance in relation to what they are supposed to do. Sound Quality as a 
relatively new product parameter has then become an important item to compete on. If 
your car has better Sound Quality than the competition you are closer to win the sale. 
In recent years the focus on Sound Quality has spread to almost all other industries 
producing products that makes noise. The household appliance industries are good 
examples. Sound Quality as a product parameter is most developed in USA, Europe 
and Japan. In other countries is expected to grow rapidly as more and more products 
become not sellable unless their Sound Quality parameters has been attended to. As 
product sound is directly communicating with the users senses – the ears – the 
knowledge of how we perceive sound has got increased focus. This discipline is 
called Psychoacoustics and is important in the education of design and development 
engineers.  
 

2.1.2 Why improve the Quality of Sound?  
 
The noise from a product is a part of the communication between the product and its 
user. Therefore it has to be changed into sound that is pleasing to the user and give 
him all the information of the function and life time of the product he needs - no more 
no less. The pleasing aspect of product sound is perceived subjectively and depends 
on the individual user. This situation leaves the designer of the product in a very 
challenging position. He has to optimise the product sound to the target customer 
group that has a taste that is not uniform and will change over time as fashion. 
Pleasing sounds get worn and need replacement by new exciting sounds. He has to 
skip old design tools and learn new ones. For example the widely used A-weighting is 
fine for noise but useless for sound. Three different vacuum cleaners may have the 
same A-weighted noise level but can have very different sounds. No noise may be a 
target for a noise control, but in relation to Sound Quality no sound is unacceptable. 
Products should always signal proper operation to the user as well as a warning signal 
when the electric drill is overloaded or the car is hitting rough road surface an the 
driver should reduce speed. 

2.1.3 Work with Sound Quality 
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Working with Sound Quality is an iterative process. Often you start with prototypes of 
a product, which has to be optimised in Sound Quality. You make recordings - 
preferably using a Head and Torso - of the sound from your prototypes and you may 
also have competitor products included in the test. Then you get the first evaluation 
from a listening test with a jury representing the final users of the product. If your 
prototype wins the listening test and is perfect you have finished the job. 
 
 

 Objective
Test, 

Metrics 

Sound 
Recording 

Subjective 
Test 

Product 
Engineering 

Trouble-
shooting 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 an iterative process showing the general steps of Sound Quality Analysis 
 
If your prototype fails you can direct the sounds to the Sound Quality program for 
detailed analysis. In that you may find some spectral components, which you expect 
responsible for the poor sound. With the edit function in the program you can then 
simulate a removal of the unwanted components. If a new listening test approve the 
modification the next step is to do some trouble shooting to identify where the 
unwanted components come from. Then some product engineering is needed to 
modify the prototype. Then a new sound recording and listening test is needed. 
 
If your prototype still fails you must go to the analysis again and try other edits to 
modify the sound. In order to qualify your progress a number of objective tests - 
Metrics - are available. They give a single number to characterise specific properties 
of the sound for example how rough the sound is. If you know that e.g. an increase in 
the value corresponds to improved Sound Quality you can use this metric to optimise 
the simulations of product changes and save time consuming listening tests. 
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2.1.4 Optimisation of Sound Quality Analysis 
 
In optimising product Sound Quality you must never forget that the human being is 
the final judge on how well you succeed. That is, it has to pass the subjective listening 
tests flawlessly. Listening tests are both time consuming, costly and off line in 
relation to the Sound Quality editing and simulation process. Therefore the objective 
metrics based on psychoacoustics research are very attractive as a complement to the 
subjective tests. They are cheap, fast and on line, but only a real substitute to listening 
tests if they can give matching results. 
 
The big challenge is to design a set of metrics e.g. as a combination of several metrics 
with individual weighting, that as a single number can give precise and reliable 
correlation to the subjective tests and preferences. 
 
Most manufacturers working with Sound Quality deal seriously with this problem. 
They regard the results as company secrets, so they seldom publish their findings. On 
the other hand the results are often so product specific that they hardly are of any 
direct use for other manufacturers. 
 
It is believed that a metric never will be good enough to replace the subjective test 
completely - they will remain complementary partners. 
 
Another use of metrics is: As sub suppliers now also have to meet Sound Quality 
requirements, they are obliged to perform QC (Quality Control) on their products. 
Naturally, they can’t rely on subjective tests for that purpose, but have to develop a 
good correlating metric. 

BA 7609-13, 12

Improved
Objective

Test

Optimisation of Sound Quality Analysis

Objective
Test

Results

Improved
Objective

Test

Data

Subjective
Test

ResultsCorre-
lation Reliable

Results

Data

(Q C application)

LaterFirst

965088e  
 

Figure 2.2 Optimisation of Sound Quality Analysis 
 
2.2 Psychoacoustics 
 
The ability of our hearing system to receive information is determined not only by the 
qualitative relation between sound and impression, but also by the quantitative 
relation between acoustical stimuli and hearing sensations. With the advent of new 
digital audio techniques, the science of the hearing system as a receiver of acoustical 
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information, i.e. the science of psychoacoustics, has gained additional importance. In 
the years from 1952 to 1967, the research group on hearing phenomena at the Institute 
of Telecommunications in Stuttgart made important contributions to the quantitative 
correlation of acoustical stimuli and hearing sensations, i.e. to psychoacoustics. Since 
1967, research groups at the Institute of Electroacoustics in Munich have continued to 
make progress in this field. The correlation between acoustical stimuli and hearing 
sensations is investigated both by acquiring sets of experimental data and by models 
which simulate the measured facts in an understandable way.    
 

2.2.1 Stimuli and Sensations 
 
The most important physical magnitude for psychoacoustics is the time function of 
sound pressure. The stimulus can be described by physical means in terms of sound 
pressure level, frequency, duration and so on. The physical magnitudes mentioned are 
correlated with the psychophysical magnitudes loudness, pitch, and subjective 
duration, which are called hearing sensations. However, it should be mentioned that 
the pitch of a pure tone depends not only on its frequency, but also to some extent on 
its level. Nonetheless, the main correlation of the hearing sensation pitch is the 
stimulus quantity frequency. Physical stimuli only lead to hearing sensations if their 
physical magnitudes lie within the range relevant for the hearing organ. For example, 
frequencies below 20Hz and above about 20kHz do not lead to a hearing sensation 
whatever their stimulus magnitude. Just as we can describe a stimulus by separate 
physical characteristics, we can also consider several hearing sensations separately. 
For instance, we can state, “the tone with the higher pitch was louder than the tone 
with the lower pitch”. This means that we can attend separately to the hearing 
sensation “loudness” on one hand and “pitch” on the other. A major goal of 
psychoacoustics is to arrive at sensation magnitudes analogous to stimulus 
magnitudes. For example, we can state that a 1-kHz tone with 20mPa sound pressure 
produces a loudness of 4sone in terms of hearing sensation. The unit “sone” is used 
for the hearing sensation loudness in just the same way as the unit “Pa” is used for the 
sound pressure. It is most important not to mix up stimulus magnitudes such as “Pa” 
or “dB” and sensation magnitudes such as “sone”.              [2.1] 
 

2.2.2 Hearing Area 
 
The hearing area is a plane in which audible sounds can be displayed. In its normal 
form, the hearing area is plotted with frequency on a logarithmic scale as the abscissa, 
and sound pressure level in dB on a linear scale as the ordinate. This means that two 
logarithmic scales are used because the level is related to the logarithm of sound 
pressure. The critical-band rate may also be used as the abscissa. This scale is more 
equivalent to features of our hearing system than frequency.  
 
The usual display of the human hearing area is shown in Figure 2.3. On the right, the 
ordinate scales are sound intensity in Watt per square meter (W ) and sound 
pressure in Pascal (Pa). Sound pressure level is given for a free-field condition 
relative to . Sound intensity level is plotted relative to10 .   

2/ m

12 /W−Pa5102 −× 2m
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Figure 2.3 Hearing areas between threshold in quiet and threshold of pain. 
 
This display of the auditory field illustrates the limits of the human auditory system. 
The solid line denotes, as a lower limit, the threshold in quiet for a pure tone to be just 
audible. The upper dashed line represents the threshold of pain. However if the Limit 
of Damage Risk is exceeded for a longer time, permanent hearing loss may occur. 
This could lead to an increase in the threshold of hearing as illustrated by the dashed 
curve in the lower right-hand corner. Normal speech and music have levels in the 
shaded areas, while higher levels require electronic amplification. Human hearing is 
extremely sensitive. An acoustic power intensity of only 1 mW per square metre may 
already exceed the limit of damage risk. 
 

2.2.3 Equal Loudness Contours and A-weighting 
 
The hearing sensation of loudness represents a dominant feature for Sound Quality 
evaluation. The solid curves in Figure 2.4 are called “equal loudness contours”. They 
demonstrate that the hearing system is most sensitive for frequencies around 4 kHz 
and shows reduced sensitivity at lower and higher frequencies. In particular at low 
frequencies the equal loudness contours are not shifted in parallel, but show a level 
dependence. The contours are labelled in phon. A 60phon contour represents the level 
in dB needed to give equal sensation of signal loudness versus frequency. At 1 kHz 
the level in dB and phon have the same value. Another measure of loudness is sone. It 
has a reference in a 1 kHz level of 40 phon or 40 dB which is equal to 1 sone. A 
doubling of the sone value represents a doubling of the perceived loudness of a sound. 
It takes an increase in level from 40 phon to 50 phon to reach 2 sone. And another 
increase in level from 50 phon to 60 phon will give 4 sone. In short, it is necessary to 
increase the loudness value by 10 phon to give the sensation of a doubling of the 
loudness. 
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The dashed curve in the graph shows the well-known A-weighting. For very low 
sounds there is a good agreement with the 20 phon curve. At higher levels, e.g., 80 
phon - typical for everyday sounds - it underestimates the loudness of their low 
frequency components. 
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Figure 2.4 equal Loudness Contours and A-weighting 
 

2.2.4 Masking 
 
Masking plays a very important role in everyday life. For a conversation on the 
pavements of a quiet street, for example, little speech power is necessary for the 
speakers to understand each other. However, if a loud truck passes by, our 
conversation is severely disturbed: by keeping the speech power constant, our partner 
can no longer hear us. There are two ways of overcoming this phenomenon of 
masking. We can either wait until the truck passed and then continue our 
conversation, or we can raise our voice to produce more speech power and greater 
loudness.  Our partner then can hear the speech sound again. Similar effects take place 
in most pieces of music. One instrument may be masked by another if one of them 
produces high levels while the other remains faint.  If the loud instrument pauses, the 
faint one becomes audible again. These are typical examples of simultaneous 
masking. To measure the effect of masking quantitatively, the masked threshold is 
usually determined. The masked threshold is the sound pressure level of a test sound 
(usually a sinusoidal test tone), necessary to be just audible in the presence of a 
masker. Masked threshold, in all but a very few special cases, always lies above 
threshold in quiet; it is identical with threshold in quiet when the frequencies of the 
masker and the test sound are very different.  
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If the masker is increased steadily, there is a continuous transition between an audible 
(unmasked) test tone and one that is totally masked. This means that besides total 
masking, partial masking also occurs. Partial masking reduces the loudness of a test 
tone but does not mask the test tone completely. This effect often takes place in 
conversations. Partial masking is related to a reduction in loudness.  
 
Masking effects can be measured not only when masker and test sound are presented 
simultaneously, but also when they are not simultaneous. In the latter case, the test 
sound has to be a short burst or sound impulse, which can be presented before the 
masker stimulus is switched on. The masking effect produced under these conditions 
is called pre-stimulus masking, shorted to “premasking” (the expression “backward 
masking” is also used). This effect is not very strong, but if the test sound is presented 
after the masker is switched off, then quite pronounced effects occur. Because the test 
sound is presented after the termination of the masker, the effect is called post-
stimulus masking, shorted to “postmasking” (the expression “forward masking” is 
also used), as shown in Figure 2.5. 
 

 
 

Figure 2.5 per (backward) and post- (forward) masking 
 
Masking represents one of the most basic effects in psychoacoustics. This is normally 
determined as the audibility of pure tones in the presence of masking sounds. 
Different kinds of noises are commonly used in psychoacoustics as masker noises 
when investigating masking patterns.  
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Figure 2.6 Masking patterns for white noise 
 
This figure gives an example with white noise as a masker. The level of the just 
audible sound is given as a function of frequency. The lowest curve represents the 
threshold in quiet of the audibility of test tones without masker. The other curves 
represent masking patterns of white noise at different spectral density levels. If, for 
example, the level of a test tone  at 2 kHz is 60 dB or below, it will be masked if 
the white noise has a level of 40 dB. With increasing masking level, the masking 
patterns of white noise are shifted in parallel towards higher test tone level. Up to a 
test tone frequency of about 500 Hz, the masking patterns are horizontal, at higher 
frequencies an increase with a slope of about 10 dB per decade shows up. Since white 
noise has a spectral density level independent of frequency, the shape of the masking 
pattern is somewhat unexpected. However, it can be explained on the basis of critical 
bands described later in this lecture. 

TL

WNL
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Figure 2.7 Masking patterns of narrow-band noise 
 
This figure shows the masking patterns of a narrow-band noise centred at 1 kHz with 
a bandwidth of 160 Hz. The lowest curve represents the threshold in quiet. The other 
curves illustrate masking patterns for different levels of the narrow-band noise. For 
example, a test tone at 2 kHz with a level of 40 dB and below is masked if the 
noise level  is above 80 dB. At low levels of the narrow band masker, the masking 
pattern has a symmetrical shape. However, when increasing the masker level above 
40 dB, the lower level is shifted in parallel, whereas the upper slope gets flatter and 
flatter. This effect is called the “non-linear upward spread of masking”. 

Tf TL

CBL

2.2.5 Critical Bands 
 
Band is the frequencies, which are within two definite limits, the middle of which is 
called the centre frequency. The concept of critical bands is a basic feature of 
psychoacoustics. It is based on the assumption that the sound is analysed in the human 
hearing system by a bank of filters. In the following figure the bandwidth of these 
filters (critical bandwidth) is shown as a function of frequency - the solid line. The 
dashed lines illustrate useful approximations: 
 

• At frequencies up to 500 Hz the bandwidth is constant at 100 Hz 
• At higher frequencies the bandwidth is relative - about 20% 

 
That means that at frequencies above 500 Hz, the critical bands can be compared with 
1/3 octave-band filters, which have a relative bandwidth of 23%. 
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Figure 2.8 Critical bandwidth as a function of frequency 

2.2.6 Bark Scale 
 
The Bark scale is a frequency scale based on critical bands.  
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Figure 2.9 Bark scale vs frequency scale 
 

In this figure we have compared the Bark scale with the frequency scale. In the left 
panel, the frequency scale is linear, in the right panel it is logarithmic. The solid 
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curves describe the relation between the Bark scale and the frequency scale. The 
dashed curves show the useful approximations. These are valid up to 500 Hz left 
panel, and above 500 Hz right panel. Examples of relation between Bark and 
frequency values: 
 

• A frequency of 200 Hz corresponds to 2 Bark 
• A frequency of 2 kHz corresponds to 13 Bark 
• Bark band 1 covers the frequency range from 0 - 100 Hz 
• Bark band 24 covers the frequency range from 12000 - 15500 Hz    

 
The name “Bark” is chosen in honour of the late famous acoustician Barkhausen from 
Dresden. 
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Figure 2.10 Masking patterns of narrow band noises centred at different frequencies 
 
Here, one of the many advantages of the Bark scale is shown. The masking patterns of 
narrow-band noises 1 Bark wide, centred at different frequencies are plotted as solid 
curves. The dashed curve is the threshold in quiet. Plotted on the Bark scale they all 
have the same shape independent of the frequency and can be regarded as filter 
characteristics installed in the human hearing system. 
 

2.2.7 Model of Virtual Pitch 
 
A sophisticated model of virtual pitch has been elaborated by Terhardt.  In general, 
the model is based on the fact that the first six to eight harmonics of a complex tone 
can be perceived as separate spectral pitches. These spectral pitches form the elements 
from which virtual pitch is extracted by a type of “Gestalt” recognition phenomenon. 
A visual analogue for the model of virtual pitch is illustrated in Figure 2.11. The word 
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“pitch” displayed on the top is produced by thin border lines as an analogue of a 
complex tone containing all the relevant harmonics. On the bottom of Figure 2.11, the 
letters are only indicated by parts of their borders analogue of a complex tone from 
which some of the basic features, the lower harmonics for example, have been 
removed. The two parts of Figure 2.11 are meant to illustrate the “philosophy” of the 
virtual pitch concept: from an incomplete set of basic features (incomplete border 
lines or incomplete spectral pitches) a complete image (the word “pitch” or the virtual 
pitch) is readily deduced by a mechanism of “Gestalt”1 recognition.                      [2.1] 
 

 
 

Figure 2.11 Visual analogue of the model of virtual pitch 
 

The model of virtual pitch can be illustrated using Figure 2.12, which for didactical 
reasons, includes some simplifications. The influence of pitch shifts, for instance, is 
neglected at this stage. In the upper part of Figure 2.12, a complex tone with a 
fundamental frequency of 200Hz and from which the first two harmonics have been 
removed is displayed schematically. Both the harmonic number and the frequency of 
the spectral components are given. In the first stage, spectral pitches are derived 
(neglecting pitch shifts) from the spectral components, and a spectral weighting with a 
maximum around 600Hz is applied. Next, subharmonics are calculated for each 
spectral pitch present. Finally, the coincidence of the subharmonics of each spectral 
pitch is evaluated.  
 

                                                 
1 Gestalt theory is used in pattern recognition. 
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Figure 2.12 Illustration of the model of virtual pitch based on the coincidence of sub-
harmonics, derived from the spectral pitches corresponding to the spectral lines of the 
complex tone. 
 
For example, (again neglecting pitch shifts, that means the spectral pitch is equal to 
the frequency in value) the spectral component at 600 Hz is first transformed into a 
spectral at 600 pitch units (pu). Starting from this value, the first eight subharmonics 
which occur at 300pu, 200pu, 150pu, 120 pu, 100 pu, 85.7 pu, and 75 pu are 
calculated. In Figure 3.3, each of these subharmonics is indicated by a dot, and the 
corresponding ratio is given in numbers. The same procedure is performed with the 
next spectral component at 800Hz. In this case, we start from a spectral pitch at 
800pu, get the first subharmonic at 400pu, the next at 266.7 pu, the next at 200pu, and 
so on. The same procedure is then applied for the spectral pitches at 1000pu and at 
1200pu. In this way, an array of “yardsticks” containing dots representing the 
respective subharmonics is obtained. From this array, virtual pitch is deduced as 
follows: a scanning mechanism simply counts the number of dots that are contained in 
a narrow “pitch window”, which is shifted like a cursor from left to right. At 200 pu 
in Figure 3.3, four dots are found in the window. A large number of coincident 
subharmonics indicates a strong virtual pitch and therefore this spot is marked by a 
long arrow on the virtual pitch scale. Near 100pu and 400pu two dots are found in the 
window, therefore two small arrows are plotted at the corresponding locations. The 
largest number of coincidences of subharmonics occurs near 200pu and the virtual 
pitch of the complex tone is calculated to be 200pu as indicated by the long arrow. 
However, near 100pu and 400pu, candidates for the calculated virtual pitch also 
occur, but with less weight. This means that the complex tone produces a virtual pitch 
corresponding to 200pu with some octave ambiguities (100 and 400pu) in both 
directions. Such octave ambiguities are often found in experiments on virtual pitch. In 
this case, however, a pure tone with a frequency a little below 200Hz will be matched 
to the pitch of the complex tone with the spectrum shown at the top of Figure 3.3.  
[2.1] 
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2.3 Sound Quality Metrics 
 
The most important Parameters or Metrics used in Sound Quality are those based on 
Zwicker Loudness calculations. They are reflecting most of the psychoacoustics 
properties of the human perception of sound. They have the advantage that they put a 
single figure on characteristic properties of the sound. Three of the important ones are 
mentioned here: 
 

• Fluctuation Strength is a measure of low frequency  - around 4 Hz - frequency 
and amplitude modulation in the time sample and is based on a non-stationary 
loudness calculation. 

 
• Roughness is similar to Fluctuation Strength apart from measuring the 

modulation around 70 Hz. 
 

• Sharpness is a measure of the amount of high frequency content in the signals 
frequency spectrum. It can be calculated based on both a stationary and a non-
stationary loudness calculation. 
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Figure 2.13 Metrics 
 
Only Zwicker Loudness calculations for stationary signals are standardised. And most 
real life signals are non-stationary. Although there exists descriptions and formulas 
for Roughness, Fluctuation strength and Sharpness they are not very precise. That 
means that implementations of these Metrics from different manufacturers of Sound 
Quality analysis equipment will vary and can give different results. Efforts regarding 
standardisation are going on both in ANSI and DIN. 
 
In addition, some other objective measurements – Metrics, are often used in Sound 
Quality evaluations.  
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• Pleasantness and Annoyance are combination Metrics based on a weighted 

sum of Zwicker Loudness, Fluctuation Strength, Roughness and Sharpness. 
 
• Tone to Noise Ratio is a measure describing the amount of pure tones in the 

signal 
 

• Prominence ratio is a description of the amount of noise in a critical band in 
relation to the noise in the adjacent bands. 

 
• Tonality or Pitch is a measure of how strong the sensation of “frequency” is in 

a complex signal. 
 

