
Power Efficient Arithmetic Circuits for

Application Specific Processors

Georgios Plakaris

Kgs. Lyngby 2003

IMM-THESIS-2003-29

Kgs. Lyngby 2003

Power Efficient Arithmetic

Circuits for Application

Specific Processors

Georgios Plakaris

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-THESIS: ISSN 1601-233X

i

Preface

With this thesis I finalize my Master of Science studies in Computer Systems Engineering
at the Technical University of Denmark.

The thesis has been carried out at the division of Computer Science and Engineering at the
department of Informatics and Mathematical Modeling at DTU under the supervision of
associate professor Jens Sparsø to whom I am grateful for many reasons. To begin with,
he was the first Danish person I met at a conference in 1999, where I was working as a
secretary. This is how I found out about DTU in the first place. I think, he still finds my
coming here an odd decision. However, the whole experience has been very “educational”
in every way.

As a supervisor he has always been available, responsive no matter how trivial my questions
may have been, and supportive to my efforts. I would also like to thank him for sponsoring
my going to the seminar “Design of low-power digital circuits: Techniques and tools” offered
at the Technical University of Turin, Italy, as part of the INTRALED program that offers
training in Low-Power Design. This seminar has been a dynamic kick-off to my project.

I would also like to thank Tone for her being with me and making my life better. Her
support in making this project complete has been invaluable.

Last, I would like to express my gratitude to my parents for everything they have done for
me. It has not been easy for them to finance my studies for 8 years now, but they really
think they are making a good investment; I guess I should thank them in person.

Lyngby, 31 March, 2003

Georgios Plakaris

ii

iii

Abstract

This thesis presents a study on RT level power optimization techniques in terms of their
applicability on data-flow intensive data path designs and their efficiency.

The dynamic power management techniques of clock gating and operand isolation are in-
vestigated and their efficiency evaluated by sample designs. Although, clock gating by itself
offers significant power savings at low overhead in sequential blocks, it is not always the
case that hold conditions can be extracted when input registers are shared among several
resources. Latch based operand isolation, was also found quite effective, though savings are
offset by the high overhead; evened out in case of the gate-based implementation for 32bit
adder/subtractor units.

Fine clock gating is proposed as an approach that merges the merits of both methods
and yields the highest power savings and the least performance degradation, for the same
overhead.

The static RTL power optimization methods proposed are: power sensitive implementation
selection and retiming.

The use of carry-save arithmetic to eliminate carry propagation in datapaths is deployed
to improve timing slack and provide larger margins for the performance-power trade-off in
other parts of the design.

The proposed methods are escorted by sample design examples to illustrate their efficiency.
Further, by closely controlling unnecessary switching activity the overhead of sharing re-
sources among operations of varying complexity is reduced.

The methods proposed are suitable for a synthesis-based design flow and achieve performance
comparable to custom application specific processors.

KEYWORDS: Low-power, power efficient arithmetic, operand isolation, dynamic power
management.

iv

v

Contents

1 Introduction 1

1.1 Motivation and Aim of the Thesis . 1

1.2 Application Specific Processors (ASPs) . 2

1.3 Power Saving Techniques in a Top-Down Design Flow 3

1.3.1 Power Dissipation in Synchronous Digital Circuits 3

1.3.2 Low Power Design Flow . 3

1.4 Organization of Chapters . 6

Part I Low-Power Design at the RT Level 7

2 Power Reduction in RT-Level 9

2.1 The RT Abstraction Level . 9

2.1.1 Decomposition of an RTL Design . 9

2.1.2 Power Consumption Guidelines in RTL Designs 10

2.2 Clock Gating . 12

2.2.1 How it Works . 12

2.2.2 Automation of Clock Gating . 13

2.3 Operand Isolation . 13

2.3.1 Implementation Details . 14

2.3.2 Automation of Isolation Logic Insertion 15

2.3.3 Clock Gating and Operand Isolation Interaction 16

2.4 Pre-computation . 17

2.5 Minimizing Switching Activity . 18

2.5.1 Glitch Power Minimization . 18

2.5.2 Retiming for Low Power . 19

2.5.3 Low Power Control Unit . 19

2.5.4 Encoding for Low Power . 19

2.6 Power Estimation . 20

2.6.1 Gate-Level Power Estimation Basics 20

2.6.2 Gate-Level Power Estimation with SYNOPSYS Power Compiler . . . 21

vi CONTENTS

2.7 Summary . 22

3 Experiment 1: A Complex Arithmetic Unit 25

3.1 Design Considerations . 25

3.2 Design Specification . 27

3.3 Test Environment . 30

3.4 Clock Gating . 31

3.5 Operand Isolation . 33

3.6 Results . 36

4 Efficient Operand Isolation 37

4.1 Simulation Environment . 37

4.2 Latch-Based Operand Isolation . 38

4.3 Master-Slave Latch Operand Isolation . 38

4.4 Fine Clock Gating Operand Isolation . 39

4.5 Results . 40

Part II Arithmetic in a Synthesis-Based Design Flow 43

5 Arithmetic at the RT Level 45

5.1 A Review of Arithmetic Components . 45

5.1.1 Addition . 45

5.1.2 Multiplication . 47

5.2 Using Standard Cell Design-Ware Components 49

5.2.1 Synthesis-Based Design Flow . 49

5.2.2 Handles to Design-Ware Components 50

5.3 Evaluating Synopsys Design-ware Library . 53

5.3.1 Performance of Design-ware Arithmetic Components 53

5.4 Summary . 54

6 Experiment 2: An Efficient MAC Unit 57

6.1 The Benchmark MAC Unit . 57

6.2 A Carry-save MAC Unit (CS-MAC) . 58

6.3 Pipelining the MAC Unit . 59

6.3.1 Using a Public Available Library . 60

6.4 Results . 61

Part III The Multi-Datatype Multiply-Accumulate Unit 63

7 Experiment 3: A Multi-Datatype MAC Unit (MD-MAC) 65

7.1 Design Specification . 65

CONTENTS vii

7.2 Block Level Design . 67

7.2.1 Allocation of Instructions . 67

7.2.2 Sharing Addition Functionality . 68

7.3 Implementation Details . 69

7.3.1 Power and Delay Optimization . 69

7.3.2 The Shared Add/Sub Functional Unit 70

7.3.3 32bit Multiplication . 72

7.3.4 Weighted Addition of the Sub-products in MFI 73

7.3.5 Output Multiplexing Functionality . 75

7.4 Results . 75

7.4.1 Area and Timing . 76

7.4.2 Power Consumption . 76

8 Conclusions 79

8.1 Optimization techniques . 79

8.1.1 Switching Activity and Datapath Architecture 79

8.1.2 Dynamic Power Optimization Techniques 80

8.1.3 Static Power Optimization Techniques 80

8.2 Limitations . 81

8.3 Future Work . 81

References 81

Appendices 85

A Source Code 87

A.1 Experiment 1: A Complex Arithmetic Unit 87

A.1.1 The testbench . 87

A.1.2 The clock generator . 88

A.1.3 The opcode generator . 89

A.1.4 The design utilities package . 90

A.1.5 The simulation utilities package . 90

A.1.6 The top level design . 91

A.1.7 The design testbench . 92

A.1.8 The multiplier . 94

A.1.9 The subtractor . 95

A.1.10 The adder . 95

A.1.11 The design used in “PLAIN”, “REG EN” and ‘CLK GATED” 96

A.1.12 The design used in “OP ISOL” and “CLK GATED OP ISOL” 98

A.1.13 The design used in “‘CLK GATED OP ISOL OPT” 101

viii CONTENTS

A.1.14 The design used in “DECOUPLED” 104

A.1.15 The register entities . 106

A.1.16 The register architecture for “PLAIN” 106

A.1.17 The register architecture for “REG EN” 106

A.1.18 The register architecture for “OP ISOL” 107

A.1.19 The register architecture for “CLK GATED OP ISOL” 107

A.1.20 The register architecture for “CLK GATED OP ISOL OPT” 107

A.1.21 The register architecture for “DECOUPLED” 108

A.1.22 The isolation logic for “OP ISOL”, “CLK GATED OP ISOL” and
“CLK GATED OP ISOL OPT” . 108

A.1.23 The isolation logic for “DECOUPLED” 109

A.2 Experiment 2: An Efficient MAC Unit . 110

A.2.1 The testbench for the MD-MAC design 110

A.2.2 The opcode generator . 111

A.2.3 The benchmark and carry-save MAC units 112

A.2.4 The pipelined MAC unit . 114

A.3 Experiment 3: Multi-datatype MAC unit (MD-MAC) 116

A.3.1 The top level SPLIT-MD-MAC and MD-MAC architectures 116

A.3.2 The top level MD-MAC NCS architecture 118

A.3.3 The intput registers . 120

A.3.4 The output registers . 121

A.3.5 The SPLIT-MD-MAC and MD-MAC designs 122

A.3.6 The multiplier for the SPLIT-MD-MAC design 130

A.3.7 The MD-MAC NCS design . 131

ix

List of Figures

1.1 Classification of integrated processing solutions 2

1.2 Low-Power System Design Flow . 4

1.3 A general System-on-Chip Hardware Platform 5

2.1 Example of external idleness . 12

2.2 Implementing clock gating . 12

2.3 RTL identification of clock gating candidate 13

2.4 Operand isolated ALU . 14

2.5 Unobservable stack-at-1 fault in operand isolation circuitry [53] 15

2.6 Pragma based operand isolation in VHDL RTL code 16

2.7 Operand isolation and clock gating interaction 17

2.8 Subset input disabling pre-computation architecture 17

2.9 Gate-level power optimization methodology flow 23

3.1 Complex multiplication block diagram . 26

3.2 Execution stage of a DSP processor . 26

3.3 The complex arithmetic unit with enriched instruction set 27

3.4 Representation of signed fractional intermediate results 30

3.5 Latch-based operand isolation in the CAU design 34

4.1 Simulation environment for the isolation architectures 37

4.2 Latch-based operand isolation . 38

4.3 Master-slave latch-based operand isolation . 39

4.4 Proposal of minimum slack degradation operand isolation scheme 40

5.1 Implementation of a (4,2) compressor [61] . 47

5.2 Architecture of a parallel multiplier . 47

5.3 Design-Ware hierarchy . 49

5.4 Implementation selection in RTL code . 51

5.5 Implementation selection for instantiated components 52

5.6 The use of the ”dont use” directive . 53

x LIST OF FIGURES

5.7 The use of the ”set implemenation” directive 53

6.1 The benchmark MAC unit . 57

6.2 CS-MAC utilizing the DW02 prod sum1 Design-ware component 59

6.3 Balanced pipelined MAC unit (P-CS-MAC) 60

7.1 Supported data types in MD-MAC . 66

7.2 Block diagram of the MD-MAC unit . 67

7.3 Operand isolation in the MD-MAC unit . 69

7.4 Circuit description for the Add/Sub functional block 71

7.5 Inferencing a signed/unsigned multiplier in VHDL 72

7.6 32bit Multiplication on the CAU platform . 73

7.7 Weighted addition of the sub-products . 74

7.8 Circuit implementation of 64bit weighted addition 74

7.9 Block diagram of the benchmark (SPLIT-MD-MAC) and the MD-MAC designs 76

xi

List of Tables

2.1 Power distribution in the GCD implementation [45] 10

2.2 Power models for functional units from [40] 11

3.1 CAU instruction set . 27

3.2 The input output registers . 28

3.3 Implementation of arithmetic units after synthesis 29

3.4 Power management delay overhead VS encoding style 29

3.5 Instruction mix . 30

3.6 Power distribution in the CAU (%) . 31

3.7 Relative power improvement (%) over PLAIN 32

3.8 Relative power improvement in OP ISOL(%) over PLAIN 34

3.9 Relative power improvement (%) . 35

3.10 Relative power improvement in DECOUPLE(%) 35

4.1 Characterization of latch-based operand isolation 39

4.2 Characterization of master-slave operand isolation 39

4.3 Characterization of fine clock gating operand isolation 40

4.4 Comparison of isolation architectures . 40

4.5 Switching activity in the register block . 41

5.1 Area, timing and switching performance of 32-bit adders 46

5.2 Multiplier full-adder delays . 48

5.3 Multiplier average power consumption (in mW) 48

5.4 Multiplier power-delay product (ns × mW)) 48

5.5 Built-in VHDL operators . 50

5.6 Design-ware arithmetic modules . 53

5.7 Performance of 32bit DW adder implementation 54

5.8 Performance of 16bit DW multiplier implementations 54

6.1 Synthesis results for the MAC unit . 58

6.2 Synthesis results for the CS-MAC unit relative to MAC 58

xii LIST OF TABLES

6.3 Synthesis results for the MAC unit . 60

6.4 Normalized performance of proprietary compared to Design-ware based designs 61

7.1 The MD-MAC instruction set . 66

7.2 Enabling conditions for the isolation logic in the MD-MAC unit 70

7.3 Functionality of the shared Add/Sub unit . 71

7.4 Area of the benchmark and test design . 76

7.5 Timing performance of the benchmark and test design 76

7.6 Total power dissipation . 77

7.7 Power dissipation in the Add/SUB block . 77

7.8 Power dissipation in the weighted addition block 77

7.9 Power dissipation in the partial multipliers block 78

1

Chapter 1

Introduction

For the last three decades, semiconductor industry has been facing a monotonic improvement
in technology size, performance and cost, as predicted by G. Moore back in 1965. Ever since,
circuits of increasing complexity and performance, though at affordable costs, have been
produced. At the very early stages of this phenomenal progress, an increasing gap between
technology and design productivity was noticed. This brought about the first Computer
Aided Design (CAD) tools that would translate the circuit description, schematic at that
time, into the lithographic masks necessary for the production phase. Today tools are taking
over the designer as early as at the Register-Transfer (RT) level, while tools for behavioral
synthesis have for long been a topic of research.

Along this evolution, the optimization goals have undergone changes. Performance will
always be a metric that cannot be neglected. Power dissipation has attained significant im-
portance as it can easily become the bottleneck of current designs, both because of cooling
requirements and battery life of portable equipment. It is understood that power min-
imization will always come with some performance degradation, hence new metrics that
capture this trade-off, such as the power-delay product are coming into play. This shift has
also resulted in incorporating power awareness both in the CAD tools and in the systems’
architectures.

This thesis comes to contribute in the area in between, namely at optimizing power at
the block level in a synthesis based design flow, described by code at the RT level. More
specifically, the design of power efficient datapath components for use in Application Specific
Processors is going to be investigated.

In the remaining of this chapter the motivation for this work is described and the applica-
tion domain is introduced. Then, power efficiency and optimization is put into perspective
throughout the development phase of a product. The organization of the thesis concludes
the introduction chapter.

1.1 Motivation and Aim of the Thesis

Design for low power has been the topic of many books. Most of the work refers to the
transistor and gate level optimization techniques [15], some on computer-aided low power
design [36] and few to system level power management [6]. Little has though been written
about low power design at the RT level. In compliance with the general principal that the
higher the level of abstraction, the higher the power savings, it is expected that considerable
amount of power can be saved at the RT-level before the design is synthesized and gate level
optimization algorithms are applied, as described later on.

Nowadays, a diversity of applications calls for high computing performance with very spe-
cific functionality. Example applications are image processing and communications (signal

2 Chapter 1. Introduction

processing, compression). The demands of many such applications cannot be dealt with
efficiently when using off-the-shelf hardware, making the development of application spe-
cific hardware necessary. This is particularly the case for real-time multimedia and signal
processing embedded applications e.g. cellular phones, personal digital assistants, gaming
applications etc. Application Specific Processors, which are entire processors designed specif-
ically for an application (or application domain), provide for a complete and very efficient
solution.

The major obstacles for using ASPs, however, are the required development effort and the
related high development costs. Although, tools to streamline the design of ASPs have been
announced [34] and are gradually making their way into the standard suites of synthesis
tools, designers still have to design power efficient solutions under tight performance and
time-to-market requirements. For this reason a synthesis based design flow with rich libraries
of components is selected as the implementation platform. It is the purpose of this thesis
to explore the design space and low power techniques that could be applied at this level of
abstraction using the Design Compiler tool suite and Design-ware components library (both
from SYNOPSYS). In this respect, it is believed that the results of this work in the form of
simple guidelines for power efficient datapath design could be of great interest to hardware
designers.

1.2 Application Specific Processors (ASPs)

The term Application or Domain Specific Processors refers to the midway solution between
a custom ASIC and a general purpose computer. It can also be described as a degenerate
or specialized Digital Signal Processor, which is a Domain Specific Processor with extended
programmability. Figure 1.1 depicts the classification of the above mentioned choices in
terms of figures of merit for integrated circuits.

Fl
ex

ib
ili

ty

C
os

t

Power Efficiency

Time-to-martket

A
re

a

Performance

DSPs

ASPs

ASICs

GPPs

Figure 1.1: Classification of integrated processing solutions

To put it in words, ASPs are both a compromise and a necessity between the expensive,
highly utilized, low power and hard to maintain ASICs and the inexpensive, flexible, but
lowly utilized and power hungry general purpose computers.

They are meant to process computing intensive problems efficiently, performance- and power-
wise. For this reason, they only have a limited, carefully selected instruction set inspired
by the specific domain they are intended for and a specialized datapath. Depending on
the control context of the domain, control instructions may be included or be mapped to
a general purpose “co-processor”; this paves the way to reconfigurable computing where a

1.3 Power Saving Techniques in a Top-Down Design Flow 3

GPP is interconnected to a set of satellite co-processors by a network or bus system, as
discussed in Paker’s Ph.D. thesis [44].

According to Swartzlander [21], three are the main guidelines that should be followed in the
design of application specific processors:

• “Use only as much arithmetic as necessary”
• “Use data interconnections that match the algorithm”
• “Use programmability sparingly”

In this work, which is focused on datapath design, the first and the last rules are the ones to
be investigated. It is pointed out in the next section that power dissipation is closely related
to switching activity. Hence, a fourth command would be to minimize switching activity
and a major part of this work is to evaluate how this can be done efficiently in the selected
scope.

1.3 Power Saving Techniques in a Top-Down Design
Flow

1.3.1 Power Dissipation in Synchronous Digital Circuits

The sources of power dissipation in CMOS technology are summarized in formula 1.1 [20].

P =
1

2
· C · V 2

DD · f · N + QSC · VDD · f · N + Ileak · VDD (1.1)

The first term captures the switching activity power, the power required to charge and
discharged the circuit nodes, where C is the node capacitance, VDD is the supply voltage,
f is the frequency of operation and N is a factor expressing the node’s switching activity,
the number of gate output transitions per clock cycle.

The second term represents the short-circuit power, the power dissipated during the gate
transitions, when current flows directly from the power supply to the ground terminal
through the network of p- and n-type CMOS transistors. The factor QSC accounts for
the quantity of charge carried by the short circuit current per gate transition.

The third term expresses leakage current power, due to the leakage current Ileak formed by
reverse bias currents at parasitic diodes and subthreshold transistor currents.

Traditionally the last two terms have been disregarded and the switching activity power
in a well-designed technology accounted for over 90% of the total power consumption [20].
Recently, the significance of leakage power has been revised and its absolute value is expected
to increase, as threshold voltages are lowered to maintain the performance for constantly
shrinking supply voltages [13]. In [27], the lower limit of the contribution of leakage power
to the total power dissipation for RTL optimized circuits is reported to be 23% for a 0.18µ
technology. Throughout this thesis, only switching activity power is taken into account as
it is seen as a design problem; leakage power is considered a technology problem and it is
left to be faced by technology engineers.

1.3.2 Low Power Design Flow

To avoid costly redesign steps, it is mandatory that power dissipation is considered from
the very beginning in the development phase of a design [33]. At each level of abstraction
several alternatives need to be considered and their power consumption estimated. For this
reason vivid activities in researching power estimation at various levels of abstraction is
being done [25], [17], [29], [41]. Figure 1.2 is depicting a possible low-power design flow

4 Chapter 1. Introduction

from the highest (system) down to the lowest (circuit) level with increasing accuracy and
decreasing power savings1. In the paragraphs to follow, a brief discussion for the different
levels of abstraction.

System

Level

Spec.

SoC

Estim.

System-Level

Optimization

HW/SW

Partitioning
 Estim.

Source Code

Optimization

Behavioral

Optimization

HW/SW

Partitioning
 Estim.

Estim.
Estim.

Estim.
RTL

Optimization

Technology

Mapping

Controller

Synthesis

Estim.

Estim.
Datapath

Mapping

Exec. Code

Optimization

Compilation

Estim.

Estim.

Estim.

Physical

Design

Estim.

Figure 1.2: Low-Power System Design Flow

System Level

An extensive analysis on system-level power optimization is given by Benini and DeMichelli
in [10]. To put things into perspective some general ideas are quoted here. An electronic
system consists of a hardware platform and the application software. One level below, a
hardware platform consists of three parts: a) computation units, b) communication units
and c) storage units, and it is highly important that energy-efficient system level design
should address power reduction in all three of them.

A generic hardware platform is illustrated at figure 1.3 comprising several computational
units, an extensive memory hierarchy and an interconnection system based either on a bus
system or a network. Focusing at the computational units, the implementation strategy may
vary from ASICs to general purpose processors, as previously discussed, depending both on
programmability, power and cost requirements.

Memory hierarchy can significantly affect power consumption as it is one, if not the biggest
power consumer. A typical architecture envisions one or two levels of cashing with design
parameters (associativity, word and block length, bandwidth) optimized for the expected
workload, usually by use of simulations.

An other important issue is dynamic power management [6], which refers to the availability
of different modes of operation of the individual components (sleep, doze, off) and the
existence of a controller to control the components’ transitions from one mode to the others.
Dynamic power management can also be applied at lower levels (block and RT) through
clock gating, as it will be discussed in section 2.2.

Another widespread system level power management technique is supply voltage scaling
[15]. Although this method has yielded remarkable results, its applicability is limited in the
deep-submicron region where supply voltages are as low as 1V.

1Colors identify different areas of research

1.3 Power Saving Techniques in a Top-Down Design Flow 5

uP

I/O
Mem
 Mem
Mem

Mem

Mem

DSP
Mem

CU
 CU

CU
 CU

Figure 1.3: A general System-on-Chip Hardware Platform

Behavioral Level

The starting point for this level is a behavioral description of the algorithm captured in an
hardware description language (HDL) together with a set of resource, scheduling, timing
and, in few cases, power constraints. After this input has been transformed into a Directed
Dependence Flow Graph (DDFG), optimization algorithms guided by cost functions are
invoked to perform the tasks of scheduling and resource binding [14], [40], [47], [46]. Power
awareness has been included in the form of power and effective capacitance models and
modified cost functions to take into account total power consumption.

Behavioral synthesis, although promising to mitigate the designers task, is still at its infancy
and it will be a while before it will be included in commercial CAD tool suites. In a common
flow, the application is mapped on an existing hardware platform and behavioral synthesis
is used for parts of the design, while the datapath is hand-crafted. The knowledge though
of power and capacitance characteristics of functional units can lead the designer towards
wise implementation selections. Part II of the report is inspired by this idea and it is its
purpose to provide the designer with this insight. Some of the parameters appearing in the
cost functions of behavioral synthesizers can also alert designers to avoid wrong decisions:
power can either be reduced by deceasing the effective load capacitance or the switching
activity.

Register-Transfer Level

Power optimization at the RT level has lately come into focus for design space exploration
and early design validation. Compared to the behavioral and logic level it represents a
trade-off between accuracy and computation effort. Power optimization at the RT level is
discussed in chapter 2.

Logic Level

Although the amount of power to be saved at this level of abstraction is very small com-
pared to the total power dissipation, because of the detailed and mathematically expressed
formulation of the problem with boolean equations, satisfactory results have been achieved.
Though, it is important to note that the power savings do not have an additive effect and
usually do not exceed the amount of 10-15 percentage units [53]. The input to this opti-
mization level is a nodal connectivity list and nodal switching probabilities. The idea is
that nodes with high switching activity should be eliminated by one of the methods stated
below.

• Technology Independent Techniques

6 Chapter 1. Introduction

– Don’t Care Minimization [50]
– Common Sub-expression Extraction [48]
– Synthesis of Timed Shannon Circuits [31]
– State Assignment [7]
– FSM decomposition [38]
– Re-timing [37]
– Guarded Evaluation [54]

• Technology Dependent Techniques
– Technology Mapping [56]
– Gate re-sizing [3]
– Buffer insertion and Pin Swapping [33]
– Use of Dual Voltage/ Threshold Voltage Gates [57], [27]

1.4 Organization of Chapters

The thesis is organized in three parts. Part one (chapters 2,3 and 4) deals with power
saving techniques at the RT level. Part two (chapters 5 and 6) is a study on arithmetic
components at the dispense of the RTL designer. The sense of efficiency is broadened to
cover the other performance parameters, namely area and timing. Another important aspect
is the exploration of what is available to the designer and how it can be used effectively.
Finally, part three (chapters 7 and 8) contains the description and the results of a design that
elaborates on the findings of the two previous parts. All parts are self containing and include
a sample design to prove the points stated. The designs have been carefully selected to be
both representative of the domain that is investigated and also manageable in complexity
to allow for the extraction of solid conclusions.

Chapter 2 constitutes a literature study of the available power saving techniques at the RT
level. The presented techniques are evaluated in terms of applicability, incurred overhead
and relevancy to the field in question.

Chapter 3 elaborates on clock gating and operand isolation, the two most prominent
techniques, through an examle design. A Complex Arithmetic Unit (CAU) that operates
on complex fractional numbers is implemented and optimized for power through dynamic
power management techniques.

Chapter 4 specializes on efficient operand isolation. Three alternative methods of operand
isolation are suggested and evaluated after being applied on the CAU design from before.

Chapter 5 reviews arithmetic components. The topic is approached from the performance
and implementation point of view both theoretically and practically in respect to the options
available to the front-end designer and how they can be accessed.

Chapter 6 uses a Multiply-Accumulate unit (MAC) as a subject to evaluate the validity
of the findings described in the previous chapter.

Chapter 7 describes the design of a more complicated design. It is characteristic of ASPs
to include a separate Multiply Unit in parallel to the ALU. Such a unit that operates on
multiple datatypes with varying length (16-, 32-bit) is implemented and optimized through
the methods presented in the previous parts.

Chapter 8 concludes by summarizing the findings and extending them to relevant areas of
research. Finally some guidelines in the form of “rules of the thumb” are extracted.

Part I

Low-Power Design at the RT
Level

7

9

Chapter 2

Power Reduction in RT-Level

The RT level of abstraction has been created as an intermediate level between the logic and
the architecture levels to facilitate manageability of large designs. It alleviates designers
from the tedious and error prone tasks of capturing functionality at the gate level, resulting
in considerable improvement in the productivity-design quality product.

In contrast to the system/architecture level of abstraction characterized by general spec-
ifications and inaccurate power consumption models for design components, the RT level
contains enough implementation details to be used for constrained design space exploration
and more precise power estimation. The local optimization techniques applicable at the
logic level as mentioned in the previous chapter, not only limit the expected gain, but also
incur very high computation requirements. This is due to the incremental nature of the
algorithms used and the propagation of the effect of a local change and re-evaluation of the
overall power consumption in the design [6]. In conclusion, the coarser RTL description of
a design provides for efficient power optimization and estimation algorithms.

The purpose of this chapter is to provide an overview of the available RTL power optimiza-
tion techniques and evaluate them in the context of this work. Before that, a decomposition
of the RT level is performed and a theoretical background is built to enhance comprehen-
siveness of the proposed techniques.

2.1 The RT Abstraction Level

2.1.1 Decomposition of an RTL Design

At a first level, an RTL design can be decomposed into a control and a datapath unit. The
control unit is usually captured as a finite state machine (FSM). A datapath comprises three
distinct categories of components:

• Functional Units (e.g. adders, multipliers)
• Steering Logic (multiplexors, tristate buffers and registers)
• Interconnection buses

The controller and the datapath interface through the control signals, which are used to
configure the steering logic, and the conditional signals (e.g. comparators’ outputs), which
express certain conditions and are used in the calculation of the controller’s next state.
As two independent sources of power dissipation, the controller and the datapath can be
separately optimized. Additional power cuts can be achieved by carefully designing the
interface between them as discussed in paragraph 2.5.1.

At this point it is important to distinguish between static and dynamic power optimization; a
characterization that is independent of the abstraction level. Static refers to those techniques

10 Chapter 2. Power Reduction in RT-Level

that do not change over time, in contrast to dynamic. Static techniques represent decisions
throughout the design phase that affect average power consumption. For example, at the RT
level, a low dissipative, but slower component, is selected against a faster, but more power
consuming one. Dynamic refers to methods that in run time, under certain conditions, are
activated to minimize power consumption (e.g. dual voltage operation under varying load
requirements) by means of additional circuitry.

This circuitry imposes an area overhead, it may affect performance, if inserted on criti-
cal paths, and at corner cases, it may compromise the overall power reduction. Thus, an
extremely important part of any power optimization algorithm is the identification of ap-
propriate applicants to be power managed. RT level power estimation can be used for this
purpose.

2.1.2 Power Consumption Guidelines in RTL Designs

Functional units are known to be the major power consumers in datapaths, however power
distribution figures may vary among different applications. Ranghunathan in [45] differ-
entiates between control- and data-flow intensive designs, stating the multiplexors and the
registers by far as the major sources of power dissipation in control dominated designs.
Table 2.1 summarizes the power distribution figures of the implementation of GCD1 algo-
rithm presented in the same article and the results of PLAIN design2 (section 3.3) and
supports the argument. As the power consumption sources may differ among designs, power
optimization should be applied in a design specific manner.

Block Power consumed GCD Power consumed PLAIN
(% of total) (% of total)

Functional Units 9.08 86.00
Random 4.67 1.00
Registers 39.55 12.00
Multiplexors 46.70 1.00

Table 2.1: Power distribution in the GCD implementation [45]

Musoll and Cortadella in [40] provide power models extracted by simulations for functional
units in order to be used with high-level synthesis techniques. RTL design and high-level
synthesis are closely related in the sense that in the latter, design experience is replaced by
cost functions. In this respect, power models can be valuable tools for the RTL designer.

In [40], power dissipation is related to the switching activity of the input operands and
more specifically to the hamming distance of two subsequent values. Simulations of an 8×8
Radix-4 Booth encoded multiplier showed 35% lower power consumption in the case when
only one of the inputs changes, while the other remains constant. Similar guidelines are
quoted in table 2.2.

In the table, factor β denotes the power relation between the adder and the multiplier,
whereas factors αadd and αmull denote the power ratio between operations with one and two
operands changing, for an adder and a multiplier, respectively. It is important to note that
those factors are weak functions of operand bit width and can be thus approximate factors
for higher widths.

Another strong point implied is the affiliation of power dissipation to data correlation. Hence,
it is advisable that data correlations are both searched for and preserved when available.
In [59], for instance, two separate busses are preferred over a time-multiplexed one, when

1The Great-Common Devisor circuit (GCD) consists of functional units (three comparators and one
subtractor), steering modules (10 multiplexors and 4 register banks) and random logic (FSM and decode
logic

2Plain design consists of 4 multipliers, 2 adders and 1 multiplexor

2.1 The RT Abstraction Level 11

Parameter Description 8-bit 12-bit 16-bit

Padd2

(nJ/op)
Avg. consumption of an adder
when both operands change

0.35 0.53 0.90

Padd1

(nJ/op)
Avg. consumption of an adder
when one operand changes

0.26 0.4 0.70

Pmul2

(nJ/op)
Avg. consumption of a multi-
plier when both operands change

5.7 13.68 28.9

Pmul1

(nJ/op)
Avg. consumption of a multi-
plier when one operand changes

3.7 8.88 19.9

αadd Padd1/Padd2 0.74 0.75 0.77
αmul Pmul1/Pmul2 0.65 0.65 0.068
β Padd2/Pmul2 0.06 0.04 0.03

Table 2.2: Power models for functional units from [40]

the two streams are not correlated. Data correlations are very common in digital signal
applications and should be utilized (e.g. the sigh- and higher order bits in a sequence
of slowly changing two’s complement numbers). In this respect, power estimation based
on random, uniform input patterns may yield optimistic power savings. The transition
probability of different order bits as a function of temporal correlation is given in [36].
There, the least significant bits have a uniform probability of switching independently of
the correlation value. On the contrary the most significant bits are highly dependent on the
correlation values.

Theoretical Concepts

The optimization techniques that follow aim at reducing switching activity in all parts of
the design, the control and datapath units. Dynamic power management at the RT level is
about extracting hold conditions of design components and by ingenious circuitry preventing
useless switching power. In contrast to gate level description, extraction of hold conditions is
very robust, yet they may be suboptimal [6]. Under this scope, RT level power management
is a trade-off between computational efficiency and power saving.

Two terms are reported in [6] to formalize idleness of datapath components: internal and
external idleness.

Internal idleness depends exclusively on the functionality of the unit in question. Giving
the definition through an example, a multiplier which one input is set to zero is an
internally idle unit, as any change in the other input is not observable at the output,
even though the output port is fully observable.

External idleness is solely dependent on the environment of a component and is directly
related to observability, the propagation of a change on the signal in question to pri-
mary outputs. A simple example is illustrated in figure 2.1: when the zero input of the
multiplexer is selected, the output of the shifter is not observable and in this way use-
less. External idleness is very common in practical systems deploying several resources
in parallel and will be extensively used as a means to minimize power dissipation.

Observability don’t care condition (ODC) is the condition under which a signal is not
observable at a primary output. It is computed by traversing the fan-out cone of a
signal backwards from the primary output and concatenating the ODCs of the inter-
mediate nodes met. ODCs can then be used to activate power management circuitry.

An important difference between internal and external idleness is that in case of the former,
correct functionality has to be preserved (e.g. keep the output of the multiplier to zero,
when one input is zero). In case of the later, the output of the externally idle unit is a
”don’t care” and could be set appropriately.