• Speech Interference Level, Articulation Index and Speech Transmission index 
are all measures related to the quality of a speech transmission channel. They 
also find uses in some Sound Quality applications. 

 
• Kurtosis is a measure of impulsiveness of the time signal. Basically it sums up 

all time samples level differences from the signals mean value and raised to 
the power of 4 and then normalised. The method exaggerates the impulses in 
the sound and a high kurtosis value normally reflects poor Sound Quality. 

 
2.4 Tonality Metric 
 
Tonality is an important parameter affecting Sound Quality. The perceived tonal 
character of sounds plays an important role both in Sound Quality research and in the 
study of annoyance through noise. Tonality is not standardized yet so different 
companies have their own version of implementation. Tonality calculation is based on 
pitch-extraction algorithm described by Terhardt. The algorithm provides two pitch 
patterns: the spectral-pitch pattern and the virtual-pitch pattern, each of which consists 
of pitch values and pitch weights. For more information about the algorithm, please 
refer to Chapter 3. 
 
2.5 Terms and Definitions 
 
Before going into detail of the following sections, it is worth noting some of the basic 
concepts used in the Sound Quality field. 
 
• Attenuation  
 
Reduction in magnitude of a physical quantity such as sound, either by electronic 
means or by a physical barrier, including various absorptive materials.   
 
• Amplitude  
 
The instantaneous magnitude of an oscillating quantity such as sound pressure. The 
peak amplitude is the maximum value. 
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• Band  
 
Frequencies, which are within two definite limits, the middle of which is called the 
centre frequency. 
 
 
• Bandwidth  
 
The difference between the highest and lowest frequencies of a band, sometimes 
expressed in standard sizes, such as octave, half-octave, third-octave. 
 
• Central frequency 
 
The frequency in the middle of a Band of frequencies, by which the band is identified 
together with the Bandwidth.   
 
• Constant percentage Bands (CPB)  
 
CPB means constant percentage bandwidth. It is a way of displaying data in octave 
form – in Sound Quality’s case 1/3-octave spacing.   
 
• Decibel (dB) 
 
The decibel is not an absolute unit of measurement. It is a ratio between a measured 
quantity and an agreed reference level. The dB scale is logarithmic and uses the 
hearing threshold of 20 µ Pa as the reference level. This is defined as 0 dB. 
 
The advantage of using dB’s is that it converts the linear scale with large and 
unwieldy numbers into a much more manageable scale from 0 dB at the threshold of 
hearing (20 µ Pa) to 130 dB at the threshold of pain. 
 
• Diffuse field   
 
The sound is assumed to reach the listener’s ears from all directions at the same 
intensity. This condition is approximated in an ordinary room. The method is 
applicable to all types of spectra and also is based on the assumption that the sound is 
steady rather than intermittent.  
 
• Fast Fourier Transform (FFT) 
 
The Fast Fourier Transform is an algorithm or calculation procedure for obtaining the 
Discrete Fourier Transform (DFT) with a greatly reduced number of arithmetic 
operations compared with a direct evaluation. Since its first publication in 1965 it has 
revolutionized the field of signal analysis, and it is still probably the most important 
single analysis technique available.  
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• Filter  
 
An electrical device used to affect certain parts of the spectrum of a sound, by causing 
the attenuation of certain frequency bands, while allowing other bands to pass 
unattenuated. Some common types of filters are: 
 

o high-pass filters (which attenuate low frequencies below the cut-off 
frequency);  

o low-pass filters (which attenuate high frequencies above the cut-off 
frequency);  

o band-pass filters (which combine both high-pass and low-pass functions as 
in the figure 7.2 below);  

o band-reject filters (which perform the opposite function of the band-pass 
type);  

o octave, half-octave, third-octave, tenth-octave filters (which pass a 
controllable amount of the spectrum in each band);  

o shelving filters (which boost or attenuate all frequencies above or below 
the shelf point);  

o resonant or Formant filters (with variable centre frequency and Q2).  
 

 
 

Figure 2.14 Generalized response characteristic of a band-pass filter. 
 
 
• Free (Frontal) field   

                                                

 
The sound is assumed to reach the listener’s ears only from the direction straight 
ahead of person, in the open air or in a non-reflecting environment. In all enclosures, 
frontal sound is approximated when a small source is operating close to and directly 
ahead of the listener. 
 
• Fundamental Frequency 
 
If a sound is a complex of many tones of various frequency, amplitude and phase, 
repeating together in a basic cycle of definite frequency, the fundamental frequency is 
the lowest frequency of this complex. 

 
2 1/N octave filters have a constant relative bandwidth, which means that the Q factor of the filters are 
the same.  
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• Harmonic  
 
A harmonic tone consists of a sum of pure tones (each one called a partial), whose 
frequencies are in integer ratios of 1, 2, 3, ... Partials related in this way are called the 
harmonics of the tone. 
 
• Hertz 
 
The unit of frequency measurement, representing cycles per second. 
 
• Loudness  
 
Subjective impression of the intensity of a sound. 
 
• Masking  
 
The process by which threshold of audibility of one sound is raised by the presence of 
another (masking) sound. 
 
• Narrow band noise  
 
Sound classed as noise, which has its energy distributed over a relatively small section 
of the audible range. 
 
• Octave  
 
An octave is a doubling or halving of frequency. 20Hz-40Hz is often considered the 
bottom octave.  
 
• One Octave bands  
 
Frequency ranges in which the upper limit of each band is twice the lower limit and 
Octave bands are identified by their geometric mean frequency, or centre frequency. 
 
• One-third octave bands 
 
Frequency ranges where each octave is divided into one-third octaves with the upper 
frequency limit being 2* (1.26) times the lower frequency. Identified by the geometric 
mean frequency of each band. 
 
• Pascal, Pa 
 
A unit of pressure corresponding to a force of 1 newton acting uniformly upon an area 
of 1 square metre. Hence 1 . 2/1 mNPa =
 
• Phon   
 
A unit used to describe the loudness level of a given sound or noise of loudness level 
of a tone. 
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• Pitch  
 
Pitch is a subjective term for the perceived frequency of a tone. Pitch of pure tones 
depends not only on frequency, but also on other parameters such as sound pressure 
level. Pitch shifts are used to identify the level influence of pitch perception. Complex 
tones can be regarded as the sum of several pure tones. The pitch of complex tones 
can be assessed by pitch matches with pure tones. 
 
• Sample 
 
The signals we use in the real world, such as our voices, are called "analog" signals.  
To process these signals in computers, we need to convert the signals to "digital" 
form.  While an analog signal is continuous in both time and amplitude, a digital 
signal is discrete in both time and amplitude.  To convert a signal from continuous 
time to discrete time, a process called sampling is used.  The value of the signal is 
measured at certain intervals in time. Each measurement3 is referred to as a 
sample. [3]  
 
• Sound Pressure Level  
 
Sound is defined as any pressure variation that the ear can detect ranging from the 
weakest sounds to sound levels that can damage hearing. When a sound source 
vibrates, it sets up pressure variations in the surrounding air.  
 
The sound pressure level, , expressed in dB’s, of a sound or noise is given by  pL
 

dBppLp )/log(20 0=  
 
 where: 

 p is the measured value in Pa, and  
0p  is a standardised reference level of 20 µ Pa--the threshold of hearing.  

 
• Sound Power  
 
Sound power is the energy emitted by a sound source per unit time. The symbol for 
sound power is W and its unit is the watt. (Named after the Scottish mechanical 
engineer James Watt, 1736-1819, of steam engine fame.)  
 
• Sound Intensity 
 
Sound intensity, at a point in the surrounding medium, is the power passing through a 
unit area. Its symbol is I and its unit, watts/m2.  
 

I = W                   S/
 

where:  
                                                 
3 We can also understand the measurement as a collection of time-amplitude values.  
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W is the sound power in watts  
and S is the surface area in m2  

 
• Sound Intensity Level 
 
In plane traveling waves, sound pressure level and sound intensity level are related by  
 

L = 20 dB = 10 dB )/log( 0pp )/log( 0II
 

The reference value  is defined as 10  watts/m0I 12− 2. 
 
Note that the sound intensity level and the sound pressure level are approximately 
numerically equal. This means you can use the value of sound pressure level instead 
of the value of noise intensity level in calculation. 
 
• Sound  
 
Sound is vibration disturbance, exciting hearing mechanisms, transmitted in a 
predictable manner determined by the medium through, which it propagates. To be 
audible the disturbance must fall within the frequency range 20Hz to 20,000Hz. 
 
• Sone  
 
A linear unit of loudness. The ration of the Loudness of a sound to that of a 1 kHz 
tone 40 dB above the threshold of hearing. 
 
• Spectrum 
 
Spectrum is the frequency content of a sound or audio signal, often displayed as a 
graphic representation of amplitude (or intensity level) against frequency. The 
spectrum of a sound may be determined by a sound analyser or by Fourier analysis 
and is distributed over the audible range (20 to 20,000 Hz). It is the distribution of the 
energy of a signal with frequency so it is also called ppower spectrum or averaged 
spectrum. 
 
• Specific loudness (sone/bark)  
 
The specific loudness is the loudness per critical band of a certain sound. If the sound 
does not have a low level, it produces a specific loudness in other critical bands than 
those corresponding to the physical sound. 
  
• Sub-harmonic 
 
An integer submultiple or fraction of a fundamental frequency and Subharmonic 
series consists of pitches related to the fundamental by ratios: 1/2, 1/3, 1/4, 1/5, 1/6, 
etc. 
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• White noise 
 
Broadband noise having constant energy per unit of frequency. 
   
• Zwicker Loudness  
 
A model of loudness that provides a method of rating subjective loudness in a 
relatively objective way. It uses third octave measurements of sound pressure levels. 
It involves plotting these octave bands and finding the area under the curve to 
determine loudness. 
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Chapter 3 Review Tonality Algorithm  
 
In this chapter, we will review the Algorithm for Tonality, which was generally for 
complex tone and presented by Terhardt, E., Stoll, G., and Seewann, M. in 1982 [3.1]. 
It is the theoretical basis of Tonality metric definition. We focus on the general 
procedure and relevant formulae, but not on details of all the psychoacoustics 
concepts. The readers who interested in more details, please refer to the relevant 
Psychoacoustics books. 
 
The algorithm is based on the virtual-pitch theory. The purpose of the algorithm is to 
provide two pitch patterns: the spectral-pitch pattern and the virtual-pitch pattern, 
each of which consists of pitch (height) values (using “pu” as the unit, an abbreviation 
for “pitch unit”) and pitch weights. The whole pitch percept is then described by a 
combination of the two patterns. The spectral-pitch pattern (SP pattern) is obtained by 
a special process of spectral analysis, which is based on established psychoacoustics 
principles such as masking and spectral dominance [Figure 3.1 (a) to (d)]. The SP 
pattern describes the pitch percepts directly associated to the tonal spectrum 
components. In addition, the SP pattern is the basis of the virtual pitch pattern (VP 
pattern). The latter is deduced from the former by a process of subharmonic 
coincidence assessment [Figure 3.1 (d) to (e)]. 
     
 
 
 
 
 
 (a) 
 
 
 
                                                                                                                   (b) 
 
 

                                                             
        (c) 

 
 
 (d) W
 
 
                                                                                                                                            
 
                                                                                                                     (e) 

SIGNAL 

SPECTRUM ANALYSIS 

EXTRACTION OF TONAL COMPONENET

EXTRACTION OF VIRTUAL PITCHES 

EIGHTING  OF COMPONENET 

PITCH – SALIENCE PATTERN 
Spectral & virtual pitches 

EVALUATION  OF MASKING EFFECTS 

 
 
 
 
 
 

Figure 3.1 Survey on the pitch-evaluation procedure. 
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The steps of the algorithm given by Figure 3.1 will be covered in the following 
sections of this chapter. 
 
3.1 Spectrum Analysis 
 
The conventional digital Fourier analysis (FFT) is used for the spectrum analysis. 
Frequency region is about 20Hz to 5kHz which is relevant to the aurally region. The 
power spectrum is represented by 400 samples; thus the sample spacing is 12.5 Hz.  
  
From a programmer point of view, we can say that a sample is a pair of frequency and 
SPL value. Moreover, A spectrum is a list of samples.  
 
3.2 Extraction of Tonal Components 
  
As a first step, candidates for tonal components are detected by scanning the spectral 
samples and testing if   
 
                                                                                                           (1) 11 +− ≥< iii LLL 4        
 
where:                                                  
• is the relative SPL of the ith spectrum sample,  iL
• is the relative SPL of the next lower sample, 1−iL
•  is the relative SPL of the next higher sample.  1+iL
 
If a candidate was found by this criterion, it is further tested whether each of the 
conditions 
 
                                                             (2)                        ,3,2,2,3;7 ++−−=≥− + jdBLL jii

 
is fulfilled. If this is the case, it is assumed that the considered group of seven spectral 
samples (i.e., i-3; i-2; …i+3) represents a tonal component. The differential threshold 
value of 7 dB in Eq.(2) was determined empirically by analyzing several complex 
sounds.  
 
The local maximum samples in a spectrum are those which are satisfied by Eq.(1)  
and Eq.(2).  But the tonal components are a little different from local maximum 
samples because we calculate the centre frequency in an approximate way as follows. 
 
A good approximation to the precise component frequency  is obtained by the 
interpolation formula. 

cf

 
                                                           (3)                 ))(/(46.0 11 −+ −+= iiic LLdBHzff
 
where. 
• is the frequency of  spectrum sample;  if ith
                                                 
4 Eq.(1) means   and  ii LL <−1 ii LL ≤+1  
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•  and  is from the Eq.(1).  1+iL 1−iL
 
You can see from Eq.(3) that instead of using the frequency of the local maximum 
sample directly, the neighboring SPL values  and are taken into account for 
calculating the frequency of tonal component. 

1+iL 1−iL

 
In any case, the input to the next processing stage comprises the following 
parameters: The number N of tonal components, the frequency , and the SPL  
(= ) of every component. 

cf cL

iL
 
3.3 Evaluation of Masking Effects 
 
Mutual masking of spectral components has two relevant effects. The first is that 
components may be inaudible and thus irrelevant for the pitch percept, while others 
may be more or less reduced in their individual audibility. The second effect is that 
the individual spectral pitches of aurally relevant components will be shifted more or 
less substantially, due to mutual partial masking.  These two effects are evaluated 
quantitatively as follows. 

3.3.1 Sound-pressure Level Excess 
 
The extent to which a tonal component is “aurally relevant” is described by the so-
called sound-pressure level excess (SPL excess) LX. 
 
Formally, the SPL excess of the thµ tonal component, )1( NLX ≤≤ µµ is specified 
by 
 

dBILLX dBfL
N

N

v
v

L
THdBf

Ev
















++−= ∑

≠
=

)10/()(2

1
10 10)10(log10 )20/()( µµ

µ

µ

µµ            (4)          

 
• is the component’s SPL as determined in the previous extraction procedure.  µL
• is the excitation level which is produced at the frequency by the )( µfL Ev

th
µf

ν tonal    component (notice that  is incremented from 1 to N, skippingv µ ).  
• is the noise intensity present in the critical band around the considered tonal 

component, is used to take account of the additional masking effect of “noise” 
spectral samples. It will be specified below. 

µNI

• is the hearing threshold at the frequency .  )( µfLTH µf
 
The excitation level is specified by  )( µfL Ev

 
)()( µµ zzsLfL vvEv −−=                                                                               (5) 

                                                                 
• is the SPL of the vL thν tonal component.  
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• z represents the critical-band rate. Thus and are the critical-band rates of 
the

µz vz
thµ and thν components, respectively. The relationship between frequency 

and critical-band rate is with high accuracy provided by  
 

[ ] )6(})5.7/arctan(5.3)/(76.0arctan13{ 2 BarkkHzfkHzfz +=
      

• Equation (5) represents the triangular shape of the excitation level critical-band 
rate pattern, where s depicts the steepness of the slopes. The parameter  is 
specified by  

s

 
,/27 BarkdBs = if                                                                (7a)                              ;vff ≤µ

[ ] ,/)/2.0()/23.0(24 BarkdBdBLfkHzs vv +−−=     
               if .                                                                                               (7b)                               vff >µ

 
The noise intensity  is obtained by adding the sound intensities of those spectrum 
samples, which correspond to the particular critical-band rate interval extending from 
( 5  Bark) to (  Bark), skipping the five central samples of every tonal 
component which eventually has been detected in that critical band (i.e., the samples 

 where i  indicates the locally maximal sample 
defined in Sec. 3.2).  

µNI

µz

and

.0−µz

1,2 −− ii

5.0+

+i 2,1,, +ii

 
The threshold of hearing, which in Eq. (4) is represented by , is adequately 
specified by the formula 

THL

 
[ ]

dBkHzf

kHzfkHzffL TH

})/(10

)3.3/(6.0exp5.6)/(64.3{)(
43

28.0

µ

µµµ

−

−

+

−−−=
      (8)         

 
When the masking evaluation enabled by Eqs. (4) to (8) is carried out for all the tonal 
components(i.e., µ = 1 to N), the so-called SPL excess pattern is obtained. Positive 
values of LX indicate aural relevance, while tonal components whose LX is zero or 
negative are considered as irrelevant with respect to any type of pitch percept. The 
SPL excess pattern is considered as being representative of the tonal aspects of the 
stimulus.   
 

3.3.2 Pitch Shifts 
 
Due to interaction of simultaneous spectral components in the auditory system, the 
spectral pitches are not exactly identical to the pitches of isolated tones with the same 
frequency.  
 
The individual spectral pitch of the thµ component is specified by 
 

,)1)(/( puvHzfH µµµ +=                                                                              (9) 
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•  is the spectral pitch of the µH thµ  component, it is measured in principle on a 
scale proportional to frequency, the unit is “pitch units,” pu. 

• µν is the induced pitch shifts (a quantity of maximally a few percent) specified by 
the formula 
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• and are the SPL and frequency of the considered component, 
respectively.  

µL µf

• And are specific representations of the SPL excess, pertaining to 

the interference of the considered component with the lower ( ) and the 
higher 

'
µLX ''

µLX
'
µLX

( ) ones. These specific SPL excess values are given by ''
µLX

 

;10log20
1

1

)20/(
10

' dBLLX
v

dBfL Ev∑
−

=

−=
µ

µµ
µ                                 (11a)              

 

;10log20
1

)20/(
10

'' dBLLX
N

v

dBfL Ev∑
+=

−=
µ

µµ
µ                                (11b) 

 
The calculation of µν is only required for those tonal components whose SPL excess 
is greater than 0. The pitch measure given by Eqs. (9) to (11) is called true spectral 
pitch. It is numerically identical to the frequency of a single pure tone at 60 dB SPL 
which was matched in pitch to that spectral component whose pitch is to be depicted. 
If the pitch shifts described by Eqs. (10) and (11) are ignored (which can be done in 
many cases), nominal spectral pitch is obtained; it is numerically identical to the 
considered component’s frequency. 
 
The data provided by the evaluation of masking algorithm to further processing 
consist of (1) a number R of relevant tonal components ( ), (2) the SPL excess, 
and (3) the spectral pitch of each of these components. 

NR ≤

 
From a programmer’s point of view, we can say that the SPL excesses is a list of 
frequency and SPL excess pairs, and similar to the spectral pitches which is a list of 
frequency and spectral pitch pairs.  
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3.4 Weighting of Components 
 
The extend to which each tonal component contributes to the entire tonal percept is 
considered to depend on (1) the SPL excess and (2) the frequency of the component. 
The weight of a particular spectral pitch is specified by 
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              if                                                                                                  (12a)                       ;0≥µLX
 

,0=µWS    if                                                     (12b)        0<µLX
 
The pattern of spectral-pitch weights WS versus spectral pitch represented by 
equivalent frequency is the ultimate basis. This pattern is called the spectrum-pitch 
pattern (SP pattern). It is thought to represent the relative salience of competing 
simultaneous spectral pitches. The data relevant for the formation of virtual pitch are 
provided by the SP pattern. This process is described in the following section. 
 
 
3.5 Evaluation of Virtual Pitch 
 
Following the principle of virtual-pitch theory, every virtual-pitch candidate is 
specified as a subharmonic of one of the relevant spectral pitches. If pitch shifts of 
spectral components and stretch of subharmonic intervals are ignored, the virtual pitch 
represented by the mth  subharmonic of the  relevant component is  ith
 

puHzfmH iim )/(1−=                                                                                                (13)              
 
It is called nominal virtual pitch. But in many cases it is of interest to evaluate also the 
effects of pitch shifts and subharmonic interval stretch. The true virtual pitch is to be 
calculated by the formula 
 

[ ] puKHzfmmKHzfm

mmsignvHzfmH

ii

iiim

}))/(1.0)/)(750(

5.218{10)1(1)(/(
211

31

−−−

−−

+−−

+−−+=
                                              (14)          

 
The eventual pitch shift of the ith  component is taken into account ( ), and the 
subharmonic interval stretch is represented by the terms which follow the  
function.  

iv
)1( −msign

 
Each of the relevant components ( i ) provides M potential virtual pitches, 
where M is the maximal subharmonic number taken into consideration, i.e., 

. In principle, it requires testing of near coincidence of every subharmonic 
of every relevant component. However, by an adequate strategy it can be 
accomplished that the most significant virtual pitches will be extracted early in the 
testing process such that testing can be stopped at an appropriate stage with 

R...1=

Mm ...1=
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sufficiently high probability that all significant pitches have been extracted. The 
procedure following such a strategy is shown in Figure 3.2. 
  
 
 

 
 
 

 

SPECTRAL-PITCH 
PATTERN 

(relevant components) 
RRR WSWSvvff ...;...;... 111  

 
SORTING OF SP-DATA IN TERMS OF 

DESCENDING WS 
No. of  table entry: i,j 

for i = 1 to i  max

for  m = 1 to M (M=12) 
W: = 0 

for j = 1 to R;      ij ≠  
W: = W+C         (Eq. 15…18) ij

next j 
ENTER VP-DATA INTO VP-TABLE: 

WWim β=        (Eq.18…19) 

imH   (Eq. 13, nomin. ; Eq. 14, true) 
next m 
next i 

 
Figure 3.2 Algorithm of the extraction of virtual pitch from the spectral-pitch pattern  

 
First the spectral-pitch data are sorted in terms of descending spectral-pitch weight 
WS, such that the most prominent spectral pitch is represented on top of a table which 
contains the frequencies, pitch shifts, and spectral-pitch weights.  
 
It was empirically found that it is sufficient to take only those components as 
“ i components” into account whose SP weight is at lease 70% of the largest one. Thus 
a certain i  is specified such that WS , and i is incremented only 
from 1 to . By this strategy, computation time is considerably reduced while the 
probability of missing important virtual pitches is very low.  

max

maxi
)1(7.0)( max =≥ iWSi

 
M  is typically equal to 12.  
 
R  is the number of the relevant tonal components.  

  
The coincidence coefficient C  is specified as follows ij

 
),/1()/( 2/1 δγ−= mnWSWSC jiij if ,δγ ≤                                                            (15a)         

,0=ijC  if δγ > and/or                                                                           (15b) 20>n
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• and  are the spectral-pitch weights of the and relevant 
components respectively;  

iWS jWS ith jth

 
• and  are the respective subharmonic numbers. While is set by the 

algorithm,  must for each coincidence test be determined from the formula 
m n m

n
 

),5.0/( += ij fmfIntn                                                                                    (16) 
 

• γ  is the coefficient which represents the degree of inharmonicity of the tested 
component pair. 
 

1)/( −= ji fnfγ                                                                                             (17) 
 

• δ  is the width of the coincidence interval which is specified by a constant, 0.08. 
 

The weight W  which is assigned to the subharmonic of the ith relevant 
component is essentially the sum of the coincidence coefficients provided by the 
tested component pairs: 

im mth

 

∑
≠
=

=
R

ij
j

ijim CW
1

β                                                                                                            (18) 

 
• β  is a factor. It is called the “fundamental frequency weight.” It has a low-pass 

characteristic specified by  
 

[ 14)800/(1 −+= puH imβ ]                                                                              (19) 
 
The evaluation of virtual pitch leads to the virtual-pitch pattern (VP pattern), which 
contains a list of frequency, virtual pitch and virtual pitch weight triples.  
 
The algorithm described here implies that in an actual listening situation, neither of 
the two pitch modes is completely suppressed; rather, the whole pitch percept is 
described as a competition between spectral and virtual pitches. These two types of 
pitch are extracted from the signal and represented by the spectral-pitch pattern and 
the virtual-pitch pattern.  
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Chapter 4 Tonality Model in MATLAB 
 
This chapter introduces MATLAB, M-file, shows the Data Flow of Tonality model, 
explains how the Data Flow is related with the algorithm and the MATLAB program, 
and finally presents some results from model test.  
 
4.1 What is MATLAB?  
 
The name MATLAB stands for matrix laboratory. It is a high-performance language 
for technical computing. It integrates computation, visualization, and programming in 
an easy-to-use environment where problems and solutions are expressed in familiar 
mathematical notation. Typical uses include: 
 

o Math and computation 
o Algorithm development 
o Modelling, simulation, and prototyping 
o Data analysis, exploration, and visualization 
o Scientific and engineering graphics 
o Application development, including graphical user interface building 

 
MATLAB is an interactive system whose basic data element is an array that does not 
require dimensioning. This allows you to solve many technical computing problems, 
especially those with matrix and vector formulations, in a fraction of the time it would 
take to write a program in a scalar noninteractive language such as C or Fortran. 
 
The name MATLAB stands for matrix laboratory. MATLAB was originally written to 
provide easy access to matrix software developed by the LINPACK and EISPACK 
projects. Today, MATLAB uses software developed by the LAPACK and ARPACK 
projects, which together represent the state-of-the-art in software for matrix 
computation. 
 
MATLAB has evolved over a period of years with input from many users. In 
university environments, it is the standard instructional tool for introductory and 
advanced courses in mathematics, engineering, and science. In industry, MATLAB is 
the tool of choice for high-productivity research, development, and analysis.         
 
4.2 What is M-file 
 
MATLAB provides a full programming language that enables you to write a series of 
MATLAB statements into a file and then execute them with a single command. You 
write your program in an ordinary text file, giving the file a name of filename.m. The 
term you use for filename becomes the new command that MATLAB associates with 
the program. The file extension of .m makes this a MATLAB M-file.             
 
There are two kinds of M-files in MATLAB, Script M-files and Function M-files.  
Script M-files do not accept input arguments or return output arguments, while 
Function M-files can accept input arguments and return output arguments. Script M-
files operate on data in the workspace, and are useful for automating a series of steps 
you need to perform many times, while in Function M-files, internal variables are 
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local to the function by default, and Function M-files are useful for extending the 
MATLAB language for your application.  An M-file might contain one main function 
and zero, one or more sub functions, and the M-file name must be the same as the 
main function name.                              [4.1] 
 
4.3 Data Flow of Tonality Model 
            
The Data Flow for Tonality model is shown in Figure 4.1. It is based on the pitch-
evaluation procedure we presented in Figure 3.1 in Chapter 3 and considered how to 
implement the algorithm in MATLAB programming language.  
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Figure 4.1 DFD for Tonality Model. 
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Power spectrum is the input of the whole model. We get power spectrum from B&K 
Sound Quality Type 7698 and save it into Excel, then import to MATLAB as a two-
column matrix: 
 

Frequency (Hz) SPL (dB) 
 
Functions 1.0 – 6.0 are main functions in our MATLAB model. Datastores D1 – D9 
are the input or output of the relevant functions, and they are represented in 
MATLAB as matrices. A matrix is a rectangular array of numbers. 
 
Functions 1.0-5.0 are the calculation procedure for Spectral Pitch Pattern. Function 
6.0 is for Virtual Pitch Pattern. 
 
Function 1.0 implements the procedure of Section 3.2, which extracts the tonal 
components from power spectrum. Relevant M-file is get_tonal_comp.m in Appendix 
A. 
 
Function 2.0 implements the procedure of Section 3.3.1, which calculate the sound-
pressure level excess. Relevant M-file is get_spl_excess.m in Appendix A. 
 
Function 3.0 implements the procedure of Section 3.3.2. It calculates the true spectral 
pitch by evaluating the spectral pitch shift of each relevant tonal component, whose 
sound-pressure level excess is larger than zero. The relevant M-file is 
get_spectrum_pitch.m in Appendix A. 
 
Function 4.0 implements the procedure of Section 3.4, which calculates the weighting 
of components whose sound-pressure level excess is larger than zero. The relevant M- 
file is get_sp_weight.m in Appendix A. 
 
Function 5.0 combines all the necessary information for Spectral Pitch Pattern. The 
relevant M-file is get_SP_Pattern.m in Appendix A. 
 
Function 6.0 is related to Section 3.5, which evaluates the true virtual pitch and get 
Virtual Pitch Pattern. The relevant M-file is get_VP_Pattern.m in Appendix A. 
 
D1 contains Tonal Components represented in MATLAB as a two-column matrix: 
 

Frequency (Hz) SPL (dB) 
 
D2 (Indices1) is the Power Spectrum row indices used to remember locations of the 
local maximal samples. Local maximal samples satisfy Eq. (1) and Eq. (2) in Chapter 
3. It is represented in MATLAB as a one-column matrix: 
 

Row Indices 
 
D3 contains SPL Excesses information represented in MATLAB as a two-column 
matrix:  
  

Frequency (Hz) SPL Excess (dB) 
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D4 (Indices2) is the Tonal Components row indices, whose SPL Excess is larger than 
zero. It is represented in MATLAB as a one-column matrix: 
 

Row Indices 
  
Design of D2 and D4 is for remembering the interesting locations for programming 
purpose.    
 
D5 contains Spectral Pitches information represented in MATLAB as a two-column 
matrix: 
 

Frequency (Hz) Spectral Pitch (pu) 
 
D6 contains Spectral Pitch Shifts information represented in MATLAB as a two-
column matrix:  
 

Frequency (Hz) Spectral Pitch Shift 
 
D7 contains Spectral Pitch Weights information represented in MATLAB as a two-
column matrix: 
 

Frequency (Hz) Spectral Pitch Weight 
 
D8 contains SP Pattern information represented in MATLAB as a three-column 
matrix: 
 

Frequency (Hz) Spectral Pitch Shift Spectral Pitch Weight 
 
D9 contains VP Pattern information represented in MATLAB as a three-column 
matrix: 
 

Frequency (Hz) Virtual Pitch (pu) Virtual Pitch Weight 
 
 
4.4 Model Simplification and Modification 
 
The different threshold value of 7 dB in Eq. (2) in Chapter 3 was determined 
empirically by analysing several complex sounds. But when we test our MATLAB 
model with some natural speech vowels, we found that the 7 dB is so big that most of 
the cases, there is no tonal components or very few tonal components can be 
extracted. But in order to test the other pitch-evaluation procedure we must have some 
tonal components data. So we change it to 3 dB just for programming and testing 
purpose.  
 
According to the algorithm of virtual pitch evaluation, which is shown in Figure 3. 4 
in Chapter 3, we will get a big number of virtual pitches, which is 12 times the 
number of spectral pitches. But we say that only the five most prominent virtual 
pitches, which have the higher weight values, are our concern. 
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4.5 The Relations of Different M-files in Tonality MATLAB 
Model 
 
Functions 1.0-6.0 in Figure 4.1 are implemented as M-files. Each of them has main 
function and some of them have sub functions. Besides all these main functions and 
sub functions, we also have some auxiliary functions, which are shared by different 
main functions or sub functions. 
 
Figure 4.2 and Figure 4.3 only show the most related functions in our MATLAB 
model. Each rectangular means one M-file. The first function name is the main 
function name, which should be the same as the M-file name. The following 
function(s) are sub function(s), which are defined in the same M-file. If there is an 
arrow, from function A to function B, then it means that function A uses function B in 
its definition. The purpose of presenting functions in this way is to show the layers of 
different functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                             Lev 
 
 
 
 
 

get_spl_excess 
 

IN 
 

LTH 

get_spectrum_pitch 
 

Vu 
 

Specific_LXu 

 
S 

z 

Figure 4.2 Relations of main, sub and auxiliary functions in different M-files. 
 
Figure 4.2 shows the functions and sub functions relationship among four M-files, 
namely, get_spl_excess.m, get_spectrum_pitch.m, Lev.m and z.m. Function 
get_spl_excess is the main function to calculate the SPL excesses of tonal 
components. IN is a sub function to calculate Noise Intensity, present in the critical 
band around the considered tonal component. LTH is a sub function to calculate the 
hearing threshold at a certain frequency. Function get_spectrum_pitch is the main 
function to calculate the spectral pitches for the relevant tonal components whose SPL 
excess is larger than zero. Vu calculates the induced pitch shifts. Specific_LXu 
calculates the Specific representations of the SPL excess. Function Lev and z are two 
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auxiliary functions. They are defined in different M-files. Lev calculates the 
excitation level, which produced at a certain frequency by one tonal component. S 
calculates the steepness of the slopes in the excitation level critical-band rate patern. 
Function S is a sub function in M-file Lev.m. Function z calculates the critical-band 
rate (Bark) of a certain frequency. Funciton Lev is shared by get_spl_excess and 
Specific_LXu. Function z is shared by Lev and IN.  
 
 Get_VP_Pattern 

Beta 

H 

C 
 

Gamma 

n 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 4.3 Relations of main and sub functions in M-file: get_VP_Pattern.m 
 
Figure 4.3 shows the relations of the main function and different sub functions in M-
file: get_VP_Pattern.m.  Sub function Beta calculates a factor, called the 'fundamental 
frequency weight'. H calculates the true virtual pitch. C calculates the coincidence 
coefficient. Gamma calculates the inharmonicity  coefficient. Sub function n is related 
with Eq.16 in Chapter 3.  
 
 
4.6 A Function M-file Example 
 
Let us take M-file: get_tonal_comp.m as an example and see how M-file looks like in 
MATLAB and how to use it in MATLAB Command window. 
 
function [y,z] = Get_tonal_comp(x) 
%Extraction of tonal components. 
%Input:  power spectrum 
%Output: tonal components.  
 
%Check whether the input matrix validate.  
[m,n] = size(x); 
if (~(n == 2) | (m == 1 & n == 1)) 
   error('Input must be a two column vector!') 
end 
 
k = 1; 
for i = 4:(length(x)-3) 
              

%Look for local maximal samples.  
if x(i,2)>=x(i+1,2) & x(i,2)>x(i-1,2) & x(i,2)-x(i-3,2)>=3 & x(i,2)-x(i-2,2)>=3 &  
x(i,2)-x(i+2,2)>=3 & x(i,2)-x(i+3,2)>=3 
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%Calculate and save the frequency and the SPL values for tonal components. 

        y(k,1)=x(i,1)+0.46*(x(i+1,2)-x(i-1,2))  
y(k,2)=x(i,2) 

 
%Check whether you want to remember the power spectrum indices of the 
%local maximal samples.  
if (nargout == 2) 

           z(k,1)=i 
end         
k=k+1;   

end   
end 
 
Input x is the power spectrum which contains 401 samples. Output y is the tonal 
components, and output z is the row indices of the local maximal samples.  
 
The if statement: 
 

if x(i,2)>=x(i+1,2) & x(i,2)>x(i-1,2) & x(i,2)-x(i-3,2)>=7 & x(i,2)-x(i-2,2)>=7 &  
x(i,2)-x(i+2,2)>=7 & x(i,2)-x(i+3,2)>=7 

 
is related to Eq.(1) and Eq.(2) in Chapter 3. 
 
The statement:  
 
         y(k,1)=x(i,1)+0.46*(x(i+1,2)-x(i-1,2)) 
 
is related to Eq.(3) in Chapter 3. 
 
If we type the following command in MATLAB Command Window,  

 
[tonal_components, indices1] = get_tonal_comp(power_spectrum) 

 
The input: power_spectrum contains the same data as Test 1 in Appendix C. We will 
get the following results, 
 
tonal_components = 
 
  1.0e+003 * 
 
    0.3879    0.0581 
    0.7660    0.0332 
    0.9891    0.0265 
    1.5282    0.0272 
    1.8718    0.0397 
    2.0781    0.0467 
    2.5091    0.0417 
    2.6367    0.0439 
    2.8638    0.0372 
    3.0911    0.0350 
    3.3482    0.0406 
    3.4672    0.0391 
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    3.5950    0.0350 
    3.8641    0.0268 
 
 
indices1 = 
 
    37 
    72 
    93 
   143 
   175 
   194 
   234 
   246 
   267 
   288 
   312 
   323 
   335 
   360 
 
The data in variable tonal_components is a list of frequency and SPL values. They 
will be used in the later SPL Excess and Spectral Pitch calculations, and also being 
used to generate the plot for Tonal Components. The data in variable indices1 is the 
row indices of the local maximal samples. The relations between local maximal 
sample and tonal components can be found in Section 3.2. More information about 
the other MATLAB functions can be found in Appendix A.  
 
4.7 How to Show the Computational Results? 
 
After we have the matrices for power spectrum, tonal components, SPL excesses, 
spectral pitches pattern and virtual pitch pattern, we want to present them in one 
figure and list them as different plots.  We wrote a Script M-file, namely “show.m” 
which use MATLAB functions “subplot” and some auxiliary functions defined by us, 
such as “show_spectrum” and “show_stem”.  
 
function show(ps) 
%show all the figures for the model  
 
%show the power spectrum in first plot 
%'show_spectrum' is a function we defined using Matlab's 'plot' function 
subplot(5,1,1); show_spectrum(ps) 
 
%get tonal components 
[tc1,idx1]=Get_tonal_comp(ps) 
 
%show the tonal components in second plot 
%'show_stem' is a function we defined using Matlab's 'stem' function, y is between 1 
%to 5. 
subplot(5,1,2); show_stem(tc1) 
ylabel('SPL(dB)') 
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%get the SPL excess  
[tc2,idx2]=Get_spl_excess(ps,tc1,idx1) 
 
%show the SPL excess value in third plot 
subplot(5,1,3); show_stem(tc2) 
ylabel('SPL EXCESS') 
 
%calculate spectral pitch, pitch shift, spectral weight  
[spec_pitch,pitch_shift]=Get_spectrum_pitch(tc1,idx2) 
spec_weight=Get_sp_weight(tc2) 
 
%show WS in fourth plot 
subplot(5,1,4); show_stem(spec_weight) 
ylim([0 1]) 
ylabel('WS') 
 
%calculate virtual pitch  
vpp_input=Get_SP_Pattern(pitch_shift,spec_weight) 
vpp_output=Get_VP_Pattern(vpp_input) 
 
%show Virtual Pitch weight in fifth plot 
subplot(5,1,5); stem(vpp_output(:,1)/1000,vpp_output(:,3),'fill') 
xlim([0 5]) 
xlabel('Frequency(KHz)') 
ylabel('WP') 
 
 
The auxiliary function show_spectrum.m is as follows. 
 
function show_spectrum(x) 
% show spectrum 
 
plot(x(:,1)/1000,x(:,2)) 
ylabel('SPL(dB)') 
xlim([0 5]) 
 
 
The auxiliary function show_stem.m is as follows. 
 
function show_stem(x) 
% show stem 
 
stem(x(:,1)/1000,x(:,2),'fill') 
xlim([0 5]) 
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4.8 Model Testing 
 
Let us see some of the testing result from our Tonality MATLAB model, which 
shows the plots of power spectrum, tonal components, relevant tonal components 
(SPL excess), spectral pitch pattern, and virtual pitch pattern.  
 
 

 
 

Figure 4.4 Pitch analysis of a natural speech vowel /a/ 
 
Figure 4.4 shows the pitch analysis of a natural speech vowel /a/. It contains 5 plots.  
The first one is the plot of power spectrum. The second one is the tonal components 
extracted from power spectrum. We can see that not all of the peaks in power 
spectrum can be extracted as tonal components. Only ten of them, which satisfy the 
requirements in the algorithm, can be extracted. The third one is the relevant tonal 
components whose SPL Excess is larger than zero. We can see that from ten tonal 
components only five of them the SPL excess is larger than zero. The fourth one is the 
spectral pitch pattern, represented by SP weight (WS). SP weights shows the extend 
to which each relevant tonal component contributes to the entire tonal percept. The 
fifth one is the virtual pitch pattern, represented by VP weight (WP). Both the fourth 
and fifth plots are final results from our MATLAB model. The abscissas of all the 
plots are for frequency. The ordinates of the first three plots are for SPL value, while 
the ordinates of the other two are for pitch weight value. Only the five most prominent 
virtual pitches are shown in order to simplify the plot. We can see that the most 
prominent of all pitches is the virtual pitch, which corresponds to the fundamental 
frequency.   
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Figure 4.5 Pitch analysis of an artificial complex tone produced in Brüel & Kjær 
Sound Quality Type 7698 

 
Figure 4.5 shows the pitch analysis of an artificial complex tone produced in B&K 
Sound Quality Type 7698. It contains 5 plots. The first one is the plot of power 
spectrum from which we can easily see the nine peaks. The second one is the tonal 
components extracted from power spectrum. We can see that all the peaks can be 
extracted as tonal components.  The third one is the relevant tonal components whose 
SPL Excess is larger than zero. We can see that from nine tonal components only six 
of them the SPL excess is large than zero. So we only get six relevant tonal 
components. The fourth one is the spectral pitch pattern, represented by SP weight 
(WS). SP weights shows the extend to which each relevant tonal component 
contributes to the entire tonal percept. The fifth one is the virtual pitch pattern, 
represented by VP weight (WP). Both the fourth and fifth plots are final results from 
our MATLAB model. The abscissas of all the plots are for frequency. The ordinates 
of the first three plots are for SPL value, while the ordinates of the other two are for 
pitch weight value. Only the five most prominent virtual pitches are shown in order to 
simplify the plot. We can see that the most prominent of all pitches is the virtual pitch, 
which corresponds to the fundamental frequency.   
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Chapter 5 Implementation of Tonality Metric for SQ 
Application in VC++ 
 
After we made Tonality MATLAB model, we are in the stage to implement the same 
algorithm in VC++ for SQ application. We need to follow the program structure used 
in SQ application in order to make Tonality metric work, and that is to define COM 
components for Tonality metric. Section 5.1 contains the relevant principles about 
how COM component being used in SQ application, Section 5.2 contains the 
explanation of the relevant VC++ implementation.  
 
5.1 How COM Component being used in our Project? 
 
This part of our project work is based on Joseph Emmanuel Amuah’s final thesis 
“Sound Quality User-defined Cursor Reading Controls”, which gave us a very good 
basic understanding of B&K Sound Quality Program and a very good starting point 
for using ATL to make the specific control for Tonality in VC++.   
 
“ATL is the Active Template Library, a set of template-based C++ classes with which 
you can easily create small, fast Component Object Model (COM) objects.”  