12 Chapter 2. Power Reduction in RT-Level

A
 B

Shifter
 Adder

MUX

Data Register
 Data Register

sel

1
 0

Figure 2.1: Example of external idleness

2.2 Clock Gating

Clock gating has in the last years changed status from forbidden “black magic” design craft
to a well accepted power saving optimization method. The early unpopularity of clock gating
is charged to the inability of the tools of that time to deal with the timing implications of
the gated clock signals and by the reduced fault coverage achieved by logic testers. The
purpose of this section is to clarify the principle of the clock-gating operation and to discuss
its limitations and automation.

2.2.1 How it Works

Clock gating was originally conceived as a system level power optimization technique aiming
to reduce the power dissipated on the clock network (which accounts up to 40% of the total)
by deactivating parts of the system that are idle. Its applicability has been extended to the
RT level as a power efficient implementation of registers on a hold condition. An enabled
register is shown on the left of figure 2.2. During a hold condition, the register preserves its
previous value at a high power cost. Unnecessary power is consumed on the clock line, the
register itself and on the multiplexor on the feedback path. By controlling the clock driving
the clock input of the register, reloading is only conditionally performed resulting in both
reduced power consumption and area overhead.

FF
 FF

C
ontrol

Logic

MUX

Data

clk

EN

FF
 FF

C
ontrol

Logic

Data

clk

EN

latch

gclk

a) Clock gating candidate b) Hazard-free latch-based clock gating

Figure 2.2: Implementing clock gating

2.3 Operand Isolation 13

2.2.2 Automation of Clock Gating

Although easy to apply, manual clock gating can be difficult to verify timing and testability
wise. Due to the high potential savings at insignificant cost, clock-gating is fully automated
in most commercial synthesis tools. This paragraph briefly introduces the automatic clock
gating3 feature in the Power Compiler tool from SYNOPSYS.

A robust set of options controlling all aspects of the implementation of clock gating are
available to the designer in the form of variables, commonly included in a relevant script.
Candidates are identified as registers that share the same clock and synchronous control
signals, namely synchronous load-enable, set and reset signals, from sequential processes in
HDL RTL code (see figure 2.3).

process(clk, rst) begin

...

if clk’event and clk = ’1’ then

if en = ’1’ then

q <= data:

end if;

end if;

end process;

Figure 2.3: RTL identification of clock gating candidate

To be further considered, candidates should fulfill two requirements: their width should be
higher or equal to the minimum set and the setup time of the enable signal should not
be violated. The first condition has to do with the area and power overhead of the clock
gating circuitry, which may be unjustifiable for small register banks. The setup condition
qualifies correct operation and is dependent on the clock gating logic selected. The designer
has two options at hand: a sequential and a combinational one. The former includes a
latch to filter glitches from propagating to the clock signal during the first half of the clock
cycle, while the latter is implemented with gates and is transparent to the glitches. For
this reason, the sequential approach is strongly recommended, if this does not interfere with
the setup condition. Isolation logic can be customized in many respects. One important
choice is between integrated and non-integrated cells. Integrated cells refer to special library
available clock gating components and should be preferred or resorted to in case the use of
non-integrated ones results in setup time violation.

Regarding testability, additional observation points can be automatically inserted to improve
controllability and observability problems caused by the clock gating logic.

2.3 Operand Isolation

Operand isolation is a technique to protect a functional block from being exposed to switch-
ing activity at its inputs by means of blocking logic.

It involves a candidate for isolation, the isolation circuitry and the activation condition
that controls it. Figure 2.4, illustrates a common case that operand isolation assists clock
gating, enabling better utilization of external idleness. Since, register A is shared by the
two functional units, clock gating cannot block the switching activity in the shifter, when an
addition is required. The activation condition for the blocking logic, active-low in this case,
can be extracted by the observability don’t care conditions as described in [54], an analytical
method amenable to being automated.

3See chapter 9 in [53]

14 Chapter 2. Power Reduction in RT-Level

A
 B

Shifter
 Adder

MUX

Data Register
 Data Register

sel

1
 0

Blocking Logic
 Blocking Logic
 sel
sel

Figure 2.4: Operand isolated ALU

2.3.1 Implementation Details

Working at the RT level mitigates the tedious tasks of identifying operand isolation appli-
cants and extracting activation signals, as the inputs to functional units and the multiplexor
control signals can be readily used for this purpose.

The type of isolation logic used requires more consideration. Two approaches have been
proposed [39]: a) transparent latches and b) combinational logic gates (AND/OR). In the
former case, the latches are used to freeze the values of the inputs and in this way prevent
the invocation of a new, redundant computation. In the latter case, inputs to functional
units are isolated by setting appropriately the controlling inputs of combinational gates (a
logical zero (one) for an “AND” (“OR”) gate). “AND” or “OR” gates should be used for
inputs with a high static probability to be assigned a logic one or zero, respectively.

Either implementations entail an area overhead; that is the sum of the area occupied by the
isolation banks and the area occupied by the activation function. For most cases in RTL
designs, the second term can be disregarded, as the control signals can usually be used as
the activation functions.

Power saving can also be compromised by the power overhead in the isolation circuitry. Ex-
periments performed on various testbench circuits under stimuli loads of different statistics
in [39] showed that gate-based isolation yields at least equal power savings to latch-based
isolation at a lower area overhead. Power reduction ranged from 12% to 30%, with 5% fluc-
tuations under loads with different statistical properties. A known limitation of gate-based
isolation is that isolation effectively takes place one clock cycle later, due to the isolation
gates settling to their quiescent values, so it is not advisable for highly active activation sig-
nals. This drawback is eliminated in latch-based isolation at the expense of increased area
and power overhead. Timing degradation can also be considerable and in cases unacceptable.
Timing slack is decreased in two ways:

• As isolation banks are placed on the critical paths, their inherent delay is subtracted
from the available slack.

• The timing path of the activation logic is also added on the critical path, further
tightening timing constraints.

Despite those observations, in some of the experiments carried out in [39], the increase in
the timing slack was annotated to additional boolean optimization opportunities emerging
after the insertion of the isolation gates.

Testability is also affected by the isolation logic. Although, functionality is not put at stake,
a stack-at-1 fault at the activation signal will render isolation logic inoperative and power

2.3 Operand Isolation 15

dissipation increased by the isolations logic power overhead [53], as depicted in figure 2.5.
For this case to be prevented, an additional observation point needs to be added.

D

mux

mux

add

Data 1

Data 2

AS

sel1
sel0

0

1

0

1

Figure 2.5: Unobservable stack-at-1 fault in operand isolation circuitry [53]

Taking into account the dependence of power dissipation to data correlations, two distinct
power savings are expected, the primary and the secondary. Primary gains refer to min-
imization in the isolated unit, while secondary to savings in the fanout logic of the same
unit. If the output of an isolated unit is an input to a unit in the same path, the reduced
switching activity at the intermediate node will result in additional power reduction. For
this reason, it is advisable that isolation logic is added as closer to the primary inputs of
a design, as possible. Especially in gate-based isolation, it is extremely important that the
activation signal is available at least at the same time as the operands to be isolated. A late
arriving activation signal does not only impact timing, but also results in excessive switching
activity and unexpected power dissipation. In such occasions the actual power dissipated is
doubled due to the initiation of two useless computations, one with the new inputs and one
with the isolation gates’ quiescent value, plus the isolation’s logic power overhead.

Based on the above discussion, operand isolation, if judiciously used, can considerably reduce
unnecessary power dissipation at a small price. As power and area costs are somehow related
to the width and the number of operands to be isolated, they can be amortized for highly
complex arithmetic operators (multipliers).

2.3.2 Automation of Isolation Logic Insertion

As stated earlier, operand isolation is amenable to automation and, together with clock gat-
ing and resource sharing (not intended for power), they are the only RTL power optimization
techniques that have found their way in commercial CAD tools, for example PowerCompiler4

from Synopsys. This paragraph briefly introduces implementation of operand isolation in
PowerCompiler. More information can be found in chapter 10 of [53].

Operand isolation is semi-automated, meaning that some interaction with the user is re-
quired. There are four tasks involved, in line with the algorithms presented in [39] and
[54]:

a) Identification of operand candidates
b) Implementation selection
c) Extraction of activation conditions
d) Reporting and rollback

Identification is performed manually by the designer either in the RTL HDL code or in
the GTECH level, the SYNOPSYS proprietary format of a design after the analysis and
elaboration stages (see section 5.2.1). Figure 2.6 illustrates operand isolation in the RTL

4Yet, operand isolation is an infrequently used feature of PowerCompiler, in contrast to automatic clock
gating

16 Chapter 2. Power Reduction in RT-Level

VHDL code. “Pragmas” are directives used to guide VHDL compiler and they only apply
to singular arithmetic operators. If more complex expressions are used, they need to be
partitioned into simpler ones containing a single operator or spanned over more lines.

...

...

p <= a + b; --pragma isolate_operands

...

...

Figure 2.6: Pragma based operand isolation in VHDL RTL code

Only “AND/OR” gate-based operand isolation is supported by SYNOPSYS and isolation
logic is selected by setting a special variable (set operand isolation style). Activation signals
are automatically extracted5. Power compiler can be requested to generate timing, operand
isolation and power reports as means to evaluate insertion of operand isolation logic. If the
overhead is unacceptable, the designer can manually remove isolation logic by use of certain
commands. Automatic rollback is also provided, if the maximum permissible negative slack
is assigned a value prior to setting the design constraints and compilation.

As discussed in the previous section, operand isolation should be used with caution. Syn-
opsys offers the simple guidelines below to assure successful operand isolation:

• Avoid isolating units when inputs are highly correlated to the activation signal (e.g.
in case of a feedback loop from an output enabled register to the input of the unit)

• Choose sufficiently complex candidates (4-bit adder as minimum)
• Avoid isolating units that are highly utilized6

What is not suggested in the reference manual is simulation based power estimation. Library
based power information may be highly unrealistic and in this way suboptimal or inferior
power savings may be estimated. Power compiler supports back-annotation of switching
activity information and this is highly recommended for more accurate results (see section
2.6).

2.3.3 Clock Gating and Operand Isolation Interaction

A limitation that may be resolved in later versions of the tool is the poor interoperability
of the automatic clock gating and operand isolation features in Power Compiler. In the
current setting, clock gating is introduced earlier in the design flow and may eliminate
operand isolation opportunities by removing feedback multiplexors at the input of registers.

Figure 2.7 shows an example. By applying clock gating, the feedback multiplexor is elim-
inated and so is the activation condition. Depending on the complexity of the isolation
candidate the overall power saving may be suboptimal.

The limitation is that when the output of a functional block is directly connected to a
register, the activation signal extraction procedure does not consider whether the register
itself is enabled or not. For this reason, it is advisable that the results of automatic operand
isolation are carefully investigated and in some cases manually augmented. This may be
necessary if latch based isolation is to be deployed. In chapter 3, the interaction of clock
gating and operand isolation is elaborated and a combined approach is proposed to merge
the merits of each. In chapter 5, alternative methods are proposed that overcome most of
the above mentioned limitations.

5compilation effort should be set to high
6if utilization is more than 70% [53]

2.4 Pre-computation 17

control

FF

MUX

clk

EN

Add

B

A

Figure 2.7: Operand isolation and clock gating interaction

2.4 Pre-computation

In [1], a powerful method for reducing useful switching activity, called pre-computation, is
proposed. The basic architecture is shown in figure 2.8.

A
 R3

R1

R2

g1

g2

EN

f

X1

X3

X2

Xn

.

.

.

Figure 2.8: Subset input disabling pre-computation architecture

The method is based on selectively pre-computing the output of logic block A in figure
2.8 using the logic sub-blocks g1 and g2, hereafter predictor functions, one clock cycle in
advance, and using the pre-computed values in the preceding cycle to effectively reduce the
switching activity and power. This is done by deactivating register R2 and exposing block
A only to a subset of the new inputs, those that have an effect on the output value.

The optimization task of extracting the predictor functions is of primary importance as
power savings are offset by their power and area overhead. The objective is to maximize the
probability of either of the predictors evaluating to a logic one, covering as many as possi-
ble of the input combinations that belong to the observability sets of the individual input
variables as described in [36]. The basic architecture can be extended to apply to functions
with multiple outputs and disabling of all inputs at the expense of higher complexity in
the calculation of the predictor functions and increased power and area overhead. Timing
performance should also be considered and if detrimental, critical paths should be excluded
from the selection procedure.

The method was originally intended for strictly combinational circuits (gate level description
or random control logic). It is fully automated and power reduction figures up to 75% for
random logic are reported in [1] with insignificant area and timing overhead.

Power reduction up to 60% for functional units (comparators) were also reported. The

18 Chapter 2. Power Reduction in RT-Level

applicability on functional units though is limited to control oriented blocks that contain
comparators, carry select adders and MIN/MAX functionality [36]. This is due to the
prohibitive overhead of the pre-computation logic imposed by the large number of inputs
and outputs of the functional units; for example, all bits of both inputs to an adder are needed
for the computation to be correct. In addition, pre-computation of functional units does
not lend itself for automation and needs to be manually implemented. In that respect and
because of the promising results achieved, it is recommended as an RTL power optimization
technique, whenever applicable.

2.5 Minimizing Switching Activity

Similar to pre-computation, the methods described in the following are not dependent on
the existence of idle conditions. They aim at reducing spurious transitions (glitches) which
account for a considerable amount of the total power consumption, especially in designs
with long paths.

2.5.1 Glitch Power Minimization

Glitching power in data-flow intensive designs is attributed to chaining of arithmetic func-
tional units. Their outputs fluctuate before they stabilize to the final value and this switching
activity is propagated down the fanout logic. In control-flow dominated designs, although
the controller itself only accounts for a small fraction of the dissipated power, glitches on
the control signals created by the decode logic may propagate to the datapath and in this
way cause excessive switching activity. The generation of glitches and ways to eliminate
them are presented in [45]. These methods have been automated in a tool and applied to
testbench designs resulting in power savings up to 30%.

The suggested techniques are:

• Use of glitch blocking multiplexors
• Restructuring of multiplexor networks to enhance data correlations
• Restructuring of multiplexer networks to eliminate select signals with high glitch con-

text
• Control Signal clocking
• Delay insertion

The first three techniques aim at reducing glitch power in multiplexer networks both in the
select and input signals. The glitch context at the multiplexors’ outputs is data dependent
and the first technique proposes a modified architecture based on that observation. Re-
structuring, at the second technique, aims at creating opportunities for utilization of the
modified multiplexor by creating data correlations. According to the third method (similar
to technology mapping at the gate level), the multiplexor network is restructured to elim-
inate highly switching select signals either by using alternative ones or by pushing them
closer to the end of the fanout path, to limit their effect. Clock gating of either select or
input lines during the first half of the clock cycle is proposed as the final resort only to paths
with positive time slacks. The effect is that a logic block is limited to perform minimum
one and maximum two computations: one during the first half of the cycle on the gated
values and, conditionally, one during the second half on the newly calculated and stabilized
values computed by the fanin logic. Latch-based control signal gating, similar to latch based
operand isolation eliminates the first computation. It can also be seen as a method to insert
a pipeline stage operating on the falling edge of the clock in the middle of the path.

Glitches are the result of converging logic paths with varying delay and buffer insertion has
been proposed as a countermeasure. Because of the power overhead in the delay elements
and its vulnerability to process fluctuations, it is not recommended.

2.5 Minimizing Switching Activity 19

2.5.2 Retiming for Low Power

Retiming was originally proposed as a gate level method to minimize clock periods by
inserting flip-flops (pipelining) or by changing the position of the existing ones. By increasing
performance, voltage could be scaled down to match the throughput requirements with
reduced power dissipation due to the quadratic dependence of power to the supply voltage
(formula 1.1).

In [37], the authors propose a modified cost function that is power aware and tries to place
flip-flops under timing constraints in a way that minimizes switching activity. The method
is based on the fact that a flip-flop makes only one transition in a clock cycle and in this
respect it is glitch-free.

Retiming in commercial CAD tools only takes performance into account. For example in
Synopsys Design Compiler, retiming is used to create pipelined functional units by redis-
tributing a cascade of registers placed at the output of the unit. For this reason, the designer
should still be aware of the potential merits of carefully placing registers in the design. An
example at the RT level is given in section 6.3, where power sensitive retiming is applied on
a multiply accumulate unit.

2.5.3 Low Power Control Unit

In [22], the propagation of glitches from the control unit to the datapath is discussed.
Looking at the controller in isolation, power can be spared both in the state register and in
the next state logic by careful state assignment. Minimum hamming distance encoding (e.g.
gray encoding, one-hot encoding) have been used to minimize switching activity at the state
register. However, it was found that this resulted in larger next-state logic blocks due to
the high I/O requirements, despite the reduced transition count [5]. Thus, state encodings
of minimum state variables are recommended.

Clock gating has also been investigated as a power reduction technique for finite state
machines. In [58], a priority encoding scheme is proposed, where multiple codes are assigned
to states to enable more efficient clock gating. In [8], Moore state machines are praised for
being clock gating friendly due to the ease of extracting idle conditions, in comparison to
their Mealy alternatives. Further, transformations from Mealy to Moore type machines are
used to reveal self-loops that lend themselves for clock gating. Power savings are reported to
range from 10% to 30% using a fully automated synthesis process starting from a state-table
specification.

In a way similar to pre-computation, [35] proposes the decomposition of the FSM into
two sub-FSMs, a small and a bigger one. The former, due to its limited size dissipates little
power. The states it includes are selected in a way that the sum of the transition probabilities
between any two of them (other than the RESET state7) is the largest possible, while
the sum of the transition probabilities involving the RESET stage is as small as possible.
The above conditions guarantee that the small FSM will be active most of the time and
that the transitions from one machine to the other will be kept to minimum. Under these
specifications, the larger FSM can be shut off by clock gating for a large fraction of the time,
resulting in significant power savings. Reduction in power consumption up to 80% in the
control logic is reported.

2.5.4 Encoding for Low Power

Bus encoding was originally used to account for error correction in noisy channels. In power
constraint applications though, techniques to reduce the per transfer power dissipation have
been devised aiming to reduce switching activity on the bus. Several of these schemes

7the interface state between the two sub-FSMs

20 Chapter 2. Power Reduction in RT-Level

are described in [16]. The bottleneck of all coding schemes is the encoding and decoding
procedures. For instance, the logarithmic number system could be used to greatly reduce
the power dissipated in multipliers, but the prohibitive conversion cost, would render the
approach power inefficient. The Bus-invert code does not suffer from this problem and is
for this reason considered. According to this code, the source word or its “1’s complement”
is transmitted to yield a word of minimum hamming distance from the one previously
transmitted. Its applicability on datapath design is mainly due to the following reasons:

• It has low encoding/decoding overhead.
• It is not based on an algebraic method8

• Arithmetic on one’s complement signed numbers is well understood, yet more compli-
cated than two’s complement arithmetic [43]

For this reasons, further investigation is worthwhile to evaluate whether the power overhead
offsets the power savings. The overhead is mainly due to the conversion layers, the additional
bit lines to control the decoder and the relative performance of 1’s and 2’s complement
arithmetic.

Gray code arithmetic is the topic investigated in [19], where it is reported to have an unac-
ceptable area and power overhead, despite its intrinsic low switching. To overcome this, a
hybrid arithmetic was devised that uses gray encoded sub-blocks with binary carry propa-
gation techniques among them, resulting in increased area, but reduced timing and power
performance compared to binary array multipliers. The above mentioned techniques, de-
spite their potential power efficiency, are far from the established and well understood 2’s
complement arithmetic. In a synthesis based design, where functional units are selected
from IP libraries, integrating units operating on unconventional arithmetic systems, will re-
quire conversion layers between the different systems that will most likely offset the obtained
power savings.

2.6 Power Estimation

Power estimation is critical for power optimization, as it enables design space exploration
and design validation, before the design is actually laid out on silicon. Due to the tighter
power constraints, there is a very high demand on accurate estimation to the degree of
absolute values, which has made power estimation a very active field of research. As was
suggested in figure 1.2, power estimation should be performed all along the design flow,
from the system down to the physical level. The higher the level, the lower the accuracy
and estimation time.

The purpose of this section is only to introduce the concepts behind power estimation to the
degree that allows the evaluation of the power optimization techniques described above and
the interpretation of the experimental power figures obtained. The discussion is limited to
power estimation at the gate level, which is used in the experiments described in this report.

2.6.1 Gate-Level Power Estimation Basics

Accuracy in power estimation is all about modelling the circuit, as close, as possible to the
actual implementation, so that the simulation of the derived model will emulate the activity
of the physical circuit.

Modelling issues

The parameters used to capture the power behavior of a circuit are:

8refers to encoding based on more than the current value e.g. the previous one

2.6 Power Estimation 21

• Delay
• Capacitance

Logic gates are modelled by their delay and the capacitance of their I/O pins provided by
the technology library. Interconnection nets are described by their capacitance, which is the
capacitance (parasitic, gate and drain) of all pins that are connected to it. This information
together with library cell information and the switching activity of the internal nodes of the
circuit are used to calculate power dissipation by formula 1.1. Leakage power is statically
calculated by the leakage characterization of the circuit’s cells. Dynamic power, which
consists of the internal and switching terms, is calculated as a function of the cells internal
power, the capacitance of the nets and the nodal switching activity. From all variables,
switching activity poses the highest computational challenge ant it is related to the way the
delay of the cells is modelled.

Three approaches to modelling the gate delay are available in increasing order of accuracy:

a) Zero-Delay model
b) Unit-Delay model
c) Real-Delay model

In the zero delay model, all gates in the circuit have zero internal delay for all input com-
binations and all output pins. Thus, in every clock cycle, every gate can only make one
transition. In this way, the propagation of the new input vector that stimulates the circuit
occurs instantaneously, which is far from how actual behavior of the circuit. As a result,
the intermediate states that a circuit is going through (glitch power) before it stabilizes to
the quiescent state by the end of the clock cycle are not accounted in the calculation of the
nodal switching activities, resulting in optimistic power figures.

Under the Unit-Delay model all gates for all input combinations have the same delay. During
a clock cycle of a unit-delay simulation, a gate can make several transitions due to the finite
propagation delay. This results in considerably more accurate power estimation, at the
expense of higher computation times. However, the uniform delay means that all input
signals are arriving simultaneously, which is not the case in reality.

The Real-Delay model, as implied by the name, bares the closest resemblance to the actual
behavior of the physical gates. Phenomena that are taken into consideration are unequal
pin-to-pin delays and different rise and fall delays. This method yields the most accurate
results, however computational times may become impractical for large designs.

Estimation methods

One way to calculate the nodal switching activities is by simulation (dynamic method). Due
to its data dependent nature, it is very important that the simulation patterns represent
the properties of the actual work load. Another way is to describe the input data by their
probabilities and use the logic of the circuit to propagate the probabilities to the internal
nodes (static method).

2.6.2 Gate-Level Power Estimation with SYNOPSYS Power Com-
piler

The Power Compiler tool from SYNOPSYS is integrated with the Design Compiler synthesis
engine and they can work together to estimate the power and to optimize a design under
timing, area and power constraints. Both applications are available at the RT and gate
level.

22 Chapter 2. Power Reduction in RT-Level

RTL power estimation

At the RT level, the two power optimization techniques offered are clock gating and operand
isolation, as described earlier in this chapter. Power estimation at this level is done by
annotating the primary inputs and the synthesis independent elements (hierarchical port
map elements) with switching activities obtained by RTL level simulation and using the
zero-delay model to propagate them in the gate level design after synthesis (static power
estimation). Because of the zero-delay model and the probabilistic nature of the power
analysis, accuracy is traded off for fast runtime.

The accuracy offered by RTL power estimation is enough to evaluate power behavior of
different architectures, identify which module consumes the most power and where power is
consumed within a block.

Gate-level power estimation

During the gate-level power estimation, power is calculated by using the switching activities
extracted from the simulation of the gate-level design. The accuracy of power estimation
depends both on the delay-model used during simulation and the number of nodes been
annotated with simulated switching activity. Gate level estimation calculates all nodes’
switching activities. If the simulator supports full-timing gate level simulation, the highest
accuracy is achieved, as path dependencies and glitching phenomena are accounted for.

The simulator used in the experiments in this report (VSS) does not support full-timing
gate-level delay model (SPICE does), so the results do not include glitching power.

Methodology flow

Figure 2.9 illustrates the methodology flow for gate-level power estimation and optimization.

Two steps are involved in gate-level power optimization:

a) Optimizing for area and timing
b) Optimizing for timing, area and power

During the first step the design is optimized for area and timing and during the second
for power, as well. The priority of the constraints can be set by the user. By default,
power optimization is performed without violating the timing constraints. The higher the
positive slack on the critical path, the higher the optimization options. Gate-level power
optimization is expected to improve power by 10-15%[53].

2.7 Summary

This chapter presented the power optimization techniques that are available at the RT level
in a synthesis based design flow. The main focus is put in data-flow intensive designs, where
functional units are identified as the major power consumers, in contrast to control-intensive
designs dominated by the power consumed in register banks and multiplexor networks.

The power optimization techniques discussed target the reduction of either useless or useful
switching activity and they are further divided into dynamic and static. Dynamic methods
are special in the respect that their behavior is decided in runtime and depends on the
qualification of hold conditions expressing either external (clock gating, operand isolation)
or internal idleness and ”don’t care” states (precomputation). Power reduction is then
achieved by the means of “blocking” circuitry controlled by the hold conditions extracted.

Due to their hardware overhead and the data dependent nature of the expected power
savings, efficiency of dynamic power management techniques should be evaluated on a per

2.7 Summary 23

Read in Design

RTL

Design

GTECH

Design

Set Timing and

Area Contraints

Compile

Annotate

Switching Activity

Set Power

Constraints

Compile

-incremental

Report Power

Gate-Level

Design

Annotated

Design

Power

Optimized

Design

Design File
 User Flow

Optimizing

Timing and

Area

Optimizing

Timing, Power

and Area

Gate Level

Simulation

Report_power

Gate Level Power

Estimation

Figure 2.9: Gate-level power optimization methodology flow

application basis, as under certain conditions, power savings may be offset by the power
overhead.

In the domain of interest, only clock gating and operand isolation appear as the most
promising techniques, as the power overhead of precomputing the output of arithmetic
functional units is prohibitive. Potential for power saving is also found in the control unit
and at the interface with the datapath.

Static power optimization methods target the elimination of highly active nodes in the
circuit. Restructuring of multiplexer networks, use of control signals with high static prob-
ability and power sensitive retiming of registers are the techniques that fit the purpose of
this report.

In the following chapters, the methods discussed are eveluated through sample design ex-
periments.

24 Chapter 2. Power Reduction in RT-Level

25

Chapter 3

Experiment 1: A Complex
Arithmetic Unit

Complex arithmetic operations appear commonly in digital signal processing, and for this
reason they are included in DSP processors usually as a separate unit, in parallel with the
integer, logic and floating point units that form the execution stage of any modern general
purpose processor. It is generally accepted that the major part of power consumption in
processors is due to memory accesses and multiplication. Thus, for considerable power
saving one should focus on these two operations. As this work focuses on power efficient
arithmetic circuits the discussion will be limited on multiplication.

In this context, complex multiplication is recognized as a “hot point”, as it comprises four
multiplications, an addition and a subtraction as dictated by the formula 3.1 and illustrated
in figure 3.1. The real and imaginary parts of complex numbers are represented as 16-bit
signed fractional numbers and a complex operand can be accommodated by a 32-bit word
with the real and imaginary parts occupying its higher and lower part, respectively.

A permutation of 3.1 yields the alternative expression 3.2 with only three 16bit multipli-
cations, but 3 more addition operations. This represents an optimization at the algorithm
level that clearly illustrates the higher potential savings that can be obtained at higher levels
of abstraction. Despite the higher potential saving, expression 3.1 is implemented and an
evaluation of this choice will follow at the end of this chapter, after the experimental results
have been presented.

(a + jb)(c + jd) = (ac − bd) + j(ad + bc) (3.1)

(a + jb)(c + jd) = (ac − bd) + j((a + b)(c + d) − ac − bd) (3.2)

In this chapter a simple complex arithmetic unit is designed to serve as the platform on
which common dynamic power management techniques are applied to reduce its power
consumption.

3.1 Design Considerations

Figure 3.2 shows a common architecture of the execution stage of a processor. The different
computational units share the same input bus and their outputs are multiplexed based on
the operation code control field indicating the current instruction. Although this is a very
well defined architecture, it suffers from unnecessary power consumption. All units are active
during every clock cycle doing possibly correct computations, while all results but one will
be discarded. This case is identified as “external idleness” (see section 2.1.2) and provides

26 Chapter 3. Experiment 1: A Complex Arithmetic Unit

-

*

+

*
*
*

a
 c
 a
c
b
d
b
 d

Z_real
 Z_imag

Figure 3.1: Complex multiplication block diagram

for dynamic power management, a technique to switch off parts of the design that are not
active or not performing useful computation. In this case the operation code control field
can be used as the disabling condition of inactive units.

FP
MAC
 CAU
 ALU

MUX
op_code

Figure 3.2: Execution stage of a DSP processor

In general, processors are not known for their high degree of utilization. Although they are
capable of operating on maximum work load and delivering top performance, their average
performance lies a little bit above idle. In this line, if care is taken to design different parts
to operate on a mutual exclusive basis, power consumption can be significantly reduced
down to the minimum possible. It is widely accepted that timing performance is not to
be compromised and chip real estate comes at low cost. Based on these guidelines area
and design effort remain to be traded-off for power. This statement is conflicting with the
traditional belief that low area correlates to low power, unless dynamic power management
techniques are brought in to play [6]. What defines the power efficiency of this strategy is
the power overhead of the power management circuitry compared to the power savings and
its utilization.

Going one hierarchical step down, and looking into the CAU, there are four 16-bit multipliers
to allow for the completion of a complex multiplication in one clock cycle. Depending
on the frequency of complex multiplication instructions, one could investigate whether it
is worthwhile to share those resources with other instructions. Looking from the power
perspective, the answer is not clear. Resource sharing is not longer blindly recognized as
a way to save power. It has been proven, that resource sharing destroys data correlation
which in turn results in higher switching activity that can be directly translated into higher
power dissipation [59]. From this standpoint, power consumption becomes data dependent,
so before abundant power reduction figures can be claimed, power estimation needs to be
done based on realistic simulation patterns.

3.2 Design Specification 27

3.2 Design Specification

The design example used has intentionally been kept simple to illustrate the sources of power
consumption, their cause and allow for simple to interpret and correlate power measurements
before and after the application of power management techniques. This section deals with
the functional specification of the design.

Instruction Set

The CAU implements the following instructions:

• Complex multiplication
• Multiplication on two pairs of 16-bit signed fractional numbers
• Multiplication of a single pair of 16-bit signed fractional numbers
• No operation

Additional instructions would be single/parallel addition/subtraction and multiply accumu-
late instructions on a sequence of complex numbers.

The block diagram of CAU is shown in figure 3.3. Similarly to the overall architecture of the
execution stage (figure 3.1), the individual results are merged through a 3-to-1 multiplexer
controlled by the operation code control field. The concatenation modules, annotated by
“&”, form the results of the individual instructions. They do not incur any more logic than
manipulation of wires to account for truncation of the least significant bits to match the
available precision and remove redundant wires that are used to evaluate overflow conditions.
Although the overflow detection logic does not appear in the figure, the functionality is
explained in a subsequent section.

-

mult_hh

+

mult_hl
mult_lh
mult_ll

A_h
 B_l
A_h
B_h
A_l
B_l
A_l
B_h

MUX

&
&
&

'0'

op_code

Figure 3.3: The complex arithmetic unit with enriched instruction set

The mnemonics assigned to the individual instructions in the order presented above are
shown in table 3.1.

Instruction Mux input op code

MCX 2 “1000”
MPF 0 “0100”
MSF 1 “0010”
NOP - “0001”

Table 3.1: CAU instruction set

28 Chapter 3. Experiment 1: A Complex Arithmetic Unit

The operation codes are one-hot encoded. Although this adds to the register count for the
pipeline registers, it simplifies control logic and improves timing, as it will be explained later.

A “no operation” is present in all instruction sets and if not designed carefully it can also
result in unnecessary power consumption, for example if the output is reset to logical zero.
To avoid this situation it is sufficient to disable the control information carrying signals that
can alter the state of the machine. Operands can then maintain their previous value, since
they are not going to be written. This saves power both in the register banks and in the
functional units, which would otherwise change state and hence dissipate power. The main
idea that will be quoted in numerous places throughout this report is to prevent any useless
switching activity.

Implementation

The top level design is split into two high level entities, a sequential (REG BANK) and
a combinatorial (CAU). The former implements the I/O registers, which can be perceived
as the pipeline registers of the execution stage of a processor. The latter is the complex
arithmetic unit and it includes the arithmetic and control units. The power management
circuitry will also be considered as a part of the CAU to ease evaluation of power figures.

The size of the design does not justify the architectural partition in a sequential and a com-
binational block and the incurred code overhead. However, it serves the purpose of allowing
the generation of hierarchical analysis reports (area and power), which allows unambiguous
evaluation of the performance of the power management techniques applied.

Registers

The CAU is a combinatorial circuit and its inputs and outputs are registered as shown in
table 3.2.

Register
name

Width Direction Comment

in A 32 I Operand 1
in B 32 I Operand 2
opcode 4 I Operation code
Z 32 O Result
ovf 1 O Overflow flag

Table 3.2: The input output registers

An optional property available is clock gating as described in section 2.2. It is available
for all registers but the “opcode”, which carries sensitive control information and should
therefore always be enabled.

Arithmetic units

As illustrated in figure 3.3, the CAU comprises four multipliers, an adder and a subtractor.
The implementation of those units are analyzed in table 3.3.