5.1.1 What is a Template Library? 
 
A template is somewhat like a macro. As with a macro, invoking a template causes it 
to expand (with appropriate parameter substitution) to code you have written. 
However, a template goes further than this to allow the creation of new classes based 
on types that you pass as parameters. These new classes implement type-safe ways of 
performing the operation expressed in your template code. 
 
Template libraries such as ATL differ from traditional C++ class libraries in that they 
are typically supplied only as source code (or as source code with a little, supporting 
run time) and are not inherently or necessarily hierarchical in nature. Rather than 
deriving from a class to get the functionality you desire, you instantiate a class from a 
template.                                                                                                                   [5.1]         

5.1.2 More about COM Programming 
 
First of all, a clear understand of COM is very important.  
 
“COM is a specification and a set of services that allow you to create modular, 
object-oriented, customisable and upgradeable, distributed applications using a 
number of programming languages.” 

 
COM is not about any particular type of application. It’s not about controls (that’s 
ActiveX); it’s not about compound documents (that’s OLE); it’s not about data access 
(that’s OLE DB and ADO); and it’s not about games and graphics (that’s DirectX). 
But COM is the object model that underlies all these technologies.                       
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COM programming splits roughly into two parts: server and client. The former is 
generally regarded as being the more difficult, and involves the actual creation of 
COM components. Assisting with this process is the purpose for which ATL is 
primarily intended. Client programming, on the other hand, is comparatively simple: 
it involves writing code that makes use of the components that you or a third party 
have created.                    [5.2] 
 
Furthermore, COM components can be implemented in two types of code modules: 
DLLs and EXEs. In addition, COM components can run on machines remote to the 
client. There are many technologies you need to know in order to understand COM 
precisely, but here we focus on the understanding of the relevant technology we need 
to use in our project.  

5.1.3 What is Dynamic Link Libraries (DLL)? 
 
Dynamic link libraries (DLLs) are a very powerful feature of the Microsoft® 
Windows® operating system. In the MS-DOS environment, all a program’s object 
modules were statically linked during the build process. Windows allows dynamic 
linking, which means that specially constructed libraries can be loaded and linked at 
runtime. Multiple applications can share dynamic link libraries (DLLs), which saves 
memory and disk space. Dynamic linking increases program modularity because you 
can compile and test DLLs separately.  

5.1.4 Using COM in SQ Application 
 
The current SQ application requires that any Cursor Reading Control must be 
implemented as a COM component, and this COM component must be implemented 
in a DLL (Dynamic link library). We can see from Figure 5.1 that, this DLL, which 
contains the specific control, is an in-process server of SQ application. 
 

    
           SQ Application 
           (Client Process) 

Interface 
Class in SQ

 
(Client) 

         Server DLL 

Cursor 
Reading 
Control 

 
(Server) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Communications Between SQ Application and Cursor Reading Control 
 
Now let us go into more detail of how the Cursor Control Class exposes its 
functionality to the host SQ application and how the SQ Interface Class 
communicates with the control. The Interface Class is the only way that the SQ 
application can communicate with the Cursor Control Class. You can see from Figure 
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5.2 that it is similar to Fig. 6.0 in Joseph’s report except that the functions on the 
interface are shown in the order in which they are called. 
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implemented by the object. The table represents the interface, and the functions to 
which it points are the methods of that interface. An object can expose as many 
interfaces as it chooses. Each interface is based on the fundamental COM interface, 
IUnknown.”                                                                                                              [5.1] 
 
COM uses the word interface in a different sense from that typically used in C++ 
programming. A C++ interface, such as we used in “SQ Interface Class”, refers to all 
of the functions that a class supports and that clients of an object can call to interact 
with it. A COM interface refers to a predefined group of related functions that a COM 
class implements, but a specific interface does not necessarily represent all the 
functions that the class supports. When the term “interface” is used in the following 
part of this report, it refers to an implementation in code of a COM binary-compliant 
interface that is associated with an object. 
 
There are three kinds of interfaces, early binding interface, late binding interface and 
dual interface. Binding describes how clients access properties and methods of a 
server. If your client can detect at compile time what object a property or method 
belongs to, it can resolve the reference to the object at compile time. The compiled 
executable contains only the code to invoke the object's properties, methods, and 
events. This is called early binding. Another situation is if your client was written 
before your COM object, it can’t get any information of the server at compile time. So 
it must query the COM object at run time to find the properties, methods, and events 
supported by COM object. This is called late binding. Dual interface means that 
functions and parameters are supported both through custom definition and through 
COM interface IDispatch. Dual interfaces permit COM objects to support both early 
binding and late binding. Dual interface combines speed and flexibility. For this 
reason, dual interfaces are recommended whenever possible. Dual interface is being 
used when writing COM components for the SQ application.  
 
For our tonality control, we only need to define one dual interface based on the COM 
interface IDispatch, which is inherent from the fundamental COM Interface, 
IUnknown.  

 
 
  
 
 
 
 
 
 
 

                   IDispatch
  
 
 
ISQC_TonalityCur 
       (Interface)     

CSQC_TonalityCur
(component) 

 
Figure 5.3 COM Diagrams for Tonality Cursor Control Class 

 
Actually no specific code needs to be written for interface definition because all the 
definition can be easily done by means of ATL.  
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5.1.5 More about COM Interface 
 
In the following part of this section, we will first introduce the notions, Interface 
Definition and Interface Implementation. Second we will discuss the difference 
between these two concepts. Last we will introduce The Interface Definition 
Language (IDL), which is used to write interface definition, and furthermore we 
present the concept of type library, which is best thought of as a binary version of an 
Interface Definition Language (IDL) file.  
 
• Interface Definition and Interface Implementation 
 
COM makes a fundamental distinction between interface definitions and their 
implementations. An interface is actually a contract that consists of a group of related 
function prototypes whose usage is defined but whose implementation is not. These 
function prototypes are equivalent to pure virtual base classes in C++ programming. 
An interface definition specifies the interface's member functions, called methods, 
their return types, the number and types of their parameters, and what they must do. 
There is no implementation associated with an interface.                                        [5.1] 
 
An interface implementation is the code a programmer supplies to carry out the 
actions specified in an interface definition. Implementations of many of the interfaces 
a programmer can use in an object-based application are included in the COM 
libraries. However, programmers are free to ignore these implementations and write 
their own. An interface implementation is to be associated with an object when an 
instance of that object is created, and the implementation provides the services that 
the object offers.                                                                         [5.1] 
 
The interface definition would not specify how the functions are to be implemented in 
code. In implementing the interface, different programmers might implement it in 
different ways such as using different data structures and different data flows and 
control flows. Regardless of a particular implementation of the interface methods, the 
in-memory representation of a pointer to an interface, and therefore its use by a client, 
is completely determined by the interface definition. 
 
• How to Understand Interface 
 
Simple objects support only a single interface. More complicated objects, such as 
embeddable objects, typically support several interfaces. Clients have access to a 
COM object only through a pointer to one of its interfaces, which, in turn, allows the 
client to call any of the methods that make up that interface. These methods determine 
how a client can use the object's data.                                                                      [5.1] 
 
Interfaces define a contract between an object and its clients. The contract specifies 
the methods that must be associated with each interface and what the behaviour of 
each of the methods must be in terms of input and output. The contract generally does 
not define how to implement the methods in an interface. Another important aspect of 
the contract is that if an object supports an interface, it must support all of that 
interface's methods in some way. Not all of the methods in an implementation need to 
do something—if an object does not support the function implied by a method, its 
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implementation may be a simple return or perhaps the return of a meaningful error 
message—but the methods must exist.                                                           [5.1] 
 
• The Interface Definition Language  
 
Although ATL makes COM programming more simple in a way that you do not need 
to define the interfaces by your own code. Instead, you just follow some instructions 
and set-up some dialogs, then ATL will help you generate the code for interface 
definition.  But understanding of how an unambiguous definition of the interfaces is 
implemented will be very helpful for you to understand the technology behind ATL 
COM programming. Interface definition is achieved by means of The Interface 
Definition Language (IDL). 
 
The Interface Definition Language (IDL) is used to provide complete definitions of 
COM interfaces, and it allows us to associate the methods of an interface with its IID 
(Interface Identifier), to specify details of the interface in a form that can be machine-
processed to produce marshalling code, and to instruct clients and servers on how they 
should allocate and deallocate memory.                           [5.2]
                                                                        
• Type Library 
 
COM is a binary standard for component implementation and integration, and 
therefore the language used to build or call COM objects is irrelevant. Since our 
component is already built on COM, you might wonder why anything special is 
required to make it accessible to developers using other languages. Well, to make a 
component more accessible to developers working in other languages, you need to 
create a type library.                                                                                                 [5.1] 
 
A type library is best thought of as a binary (or compiled) version of an Interface 
Definition Language (IDL) file. It contains a binary description of the interfaces 
exposed by a component, defining the methods along with their parameters and return 
types. Many environments support type libraries: Visual Basic, Visual J++, and 
Microsoft Visual C++® all understand type libraries; so do Delphi, Microsoft Visual 
FoxPro®, and Microsoft Transaction Server. Rumor says that the next version of 
Microsoft (Visual) Macro Assembler will support COM via type libraries.                            
[5.1] 
 
5.2 Tonality Implementation in VC++ 
 
Before starting to write VC++ code, there are several things that we need to consider. 
One is what kinds of Data Structures should be used to store the data that we 
manipulate in each steps of the algorithm; the second is the data flow of our program 
based on the data structure we use. The first problem is solved by using the Vector 
Container Type, which is part of C++ Standard Template Library (STL), and the 
second problem is solved by using the analysis of our previous work, please refer to 
Figure 4.1 DFD for Tonality Model. In the following part of this section, we will 
highlight some special points, which proved to be very helpful for making the 
Tonality Control in VC++. 
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5.2.1 Why Choose Vector Container Type? 
 
For the purposes of making Tonality Control, We firstly think about using Array. In 
C++, An array is a collection of objects of a single data type. Each element is 
accessed by its position in the array, which is called indexing or subscripting. If the 
number of elements to be stored is known at compile time, an array can be used. 
Apparently this is not suitable for our purpose, because in each procedure the result of 
the calculation is generated dynamically, the number of elements to be stored is 
unknown and likely to vary widely. So using dynamically allocated storage for each 
object turns out to be a better way, and sequence container types are considered. A 
sequence container holds an ordered collection of elements of a single type. The 
sequence container types in VC++ includes, the vector, the deque, and the list, which 
all grow dynamically.  
 
The vector class provides an alternative representation to the built-in array, and its 
usage is highly recommended by experienced programmers. The vector class is part 
of the standard library introduced with Standard C++.    
 
There are two very different forms of using a vector, the array idiom and the STL 
idiom.  The array idiom is analogous to defining a built-in array.  In the STL idiom, a 
vector is used very differently. Rather than define it with a given size, we define an 
empty vector. Rather than using index and assign to an element, we instead insert an 
element into the vector. There are some STL functions in Visual C++ that we can use 
to operate the vector. The following list contains some of them, which are frequently 
used in our code. 
 
• vector::begin - Returns an iterator to start traversal of the vector. 
• vector::end - Returns an iterator for the last element of the vector. 
• vector::push_back - Appends (inserts) an element to the end of a vector, allocating 

memory for it if necessary. 
• vector::iterator - Traverses the vector. An iterator is a standard library class that 

represents the functionality of a pointer. One can dereference the iterator and 
access the actual object addressed.  

• vector::size - Returns number of elements in the vector. 
• vector::erase - Deletes elements from a vector (single & range). 
 
The second form of vector, the STL idiom, is chosen due to the dynamic nature of the 
problem. Let’s see an example about how to define power spectrum as a vector type 
in C++ code. The considerations are, power spectrum of a signal can be presented as a 
list of frequency and SPL pairs. In C++, the pair class is part of the standard library, 
and allows us to associate two values of either the same or different types within a 
single object. So this is defined in, POWER_SPECTRUM_ITEM, which contains the 
pair of two double values. In fact these two double values refer to frequency and SPL 
respectively. Then we define a vector type, POWER_SPECTRUM, which contains 
POWER_SPECTRUM_ITEM. The code is as follows, 
 
#include <vector> 
using namespace std ; 
typedef struct pair<double, double> POWER_SPECTRUM_ITEM ; 
typedef vector<POWER_SPECTRUM_ITEM> POWER_SPECTRUM; 
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We have also defined some other vector types, such as SPECTRUM_PITCH, 
SPECTRUM_PITCH_SHIFT, SPECTRUM_PITCH_WEIGHT, SP_PATTERN, 
VP_PATTERN. For more information about the other vector type definitions, please 
refer to the header file, SQC_TonalityCur.h in Appendix B.   
 
Especially, we want to mention the definition of the following vector for the purpose 
of remembering the indices as shown in Figure 4.1. 
 
typedef vector<POWER_SPECTRUM::iterator> INDICES; 
 
We define the INDICES as a vector type contains the iterator of 
POWER_SPECTRUM. So actually INDICES is a vector type contains pointers, 
which can be used to dereference and access the actual object addressed.  
 

5.2.2 Using Pointers 
 
Dynamic memory allocation and pointer manipulation is a fundamental aspect of real-
world programming in C++. It is very efficient to transfer the pointer to a vector 
instead of the whole vector when you call some sub functions from the main function 
because it provides a way that can avoid transferring the whole variable, but only a 
pointer to that variable instead. It becomes more efficient when the variable needs big 
storage space.   
 
Let’s look at an example of the Get_Tonal_Comp function. This procedure is used 
after we call Get_Power_Spectrum. We need to transfer three pointers as 
parameters, which are referred to three real variables. After calling this function, the 
real variables’ value is changed because the pointers we use in this function 
definition. The first variable to this function call is the input, while the other two 
variables are the output because we assigned new values to them. 
 
Void CSQC_TonalityCur::Calc::Get_Tonal_Comp 
                                  (POWER_SPECTRUM *pPS, POWER_SPECTRUM *pTC, INDICES *p_idcs1)  
{ 
 POWER_SPECTRUM::iterator i; 
 POWER_SPECTRUM_ITEM tc_item; 
 for( i = pPS->begin()+3; i != pPS->end()-3 ; i++) 
 { 

if ((*i).second >= (*(i+1)).second && (*i).second > (*(i-1)).second && (*i).second –  
    (*(i-3)).second >=3 && (*i).second - (*(i-2)).second >= 3 && (*i).second –  
    (*(i+2)).second >=3 && (*i).second - (*(i+3)).second >= 3)  

  { 
       tc_item.first = (*i).first+0.46 * ((*(i+1)).second - (*(i-1)).second); 
       tc_item.second =(*i).second; 
       pTC->push_back(tc_item); 
       p_idcs1->push_back(i);  
  }   
 } 
} 
 
More explanation should be given for the last two lines in for loop. The first line pTC-
>push_back(tc_item) means to save the result into the vector by means of push_back 
method which is provided by the vector container type in Standard Type 
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Library(STL) in Visual C++.  The second line p_idcs1->push_back(i) means to save 
the iterator of the current items which you just saved. An iterator can also be 
understood as a pointer to the current element or item in the vector in our usage. 
While precisely speaking, an iterator provides a general method of successively 
accessing each element within any of the sequential or associative container types. 
For more information about iterator of vector container types, STL or pointers, please 
refer to reference [5.3]. 
 
On the other hand, using pointers might cause some problems in some situations. For 
example, if you have a variable, which needs a large space to store the relevant 
information, and more than two pointers refer to it in your application. Let us assume 
a situation as follows: you have such two procedures in your main program, which 
use these two pointers respectively. Then what happened when both of the procedures 
trying to access the same variable? Yes, it will cause some security problems--make 
the data in the variable unsafe.  So how can we solve it and avoid this kind of security 
problems?  
 
Actually the ultimate problem of this question is also one of the most critical issues of 
the design of libraries and long running programs, that is memory management. A 
library writer doesn’t in general know if a library will be part of an application where 
memory is scarce, where a memory leak would be a serious problem, or where 
memory-management overhead could be a serious liability.  
 
The fundamental question about memory management can be stated in this way: If f() 
passes or returns a pointer to an object to g(), who is responsible for the object’s 
destruction? A secondary question must also be answered: When can it be safely 
destroyed? In particular, these questions are critical to designers and users of 
container classes, such as lists, arrays, and associative arrays. From the point of view 
of a library provider, the ideal answers are “the system” and “whenever nobody is 
using the object any longer.” A system doing this is usually said to be garbage 
collecting, and the part of the system that determines that nobody uses a given object 
and destroys it is called the garbage collector.                                                         [5.4]                               
 
Unfortunately, garbage collection implies overheads in runtime and space, service 
interruptions, special supportive hardware, trouble with linking to program fragments 
written in other languages, or system complexity. This, many users cannot afford. 
Consequently, although garbage collecting implementations of C++ exist, most C++ 
programs cannot rely on garbage collection and must devise strategies for managing 
objects on the free store without help from the system.              [5.4] 
 
Garbage Collection can be seen as a way of simulating an infinite memory in a 
limited memory. For more information about Garbage Collection, please refer to [5.3] 
and [5.4].  
 
This kind of security problem can be solved in C++ programming by using Exception 
Handling in both procedures to protect the same variable, in each procedure, use 
dynamic memory allocation and deallocation for the pointer. Exception handling is a 
mechanism that allows two separately developed program components to 
communicate when a program anomaly, called an exception, is encountered during 
the execution of the program. It is similar idea as critical region in Concurrent 
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Programming. Exception handling provides a way of transferring control and 
information from a point in the execution of a program to an exception handler 
associated with a point previously passed by the execution. A handler will be invoked 
only by a throw-expression invoked in code executed in the handler’s try-block or in 
functions called from the handler’s try-block. For more information about exception 
handler, throw-expression and try-block, please refer to [5.4]. Dynamic memory 
allocation and deallocation in C++ means that objects are allocated by a run-time 
library, which invoked during program execution. Contrariwise, for static memory 
allocation, the objects are allocated by the compiler as it processes the program source 
code.  Whenever using the dynamic memory allocation, one needs to remember to 
delete the dynamically allocated memory. Otherwise it ends up with a memory leak. A 
memory leak is a chunk of dynamically allocated memory that we no longer have a 
pointer to, and thus we cannot return it to the operating system for later reuse.  
 
Actually, we simply solve this security problem in our C++ program by making sure 
that no pointers access the same variable at the same time. We think it is the easiest 
and the most convenient way to solve the problem and we do not need to bother too 
much about the usage of Exception Handling, which is a little bit complicated for us 
to try when we have strict project time limitation. 

5.2.3 Using The Generic Algorithms 
 
In the VP Pattern calculation procedure in Tonality algorithm, we need to sort the SP 
Pattern in terms of descending WS (Spectrum Weight). Many sorting algorithms                              
exist, such as Bubble Sort, Heap Sort, Insertion Sort, Merge Sort, Quick Sort and so 
on. But the most efficient way to solve this problem is not to write our own algorithm, 
but to use the Generic Algorithms in VC++. Generic Algorithm is also part of 
Standard Template Library (STL).  
 
To find the minimum or maximum value among the elements of a vector, we must 
instead invoke one of the generic algorithms: “algorithms” because they implement 
common operations such as min(), max(), find(), and sort(); “generic” because they 
operate across multiple container types—not only the vector and list types, for 
example, but also the built-in array type. The container is bound to the generic 
algorithm operating on it by an iterator pair marking the elements to traverse.       [5.3] 
 
Each generic algorithm is implemented independently of the individual container 
types. Because the type dependence of the algorithm has been removed, a single 
template instance can work across all the container types as well as the built-in array 
type.                                                                                                                          [5.3] 
 
For more information about the mechanism of Generic Algorithms, Please refer to 
reference [5.3] and [5.1]. Let’s look at an example from my VC++ code to show how 
we use it when we need to solve our specific problem. 
 
The structure and type definition defined in the header file.  
 
struct VP_PATTERN_ITEM 
{ 
 double frequency; 
 double vp_pitch; 
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 double vp_weight; 
 bool operator<(const VP_PATTERN_ITEM &vp_pattern_item) const 
 { 
  return vp_weight<vp_pattern_item.vp_weight; 
 } 
}; 
 
typedef vector <VP_PATTERN_ITEM> VP_PATTERN; 
 
Now Sorting the vector becomes so easy by means of the Generic Algorithms.  
 
//Sort in terms of descending WS 
void  CSQC_TonalityCur::Calc::Sort_VP_Pattern(VP_PATTERN *pVP_Pattern) 
{ 
 //sorts increasingly 

sort(pVP_Pattern->begin(), pVP_Pattern->end()); 
 
//change the increasing order into descending order 
reverse(pVP_Pattern->begin(), pVP_Pattern->end()); 

} 
 

5.2.4 Object-based Programming 
 
Object-based programming means the definition and use of C++ class facility to 
define new types that can be manipulated as easily as built-in types. By creating new 
types to describe the problem domain, C++ allows the programmer to write 
applications that are easier to understand. Facilities for encapsulating the data and 
functions supporting the implementation of the new type can simplify subsequent 
maintenance and evolution of our application dramatically.              [5.3] 
 
For a specific implementation, the decision on how to use class depends on the 
specific algorithm. For our program, the data flow of different functions is very clear, 
and the input and output of each function do not require very complicated data 
structure, and we can not really extract the base class and derived class so that we do 
not need to use inherence. But from the upper level of the algorithm, it will be nice if 
we encapsulate the Tonality metric calculation in one class, and make some privileges 
of different data members and member functions. Another advantage of using class in 
our implementation is that it can be instantiated according the user’s usage of 
channel(s). We will present the idea and the usage of class in the following part. 
 
The considerations we have taken into account for our project is we need to figure out 
a way that should be the best and not that complicated, and specifically to solve our 
problem within the project period. So it put us in some situations that we must choose 
something that we think it is better for our project. Such as we choose the Vector 
Container Type to use instead of using the other sequence container types, such as the 
deque or the list, it is mainly because it is highly suggested by some experienced 
programmer and we also feel it is exactly fit our specific problem. Moreover, why we 
want to mention about Object-Based Programming in this report is also because some 
of the considerations during the project period. In the first version of our VC++ 
program, we did not use class at all, which does not mean no class in the whole ATL 
COM programming, but means that no class considerations in our own codes. The 
drawback of our first version of VC++ program is as follows, First one should know 
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that SQ application provide single channel or dual channel measurement, through the 
one of the Interface Methods _Compute, one could tell which is the case. Our 
problem is we must consider the maximum channels that a user could use is two, so 
that we declare twice for all the variables for both left and right channels, which might 
cause some waster of memory allocation, if you only need one channel. Because the 
variable declarations are done at compile time (not for the vector type, because vector 
encapsulate the dynamic memory allocation characteristics inside the Vector class), 
but any way, it is not convenient and waster of space, so that leads us to think about 
using some concepts in Object-based programming. Encapsulating all the calculation 
procedures in one class, let’s say it is called Calc, is a good idea, because we can 
make it in a way that it declare all the relevant variables as protected data members, 
declare the upper level functions as protected member functions, and declare the other 
lower level functions as private member functions, furthermore, the only public 
member function, which can be accessed by the interface method, is Get_Tonality 
function. It uses all the necessary functions to get Tonality calculation result. For 
more information about the class Calc definition, please refer to SQC_TonalityCur.h 
for the class declaration, and SQC_TonalityCur.cpp for the class definition in the 
source code in Appendix B.  
 
Now Let us move into another topic on how we use class Calc in interface method, 
_Compute. There are two channels available in a SQ project. The user can use either 
single channel or dual channels for a certain measurement. By encapsulating all 
Tonality calculations in a class called Calc, and in the interface method _Compute of 
Tonality Cursor Reading Control, class CSQC_TonalityCur, the program 
automatically detect which channel(s) the user is currently using, then initialise the 
class Calc, and call its member function Get_Tonality to complete the calculations. 
Get_Tonality is the only public member function in Calc class, the reason is that we 
want to encapsulate all the data members and other member functions in the class, and 
the only way to access the class is through member function Get_Tonality. The 
following code is the implementation for the interface method _Compute.  
 
STDMETHODIMP CSQC_TonalityCur::_Compute(double *Lin, double *Rin, double *mLin, double 
*mRin, double *Lout, double *Rout) 
{ 
 AFX_MANAGE_STATE(AfxGetStaticModuleState()) 
 
 // TODO: Add your implementation code here 
 if (Lin != NULL)  
 { 
  Calc* Left_Calc = new Calc; 
  Left_Calc->Get_Tonality(Lin); 
  delete Left_Calc;   
     } 
 if (Rin != NULL) 
 { 
  Calc* Right_Calc = new Calc; 
  Right_Calc->Get_Tonality(Rin); 
  delete Right_Calc; 
 } 
 return S_OK; 
} 
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For more information about class CSQC_TonalityCur, Please refer to the header file 
SQC_TonalityCur.h and the definition of the class in file SQC_TonalityCur.cpp in 
Appendix B. 
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Chapter 6 Testing of MATLAB and VC++ Program 
 
MATLAB and VC++ code for Tonality are based on the same Data Flow (Figure 
4.1), so they have the same main functions and the similar computational results from 
each function. The way we test them is to validate the difference of computational 
results from each main function is small enough.   
 
Power Spectrum data, the result of FFT analysis, is the input data for both MATLAB 
Model and VC++ implementation. So that it will be perfect if we can input the same 
power spectrum data into both of them. But these two input data are a little bit 
different because the way we get them is not the same. 
 
For MATLAB, we get the Power Spectrum data from B&K SQ Application, export 
into EXCEL, and then transfer them to MATLAB.  The procedure is limited by the 
applications we use so that it is not possible for us to change the precision of the input 
data. 
 
For VC++, we calculate Power Spectrum in the following function,  
 
void CSQC_TonalityCur::Calc::Get_Power_Spectrum(double *Din, POWER_SPECTRUM *pPS) 
{ 

POWER_SPECTRUM_ITEM ps_item;    
//ps_item: power spectrum item, it is a pair of frequency and dB value. 

 
 const No_Of_SAMPLES = 401; 
 for (int i = 0; i < No_Of_SAMPLES; i++) 
 { 

POWER_SPECTRUM_ITEM* ps_item = new POWER_SPECTRUM_ITEM; 
 
//calculate frequency 

         ps_item.first=(i*11025.)/(400.*2.56);   
 

//get dB value 
 ps_item.second=20. * log10(Din[i]) + 94.   ;   

 
  //save the pair of frequency and dB value to vector.  

 pPS->push_back(ps_item);   
 } 
} 
 
Din is the Input Data from left or right channel of B&K SQ Application, which is 
represented as double type array. Later, we calculate the frequency and dB values for 
each sample. 
 
The following table shows an example of different precisions between the Power 
Spectrum data to MATLAB and VC++. They come from the same signal from B&K 
SQ application.  
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MATLAB VC++ 
Frequency (Hz) SPL (dB) Frequency (Hz) SPL (dB) 
0.0000    
10.7666   
21.5332   
32.2998   
43.0664   
53.8330   
64.5996   
75.3662   
86.1328   
96.8994 
… 

56.2787 
54.3696 
47.1922 
42.9453 
38.7051 
34.7855 
30.6750 
30.9614 
34.4380 
47.6942 
… 

0.00000000000 
10.7666015625 
21.5332031250 
32.2998046875 
43.0664062500 
53.8330078125 
64.5996093750 
75.3662109375 
86.1328125000 
96.8994140625 
… 

56.299313566358919 
54.390231318086556 
47.212799468536033 
42.965851238165897 
38.725731869053199 
34.806115168988541 
30.695610691174878 
30.981955980834996 
34.458624572923227 
47.714788494471001 
… 

 
Table 6.1 Different precisions for the Power Spectrum data in MATLAB and VC++ 

 
Even through both MATLAB and VC++ perform all computations in double 
precision after they get the input data, but we must accept the fact that the original 
input data into these two implementations have a little bit difference, and the 
difference is restricted by the applications and programming languages we use. 
 
On the other hand, we think this little difference can be neglected and the two 
programs can be validated in a way of showing the consistency between them.  
 
The following two tests performed on our MATLAB model and VC++ 
implementation. Power Spectrum of Test1 and Test2 can be found in Appendix C.  
Because the two programs implement the same algorithm and follow the same data 
flow, so that comparable results can be shown according to the Data Stores in DFD of 
Figure 4.1.   
 
Due to the different programming approach, D2 and D4 have no comparability. So we 
did not consider them.  
 
The calculations of value difference do not consider the frequency values because 
they are almost the same. We calculate the value difference of Tonal Components in 
the following way,  
 
(SPL2-SPL1)/SPL2 
 
SPL1: The SPL value of Tonal Components in MATLAB. 
SPL2:  The SPL value of Tonal Components in VC++. 
 
The similar calculations of value difference are carried out for all the other 
comparable computational results. 
 
• Test 1  
 
The difference of Power Spectrum data is maximal 0.19%, we think this can be 
neglected. The Difference of Tonal Components data is between 0.03% and 0.08%. 
We think they are small enough to be ignored. The difference of SPL Excesses has 
two bigger values, that is 5.30% in frequency 989.05 Hz and 2.91% in frequency 
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1528.19 Hz. We think this difference is acceptable because the complexity of the 
calculation procedure for SPL Excess. The difference of Spectral Pitches has only one 
value not equal to 0, which is 0.32% in frequency 387.89 Hz. We think it is small 
enough to be omitted. The Spectral Pitch Shifts have no difference. The difference of 
Spectral Pitch Weights has two bigger values at the same frequencies as SPL 
Excesses, which is 4.26% in frequency 989.05 Hz, and 2.27% in frequency 1528.19 
Hz. This is because the calculation of Spectral Pitch Weights depend on the SPL 
Excesses, so the difference is some how inherited from the SPL Excesses. We think 
this is also acceptable. SP Pattern actually just combines the Spectral Pitch Shifts and 
Spectral Pitch Weights values, and the difference for SP Pattern has the same values 
as what appears in the difference of Spectral Pitch Shifts and Spectral Pitch Weights. 
The difference of VP Pattern contains two columns, one is for the virtual pitch value 
difference, which is maximal 0.34% and the other is for virtual pitch weight value 
difference, which is 1.33%, and we think these differences can be neglected. So Test1 
can be used to conform the agreement between MATLAB and VC++ program. 
 
 MATLAB VC++ Difference 
Power Spectrum  Appendix C Appendix C Max. = 0.19% 
Tonal Components  
 
 
 
 
 
 
 
 
 
 
 

387.89 58.13  
765.95 33.20  
989.05 26.51  
1528.19 27.16 
1871.83 39.69 
2078.14 46.70 
2509.13 41.67 
2636.70 43.89 
2863.81 37.18 
3091.05 35.01 
3348.17 40.62 
3467.18 39.10 
3595.04 35.01 
3864.10 26.76 

387.89 58.15 
765.95 33.22 
989.05 26.53 
1528.19 27.18 
1871.82 39.71 
2078.14  46.72 
2509.12  41.69 
2636.69 43.91 
2863.81 37.20 
3091.05 35.03 
3348.18  40.65 
3467.18  39.12 
3595.05  35.03 
3864.10 26.78 

0.03% 
0.06% 
0.08% 
0.07% 
0.05% 
0.04% 
0.05% 
0.05% 
0.05% 
0.06% 
0.07% 
0.05% 
0.06% 
0.07% 

SPL Excesses  
 
 
 
 

387.89 39.02  
765.95 12.86  
989.05  9.11   
1528.19 9.67  
1871.83 10.35 
2078.14 16.20 
2509.13 1.52  
2636.70 3.04 

387.89 39.29 
765.95  12.95 
989.05  9.62 
1528.19  9.96 
1871.82 10.37 
2078.14 16.23 
2509.12 1.52 
2636.69 3.04 

0.69% 
0.69% 
5.30% 
2.91% 
0.19% 
0.18% 
0.00% 
0.00% 

Spectral Pitches  
 
 
 

387.89   388.10   
765.95 788.11   
989.05 1014.15  
1528.19 1549.35 
1871.83 1914.71 
2078.14 2119.70 
2509.13 2624.00 
2636.70 2737.91 

387.89 389.35 
765.95  788.12 
989.05 1014.16 
1528.19 1549.34 
1871.82 1914.71 
2078.14 2119.70 
2509.12 2624.01 
2636.69  2737.92 

0.32% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

Spectral Pitch Shifts 
  
 
 

387.89 0.00  
765.95 0.03  
989.05  0.03  
1528.19  0.01 
1871.83  0.02 
2078.14  0.02 
2509.13  0.05 
2636.70  0.04 

387.89 0.00 
765.95 0.03 
989.05 0.03 
1528.19 0.01 
1871.82 0.02 
2078.14 0.02 
2509.12 0.05 
2636.69 0.04 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

Spectral Pitch Weights  387.89 0.88  387.89 0.88 0.00% 
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 765.95 0.58  
989.05 0.45  
1528.19 0.43 
1871.83 0.43 
2078.14 0.54 
2509.13 0.07 
2636.70 0.13 

765.95 0.58 
989.05 0.47 
1528.19 0.44 
1871.82 0.43 
2078.14 0.54 
2509.12 0.07 
2636.69 0.13 

0.00% 
4.26% 
2.27% 
0.00% 
0.00% 
0.00% 
0.00% 

SP Pattern  
 

387.89   0.00 0.88  
765.95   0.03 0.58  
989.05   0.03 0.45  
1528.19   0.01   0.43 
1871.83   0.02   0.43 
2078.14   0.02   0.54 
2509.13   0.05   0.07 
2636.70   0.04   0.13 

387.89   0.00   0.88 
765.95   0.03   0.58 
989.05   0.03   0.47 
1528.19   0.01   0.44 
1871.82   0.02   0.43 
2078.14   0.02   0.54 
2509.12   0.05   0.07 
2636.69   0.04   0.13 

0.00%      
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

0.00% 
0.00% 
4.26% 
2.27% 
0.00% 
0.00% 
0.00% 
0.00% 

VP Pattern 
 

77.58       74.06      0.19   
96.97       93.49      0.30   
129.30     125.78    0.49 
193.951   190.43    0.74 
387.89     388.10    0.91 

77.58     74.31     0.19 
96.97     93.80     0.30 
129.30   126.20   0.49 
193.95   191.05   0.75 
387.89   389.35   0.92 

0.34% 
0.33% 
0.33% 
0.32% 
0.32% 

0.00% 
0.00% 
0.00% 
1.33% 
1.09% 

 
Table 6.2 Computational Results from Test1 

 
• Test 2 
 
The maximal difference of Tonal components is 0.02%.  
The maximal difference of SPL Excesses is 0.79%. 
The maximal difference Spectral Pitches is 0.07%. 
The difference of Spectral Pitch Shifts is always 0.00%. 
The difference of Spectral Pitch Weights is always 0.00%. 
SP Pattern is the combination of Spectral Pitch Shifts and Spectral Pitch Weights.  
The difference of VP Pattern contains two columns, one is for the virtual pitch value 
difference, which has the maximal value 0.07%, and the other is for virtual pitch 
weight value difference, which is always 0. 
 
We think all the above differences can be neglected. So Test1 can also be used to 
conform the agreement between MATLAB and VC++ program. 
 
 MATLAB VC++ Difference 
Power Spectrum Appendix C Appendix C Max. = 0.07% 
Tonal Components 387.59 87.87  

807.49 90.96  
1410.41 90.97 
2196.38 87.87 

387.59  87.89 
807.49  90.98 
1410.41  90.99 
2196.38  87.89 

0.02% 
0.02% 
0.02% 
0.02% 

SPL Excesses 387.59 67.83  
807.49 27.40  
1410.41 21.61 
2196.38 13.66 

387.59  68.37 
807.49  27.39 
1410.41  21.59 
2196.38  13.65 

0.79% 
-0.04% 
-0.09% 
-0.07% 

Spectral Pitches 
 

387.59 384.03   
807.49 811.45   
1410.41 1424.82 
2196.38 2235.61 

387.59  384.31 
807.49  811.45 
1410.41  1424.84 
2196.38  2236.57 

0.07% 
0.00% 
0.00% 
0.04% 

Spectral Pitch Shifts 
 

387.59 -0.01 
807.49 0.00  
1410.41 0.01 
2196.38 0.02 

387.59  -0.01 
807.49   0.00 
1410.41   0.01 
2196.38   0.02 

0.00% 
0.00% 
0.00% 
0.00% 
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Spectral Pitch Weights 387.59 0.94  
807.49 0.84  
1410.41 0.71 
2196.38 0.48 

387.59  0.94 
807.49  0.84 
1410.41  0.71 
2196.38  0.48 

0.00% 
0.00% 
0.00% 
0.00% 

SP Pattern  387.59     -0.01    0.94 
807.49      0.00     0.84  
1410.41    0.01     0.71 
2196.38    0.02     0.48 

387.59     -0.01      0.94 
807.49       0.00      0.84 
1410.41     0.01      0.71 
2196.38     0.02      0.48 

0.00% 
0.00% 
0.00% 
0.00% 

0.00%     
0.00%     
0.00%     
0.00%  

VP Pattern 129.20   124.43   0.33 
193.80   188.40   0.36 
201.49   195.94   0.31 
201.87   197.61   0.37 
387.59   384.03   0.37 

129.20     124.52    0.33 
193.80     188.54    0.36 
201.49     195.94    0.31 
201.87     197.61    0.37 
387.59     384.31    0.37 

0.07% 
0.07% 
0.00% 
0.00% 
0.07% 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

 
Table 6.3 Computational Results from Test2 

 
From Test 1 and Test 2, we can see that the relevant results for both MATLAB and 
VC++ code agree with each other very well, even though they have some different 
Power Spectrum as input data. So that the two programs are validated.  
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Chapter 7 Further Study 
 
This chapter introduces Loudness and Aures’s Model of Tonality. The Psychoacoustic 
concepts, which are used in Loudness such as masking patterns, critical bands, bark 
scale, we have introduced in chapter 2. The Stationary Loudness model is built as a 
MATLAB library and tested with a set of reference signals.  
  
7.1 Loudness  
 
Loudness is a description of how human beings perceives the physical sound pressure 
level of a sound. A computational model for loudness must take some of the main 
properties of our hearing into account. The most important ones are masking, 
frequency selectivity, threshold in quiet and on accounting for frontal (free) sound 
field and diffuse sound field (Zwicker, 1981).  

7.1.1 Stationary Loudness and Non-stationary Loudness 
 
There are two types of loudness – stationary loudness for stationary signals and non-
stationary loudness for non-stationary signals.  
 

• A stationary signal is a signal that is perceived by a human as not to change 
over time. For example: noise from waterfall or a tone at constant level. The 
stationary loudness is described in ISO 532 and DIN 45632, and DIN45632 is 
based on the BASIC computer program contained in the German standard 
DIN 45631,1991.  

 
• Non-Stationary signals are signals that are perceived to change over time. For 

example: transient signals, like a hammer hitting a nail, and modulating 
signals, like an alternating ambulance horn. Currently there is no standard for 
the calculation of non-stationary loudness. According to Poul Ladegaard, 
Brüel & Kjær, a standard for non-stationary Loudness is not finished yet. An 
International committee is working on to standardize it. It is expect to be 
standardized within half a year. 

7.1.2 Method A and Method B for Stationary Loudness 
 
There are two methods for calculating Stationary Loudness, according to the 
international Standard ISO 532.  
 

• The first Method A, referred to as Stevens method, utilizes physical 
measurement obtained from spectrum analysis in terms of octave bands.  

 
• The second Method B, referred to as Zwicker’s method, utilizes spectrum 

analysis in terms of one-third octave bands.                                                 
                        

Method B, which is for Stationary Loudness, is the widely used method in Sound 
Quality field and also more complex than the Stevens method A. Method B provides 
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results corresponding well with subjective tests. In our project, we only consider 
Method B. 

7.1.3 Zwicker’s Stationary Loudness Model 
 
Figure 7.1 illustrates the fundamentals in the Zwicker’s stationary loudness model. 
 
 

 
 

Figure 7.1 Zwicker’s Stationary Loudness model 
 
The left panel shows what a narrow band of noise, centred around 1 kHz 
corresponding to 8.5 Bark, will look like on an ordinary analyser. The equal sound 
pressure level of the critical band wide noises is 64 dB. The upper right panel shows 
how it is perceived by the human including its masking pattern. The lower right panel 
shows the specific loudness pattern. That is, the loudness value per critical Bark band 
measured in sone. The masking pattern is transformed into Loudness by use of equal 
loudness contours. The most important feature of this Zwicker loudness model is that 
the area under the specific loudness curve N’ (shaded area) is directly proportional to 
the perceived loudness. This direct relationship is the great advantage of loudness 
patterns in comparison to alternative spectral representations like FFT spectra or 1/3 
octave-band spectra.                                                                                                [7.2]                               

7.1.4 The Standard (ISO R 532) of Stationary Loudness 
 
The procedure for standard Stationary Loudness is based on five empirical relations or 
concepts, according to the Stationary Loudness standard  [7.1]: 
 

• The widest frequency bands in which the loudness level depends only on the 
sound pressure level (critical bands) (in German Frequenzgruppen). 

• A rule relating the total loudness of a sound to the contributions from the 
critical bands (Frequenzgruppen). 
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• A relation between the part of the loudness appropriate to each band and the 
centre frequency of that band. 

• The difference between the equal-loudness contours for frontal (free) sound 
and for a diffuse sound field. 

• A loudness function relating loudness in sones to loudness level in phons, 
which is identical to that given in ISO/R 131. 

 
Figure 7.2 shows the general procedure for calculating the Stationary Loudness 
according to Method B. We will give a brief description of each step. 
 
 
 

SPECTRUM ANALYSIS 
(1/3 Octave Bands) 

CONVERSION TO CRITICAL BANDS

FREQUENCY MASKING 

SPECIFIC LOUDNESS, N’ 

DISPLAY LOUDNESS, N 

TIME SIGNAL  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2 General procedures for calculating the Stationary Loudness according to Method B 
 
 

• Time signal  
 
Any signals you want to analyse for calculate Stationary Loudness.  

 
• Spectrum Analysis 
 
28 1/3 octave filters Spectrum Analysis covering the frequencies audible by the 
human being. 
 
 
• Conversion to critical bands 
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Above 500 Hz, critical bands are approximately one-third octave in width. Since 
the lower one-third octave filters are narrower than 100 Hz, the bands below 500 
Hz are combined to approximate critical bands. The 28 1/3 Octave bands are 
combined to the critical bands in the following way. In the lowest frequency 
region, the one-third octave bands with centre frequencies from 25 to 80 Hz are 
combined to form the first band. The one-third octave bands from 100 to 160 Hz 
are combined to form the next band. The 200 and 250 Hz bands are combined. 
The bands from 315 to 12500 Hz are used individually, since their bandwidths 
approximate critical bands. The DIN 45631 standard describes how to obtain 
values for critical banded based on one-third octave bands. 
 