Furthermore, each multiplier consists of a wallace tree structure followed by a 25x25bits
adder with Brent-Kung architecture (see section 5.1).

At this point, the implementation selection for the arithmetic units was left to be taken care
of by the synthesis tool, based only on timing and area constraints. The idea was first to
investigate the merits and overhead of the power management techniques alone and then to

3.2 Design Specification 29

Unit name Implementation Width

adder Ripple carry adder 32x32
subtractor Ripple carry subtractor 32x32
mult hh Non-booth encoded wallace tree multiplier 16x16
mult hl Non-booth encoded wallace tree multiplier 16x16
mult lh Non-booth encoded wallace tree multiplier 16x16
mult ll Non-booth encoded wallace tree multiplier 16x16

Table 3.3: Implementation of arithmetic units after synthesis

compare them against the results gained by the use of low power implementations of the
same modules. Power management circuitry entails a certain power overhead that offsets
power savings, thus there is a turn-over point; and it is one of the objectives of the thesis
to discover this point.

Another possible degree of freedom is the accuracy in the calculations. At this point, no
precision is sacrificed before the final, full-precision result is truncated. It could be worth
investigating, whether precision in the computation could be traded-off for reduced hardware
and hence lower power consumption [32]. This would however require design of customized
arithmetic components.

Finally, timing and pipelining could be taken into account. Timing closure is not considered
a problem, however if units were to be pipelined, the insertion point of pipe stages should
be power sensitive, aiming at reduced switching activity as suggested in section 2.5.2 and
applied in the design described in section 6.3.

Control logic

The control unit is responsible for the tasks of selecting the correct result, activating power
management circuitry and detecting overflow.

For some applications (real-time signal processing, multimedia), performance is not to be
compromised for power, so any power saving technique that degrades performance is bound
not to find wide acceptance and applicability. However, the requirements may be relaxed,
if there is some available slack. Both the clock gating and the operand isolation enable
conditions are derived from the operation code. To minimize the delay, the depth of the
logic inferred should be held as low as possible. In that respect, the absolute limit which
can occasionally be achieved is zero. This only occurs when one-hot encoding, instead of
binary, is used for the operation code, as illustrated in table 3.4.

1-hot Binary
Instruction code cond. depth code cond. depth

MCX “1000” op(3) 0 “11” op(1) · op(0) 1

MPF “0100” op(2) 0 “10” op(1) · op(0) 2

MSF “0010” op(1) 0 “01” op(1) · op(0) 2

NOP “0001” op(0) 0 “00” op(1) · op(0) 2

Table 3.4: Power management delay overhead VS encoding style

For instance, for one-hot encoded operation code and isolation logic that is transparent when
the control input is high, no other timing than the propagation delay through the isolation
latch is added on the timing path. This point will be further clarified when the architecture
based on operand isolation is introduced later on.

30 Chapter 3. Experiment 1: A Complex Arithmetic Unit

S
 .

S
.
input

product

partial

product

S
 .

15

0
32

0
31

0
14

30
29

31
30
 29

Figure 3.4: Representation of signed fractional intermediate results

The second role of the control logic is to set the overflow flag. In the design the length of
the intermediate results is chosen so that no overflow can occur. However, since arithmetic
is performed on signed fixed point fractional numbers, the available range is limited from -1
inclusive to +1 exclusive. Overflow can occur either at the final real and imaginary part of
the complex multiplication which range from -2 to +2, both inclusive, or at the intermediate
products which range from -1 to +1, both inclusive. Overflow on the partial products in the
case of complex multiplication is not accounted for as the subsequent addition/subtraction
may restore the result within the legal range. For the MCX instruction, overflow is identified
when bits 32 down to 30 at the product holding register are not identical (see figure 3.4).
For the MPF and MSF instructions overflow has occurred if the bits in positions 31 and 30
of the partial product are different.

3.3 Test Environment

To allow comparisons of power management techniques a testbench and a reference design
are required.

The Testbench

The data dependent nature of power estimation calls for special attention on stimulating
the synthesized design with realistic test patterns. The instruction mix in the testbench
used comprises 50% “nop” instructions. The other 50% is shared equally to the remaining
instructions. The “nop” instructions account both for the case that the execution stage is
idle and the case that only CAU is idle and computation is performed on another execution
unit. An unrealistic distribution of instructions does not invalidate the obtained results,
as their data dependent nature is well understood and taken into account. For different
workloads, results may appear degraded or upgraded depending on the relative frequency of
the instruction that utilize the isolation logic. At the extreme where isolation logic remains
transparent (100% MCX instruction mix), power figures will be actually worse due to the
power dissipated in the isolation logic.

Instruction Percentage

MCX 16%
MPF 16%
MSF 16%
NOP 52%

Table 3.5: Instruction mix

The two operand values are provided by two uncorrelated random number generators based
on a uniform distribution. A logical one and zero are by default equiprobable, however a
biased distribution towards “one” or “zero” is an option. The rationale is that switching
activity is dependent both on the type of the isolation logic (gate- or latch-based) used for

3.4 Clock Gating 31

power management and the characteristics of the workload. So, different logic may perform
better for certain input data.

As discussed in section 2.1.2, random data based on a uniform probability are not represen-
tative of applications where data are represented s in two’s complement format. However,
such a setting will yield the upper limit of power saving, which is still a valuable piece of
information.

The reference point design (“PLAIN”)

In this design the resister banks are implemented as free running registers and the CAU is
not power managed. This configuration yields the highest switching activity and thus the
highest power consumption which was found to be 4.47mW. The method used to estimate
power dissipation is described in section 2.6. Throughout this chapter, power distribution
in a design and power figures of individual components are expressed in percentage form
relatively to the PLAIN design.

As illustrated in table 3.6, the register banks account only for 12% of the total power
consumption, while the rest is mainly distributed evenly between the multipliers. The adder
and the subtractor together are only responsible for 4% of the total power consumption.
The important result from this experiment is that the multipliers are confirmed as the hot
spots in a datapath, as stated in the previous chapter. It was also noticed that this relative
power distribution holds for different instruction mixes.

Component Power share(%)

REG BANK 12.00

CAU TOTAL: 88.00
adder 2.00
subtractor 2.00
mult hh 21.00
mult hl 21.00
mult lh 21.00
mult ll 21.00

Table 3.6: Power distribution in the CAU (%)

In the subsequent sections, the clock gating and operand isolation power management tech-
niques are applied to the PLAIN design and improvement in power consumption is esti-
mated. In the immediate section, power savings from applying automatic clock gating are
investigated. The second section introduces four designs to evaluate operand isolation alone
and in cooperation with clock gating. The last section, focuses on the power overhead of
resource sharing.

3.4 Clock Gating

Clock gating is a widely established power saving technique and can be found in most
commercial designs. At a high level, it can be applied to idle blocks of a design resulting in
considerable power saving both internally to individual blocks and on the clock tree. At the
register transfer level it can be used as a replacement to enabled register banks, as explained
in section 2.2. To evaluate the benefits, two additional designs are created: “REG EN” and
“CLK GATED”. They only differ from the plain design in the register bank entity.

32 Chapter 3. Experiment 1: A Complex Arithmetic Unit

The “REG EN” architecture

This architecture uses the fact that not all registers should be updated at every clock cycle.
In all cases, it is assumed that the necessary control signals (opcode) are propagated to the
following pipeline stages, to prevent incorrect results from contaminating the state of the
machine. The register enabling conditions and the expected results are summarized below:

• MCX
No register is eligible to be hold inactive =⇒ No gain

• MPF
No register is eligible to be hold inactive =⇒ No gain

• MSF
a) The upper half of the input registers can be hold inactive, when a MSF instruction

is about to enter the execution stage
=⇒ mult hh and half the input registers are held inactive

b) The upper half of the output register can maintain its previous value
=⇒ half the output register is hold inactive

• NOP
a) Non of the registers holding the input operands should be updated when a NOP

instruction arrives before the execution stage
=⇒ the CAU and all input registers are hold inactive1

b) Non of the output register needs to be updated when a NOP instruction is about
to exit the execution stage
=⇒ all output registers are hold inactive

The principle behind all these guarding conditions is, whenever possible, to prevent switch-
ing activity by not presenting functional units with new operands that would initiate a
computation. The power merits over the plain design are gathered in table 3.7.

Component Improvement(%)

REG BANK 4.27

CAU TOTAL 57.06
adder 1.15
subtractor 1.49
mult hh 16.12
mult hl 12.99
mult lh 12.79
mult ll 12.19

Table 3.7: Relative power improvement (%) over PLAIN

It is evident that considerable power (57%) was saved. This is mainly due to preventing
unnecessary computation while executing NOP instructions. The higher improvement in
the upper part multiplier (mult hh) is due to the MSF instruction, under which it remains
inactive.

The “CLK GATED” architecture

This design differs from the previous one only in the respect that enabled registers are
replaced by clock gated ones by using the automatic clock gating facility provided by the
Synopsys Design Compiler as described in section 2.2. After examining the clock gating
report, 97 out of 101 registers were clock gated. The 4-bit register holding the opcode was
correctly excluded, as it did not have an enable signal.

1setting input registers to zero in case of a nop initiates a totally useless computation. The effect is more
immense when nops and other instructions alternate

3.5 Operand Isolation 33

As expected, only an improvement in the register bank entity was noticed, while the gain
achieved in CAU remained intact; which confirms that the estimation method works cor-
rectly. An additional power improvement of 44% over REG EN was noticed in REG BANK.
This is due to the power consumed by the feedback multiplexers in the enabled registers
and the disabling of the registers.

The overall conclusion of this experiment is that clock gating is confirmed as a way to reduce
power consumption in sequential logic. More importantly though, as it is effectively used
as a means to isolate combinational fanout logic, high expectations from operand isolation
based power management are built. How clock gating and operand isolation compare and
combine with each other is the focus of the next experiment.

3.5 Operand Isolation

Operand isolation has not attracted considerable attention due to the incurred power, area
and timing overhead. In respect to area, the isolation logic circuitry is significant, in contrast
to clock gating, where area is actually benefited. As regards power, clock gating has a triple
effect: it reduces power on the clock tree, at the register banks and in the functional units.
Though, only the latter part will be considered, as operand isolation only relates to power
in functional units. Under this condition, operand isolation by clock gating comes for free
and the benefits are unconditional, as no additional logic is inferred. On the contrary, the
net power gain from operand isolation is the one after the power overhead of the isolation
circuitry has been deducted. Finally, timing wise, the main reason why operand isolation
has remained just an idea and has not made its way to commercial designs is its impact on
timing, as the isolation logic is added on the critical paths of the design. In this experiment
it is assumed that timing is not an issue, however as described before, effort will be put on
keeping the imposed delay to minimum.

In the following, three designs are compared against the PLAIN base design: OP ISOL,
REG EN OP ISOL, CLK GATED OP ISOL.

The “OP ISOL” architecture

In this implementation, the register banks are free running and all inputs to all multipliers are
operand isolated. This means that enable latches separate the shared input buses from the
multipliers, as shown in figure 3.5. The adder and the subtractor are left unguarded, because
of their insignificant power dissipation. Isolation logic could be added at the output of the
multipliers in order to isolate the chained functional units both from unnecessary activity
(MSF, MPF) and glitches from the multipliers in case of MCX instructions. Because of the
insignificant contribution of the adder/subtractor units, the insertion of additional isolation
logic is not justified. Yet, some secondary savings (see section 2.3.1) are still achieved by
isolating the fanin logic.

By applying so fine operand isolation, it is made sure that only the necessary multipliers
are active. The conditions under which latches become transparent and the incurred delays
are:

Isolate Condition depth
mult hh opcode(3)or opcode(2) 1 + tL

mult hl opcode(3) tL
mult lh opcode(3) tL
mult ll opcode(0) 1 +tL

In the table, tL stands for the latch delay. As it can be seen logic depth is limited to 1
gate delay plus tL. This can only happen if one-hot encoding for the opcode is used and

34 Chapter 3. Experiment 1: A Complex Arithmetic Unit

-

mult_hh

+

mult_hl
mult_lh
mult_ll

A_h
 B_l
A_h
B_h
A_l
B_l
A_l
B_h

MUX

&
&
&

'0'

op_code

LATCH
 LATCH
 LATCH
 LATCH

Pipeline register

Figure 3.5: Latch-based operand isolation in the CAU design

resources are highly mutually exclusive. The area overhead of the isolation latches is 6.5%
over the plain design; to visualize the overhead, it is approximately as much as an extra set
of pipeline input registers. This point is used in the next chapter, where the duplication of
input registers is evaluated as an alternative isolation method.

The decomposition of power improvements in the CAU is presented in table 3.8.

Component Improvement(%)

REG BANK 21.52

CAU TOTAL 66.08
adder 1.77
subtractor 1.36
mult hh 15.31
mult hl 19.14
mult lh 18.89
mult ll 11.38
Isolation logic -2.07

Table 3.8: Relative power improvement in OP ISOL(%) over PLAIN

Operand isolation compared to clock gating yields an additional net improvement of 9% in
the CAU. The isolation logic is responsible for 2% of total power consumption. It is obvious
that the power overhead is insignificant even for the extreme case that all inputs are isolated.
There is also a 20% improvement in the register bank. This is due to the fact that after the
insertion of latches, input registers see less capacitive load. Although it appears significant,
one can not be sure before load capacitances have been back-annotated after physical layout.

The “CLK GATED OP ISOL” architecture

The previous experiment proved that operand isolation offers great power savings and that
it outperforms clock gating. After all, clock gating is meant as a power reduction technique
for sequential logic. The purpose of the next experiments is to investigate how operand
isolation performs together with clock gating.

This design deploys both clock gated input registers and operand isolation latches. Power
dissipation in the CAU remains intact, while a total improvement of 55.29% is noticed in the
register banks. This gives an additional 7% over the CLK GATED design and is probably
due to the reduced fanout load at the input registers.

3.5 Operand Isolation 35

The “CLK GATED OP ISOL OPT” architecture

The purpose of this experiment is to optimize the overlapping isolation effect of clock gating
and isolation latches present in the previous design. It was shown that clock gating effectively
isolates the mult hh and mult ll functional units. Thus the particular isolation latches can
be removed. By doing so an additional 1% improvement in CAU is achieved due to the
reduced isolation logic power overhead.

Overall this implementation yields the highest total power improvement of 69.7%.

The “DECOUPLED” architecture

Isolate Condition Depth
mult hh opcode(3) tL
mult hl opcode(3) tL
mult lh opcode(3) tL
mult ll opcode(3) tL
mult 16 sf H opcode(2) tL
mult 16 sf L opcode(1) tL

Table 3.9: Relative power improvement (%)

At the previous chapter it is mentioned that resource sharing can damage data correlations
which directly translates to higher switching activity. Based on that, the next design focuses
on evaluating the scenario where separate resources are allocated for every single instruction.
The idea is similar to the one illustrated in figure 3.2, but at a lower level. In that respect, two
more 16x16 bit multipliers are instantiated, each with its own isolation logic, to perform the
MPF and MSF instructions. The extra resources are grouped to form the Signed Fractional
Arithmetic Unit (SFAU). The new isolation conditions are summed in table 3.9.

Component Improvement(%)

REG BANK 19.85
CAU TOTAL 79.70

adder 79.70
subtractor 80.09
mult hh 80.72
mult hl 80.57
mult lh 80.57
mult ll 80.67
Isolation logic -1.05

SFAU TOTAL -13.37
mult 16 sf H -4.48
mult 16 sf L -8.03
Isolation logic -0.83

Table 3.10: Relative power improvement in DECOUPLE(%)

It can be seen that the delay in the isolation logic is only that of the latch and hence
minimum.

The power dissipation in every component is organized in table 3.10. The overall power
distribution and absolute values are identical to those achieved with the OP ISOL architec-
ture. The 13% power improvement in CAU is in whole offset by the power dissipated in the
SFAU unit implementing the remaining instructions. In other words, there is not a single
reason to justify the significant area overhead of two extra multipliers.

36 Chapter 3. Experiment 1: A Complex Arithmetic Unit

In conclusion, at the end of this experiment pure operand isolation yields an identical
power saving of 66% in CAU compared to the decoupled design. Power dissipation in
the REG BANK can be halved, if clock gating is applied. However, it may not always be
possible to find clock gating conditions, as the input registers in an architecture like the one
in figure 3.2, can only be inactive during NOP instructions; overall, they are not expected
to exceed 13% of the total instruction count [24]. In this percentage load-save instructions
are also accounted for. Although they do not utilize the functional units, fetched operands
will have to travel though the execution stage and should not invoke new computations.

3.6 Results

Operand isolation alone has resulted in power saving of up to 60% and is thus recommended
as a dynamic power management wherever applicable. When clock gating is an option, it
should be preferred over operand isolation; this may however lead to a more complicated
architecture and additional design effort. Operand isolation finds application, in places
where clock gating does not.

Clock gating is fully automated in SYNOPSYS Design Compiler. It is well integrated in
the design flow and poses no side effects such as testability issues, and it is hence safe to
use. Operand isolation is partly automated and not designed to work in terms with clock
gating. At this point, manual latch based operand isolation was used. The power overhead
of the isolation logic did not exceed 2% (four 32-bit latches plus control) of the total power
dissipation. However, the power overhead can be significant for small blocks.

Gate operand isolation was applied at the adder and subtractor blocks in the CLK GATED
OP ISOL architecture. Although power consumption in both blocks was reduced, it was
offset at its whole by the power dissipated in the isolation gates. The degree of utilization
of the isolation circuitry is dependent both on the data and the instruction mix and has a
great impact on the relative overhead. Thus, in cases where the isolation conditions have
high static logic zero probability, operand isolation may also be affordable for add/subtract
modules, as isolation logic consumes power only when it switches.

To limit the area overhead of the isolation logic, the input register set could be split into
a shared master set of latches followed by a fork of slave latches serving in the same time
as isolation latches. In that case both area and timing overheads are minimized. Power
consumption is still to be calculated.

A final question arises: if a set of isolation latches following a shared input register set
is justified, what would the power consumption be, if a different set of clock gated input
registers was provided for each functional unit. Such an architecture has an essence of the
one proposed in [44], where dedicated, specialized cores operate on demand by a central
control processor.

Before CAD tools become power aware and dynamic power management is fully automated,
the price for low power will be a more structural design style and customized power manage-
ment circuitry. Design effort can be held affordable by designing with power management
in mind, keeping the architecture simple and the operations mutually exclusive. Such a
design would seize the most out of the use of isolation circuitry by very closely preventing
unnecessary switching activity.

37

Chapter 4

Efficient Operand Isolation

In the previous chapter, it was concluded that latch based operand isolation yields con-
siderable power saving in datapath designs, despite the significant area overhead. It was
also outlined that operand isolation offers greater flexibility than clock gating, as it can be
applied selectively on parts of a design. However, due to the small area, timing and power
overhead, clock gating should always be preferred over operand isolation.

The purpose of this chapter is, on the ground of the above arguments, to explore alter-
native architectures that overcome the above limitations or merge the benefits of the two
techniques. The next section describes the simulation and testbench environment. The stan-
dard latch-based operand isolation scheme, described in the subsequent section, will serve as
the reference point for comparisons. Two alternative architectures are proposed in sections
4.3 and 4.4: a) the master-slave latch-based and b) the fine clock gating architecture. In the
final section, the findings and performance figures are analyzed.

4.1 Simulation Environment

To create a common evaluation frame, the three different isolation architectures are applied
to the complex arithmetic unit described in the previous chapter. In this experiment, the
architecture of the top level design is maintained. However, the isolation logic has been
moved to the block containing the I/O registers to allow for comprehensive, consistent and
easy to compare power estimates. Figure 4.1 illustrates the simulation environment.

CAU

I/O & isolation logic

A

CAU

I/O & isolation logic

B

CAU

I/O & isolation logic

C

Simulation environment

verifier

Stimuli generator

Figure 4.1: Simulation environment for the isolation architectures

38 Chapter 4. Efficient Operand Isolation

Three instances of the complex arithmetic unit, each surrounded by a register block imple-
menting the proposed isolation architectures, are instantiated. All three architectures have
exactly the same functionality, and are exposed to the same input patterns. Hence they are
expected to dissipate the same amount of power.

Within the register component four distinct parts are identified:

• Sequential context
Accounts both for the isolation latches and the input registers and is expressed in
number of equivalent latches (L), where a single bit register(R) counts for two latches
(master-slave implementation).

• Control context
Expresses the random control logic for the isolation latches in terms of logic primes
(Pr) and the clock gating circuitry (Synopsys integrated cells). The latter is expressed
in the number of disjoint register groups with different enabling conditions(CG).

• Interconnection context (see figures 4.2, 4.3 and 4.4)
It quantifies the amount of wiring in number of separate 32-bit input (IB) and output
buses (OB). Input buses are those before the input registers and output buses those
after them and the isolation latches. As the load capacitance may vary, discrepancies
in the wire-load model are noticed.

• Slack degradation
This term expresses the depth of logic inserted on the timing paths both by clock
gating (CGL) and isolation circuitry (OIL).

In the last section of this chapter all three architectures are compared based on the above
mentioned factors.

4.2 Latch-Based Operand Isolation

isolation logic

Reg
Reg
 Reg

interconnect

en
Latch
 Latch
Latch
Latch

control

en
en
en

(0)
(1)
(2)
(3)

4

operand 1
 operand 2
 opcode

clk
g_clk
 g_clk

Figure 4.2: Latch-based operand isolation

As described in section 2.3, isolation circuitry, in that case level sensitive latches, is inserted
at the inputs of all resources hooked on the same input buses, effectively blocking switching
activity from being propagated down the different logical paths. In figure 4.2, isolation logic
consists of the latches in the gray shaded area and the random logic annotated as control.
The characterization of latch based operand isolation for the CAU is shown in table 4.1

4.3 Master-Slave Latch Operand Isolation

The high area overhead of latch-based operand isolation can be compensated by reducing
the input registers into active low transparent latches. Combined together with the active

4.4 Fine Clock Gating Operand Isolation 39

Category Result

Sequential context 64 · R + 128 · L ' 256 · L

Control context 6 · Pr + 2 · CG

Interconnection 2 · IB + 8 · OB

Timing CGL=(AND + latch + register)
OIL=(ANDOR + latch)

Table 4.1: Characterization of latch-based operand isolation

isolation logic

Master
Master Latch
 Master Latch

interconnect

en
Slave
 Slave
Slave
Slave

control

en
en
en

(0)
(1)
(2)
(3)

4

operand 1
 operand 2
 opcode

clk
g_clk
 g_clk

Slave

clk

Figure 4.3: Master-slave latch-based operand isolation

high isolation latches, both the register and isolation functionality is provided. The concept
is illustrated in figure 4.3 and the characterization in table 4.2.

Category Result

Sequential context 64 · L + 128 · L ' 196 · L

Control context 7 · Pr

Interconnection 2 · IB + 8 · OB

Timing CGL=(AND + latch) OIL=(ANDOR
+ latch)

Table 4.2: Characterization of master-slave operand isolation

It can be seen that the sequential and control context and timing are improved. From
the CAD tool viewpoint, the VHDL compiler does not support constructs for master-slave
latches and a special attribute1 needs to be set to instruct the synthesizer of the existence of
a master-slave latch. The technology library available does not include a master-slave latch
and the custom made one has degraded performance compared to the edge-triggered flip-flop
in all respects: area, timing and power. Timing analysis of circuits containing transparent
latches may be problematic and manual inspection for timing violations is found necessary,
as they may be invalid. Finally, the automatic clock gating facility is available only for
edge-triggered flip-flops; thus manual clock gating has to be applied.

4.4 Fine Clock Gating Operand Isolation

To avoid the complications of using master-slave latches, the use of separate input registers
for each functional unit is proposed as shown in figure 4.4, while the results are gathered
in table 4.3. It can be seen that the equivalent sequential context is similar to that of the
default latch-based operand isolation. The random control context is reduced at the expense

1clock on also see [51]

40 Chapter 4. Efficient Operand Isolation

Isolation logic

interconnect
 control

operand 1
 operand 2
 opcode

Reg
 Reg
 Reg
 Reg
Reg

clk

Figure 4.4: Proposal of minimum slack degradation operand isolation scheme

of two extra clock gating components imposed by the per functional unit application of clock
gating. Overall, the control context is slightly increased. However, timing appears improved
as the isolation functionality is pushed to the input registers and no logic is inserted on the
critical paths. Interconnection as can be seen in figure 4.4, is slightly reduced compared to
latch-based isolation and double as much compared to the non isolated design. Wire-loads
are also reduced because of the introduction of dedicated (non-shared) buses. Last, but not
least, aggressive clock gating can actually reduce the total switching activity in the register
block with a direct positive effect on power dissipation. More on power consumption follows
in the next section.

Category Result

Sequential context 128 · R ' 256 · L

Control context 2 · Pr + 4 · CG

Interconnection 8 · IB, OB = 0
Timing CGL=(OR + AND + latch) OIL=0

Table 4.3: Characterization of fine clock gating operand isolation

4.5 Results

The performance metrics from the above experiment are summarized in table 4.4. It can
be seen that both architectures proposed (master-slave and fine clock gating) outperform
the default latch-based architecture in all respects. The area improvement in master-slave

Arch. Area (LU2) Tot. area Timing Timing Power Power
Comb Seq (% impr) in ns (% impr) (um) (% impr)

L-B 270 31212 n/a 1.0 n/a 0.413 n/a
M-S 243 26505 15 0.74 26 0.328 20.5
F-CG 234 24183 22.5 0.36 64 0.326 21

Table 4.4: Comparison of isolation architectures

architecture is due to the replacement of edge-triggered registers by active low transparent
latches implementing the master functionality. Timing is improved for the same reason. In
the latch-based architecture, the timing arc from the inputs of the pipeline register and the
functional units includes the clock to output delay of both the register and the isolation
latch, plus the control logic. In the master slave architecture, the clock to output delay
of the pipeline register is eliminated. Power is reduced due to the inherent lower power
dissipation of the latch compared to a flip-flop.

4.5 Results 41

The fine clock gating architecture, although it contains the same sequential context as the
latch-based and higher than the master-slave, appears to have the lowest area of all. This is
due to the fact that an edge-triggered flip-flop actually occupies less area than two latches
in master-slave configuration. The impact of the isolation logic on timing is reduced to
the absolute minimum, that of the propagation delay in the pipeline register. As it can
be seen in figure 4.4, even the control logic has been moved before the pipeline register.
Power consumption is almost identical to that of the master-slave implementation. Although
latches dissipate less power than flip-flops, aggressive clock gating in the final architecture has
allowed the reduction of switching activity to the absolutely necessary, and hence equivalent
power. Table 4.5 illustrates the maximum switching activities in the register part for all
available instructions and architectures. For all instructions, fine clock gating yields less
switching activity. The same counts for the master-slave architecture compared to the
latch-based, with one exception; the MCX instruction.

Instruction L-B M-S F-CG

MCX 64 · R + 128 · L 192 · L 128 · R

MPF 64 · R + 64 · L 128 · L 64 · R

MSF 64 · R + 32 · L 96 · L 32 · R

NOP 0 0 0

Table 4.5: Switching activity in the register block

In conclusion, aggressive clock gating together with dedicated input registers is the most
efficient method to apply operand isolation. For the specific experiment and only in the
register part, a reduction of 22% in area, 64% in timing and 21% (5.5% overall) in power
consumption are achieved. On top of that, the method is latch-free, hence it poses no timing
analysis difficulties and testability problems, and it is easy to implement and integrate in
the RT level design process.

42 Chapter 4. Efficient Operand Isolation

Part II

Arithmetic in a Synthesis-Based
Design Flow

43

45

Chapter 5

Arithmetic at the RT Level

Arithmetic components define the timing and power performance of datapath designs as
they are usually forming the critical path and are responsible for a major part of the total
power consumption. Several algorithms have been proposed and implemented covering a
large range of requirements in terms of area, timing and power. It is important to note, that
the most efficient is not always the preferred one, as it may result in a design overkill and
increased cost.

In RTL HDL code, arithmetic components are usually inferred by arithmetic operators such
(×,+,−) which are implementation independent. Operators are then interpreted to arith-
metic primitives by the HDL compiler. The synthesis engine then, based on the constraints
set, performs module selection for the arithmetic primitives from a vendor specific propri-
etary IP1 component library2. Finally, the technology independent implementations are
mapped to the specific technology library3 used.

The purpose of this chapter is to shed light in the steps described above and the handles
available to the RTL designer to interfere in this process.

5.1 A Review of Arithmetic Components

Addition and multiplication are the most commonly used arithmetic operations. Multiplica-
tion itself is formed as a sequence of shift and add operations of the partial products. Under
this scope, all arithmetic operations can be decomposed to a network of 1-bit adders. Thus
it is very important that high performance half- and full-adder cells are available.

5.1.1 Addition

2-Operand Addition

Arithmetic operators are binary, meaning that they perform on two operands. To add more
than two operands more binary operators need to be used resulting in a chained or tree-like
implementation that suffers from long critical paths. A more efficient implementation of
multi-operand addition is discussed in the next paragraph.

What slows down addition is the propagation of carries. The adder architectures discussed
below trade off area for performance and they all target minimization of the carry chain.
In [11], the authors have estimated, simulated and physically measured the performance of
different types of adders and the results are summarized in table 5.1.

1Intellectual Property
2the Design Ware Component Library from SYNOPSYS
3the 1.8V 0.25um CORELIB library from STM

46 Chapter 5. Arithmetic at the RT Level

Adder Type Area (gates) Delay (ns) Power (W)

Ripple carry 144 54.27 1.17
Const. width carry skip 156 28.38 1.09
Var. width carry skip 170 21.84 1.26
Carry lookahead 200 17.13 1.71
Carry Select 284 19.56 2.16
Conditional Sum 368 20.05 3.04

Table 5.1: Area, timing and switching performance of 32-bit adders

The input length of 32 bits has been selected as a representative one for most applications.
The authors, have concluded that absolute results from different methods to estimate per-
formance may vary, yet they are qualitatively correct. The technology used was an obsolete
for today 2um MOSIS4. All adders have been simulated for the same frequency of 10MHz
which is 2 times smaller than the frequency of the slowest adder.

The carry-lookahead adder stands out as the fastest adder with an average area and power
performance and it is hence a good compromise for high-speed applications. Though at
its pure form, the high fanin and fanout requirements make it prohibitive for large adders.
Alternative variations, such as the ripple carry lookahead and the super-block ripple carry
lookahead adders, are suitable for average and large widths [43]. The ripple carry adder has
the worst performance of all adders and the only reason to be preferred over a carry skip
adder is its highly regular structure. For average speed constraints, the variable block width
carry skip adder is a fairly good choice. Finally, the carry select and conditional sum adders
have a good performance over all widths at high cost, though with high power consumption.

Multi-Operand Addition (> 2)

To avoid chaining of adders to calculate the sum of multiple operands, two methods are
proposed:

• Adder arrays
• Adder trees

Adder arrays are constructed as a linear arrangement of either carry-propagate (CPA) or
carry-save adders (CSA). In the latter case, a carry propagate adder is used to merge the
carry and sum vectors. The fastest implementation is achieved by an array of CSAs followed
by a fast CPA. The performance of an array of CSAs with an RCA or a fast final CPA is
given by formulas 5.1 and 5.2, respectively, where m is the number of operands and n the
width.

T = O(m + n) (5.1)

T = O(m + log(n)) (5.2)

Array adders have a more regular structure and lower interconnection, but lower performance
when compared to adder trees. The performance of a tree adder is given by equation 5.3.

T = O(log(m) + log(n)) (5.3)

Adder trees are constructed by a tree arrangement of compressors (see figure 5.1left) followed
again by a carry propagate adder. In this way carry propagation is only performed once
and postponed until after the tree. Effectively, arithmetic is performed in carry-save format

4Metal Oxide Semiconductor Implementation System

5.1 A Review of Arithmetic Components 47

and the final carry-propagate can be perceived as a conversion layer between the carry-save
and the standard 2’s complement number representation.

An adder tree made of full-adders is commonly known as a wallace tree. A full-adder is
effectively a (3,2) compressor that encodes three input bits to two. A (4,2) compressor and
an optimized version of it are illustrated in figure 5.1. A (4,2) compressor achieves a higher
compression rate and timing performance for the same area. For this reason it should be
preferred for the construction of high fanin trees or the design of larger compressors (e.g.
(8,2)).

compressor

(m,k)

a
0
… a
m-1

s
0
… s
k-1

FA

FA

a
0
 a
3
a
2
a
1

c
in

c
out

c
in

c
 s

0 1

0 1

c
out

c
 s

a
0
 a
3
a
2
a
1

Figure 5.1: Implementation of a (4,2) compressor [61]

5.1.2 Multiplication

A multiplier is in practice a multi-operand adder with the partial products as input operands,
which are created on the fly by the partial product generator, as depicted in figure 5.2. Thus,
an array multiplier consists of a partial product generator and an adder array. Replacing the
adder array with a wallace adder tree, a wallace multiplier is created. The Booth encoding
can be used to reduce the number of partial products leading to smaller delay, reduced area
in the wallace tree and potentially lower power dissipation due to the reduced adder tree.

PARTIAL PRODUCT GENERATION

MULTI-OPERAND ADDER

CARRY PROPAGATE ADDER

Figure 5.2: Architecture of a parallel multiplier

Similar to the array adders, array multipliers suffer from long delays and are only preferred
for low to average performance applications. For average to high performance the wallace
multiplier is commonly the best choice, while for ultra-high speed applications the booth

48 Chapter 5. Arithmetic at the RT Level

recoded wallace multiplier is the default choice. Pipelining can then extend the operation
speed further with increased latency.

Callaway and Swartzlander in [12] have estimated and simulated the delay and power dissi-
pation of three commonly used multipliers:

• modified array multiplier
• Wallace tree multiplier
• Booth recoded wallace tree multiplier

Their results are given for a 2um CMOS technology. The delay is calculated as the number
of full-adder cells on the critical path, hence it is technology independent and valid for
smaller technologies. The power results are given in milliwatts, so they can only be used
for qualitative comparisons. The delay and average power characterization for 8-, 16- and
32-bit multipliers are presented in tables 5.2 and 5.3, respectively.

Mult. Type 8bit 16bit 32bit

Modified array 7 15 31
Wallace 4 9 17

Radix-4 Booth 3 4 6

Table 5.2: Multiplier full-adder delays

Mult. Type 8bit 16bit 32bit

Modified array 14 47 275
Wallace 13 31 128

Radix-4 Booth 25 44 163

Table 5.3: Multiplier average power consumption (in mW)

Power figures are computed on the basis of the maximum frequency of the slowest multiplier.

An important observation is that for low to average performance requirements, an area
optimized design is not necessarily a low power one. Although the wallace multiplier would
be a design overkill when timing can be met by the modified array, it attains less power
consumption. However, average power consumption is not a representative metric as it does
not take into account the real operation conditions. The power-delay product should be
used instead [12]; the results are quoted in table 5.4.

Mult. Type 8bit 16bit 32bit

Modified array 0.70 4.70 42.6
Wallace 0.65 3.12 19.2

Radix-4 Booth 1.26 4.37 24.5

Table 5.4: Multiplier power-delay product (ns × mW))

The lower the power-delay product, the faster and more efficient the implementation. Based
on that, the wallace multiplier represents the best choice when timing is not violated. Oth-
erwise, the booth recoded version yields an acceptable performance.

As discussed in the multi-operand addition section, the wallace tree has an irregular layout
and longer interconnects than the array adder. This may invalidate the above claims in future
technologies, where wiring becomes the limiting factor. This argument is also supported by
the foreseen increase importance of leakage power [27], which calls for minimum transistor
implementations and may render area-performance trade-offs unacceptable. Pipelining may
then be necessary, which is more straight forward in the modified array implementation.

5.2 Using Standard Cell Design-Ware Components 49

5.2 Using Standard Cell Design-Ware Components

5.2.1 Synthesis-Based Design Flow

To fit the context of the previous section in a synthesis-based design flow, the synthesis
process is briefly analyzed; a more detailed description can be found in [52]. Some definitions
are given below:

• Foundation library
is an IP library of parameterized, synthesizable, commonly used design components
that comes with the SYNOPSYS synthesis suite. Each component may have several
implementations.

• Synthetic module
is a generic interface common to all implementations of a foundation component.

• HDL operator can be a built-in operator, a function or a language construct.
• Synthetic operator

is an abstract link between an HDL operator and one or more synthetic modules
capable to perform the required operation.

Figure 5.3 illustrates the definitions for the addition binary operator. The addition between
two unsigned numbers, inferred by the overloaded “+” operator, is by definition mapped to
the “ADD UNS OP” synthetic operator. This, in turn, is bound to three different Design-
ware components: a combined adder/subtractor, an adder and an ALU, all of which are
able to perform addition. This hierarchical level allows resource sharing optimizations.
Each synthetic module can have several implementations, for instance an adder may be
implemented with a ripple-carry, a carry-lookahead or a user-designed architecture.

…

…

x <= a+b;

…

…

HDL Operator

package

…

func ”+”

…

…

HDL Operator Definition

ADD_UNS_OP

ALU
ADD
ADD_SUB

User defined
CLA
RPL

implementations

Synthetic Modules

Synthetic Operator

map_to_module

pragma

bindings

Implementation

declarations

Figure 5.3: Design-Ware hierarchy

The synthesis process comprises three major steps: a) Analysis, b) Elaboration and c)
Compilation. In the first step the code is checked for syntactical correctness. Subsequently,
the RTL code is translated into a network5 of synthetic operators.

Together with the design constraints, the outcome of the elaboration stage form the input
to the compilation step. Based on the optimization objectives set (area and/or timing),

5SYNOPSYS proprietary GTECH format

50 Chapter 5. Arithmetic at the RT Level

synthetic operators are replaced by synthetic modules. Area and timing estimates for all
implementations are created. Then, the one that maximizes the cost function driving the
compilation process is selected and a first round of optimizations is performed. Finally,
for timing-driven synthesis, critical paths are revisited, and Incremental Implementation
Selection (IIS) takes place. That is, other implementations are tried out to improve overall
cost and performance. The options for IIS are:

• Area only
The smallest implementation is selected.

• Constraint driven
Implementations that meet or do not worsen timing constraints are considered.

• Use fastest
The fastest implementation is selected. This is the default option.

So far, optimization has been power unaware and, as pointed out at the previous section, this
may lead to suboptimal power performance. Logic inference, although it serves as the basis
for automatic synthesis, it does not utilize the options offered by the foundation component
library. Next, a study on the foundation library and ways to control the implementation
selection is carried out under the scope of the discussion on arithmetic earlier in this chapter.

5.2.2 Handles to Design-Ware Components

VHDL and Design Compiler Directives

The VHDL Compiler directives are special VHDL comments that affect the actions of the
VHDL and Design Compiler. They begin just as a regular comment, but they are identified
by the pragma or synopsys keywords. The remaining text is treated as a directive. An
example is given in figure 2.6 for pragma based operand isolation.

Similar to the VHDL attributes, the SYNOPSYS.ATTRIBUTES package6 defines synthesis
attributes for the VHDL compiler. Each attribute describes a specific property of a design
object and works as a hint for the synthesis process. A comprehensive list of all available
directives and relevant explanations can be found in chapter 10 of [53].

Inference

Inference is the task performed by the HDL compiler during the elaboration stage to map
the HDL operators to synthetic operators, by the use of the map to operator “pragma”.
It is facilitated by pre-compiled packages that contain the definitions of the operators and
recognizable language constructs; hence the existence of recommended coding styles. The
built-in VHDL operators that result in instantiation of Design-ware arithmetic components
are given in table 5.5.

Type Operators

Relational = /= < <= > >=
Adding + - &
Unary + -
Multiplying ∗ / mod rem
Miscellaneous ∗∗ abs not

Table 5.5: Built-in VHDL operators

If the desired component and implementation for an HDL operator is known in advance, it
can be annotated already in the RTL code as depicted in figure 5.4.

6PATH: $SYNOPSYS/packages/synopsys/src

5.2 Using Standard Cell Design-Ware Components 51

library SYNOPSYS;

use SYNOPSYS.ATTRIBUTES.all

entity impl_sel(

...

end impl_sel;

architecture test of impl_sel is

begin

process(A, B)

variable result : ... ;

constant r0 : resource := 0;

attribute map_to_module of r0 : constant is "DW01_add";

attribute implementation of r0 : constant is "cla";

attribute ops of r0 : constant is "a1";

begin

...

result := A + B; -- pragma label a1;

end process;

end test;

Figure 5.4: Implementation selection in RTL code

The label directive is used to assign a label to the HDL operator. This label will also be used
when the synthesized design is written to a file, hence it is advisable that a comprehensive
label is annotated to every operator. A resource is created and connected to the operator
through the “ops” attribute. The map to module attribute is used to force this resource to
be implemented by the specified synthetic module. Finally, the implementation attribute
selects the desired architecture.

Instantiation

VHDL supports instantiation of components and sub-blocks to facilitate hierarchical design
[2]. In the same fashion, one can instantiate components from the Design-ware library, as
from any other IP library. The “DW02” and “DW01” libraries include entity declarations for
numerous arithmetic components [51] and pre-compiled packages with their configuration.
The data sheet for the individual components can be find in the online documentation in
the SYNOPSYS suite7.

The Design-ware library contains a lot more components than those inferable from HDL op-
erators. In that case or when a more structural and close to implementation description of a
design is pursued, instantiation is required. Figure 5.5 provides an example to illustrate in-
stantiation and implementation selection for a multiply-accumulate (MAC) unit. Important
things to note are:

a) The Design-ware library and use clauses
b) The implementation selection

Component DW02 mac is a synthetic module and it has a label (U1). Hence, unlike
the example of figure 5.4, only the implementation attribute needs to be defined and
set.

c) The use of the translate off/on “pragma”.
The code in between is disregarded by Design Compiler.

d) The sim model configuration connects the instance of a module with a behavioral
model used for simulation purposes.

7path:$SYNOPSYS/doc/online/dw/dwf1/top.pdf

52 Chapter 5. Arithmetic at the RT Level

library DWARE, DW02;

use DWARE.DWpackages.all;

use DW02.DW02_components.all;

entity mac is port (...

end mac;

architecture mac_inst of mac is

attribute implementation : STRING;

attribute implementation of U1: label is "wall";

begin

...

U1 : DW02_mac

generic map (...)

port map (

...);

...

end mac_inst;

-- pragma translate_off

library DW02;

configuration sim_model of mac is

for mac_inst

for U1 : DW02_mac

use configuration DW02.DW02_mac_cfg_sim;

end for;

end for;

end sim_model;

-- pragma translate_on

Figure 5.5: Implementation selection for instantiated components

An alternative method for instantiation is through a function call. The instantiation and
implementation selection of a specific component can be parameterized in a function call and
be included in a package. In the packages where Design-ware components are configured,
functions for the instantiation of some of the components are provided. For instance, the
instantiation of the MAC block could be done by the DWF mac function. Although it is
possible to add the implementation selection code to the function definition, it can not be
parameterized by a generic port map. The reason is that “generics” of type “STRING” are
not supported for synthesis. In that case the techniques described in the following paragraph
can be applied.

Implementation selection in Design Compiler

Setting an implementation as early as at the RTL code, limits the optimization possibilities
during synthesis. Handles to guide the implementation selection process are available both
before and after the compilation stage.

Before compilation, it is possible to set the selected implementations of modules unavail-
able, if their performance, cost or power dissipation does not match the design requirements.
This can be done by the “dont use” directive after the elaboration stage. Figure 5.6 illus-
trates the commands to guide Design Compiler to exclude the slowest adder and multiplier
implementations from being considered.

After any compilation run, the “report resources” command can be used in the DC com-

5.3 Evaluating Synopsys Design-ware Library 53

dc_shell> analyze -f VHDL top_design.vhdl

dc_shell> elaborate top_design

dc_shell> dont_use standard/DW01_add/rpl

dc_shell> dont_use standard/DW01_add/cla

dc_shell> dont_use standard/DW02_mult/csa

dc_shell> compile

Figure 5.6: The use of the ”dont use” directive

dc_shell> analyze -f VHDL top_design.vhdl

dc_shell> elaborate top_design

dc_shell> compile

dc_shell> report_resources

dc_shell> set_implementation wall mult_9

dc_shell> compile

Figure 5.7: The use of the ”set implemenation” directive

mand window or shell to report the instantiated resources and their implementations during
synthesis. If the exploration of timing, area or power reports indicate that suboptimal imple-
mentations have been selected, the “set implemantation” command can be used. Suppose
that the compilation step of the previous figure resulted in the selection of a booth encoded
multiplier for the module labelled “mult 9”. The commands in figure 5.7 shown how to
manually select the wallace implementation. An extra compilation stage is needed for the
changes to take effect.

5.3 Evaluating Synopsys Design-ware Library

Table 5.6 shows a selection of arithmetic components in the Design-ware library that can
be used to built power efficient datapaths. The last two columns indicate whether the
component is inferable from an HDL operator or needs to be instantiated. The non-inferable

Module Description Infer. Inst.

DW01 add Adder X X

DW01 addsub Configurable Adder/Subtractor X X

DW01 sub Subtractor X X

DW01 csa Adder in carry-save format X

DW02 mult Multiplier X X

DW02 multp Partial product multiplier X

DW02 prod sum1 Multiplier adder X

DW02 sum Vector adder X

DW02 tree Wallace tree compressor X

Table 5.6: Design-ware arithmetic modules

components are used in a number of experiments in the next chapter for the design of an
efficient MAC unit and they will be discussed there.

5.3.1 Performance of Design-ware Arithmetic Components

The documentation of Design-ware components provides information on the usage and avail-
able implementations, as well as general design guidelines on the area and timing perfor-
mance for different operand widths. The purpose of this paragraph is to provide a quan-
titative evaluation of the performance of addition and multiplication. The discussion is

54 Chapter 5. Arithmetic at the RT Level

limited on 16bit multipliers and 32bit adders, as representative for datapath applications.
The results are gathered in tables 5.7 and 5.8. Power figures have resulted from gate level
simulation of 1000 random input vectors with a clock period of 16ns to accommodate the
delay of the slowest carry-save multiplier.

Implementation Abbr. Area8 Timing (ns) Power (mW)

Ripple carry rpl 1 12.25 0.295
Ripple carry select rpcs 1.45 8.70 0.544
Carry-lookahead cla 1.86 6.48 0.444
fast cla clf 2.24 3.03 0.589
Conditional sum csm 4.03 2.97 0.410
Brent-Kung bk 2.11 2.14 0.833

Table 5.7: Performance of 32bit DW adder implementation

Implementation Abbr. Area9 Timing (ns) Power (mW)

Carry-save array csa 1 15.53 2.918
Wallace tree nbw ' 1 6.67 2.905
Booth enc. nbw wall ' 1 7.37 2.578

Table 5.8: Performance of 16bit DW multiplier implementations

5.4 Summary

The previous part presented and evaluated the class of dynamic power optimization tech-
niques. This part focuses on static techniques, which represent choices taken during the
design stage. At the RT level, datapaths are built from arithmetic components provided
from IP libraries and glue logic. To achieve an efficient design it is important that imple-
mentation selected matches the performance requirements of the application.

The chapter has presented and evaluated the available choices for adders and multipliers, as
commonly used datapath components. Regarding adders, a wide range of implementations
is available enabling close matching of design requirements and actual implementation. The
ripple carry implementation due to its long delay is usually avoided. However, it makes a
great candidate power-wise, when timing is not an issue. Design-ware library offers three
different carry lookahead implementations, namely “cla”, “clf” and “bk”, with increasing
performance and decreasing power-delay product, which sufficiently cover the application
requirements. From the gate level simulation results of table 5.7, it can be seen, almost
monotonically, that, the higher the performance, the higher the power consumption.

This in not the case though with multipliers, where the fastest implementation was actually
found to be the less power dissipative. Some agreement is found between the power estimates
of the Design-ware components and the actual measurements reported in the literature,
which increases the confidence of the statement. Based on this assumption, the area and
timing constrained nature of the optimization procedure of the synthesis engine, will fail to
explore this part of the design space.

If actually true, a three-fold power improvement is expected:

a) Power consumption in the multiplier is reduced
b) The improved timing can facilitate power-performance trade-offs in other parts of the

design
c) More freedom is allowed to the gate-level power optimization procedure

5.4 Summary 55

Finally, the chapter presents the methods to increase the implementation awareness of RTL
HDL coding through VHDL directives for both inference and instantiation of arithmetic
components.

56 Chapter 5. Arithmetic at the RT Level

57

Chapter 6

Experiment 2: An Efficient
MAC Unit

This chapter describes the design and optimization of a Multiply-Accumulate Unit (MAC)
based on the findings in the previous chapter. Efficiency is defined relatively to the per-
formance of a benchmark circuit, as described in the following section. The two methods
adopted to increase efficiency are elimination of carry propagation by the use of carry-save
addition and pipelining.

6.1 The Benchmark MAC Unit

The high level model of the MAC unit after synthesis is shown in figure 6.1. The multiplier
consists of a partial product multiplier that generates the result in carry-save format and a
final carry-propagate adder, as the converter between the two different number representa-
tions. The final adder in figure 6.1 accumulates the new product to the sum of the previous
clock cycle.

A

B

R
eg

R
eg

A
ccum

_reg

Multiplier

PP

Adder

Partial Products in

CS-format

bk

cla

nbw

SUM

CS-

format

5.95 ns
 2.95 ns

4.52 ns
 1.43 ns

Figure 6.1: The benchmark MAC unit

The design has been synthesized for a 10ns clock period and has been simulated for 300
cycles with random input data to estimate power consumption. The results are given in
table 6.1. Each block in figure 6.1 is annotated with its implementation (see section 5.3).

58 Chapter 6. Experiment 2: An Efficient MAC Unit

Based on the power analysis of Design-ware components in the previous chapter, little power
could be saved by selecting the booth encoded wallace tree implementation for the multiplier
and the conditional sum for the accumulator, without greatly affecting timing. Contrary to
what was expected, a considerable increase in power consumption was noticed both in the
multiplier and the accumulator. This can only mean that power estimates of stand alone
components are not representative of the actual power consumption. Timing and area wise
the results are close to the estimated values. For this reason, implementation selection for
power reduction will not be further investigated.

Implementation Area (units) Timing (ns) Power (mW)

nbw-cla 67977 9.32 7.266
wall-csm 90324 9.55 9.302

Table 6.1: Synthesis results for the MAC unit

With implementation selection out of the game, two other places susceptible to improvement
are identified in the benchmark MAC unit:

a) The final carry-propagate adder in the multiplier
b) The uneven timing paths though the multiplier and the accumulator

As described in section 5.1.1, carry-save (CS) format can considerably improve timing by
eliminating carry propagation in adder networks. Should the design be pipelined, the bound-
ary between the multiplier and the accumulator would serve as an intuitive point for the
insertion of the pipeline register. Still, due to the resulting unbalanced pipeline stages, the
result would be far from optimal.

6.2 A Carry-save MAC Unit (CS-MAC)

A new MAC, named CS-MAC, is designed from non-inferrable Design-ware components
that support carry-save arithmetic. The objective is to merge the final CPA adder in the
multiplier with the accumulator.

The Multiplier-adder component “DW02 prod sum1” accepts three input numbers A, B and
C and performs the mathematical operation SUM = A × B + C. The block diagram of
the design after synthesis is presented in figure 6.2. The component was instantiated in the
code, as explained in figure 5.5.

It can be seen that the chained addition has been merged into a three input wallace tree
followed by a carry propagate adder (fast cla, in this case). The delay in the tree is that of
a full adder. To reduce three n-bit operands into two, a single row of n disjoint full-adders
is required. The results are given in table 6.2 and are expressed in % improvement over the
benchmark design. Although the improvement seems to be marginal, it is consistent and
it is expected to be more lucrative for bigger designs, in particular for addition with more
than three operands. Such a case appears in the experiment carried out in the next chapter.
There, wallace reduction trees are used for the addition of two and four operands, all in
carry-save format.

Area (%) Timing (%) Power (%)

5.2 8.2 3.0

Table 6.2: Synthesis results for the CS-MAC unit relative to MAC

The wallace tree compressor that appears as part of “DW02 prod sum1” is available as a
parameterized component that accepts a user-defined number of inputs and reduces them
in one carry-save output. A design that explicitly instantiates a partial product multiplier

6.3 Pipelining the MAC Unit 59

A

B

R
eg

R
eg

A
ccum

_reg

DW02_prod_sum1

PP
 Adder
Partial Products in

CS-format

clf

nbw

SUM

CS-

format

8.13 ns

4.46 ns
 3.07 ns

Wallace tree

nbw

0.6 ns

Figure 6.2: CS-MAC utilizing the DW02 prod sum1 Design-ware component

(“DW02 multp”), a wallace tree and a final CPA adder yielded similar results. Any discrep-
ancies compared to the CS-MAC unit were due to the “clf” implementation of its final CPA
selected by the tool.

6.3 Pipelining the MAC Unit

A pipeline register is inserted in the benchmark design between the multiplier and the
accumulator (P-MAC). The clock period for the pipelined design is limited by the delay of
the longest stage, in this case the multiply stage, at 5.42ns which amounts to 73% of the
delay of the non-pipelined MAC unit. The two stages are clearly unbalanced.

By inserting the pipeline stage after the partial product multiplier, as shown in figure 6.3,
the delay in the multiplication stage is reduced to 4.41ns or 59% of the delay of the non-
pipelined design. The result is that the two stages are fairly balanced. Timing delays refer
only to the combinational parts and clock-to-output and setup times for the registers are
not taken into account. All results have been taken from timing reports generated by the
synthesis tool.

Combinational area has again noticed a minor reduction due to the merging of the two ad-
dition operations. However, the carry-save representation, like any other redundant number
system, has an increased demand in register count. This is because the carry-save format
has twice the storage requirements of the 2’s complement representation. For this reason,
carry-save representation is preferably used within the limits of combinational blocks. In
the MAC unit, however, if only the final result of the accumulation over long sequences of
input data is needed, accumulation could be carried out in carry save format. An extra
cycle would then be required to merge the two vectors. In that case, a performance close
to that of the pipelined design would be achieved, by totally eliminating two 32bit carry
propagations.

Power-wise, both the pipelined and the merged-pipelined designs consume more power than
the original design. The power reduction by merging the two adders is offset by the power
dissipated in the pipeline registers. The results for both designs are summarized in table
6.3.

The simulator used for power estimation does not account for glitch activity. This fact
has two disadvantages: power consumption figures are optimistic and the merits of power

60 Chapter 6. Experiment 2: An Efficient MAC Unit

A

B

R
eg

R
eg

A
ccum

_reg

DW02_prod_sum1

PP
 Adder
Partial Products in

CS-format

clf

SUM

CS-

format

7.42 ns

4.41 ns

3.39 ns

Wallace tree

nbw

0.7 ns

S
_pipe

C
_pipe

nbw

4.09 ns

Figure 6.3: Balanced pipelined MAC unit (P-CS-MAC)

Area (lib. units) Timing Avg. power (mW)
Design Comb. Seq. max (ns) Comb. Seq.

MAC 56727 11178 7.85 5,494 1,772
P-MAC 54477 15786 5.85 5,268 2,487
P-CS-MAC 51804 20610 4.85 5,023 3,162

Table 6.3: Synthesis results for the MAC unit

minimization techniques are pessimistic, especially for those techniques that aim to reduce
spurious activity. On this ground and in accordance to the discussion in power-aware re-
timing (see section 2.5.2), the power overhead of the pipeline registers is expected to be
offset by the reduced glitch power. In the non-pipelined design the output of the multiplier
is expected to undergo several intermediate states before it reaches its final value, which
will propagate to the accumulator. Finally, and specifically for the case of three operand
addition, where the wallace tree consists of a single row of disjoint full-adders, due to the
uniform propagation delay for all bit positions, the accumulator will see close to no spurious
activity. However, for this to be true, full-adder cells with balanced carry and sum paths
should be available. This may not be always the case, as the carry path is usually shorter.

6.3.1 Using a Public Available Library

Similar experiments were carried out with a publicly available library of synthesizable arith-
metic components in VHDL [62]. The library offers numerous components, in line with
the ones from the Design-ware library. The library is downloadable from the internet1 and
is presented to be compared against Design-ware components from Synopsys for a 0.35um
technology and found to have similar performance and area. The experiments with the
MAC unit only confirm the timing equivalence. Area was found to be as much as three
times bigger than the results from designs based on Design-ware library. Power figures were
also found to be higher by a factor ranging from 1.3 to 1.8, which is explainable considering
the higher area. The results are given in table 6.4 and are normalized to those acquired
from the corresponding designs presented in the previous sections.

Both the discrepancies in area and power were noticed in the multiplier. In the documenta-
tion of the library only a 10% of higher area compared to SYNOPSYS is quoted. Based on
that the rest can only be attributed to the hierarchical nature of the design. The hierarchy

1http://www.iis.ee.ethz.ch/ zimmi/arith lib.html

6.4 Results 61

Design Area Timing Power

MAC 2.74 ' 1 1.72
CS-MAC 2,38 1.1 1.34
P-MAC 2,28 1.25 1.32
P-CS-MAC 2,62 1.03 1.37

Table 6.4: Normalized performance of proprietary compared to Design-ware based designs

in the designs was preserved during synthesis to allow for hierarchical power estimation. The
optimization process takes place locally within the boundaries of a hierarchical block. It is
speculated, that flattening the design prior to optimization will bridge, but in no case vanish,
the differences both in area and power. No further investigations have been made. However,
after contacting the designer of the library, some explanation was given, but not verified.
As the arithmetic components are optimally described, compilation should be performed
with the “-map only” flag to prevent logic optimizations. Otherwise, the logic optimization
interferes with intended structure.

6.4 Results

The optimization techniques proposed in the previous chapter were used to optimize a
multiply accumulate unit. It was found that carry-save arithmetic is an efficient alternative
to the standard 2’s complement arithmetic. By merging chained addition operations, area,
timing and power in the benchamark MAC design were slightly improved and larger gains
are expected from larger designs.

In the case of pipelining, carry-save format representation resulted in two balanced pipe
stages and hence increased performance. However, carry-save representation suffers from
increased storage requirements, which makes it a bad applicant for power sensitive retiming.
The power dissipated in the pipeline registers of both the P-MAC and the P-CS-MAC offset
the power reduction due to elimination of spurious switching activity in the accumulator.
This experiment proves that power sensitive retiming should only be used to reduce spurious
activity in large blocks (e.g. multipliers).

Thus, for maximum gains, carry-save arithmetic should not exceed sequential boundaries.

62 Chapter 6. Experiment 2: An Efficient MAC Unit

Part III

The Multi-Datatype
Multiply-Accumulate Unit

63

65

Chapter 7

Experiment 3: A
Multi-Datatype MAC Unit
(MD-MAC)

It is common for both general purpose and application specific processors to perform differ-
ent operations (logical, addition/subtraction, multiplication etc.), operate on multiple data
types (e.g. fixed-point, floating point, integers and complex) and on different sizes (16-,
32bit). Functionality is customarily split in separate execution units based on the compat-
ibility of the different operations, in a way that reflects the architecture of the processor’s
instruction set and their performance requirements. A common architecture is to have a
separate floating-point unit, an arithmetic/logic unit and a multiply-accumulate.

In this chapter a Multi-Datatype Multiply-Accumulate unit (MD-MAC) that can operate
on different data types is designed to serve as an evaluation platform for the power man-
agement techniques presented in the previous chapters. It is shown, that aggressive power
management can keep the power overhead of sharing resources among different instructions
to an acceptable level, with only a minor degradation in performance.

7.1 Design Specification

The MD-MAC design, as described below, merges the functionality of the CAU presented
in chapter 3, of the MAC unit from chapter 6 as well as multiplication on 16- and 32bit
integers. The specifications for the design are given in the following paragraphs

The Datatypes

The data types supported are:

• Complex signed fractional (CF)
• 16bit signed fractional (SF)
• A pair of 16bit signed fractional (PF)
• 16bit 2’s complement integers (HI)
• 32bit 2’s complement integers (FI)

The real and imaginary parts of the complex signed fractional numbers are 16bit wide
and occupy the upper and lower part of a 32bit register, respectively. 16bit numbers, both
fractional and integers, are placed in the lower part of the input register. The representation
of the data types is illustrated in figure 7.1.

66 Chapter 7. Experiment 3: A Multi-Datatype MAC Unit (MD-MAC)

Int_32

Real Part
 Imaginary Part

31
 16 15
 0

Complex Sgn.

fractional

SF_1
 SF_0
Pair of Sgn.

Fractionals

16bit Integer/

Sgn. Fractional

� � � � �
Int_16/SF_0

32bit Integer

Figure 7.1: Supported data types in MD-MAC

With power optimization in mind already at the specification phase, an opportunity to
reduce power arises. That is to clock gate the upper part of the input register, when it is
used to store a 16bit value.

The Instruction Set Architecture

The implemented instructions together with their mnemonics and encoding are illustrated
in table 7.1. The 1-hot encoded format for the operation code field, suggested in section
3.2, is also adopted here. The number next to the mnemonic refers to the bit position in
the operation code field that indicates the instruction. The 1-hot encoding may become
impractical for large instruction sets, in that case it is suggested that related instructions
(e.g. those implemented in the same unit) are assigned codes with small hamming distance,
to enable minimum delay in the decoding logic.

Instruction 1-hot bit pos. Comment

NOP 0 No operation
Fractional class
MSF 1 Multiplication of two SF numbers
MPF 2 Parallel multiplication of two PF numbers
MCX 3 Multiplication of 2 CF numbers
Integer class
MHI 4 Multiplication of two HI numbers
MFI 5 Multiplication of two FI numbers
Multiply-accumulate class
MAC 6 Multiply-Accumulate of two HI
ACC 7 MAC with propagation of the sum to the out-

put
MCC 8 MAC with reset of the accumulator

Table 7.1: The MD-MAC instruction set

The MAC-instructions involve the use of an extended range accumulator register (34bit) that
stores the intermediate sums. During a “MAC” instruction, the range of the accumulator
is extended to 34bits and overflow occurs only if this is exceeded. The intermediate sum of
products does not propagate to the output. This eliminates updating the output register,
when only the final sum in a sequence of multiply-accumulate instructions is needed.

The “ACC” instruction is similar to “MAC” with the difference that the new sum is pre-
sented to the output of MD-MAC. An overflow occurs when the result exceeds the word size
(32 bits).

The “MCC” instruction initiates a new multiply-accumulate sequence by resetting the ac-
cumulator.

7.2 Block Level Design 67

output registers

input registers

mult_hh
 mult_ll
 mult_hl
 mult_lh

Control

Accum

MUX

+/-
 +

MUX

&

&

MAC,

ACC,

MCC

MCX
 MPF
 MSF

&
 &

MHI

&

MFI

MUX

0
 0

c0
c1

c2

c4

opcode

c1

c2

c3

c4

c0

c3
ovf

result

ovf

result
opcode

Figure 7.2: Block diagram of the MD-MAC unit

7.2 Block Level Design

The high level block diagram of the MD-MAC unit is presented in figure 7.2. As it can
be seen, the basic architecture for the CAU and the allocation of the fractional instruction
class (figure 3.3) are preserved. The diagram is partitioned in three gray-shaded conceptual
blocks and the multiplexing functionality of the results at the output. The design will be
analyzed at two levels: the functional and the circuit level. At the functional level, the
allocation of instructions to the different resources and the incurred overhead are discussed
in the following sections. The implementation level is the topic of section 7.3 .

7.2.1 Allocation of Instructions

This section describes the allocation of the integer and multiply accumulate instruction
classes on the CAU platform.

The MHI, MAC, ACC, and MCC instructions

The multiplier annotated by “mult ll” is feeded with the lower parts of the two input regis-
ters. As the “MHI” and the multiply-accumulate instructions use the same input operands,
they are mapped on the same resource. By doing so, the utilization of the resource is in-
creased and no additional interconnection is added at the input. At the output, two more
inputs are added to the final multiplexor that selects the appropriate result. Even if these
operations were mapped on separate units, the result selection at the output would not be
avoided, but only shifted to another part of the design. This is because there is only a sin-
gle result exiting the execution stage in a Single Instruction, Single Data (SISD) processor
architecture, like the one considered.

Unlike the other data types considered, “FI” is different in size and the multiplication oper-
ation can not be provided by a single, already existing resource in the design. 32bit multipli-
cation is considered to be a fairly demanding instruction, thus it appears only on application
specific processors, as a separate unit. In general purpose processors, on the contrary, it is
usually implemented as a software routine. The original CAU design already deploys four
16bit multipliers in order to provide single-cycle complex multiplication. Due to the high

68 Chapter 7. Experiment 3: A Multi-Datatype MAC Unit (MD-MAC)

cost of multipliers, instantiation of a separate 32bit multiplier would be unacceptable, and
resource sharing is considered.

The MFI instruction

In [22], the author proposes a new architecture for low power design of a multiplier. The
full N-bit width multiplier is decomposed to smaller multipliers and their products serve as
inputs to a weighed addition stage. The low power aspect of this architecture is neglected
until later. At this point, only the suggested architecture is considered, as it fits nicely to
the present circumstances. Suppose two binary numbers A and B that are partitioned to
their upper and lower parts (A = Ah&Al and B = Bh&Bl), as for the case of complex
multiplication. Formula 7.1 describes the behavior of the proposed architecture.

A × B = (Ah · Bh) · 2N + (Ah · Bl + Al · Bh) · 2N/2 + Al · Bl (7.1)

The only obvious modification needed to map the multiplication of 32bit integers to the
existing platform is the final addition of the sub-products. The implementation details of
the 32bit multiplier are presented in section 7.3

7.2.2 Sharing Addition Functionality

In the previous section, the multiply-accumulate instructions were mapped to the “mult ll”
multiplier. Accumulation could either be performed on the subtractor following the multi-
plier to formulate the real part of the complex multiplication or on a separate resource. In
the first case, a configurable adder/subtractor (add/sub) unit is required.

From experiment 1 in chapter 3, it was concluded, that operand isolation on small functional
units, such as adders, is not justifiable. As the add/sub unit is placed on the fanout path
of a highly active unit and operand isolation is not an option, by utilizing most of the
switching activity it is exposed to, the useless switching power is minimized. For this reason
accumulation is allocated on the add/sub unit.

Sharing this resource entails some control overhead. This can be multiplexing functionality
on the inputs of the shared unit and control signals to configure both the multiplexors and
the functional unit. The add/sub unit can be controlled by the MCX control line, as this
is the only instruction that involves subtraction. For the multiply-accumulate operations,
multiplexing functionality is required in front of the right input to selectively feed the value of
the accumulator, a zero operand or the result of the “mult hh” multiplier for a MAC/ACC,
MCC and MCX instruction, respectively.

Based on the same principle, the adder used to formulate the imaginary part of the complex
multiplication could be involved in the weighted addition of the sub-products for the “MFI”
instruction, which in the worst case involves four 64bit operands. For this reason, the
“MFI” instruction is expected to be the bottleneck in the design and the limiting factor on
the performance achieved.