• Frequency masking 
 
After conversion from 28 1/3 octave bands into 20 Critical bands a correction is 
applied depending whether the environment is a free or diffuse field. The SPL 
values are then converted into loudness values and frequency masking is applied. 
The frequency masking is only for the masking of higher critical bands by lower 
critical bands. The masking of lower critical bands is considered to be negligible. 
 
• Specific Loudness, N’ 
 
Each critical band can be displayed as a specific loudness spectrum, N’.  
 
• Display Loudness, N 

 
We display all bands of specific loudness summed into a single number as 
stationary loudness (Total Loudness), N.  
 

Figure7.3 shows how the Stationary Loudness spectrum displays in B&K SQ 
Application. Total Loudness is the sum of Specific Loudness. The curved line 
represents frequency masking.  The Stationary Loudness is the area under the curve. 
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Figure7.3 The loudness spectrum displays in B&K SQ Application. 
 

 
7.1.5 Testing of MATLAB Loudness Program 
 
We got a preliminary MATLAB program from Torben Poulsen, Ørsted•DTU, 
Acoustic Technology, which implement the calculation procedure for Stationary 
Loudness according to DIN 45631. We modified some of errors, which was in 
MATLAB program and it has been tested and verified by comparing its output with 
B&K Sound Quality results. The source code is provided in Appendix D.  
 
The Stationary Loudness program in B&K Sound Quality Application has been 
validated by Round Robin Tests. So by comparing the results from MATLAB and 
B&K Sound Quality Application, the MATLAB program can be validated if the 
computational results are similar to some extend. 
 
In order to test MATLAB program, a conventional digital CPB analysis is required 
for the spectrum analysis. Frequency region is about 20Hz to 20 kHz. In order to 
transfer the signal from B&K Sound Quality Application to MATLAB, we export the 
spectrum data of CPB analysis from B&K Sound Quality Application into Microsoft 
Excess and then import to MATLAB. 
 
The test signals are different pure tones with different frequency and SPL value. The 
descriptions of test signal types are shown in Table 7.1. The CPB analysis data for 
MATLAB tests are provided in Appendix E. 
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The following table contains the test results for Stationary Loudness from B&K 
Sound Quality type 7698 and MATLAB.  
 

Loudness (unit: sone) 

B&K SQ MATLAB Difference 

 
 
No 

 
 

Signal 
type 

 
Loudness  

in 
Theory 

( ) ≈ Free 
(F1) 

Diffuse 
(D1) 

Free 
(F2) 

Diffuse 
(D2) 

|F2-F1|/F1 |D2-D1|/D1 

1 Pure Tone 
at 1kHz of 

40 dB 

 
1 

 
0,99 

 
1,26 

 
1,0 

 
1,3 

 
1.01% 

 
3.17% 

2 Pure Tone 
at 2kHz of 

80 dB 

 
19 

 
19,4 

 
17,9 

 
19,3 

 
17,9 

 
 0.52% 

 
0.00% 

3 Pure Tone 
at 4kHz of 

80 dB 

 
24 

 
24,6 

 
22,8 

 
24,0 

 
22,5 

 
 2.44% 

 
1.32% 

4 Pure Tone 
at 8kHz of 

80 dB 

 
13 

 
13,1 

 
16,5 

 
12,6 

 
15,8 

 
 3.82% 

 
4.24% 
 

 
Table 7.1 Test Result from the Stationary Loudness 

 
Table 7.1 shows that the maximal difference of Stationary Loudness result in free 
field is 3.82%, and the maximal difference of Stationary Loudness result in diffuse 
field is 4.24%. The difference is acceptable, because we think it is courses by the 
different programming languages and the fact that the input data to MATLAB is 
slightly different from the Sound Quality Application.  
 
Besides the calculation results for Stationary Loudness, MATLAB program can also 
show some spectrums. Figure 7.4 shows the spectrum when we made the first test. 
 

 
 

Figure 7.4 Stationary Loudness Test Spectrum for a pure tone at 1 kHz 40 dB in MATLAB 
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The upper plot shows 28 1/3 octave filters Spectrum Analysis. The vertical lines 
shows how critical bands are achieved by combination of 1/3 Octave bands. The 
lower plot shows total Loudness by summing of Specific Loudness. The curved line 
represents frequency masking.  The Stationary Loudness is the area under the curve. 
The rest of the test figures are listed in Appendix F. 

7.1.6 The Available Programs for the Stationary Loudness 
 
Noise measurement techniques based on features of the human hearing system are 
nowadays widely used. In particular with respect to the hearing sensation loudness, 
measurement systems from different manufactures are on the market. Although the 
basics of loudness calculations are laid down in a computer program published in 
German standard DIN 45631, different manufacturers may use various 
implementations. Therefore, it is of interest to compare for identical sounds the 
indications of several loudness analysis systems. Different manufacturers stand for 
different implementations like CISC versus RISC processors or FFT versus 1/3 octave 
band analysis. The below table provides an overview of the companies involved, the 
name of their system as well as the version of the stationary loudness algorithm used.   
 

Company System Version 
Akustik Technologie Gottingen Si++ 3.4 

Bruel & Kjær 7698 1.21 
Head acoustics BAS 4.40 
Muller-BBM PAK 4.0 

Neutrik Cortex Instruments CF 90 30.38 
S.A.S. Systems SASS Win 1.0 

 
Table 7.2 The available programs for stationary loudness 

  
Sound Quality Program Type 7698 is a software package that runs under Microsoft® 
Windows NT®. It uses optional software BZ5625 to calculate Zwicker Loudness. 
Sound quality software in B&K was developed in VC++. 
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7.2 Aures’s Model of Tonality 
 
Aures’s model of tonality is a relatively new method. It is based on Terhardt’s 
method, but differs in such a way that it takes into account the frequency, bandwidth 
and level of all tonal components as well as the effect of noise. It generates a number 
for Tonality based on Tonal Weighting and Tonal Loudness Weighting.  This method 
uses the same calculation for SPL excess as Terhardt’s method and introduces 
Loudness calculation into the Tonality calculation.  
 
Aures’s model of Tonality is shown in Figure 8.1. After spectrum analysis, the 
calculations fall into two paths. One is for the tonal component based calculation 
procedure, which involves the calculation of SPL excess for each tonal component 
and the Tonal Weighting function. The other is the calculation of Total Loudness of 
the whole spectrum and the Loudness of the noise spectrum and finally gets the Tonal 
Loudness Weighting. Noise spectrum means the spectrum, which remove the tonal or 
narrow band components.  
 

Signal 

Spectrum Analysis 

Extraction of tonal and narrow band 
component 

 
 
 
 
 
 
 
 
 
 
                                iii zLf ∆,,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SPL Excess of Tonal 
Component iL∆  

 Spectrum of the noise 

 

Loudness of the noise GrN  
 
),,( iiiT zLffW ∆∆=  

Tonal Loudness Weighting 

N
N

W Gr
Gr −=1  

Total Loudness N 

  
Combination of Tonal Weighting
and Tonal Loudness Weighting 

79.029.0 ** GrT WWCT =  
Tonal Weighting
 
Figure 8.1 Aures’s Model of Tonality 
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The tonal weighting is calculated for all components with positive SPL excess levels. 
 

[ ]∑ ∆∆=
n

iiiT Lwfwzww )()()( '
3

'
2

'
1                                  (20)                                          

where   
 

  is the bandwidth of the component in Bark.  z∆
  is the central frequency of tonal component in Hz. if
  is the SPL excess of the tonal component.   Li∆
  

           , for n =1,2,3.                                                   (21) 29.0/1' nn ww =
 
The weighting functions  are calculated as follows. 321 ,, www
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Aures’s model of Tonality considers the level dependence of human hearing system 
by using Loudness. It also shows a way of how to extract a single number for 
Tonality. But compared to the Tonality algorithm we presented in Chapter 3, Aures’s 
model of Tonality is relatively simple and does not consider the virtual pitch 
perception.   More information about Aures’s model of Tonality, please refer to [7.7] 
and [7.8]. 
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Chapter 8 Conclusions and Further work  
 
The work carried out in this thesis can be described as four major parts. The first part 
is the study of Terhardt’s Tonality algorithm and the simulation of the algorithm by 
using MATLAB. The second part is the study of ATL COM programming in order to 
make a metric for B&K SQ Application, and the implementation of Terhardt’s 
Tonality algorithm in VC++. The third part is the testing of MATLAB and VC++ 
code by showing the consistency of the computational results. The fourth part is the 
study of Stationary Loudness and Aures’s model of Tonality.  
 
Simulating the algorithm in MATLAB helped us to understand the calculation 
procedure in detail, and proved that the algorithm could be implemented according to 
our Data Flow analysis. The experience of VC++ programming for Tonality metric 
gave us an opportunity to learn how COM technology being used in B&K Sound 
Quality Application, and how the same algorithm can be implemented using different 
programming languages. Testing results showed that the computational results agree 
with each other, so that our VC++ code is ready to be used in B&K Sound Quality 
Application for further research or development work. The study of Stationary 
Loudness and Aures’s model of Tonality made us understand how psychoacoustics 
concepts are being used in Loudness and Tonality and brought us some fresh ideas for 
further discussion.  
 
We think the following work can be considered and carried out based on our thesis 
project.  
 
• Extract a single number and make subjective test for Tonality 
 
A single number for Tonality means it could statistically show the proportional 
relationship between Tonality metric and the tonal perception of human hearing 
system for a signal, which has the tonal attribute. The Tonality algorithm used in this 
thesis described that in an actual listening situation, the whole pitch percept is 
described as a competition between spectral and virtual pitches. These two types of 
pitches are extracted from the signal and represented by the spectral-pitch pattern and 
the virtual-pitch pattern. The evaluation of the competition between spectral and 
virtual pitches becomes the important issues in order to extract a single number for 
Tonality. We are sure our MATLAB model can help to evaluate the competition, but 
further work need to be done in order to find a way to extract a single number for 
Tonality. For example, by finding a weighting function, which can be applied on both 
spectral-pattern and virtual- pitch pattern, the single number for Tonality can be 
extracted. This should be correlated with results from subjective test. 

 
• Improve Tonality by using parts of the Loudness Model 
 
Mutual masking of spectral components has been evaluated in the Tonality algorithm 
through the calculation procedures for sound-pressure level excess and pitch shifts. 
The Stationary Loudness is an ISO Standard, which evaluate the masking effects 
based on Critical Bands and finally get a single number for Loudness from the 
specific Loudness. The single number we get from Loudness contains the overall 
information of how human being perceives the physical sound pressure level of a 
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sound. So if we can find a right way to introduce Loudness into Tonality, the 
calculation of Tonality will have more precision, better correlation with subjective 
results and more standardized evaluation of masking effects.  
 
Aures’s model is an example of trying to combine Tonality and Loudness. But we 
think they use Tonality in a very simple way, which is not enough to evaluate the 
tonal aspects of a sound. Aures’s model can be built based on our Tonality MATLAB 
model and the Loudness MATLAB Model for further research work.  
 
• Tonality for Non-stationary signal  
 
Terhardt’s Tonality algorithm, which we discussed in Chapter 3, is a pitch-evaluation 
procedure for any complex tone. The algorithm can work well with stationary signals, 
but for non-stationary signals it might have some drawbacks. For example, it will 
evaluate a strong tonal component as a non-tonal component if the frequency of the 
tone changes with time. The reason is the spectrum from FFT analysis of a non-
stationary signal might merge some discrete tonal contents which can be seen in time 
domain, and show them as non-tonal contents in frequency domain.   
 
By assuming that the time signal can be composed by a sequence of short duration 
signal, we can divide the non-stationary signal into some small time blocks. Each of 
them can be understood as a stationary signal when the time duration is small enough. 
Next, evaluate each of them by using the Tonality algorithm. In the end, you will get a 
spectral pitch pattern and virtual pitch pattern for each short duration signal, which 
you can show together in a contour or waterfall graph with both frequency and time 
axis. Inspecting the graph more tones may show up and contribute to the overall 
Tonality compared to just analysing a single spectrum. 
 
• Improvement of Tonality VC++ code 
 
The Tonality metric implementation in VC++ follows the general routines of making 
a user-defined cursor reading control. It is the same as how B&K SQ customers make 
their own metrics for SQ Application. The main idea of this program structure is to 
simplify the connection between the user-defined metric and the main SQ program. 
B&K also has some metrics developed inside SQ program, which all provide the 
function of showing the spectrums and contours. These functions are very hard to 
implement by using ATL COM programming. But by embedding Tonality as a part of 
main SQ program, more functions can be provided for the customers, such as showing 
the spectrum-pitch pattern and virtual-pitch pattern in a spectrum. We suggest that 
Tonality should be implemented as a part of SQ main program if one day it becomes 
part of the commercial software.  
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Appendix A MATLAB Source Code for Tonality 
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Appendix B VC++ Source Code for Tonality 
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Appendix C Power Spectrum Data for Test1 and 
Test2 
 
Test1: Maximal SPL Difference = 0.19% 
Test2: Maximal SPL Difference = 0.07% 
 

Power Spectrum of Test 1 Power Spectrum of Test 2 
MATLAB VC++ MATLAB VC++ 

Freq. 
(Hz) 

SPL1 
(dB) 

Freq. 
(Hz) 

SPL2 
(dB) 

(SPL2-
SPL1) 
/SPL2 

Freq. 
(Hz) 

SPL3  
(dB) 

Freq. 
 (Hz) 

SPL4 
(dB) 

(SPL4-
SPL3) 
/SPL4 
 

0.00    
10.77   
21.53   
32.30   
43.07   
53.83   
64.60   
75.37   
86.13   
96.90   
107.67  
118.43  
129.20  
139.97  
150.73  
161.50  
172.27  
183.03  
193.80  
204.57  
215.33  
226.10  
236.87  
247.63  
258.40  
269.17  
279.93  
290.70  
301.47  
312.23  
323.00  
333.76  
344.53  
355.30  
366.06  
376.83  
387.60  
398.36  
409.13  
419.90  
430.66  
441.43  
452.20  
462.96  
473.73  
484.50  
495.26  

56.28 
54.37 
47.19 
42.95 
38.71 
34.79 
30.68 
30.96 
34.44 
47.69 
56.08 
56.83 
56.25 
55.49 
54.61 
51.36 
42.02 
34.99 
35.80 
45.26 
53.91 
54.98 
53.77 
55.36 
57.31 
55.94 
51.85 
49.88 
48.31 
47.14 
52.91 
55.15 
53.04 
53.03 
54.09 
56.31 
58.13 
56.95 
53.23 
51.32 
54.41 
54.67 
50.90 
48.38 
46.08 
46.07 
45.04 

0.00 
10.77 
21.53 
32.30 
43.07 
53.83 
64.60 
75.37 
86.13 
96.90 
107.67 
118.43 
129.20 
139.97 
150.73 
161.50 
172.27 
183.03 
193.80 
204.57 
215.33 
226.10 
236.87 
247.63 
258.40 
269.17 
279.93 
290.70 
301.46 
312.23 
323.00 
333.76 
344.53 
355.30 
366.06 
376.83 
387.60 
398.36 
409.13 
419.90 
430.66 
441.43 
452.20 
462.96 
473.73 
484.50 
495.26 

56.30 
54.39 
47.21 
42.97 
38.73 
34.81 
30.70 
30.98 
34.46 
47.71 
56.10 
56.85 
56.27 
55.51 
54.63 
51.38 
42.04 
35.01 
35.82 
45.28 
53.93 
55.00 
53.79 
55.38 
57.33 
55.96 
51.87 
49.90 
48.33 
47.16 
52.93 
55.17 
53.06 
53.05 
54.11 
56.33 
58.15 
56.97 
53.25 
51.34 
54.43 
54.69 
50.92 
48.40 
46.10 
46.09 
45.06 

0.00 
10.77 
21.53 
32.30 
43.07 
53.83 
64.60 
75.37 
86.13 
96.90 
107.67 
118.43 
129.20 
139.97 
150.73 
161.50 
172.27 
183.03 
193.80 
204.57 
215.33 
226.10 
236.87 
247.63 
258.40 
269.17 
279.93 
290.70 
301.46 
312.23 
323.00 
333.76 
344.53 
355.30 
366.06 
376.83 
387.60 
398.36 
409.13 
419.90 
430.66 
441.43 
452.20 
462.96 
473.73 
484.50 
495.26 

51.51 
50.44 
48.99 
48.95 
49.78 
50.28 
50.37 
49.12 
49.38 
49.36 
48.95 
48.89 
47.49 
49.62 
49.37 
49.34 
49.05 
49.31 
49.07 
49.17 
48.93 
48.95 
48.98 
49.20 
48.75 
48.89 
49.29 
49.27 
49.77 
49.19 
48.96 
49.29 
49.30 
48.82 
49.11 
81.88 
87.89 
81.87 
49.42 
48.71 
49.35 
49.57 
49.17 
49.43 
49.74 
48.87 
48.73 

0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.06% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.02% 
0.02% 
0.02% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 

0.04% 
0.04% 
0.04% 
0.05% 
0.05% 
0.06% 
0.07% 
0.06% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 

0.04% 
0.04% 
0.05% 
0.06% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.03% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.03% 
0.04% 
0.04% 
0.04% 

0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 

0.00    51.49 
10.77   50.42 
21.53   
32.30   
43.07   

96.90   
107.67  
118.43  
129.20  
139.97  
150.73  
161.50  
172.27  
183.03  
193.80  

215.33  
226.10  
236.87  
247.63  
258.40  
269.17  
279.93  
290.70  
301.47  
312.23  
323.00  
333.76  
344.53  
355.30  
366.06  
376.83  

398.36  
409.13  
419.90  
430.66  
441.43  
452.20  
462.96  
473.73  
484.50  
495.26  

48.97 
48.93 
49.76 

53.83   50.26 
64.60   50.35 
75.37   49.10 
86.13   49.36 

49.34 
48.93 
48.87 
47.47 

0.04% 49.59 
49.35 
49.32 
49.03 
49.29 
49.05 

204.57  49.15 
48.91 
48.93 
48.96 
49.18 
48.72 
48.87 
49.27 
49.24 
49.75 
49.16 
48.94 
49.27 
49.28 
48.80 
49.09 
81.86 

387.60  87.87 
81.85 
49.39 
48.69 

0.04% 49.33 
49.55 
49.15 
49.41 
49.72 
48.84 
48.71 
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506.03  
516.80  
527.56  
538.33  
549.10  
559.86  
570.63  
581.40  
592.16  
602.93  
613.70  
624.46  
635.23  
646.00  
656.76  
667.53  
678.30  
689.06  
699.83  
710.60  
721.36  
732.13  
742.90  
753.66  
764.43  
775.20  
785.96  
796.73  
807.50  
818.26  
829.03  
839.80  
850.56  
861.33  
872.10  
882.86  
893.63  
904.39  
915.16  
925.93  
936.69  
947.46  
958.23  
968.99  
979.76  
990.53  
1001.29 
1012.06 
1022.83 
1033.59 
1044.36 
1055.13 
1065.89 
1076.66 
1087.43 
1098.19 
1108.96 
1119.73 
1130.49 
1141.26 

42.25 
40.51 
39.39 
39.47 
41.97 
39.32 
35.92 
35.76 
35.02 
33.09 
32.97 
33.56 
33.92 
36.16 
36.28 
33.01 
29.53 
26.61 
26.21 
26.77 
26.69 
25.71 
24.87 
28.68 
33.20 
31.98 
29.53 
28.79 
25.52 
24.34 
25.68 
24.06 
21.94 
22.57 
25.21 
24.33 
22.55 
22.04 
22.72 
21.64 
20.04 
19.73 
20.96 
21.95 
25.52 
26.51 
22.31 
20.94 
20.05 
22.58 
22.70 
19.50 
19.91 
22.77 
22.72 
22.43 
20.85 
20.57 
19.32 
18.68 

506.03 
516.80 
527.56 
538.33 
549.10 
559.86 
570.63 
581.40 
592.16 
602.93 
613.70 
624.46 
635.23 
646.00 
656.76 
667.53 
678.30 
689.06 
699.83 
710.60 
721.36 
732.13 
742.90 
753.66 
764.43 
775.20 
785.96 
796.73 
807.50 
818.26 
829.03 
839.79 
850.56 
861.33 
872.09 
882.86 
893.63 
904.39 
915.16 
925.93 
936.69 
947.46 
958.23 
968.99 
979.76 
990.53 
1001.29 
1012.06 
1022.83 
1033.59 
1044.36 
1055.13 
1065.89 
1076.66 
1087.43 
1098.19 
1108.96 
1119.73
1130.49 
1141.26 

42.27 
40.53 
39.41 
39.49 
41.99 
39.34 
35.94 
35.78 
35.04 
33.11 
32.99 
33.58 
33.94 
36.19 
36.30 
33.03 
29.55 
26.64 
26.23 
26.79 
26.71 
25.73 
24.89 
28.70 
33.22 
32.01 
29.55 
28.81 
25.54 
24.36 
25.70 
24.08 
21.96 
22.59 
25.24 
24.35 
22.57 
22.06 
22.74 
21.66 
20.06 
19.75 
20.98 
21.97 
25.54 
26.53 
22.33 
20.96 
20.07 
22.60 
22.72 
19.52 
19.93 
22.79 
22.74 
22.45 
20.87 
20.59 
19.34 
18.70 

49.61 
48.45 

48.86 
48.34 
48.34 
84.97 
90.96 
84.96 
49.82 
48.84 
48.51 

49.57 
48.80 
48.80 
48.45 
48.17 
48.66 
49.15 

49.61 

48.50 
49.09 
49.70 
50.09 
49.21 
48.95 
49.62 

49.20 
50.23 
49.13 
48.97 
49.44 
50.00 
49.14 
48.68 
49.49 
49.69 
49.12 

506.03 
516.80 
527.56 
538.33 
549.10 
559.86 
570.63 
581.40 
592.16 
602.93 
613.70 
624.46 
635.23 
646.00 
656.76 
667.53 
678.30 
689.06 
699.83 
710.60 
721.36 
732.13 
742.90 
753.66 
764.43 
775.20 
785.96 
796.73 
807.50 
818.26 
829.03 
839.79 
850.56 
861.33 
872.09 
882.86 
893.63 
904.39 
915.16 
925.93 
936.69 
947.46 
958.23 
968.99 
979.76 
990.53 
1001.29 
1012.06 
1022.83 
1033.59 
1044.36 
1055.13 
1065.89 
1076.66 
1087.43 
1098.19 
1108.96 
1119.73
1130.49 
1141.26 

48.63 
48.64 
48.81 
49.02 
49.95 
49.60 
49.25 
49.63 
49.85 
49.88 
50.26 
49.52 
48.38 
49.55 
49.90 
49.29 
49.40 
49.57 
49.41 
49.12 
50.00 
49.63 
48.47 
49.15 
48.88 
48.36 
48.36 
84.99 
90.98 
84.98 
49.84 
48.86 
48.53 
49.27 
49.59 
48.82 
48.82 
48.47 
48.19 
48.68 
49.17 
48.52 
49.11 
49.72 
50.11 
49.23 
48.97 
49.64 
49.63 
49.22 
50.25 
49.16 
48.99 
49.46 
50.02 
49.16 
48.70 
49.51 
49.71 
49.14 

0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.02% 
0.02% 
0.02% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 

0.05% 
0.05% 
0.05% 
0.05% 
0.05% 
0.05% 
0.06% 
0.06% 
0.06% 
0.06% 
0.06% 
0.06% 
0.06% 
0.08% 
0.06% 
0.06% 
0.07% 
0.11% 
0.08% 
0.07% 
0.07% 
0.08% 
0.08% 
0.07% 
0.06% 
0.09% 
0.07% 
0.07% 

0.08% 
0.08% 
0.08% 
0.09% 
0.09% 
0.12% 
0.08% 
0.09% 
0.09% 
0.09% 
0.09% 
0.10% 
0.10% 
0.10% 
0.09% 
0.08% 
0.08% 
0.09% 
0.10% 
0.10% 
0.09% 
0.09% 

506.03  
516.80  
527.56  
538.33  
549.10  
559.86  

581.40  
592.16  
602.93  
613.70  
624.46  
635.23  
646.00  
656.76  
667.53  
678.30  
689.06  
699.83  
710.60  
721.36  
732.13  
742.90  

764.43  
775.20  
785.96  
796.73  
807.50  
818.26  
829.03  
839.80  
850.56  
861.33  
872.10  
882.86  
893.63  
904.39  
915.16  
925.93  
936.69  

48.61 
48.62 
48.79 
49.00 
49.93 
49.58 

570.63  49.23 
49.61 
49.83 
49.86 
50.23 
49.50 
48.36 
49.53 
49.88 
49.27 
49.38 
49.55 
49.39 
49.10 
49.97 

753.66  49.13 

0.08% 

49.25 

947.46  
958.23  
968.99  
979.76  
990.53  
1001.29 
1012.06 
1022.83 
1033.59 
1044.36 

0.10% 1055.13 
0.10% 1065.89 
0.09% 1076.66 
0.09% 1087.43 
0.09% 1098.19 
0.10% 1108.96 
0.10%
0.10% 

1119.73 
1130.49 
1141.26 0.11% 
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1152.03 
1162.79 
1173.56 
1184.33 
1195.09 
1205.86 
1216.63 
1227.39 
1238.16 
1248.93 
1259.69 
1270.46 
1281.23 
1291.99 
1302.76 
1313.53 
1324.29 
1335.06 
1345.83 
1356.59 
1367.36 
1378.13 
1388.89 
1399.66 
1410.42 
1421.19 
1431.96 
1442.72 
1453.49 
1464.26 
1475.02 
1485.79 
1496.56 
1507.32 
1518.09 
1528.86 
1539.62 
1550.39 
1561.16 
1571.92 
1582.69 
1593.46 
1604.22 
1614.99 
1625.76 
1636.52 
1647.29 
1658.06 
1668.82 
1679.59 
1690.36 
1701.12 
1711.89 
1722.66 
1733.42 
1744.19 
1754.96 
1765.72 
1776.49 
1787.26 

19.10 
21.58 
20.80 
20.60 
23.33 
24.91 
25.30 
23.82 
19.21 
18.59 
17.33 
19.60 
21.23 
21.51 
22.18 
21.59 
20.09 
20.38 
20.45 
19.54 
17.82 
16.24 
18.23 
18.91 
23.24 
24.04 
23.11 
22.49 
24.38 
24.46 
23.97 
21.65 
20.05 
19.56 
25.57 
27.16 
24.12 
23.79 
23.55 
24.45 
25.49 
27.21 
25.57 
23.45 
26.43 
28.37 
25.76 
24.92 
27.50 
25.97 
25.02 
29.02 
30.64 
28.23 
28.54 
33.55 
32.50 
25.36 
27.82 
28.57 

1152.03 
1162.79 
1173.56 
1184.33 
1195.09 
1205.86 
1216.63 
1227.39 
1238.16 
1248.93 
1259.69 
1270.46 
1281.23 
1291.99 
1302.76 
1313.53 
1324.29 
1335.06 
1345.83 
1356.59 
1367.36 
1378.13 
1388.89 
1399.66 
1410.42 
1421.19 
1431.96 
1442.72 
1453.49 
1464.26 
1475.02 
1485.79 
1496.56 
1507.32 
1518.09 
1528.86 
1539.62 
1550.39 
1561.16 
1571.92 
1582.69 
1593.46 
1604.22 
1614.99 
1625.76 
1636.52 
1647.29 
1658.06 
1668.82 
1679.59 
1690.36 
1701.12 
1711.89 
1722.66 
1733.42 
1744.19 
1754.96 
1765.72 
1776.49 
1787.26 

19.12 
21.60 
20.82 
20.62 
23.35 
24.93 
25.32 
23.84 
19.23 
18.61 
17.35 
19.62 
21.25 
21.54 
22.20 
21.61 
20.11 
20.40 
20.47 
19.56 
17.84 
16.26 
18.25 
18.93 
23.26 
24.06 
23.13 
22.51 
24.40 
24.49 
23.99 
21.67 
20.07 
19.58 
25.59 
27.18 
24.14 
23.81 
23.57 
24.47 
25.51 
27.23 
25.60 
23.47 
26.45 
28.39 
25.78 
24.94 
27.52 
25.99 
25.04 
29.04 
30.66 
28.25 
28.56 
33.57 
32.52 
25.38 
27.84 
28.59 

49.06 
48.62 
48.96 
49.17 
49.22 
49.29 
49.46 
48.94 
48.70 
48.84 
49.43 
49.95 
49.65 
49.33 
50.26 
49.30 
49.34 
49.08 
48.79 
48.84 
48.93 
48.23 
48.58 
84.97 
90.97 
84.94 
48.91 
49.20 
49.50 
49.16 
49.05 
49.03 
49.88 
49.46 
48.89 
49.23 
49.72 
50.32 
49.60 
48.55 
48.78 
48.86 
50.17 
49.58 
48.63 
48.81 
49.35 
49.59 
48.73 
49.22 
49.81 
49.43 
48.97 
49.19 
48.49 
49.56 
49.72 
48.94 
48.46 
49.43 

1152.03 
1162.79 
1173.56 
1184.33 
1195.09 
1205.86 
1216.63 
1227.39 
1238.16 
1248.93 
1259.69 
1270.46 
1281.23 
1291.99 
1302.76 
1313.53 
1324.29 
1335.06 
1345.83 
1356.59 
1367.36 
1378.13 
1388.89 
1399.66 
1410.42 
1421.19 
1431.96 
1442.72 
1453.49 
1464.26 
1475.02 
1485.79 
1496.56 
1507.32 
1518.09 
1528.86 
1539.62 
1550.39 
1561.16 
1571.92 
1582.69 
1593.46 
1604.22 
1614.99 
1625.76 
1636.52 
1647.29 
1658.06 
1668.82 
1679.59 
1690.36 
1701.12 
1711.89 
1722.66 
1733.42 
1744.19 
1754.96 
1765.72 
1776.49 
1787.26 

49.08 
48.64 
48.98 
49.19 
49.24 
49.31 
49.48 
48.96 
48.72 
48.86 
49.45 
49.97 
49.67 
49.35 
50.28 
49.32 
49.36 
49.10 
48.81 
48.86 
48.95 
48.25 
48.60 
84.99 
90.99 
84.96 
48.94 
49.22 
49.52 
49.18 
49.07 
49.05 
49.90 
49.49 
48.91 
49.25 
49.74 
50.34 
49.62 
48.57 
48.80 
48.88 
50.19 
49.60 
48.65 
48.83 
49.37 
49.61 
48.75 
49.24 
49.83 
49.45 
48.99 
49.21 
48.51 
49.58 
49.74 
48.96 
48.48 
49.45 

0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.02% 
0.02% 
0.02% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 

0.10% 1152.03 

1173.56 
1184.33 
1195.09 

1216.63 
1227.39 
1238.16 

1259.69 
1270.46 
1281.23 

1302.76 
1313.53 
1324.29 

1345.83 
1356.59 
1367.36 

1388.89 
1399.66 
1410.42 

0.09% 1162.79 
0.10% 
0.10% 
0.09% 
0.08% 1205.86 
0.08% 
0.08% 
0.10% 
0.11% 
0.12% 
0.10% 

0.14% 
0.09% 
0.09% 
0.10% 

0.10% 
0.10% 
0.11% 
0.12% 
0.11% 
0.11% 
0.09% 
0.08% 
0.09% 
0.09% 
0.08% 
0.12% 
0.08% 

0.10% 
0.10% 
0.08% 
0.07% 
0.08% 
0.08% 
0.08% 
0.08% 
0.08% 
0.07% 
0.12% 
0.09% 
0.08% 

0.08% 
0.08% 
0.07% 
0.08% 
0.08% 
0.07% 
0.07% 
0.07% 
0.07% 
0.06% 
0.06% 
0.08% 
0.07% 
0.07% 

1248.93 

0.09% 
1291.99 

0.10% 1335.06 

1378.13 

1421.19 
1431.96 
1442.72 
1453.49 
1464.26 
1475.02 

0.09% 1485.79 
1496.56 
1507.32 
1518.09 
1528.86 
1539.62 
1550.39 
1561.16 
1571.92 
1582.69 
1593.46 
1604.22 
1614.99 
1625.76 

0.07% 1636.52 
1647.29 
1658.06 
1668.82 
1679.59 
1690.36 
1701.12 
1711.89 
1722.66 
1733.42 
1744.19 
1754.96 
1765.72 
1776.49 
1787.26 
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1798.02 
1808.79 
1819.56 
1830.32 
1841.09 
1851.86 
1862.62 
1873.39 
1884.16 
1894.92 
1905.69 
1916.46 
1927.22 
1937.99 
1948.75 
1959.52 
1970.29 
1981.05 
1991.82 
2002.59 
2013.35 
2024.12 
2034.89 
2045.65 
2056.42 
2067.19 
2077.95 
2088.72 
2099.49 
2110.25 
2121.02 
2131.79 
2142.55 
2153.32 
2164.09 
2174.85 
2185.62 
2196.39 
2207.15 
2217.92 
2228.69 
2239.45 
2250.22 
2260.99 
2271.75 
2282.52 
2293.29 
2304.05 
2314.82 
2325.59 
2336.35 
2347.12 
2357.89 
2368.65 
2379.42 
2390.19 
2400.95 
2411.72 
2422.49 
2433.25 

28.09 
28.62 
28.94 
32.67 
33.98 
35.26 
39.14 
39.69 
35.74 
34.80 
35.70 
33.71 
35.74 
37.44 
38.73 
42.91 
42.00 
42.86 
45.36 
44.50 
44.21 
42.42 
39.37 
42.30 
42.27 
43.55 
46.70 
43.96 
42.98 
43.06 
40.26 
41.32 
39.98 
38.81 
38.79 
38.58 
40.40 
36.57 
33.42 
34.65 
33.42 
36.50 
35.76 
35.21 
34.43 
34.75 
37.65 
35.32 
32.87 
31.44 
30.83 
32.16 
31.15 
33.59 
37.21 
35.30 
35.58 
36.03 
35.12 
30.96 

1798.02 
1808.79 
1819.56 
1830.32 
1841.09 
1851.86 
1862.62 
1873.39 
1884.16 
1894.92 
1905.69 
1916.46 
1927.22 
1937.99 
1948.75 
1959.52 
1970.29 
1981.05 
1991.82 
2002.59 
2013.35 
2024.12 
2034.89 
2045.65 
2056.42 
2067.19 
2077.95 
2088.72 
2099.49 
2110.25 
2121.02 
2131.79 
2142.55 
2153.32 
2164.09 
2174.85 
2185.62 
2196.39 
2207.15 
2217.92 
2228.69 
2239.45 
2250.22 
2260.99 
2271.75 
2282.52 
2293.29 
2304.05 
2314.82 
2325.59 
2336.35 
2347.12 
2357.89 
2368.65 
2379.42 
2390.19 
2400.95 
2411.72 
2422.49 
2433.25 

28.11 
28.64 
28.96 
32.69 
34.00 
35.28 
39.16 
39.71 
35.76 
34.82 
35.72 
33.73 
35.76 
37.46 
38.75 
42.93 
42.02 
42.88 
45.38 
44.52 
44.24 
42.45 
39.39 
42.32 
42.29 
43.57 
46.72 
43.98 
43.00 
43.08 
40.28 
41.35 
40.00 
38.83 
38.81 
38.60 
40.42 
36.59 
33.44 
34.67 
33.44 
36.52 
35.78 
35.24 
34.45 
34.77 
37.67 
35.34 
32.89 
31.46 
30.85 
32.18 
31.17 
33.61 
37.23 
35.32 
35.60 
36.05 
35.14 
30.98 

49.37 
48.25 
48.67 
49.51 
49.89 
50.07 
49.93 
49.07 
49.06 
49.12 
48.07 
48.68 
49.97 
49.61 
48.70 
48.85 
48.43 
48.57 
48.87 
49.45 
48.84 
49.49 
49.52 
48.94 
49.22 
50.00 
49.54 
48.62 
48.54 
49.38 
49.95 
49.35 
49.51 
49.50 
48.89 
49.52 
81.88 
87.87 
81.85 
49.79 
50.12 
49.30 
48.95 
48.78 
49.21 
48.58 
49.15 
49.39 
49.31 
48.90 
49.59 
49.14 
48.53 
50.17 
50.08 
49.65 
48.90 
49.08 
48.96 
48.54 

1798.02 
1808.79 
1819.56 
1830.32 
1841.09 
1851.86 
1862.62 
1873.39 
1884.16 
1894.92 
1905.69 
1916.46 
1927.22 
1937.99 
1948.75 
1959.5 
1970.29 
1981.05 
1991.82 
2002.59 
2013.35 
2024.12 
2034.89 
2045.65 
2056.42 
2067.19 
2077.95 
2088.72 
2099.49 
2110.25 
2121.02 
2131.79 
2142.55 
2153.32 
2164.09 
2174.85 
2185.62 
2196.39 
2207.15 
2217.92 
2228.69 
2239.45 
2250.22 
2260.99 
2271.75 
2282.52 
2293.29 
2304.05 
2314.82 
2325.59 
2336.35 
2347.12 
2357.89 
2368.65 
2379.42 
2390.19 
2400.95 
2411.72 
2422.49 
2433.25 

49.39 
48.27 
48.69 
49.53 
49.91 
50.09 
49.95 
49.09 
49.08 
49.14 
48.09 
48.70 
49.99 
49.63 
48.72 
48.87 
48.45 
48.59 
48.89 
49.47 
48.86 
49.51 
49.54 
48.96 
49.24 
50.02 
49.56 
48.64 
48.56 
49.40 
49.97 
49.37 
49.53 
49.52 
48.91 
49.54 
81.90 
87.89 
81.87 
49.81 
50.14 
49.32 
48.97 
48.80 
49.23 
48.60 
49.17 
49.41 
49.33 
48.92 
49.61 
49.16 
48.55 
50.19 
50.10 
49.67 
48.92 
49.10 
48.98 
48.56 

0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.02% 
0.02% 
0.02% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 

0.07% 1798.02 
0.07% 
0.07% 
0.06% 
0.06% 
0.06% 
0.05% 
0.05% 
0.06% 
0.06% 
0.06% 
0.06% 
0.06% 
0.05% 
0.05% 

0.05% 
0.05% 
0.04% 
0.04% 
0.07% 
0.07% 
0.05% 
0.05% 
0.05% 
0.05% 
0.04% 
0.05% 
0.05% 

0.05% 
0.07% 
0.05% 
0.05% 
0.05% 
0.05% 
0.05% 
0.05% 
0.06% 
0.06% 
0.06% 
0.05% 
0.06% 
0.09% 
0.06% 
0.06% 
0.05% 

0.06% 
0.06% 
0.06% 
0.06% 
0.06% 
0.06% 
0.05% 
0.06% 
0.06% 
0.06% 
0.06% 
0.06% 

1808.79 
1819.56 
1830.32 
1841.09 
1851.86 
1862.62 
1873.39 
1884.16 
1894.92 
1905.69 
1916.46 
1927.22 
1937.99 
1948.75 

0.05% 1959.52 
1970.29 
1981.05 
1991.82 
2002.59 
2013.35 
2024.12 
2034.89 
2045.65 
2056.42 
2067.19 
2077.95 
2088.72 
2099.49 
2110.25 0.05% 
2121.02 
2131.79 
2142.55 
2153.32 
2164.09 
2174.85 
2185.62 
2196.39 
2207.15 
2217.92 
2228.69 
2239.45 
2250.22 
2260.99 
2271.75 
2282.52 
2293.29 

0.06% 2304.05 
2314.82 
2325.59 
2336.35 
2347.12 
2357.89 
2368.65 
2379.42 
2390.19 
2400.95 
2411.72 
2422.49 
2433.25 
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2444.02 
2454.79 
2465.55 
2476.32 
2487.08 
2497.85 
2508.62 
2519.38 
2530.15 
2540.92 
2551.68 
2562.45 
2573.22 
2583.98 
2594.75 
2605.52 
2616.28 
2627.05 
2637.82 
2648.58 
2659.35 
2670.12 
2680.88 
2691.65 
2702.42 
2713.18 
2723.95 
2734.72 
2745.48 
2756.25 
2767.02 
2777.78 
2788.55 
2799.32 
2810.08 
2820.85 
2831.62 
2842.38 
2853.15 
2863.92 
2874.68 
2885.45 
2896.22 
2906.98 
2917.75 
2928.52 
2939.28 
2950.05 
2960.82 
2971.58 
2982.35 
2993.12 
3003.88 
3014.65 
3025.42 
3036.18 
3046.95 
3057.71 
3068.48 
3079.25 

30.27 
30.50 
30.34 
32.98 
37.10 
39.27 
41.67 
40.37 
36.66 
36.76 
34.22 
33.38 
33.63 
35.32 
35.68 
37.37 
38.76 
43.02 
43.89 
40.58 
39.33 
38.30 
38.27 
35.01 
38.29 
36.68 
37.65 
41.93 
41.73 
39.91 
36.95 
34.96 
35.64 
34.07 
33.99 
33.34 
31.34 
31.90 
35.61 
37.18 
35.37 
32.85 
31.58 
30.91 
32.30 
30.02 
29.15 
31.55 
31.13 
33.12 
34.50 
31.41 
28.28 
28.12 
29.66 
29.21 
26.57 
27.80 
28.50 
31.56 

2444.02 
2454.79 
2465.55 
2476.32 
2487.08 
2497.85 
2508.62 
2519.38 
2530.15 
2540.92 
2551.68 
2562.45 
2573.22 
2583.98 
2594.75 
2605.52 
2616.28 
2627.05 
2637.82 
2648.58 
2659.35 
2670.12 
2680.88 
2691.65 
2702.42 
2713.18 
2723.95 
2734.72 
2745.48 
2756.25 
2767.02 
2777.78 
2788.55 
2799.32 
2810.08 
2820.85 
2831.62 
2842.38 
2853.15 
2863.92 
2874.68 
2885.45 
2896.22 
2906.98 
2917.75 
2928.52 
2939.28 
2950.05 
2960.82 
2971.58 
2982.35 
2993.12 
3003.88 
3014.65 
3025.42 
3036.18 
3046.95 
3057.71
3068.48 
3079.25 