Result merging

Resource sharing incurs considerable interconnection overhead both at the input and the
output of the shared resource. At the output side, in particular, in the case when the
resource is shared over operations on data of different format, the output bus needs to be
multiplicated. The small blocks in figure 7.2 annotated with “&” illustrate the point. Each
is responsible for formulating the results for the individual instruction. This may include
concatenation of signals or truncation in order to match the systems precision. If resources
are not shared, the buses carrying the individual results still exist, but they do not stem

7.3 Implementation Details 69

from the same highly active point and switching can be controlled on a one-by-one basis
with the techniques discussed in chapter 2.

In conclusion, the power dissipation on buses should not be neglected, when resource sharing
is considered. A good metric would be the interconnect area, however, the wire load models
in the technology library used do not include area information. Alternatively the switching
activity of the output nets can be inspected to see the implications of resource sharing in
the interconnection network.

7.3 Implementation Details

This section presents the implementation details of the design. Although the different parts
of the design as shown in figure 7.2 are related to each other, the discussion will be organized
based on that partitioning for manageability reasons.

7.3.1 Power and Delay Optimization

Power Management in the MD-MAC Unit

As was concluded from the results in part I, dynamic power management can significantly
improve the power performance of a design. From the different schemes presented in chapter
5, it was shown that fine clock gating is preferred, as it performs equally or better than both
the latched- and master-slave operand isolation schemes.

Implementing the “MFI” instruction on the CAU architecture is expected to yield lower
performance compared to a non-shared architecture with a separate 32bit multiply unit. For
this reason, any power optimization technique that further restrains performance should be
rejected.

The input register part of the design and the clock gating conditions are presented in figure
7.3 and table 7.2, respectively. The output register is also clock gated, but it is only during
the “NOP” instruction that it can retain its previous value.

Isolation logic

interconnect
 control

operand 1
 operand 2
 opcode

Reg
 Reg
 Reg
 Reg
Reg

clk

Figure 7.3: Operand isolation in the MD-MAC unit

It can be deducted from table 7.2, which is very sparsely populated, that many resources are
not highly utilized. To obtain higher utilization more parallel instructions could be used,
for instance dual multiply-accumulate instructions.

Carry-save arithmetic in the MD-MAC Unit

In chapter II, carry save arithmetic is presented as a means to improve performance in multi-
operand addition. In the experiment of chapter 6, carry-save arithmetic was applied in the

70 Chapter 7. Experiment 3: A Multi-Datatype MAC Unit (MD-MAC)

Instruction Reg HH Reg HL Reg LH Reg LL

NOP
MSF X

MPF X X

MCX X X X X

MHI X

MFI X X X X

MAC X

ACC X

MCC X

Table 7.2: Enabling conditions for the isolation logic in the MD-MAC unit

design of a MAC unit to reduce the delay and area in the multiply-accumulate operation by
merging the final propagate adder of the multiplier with the accumulator. The delay was
only slightly improved, due to the small number and size of the operands.

In the MD-MAC unit there are five instructions that involve multiply-accumulate function-
ality: “MCX”, “MAC”, “ACC”, “MCC” and “MFI” and one (“MFI”) that calls for the
addition of four 64bit wide operands under tight timing constraints. In addition, as carry-
save arithmetic actually doubles the number of operands, larger gains from multi-operand
addition are awaited. For the above mentioned reasons, the application of carry-save arith-
metic in the MD-MAC unit is expected to positively affect the efficiency of the design. The
implementation details and design considerations are presented in the following section.

7.3.2 The Shared Add/Sub Functional Unit

Carry-save subtraction

2’s complement subtraction is performed by adding to the minuend the 2’s complement of
the subtrahend. In practice, this is done by taking the 1’s complement of the subtrahend
and setting the carry-in input of the adder. Both the sum and the carry parts of a carry-save
number are valid 2’s complement numbers. Hence, in carry-save subtraction, both the sum
and carry parts should be negated. This means that both parts should be inverted and the
adder should be able to accept two carries.

A work-around applicable only in the case of 2 CS-operand subtraction is provided: the
leftmost bit of the carry vector of a CS-number is by default zero; and so it is for minuend.
This special condition, together with the associativity property of addition, can be used as
a way to feed the second carry to the operation.

Reconfiguration logic

The required functionality for the individual instructions is shown in table 7.3.

Figure 7.4 shows the circuit diagram for the Add/Sub functional block.

By the use of carry-save arithmetic, the original two inputs of the Add/Sub unit, as it appears
in the block diagram of figure 7.2, are doubled up. During the “MSF”, “MPF”, “MHI” and
“MCC”, which represent 50% of the instructions that utilize this resource, supposing they
are equiprobable, the two leftmost inputs need to be set to zero. This is achieved by properly
assigning the controlling inputs of the guarding “AND” gates. In this way, operand isolation
of a part of the wallace tree is achieved for free. So, in this case, sharing of this resource
has been successful, in the way that area, timing and power can be improved with minimum
overhead, according to the findings in chapter 6. Adding operand isolation gates in front of

7.3 Implementation Details 71

Instruction Functionality

MSF ll s + ll c
MPF ll s + ll c
MCX (hh s + hh c) -(ll s + ll c)
MHI ll s + ll c
MAC ACCUM + (ll s + ll c)
ACC ACCUM + (ll s + ll c)
MCC (ll s + ll c)

Table 7.3: Functionality of the shared Add/Sub unit

 CI ADD
MCX

ACCUM

Wallace

S
 C

MCX_Re

MHI_res

MSF_res

MPF_low

from partial

multipliers
 hh_c
 ll_s
ll_c
hh_s

31...1

MCX

clear

MUX

0
 1

&

MCX

MCX

Clear = (MCX or MAC or ACC)

*

ADD

MPF_high

Figure 7.4: Circuit description for the Add/Sub functional block

the two other inputs, indicated in figure 7.4 by a dotted line and a star, would result in an
overhead, as those inputs are isolated by the clock gated register in front of the ”mult ll”
unit.

As regards coding, the adder has been inferred, the wallace tree has been instantiated and
the control and guarding logic has been described in a structural gate level.

Further optimizations to be applied

The brent-kung implementation for the final adder was selected automatically by the tool.
This resource is not on the critical path and by inspection of the timing reports after syn-
thesis, a 1.8ns positive slack was found. According to the performance of the Design-ware
components from table 5.7, manual selection of the “fast-cla” implementation would result
in 30% lower power dissipation in the adder, without violating the timing constraints.

A 4-input wallace tree is constructed by two rows of disjoint full-adder cells. By assigning

72 Chapter 7. Experiment 3: A Multi-Datatype MAC Unit (MD-MAC)

the guarded inputs with higher static probability to the first row of adders and the more
active inputs closer to the output, switching activity is minimized. As discussed in [45],
data statistics can offer great help in guiding automatic power optimization algorithms.
Although, it is difficult to estimate the savings of such low level optimizations and apply
them at the RT level, information like that should not be neglected. An example of such an
optimization provided as a hint to the RTL designer is found in [43] for the booth multiplier:
input “A” in the “wall” implementation is booth recoded, so in case of multiplication by a
constant or multiplication of words of different size, assigning the constant or the smaller
word to input “A”, respectively, will result in a faster and smaller design. Finally, if the
(4,2) compressor of figure 5.1 was used, both area and timing would be improved.

It is obvious that gate level designs will result in more efficient implementations. One way
to fight that from the RT level is the use of richer libraries providing more flexibility to the
designer.

7.3.3 32bit Multiplication

Mapping 32bit multiplication on the CAU platform

The decomposed multiplier architecture in [22] is proposed for unsigned numbers, which
are free from sign extension complications. In this case, both the upper and lower parts of
the original input values can be considered as unsigned numbers and their multiplication is
straight forward.

On the case of signed 2’s complement representation, although the sign of the upper part is
defined, the lower part does not have a sign, but it can always be considered as a positive
number, as dictated by formula 7.2.

A = −2n−1 +
n−2∑

i=n/2

2i +

n/2−1∑

i=0

2i (7.2)

Multiplication of a signed with an unsigned number requires their being sign extended by
one bit prior to multiplication.

Based on these observations, several changes need to be made on the original setting. First
of all, the “mult ll” multiplier needs to be configured to operate on both signed and unsigned
numbers. Two ways can be used to do that: inference (see figure 7.5) and instantiation.

if (sign = ’1’) then

result := signed(A)*signed(A);

else

result := unsigned(A)*unsigned(B);

end if;

Figure 7.5: Inferencing a signed/unsigned multiplier in VHDL

Both multiply operators in the code in figure 7.5, during elaboration, will be mapped to
the same synthetic operator and during compilation they will be assigned to share the same
module, resulting in the same effect as if a multiplier had been explicitly instantiated in the
design. The “DW02 mult” module is parameterized both on the size of the operands and
their representation. The “TC” input pin is used to indicate signed or unsigned operation.
In this design multipliers have been instantiated.

The “mult hl” and “mult lh” from CAU have been replaced by two 17bit multipliers to
be used on the sign extended inputs. Under all other instructions than “MFI”, inputs are
sign extended according to the rules for 2’s complement representation. During an “MFI”
instruction the upper parts are sign extended as 2’s complement numbers, while the lower

7.3 Implementation Details 73

parts are extended by an extra zero. After multiplication the sign extension bits can be
truncated. The ”mult hh” multiplier did not need to be modified. Figure 7.6 illustrates the
implementation of the four multipliers.

mult_hh

16x16

A
h

TC

B
h
 A
h
 B
l
 A
l
 B
h
 A
l
 B
l

'1'

mult_hl

17x17

TC

mult_lh

17x17

TC

mult_ll

16x16

TC

&
 &

15

MFI

&
 &

15

15
 15

Figure 7.6: 32bit Multiplication on the CAU platform

Actual implementation

In order to accommodate carry-save arithmetic, multipliers are replaced by partial multipli-
ers (“DW02 multp”) presented in experiment 2 in chapter 6. They can only be instantiated
in the code, but they share the same interface (port description) and implementations with
the multiplier modules. Implementation selection was left to the tool. For average width
sizes the non-booth encoded wallace architecture was chosen, as the one yielding the smallest
and fastest circuits.

The sum and carry outputs of the partial multipliers are internally sign extended by two
bits and can according to the Design-ware manual be truncated if not needed.

7.3.4 Weighted Addition of the Sub-products in MFI

Design considerations

Weighted addition means that the operands need to be properly aligned before they are
added, as described by formula 7.1. Let “HH”, “HL”, “LH” and “LL” be the sub-products
of the four 16bit multipliers; figure 7.7 illustrates their sign extension and aligning.

The lower 16bits of the final 64bit product are available and occupy the lowest part of the
“LL” sub-product. The remaining 48 high order bits need to be calculated by adding the
aligned sub-products from bit position 16 to 63. As the result of the multiplication of two
32bit operands is 64bits wide, sub-products need not be signed extended further and the
carry-out at position 64 can be disregarded.

In order to reduce the delay, the carry-save multi-operand addition architecture is used.
This choice has two side effects:

a) The number of operands to be added is doubled
b) The width of the addends is increased from 48 to 64

The second side effect is due to the carry that may be generated from the addition of the
lowest 16bits of the sum and carry results of the “mult ll” partial multiplier. As a result the
full 64bit carry chain is added on the critical path. To cure this problem, a separate 16bit
adder is used to generate the carry from those lower 16bits; it is illustrated in figure 7.8. As

74 Chapter 7. Experiment 3: A Multi-Datatype MAC Unit (MD-MAC)

HH
63
HH
62

........................HH
34
HH
33
0 ..0

S.........................S HL
31
............

HL
16
 HL
15
HL
0
 0........................0

S.........................S LH
31
...........

LH
16
LH
15
LH
0
0.........................0

0..0 HL
31
............
...............................HL
0

0
16
31
47
63

Figure 7.7: Weighted addition of the sub-products

this operation overlaps in time with the tree reduction operation, the carry will be available
when needed.

Similar to the discussion on the “Add/Sub” unit, the question of whether to share the
existing adder used for the calculation of the imaginary part of the “MCX” instruction or a
separate unit reappears. For the same reasons, the existing unit is modified to accommodate
the extra functionality. The width is extended from 32 to 48 and the number of operands
doubled to 8.

Reconfiguration Logic

Figure 7.8 shows the modified circuit diagram.

 CI ADD

S
 C

Wallace

MFI_result(63...0)

from partial

multipliers
 lh_c
 hl_s
hl_c
lh_s

MFI

hh_c
ll_s
ll_c
 hh_s

 ADD

 CI CO

S
 C

'0'

MFI

&

63 ... 16

15 ... 0

15 ... 0

15 ... 0

Figure 7.8: Circuit implementation of 64bit weighted addition

Logic “AND” gates control by the “MFI” signal line are used to set the not required operands
to zero, effectively providing operand isolation services to the shared unit. The 16bit adder to
the left is left unguarded, due to its insignificant power consumption. However, considering
the high utilization of its fanin logic, gate-based operand isolation may actually pay off. This
feature has not been investigated. Finally, the carry-out from the low 16 bits should only
be propagated during an “MFI” instruction, hence the “AND” gate in front of the carry-in
input of the weighted adder.

7.4 Results 75

Actual implementation

The reduction tree is implemented as a wallace tree of depth four. The implementation
chosen for the final carry-propagate adder is “brent-kung”, which is the fastest, yet the
most power dissipative. Any other implementation would result in lower performance.

The overhead of sign extension

It can be seen from figure 7.7 that the aligning of 2’s complement operands results in
extensive sign extension, which is redundant. One way to minimize sign extension, though
not very common, is to use the signed magnitude number representation. If 2’s complement
representation is to be used, a technique to reduce the overhead of sign extension is described
in [49]. By applying this technique the sign extension bits after the first are replaced by
constants and full-adder cells in the reduction tree involved in the addition of sign bits can
be simplified to half-adder cells or inverters. By doing so, area, timing and power dissipation
are improved.

This optimization technique belongs at the gate level. However, it can be applied to the RT
level in the following steps:

a) Apply sign extension as described in [49] at the inputs of the operator.
b) After the first compilation, the design hierarchy should be flattened to allow logic

optimization to exceed the boundaries of modules during the second compilation.
c) An incremental compile may propagate the constants and in this way achieve the

required effect.

The above procedure is a proposal and has not been verified to work.

7.3.5 Output Multiplexing Functionality

As described in chapter 2, setting appropriately the “don’t-care” states of control signals
can spare unnecessary switching activity. A better solution, however would be to completely
eliminate ”don’t care” conditions. This applies to the design of the output multiplexing
functionality.

A common way to infer non-priority multiplexors in VHDL is by the use of the VHDL “case
construct”. Because of the resolved nature of the IEEE standard logic vector and the fact
that the number buses to be multiplexed is not a power of two, the “when others =>”
branch of the case-statement would result in switching activity during a NOP instruction.
To avoid that, multiplexing functionality was coded with gates, where a result is selected by
a two-dimensional network of “AND-OR” gates controlled by the operation code field.

7.4 Results

The MD-MAC design was synthesized for a clock frequency of 100MHz and simulated for
800 cycles with random data in order to extract the nodal switching activities. The instruc-
tion mix for the simulation consists of equal distribution for all instructions. To give ground
for comparisons a second design (SPLIT-MD-MAC) was implemented that includes a sep-
arate 32bit multiplier. Figure 7.9 presents a simplistic block diagram depicting high level
organization of the two designs. By providing a multiplication co-processor in the SPLIT-
MD-MAC, the overhead imposed by the weighted addition of the sub-products is spared.
The MULT block has its own pair of isolation registers, thus it only consumes power during
an “MFI”, during which the “CORE” block is idle.

76 Chapter 7. Experiment 3: A Multi-Datatype MAC Unit (MD-MAC)

test environment

MD-MAC
 SPLIT-MD-MAC

Partial Multipliers

Add/

Sub

Weighted

Add

Partial Multipliers

Add/

Sub
 Add

MULT

(32x32)

CORE

Figure 7.9: Block diagram of the benchmark (SPLIT-MD-MAC) and the MD-MAC designs

7.4.1 Area and Timing

Table 7.5 shows the combinational and sequential area of the two designs

Design SPLIT-MD-MAC MD-MAC Diff. (%)

Comb. Area 406476 290512 28.5
Seq. Area 45297 38161 15.8
Total Area 451773 328698 27.2

Table 7.4: Area of the benchmark and test design

A total of 27% reduction in area was achieved in the resource shared implementation. The
increase in the sequential area in the SPLIT-MD-MAC unit is due to the two 32bit isolation
registers of the multiplication co-coprocessor.

Timing wise, the SPLIT-MD-MAC met marginally the timing constraint of 10ns. The
critical path is defined by the 32bit multiplier. A booth encoded wallace tree followed
by a “brent-kung” final adder were automatically selected by the tool for the multiplier’s
implementation. Implementation selection was based on the tight speed requirements.

The MD-MAC unit violated the timing constraints by 0.21ns, however its performance is
very close to that of the benchmark design. As expected, the critical path is defined by
the “MFI” instruction. A mutation of the MD-MAC design, named MD-MAC-NCS, which

Design SPLIT-MD-MAC MD-MAC Diff %

Delay 9.94 10.21 -2.7

Table 7.5: Timing performance of the benchmark and test design

stands for non carry-save, was also implemented to evaluate the efficiency of the carry-save
optimization. Partial multipliers are replaced by multipliers, though the wallace reduction
tree in the weighted addition block is maintained to add the 4 aligned sub-products. The
performance of this design was found to be 10.45ns. Area was increased by 2% and power
by 3% compared to the MD-MAC design. Yet, once again the efficiency of the carry-save
arithmetic optimization was confirmed.

7.4.2 Power Consumption

The power dissipation of the MD-MAC design was estimated to be only 8.93% higher than
that of the benchmark design. Table 7.6 shows the power dissipation of the individual blocks

7.4 Results 77

in both designs and the normalized improvement, in order to identify the points that are
responsible for the increase in the total power dissipation. It can be seen that the bottleneck
is the weighted addition block, which has undergone the most drastic changes. The partial
multiplier block in the SPLIT-MD-MAC column contains all multiplication functionality;
that is, it accounts for both the partial multipliers block and the separate 32bit partial
multiplier.

The close control on switching activity provided by the fine clock gating operand isolation
method helped keep the power overhead from sharing resources to the minimum possible.

Block Power in mW Diff (%) Norm. Diff. (%)
Add/Sub SPLIT-MD-MAC MD-MAC

Input registers 2.912 2.264 22.3 3.0
Output registers 1.082 1.084 0.0 0.0
Add/Sub 1.60 1.779 -11.2 -1.3
Weighted Add 0.446 1.288 -184.3 -12.5
Partial multipliers 7.981 7.906 1.0 0.47
Glue Logic 0,927 0.693 33.3 1.4

Total: 15.248 16.664 -8.93

Table 7.6: Total power dissipation

Tables 7.7, 7.8 and 7.9 give the power consumption for each high level block, as shown in
figure 7.2.

The MD-MAC-NCS design had a total of 12.5% increase in power dissipation compared
to SPLIT-MD-MAC and 3% increase compared to the MD-MAC. The power saving from
using carry save arithmetic lies in the same range as that from the MAC design in chapter
6, despite the higher expectations for larger designs.

Block Power in mW
Add/Sub SPLIT-MD-MAC MD-MAC

MPF high adder 0.1 0.162
Wallace tree 0.686 0.743
CPA adder 0.814 0.874

Total: 1.6 1.779

Table 7.7: Power dissipation in the Add/SUB block

Block Power in mW
Weighted addition SPLIT-MD-MAC MD-MAC

Wallace tree 0.106 0.658
CPA adder 0.074 0.483
MFI low 16 adder 0 0.147
Mult 32 CPA adder 0.266 0

Total: 0.446 1.288

Table 7.8: Power dissipation in the weighted addition block

78 Chapter 7. Experiment 3: A Multi-Datatype MAC Unit (MD-MAC)

Block Power in mW
Partial multipliers SPLIT-MD-MAC MD-MAC

mult hh 1.126 1.62
mult hl 0.541 1.241
mult lh 0.528 1.219
mult ll 3.516 3.826
mult 32 2.27 0

Total: 7.981 7.906

Table 7.9: Power dissipation in the partial multipliers block

79

Chapter 8

Conclusions

The aim of this thesis was to investigate the design of power efficient arithmetic circuits for
application specific processors. The application domain of ASPs is specific in the sense that
products have a limited time horizon. As large development costs can not be amortized
over next generation products, a synthesis-based design flow is followed, in order to meet
the tight performance and time-to-market constraints. Such a flow is characterized by RTL
description of functionality and synthesis based on available IP libraries.

At this level, unlike the system and gate level, little flexibility is provided to the designer and
the quality of the design is solely based on his/hers ingenuity. And this is the contribution
of this work: to provide a study on the optimization techniques available at this level.

Another speciality of the application domain is that optimization is based on the power-
delay performance metric, unlike the domains of ASICs and general purpose processors,
where neither power nor performance are negotiable. Hence, in this case, power can be
traded with performance and vice-versa. The approach followed in this work is to improve
power with minimum impact on performance.

In this work, the Design Compiler automatic synthesis tool suite and the Design-ware IP
library have been used as the synthesis platform. More specifically, the VSS simulator,
the Design Compiler synthesis engine and the Power Compiler optimization tool have been
used. Synthesized designs have been mapped on a 0.25um 1.8V CMOS technology from
STMicroelectronics.

8.1 Optimization techniques

At this level, only dynamic power is of importance, which is a function of load capacitance
and switching activity of the internal nodes of a design. At the RT level of description,
only switching activity can be directly controlled, as it is dependent on the functionality.
Capacitance first comes into play after the design has been synthesized and mapped onto
technology dependent gates. Thus, discussion has been limited to the reduction of switching
activity. Available techniques are classified into dynamic and static.

8.1.1 Switching Activity and Datapath Architecture

Two types of switching activity have been identified: useful and useless. Useful activity is
the one that leads to the computation of a result, while useless is the activity that is not
part of a computation. Useless switching activity can be either the result of bad design
practice or inherent to the implementation. There is not much to be done about useful
activity, as computation needs to take place. This could be better fought at the behavioral

80 Chapter 8. Conclusions

level, as for the case of the two alternative formulas that were presented in chapter 3 to
calculate the result of a complex multiplication. Hence, the main effort is to limit the
useless switching activity, which is very much dependent on the architecture of the design.
Two kinds of architectures are identified: a convergent and a non-convergent. The former
refers to architectures where most of the functionality is placed close to the input resulting
in a triangle-shaped visualization of computations. The latter refers to the opposite case,
where functionality stems from a point close to the input and branches out towards the
primary outputs. It is easier to control switching activity close to the primary inputs by
controlling the input registers. On the contrary, it is difficult to control switching activity
of a high fanout point. For this reasons, a convergent architecture is expected to have more
useful, than useless switching activity, contrary to a non-convergent, high-fanout one, and
it should be preferred.

8.1.2 Dynamic Power Optimization Techniques

From the dynamic optimization techniques presented in chapter 2, only clock gating and
operand isolation were found able to assist in reducing switching activity.

Clock gating

Clock gating has been confirmed as a powerful method to reduce area and power dissipated
in sequential logic. 44% reduction in the power of the register bank in the “CLK GATED”
design from experiment 1 (chapter 3) was estimated when enabled registers were replaced
with clock gated ones. What is important to note is that a clock gated register dissipates
almost no power, contrary to a register that holds its previous value through a feedback
multiplexor.

Operand isolation

Operand isolation was also proven to be an efficient power optimization technique as a means
to block switching activity from functional units. Though, it comes with an overhead and
should be used judiciously. Different to what was reported in the literature, the power saving
from applying operand isolation to small blocks (32bit adder) is evened out by the power
dissipated in the isolation logic itself. Gate-based operand isolation is found to be very sensi-
tive to the workload and for this reason latch based isolation was used, despite the increased
overhead. To give an estimate, the power dissipated by the isolation logic in the CAU unit
was about the same as the power spared on the adder. For this reason, operand isolation
is recommended only for large blocks, for instance multipliers. Furthermore, isolation logic
imposes a timing overhead, as it is inserted on the critical path.

Fine clock gating

Merging the merits of both techniques, we propose the allocation of a separate input register
for every functional unit, as the most efficient way to apply operand isolation. Compared
to latch-based operand isolation, fine clock gating noticed superior performance, area and
power. This scenario fits nicely with the convergent architecture of a datapath described
before. The master-slave operand isolation scheme is proposed as an alternative that mod-
erates the overhead of the pure latch-based operand isolation,

8.1.3 Static Power Optimization Techniques

Power sensitive retiming aims at reducing spurious switching activity at the outputs of
functional units on the same path. Similar to operand isolation, noteworthy savings are

8.2 Limitations 81

expected only when applied to the inputs of high dissipative blocks or at the outputs of
units with highly spurious outputs, such as comparators.

Implementation selection has been proposed as a way to enhance the power unaware selection
of the implementation of modules, aiming at the utilization of the choices offered by the IP
libraries. Experimental results did not rise up to verify the expected behavior.

Carry-save arithmetic for multi-operand addition was proven to improve both area, power
and timing by merging structures of conventional binary adders.

Static optimization techniques, except carry-save arithmetic, failed to show promising re-
sults. The reason for that is that they are not really meant as RTL optimization techniques.
Retiming is more amenable to the gate level, where it is expected to yield better results.
Similarly, implementation selection is closer to the high level synthesis, where it is also ex-
pected to work better when supported by probabilistic models of components and tuned
cost functions.

8.2 Limitations

Power estimation is an approximation of the actual behavior of a real circuit. According to
SYNOPSYS, gate level simulations are fairly accurate, with fluctuations of 15-30% compared
to transistor level simulations. Taking into account their data dependent nature, the results
claimed above can only be confirmed for the specific data used. As discussed in the report,
uniform probability data represent the best case for estimation of power savings. Real-life
workloads have correlations that usually result in lower power dissipation. This means that
the relative overhead of isolation logic is optimistic.

Regarding the spurious activity, it is not clear as to whether it is captured by the simulatior,
resulting in pessimistic power savings.

In addition, the examples used have similar properties and by no means are they represen-
tative of all cases.

For the above mentioned reasons, the validity of the results obtained can not be trusted for
all cases.

8.3 Future Work

First of all, experiments on larger and more realistic designs covering other classes should
be carried out to evaluate the generality and the validity of the results claimed.

It is believed that the implementation selection power optimization method proposed has a
good potential.

There is a low power aspect that should be followed up, inspired from the small overhead
and comparable performance achieved by mapping the 32bit multiplication instruction on
a 16bit platform. Together with the fine clock gating operand isolation method proposed,
extensions to data segmented designs and dynamic size adaptation arithmetic can easily be
imagined.

Prototyping could also be envisioned in order to verify the power merits.

It was discussed that there are only few RT level power optimization techniques. It is the
writers opinion though, that those few that are around, they are not utilized fully. One
way to extend their scope is by investigating architectures as discussed earlier. The fact
that logic does not dissipate power (only a fraction) when idle could be used to limit useless
switching activity by fine clock gating.

82 Chapter 8. Conclusions

83

Bibliography

[1] Alidina, M., Monteneiro, J., Devadas, S., and Ghosh, A. Estimating dynamic power
consumption of cmos circuits. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 18(8), 1999.

[2] Ashenden, P. J. The Designedr’s Guide to VHDL. Morgan Kaufmann Publishers, 1996.
[3] Bahar, I. R., Cho, H., Hatchel, D. G., Macci, E., and Somenzi, F. Symbolic timing

analysis and re-synthesis for low power of combinational circuits containing false paths.
IEEE Transactions on Computer-Aided Design, October 1997.

[4] Bartlett, A. V. and Dempster, G. A. Using carry-save adders in low power multiplier
blocks. IEEE, 2001.

[5] Benini, L. and De Micheli, G. State assignment for low power dissipation. Proceedings
of IEEE Costum Integrated Circuit Conference, pages 136–139, May 1994.

[6] Benini, L. and De Micheli, G. Dynamic Power Mangement Design Techniques and
CAD Tools. Kluwer Academic Publishers, 1998.

[7] Benini, L. and De Michelli, G. State assignment for low power dissipation. IEEE
Journal of Solid-State Circuits, 30:258–268, Mar 1995.

[8] Benini, L. and De Michelli, G. Automatic synthesis of low-power gated-clock finite-
state machines. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 15(6), June 1996.

[9] Benini, L. and De Michelli, G. Automatic synthesis of low power gated-clock finite-
state machines. IEEE Transactions on Computer-Aided Design of Intgrated Circuits
and Systens, 15, June 1996.

[10] Benini, L. and De Michelli, G. System-level power optimization; techniques and tools.
ACM Transactions on Design Automation of Electronic Systems, 5(2):115–192, April
2000.

[11] Callaway, K. T. and Swartzlander, E. E. J. Estimating the power consumption of cmos
adders. In Proceedings of the 11th Symposium on Computer Arithmetic, pages 210–216,
June 1993.

[12] Callaway, K. T. and Swartzlander, E. E. J. Power-delay characteristics of cmos mul-
tipliers. In Proceedings of the 13th IEEE Symposium on Computer Arithmetic, pages
26–32, July 1997.

[13] Chandrakasan, A., Yang, I., Vieri, C., and Antoniadis, D. Design considerations and
tools for low-voltage disgital system design. 33rd ACM Design Automation Conference,
June 1996.

[14] Chandrakasan, P. A., Potkonjak, M., Rabaey, J., and Brodersen, W. R. HYPER-LP:
A system for power minimization using architectural transformations. International
Conference on Computer-Aided Design ICCAD-92, pages 300–303, Nov. 1992.

[15] Chandrakasan, P. A., Sheng, S., and Brodersen, W. R. Low-power cmos degital design.
IEEE Journal of Solid-State Circuits, 27(4), April 1992.

[16] Cheng, W.-C. and Pedram, M. Memory bus encoding for low power: A tutorial. 2001.
[17] Cirit, A. M. Estimating dynamic power consumption of cmos circuits. IEEE Int.

Conference on Computer-Aided Design, 1987.
[18] Correale, A. Overview of the power minimization techniques employed in the ibm

powerpc 4xx embedded controllers. In International Symposium on Low-Power Design.
ACM/IEEE, April 1995.

84 BIBLIOGRAPHY

[19] Costa, E., Bampi, S., and Monteiro, J. Power efficient arithmetic operand encoding.
[20] Devadas, S. and Sharad, M. A survey of optimization techniques targeting low power

vlsi circuits. 32nd ACM/IEEE Design Automation Conference.
[21] Earl E. Swartzlander, J., (ed.). Application Specific Processors. Kluwer Academic

Publishers, 1997.
[22] Fayed, A. and Bayoumi, M. A novel architecture for low-power design of parallel

multipliers. IEEE Computer Society Annual Workshop on VLSI (WVLSI 2001), April
2001.

[23] Hartley, I. R. and Parhi, K. K. Digit-Serial Computation. Kluwer Academic Publishers.
[24] Hennessy, J. L. and Patterson, D. A. Computer Architecture : a Quantitative Approach.

Morgan Kaufmann Publishers, 2003.
[25] Kang, M. S. Accurate simulation of power dessipation in vlsi circuits. IEEE Journal

of Solid-State Electronics, 21(5):889–891, October 1986.
[26] Kapadia, H., Benini, L., and De Micheli, G. Reducing switching activity on datapath

buses with control signal gating. IEEE Journal of Solid-State Circuits, 34(3), March
1999.

[27] Khouri, S. K. and Jha, K. N. Leakage power analysis and reduction during behavioral
synthesis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 10:876–
885, December 2002.

[28] Kim, T., Jao, W., and Tjisang, S. Arithmetic optimization using carry-save adders,
1998.

[29] Landman, P. High-level power estimation. IEEE/ACM Int. Symposium on Low Power
Electronics and Design, pages 29–35, 1996.

[30] Landman, P. High-level power estimation. ACM/IEEE Int. Symposium on Low Power
Electronics and Design, August 1996.

[31] Lavango, L., McGeer, C. P., Saldanha, A., and Sangiovanni, L. A. Timed-shannon
circuits: a power-efficient design style and synthesis tool. 32nd ACM/IEEE Design
Automation Conference, 1995.

[32] Lee, K. H. and Rim, C. S. A hardware reduced multiplier for low power design. Pro-
ceedings of the Second IEEE Asia Pacific Conference - AP-ASIC 2000, pages 331 –334,
2000.

[33] Macii, E. Design of low-power digital circuits: Techniques and tools. Slides from
IntraLed Seminar, October 2002.

[34] Meyr, H. and Noll, T. Designing complex socs for wireless communications: More than
pushing mops and clock frequency. ISLPED 2002, available at http://www.iss.rwth-
aachen.de/5 aktuell/files/ISLPED public version.pdf, 2002.

[35] Monteiro, C. J. and Oliveira, L. A. Finite state machine decomposition for low power.
Proceedings on Design Automation Conference, pages 758–763, June 1998.

[36] Monteneiro, J. and Devadas, S. Computer-Aided Design Techniques for Low Power
Sequential Logic Circuits. Kluwer Academic Publishers, 1997.

[37] Monteneiro, J., Devadas, S., and Ghosh, A. Retiming sequential circuits for low power.
IEEE/ACM Int. Conference on Computer-Aided Design, 1993.

[38] Monteneiro, J. and Oliveira, A. Finite state machine decomposition for low power.
IEEE Int. Symposium on Circuits and Systems, 1998.

[39] Munch, M., Wurth, B., Mehra, R., Sproch, J., and Wehn, N. Automating rt-level
operand isolation to minimize power consumption in datapaths. IEEE Design Automa-
tion and Test in Europe, Marts 2000.

[40] Musoll, E. and Cortadella, J. High-level synthesis techniques for reducing the activity
of functional units.

[41] Najm, F. and Xakellis, M. Statistical estimation of the switching activity in digital
circuits. ACM/IEEE Design Automation Conference, pages 728–733, 1994.