30.29 
30.52 
30.36 
33.00 
37.12 
39.29 
41.69 
40.39 
36.68 
36.78 
34.24 
33.40 
33.65 
35.34 
35.70 
37.39 
38.78 
43.04 
43.91 
40.60 
39.35 
38.32 
38.29 
35.04 
38.31 
36.70 
37.67 
41.95 
41.75 
39.93 
36.97 
34.98 
35.66 
34.09 
34.01 
33.36 
31.36 
31.92 
35.63 
37.20 
35.39 
32.87 
31.60 
30.93 
32.32 
30.05 
29.17 
31.57 
31.15 
33.14 
34.52 
31.43 
28.30 
28.14 
29.68 
29.23 
26.59 
27.82 
28.52 
31.58 

48.20 
48.70 
48.69 
48.97 
49.46 
49.74 
49.92 
49.93 
49.48 
48.71 
49.06 
48.84 
49.56 
49.47 
49.00 
48.66 
49.23 
50.09 
49.69 
49.85 
50.02 
49.30 
48.68 
49.43 
49.35 
49.46 
49.43 
49.87 
49.90 
49.12 
48.81 
49.55 
49.70 
48.90 
49.14 
49.47 
49.38 
49.80 
49.26 
48.69 
49.56 
49.35 
48.66 
48.33 
49.20 
49.61 
48.99 
49.54 
48.92 
49.12 
49.46 
49.27 
49.31 
48.67 
49.10 
49.16 
48.26 
49.17 
49.27 
50.24 

2444.02 
2454.79 
2465.55 
2476.32 
2487.08 
2497.85 
2508.62 
2519.38 
2530.15 
2540.92 
2551.68 
2562.45 
2573.22 
2583.98 
2594.75
2605.52 
2616.28 
2627.05 
2637.82 
2648.58 
2659.35 
2670.12 
2680.88 
2691.65 
2702.42 
2713.18 
2723.95 
2734.72 
2745.48 
2756.25 
2767.02 
2777.78 
2788.55 
2799.32 
2810.08 
2820.85 
2831.62 
2842.38 
2853.15 
2863.92 
2874.68 
2885.45 
2896.22 
2906.98 
2917.75 
2928.52 
2939.28 
2950.05 
2960.82 
2971.58 
2982.35 
2993.12 
3003.88 
3014.65 
3025.42 
3036.18 
3046.95 
3057.71 
3068.48 
3079.25 

48.22 
48.72 
48.71 
48.99 
49.48 
49.76 
49.94 
49.95 
49.50 
48.73 
49.08 
48.86 
49.58 
49.49 
49.02 
48.68 
49.25 
50.11 
49.71 
49.87 
50.04 
49.32 
48.70 
49.45 
49.37 
49.48 
49.45 
49.89 
49.92 
49.14 
48.83 
49.57 
49.72 
48.92 
49.16 
49.49 
49.40 
49.82 
49.29 
48.71 
49.58 
49.37 
48.68 
48.35 
49.22 
49.63 
49.01 
49.56 
48.94 
49.14 
49.48 
49.29 
49.34 
48.69 
49.12 
49.18 
48.28 
49.19 
49.29 
50.26 

0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 

0.07% 
0.07% 
0.07% 
0.06% 
0.05% 
0.05% 
0.05% 
0.05% 
0.05% 

2444.02 
2454.79 
2465.55 
2476.32 
2487.08 
2497.85 
2508.62 
2519.38 
2530.15 

0.05% 2540.92 
0.06% 2551.68 
0.06% 2562.45 
0.06% 2573.22 
0.06% 2583.98 
0.06% 2594.75 
0.05% 2605.52 
0.05% 2616.28 
0.05% 2627.05 
0.05% 2637.82 
0.05% 2648.58 
0.05% 2659.35 
0.05% 2670.12 
0.05% 2680.88 
0.09% 2691.65 
0.05% 2702.42 
0.05% 2713.18 
0.05% 2723.95 
0.05% 2734.72 
0.05% 2745.48 
0.05% 2756.25 
0.05% 2767.02 
0.06% 2777.78 
0.06% 2788.55 
0.06% 2799.32 
0.06% 2810.08 
0.06% 2820.85 
0.06% 2831.62 
0.06% 2842.38 
0.06% 2853.15 
0.05% 2863.92 
0.06% 2874.68 
0.06% 2885.45 
0.06% 2896.22 
0.06% 2906.98 
0.06% 2917.75 
0.10% 2928.52 
0.07% 2939.28 
0.06% 2950.05 
0.06% 2960.82 
0.06% 2971.58 

2982.35 0.06% 
0.06% 2993.12 

3003.88 0.07% 
0.07% 3014.65 

3025.42 0.07% 
0.07% 3036.18 
0.08% 3046.95 

3057.71 0.07% 
0.07% 3068.48 
0.06% 3079.25 
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3090.01 
3100.78 
3111.55 
3122.31 
3133.08 
3143.85 
3154.61 
3165.38 
3176.15 
3186.91 
3197.68 
3208.45 
3219.21 
3229.98 
3240.75 
3251.51 
3262.28 

35.01 
33.82 
31.10 
30.54 
27.42 
30.14 
30.18 
28.03 
30.76 
30.54 
33.11 
37.18 
36.97 
36.73 

3090.01 
3100.78 
3111.55 
3122.31 
3133.08 
3143.85 
3154.61 
3165.38 
3176.15 
3186.91 
3197.68 
3208.45 
3219.21 
3229.98 
3240.75 
3251.51 

35.03 
33.84 
31.12 
30.56 
27.44 
30.16 
30.20 
28.05 
30.78 
30.56 
33.13 
37.20 
36.99 
36.75 
35.23 
32.01 

0.06% 
0.06% 
0.06% 
0.07% 
0.07% 
0.07% 
0.07% 
0.07% 
0.06% 
0.07% 
0.06% 
0.05% 
0.05% 
0.05% 
0.06% 
0.06% 
0.06% 
0.06% 
0.06% 
0.06% 

0.06% 
0.05% 
0.05% 
0.07% 
0.05% 
0.09% 
0.06% 
0.10% 
0.06% 
0.06% 
0.05% 
0.06% 
0.06% 
0.05% 
0.05% 
0.05% 
0.06% 
0.06% 
0.06% 
0.06% 
0.06% 
0.06% 
0.06% 
0.07% 
0.09% 
0.06% 
0.06% 
0.06% 
0.08% 
0.07% 
0.07% 
0.07% 
0.11% 
0.11% 
0.07% 
0.07% 
0.12% 
0.08% 
0.07% 

3090.01 
3100.78 
3111.55 
3122.31 
3133.08 
3143.85 
3154.61 
3165.38 
3176.15 
3186.91 
3197.68 
3208.45 
3219.21 
3229.98 
3240.75 
3251.51 
3262.28 
3273.05 
3283.81 
3294.58 
3305.35 
3316.11 
3326.88 
3337.65 
3348.41 
3359.18 
3369.95 
3380.71 
3391.48 
3402.25 
3413.01 
3423.78 
3434.55 
3445.31 
3456.08 
3466.85 
3477.61 
3488.38 
3499.15 
3509.91 
3520.68 
3531.45 
3542.21 
3552.98 
3563.75 
3574.51 
3585.28 
3596.04 
3606.81 
3617.58 
3628.34 
3639.11 
3649.88 
3660.64 
3671.41 
3682.18 
3692.94 
3703.71 
3714.48 
3725.24 

49.39 
49.50 
48.87 
49.78 
50.58 
49.04 
48.81 
48.56 
48.86 
49.73 
49.56 
48.39 
49.55 
49.62 
49.36 
48.87 
49.11 
49.50 
50.05 
50.18 
49.11 
48.78 
49.24 
49.12 
49.47 
49.94 
49.42 
48.99 
48.51 
49.67 
49.45 
48.62 
49.17 
49.14 
48.91 
48.34 
48.34 
48.69 
49.12 
49.56 
48.91 
49.02 
49.47 
49.12 
48.78 
48.75 
49.07 
49.34 
49.96 
49.49 
48.86 
49.46 
49.13 
48.46 
49.23 
49.85 
49.16 
49.10 
49.97 
50.06 

3090.01 
3100.78 
3111.55 
3122.31 
3133.08 
3143.85 
3154.61 
3165.38 
3176.15 
3186.91 
3197.68 
3208.45 
3219.21 
3229.98 
3240.75
3251.51 
3262.28 
3273.05 
3283.81 
3294.58 
3305.35 
3316.11 
3326.88 
3337.65 
3348.41 
3359.18 
3369.95 
3380.71 
3391.48 
3402.25 
3413.01 
3423.78 
3434.55 
3445.31 
3456.08 
3466.85 
3477.61 
3488.38 
3499.15 
3509.91 
3520.68 
3531.45 
3542.21 
3552.98 
3563.75 
3574.51 
3585.28 
3596.04 
3606.81 
3617.58 
3628.34 
3639.11 
3649.88 
3660.64 
3671.41 
3682.18 
3692.94 
3703.71 
3714.48 
3725.24 

49.41 
49.52 
48.89 
49.80 
50.60 
49.06 
48.83 
48.58 
48.88 
49.75 
49.58 
48.41 
49.57 
49.64 
49.38 
48.89 
49.13 
49.52 
50.07 
50.20 
49.14 
48.80 
49.26 
49.14 
49.49 
49.96 
49.44 
49.01 
48.53 
49.69 
49.47 
48.64 
49.19 
49.16 
48.93 
48.36 
48.36 
48.71 
49.15 
49.58 
48.93 
49.04 
49.49 
49.14 
48.80 
48.77 
49.09 
49.36 
49.98 
49.51 
48.88 
49.48 
49.15 
48.48 
49.25 
49.88 
49.18 
49.12 
49.99 
50.08 

0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 

35.21 
31.99 
30.98 3262.28 31.00 

3273.05 30.82 3273.05 30.84 
3283.81 31.22 3283.81 31.24 
3294.58 32.39 3294.58 32.41 
3305.35 35.62 3305.35 35.64 0.06% 
3316.11 34.34 3316.11 34.36 
3326.88 36.95 3326.88 36.97 
3337.65 39.55 3337.65 39.57 
3348.41 40.62 3348.41 40.65 
3359.18 39.04 3359.18 39.06 
3369.95 34.47 3369.95 34.50 
3380.71 31.23 3380.71 31.25 
3391.48 30.81 3391.48 30.84 
3402.25 32.62 3402.25 32.64 
3413.01 34.31 3413.01 34.33 
3423.78 36.38 3423.78 36.40 
3434.55 35.26 3434.55 35.28 
3445.31 33.78 3445.31 33.80 
3456.08 36.58 3456.08 36.60 
3466.85 39.10 3466.85 39.12 
3477.61 37.30 3477.61 37.32 
3488.38 34.24 3488.38 34.26 
3499.15 32.58 3499.15 32.60 
3509.91 34.23 3509.91 34.25 
3520.68 33.93 3520.68 33.95 
3531.45 34.17 3531.45 34.19 
3542.21 34.68 3542.21 34.70 
3552.98 31.89 3552.98 31.91 
3563.75 29.86 3563.75 29.88 
3574.51 31.85 3574.51 31.88 
3585.28 33.20 3585.28 33.22 
3596.04 35.01 3596.04 35.03 
3606.81 31.03 3606.81 31.05 
3617.58 26.03 3617.58 26.05 
3628.34 29.04 3628.34 29.06 
3639.11 30.11 3639.11 30.13 
3649.88 30.51 3649.88 30.53 
3660.64 27.26 3660.64 27.29 
3671.41 27.16 3671.41 27.19 
3682.18 28.78 3682.18 28.80 
3692.94 27.80 3692.94 27.82 
3703.71 25.92 3703.71 25.95 

26.43 
28.37 

3714.48 26.41 3714.48 
3725.24 28.35 3725.24 
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0.07% 
0.08% 
0.09% 
0.10% 
0.10% 
0.08% 
0.12% 
0.08% 
0.13% 
0.13% 
0.09% 
0.08% 
0.07% 
0.09% 
0.10% 
0.10% 
0.10% 
0.09% 
0.09% 
0.09% 
0.10% 
0.10% 
0.10% 
0.10% 
0.09% 
0.10% 
0.10% 
0.19% 
0.12% 
0.11% 
0.11% 
0.10% 
0.11% 
0.10% 
0.14% 
0.15% 
0.11% 
0.12% 
0.13% 
0.14% 
0.13% 
0.13% 
0.14% 
0.14% 
0.15% 
0.16% 
0.17% 
0.18% 
0.14% 
0.15% 
0.16% 
0.14% 
0.17% 
0.17% 

3736.01 
3746.78 
3757.54 
3768.31 
3779.08 
3789.84 
3800.61 
3811.38 
3822.14 
3832.91 
3843.68 
3854.44 
3865.21 
3875.98 
3886.74 
3897.51 
3908.28 
3919.04 
3929.81 
3940.58 
3951.34 
3962.11 
3972.88 
3983.64 
3994.41 
4005.18 
4015.94 
4026.71 
4037.48 
4048.24 
4059.01 
4069.78 
4080.54 
4091.31 
4102.08 
4112.84 
4123.61 
4134.38 
4145.14 
4155.91 
4166.67 
4177.44 
4188.21 
4198.97 
4209.74 
4220.51 
4231.27 
4242.04 
4252.81 
4263.57 
4274.34 
4285.11 
4295.87 
4306.64 

49.26 
49.05 
48.78 
48.02 
49.33 
49.52 
49.33 
49.05 
49.21 
47.93 
47.81 
48.82 
49.50 
47.90 
49.48 
48.94 
49.34 
49.43 
48.79 
48.55 
48.33 
48.35 
48.46 
49.03 
48.83 
47.91 
48.42 
47.79 
48.06 
47.93 
47.67 
47.90 
47.64 
47.68 
47.13 
46.23 
46.54 
47.30 
47.08 
46.19 
45.92 
45.92 
46.53 
46.74 
45.60 
44.88 
44.87 
44.33 
44.49 
44.88 
43.85 
44.08 
43.65 
42.61 

3736.01 
3746.78 
3757.54 
3768.31 
3779.08 
3789.84 
3800.61 
3811.38 
3822.14 
3832.91 
3843.68 
3854.44 
3865.21 
3875.98 
3886.74 
3897.51 
3908.28 
3919.04 
3929.81 
3940.58 
3951.34 
3962.11 
3972.88 
3983.64 
3994.41 
4005.18 
4015.94 
4026.71 
4037.48 
4048.24 
4059.01 
4069.78 
4080.54 
4091.31 
4102.08 
4112.84 
4123.61 
4134.38 
4145.14 
4155.91 
4166.67 
4177.44 
4188.21 
4198.97 
4209.74 
4220.51 
4231.27 
4242.04 
4252.81 
4263.57 
4274.34 
4285.11 
4295.87 
4306.64 

49.28 
49.07 
48.80 
48.04 
49.35 
49.54 
49.35 
49.07 
49.23 
47.95 
47.83 
48.84 
49.53 
47.93 
49.50 
48.96 
49.36 
49.45 
48.81 
48.57 
48.35 
48.37 
48.48 
49.05 
48.85 
47.93 
48.44 
47.82 
48.08 
47.95 
47.69 
47.92 
47.67 
47.70 
47.15 
46.25 
46.56 
47.33 
47.10 
46.22 
45.94 
45.94 
46.56 
46.76 
45.62 
44.90 
44.89 
44.35 
44.52 
44.90 
43.87 
44.10 
43.67 
42.63 

0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.06% 
0.04% 
0.06% 
0.04% 
0.04% 
0.06% 
0.04% 
0.04% 
0.04% 
0.04% 
0.05% 
0.07% 
0.04% 
0.05% 
0.05% 
0.05% 
0.05% 

27.90 
25.06 
23.06 

20.27 
23.55 
25.06 
24.05 
23.68 

22.48 
25.49 
26.78 
23.08 
20.59 

19.98 
21.94 
22.64 
21.47 
19.89 

19.42 
20.09 
22.03 
20.32 
20.49 

17.02 
17.67 
18.30 
19.30 
18.73 

14.81 
13.22 
17.73 
17.16 
14.86 

15.30 
15.47 
14.21 
14.25 
12.94 

11.54 
11.37 
13.80 
13.17 
12.32 

11.87 
11.71 

3736.01 27.88 3736.01 
3746.78 25.04 3746.78 
3757.54 23.04 3757.54 

20.17 3768.31 20.15 3768.31 
3779.08 20.25 3779.08 
3789.84 23.53 3789.84 
3800.61 25.03 3800.61 
3811.38 24.03 3811.38 
3822.14 23.65 3822.14 

23.43 3832.91 23.40 3832.91 
3843.68 22.46 3843.68 
3854.44 25.47 3854.44 
3865.21 26.76 3865.21 
3875.98 23.06 3875.98 
3886.74 20.57 3886.74 

20.31 3897.51 20.29 3897.51 
3908.28 19.96 3908.28 
3919.04 21.92 3919.04 
3929.81 22.62 3929.81 
3940.58 21.45 3940.58 
3951.34 19.87 3951.34 

20.70 3962.11 20.68 3962.11 
3972.88 19.40 3972.88 
3983.64 20.07 3983.64 
3994.41 22.01 3994.41 
4005.18 20.30 4005.18 
4015.94 20.47 4015.94 

15.81 4026.71 15.78 4026.71 
4037.48 17.00 4037.48 
4048.24 17.65 4048.24 
4059.01 18.28 4059.01 
4069.78 19.28 4069.78 
4080.54 18.71 4080.54 

19.35 4091.31 19.33 4091.31 
4102.08 14.79 4102.08 
4112.84 13.20 4112.84 
4123.61 17.71 4123.61 
4134.38 17.14 4134.38 
4145.14 14.84 4145.14 

14.26 4155.91 14.24 4155.91 
4166.67 15.28 4166.67 
4177.44 15.45 4177.44 
4188.21 14.19 4188.21 
4198.97 14.23 4198.97 
4209.74 12.92 4209.74 

12.84 4220.51 12.82 4220.51 
4231.27 11.52 4231.27 
4242.04 11.35 4242.04 
4252.81 13.78 4252.81 
4263.57 13.15 4263.57 
4274.34 12.30 4274.34 

14.12 4285.11 14.10 4285.11 
4295.87 11.85 4295.87 
4306.64 11.69 4306.64 
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Appendix D MATLAB Source Code for Stationary 
Loudness 
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Appendix E Test Data for Stationary Loudness 
 

 
Frequency 

(Hz) 
1 2 3 4 

25.00 -29.18 4.94 -5.97 4.87 
31.50 -27.98 5.82 -5.45 5.86 
40.00 -27.60 6.69 -5.03 6.86 
50.00 -26.13 7.82 -3.99 7.86 
3.00 -25.22 8.81 -2.92 8.86 
80.00 -24.26 9.82 -1.94 9.85 
100.00 -23.24 10.81 -1.03 10.90 
125.00 -22.11 11.83 -0.13 11.91 
160.00 -21.08 12.83 0.86 12.92 
200.00 -19.93 13.88 1.85 13.97 
250.00 -18.71 14.93 2.80 15.04 
315.00 -17.37 15.99 3.77 16.12 
400.00 -15.72 17.17 4.75 17.33 
500.00 -13.65 18.38 5.69 18.58 
630.00 -10.59 19.72 6.57 19.96 
800.00 18.62 21.33 7.42 23.29 
1000.00 39.98 23.38 8.21 40.08 
1250.00 18.32 26.41 8.97 27.55 
1600.00 -0.37 58.67 9.86 44.47 
2000.00 -11.77 80.05 11.12 72.49 
2500.00 -20.02 58.39 13.24 75.62 
3150.00 -24.92 39.90 16.15 48.04 
4000.00 -29.36 28.11 19.10 67.77 
5000.00 -33.02 19.08 21.22 68.62 
6300.00 -36.03 13.40 58.18 45.90 
8000.00 -38.80 8.10 80.13 33.20 
10000.00 -41.21 3.58 59.05 25.68 
12500.00 -43.04 -0.07 40.22 24.39 
16000.00 -46.71 -5.68 28.13 21.19 
20000.00 -70.32 -22.10 18.01 -1.72 

 
Table E1. Shows CPB analysis data obtained from different pure tones. 
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Appendix F Test Results of MATLAB 
 

 
 

Figure F1. Shows Pure Tone 1 kHz 40 dB in diffuse field. 
 
 

 
 

Figure F2. Shows Pure Tone 1 kHz 40 dB in free field. 
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Figure F3. Shows 2 kHz 80dB Pure Tone in diffuse field 

 
 

 
Figure F4. shows 2 kHz 80dB Pure Tone in free field 
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Figure F5. Shows 4 kHz 80dB Pure Tone in diffuse field 

 
 

 
 

Figure F6. Shows 4 kHz 80dB Pure Tone in free field 
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Figure F7. Shows 8 kHz 80dB Pure Tone in diffuse field 

 
 

 
  

Figure F8. Shows 8 kHz 80dB Pure Tone in free field 
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Appendix G Algorithm for Extraction of Pitch and 
Pitch Salience from Complex Tonal Signals 
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Appendix H Pitch of Complex Signals according to 
Virtual-pitch Theory: Tests, examples, and 
predictions.  
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Appendix I International Standard ISO 532 Acoustics 
– Method for Calculating Loudness Level 
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Appendix J DIN 45 631 - Procedure for Calculating 
Loudness Level and Loudness 
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Appendix K An Examination of Aures’s Model of 
Tonality 
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Appendix L Lecture Notes ‘Introduction to Sound 
Quality’ by B&K A/S 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  108



Sound Quality User-defined Cursor Reading Control - Tonality Metric                

Appendix M Lecture Notes ‘Psychoacoustics – A 
Qualitative Description’ by B&K A/S 
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