[42] Noll, G. T. Carry-save arithmetic for high-speed signal processing. IEEE, 1990.
[43] Omondi, R. A. Computer Arithmetic Systems: Algorithms, Architecture and Imple-

mentation. Cambridge University Press, 1994.
[44] Paker, O. Low Power Digital Signal Processing. PhD thesis, Technical Univeristy of

BIBLIOGRAPHY 85

Denmark, 2002.
[45] Raghunathan, A. Register transfer level power optimization with emphasis on glitch

analysis and reduction. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 18(8), August 1999.

[46] Ranghunatathan, A., Dey, S., and Jha, K. N. Estimating dynamic power consumption
of cmos circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 18(8), 1999.

[47] Ranghunathan, A. and Jha, N. Behavioral synthesis for low power. Proc. of, 1987.
[48] Roy, K. and Prasad, C. S. Syclop: Synthesis of cmos logic for low power applications.

IEEE Int. Conference on Computer Design, October 1992.
[49] Salmon, O., G. J. and Klar, H. General algorithms for a simplified addition of 2’s

complement numbers. IEEE Journal of Solid-State Circuits, 30(7), July 1995.
[50] Savoj, H. and Brayton, K. R. The use of observability and external don’t cares for the

simplification of multi-level netwoks. Proceedings of 27th IEEE/ACM Design Automa-
tion Conference, pages 297–301, June 1990.

[51] Synopsys. Design compiler reference manual v2000.05, 2002.
[52] Synopsys. Design-ware reference manual v2000.05, 2002.
[53] Synopsys. Power compiler reference manual v2000.05, 2002.
[54] Tiwari, V. and Malik, S and, A. P. Guareded evaluation: Pushing power management

to logic/synthesis design. IEEE Transactions on Computer-Aided Design, November
1998.

[55] Tiwari, V., Malik, S., and Pranav, A. Guarded evaluation: Pushing power management
to logic synthesis/design. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 17(10), October 1998.

[56] Tsui, Y. C., Pedram, M., and Despain, M. A. Technology decomposition and mapping
targetting low power dissipation. IEEE/ACM Design Automation Conference, June
1993.

[57] Usami, K. and Horowitz, M. Clustered voltage scaling technique for low power design.
IEEE/ACM Int. Symposium on Low Power Design, April 1995.

[58] Wu, X. and Pedram, M. Low power sequential circuit design by using priority encoding
and clock gating.

[59] Yeap, G. K. Practical Low Power Digital VLSI Design. Kluwer Academic Publishers,
1998.

[60] Yu, Z., Khoo, K.-Y., and Willson, N. A. J. The use of carry-save representation in joint
module selection and retining.

[61] Zimmerman, R. Lectures on computer arithmetic: Principles, architectures
and vlsi design. Integrated Systems Laboratory, ETH Zurich, available at
http://www.iis.ee.ethz.ch/zimmi/publications /comp arith notes.ps.gz, 1999.

[62] Zimmermann, R. Vhdl library of arithmetic units. IEEE.

86 BIBLIOGRAPHY

87

Appendix A

Source Code

A.1 Experiment 1: A Complex Arithmetic Unit

A.1.1 The testbench

-- Title : design testbench
-- Project : High power arithmetic unit to be power managed

-- File : design_tb.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- A testbench for the design

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use ieee.std_logic_arith.all;
use ieee.math_real.all;
library WORK;
use WORK.design_utils.all;
use WORK.sim_utils.all;

entity TOP_DESIGN_TB is

end TOP_DESIGN_TB;

architecture simple of TOP_DESIGN_TB is

signal clk, rst, ovf : std_logic := ’0’;
signal op1, op2, res : std_logic_vector(width-1 downto 0);
signal opcode : std_logic_vector(ops-1 downto 0);

constant Tpw_clk : time := 50 ns;

component clock
generic (

period : TIME);
port (

clk : OUT std_logic := ’0’);
end component;

component bit_gen
generic (

bias : real);
port (

clk : in std_logic;
word1, word2 : out std_logic_vector(width-1 downto 0));

end component;

component opcode_gen
port (

clk : in std_logic;
rst : in std_logic;

88 Appendix A. Source Code

opcode : out std_logic_vector(ops-1 downto 0));
end component;

component top_design
port (

clk, rst : in std_logic;
top1_in, top2_in : in std_logic_vector(width-1 downto 0);
top_opcode_in : in std_logic_vector(ops-1 downto 0);
top_out : out std_logic_vector(width-1 downto 0);
top_ovf : out std_logic);

end component;

signal word1_i, word2_i, result : std_logic_vector(width-1 downto 0);
signal opcode_i : std_logic_vector(ops-1 downto 0);
signal overflow : std_logic;

begin

DUT: top_design
port map (

clk => clk,
rst => rst,
top1_in => word1_i,
top2_in => word2_i,
top_opcode_in => opcode_i,
top_out => result,
top_ovf => overflow);

word_stimuli: bit_gen
generic map (

bias => 0.5)
port map (

clk => clk,
word1 => word1_i,
word2 => word2_i);

instruction_gen: opcode_gen
port map (

clk => clk,
rst => rst,
opcode => opcode_i);

clock_gen: clock
generic map (

period => 50 ns)
port map (

clk => clk);

-- clock_gen : process is
-- begin
-- clk <= ’1’ after Tpw_clk, ’0’ after 2 * Tpw_clk;
-- wait for 2 * Tpw_clk;
-- end process clock_gen;

rst <= ’0’, ’1’ after 120 ns;

end simple;

A.1.2 The clock generator

--
-- A simple clock generator. The period is specified in a generic and defaults
-- to 50 ns.
--

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY clock IS
GENERIC (period : TIME := 50 ns);
PORT (clk : OUT std_logic := ’0’);

END clock;

ARCHITECTURE behaviour OF clock IS
BEGIN

PROCESS
BEGIN

clk <= ’1’, ’0’ AFTER period/2;
WAIT FOR period;

END PROCESS;

A.1 Experiment 1: A Complex Arithmetic Unit 89

END behaviour;

A.1.3 The opcode generator

-- Title : opcode generator
-- Project : High power arithmetic unit to be power managed

-- File : opcode_gen.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- Provides the sequence of instructions. LAter it should be modified to
-- represent tpical workloads of dsp processors

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use ieee.std_logic_arith.all;
library WORK;
use WORK.design_utils.all;

entity opcode_gen is

port (
clk : in std_logic;
rst : in std_logic;
opcode : out std_logic_vector(ops-1 downto 0));

end opcode_gen;

architecture behavioral of opcode_gen is
signal current_state, next_state : std_logic_vector(ops-1 downto 0);
constant complex : integer := 8;
constant parallel : integer := 8;
constant single : integer := 8;
constant noops : integer := 1;
signal counter : integer;

begin -- behavioral

fsm: process (current_state, counter)
variable temp_next : std_logic_vector(ops-1 downto 0) := nop;

begin -- process fsm
if counter = 0 then

case current_state is
when nop =>

temp_next := mulc;
when mulc =>

temp_next := mul16sfpar;
when mul16sfpar =>

temp_next := mul16sf;
when mul16sf =>

temp_next := nop;
when others => null;

end case;
end if;
next_state <= temp_next;

end process fsm;

state_reg: process (clk, rst)
variable temp_count : integer;

begin -- process state_reg
if rst = ’0’ then -- asynchronous reset (active low)

current_state <= nop;
counter <= noops;

elsif clk’event and clk = ’1’ then -- rising clock edge
current_state <= next_state;
if counter = 0 then

case current_state is
when nop =>

counter <= complex-1;
when mulc =>

counter <= parallel-1;
when mul16sfpar =>

counter <= single-1;
when mul16sf =>

counter <= noops-1;
when others => null;

end case;

90 Appendix A. Source Code

else
counter <= counter - 1;

end if;
end if;

end process state_reg;
opcode <= current_state;

end behavioral;

A.1.4 The design utilities package

-- Title : design_utils
-- Project : Thesis

-- File : design_utils.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- A package containing declarations and subprograms useful to the poject

library ieee;
use ieee.std_logic_1164.all;

package design_utils is

constant width : integer := 32; -- width of the word
constant half_width : integer := width/2;
constant ops : integer := 4;
-- define names for the opcodes.
-- New opcodes are appended on the left side of the vector as exlusice 1-hot
-- values
constant nop : std_logic_vector(ops-1 downto 0) := "0001";
constant mul16sf : std_logic_vector(ops-1 downto 0) := "0010";
constant mul16sfpar : std_logic_vector(ops-1 downto 0) := "0100";
constant mulc : std_logic_vector(ops-1 downto 0) := "1000";

constant seed1 : integer := 111;
constant seed2 : integer := 9763;

end design_utils;

package body design_utils is

end design_utils;

A.1.5 The simulation utilities package

-- Title : sim_utils
-- Project : Thesis

-- File : sim_utils.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- A package containing declarations and subprograms useful to the poject

library ieee;
use ieee.std_logic_1164.all;
use ieee.math_real.all;

package sim_utils is
procedure UNIFORM (variable Seed1,Seed2:inout integer; variable X:out real);

end sim_utils;

package body sim_utils is

procedure UNIFORM(variable Seed1,Seed2:inout integer;variable X:out real) is
-- returns a pseudo-random number with uniform distribution in the
-- interval (0.0, 1.0).
-- Before the first call to UNIFORM, the seed values (Seed1, Seed2) must
-- be initialized to values in the range [1, 2147483562] and
-- [1, 2147483398] respectively. The seed values are modified after
-- each call to UNIFORM.

A.1 Experiment 1: A Complex Arithmetic Unit 91

-- This random number generator is portable for 32-bit computers, and
-- it has period ~2.30584*(10**18) for each set of seed values.
--
-- For VHDL-1992, the seeds will be global variables, functions to
-- initialize their values (INIT_SEED) will be provided, and the UNIFORM
-- procedure call will be modified accordingly.

variable z, k: integer;
begin
k := Seed1/53668;
Seed1 := 40014 * (Seed1 - k * 53668) - k * 12211;

if Seed1 < 0 then
Seed1 := Seed1 + 2147483563;
end if;

k := Seed2/52774;
Seed2 := 40692 * (Seed2 - k * 52774) - k * 3791;

if Seed2 < 0 then
Seed2 := Seed2 + 2147483399;
end if;

z := Seed1 - Seed2;
if z < 1 then
z := z + 2147483562;
end if;

X := REAL(Z)*4.656613e-10;
end UNIFORM;

end sim_utils;

A.1.6 The top level design

-- Title : top_design
-- Project : High power arithmetic unit to be power managed

-- File : top_design.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 24/11/2002

-- Description :
-- Connects the ALU in design with the environment registers.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
library WORK;
use WORK.design_utils.all;

entity top_design is

port (
clk, rst : in std_logic;
top1_in, top2_in : in std_logic_vector(width-1 downto 0);
top_opcode_in : in std_logic_vector(ops-1 downto 0);
top_out : out std_logic_vector(width-1 downto 0);
top_ovf : out std_logic);

end top_design;

architecture structural of top_design is
component registers

port (
clk, rst : in std_logic;
in_1, in_2, in_res : in std_logic_vector(width-1 downto 0);
in_opcode : in std_logic_vector(ops-1 downto 0);
in_ovf : in std_logic;
out_1, out_2, out_res : out std_logic_vector(width-1 downto 0);
out_opcode : inout std_logic_vector(ops-1 downto 0);
out_ovf : out std_logic);

end component;

component design
port (

92 Appendix A. Source Code

A : in std_logic_vector(width-1 downto 0);
B : in std_logic_vector(width-1 downto 0);
op : in std_logic_vector(ops-1 downto 0);
Z : out std_logic_vector(width-1 downto 0);
ovf : out std_logic);

end component;

signal A_i, B_i, Z_i : std_logic_vector(width-1 downto 0);
signal op_i : std_logic_vector(ops-1 downto 0);
signal ovf_i : std_logic;

begin -- structural

CALU: design
port map (

A => A_i,
B => B_i,
op => op_i,
Z => Z_i,
ovf => ovf_i);

reg_banks: registers
port map (

clk => clk,
rst => rst,
in_1 => top1_in,
in_2 => top2_in,
in_res => Z_i,
in_opcode => top_opcode_in,
in_ovf => ovf_i,
out_1 => A_i,
out_2 => B_i,
out_res => top_out,
out_opcode => op_i,
out_ovf => top_ovf);

end structural;

A.1.7 The design testbench

-- Title : design testbench
-- Project : High power arithmetic unit to be power managed

-- File : design_tb.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- A testbench for the design

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use ieee.std_logic_arith.all;
library WORK;
use WORK.design_utils.all;

entity design_tb is

end design_tb;

architecture simple of design_tb is

signal clk, rst, ovf : std_logic := ’0’;
signal x_real, x_imag, y_real, y_imag, s_real, s_imag : std_logic_vector(half_width-1 downto 0);
signal a, b, z : std_logic_vector(width-1 downto 0);
signal opcode : std_logic_vector(ops-1 downto 0);

type complex is record
re, im : real;

end record;

signal x, y, s : complex := (0.0, 0.0);

constant Tpw_clk : time := 50 ns;

component design
port (

rst : in std_logic;
clk : in std_logic;

A.1 Experiment 1: A Complex Arithmetic Unit 93

A : in std_logic_vector(width-1 downto 0);
B : in std_logic_vector(width-1 downto 0);
op : in std_logic_vector(ops-1 downto 0);
Z : out std_logic_vector(width-1 downto 0);
ovf : out std_logic);

end component;

component to_vector
port (

r : in real;
vec : out std_logic_vector(15 downto 0));

end component;

component to_fp
port (

vec : in std_logic_vector(15 downto 0);
r : out real);

end component;

begin

x_real_converter : entity work.to_vector(behavioral) port map (x.re, x_real);
x_imag_converter : entity work.to_vector(behavioral) port map (x.im, x_imag);
y_real_converter : entity work.to_vector(behavioral) port map (y.re, y_real);
y_imag_converter : entity work.to_vector(behavioral) port map (y.im, y_imag);

a <= x_real&x_imag;
b <= y_real&y_imag;
s_real <= z(width-1 downto half_width);
s_imag <= z(half_width-1 downto 0);

dut: component design
port map (

rst => rst,
clk => clk,
A => a,
B => b,
op => opcode,
Z => z,
ovf => ovf);

s_real_converter : entity work.to_fp(behavioral) port map (s_real, s.re);
s_imag_converter : entity work.to_fp(behavioral) port map (s_imag, s.im);

clock_gen : process is
begin

clk <= ’1’ after Tpw_clk, ’0’ after 2 * Tpw_clk;
wait for 2 * Tpw_clk;

end process clock_gen;

rst <= ’0’, ’1’ after 120 ns;

stimulus : process is
begin

-- single 16 fractional multiplication
opcode <= mul16sf;
x <= (0.0, 0.5); y <= (0.0, 0.5); wait until clk = ’0’;
-- (x, 0.25)
x <= (0.0, 0.5); y <= (0.0, 0.1); wait until clk = ’0’;
-- (x, 0.05)
x <= (0.0, 0.5); y <= (0.0, -0.5); wait until clk = ’0’;
-- (x, -0.25)
x <= (0.0, -0.5); y <= (0.0, -0.5); wait until clk = ’0’;
-- (x, 0.25)
-- test exceptions
-- parallel 16 fractional multiplication
opcode <= mul16sfpar;
x <= (0.0, 0.5); y <= (0.0, 0.5); wait until clk = ’0’;
-- (0, 0.25)
x <= (0.5, 0.0); y <= (0.5, 0.0); wait until clk = ’0’;
-- (0.25, 0)
x <= (0.1, 0.5); y <= (0.1, -0.5); wait until clk = ’0’;
-- (0.01, -0.25)
x <= (-0.5, -0.5); y <= (0.5, -0.5); wait until clk = ’0’;
-- (-0.25, 0.25)
-- test exceptions
-- complex multiplication
opcode <= mulc;
x <= (0.0, 0.5); y <= (0.0, 0.5); wait until clk = ’0’;
-- (-0.25, 0)

94 Appendix A. Source Code

x <= (0.5, 0.0); y <= (0.5, 0.0); wait until clk = ’0’;
-- (0.25, 0)
x <= (0.1, 0.5); y <= (0.1, -0.5); wait until clk = ’0’;
-- (0.26, 0)
x <= (-0.5, -0.5); y <= (0.5, -0.5); wait until clk = ’0’;
-- (-0.5, 0)
-- test exceptions
wait;

end process stimulus;

end simple;

configuration rtl_design of design_tb is

for simple
for dut : design

use entity WORK.design(SYN_high_power);
end for;

-- for y_imag_converter : to_vector
-- use entity WORK.to_vector(behavioral);
-- end for;
-- for x_real_converter : to_vector
-- use entity WORK.to_vector(behavioral);
-- end for;
-- for y_real_converter : to_vector
-- use entity WORK.to_vector(behavioral);
-- end for;
-- for x_imag_converter : to_vector
-- use entity WORK.to_vector(behavioral);
-- end for;
-- for s_real_converter, s_imag_converter : to_fp
-- use entity WORK.to_fp(behavioral);
-- end for;

end for;

end rtl_design;

-- configuration beh_design of design_tb is

-- for simple
-- for dut : design
-- use entity WORK.design(high_power);
-- end for;
-- for x_real_converter, y_real_vonverter, x_imag_converter, y_imag_converter : to_vector
-- use entity WORK.to_vector(behavioral);
-- end for;
-- for s_real_converter, s_imag_converter : to_fp
-- use entity WORK.to_fp(behavioral);
-- end for;
-- end for;

-- end beh_design;

A.1.8 The multiplier

-- Title : multiplier
-- Project : High power arithmetic unit to be power managed

-- File : mult.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- A component insantiating a multiplier. Different architectures in the future
-- will accommodate different kind of mulipliers.

library ieee;--, SYNOPSYS;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
--use SYNOPSYS.attributes.all;
library WORK;
use WORK.design_utils.all;

entity mult is
generic (

width : integer := half_width);

A.1 Experiment 1: A Complex Arithmetic Unit 95

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(2*width-1 downto 0));

end mult;

architecture behavioral of mult is

begin -- behavioral

multiplication: process (op1, op2)
variable a, b : signed(width-1 downto 0);
variable c : signed(2*width-1 downto 0);

begin -- process addition
a := signed(op1);
b := signed(op2);
c := a*b;
res <= std_logic_vector(c);

end process multiplication;

end behavioral;

A.1.9 The subtractor

-- Title : subtractor
-- Project : High power arithmetic unit to be power managed

-- File : subtruct.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- A component insantiating a subtractor. Different architectures in the future
-- will accommodate different kind of subtractors.

library ieee; --,SYNOPSYS;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
--use SYNOPSYS.attributes.all;
library WORK;
use WORK.design_utils.all;

entity subtruct is

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(width downto 0));

end subtruct;

architecture behavioral of subtruct is

begin -- behavioral

subtraction: process (op1, op2)
variable a, b : signed(width downto 0);
variable c : signed(width downto 0);

begin -- process addition
a := signed(op1(width-1)&op1);
b := signed(op2(width-1)&op2);
c := a - b;
res <= std_logic_vector(c);

end process subtraction;

end behavioral;

A.1.10 The adder

-- Title : adder
-- Project : High power arithmetic unit to be power managed

-- File : adder.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU

96 Appendix A. Source Code

-- Date : 12/11/2002

-- Description :
-- A component insantiating an adder. Different architectures in the future
-- will accommodate different kind of adders.

library ieee;--, SYNOPSYS;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
--use SYNOPSYS.attributes.all;
library WORK;
use WORK.design_utils.all;

entity add is

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(width downto 0));

end add;

architecture behavioral of add is

begin -- behavioral

addition: process (op1, op2)
variable a, b : signed(width downto 0);
variable c : signed(width downto 0);

begin -- process addition
a := signed(op1(width-1)&op1);
b := signed(op2(width-1)&op2);
c := a + b;
res <= std_logic_vector(c);

end process addition;

end behavioral;

A.1.11 The design used in “PLAIN”, “REG EN” and ‘CLK GATED”

-- Title : design
-- Project : High power arithmetic unit to be power managed

-- File : design.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- A kick off arithmetic core to be investigated for low power

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
library WORK;
use WORK.design_utils.all;

entity design is

port (
A : in std_logic_vector(width-1 downto 0);
B : in std_logic_vector(width-1 downto 0);
op : in std_logic_vector(ops-1 downto 0);
Z : out std_logic_vector(width-1 downto 0);
ovf : out std_logic --active high

);

end design;

architecture basic of design is
-- interconnect signals
signal Z_i : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal A_h, A_l, B_h, B_l : std_logic_vector(half_width-1 downto 0) := (others => ’0’);
signal mult_hh_out, mult_ll_out : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mult_hl_out, mult_lh_out : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mulc_res, mul_16sfpar_res : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mul_16sf_res : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal add_out, sub_out : std_logic_vector(width downto 0) := (others => ’0’);
signal ovf_mulc : boolean := false;
signal ovf_mul16 : boolean := false;

A.1 Experiment 1: A Complex Arithmetic Unit 97

signal ovf_mul16par : boolean := false;
-- component declaration
component add

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(width downto 0));

end component;
component subtruct

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(width downto 0));

end component;
component mult

generic (
width : integer);

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(2*width-1 downto 0));

end component;

begin -- basic
-- component instantiation
mult_hh: component mult

generic map (width => half_width)
port map (

op1 => A_h,
op2 => B_h,
res => mult_hh_out);

mult_ll: component mult
generic map (width => half_width)
port map (

op1 => A_l,
op2 => B_l,
res => mult_ll_out);

mult_lh: component mult
generic map (width => half_width)
port map (

op1 => A_l,
op2 => B_h,
res => mult_lh_out);

mult_hl:component mult
generic map (width => half_width)
port map (

op1 => A_h,
op2 => B_l,
res => mult_hl_out);

subtractor: component subtruct
port map (

op1 => mult_hh_out,
op2 => mult_ll_out,
res => sub_out);

adder:component add
port map (

op1 => mult_lh_out,
op2 => mult_hl_out,
res => add_out);

-- functionality
mulc_res <= sub_out(width)&sub_out(width-3 downto half_width-1)

&add_out(width)&add_out(width-3 downto half_width-1);
mul_16sfpar_res <= mult_hh_out(31)&mult_hh_out(width-3 downto half_width-1)&

mult_ll_out(31)&mult_ll_out(width-3 downto half_width-1);
mul_16sf_res <= conv_std_logic_vector(0,16)&

mult_ll_out(31)&mult_ll_out(width-3 downto half_width-1);

-- overflow logic
ovf_mul16par <= (op = mul16sfpar) and (((mult_ll_out(31) xor mult_ll_out(30))

or (mult_hh_out(31) xor mult_hh_out(30)))=’1’);
ovf_mul16 <= (op = mul16sf) and ((mult_ll_out(31) xor mult_ll_out(30))=’1’);
ovf_mulc <= (op = mulc)and ((((sub_out(32)xor sub_out(31))

or (sub_out(32)xor sub_out(30)))
or ((add_out(32)xor add_out(31))

or (add_out(32)xor add_out(30))))=’1’);
ovf <= ’1’ when ((ovf_mul16par or ovf_mul16) or ovf_mulc)=true

else ’0’;

98 Appendix A. Source Code

-- steering logic
output_mux: process (mulc_res, mul_16sfpar_res, mul_16sf_res, op)

begin -- process output_mux
Z_i <= mulc_res;
case op is

when mulc =>
Z_i <= mulc_res;

when mul16sfpar =>
Z_i <= mul_16sfpar_res;

when mul16sf =>
Z_i <= mul_16sf_res;

when others =>
null;

end case;
end process output_mux;
Z <= Z_i;
-- input connections
A_h <= A(width-1 downto half_width);
A_l <= A(half_width-1 downto 0);
B_h <= B(width-1 downto half_width);
B_l <= B(half_width-1 downto 0);

end basic;

configuration simple of design is

for basic
for adder : add

use entity WORK.add(behavioral);
end for;
for subtractor : subtruct

use entity WORK.subtruct(behavioral);
end for;
for mult_hh, mult_ll, mult_hl, mult_lh : mult

use entity WORK.mult(behavioral);
end for;

end for;

end simple;

A.1.12 The design used in “OP ISOL” and “CLK GATED OP ISOL”

-- Title : design
-- Project : High power arithmetic unit to be power managed

-- File : design.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- A kick off arithmetic core to be investigated for low power

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
library WORK;
use WORK.design_utils.all;

entity design is

port (
A : in std_logic_vector(width-1 downto 0);
B : in std_logic_vector(width-1 downto 0);
op : in std_logic_vector(ops-1 downto 0);
Z : out std_logic_vector(width-1 downto 0);
ovf : out std_logic --active high

);

end design;

architecture basic of design is
-- interconnect signals
signal Z_i : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal A_h, A_l, B_h, B_l : std_logic_vector(half_width-1 downto 0) := (others => ’0’);
signal hh_1, hh_2, ll_1, ll_2 : std_logic_vector(half_width-1 downto 0) := (others => ’0’);
signal hl_1, hl_2, lh_1, lh_2 : std_logic_vector(half_width-1 downto 0) := (others => ’0’);
signal hh, ll, lh, hl : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal isol_hh, isol_ll : std_logic_vector(width-1 downto 0) := (others => ’0’);

A.1 Experiment 1: A Complex Arithmetic Unit 99

signal isol_lh, isol_hl : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mult_hh_out, mult_ll_out : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mult_hl_out, mult_lh_out : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mulc_res, mul_16sfpar_res : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mul_16sf_res : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal add_out, sub_out : std_logic_vector(width downto 0) := (others => ’0’);
signal ovf_mulc : boolean := false;
signal ovf_mul16 : boolean := false;
signal ovf_mul16par : boolean := false;
signal ctrl_hh, ctrl_ll, ctrl_hl, ctrl_lh : std_logic;
-- component declaration
component add

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(width downto 0));

end component;
component subtruct

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(width downto 0));

end component;
component mult

generic (
width : integer);

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(2*width-1 downto 0));

end component;

component isolation_logic
generic (

width : integer;
style : integer);

port (
as : in std_logic;
op : in std_logic_vector(width-1 downto 0);
op_isolated : out std_logic_vector(width-1 downto 0));

end component;
constant isolation_style : integer := 2;

begin -- basic
-- component instantiation
mult_hh: component mult

generic map (width => half_width)
port map (

op1 => hh_1,
op2 => hh_2,
res => mult_hh_out);

mult_ll: component mult
generic map (width => half_width)
port map (

op1 => ll_1,
op2 => ll_2,
res => mult_ll_out);

mult_lh: component mult
generic map (width => half_width)
port map (

op1 => lh_1,
op2 => lh_2,
res => mult_lh_out);

mult_hl:component mult
generic map (width => half_width)
port map (

op1 => hl_1,
op2 => hl_2,
res => mult_hl_out);

subtractor: component subtruct
port map (

op1 => mult_hh_out,
op2 => mult_ll_out,
res => sub_out);

adder:component add
port map (

op1 => mult_lh_out,
op2 => mult_hl_out,
res => add_out);

100 Appendix A. Source Code

-- functionality
mulc_res <= sub_out(width)&sub_out(width-3 downto half_width-1)

&add_out(width)&add_out(width-3 downto half_width-1);
mul_16sfpar_res <= mult_hh_out(31)&mult_hh_out(width-3 downto half_width-1)&

mult_ll_out(31)&mult_ll_out(width-3 downto half_width-1);
mul_16sf_res <= conv_std_logic_vector(0,16)&

mult_ll_out(31)&mult_ll_out(width-3 downto half_width-1);

-- overflow logic
ovf_mul16par <= (op = mul16sfpar) and (((mult_ll_out(31) xor mult_ll_out(30))

or (mult_hh_out(31) xor mult_hh_out(30)))=’1’);
ovf_mul16 <= (op = mul16sf) and ((mult_ll_out(31) xor mult_ll_out(30))=’1’);
ovf_mulc <= (op = mulc)and ((((sub_out(32)xor sub_out(31))

or (sub_out(32)xor sub_out(30)))
or ((add_out(32)xor add_out(31))

or (add_out(32)xor add_out(30))))=’1’);
ovf <= ’1’ when ((ovf_mul16par or ovf_mul16) or ovf_mulc)=true

else ’0’;

-- steering logic
output_mux: process (mulc_res, mul_16sfpar_res, mul_16sf_res, op)

begin -- process output_mux
Z_i <= mulc_res;
case op is

when mulc =>
Z_i <= mulc_res;

when mul16sfpar =>
Z_i <= mul_16sfpar_res;

when mul16sf =>
Z_i <= mul_16sf_res;

when others =>
null;

end case;
end process output_mux;
Z <= Z_i;

--operand isolation logic
ctrl_hh <= op(3) or op(2);
ctrl_ll <= not op(0);
ctrl_lh <= op(3);
ctrl_hl <= op(3);
isolate_hh: isolation_logic

generic map (
width => width,
style => isolation_style)

port map (
as => ctrl_hh, -- activate when mulc or par
op => hh,
op_isolated => isol_hh);

isolate_hl: isolation_logic
generic map (

width => width,
style => isolation_style)

port map (
as => ctrl_hl, -- activate only when mulc
op => hl,
op_isolated => isol_hl);

isolate_lh: isolation_logic
generic map (

width => width,
style => isolation_style)

port map (
as => ctrl_lh, -- activate only when mulc
op => lh,
op_isolated => isol_lh);

isolate_ll: isolation_logic
generic map (

width => width,
style => isolation_style)

port map (
as => ctrl_ll, -- isolate only when nop
op => ll,
op_isolated => isol_ll);

-- input connections
A_h <= A(width-1 downto half_width);
A_l <= A(half_width-1 downto 0);
B_h <= B(width-1 downto half_width);
B_l <= B(half_width-1 downto 0);
hh <= A_h&B_h;
lh <= A_l&B_h;
hl <= A_h&B_l;
ll <= A_l&B_l;

A.1 Experiment 1: A Complex Arithmetic Unit 101

-- isolation output connections
hh_1 <= isol_hh(width-1 downto half_width);
hh_2 <= isol_hh(half_width-1 downto 0);
lh_1 <= isol_lh(width-1 downto half_width);
lh_2 <= isol_lh(half_width-1 downto 0);
hl_1 <= isol_hl(width-1 downto half_width);
hl_2 <= isol_hl(half_width-1 downto 0);
ll_1 <= isol_ll(width-1 downto half_width);
ll_2 <= isol_ll(half_width-1 downto 0);

end basic;

configuration simple of design is

for basic
for adder : add

use entity WORK.add(behavioral);
end for;
for subtractor : subtruct

use entity WORK.subtruct(behavioral);
end for;
for mult_hh, mult_ll, mult_hl, mult_lh : mult

use entity WORK.mult(behavioral);
end for;
for others : isolation_logic

use entity WORK.isolation_logic(structural);
end for;

end for;

end simple;

A.1.13 The design used in “‘CLK GATED OP ISOL OPT”

-- Title : design
-- Project : High power arithmetic unit to be power managed

-- File : design.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- A kick off arithmetic core to be investigated for low power

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
library WORK;
use WORK.design_utils.all;

entity design is

port (
A : in std_logic_vector(width-1 downto 0);
B : in std_logic_vector(width-1 downto 0);
op : in std_logic_vector(ops-1 downto 0);
Z : out std_logic_vector(width-1 downto 0);
ovf : out std_logic --active high

);

end design;

architecture basic of design is
-- interconnect signals
signal Z_i : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal A_h, A_l, B_h, B_l : std_logic_vector(half_width-1 downto 0) := (others => ’0’);
signal hl_1, hl_2, lh_1, lh_2 : std_logic_vector(half_width-1 downto 0) := (others => ’0’);
signal lh, hl : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal isol_lh, isol_hl : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mult_hh_out, mult_ll_out : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mult_hl_out, mult_lh_out : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mulc_res, mul_16sfpar_res : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mul_16sf_res : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal add_out, sub_out : std_logic_vector(width downto 0) := (others => ’0’);
signal ovf_mulc : boolean := false;
signal ovf_mul16 : boolean := false;
signal ovf_mul16par : boolean := false;
signal ctrl_hl, ctrl_lh : std_logic;
-- component declaration
component add

102 Appendix A. Source Code

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(width downto 0));

end component;
component subtruct

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(width downto 0));

end component;
component mult

generic (
width : integer);

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(2*width-1 downto 0));

end component;

component isolation_logic
generic (

width : integer;
style : integer);

port (
as : in std_logic;
op : in std_logic_vector(width-1 downto 0);
op_isolated : out std_logic_vector(width-1 downto 0));

end component;
constant isolation_style : integer := 2;

begin -- basic
-- component instantiation
mult_hh: component mult

generic map (width => half_width)
port map (

op1 => A_h,
op2 => B_h,
res => mult_hh_out);

mult_ll: component mult
generic map (width => half_width)
port map (

op1 => A_l,
op2 => B_l,
res => mult_ll_out);

mult_lh: component mult
generic map (width => half_width)
port map (

op1 => lh_1,
op2 => lh_2,
res => mult_lh_out);

mult_hl:component mult
generic map (width => half_width)
port map (

op1 => hl_1,
op2 => hl_2,
res => mult_hl_out);

subtractor: component subtruct
port map (

op1 => mult_hh_out,
op2 => mult_ll_out,
res => sub_out);

adder:component add
port map (

op1 => mult_lh_out,
op2 => mult_hl_out,
res => add_out);

-- functionality
mulc_res <= sub_out(width)&sub_out(width-3 downto half_width-1)

&add_out(width)&add_out(width-3 downto half_width-1);
mul_16sfpar_res <= mult_hh_out(31)&mult_hh_out(width-3 downto half_width-1)&

mult_ll_out(31)&mult_ll_out(width-3 downto half_width-1);
mul_16sf_res <= conv_std_logic_vector(0,16)&

mult_ll_out(31)&mult_ll_out(width-3 downto half_width-1);

-- overflow logic
ovf_mul16par <= (op = mul16sfpar) and (((mult_ll_out(31) xor mult_ll_out(30))

or (mult_hh_out(31) xor mult_hh_out(30)))=’1’);

A.1 Experiment 1: A Complex Arithmetic Unit 103

ovf_mul16 <= (op = mul16sf) and ((mult_ll_out(31) xor mult_ll_out(30))=’1’);
ovf_mulc <= (op = mulc)and ((((sub_out(32)xor sub_out(31))

or (sub_out(32)xor sub_out(30)))
or ((add_out(32)xor add_out(31))

or (add_out(32)xor add_out(30))))=’1’);
ovf <= ’1’ when ((ovf_mul16par or ovf_mul16) or ovf_mulc)=true

else ’0’;

-- steering logic
output_mux: process (mulc_res, mul_16sfpar_res, mul_16sf_res, op)

begin -- process output_mux
Z_i <= mulc_res;
case op is

when mulc =>
Z_i <= mulc_res;

when mul16sfpar =>
Z_i <= mul_16sfpar_res;

when mul16sf =>
Z_i <= mul_16sf_res;

when others =>
null;

end case;
end process output_mux;
Z <= Z_i;

--operand isolation logic
ctrl_lh <= op(3);
ctrl_hl <= op(3);
-- mult hh is operand isolated by clock gating the upper
-- parts of the registers in case of nop or single
isolate_hl: isolation_logic

generic map (
width => width,
style => isolation_style)

port map (
as => ctrl_hl, -- activate only when mulc
op => hl,
op_isolated => isol_hl);

isolate_lh: isolation_logic
generic map (

width => width,
style => isolation_style)

port map (
as => ctrl_lh, -- activate only when mulc
op => lh,
op_isolated => isol_lh);

-- mult_ll is operand isolated by clock gating in case of nop. Otherwise it
-- is active.

-- input connections
A_h <= A(width-1 downto half_width);
A_l <= A(half_width-1 downto 0);
B_h <= B(width-1 downto half_width);
B_l <= B(half_width-1 downto 0);
lh <= A_l&B_h;
hl <= A_h&B_l;
-- isolation output connections
lh_1 <= isol_lh(width-1 downto half_width);
lh_2 <= isol_lh(half_width-1 downto 0);
hl_1 <= isol_hl(width-1 downto half_width);
hl_2 <= isol_hl(half_width-1 downto 0);

end basic;

configuration simple of design is

for basic
for adder : add

use entity WORK.add(behavioral);
end for;
for subtractor : subtruct

use entity WORK.subtruct(behavioral);
end for;
for mult_hh, mult_ll, mult_hl, mult_lh : mult

use entity WORK.mult(behavioral);
end for;
for others : isolation_logic

use entity WORK.isolation_logic(structural);
end for;

end for;

end simple;

104 Appendix A. Source Code

A.1.14 The design used in “DECOUPLED”

-- Title : design
-- Project : High power arithmetic unit to be power managed

-- File : design.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- A kick off arithmetic core to be investigated for low power

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
library WORK;
use WORK.design_utils.all;

entity design is

port (
A : in std_logic_vector(width-1 downto 0);
B : in std_logic_vector(width-1 downto 0);
op : in std_logic_vector(ops-1 downto 0);
Z : out std_logic_vector(width-1 downto 0);
ovf : out std_logic --active high

);

end design;

architecture basic of design is
-- interconnect signals
signal Z_i : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal A_h, A_l, B_h, B_l : std_logic_vector(half_width-1 downto 0) := (others => ’0’);
signal hh_1, hh_2, ll_1, ll_2 : std_logic_vector(half_width-1 downto 0) := (others => ’0’);
signal hl_1, hl_2, lh_1, lh_2 : std_logic_vector(half_width-1 downto 0) := (others => ’0’);
signal hh, ll, lh, hl, isol_A, isol_B : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal isol_hh, isol_ll : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal isol_lh, isol_hl : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mult_hh_out, mult_ll_out : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mult_hl_out, mult_lh_out : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mulc_res, mul_16sfpar_res : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal mul_16sf_res : std_logic_vector(width-1 downto 0) := (others => ’0’);
signal add_out, sub_out : std_logic_vector(width downto 0) := (others => ’0’);
signal ovf_mulc : boolean := false;
signal ovf_mul16 : boolean := false;
signal ovf_mul16par : boolean := false;
signal ctrl_hh, ctrl_ll, ctrl_hl, ctrl_lh, ctrl : std_logic;
-- component declaration
component add

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(width downto 0));

end component;
component subtruct

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(width downto 0));

end component;
component mult

generic (
width : integer);

port (
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(2*width-1 downto 0));

end component;

component isolation_logic
generic (

width : integer;
style : integer);

port (
as : in std_logic;
op : in std_logic_vector(width-1 downto 0);
op_isolated : out std_logic_vector(width-1 downto 0));

end component;
constant isolation_style : integer := 2;

begin -- basic

A.1 Experiment 1: A Complex Arithmetic Unit 105

-- component instantiation
mult_hh: component mult

generic map (width => half_width)
port map (

op1 => A_h,
op2 => B_h,
res => mult_hh_out);

mult_ll: component mult
generic map (width => half_width)
port map (

op1 => A_l,
op2 => B_l,
res => mult_ll_out);

mult_lh: component mult
generic map (width => half_width)
port map (

op1 => A_l,
op2 => B_h,
res => mult_lh_out);

mult_hl:component mult
generic map (width => half_width)
port map (

op1 => A_h,
op2 => B_l,
res => mult_hl_out);

subtractor: component subtruct
port map (

op1 => mult_hh_out,
op2 => mult_ll_out,
res => sub_out);

adder:component add
port map (

op1 => mult_lh_out,
op2 => mult_hl_out,
res => add_out);

-- functionality
mulc_res <= sub_out(width)&sub_out(width-3 downto half_width-1)

&add_out(width)&add_out(width-3 downto half_width-1);

-- overflow logic
ovf_mulc <= (op = mulc)and ((((sub_out(32)xor sub_out(31))

or (sub_out(32)xor sub_out(30)))
or ((add_out(32)xor add_out(31))

or (add_out(32)xor add_out(30))))=’1’);
ovf <= ’1’ when ovf_mulc=true else ’0’;
-- steering logic
Z <= mulc_res;

--operand isolation logic
ctrl <= op(3);

isolate_1: isolation_logic
generic map (

width => width,
style => isolation_style)

port map (
as => ctrl, -- activate only when mulc
op => A,
op_isolated => isol_A);

isolate_2: isolation_logic
generic map (

width => width,
style => isolation_style)

port map (
as => ctrl, -- activate only when mulc
op => B,
op_isolated => isol_B);

-- -- input connections
A_h <= isol_A(width-1 downto half_width);
A_l <= isol_A(half_width-1 downto 0);
B_h <= isol_B(width-1 downto half_width);
B_l <= isol_B(half_width-1 downto 0);

end basic;

configuration simple of design is

106 Appendix A. Source Code

for basic
for adder : add

use entity WORK.add(behavioral);
end for;
for subtractor : subtruct

use entity WORK.subtruct(behavioral);
end for;
for mult_hh, mult_ll, mult_hl, mult_lh : mult

use entity WORK.mult(behavioral);
end for;
for others : isolation_logic

use entity WORK.isolation_logic(structural);
end for;

end for;

end simple;

A.1.15 The register entities

The register entities are common for all architectures

entity registers is

port (
clk, rst : in std_logic;
in_1, in_2, in_res : in std_logic_vector(width-1 downto 0);
in_opcode : in std_logic_vector(ops-1 downto 0);
in_ovf : in std_logic;
out_1, out_2, out_res : out std_logic_vector(width-1 downto 0);
out_opcode : inout std_logic_vector(ops-1 downto 0);
out_ovf : out std_logic);

end registers;

A.1.16 The register architecture for “PLAIN”

architecture structural of registers is

begin -- structural
regs: process (clk, rst)
begin -- process regs

if rst = ’0’ then -- asynchronous reset (active low)
out_1 <= (others => ’0’);
out_2 <= (others => ’0’);
out_res <= (others => ’0’);
out_opcode <= (others => ’0’);
out_ovf <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
out_res <= in_res;
out_ovf <= in_ovf;
out_1 <= in_1;
out_2 <= in_2;
out_opcode <= in_opcode;

end if;
end process regs;

end structural;

A.1.17 The register architecture for “REG EN”

architecture structural of registers is

begin -- structural
regs: process (clk, rst)
begin -- process regs

if rst = ’0’ then -- asynchronous reset (active low)
out_1 <= (others => ’0’);
out_2 <= (others => ’0’);
out_res <= (others => ’0’);
out_opcode <= (others => ’0’);
out_ovf <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if out_opcode(0) = ’0’ then

out_res <= in_res;
out_ovf <= in_ovf; -- overflow is invilidated in case of nop

end if;
if in_opcode(0) = ’0’ then

A.1 Experiment 1: A Complex Arithmetic Unit 107

out_1(half_width-1 downto 0) <= in_1(half_width-1 downto 0);
out_2(half_width-1 downto 0) <= in_2(half_width-1 downto 0);

end if;
if ((in_opcode(0) = ’0’) and (in_opcode(1) = ’0’)) then

out_1(width-1 downto half_width) <= in_1(width-1 downto half_width);
out_2(width-1 downto half_width) <= in_2(width-1 downto half_width);

end if;
out_opcode <= in_opcode;

end if;
end process regs;

end structural;

A.1.18 The register architecture for “OP ISOL”

architecture structural of registers is

begin -- structural
regs: process (clk, rst)
begin -- process regs

if rst = ’0’ then -- asynchronous reset (active low)
out_1 <= (others => ’0’);
out_2 <= (others => ’0’);
out_res <= (others => ’0’);
out_opcode <= (others => ’0’);
out_ovf <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if out_opcode(0) = ’0’ then

out_res <= in_res;
out_ovf <= in_ovf; -- overflow is invilidated in case of nop

end if;
if in_opcode(0) = ’0’ then

out_1(half_width-1 downto 0) <= in_1(half_width-1 downto 0);
out_2(half_width-1 downto 0) <= in_2(half_width-1 downto 0);

end if;
if ((in_opcode(0) = ’0’) and (in_opcode(1) = ’0’)) then

out_1(width-1 downto half_width) <= in_1(width-1 downto half_width);
out_2(width-1 downto half_width) <= in_2(width-1 downto half_width);

end if;
out_opcode <= in_opcode;

end if;
end process regs;

end structural;

A.1.19 The register architecture for “CLK GATED OP ISOL”

architecture structural of registers is

begin -- structural
regs: process (clk, rst)
begin -- process regs

if rst = ’0’ then -- asynchronous reset (active low)
out_1 <= (others => ’0’);
out_2 <= (others => ’0’);
out_res <= (others => ’0’);
out_opcode <= (others => ’0’);
out_ovf <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if out_opcode(0) = ’0’ then

out_res <= in_res;
out_ovf <= in_ovf; -- overflow is invilidated in case of nop

end if;
if in_opcode(0) = ’0’ then

out_1(half_width-1 downto 0) <= in_1(half_width-1 downto 0);
out_2(half_width-1 downto 0) <= in_2(half_width-1 downto 0);

end if;
if ((in_opcode(0) = ’0’) and (in_opcode(1) = ’0’)) then

out_1(width-1 downto half_width) <= in_1(width-1 downto half_width);
out_2(width-1 downto half_width) <= in_2(width-1 downto half_width);

end if;
out_opcode <= in_opcode;

end if;
end process regs;

end structural;

A.1.20 The register architecture for “CLK GATED OP ISOL OPT”

architecture structural of registers is

108 Appendix A. Source Code

begin -- structural
regs: process (clk, rst)
begin -- process regs

if rst = ’0’ then -- asynchronous reset (active low)
out_1 <= (others => ’0’);
out_2 <= (others => ’0’);
out_res <= (others => ’0’);
out_opcode <= (others => ’0’);
out_ovf <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if out_opcode(0) = ’0’ then

out_res <= in_res;
out_ovf <= in_ovf; -- overflow is invilidated in case of nop

end if;
if in_opcode(0) = ’0’ then

out_1(half_width-1 downto 0) <= in_1(half_width-1 downto 0);
out_2(half_width-1 downto 0) <= in_2(half_width-1 downto 0);

end if;
if ((in_opcode(0) = ’0’) and (in_opcode(1) = ’0’)) then

out_1(width-1 downto half_width) <= in_1(width-1 downto half_width);
out_2(width-1 downto half_width) <= in_2(width-1 downto half_width);

end if;
out_opcode <= in_opcode;

end if;
end process regs;

end structural;

A.1.21 The register architecture for “DECOUPLED”

architecture structural of registers is

begin -- structural
regs: process (clk, rst)
begin -- process regs

if rst = ’0’ then -- asynchronous reset (active low)
out_1 <= (others => ’0’);
out_2 <= (others => ’0’);
out_res <= (others => ’0’);
out_opcode <= (others => ’0’);
out_ovf <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
out_res <= in_res;
out_ovf <= in_ovf;
out_1 <= in_1;
out_2 <= in_2;
out_opcode <= in_opcode;

end if;
end process regs;

end structural;

A.1.22 The isolation logic for “OP ISOL”, “CLK GATED OP ISOL”
and “CLK GATED OP ISOL OPT”

-- Title : isolation_logic
-- Project : High power arithmetic unit to be power managed

-- File : isolation_logic.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 27/11/2002

-- Description :
-- An operand isolation latch

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
library WORK;
use WORK.design_utils.all;

entity isolation_logic is

generic (
width : integer := half_width;

A.1 Experiment 1: A Complex Arithmetic Unit 109

style : integer := 1);

port (
as : in std_logic;
op : in std_logic_vector(width-1 downto 0);
op_isolated : out std_logic_vector(width-1 downto 0));

end isolation_logic;

architecture structural of isolation_logic is

begin -- structural

and_based: if style = 0 generate
gen_logic: for i in op’range generate

op_isolated(i) <= op(i) and as;
end generate gen_logic;

end generate and_based;

or_based: if style = 1 generate
gen_logic: for i in op’range generate

op_isolated(i) <= (not as) or op(i);
end generate gen_logic;

end generate or_based;

latch_based: if style = 2 generate
gen_logic: process (as, op)
begin -- process gen_logic

if as = ’1’ then
op_isolated <= op;

end if;
end process gen_logic;

end generate latch_based;
end structural;

A.1.23 The isolation logic for “DECOUPLED”

-- Title : isolation_logic
-- Project : High power arithmetic unit to be power managed

-- File : isolation_logic.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 27/11/2002

-- Description :
-- An operand isolation latch

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
library WORK;
use WORK.design_utils.all;

entity isolation_logic is

generic (
width : integer := half_width;
style : integer := 1);

port (
as : in std_logic;
op : in std_logic_vector(width-1 downto 0);
op_isolated : out std_logic_vector(width-1 downto 0));

end isolation_logic;

architecture structural of isolation_logic is
signal temp : std_logic_vector(width-1 downto 0) := (others => ’0’);

begin -- structural

and_based: if style = 0 generate
gen_logic: for i in op’range generate

temp(i) <= op(i) and as;
end generate gen_logic;

end generate and_based;

or_based: if style = 1 generate
gen_logic: for i in op’range generate

temp(i) <= (not as) or op(i);

110 Appendix A. Source Code

end generate gen_logic;
end generate or_based;

latch_based: if style = 2 generate
gen_logic: process (as, op)
begin -- process gen_logic

if as = ’1’ then
temp <= op;

end if;
end process gen_logic;

end generate latch_based;

op_isolated <= temp;
end structural;

A.2 Experiment 2: An Efficient MAC Unit

A.2.1 The testbench for the MD-MAC design

-- Title : core design testbench
-- Project : Multidata type MAU to be tested

-- File : test.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 14/02/2003

-- Description :
-- A testbench for the core design

library ieee;
use ieee.std_logic_1164.all;
--use ieee.std_logic_signed.all;
--use ieee.std_logic_arith.all;
use ieee.math_real.all;
use ieee.numeric_std.all;
library WORK;
use WORK.design_utils.all;
use WORK.sim_utils.all;

entity TEST is

end TEST;

architecture simple of TEST is

constant Tpw_clk : time := 10 ns;

signal clk, rst : std_logic;
signal A_i : std_logic_vector(width-1 downto 0);
signal B_i : std_logic_vector(width-1 downto 0);
signal opin_i : std_logic_vector(inst_count-1 downto 0);
signal Z_i, Z_model : std_logic_vector(width-1 downto 0);
signal opout_i, opout_model : std_logic_vector(inst_count-1 downto 0);
signal ovf_i, ovf_model : std_logic;
constant imp_style : integer := 0;

begin
verifier: process (ovf_model,ovf_i, Z_model, Z_i, opout_i)
begin -- process verifier

if (ovf_i or ovf_model) = ’0’ then
assert Z_model = Z_i report "error in result at operation" severity note;

end if;
end process verifier;

BENCH: core_model
port map (

rst => rst,
clk => clk,
A => A_i,
B => B_i,
opin => opin_i,
Z => Z_model,
opout => opout_model,
ovf => ovf_model);

DUT: core
port map (

rst => rst,

A.2 Experiment 2: An Efficient MAC Unit 111

clk => clk,
A => A_i,
B => B_i,
opin => opin_i,
Z => Z_i,
opout => opout_i,
ovf => ovf_i);

word_stimuli: bit_gen
generic map (

bias => 0.5)
port map (

clk => clk,
word1 => A_i,
word2 => B_i);

instruction_gen: opcode_gen
port map (

clk => clk,
rst => rst,
opcode => opin_i);

clock_gen: clock
generic map (

period => 10 ns)
port map (

clk => clk);

rst <= ’0’, ’1’ after 22 ns;

result_tests: process (clk, rst)
begin -- process result_tests

if clk’event and clk = ’0’ then -- rising clock edge

end if;
end process result_tests;

end simple;

A.2.2 The opcode generator

-- Title : opcode generator
-- Project : High power arithmetic unit to be power managed

-- File : opcode_gen.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- Provides the sequence of instructions. LAter it should be modified to
-- represent tpical workloads of dsp processors

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use ieee.std_logic_arith.all;
library WORK;
use WORK.design_utils.all;

entity opcode_gen is

port (
clk : in std_logic;
rst : in std_logic;
opcode : out std_logic_vector(inst_count-1 downto 0));

end opcode_gen;

architecture behavioral of opcode_gen is
signal current_state, next_state : std_logic_vector(inst_count-1 downto 0);
constant NMCX : integer := 5;
constant NMSF : integer := 5;
constant NMPF : integer := 5;
constant NNOP : integer := 3;
constant NMHI : integer := 5;
constant NMFI : integer := 5;
constant NMAC : integer := 5;
constant NMCC : integer := 1;
constant NACC : integer := 5;

112 Appendix A. Source Code

signal counter : integer;
begin -- behavioral

fsm: process (current_state, counter)
variable temp_next : std_logic_vector(inst_count-1 downto 0);

begin -- process fsm
temp_next := current_state;
if counter = 0 then

case current_state is
when NOP_v =>

temp_next := opid(MCX);
when MCX_v =>

temp_next := opid(MPF);
when MPF_v =>

temp_next := opid(MSF);
when MSF_v =>

temp_next := opid(MHI);
when MHI_v =>

temp_next := opid(MFI);
when MFI_v =>

temp_next := opid(MAC);
when MAC_v =>

temp_next := opid(MCC);
when MCC_v =>

temp_next := opid(ACC);
when ACC_v =>

temp_next := opid(NOP);
when others => null;

end case;
end if;
next_state <= temp_next;

end process fsm;

state_reg: process (clk, rst)
variable temp_count : integer;

begin -- process state_reg
if rst = ’0’ then -- asynchronous reset (active low)

current_state <= NOP_v;
counter <= NNOP;

elsif clk’event and clk = ’0’ then -- rising clock edge
current_state <= next_state;
if counter = 0 then

case current_state is
when NOP_v =>

counter <= NMCX-1;
when MCX_v =>

counter <= NMPF-1;
when MPF_v =>

counter <= NMSF-1;
when MSF_v =>

counter <= NMHI-1;
when MHI_v =>

counter <= NMFI-1;
when MFI_v =>

counter <= NMAC-1;
when MAC_v =>

counter <= NMCC-1;
when MCC_v =>

counter <= NACC-1;
when ACC_v =>

counter <= NNOP-1;
when others => null;

end case;
else

counter <= counter - 1;
end if;

end if;
end process state_reg;
opcode <= current_state;

end behavioral;

A.2.3 The benchmark and carry-save MAC units

-- Title : mac_0.vhdl
-- Project : A simple mac unit

-- File : mac_0.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU

A.2 Experiment 2: An Efficient MAC Unit 113

-- Date : 27/01/2003

-- Description :
-- A simple multiply acummulate unit. It infinately accumulates the product of
-- two numbers. Overflow is not an issue at this point as we are only
-- interested in the power consumed during operation. Correctness can then be
-- added by providing for overflow flags.

library ieee, DWARE, DW02;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use DWARE.DWpackages.all;
use DW02.DW02_components.all;
library WORK;
use WORK.design_utils.all;

entity mac_0 is

generic (
w : integer := 16;
mw : integer := 32;
aw : integer := 34;
arch: integer := 0);

port (
rst : in std_logic;
clk : in std_logic;
A : in std_logic_vector(w-1 downto 0);
B : in std_logic_vector(w-1 downto 0);
clr : in std_logic;
sum : out std_logic_vector(w-1 downto 0);
ovf : out std_logic);

end mac_0;

architecture basic of mac_0 is
signal A_r, B_r : std_logic_vector(w-1 downto 0);
signal mult : std_logic_vector(mw-1 downto 0);
signal acc : std_logic_vector(aw-1 downto 0);
signal int_ovf, TC : std_logic;
signal tmp_acc, C : std_logic_vector(aw downto 0);

begin -- basic

non_pipelined: if arch = 1 generate

multiplication: process (clk, rst)
variable mult : std_logic_vector(2*w-1 downto 0);
variable tmp_acc : std_logic_vector(aw downto 0);

begin -- process func
if rst = ’0’ then -- asynchronous reset (active low)

A_r <= (others => ’0’);
B_r <= (others => ’0’);
mult := (others => ’0’);
int_ovf <= ’0’;
acc <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
mult := signed(A_r)*signed(B_r);
tmp_acc := signed(mult(mw-1)&mult(mw-1)&mult(mw-1)&mult)

+signed(acc(aw-1)&acc);
if clr = ’1’ then

acc <= (others => ’0’);
int_ovf <= ’0’;

else
acc <= tmp_acc(aw-1 downto 0);
int_ovf <= tmp_acc(aw)xor tmp_acc(aw-1);

end if;
A_r <= A;
B_r <= B;

end if;
end process multiplication;

sum <= acc(aw-1)&acc(2*mw-aw-1 downto 2*mw-aw-1-w+2);
ovf_logic: process (int_ovf, acc)

variable tmp_ovf : std_logic;
begin -- process ovf_logic

tmp_ovf := ’0’;
for i in aw-2 downto 2*mw-aw loop

tmp_ovf := tmp_ovf or (acc(aw-1)xor acc(i));
end loop; -- i
ovf <= int_ovf or tmp_ovf;

end process ovf_logic;

end generate non_pipelined;

114 Appendix A. Source Code

np_merged: if arch = 2 generate

multiplication: process (clk, rst)
begin -- process func

if rst = ’0’ then -- asynchronous reset (active low)
A_r <= (others => ’0’);
B_r <= (others => ’0’);
int_ovf <= ’0’;
acc <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
if clr = ’1’ then

acc <= (others => ’0’);
int_ovf <= ’0’;

else
acc <= tmp_acc(aw-1 downto 0);
int_ovf <= tmp_acc(aw)xor tmp_acc(aw-1);

end if;
A_r <= A;
B_r <= B;

end if;
end process multiplication;

sum <= acc(aw-1)&acc(2*mw-aw-1 downto 2*mw-aw-1-w+2);
ovf_logic: process (int_ovf, acc)

variable tmp_ovf : std_logic;
begin -- process ovf_logic

tmp_ovf := ’0’;
for i in aw-2 downto 2*mw-aw loop

tmp_ovf := tmp_ovf or (acc(aw-1)xor acc(i));
end loop; -- i
ovf <= int_ovf or tmp_ovf;

end process ovf_logic;

TC <= ’1’; -- numbers are signed
C <= acc(aw-1)&acc; -- signed extended result

-- Instance of DW02_prod_sum1
U1 : DW02_prod_sum1

generic map (A_width => w, B_width => w, SUM_width => aw+1)
port map (A => A_r, B => B_r, C => C, TC => TC, SUM => tmp_acc);

end generate np_merged;

end basic;

-- pragma translate_off
library DW02;
configuration MERGED of mac_0 is

for basic
for np_merged

for U1 : DW02_prod_sum1
use configuration DW02.DW02_prod_sum1_cfg_sim;

end for;
end for;

end for;
end MERGED;

-- pragma translate_on

A.2.4 The pipelined MAC unit

-- Title : mac_lp.vhdl
-- Project : A simple mac unit

-- File : mac_lp.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 27/01/2003

-- Description :
-- A simple multiply acummulate unit. It differs from mac_base in respect that
-- the ripple carry adder of the multiplier is moved to the second pipeline
-- stage.

library ieee, SYNOPSYS, DWARE, DW02;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use SYNOPSYS.attributes.all;
use DWARE.DWpackages.all;
use DW02.DW02_components.all;

A.2 Experiment 2: An Efficient MAC Unit 115

library WORK;
use WORK.design_utils.all;
use WORK.arith_utils.all;

entity mac_lp is

generic (
w : integer := 16;
mw : integer := 32;
aw : integer := 34;
arch : integer := 0);

port (
rst : in std_logic;
clk : in std_logic;
A : in std_logic_vector(w-1 downto 0);
B : in std_logic_vector(w-1 downto 0);
clr : in std_logic;
sum : out std_logic_vector(w-1 downto 0);
ovf : out std_logic);

end mac_lp;

architecture basic of mac_lp is

signal A_r, B_r : std_logic_vector(w-1 downto 0);
signal mult_ST_r, mult_CT_r, mult : std_logic_vector(mw-1 downto 0);
signal acc : std_logic_vector(aw-1 downto 0);
signal acc_i : std_logic_vector(aw downto 0);
signal int_ovf : std_logic;
signal add_1, add_2 : std_logic_vector(aw downto 0);
-- partial products
signal PP : std_logic_vector((18)*(32)-1 downto 0);
-- intermediate sum/carry bits
signal ST, CT : std_logic_vector(31 downto 0);
signal pp0, pp1 : std_logic_vector(33 downto 0);
signal TC : std_logic;
constant N : integer := 3;
constant Wv : integer := 32;
constant AWv : integer := Wv+3;
signal vec_in : std_logic_vector(N*AWv-1 downto 0);
signal Ase, Bse, Cse : std_logic_vector(AWv-1 downto 0);

begin -- basic

-- pipelined using synopsys components

pipe_synopsys : if arch = 1 generate
TC <= ’1’;
Ase <= "000"&mult_ST_r;
Bse <= "000"&mult_CT_r;
Cse <= acc(aw-1)&acc;
vec_in <= Ase&Bse&Cse;
acc_i <= std_logic_vector(DWF_sum(SIGNED (vec_in), N));

U1 : DW02_multp
generic map (

a_width => 16,
b_width => 16,
out_width => 34) -- a_width+b_width+2

port map (
a => A_r,
b => B_r,
tc => TC,
out0 => pp0,
out1 => pp1);

multiplication : process (clk, rst)
begin -- process func

if rst = ’0’ then -- asynchronous reset (active low)
A_r <= (others => ’0’);
B_r <= (others => ’0’);
mult_ST_r <= (others => ’0’);
mult_CT_r <= (others => ’0’);
int_ovf <= ’0’;
acc <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
if clr = ’1’ then

acc <= (others => ’0’);
int_ovf <= ’0’;

else
acc <= acc_i(aw-1 downto 0);

116 Appendix A. Source Code

int_ovf <= acc_i(aw)xor acc_i(aw-1);
end if;
mult_CT_r <= pp0(mw-1 downto 0);
mult_ST_r <= pp1(mw-1 downto 0);

A_r <= A;
B_r <= B;

end if;
end process multiplication;

sum <= acc(aw-1)&acc(2*mw-aw-1 downto 2*mw-aw-1-w+2);
ovf_logic : process (int_ovf, acc)

variable tmp_ovf : std_logic;
begin -- process ovf_logic

tmp_ovf := ’0’;
for i in aw-2 downto 2*mw-aw loop

tmp_ovf := tmp_ovf or (acc(aw-1)xor acc(i));
end loop; -- i
ovf <= int_ovf or tmp_ovf;

end process ovf_logic;
end generate pipe_synopsys;

end basic;

-- pragma translate_off
library DW02;
configuration PIPED of mac_lp is

for basic
for pipe_synopsys

for U1 : DW02_multp
use configuration DW02.DW02_multp_cfg_sim;

end for;
end for;

end for;
end PIPED;

-- pragma translate_on

A.3 Experiment 3: Multi-datatype MAC unit (MD-
MAC)

A.3.1 The top level SPLIT-MD-MAC and MD-MAC architectures

-- Title : core.vhdl
-- Project : A multi-datatype MAU unit

-- File : core.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/02/2003

-- Description :
-- The core performs several multiply based operations as indicated by the
-- instruction set.

library ieee, SYNOPSYS, DW01, DW02, DWARE, WORK;
use WORK.design_utils.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use SYNOPSYS.attributes.all;
use DWARE.DWpackages.all;
use DW01.DW01_components.all;
use DW02.DW02_components.all;

entity core is
port (

rst : in std_logic;
clk : in std_logic;
A : in std_logic_vector(width-1 downto 0);
B : in std_logic_vector(width-1 downto 0);
opin : in std_logic_vector(inst_count-1 downto 0);
Z : out std_logic_vector(width-1 downto 0);
opout : out std_logic_vector(inst_count-1 downto 0);
ovf : out std_logic);

end core;

A.3 Experiment 3: Multi-datatype MAC unit (MD-MAC) 117

architecture structural of core is
signal HH, HL, LH, LL, result, Z_tmp : std_logic_vector(width-1 downto 0);
signal accum : std_logic_vector(width-1 downto 0);
signal opcode : std_logic_vector(inst_count-1 downto 0);
signal overflow : std_logic;
constant style : integer := 1;
begin -- structural

input_registers: iregs
-- generic map (
-- style => style)

port map (
rst => rst,
clk => clk,
A => A,
B => B,
opin => opin,
opout => opcode,
HH => HH,
LL => LL,
HL => HL,
LH => LH);

output_registers: oregs
port map (

rst => rst,
clk => clk,
opin => opcode,
ovfin => overflow,
Zin => result,
accum => accum,
opout => opout,
Zout => Z,
ovfout => ovf);

MAU : design
port map (

rst => rst,
clk => clk,
op => opcode,
HH => HH,
HL => HL,
LH => LH,
LL => LL,
Z => result,
accum => accum,
ovf => overflow);

end structural;

configuration status of core is

for structural
for input_registers : iregs

use entity work.iregs(rtl)
generic map (1);

end for;
for output_registers : oregs

use entity work.oregs(rtl);
end for;
for MAU : design

use entity work.design(structural);
end for;

end for;

end status;

architecture split of core is
signal HH, HL, LH, LL, result, Z_tmp : std_logic_vector(width-1 downto 0);
signal accum, res_MAU, res_MFI : std_logic_vector(width-1 downto 0);
signal opcode : std_logic_vector(inst_count-1 downto 0);
signal overflow, ovf_MAU, ovf_MFI : std_logic;
signal en_mult32, en_mult32_pipe : std_logic;
constant style : integer := 1;
begin -- structural

input_registers: iregs
port map (

rst => rst,
clk => clk,
A => A,
B => B,
opin => opin,

118 Appendix A. Source Code

opout => opcode,
HH => HH,
LL => LL,
HL => HL,
LH => LH);

merge_logic: process(en_mult32_pipe, res_MFI, res_MAU, ovf_MAU, ovf_MFI)
begin -- process merge_logic

case en_mult32_pipe is
when ’1’ =>

result <= res_MFI;
when others =>

result <= res_MAU;
end case;
overflow <= (ovf_MAU and (not en_mult32_pipe))or (ovf_MFI and en_mult32_pipe);

end process merge_logic;

output_registers: oregs
port map (

rst => rst,
clk => clk,
opin => opcode,
ovfin => overflow,
Zin => result,
accum => accum,
opout => opout,
Zout => Z,
ovfout => ovf);

en_mult32 <= opin(MFI);
en_mult32_pipe <= opcode(MFI);
multiplier32: mult

port map (
rst => rst,
clk => clk,
en => en_mult32,
op1 => A,
op2 => B,
res => res_MFI,
ovf => ovf_MFI);

MAU : design
port map (

rst => rst,
clk => clk,
op => opcode,
HH => HH,
HL => HL,
LH => LH,
LL => LL,
Z => res_MAU,
accum => accum,
ovf => ovf_MAU);

end split;

configuration status_split of core is
for split

for input_registers : iregs
use entity work.iregs(rtl)

generic map (2);
end for;
for output_registers : oregs

use entity work.oregs(rtl);
end for;
for MAU : design

use entity work.design(split);
end for;

end for;

end status_split;

A.3.2 The top level MD-MAC NCS architecture

-- Title : core_ncs_shared.vhdl
-- Project : A multi-datatype MAU unit

-- File : core_ncs_shared.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/02/2003

A.3 Experiment 3: Multi-datatype MAC unit (MD-MAC) 119

-- Description :
-- The core performs several multiply based operations as indicated by the
-- instruction set.

library ieee, SYNOPSYS, DW01, DW02, DWARE, WORK;
use WORK.design_utils.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use SYNOPSYS.attributes.all;
use DWARE.DWpackages.all;
use DW01.DW01_components.all;
use DW02.DW02_components.all;

entity core_ncs_shared is
port (

rst : in std_logic;
clk : in std_logic;
A : in std_logic_vector(width-1 downto 0);
B : in std_logic_vector(width-1 downto 0);
opin : in std_logic_vector(inst_count-1 downto 0);
Z : out std_logic_vector(width-1 downto 0);
opout : out std_logic_vector(inst_count-1 downto 0);
ovf : out std_logic);

end core_ncs_shared;

architecture structural of core_ncs_shared is
signal HH, HL, LH, LL, result, Z_tmp : std_logic_vector(width-1 downto 0);
signal accum : std_logic_vector(width-1 downto 0);
signal opcode : std_logic_vector(inst_count-1 downto 0);
signal overflow : std_logic;
constant style : integer := 1;
begin -- structural

input_registers: iregs
-- generic map (
-- style => style)

port map (
rst => rst,
clk => clk,
A => A,
B => B,
opin => opin,
opout => opcode,
HH => HH,
LL => LL,
HL => HL,
LH => LH);

output_registers: oregs
port map (

rst => rst,
clk => clk,
opin => opcode,
ovfin => overflow,
Zin => result,
accum => accum,
opout => opout,
Zout => Z,
ovfout => ovf);

MAU : design_ncs_shared
port map (

rst => rst,
clk => clk,
op => opcode,
HH => HH,
HL => HL,
LH => LH,
LL => LL,
Z => result,
accum => accum,
ovf => overflow);

end structural;

configuration status of core_ncs_shared is

for structural
for input_registers : iregs

use entity work.iregs(rtl)
generic map (1);

120 Appendix A. Source Code

end for;
for output_registers : oregs

use entity work.oregs(rtl);
end for;
for MAU : design_ncs_shared

use entity work.design_ncs_shared(structural);
end for;

end for;

end status;

A.3.3 The intput registers

-- Title : iregs.vhdl
-- Project : A multi-datatype MAU unit

-- File : iregs.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/02/2003

-- Description :
-- The input registers of the core design

library ieee, SYNOPSYS, DW01, DW02, DWARE, WORK;
use WORK.design_utils.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use SYNOPSYS.attributes.all;
use DWARE.DWpackages.all;
use DW01.DW01_components.all;
use DW02.DW02_components.all;

entity iregs is

generic (
style : integer:= 2);

port (
rst : in std_logic;
clk : in std_logic;
A : in std_logic_vector(width-1 downto 0);
B : in std_logic_vector(width-1 downto 0);
opin : in std_logic_vector(inst_count-1 downto 0);
opout : out std_logic_vector(inst_count-1 downto 0);
HH : out std_logic_vector(width-1 downto 0);
LL : out std_logic_vector(width-1 downto 0);
HL : out std_logic_vector(width-1 downto 0);
LH : out std_logic_vector(width-1 downto 0));

end iregs;

architecture rtl of iregs is
signal hh_i, ll_i, lh_i, hl_i, A_r, B_r : std_logic_vector(width-1 downto 0);
signal hh_en, hl_lh_en, ll_en : std_logic;
begin -- rtl

-- Operand isolated input registers by splited pipes

isol_split: if style = 2 generate

-- output connections
isol_regs: process (clk, rst)
begin -- process isol_regs

if rst = ’0’ then -- asynchronous reset (active low)
HH <= (others => ’0’);
HL <= (others => ’0’);
LH <= (others => ’0’);
LL <= (others => ’0’);
opout <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
opout <= opin;
if hh_en = ’1’ then

HH <= hh_i;
end if;
if hl_lh_en = ’1’ then

HL <= hl_i;
end if;
if hl_lh_en = ’1’ then

A.3 Experiment 3: Multi-datatype MAC unit (MD-MAC) 121

LH <= lh_i;
end if;
if ll_en = ’1’ then

LL <= ll_i;
end if;

end if;
end process isol_regs;

-- input connection
hh_i <= upper(A)&upper(B);
hl_i <= upper(A)&lower(B);
lh_i <= lower(A)&upper(B);
ll_i <= lower(A)&lower(B);

-- control logic
ll_en <= not (opin(NOP) or opin(MFI));
hh_en <= opin(MPF)or opin(MCX);
hl_lh_en <= opin(MCX);

end generate isol_split;

end rtl;

A.3.4 The output registers

-- Title : oregs.vhdl
-- Project : A multi-datatype MAU unit

-- File : oregs.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/02/2003

-- Description :
-- The output registers of the core design

library ieee, SYNOPSYS, DW01, DW02, DWARE, WORK;
use WORK.design_utils.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use SYNOPSYS.attributes.all;
use DWARE.DWpackages.all;
use DW01.DW01_components.all;
use DW02.DW02_components.all;

entity oregs is

port (
rst : in std_logic;
clk : in std_logic;
opin : in std_logic_vector(inst_count-1 downto 0);
ovfin : in std_logic;
Zin : in std_logic_vector(width-1 downto 0);
accum : in std_logic_vector(width-1 downto 0);
opout : out std_logic_vector(inst_count-1 downto 0);
Zout : out std_logic_vector(width-1 downto 0);
ovfout : out std_logic);

end oregs;

architecture rtl of oregs is
signal to_output : std_logic_vector(width-1 downto 0);

begin -- structural

regs_out : process (clk, rst)
begin -- process regs_out

if rst = ’0’ then -- asynchronous reset (active low)
Zout <= (others => ’0’);
opout <= (others => ’0’);
ovfout <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
ovfout <= ovfin;
opout <= opin;
if opin(NOP) = ’0’ then

Zout <= to_output;
end if;

end if;
end process regs_out;

122 Appendix A. Source Code

to_output <= Zin when opin(ACC) = ’0’ else accum;

end rtl;

A.3.5 The SPLIT-MD-MAC and MD-MAC designs

-- Title : design.vhdl
-- Project : A multi-datatype MAU unit

-- File : design.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/02/2003

-- Description :
-- The processing unit of the core design. A clearly combinatorial circuit,
-- apart from some latches to gate control signals and the accumulator

library ieee, SYNOPSYS, DW01, DW02, DWARE, WORK;
use WORK.design_utils.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use SYNOPSYS.attributes.all;
use DWARE.DWpackages.all;
use DW01.DW01_components.all;
use DW02.DW02_components.all;

entity design is

port (
rst : in std_logic;
clk : in std_logic;
op : in std_logic_vector(inst_count-1 downto 0);
HH, HL : in std_logic_vector(width-1 downto 0);
LH, LL : in std_logic_vector(width-1 downto 0);
Z : out std_logic_vector(width-1 downto 0);
accum : out std_logic_vector(width-1 downto 0); -- 34bit accumulator
ovf : out std_logic);

end design;

architecture structural of design is
-- parameters for the multp trees
constant a_width, b_width : integer := half_width;
constant multp_width : integer := a_width+b_width+2;
signal hh_sum, hh_carry : std_logic_vector(multp_width-1 downto 0);
signal hl_sum, hl_carry : std_logic_vector(multp_width+1 downto 0);
signal lh_sum, lh_carry : std_logic_vector(multp_width+1 downto 0);
signal ll_sum, ll_carry, ll_carry_inv, ll_sum_inv : std_logic_vector(multp_width-1 downto 0);
signal TC_hh, TC_hl, TC_lh, TC_ll : std_logic;
signal hh_A, hh_B, ll_A, ll_B, ll_B_inv : std_logic_vector(half_width-1 downto 0);
signal hl_A, hl_B, lh_A, lh_B : std_logic_vector(half_width downto 0);
--signal hl_A, hl_B, lh_A, lh_B : std_logic_vector(half_width-1 downto 0);
attribute implementation : string;
attribute implementation of hh_pp, hl_pp, lh_pp, ll_pp : label is "nbw";
-- parameters for the vector trees
constant vec4 : integer := 4;
constant vec6 : integer := 8;
signal vec4_in : std_logic_vector(vec4*(width+3)-1 downto 0);
signal vec4_in0, vec4_in1 : std_logic_vector(width+2 downto 0);
signal vec4_out0, vec4_out1 : std_logic_vector(width+2 downto 0);
signal vec6_in : std_logic_vector(vec6*(51)-1 downto 0);
signal vec6_out0, vec6_out1 : std_logic_vector(50 downto 0);
signal hh_sum_ext, hh_carry_ext : std_logic_vector(width+2 downto 0);
signal ll_sum_ext, ll_carry_ext : std_logic_vector(width+2 downto 0);
signal ext_accum : std_logic_vector(width+2 downto 0);
-- parameters for the cp adders for the vec trees
signal vec4_res : std_logic_vector(width+3 downto 0);
signal vec6_res : std_logic_vector(50 downto 0);
signal vec6_CI, vec6_CO, vec4_CI : std_logic;
signal tmp_vec6_in0, tmp_vec6_in1 : std_logic_vector(half_width+1 downto 0);
signal tmp_vec6_in6, tmp_vec6_in7 : std_logic_vector(49 downto 0);
signal vec6_in0, vec6_in1 : std_logic_vector(50 downto 0);
signal vec6_in2, vec6_in3 : std_logic_vector(50 downto 0);
signal vec6_in4, vec6_in5 : std_logic_vector(50 downto 0);
signal vec6_in6, vec6_in7 : std_logic_vector(50 downto 0);
-- parameters for the adders for the MFI instruction
signal MFI_low_16 : std_logic_vector(half_width-1 downto 0);
signal MFI_high_res : std_logic_vector(half_width-1 downto 0);

A.3 Experiment 3: Multi-datatype MAC unit (MD-MAC) 123

signal MFI_low_16_CO : std_logic;
signal MFI_low_A, MFI_low_B : std_logic_vector(half_width-1 downto 0);
signal MPF_high : std_logic_vector(width+1 downto 0);
-- parameters for the steering logic
signal MSF_res, MPF_res, MCX_res : std_logic_vector(width-1 downto 0);
signal MHI_res, MFI_res : std_logic_vector(width-1 downto 0);
-- parameters for the accumulator
attribute sync_set_reset_local of accumulator : label is "accum_en" ;
signal accum_en : std_logic;
signal acc_res : std_logic_vector(width+3 downto 0);
-- parameters for the overflow logic
signal MHI_ovf_flag, MFI_ovf_flag : std_logic;
signal overflow_flags : std_logic_vector(inst_count-1 downto 0);
begin -- structural

-- signed number selector
TC_hh <= ’1’;
TC_hl <= ’1’;
TC_lh <= ’1’;
TC_ll <= not op(MFI);

-- overflow control
MHI_ovf_flag <= ((not vec4_res(31)) and det_one(vec4_res(30 downto 15)))or

((vec4_res(31)) and det_zero(vec4_res(30 downto 15)));

MFI_ovf_flag <= ((not vec6_res(47)) and det_one(vec6_res(46 downto half_width-1)))or
((vec6_res(47)) and det_zero(vec6_res(46 downto half_width-1)));

overflow_control: process(op, vec4_res, vec6_res, MPF_high, MHI_ovf_flag, MFI_ovf_flag, ll_A, ll_B, acc_res)
variable ovf_vec : std_logic_vector(inst_count-1 downto 0);
variable MPF_ovf_h, MPF_ovf_l, MCX_ovf_re, MCX_ovf_im : std_logic;
variable MAC_ovf_flag, ACC_ovf_flag, SA, SB : std_logic;

begin -- process overflow_control
ovf_vec := (others => ’0’);
MPF_ovf_l := (vec4_res(31) xor vec4_res(30))or

(vec4_res(31) xor vec4_res(32))or
(vec4_res(31) xor vec4_res(33))or
(vec4_res(31) xor vec4_res(34))or
(vec4_res(31) xor vec4_res(35));

MPF_ovf_h := (MPF_high(31)xor MPF_high(30))or
(MPF_high(31)xor MPF_high(32))or
(MPF_high(31)xor MPF_high(33));

MCX_ovf_re := (vec4_res(32)xor vec4_res(31))or
(vec4_res(32)xor vec4_res(30))or
(vec4_res(32)xor vec4_res(33))or
(vec4_res(32)xor vec4_res(34))or
(vec4_res(32)xor vec4_res(35));

MCX_ovf_im := (vec6_res(32)xor vec6_res(31))or
(vec6_res(32)xor vec6_res(30))or
(vec6_res(32)xor vec6_res(33))or
(vec6_res(32)xor vec6_res(34))or
(vec6_res(32)xor vec6_res(35));

ovf_vec(MSF) := op(MSF) and MPF_ovf_l;
ovf_vec(MPF) := op(MPF) and (MPF_ovf_h or MPF_ovf_l);
ovf_vec(MCX) := op(MCX) and (MCX_ovf_re or MCX_ovf_im);
ovf_vec(MHI) := op(MHI) and MHI_ovf_flag;
ovf_vec(MFI) := op(MFI) and MFI_ovf_flag;
SA := ll_A(half_width-1)xor ll_B(half_width-1);
SB := acc_res(width+1);
MAC_ovf_flag := (SA xnor SB) and (SA xor vec4_res(34));
-- to be fixed
ACC_ovf_flag := (vec4_res(31)xor vec4_res(32))or

(vec4_res(31)xor vec4_res(33))or
(vec4_res(31)xor vec4_res(34));

ovf_vec(MAC) := op(MAC) and MAC_ovf_flag;
ovf_vec(MCC) := ’0’;
ovf_vec(ACC) := op(ACC) and ACC_ovf_flag;
overflow_flags <= ovf_vec;

end process overflow_control;
-- connect overflow flag to output;
ovf <= det_one(overflow_flags);

-- accumulator
accum_en <= op(MAC)or op(ACC) or op(MCC);
accumulator: process (clk, rst)
begin -- process accumulator

if rst = ’0’ then -- asynchronous reset (active low)
acc_res <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
if accum_en = ’1’ then

acc_res <= vec4_res;
end if;

end if;
end process accumulator;

124 Appendix A. Source Code

-- create results
MHI_res <= conv_std_logic_vector(0,16)&vec4_res(31)&vec4_res(half_width-2 downto 0);
MFI_res <= vec6_res(47)&vec6_res(half_width-2 downto 0)&MFI_low_16;
MSF_res <= conv_std_logic_vector(0,16)&

vec4_res(31)&vec4_res(width-3 downto half_width-1);
MPF_res <= MPF_high(31)&MPF_high(width-3 downto half_width-1)

&vec4_res(31)&vec4_res(width-3 downto half_width-1);
MCX_res <= vec4_res(width)&vec4_res(width-3 downto half_width-1)

&vec6_res(width)&vec6_res(width-3 downto half_width-1);
accum <= acc_res(width+1)&acc_res(width-2 downto 0);
mum <= vec6_res(47 downto 0)&MFI_low_16;
-- steering output multiplier
output_mux: process(op, MSF_res, MPF_res, MCX_res, MHI_res, MFI_res)

variable MSF_mux, MPF_mux, MCX_mux : std_logic_vector(width-1 downto 0);
variable MHI_mux, MFI_mux : std_logic_vector(width-1 downto 0);

begin -- process output_mux
for i in width-1 downto 0 loop

MSF_mux(i) := MSF_res(i)and op(MSF);
MPF_mux(i) := MPF_res(i)and op(MPF);
MCX_mux(i) := MCX_res(i)and op(MCX);
MHI_mux(i) := MHI_res(i)and op(MHI);
MFI_mux(i) := MFI_res(i)and op(MFI);

end loop; -- i
Z <= MCX_mux or ((MSF_mux or MPF_mux)or (MFI_mux or MHI_mux));

end process output_mux;

-- adder for the lower 16 bits of the MFI instruction
MFI_low_A <= ll_sum(half_width-1 downto 0);
MFI_low_B <= ll_carry(half_width-1 downto 0);
MFI_low_16_cpa: process (MFI_low_A, MFI_low_B)

variable tmp_sum : unsigned(half_width downto 0);
variable A_ext, B_ext : std_logic_vector(half_width downto 0);

begin -- process MFI_low_16_cpa
A_ext := ’0’&MFI_low_A;
B_ext := ’0’&MFI_low_B;
tmp_sum := unsigned(A_ext) + unsigned(B_ext); -- pragma label MFI_low_cpa
MFI_low_16 <= std_logic_vector(tmp_sum(half_width-1 downto 0));
MFI_low_16_CO <= tmp_sum(half_width);

end process MFI_low_16_cpa;
vec6_CI <= MFI_low_16_CO and op(MFI); --propagate carry only in MFI instruction

-- adder for the high part of MPF
MPF_high_part_adder: process (hh_sum, hh_carry)

variable sum : signed(width+1 downto 0);
begin -- process MFI_high_cond_sum

sum := signed(hh_sum) + signed(hh_carry); -- pragma label MPF_high_add
MPF_high <= std_logic_vector(sum);

end process MPF_high_part_adder;
vec4_CI <= op(MCX);
-- propagate adder for vec4_tree
vec4_cpa: process (vec4_out0, vec4_out1, vec4_CI)
constant r0 : resource := 0;
attribute map_to_module of r0 : constant is "DW01_add";
attribute implementation of r0 : constant is "bk";
attribute ops of r0 : constant is "cpa4";

variable vec4_CI_v : signed(width+3 downto 0);
variable vec4_res_i : signed(width+3 downto 0);
variable op1, op2 : std_logic_vector(width+3 downto 0);

begin -- process vec4_cpa
vec4_CI_v := (others => ’0’);
vec4_CI_v(0) := vec4_CI;
op1 := (not vec4_out0(width+2))&vec4_out0;
op2 := ’1’&vec4_out1;
vec4_res_i := vec4_CI_v + signed(op1) + signed(op2); -- pragma label cpa4
vec4_res <= std_logic_vector(vec4_res_i);

end process vec4_cpa;

vec6_cpa: process(vec6_out0, vec6_out1, vec6_CI)
constant r1 : resource := 0;
attribute map_to_module of r1 : constant is "DW01_add";
attribute implementation of r1 : constant is "bk";
attribute ops of r1 : constant is "cpa6";

variable vec6_CI_v : unsigned(49 downto 0);
variable vec6_res_v : unsigned(50 downto 0);

begin -- process vec6_cpa
vec6_CI_v := (others => ’0’);
vec6_CI_v(0) := vec6_CI;
vec6_res_v := vec6_CI+unsigned(vec6_out0)+unsigned(vec6_out1); -- pragma label cpa6
vec6_res <= std_logic_vector(vec6_res_v);

end process vec6_cpa;

-- instantiation of trees for the vector adders

A.3 Experiment 3: Multi-datatype MAC unit (MD-MAC) 125

vec4_tree: DW02_tree
generic map (

num_inputs => vec4,
input_width => width+3) -- extended intermediate range of accumulator

port map (
INPUT => vec4_in,
OUT0 => vec4_out0,
OUT1 => vec4_out1);

vec6_tree: DW02_tree
generic map (

num_inputs => vec6,
input_width => 51)

port map (
INPUT => vec6_in,
OUT0 => vec6_out0,
OUT1 => vec6_out1);

-- input connections for the vec4_tree
hh_sum_ext <= sgn_ext(hh_sum, 1);
hh_carry_ext <= sgn_ext(hh_carry, 1);
invert_sum_carry: for i in ll_sum’range generate

ll_sum_inv(i) <= ll_sum(i)xor op(MCX);
ll_carry_inv(i) <= ll_carry(i)xor op(MCX);

end generate invert_sum_carry;
ll_sum_ext <= sgn_ext(ll_sum_inv, 1);
ll_carry_ext <= sgn_ext(ll_carry_inv, 1);
ext_accum <= acc_res(width+1)&acc_res(width+1 downto 0);
vec4_in <= vec4_in0&vec4_in1&ll_sum_ext&ll_carry_ext;

vec4_tree_inputs: process (hh_sum_ext, hh_carry_ext, ext_accum, op)
variable ctrl_in0, ctrl_in1, reset_in1 : std_logic;
variable vec4_in1_v : std_logic_vector(width+2 downto 0);

begin -- process vec4_tree_inputs
ctrl_in0 := op(MCX);
ctrl_in1 := op(MCX);
reset_in1 := not(op(MSF)or op(MPF)or op(MHI)or op(MFI)or op(MCC));
for i in hh_sum_ext’range loop

vec4_in0(i) <= hh_sum_ext(i)and (ctrl_in0);
end loop; -- i
case ctrl_in0 is

when ’0’ =>
vec4_in1_v := ext_accum;

when others =>
vec4_in1_v := hh_carry_ext(width+2 downto 1)&op(MCX);

end case;
for j in vec4_in1_v’range loop

vec4_in1(j) <= vec4_in1_v(j)and reset_in1;
end loop; -- j

end process vec4_tree_inputs;

-- input connections for the vec6_tree
tmp_vec6_in0 <= ll_sum(width+1 downto half_width);
tmp_vec6_in1 <= ll_carry(width+1 downto half_width);
tmp_vec6_in6 <= hh_sum(width+1 downto 0)&conv_std_logic_vector(0,16);
tmp_vec6_in7 <= hh_carry(width+1 downto 0)&conv_std_logic_vector(0,16);
vec6_tree_inputs: process (tmp_vec6_in0, tmp_vec6_in1, tmp_vec6_in6, tmp_vec6_in7,op)

variable ctrl_vec6 : std_logic;
variable vec6_in0_i, vec6_in1_i : std_logic_vector(50 downto 0);
variable vec6_in6_i, vec6_in7_i : std_logic_vector(50 downto 0);

begin -- process vec6_tree_inputs
ctrl_vec6 := op(MFI);
vec6_in0_i := sgn_ext(tmp_vec6_in0,33);
vec6_in1_i := sgn_ext(tmp_vec6_in1,33);
vec6_in6_i := sgn_ext(tmp_vec6_in6,1);
vec6_in7_i := sgn_ext(tmp_vec6_in7,1);
for j in vec6_in0_i’range loop

vec6_in0(j) <= vec6_in0_i(j)and ctrl_vec6;
vec6_in1(j) <= vec6_in1_i(j)and ctrl_vec6;
vec6_in6(j) <= vec6_in6_i(j)and ctrl_vec6;
vec6_in7(j) <= vec6_in7_i(j)and ctrl_vec6;

end loop; -- j
end process vec6_tree_inputs;
vec6_in2 <= sgn_ext(hl_sum,15);
vec6_in3 <= sgn_ext(hl_carry,15);
vec6_in4 <= sgn_ext(lh_sum,15);
vec6_in5 <= sgn_ext(lh_carry,15);
vec6_in <= vec6_in0&vec6_in1&vec6_in2&vec6_in3&vec6_in4&vec6_in5&vec6_in6&vec6_in7;

-- partial product generators instantiation
hh_A <= upper(HH);
hh_B <= lower(HH);
hh_pp: DW02_multp

126 Appendix A. Source Code

generic map (
a_width => a_width,
b_width => b_width,
out_width => multp_width)

port map (
a => hh_A,
b => hh_B,
tc => TC_hh,
out0 => hh_sum,
out1 => hh_carry);

fix_inputs_hl: process (HL, op)
variable signB : std_logic;

begin -- process fix_inputs_hl
signB := HL(half_width-1);
if op(MFI) = ’1’ then

signB := ’0’;
end if;
hl_A <= HL(width-1)&upper(HL);
hl_B <= signB&lower(HL);

end process fix_inputs_hl;

hl_pp: DW02_multp
generic map (

a_width => a_width+1,
b_width => b_width+1,
out_width => multp_width+2)

port map (
a => hl_A,
b => hl_B,
tc => TC_hl,
out0 => hl_sum,
out1 => hl_carry);

fix_inputs_lh: process (LH, op)
variable signA : std_logic;

begin -- process fix_inputs_hl
signA := LH(width-1);
if op(MFI) = ’1’ then

signA := ’0’;
end if;
lh_A <= signA&upper(LH);
lh_B <= LH(half_width-1)&lower(LH);

end process fix_inputs_lh;

lh_pp: DW02_multp
generic map (

a_width => a_width+1,
b_width => b_width+1,
out_width => multp_width+2)

port map (
a => lh_A,
b => lh_B,
tc => TC_lh,
out0 => lh_sum,
out1 => lh_carry);

ll_B <= lower(LL);
ll_A <= upper(LL);
ll_pp: DW02_multp

generic map (
a_width => a_width,
b_width => b_width,
out_width => multp_width)

port map (
a => ll_A,
b => ll_B,
tc => TC_ll,
out0 => ll_sum,
out1 => ll_carry);

end structural;

-- configure simulation models for the dware components
-- pragma translate_off
library DW02;
configuration sim_models of design is

for structural
for hh_pp, hl_pp, lh_pp, ll_pp : DW02_multp

use configuration DW02.DW02_multp_cfg_sim;
end for;

end for;
end sim_models;

A.3 Experiment 3: Multi-datatype MAC unit (MD-MAC) 127

-- pragma translate_on

architecture split of design is
-- parameters for the multp trees
constant a_width, b_width : integer := half_width;
constant multp_width : integer := a_width+b_width+2;
signal hh_sum, hh_carry : std_logic_vector(multp_width-1 downto 0);
signal hl_sum, hl_carry : std_logic_vector(multp_width-1 downto 0);
signal lh_sum, lh_carry : std_logic_vector(multp_width-1 downto 0);
signal ll_sum, ll_carry, ll_carry_inv, ll_sum_inv : std_logic_vector(multp_width-1 downto 0);
signal TC_hh, TC_hl, TC_lh, TC_ll : std_logic;
signal hh_A, hh_B, ll_A, ll_B : std_logic_vector(half_width-1 downto 0);
signal hl_A, hl_B, lh_A, lh_B : std_logic_vector(half_width-1 downto 0);
attribute implementation : string;
attribute implementation of hh_pp, hl_pp, lh_pp, ll_pp : label is "nbw";
-- parameters for the vector trees
constant vec4 : integer := 4;
constant vec6 : integer := 8;
signal vec4_in : std_logic_vector(vec4*(width+3)-1 downto 0);
signal vec4_in0, vec4_in1 : std_logic_vector(width+2 downto 0);
signal vec4_out0, vec4_out1 : std_logic_vector(width+2 downto 0);
signal vec6_in : std_logic_vector(vec4*(34)-1 downto 0);
signal vec6_out0, vec6_out1 : std_logic_vector(33 downto 0);
signal hh_sum_ext, hh_carry_ext : std_logic_vector(width+2 downto 0);
signal ll_sum_ext, ll_carry_ext : std_logic_vector(width+2 downto 0);
signal ext_accum : std_logic_vector(width+2 downto 0);
-- parameters for the cp adders for the vec trees
signal vec4_res : std_logic_vector(width+3 downto 0);
signal vec6_res : std_logic_vector(33 downto 0);
signal vec4_CI : std_logic;
signal MPF_high : std_logic_vector(width+1 downto 0);
-- parameters for the steering logic
signal MSF_res, MPF_res, MCX_res : std_logic_vector(width-1 downto 0);
signal MHI_res : std_logic_vector(width-1 downto 0);
-- parameters for the accumulator
attribute sync_set_reset_local of accumulator : label is "accum_en" ;
signal accum_en : std_logic;
signal acc_res : std_logic_vector(width+3 downto 0);
-- parameters for the overflow logic
signal MHI_ovf_flag : std_logic;
signal overflow_flags : std_logic_vector(inst_count-1 downto 0);
begin -- structural

-- signed number selector
TC_hh <= ’1’;
TC_hl <= ’1’;
TC_lh <= ’1’;
TC_ll <= not op(MFI);

-- overflow control
MHI_ovf_flag <= ((not vec4_res(31)) and det_one(vec4_res(30 downto 15)))or

((vec4_res(31)) and det_zero(vec4_res(30 downto 15)));

overflow_control: process(op, vec4_res, vec6_res, MPF_high, MHI_ovf_flag, ll_A, ll_B, acc_res)
variable ovf_vec : std_logic_vector(inst_count-1 downto 0);
variable MPF_ovf_h, MPF_ovf_l, MCX_ovf_re, MCX_ovf_im : std_logic;
variable MAC_ovf_flag, ACC_ovf_flag, SA, SB : std_logic;

begin -- process overflow_control
ovf_vec := (others => ’0’);
MPF_ovf_l := (vec4_res(31) xor vec4_res(30))or

(vec4_res(31) xor vec4_res(32))or
(vec4_res(31) xor vec4_res(33))or
(vec4_res(31) xor vec4_res(34))or
(vec4_res(31) xor vec4_res(35));

MPF_ovf_h := (MPF_high(31)xor MPF_high(30))or
(MPF_high(31)xor MPF_high(32))or
(MPF_high(31)xor MPF_high(33));

MCX_ovf_re := (vec4_res(32)xor vec4_res(31))or
(vec4_res(32)xor vec4_res(30))or
(vec4_res(32)xor vec4_res(33))or
(vec4_res(32)xor vec4_res(34))or
(vec4_res(32)xor vec4_res(35));

MCX_ovf_im := (vec6_res(32)xor vec6_res(31))or
(vec6_res(32)xor vec6_res(30))or
(vec6_res(32)xor vec6_res(33));

ovf_vec(MSF) := op(MSF) and MPF_ovf_l;
ovf_vec(MPF) := op(MPF) and (MPF_ovf_h or MPF_ovf_l);
ovf_vec(MCX) := op(MCX) and (MCX_ovf_re or MCX_ovf_im);
ovf_vec(MHI) := op(MHI) and MHI_ovf_flag;
ovf_vec(MFI) := ’0’;
SA := ll_A(half_width-1)xor ll_B(half_width-1);
SB := acc_res(width+1);
MAC_ovf_flag := (SA xnor SB) and (SA xor vec4_res(34));

128 Appendix A. Source Code

-- to be fixed
ACC_ovf_flag := (vec4_res(31)xor vec4_res(32))or

(vec4_res(31)xor vec4_res(33))or
(vec4_res(31)xor vec4_res(34)); -- is it correct???

ovf_vec(MAC) := op(MAC) and MAC_ovf_flag;
ovf_vec(MCC) := ’0’;
ovf_vec(ACC) := op(ACC) and ACC_ovf_flag;
overflow_flags <= ovf_vec;

end process overflow_control;
-- connect overflow flag to output;
ovf <= det_one(overflow_flags);

-- accumulator
accum_en <= op(MAC)or op(ACC) or op(MCC);
accumulator: process (clk, rst)
begin -- process accumulator

if rst = ’0’ then -- asynchronous reset (active low)
acc_res <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
if accum_en = ’1’ then

acc_res <= vec4_res;
end if;

end if;
end process accumulator;

-- create results
MHI_res <= conv_std_logic_vector(0,16)&vec4_res(31)&vec4_res(half_width-2 downto 0);
MSF_res <= conv_std_logic_vector(0,16)&

vec4_res(31)&vec4_res(width-3 downto half_width-1);
MPF_res <= MPF_high(31)&MPF_high(width-3 downto half_width-1)

&vec4_res(31)&vec4_res(width-3 downto half_width-1);
MCX_res <= vec4_res(width)&vec4_res(width-3 downto half_width-1)

&vec6_res(width)&vec6_res(width-3 downto half_width-1);
accum <= acc_res(width+1)&acc_res(width-2 downto 0);

-- steering output multiplier
output_mux: process(op, MSF_res, MPF_res, MCX_res, MHI_res)

variable MSF_mux, MPF_mux, MCX_mux : std_logic_vector(width-1 downto 0);
variable MHI_mux : std_logic_vector(width-1 downto 0);

begin -- process output_mux
for i in width-1 downto 0 loop

MSF_mux(i) := MSF_res(i)and op(MSF);
MPF_mux(i) := MPF_res(i)and op(MPF);
MCX_mux(i) := MCX_res(i)and op(MCX);
MHI_mux(i) := MHI_res(i)and op(MHI);

end loop; -- i
Z <= ((MSF_mux or MPF_mux)or (MCX_mux or MHI_mux));

end process output_mux;

-- adder for the high part of MPF
MPF_high_part_adder: process (hh_sum, hh_carry)

variable sum : signed(width+1 downto 0);
begin -- process MFI_high_cond_sum

sum := signed(hh_sum) + signed(hh_carry); -- pragma label MPF_high_add
MPF_high <= std_logic_vector(sum);

end process MPF_high_part_adder;
vec4_CI <= op(MCX);

-- propagate adder for vec4_tree
vec4_cpa: process (vec4_out0, vec4_out1, vec4_CI)
constant r0 : resource := 0;
attribute map_to_module of r0 : constant is "DW01_add";
attribute implementation of r0 : constant is "bk";
attribute ops of r0 : constant is "cpa4";

variable vec4_CI_v : signed(width+3 downto 0);
variable vec4_res_i : signed(width+3 downto 0);
variable op1, op2 : std_logic_vector(width+3 downto 0);

begin -- process vec4_cpa
vec4_CI_v := (others => ’0’);
vec4_CI_v(0) := vec4_CI;
op1 := (not vec4_out0(width+2))&vec4_out0;
op2 := ’1’&vec4_out1;
vec4_res_i := vec4_CI_v + signed(op1) + signed(op2); -- pragma label cpa4
vec4_res <= std_logic_vector(vec4_res_i);

end process vec4_cpa;

vec6_cpa: process(vec6_out0, vec6_out1)
constant r1 : resource := 0;
attribute map_to_module of r1 : constant is "DW01_add";
attribute implementation of r1 : constant is "bk";
attribute ops of r1 : constant is "cpa6";

variable vec6_res_v : unsigned(33 downto 0);
begin -- process vec6_cpa

A.3 Experiment 3: Multi-datatype MAC unit (MD-MAC) 129

vec6_res_v := unsigned(vec6_out0)+unsigned(vec6_out1); -- pragma label cpa6
vec6_res <= std_logic_vector(vec6_res_v);

end process vec6_cpa;

-- instantiation of trees for the vector adders
vec4_tree: DW02_tree

generic map (
num_inputs => vec4,
input_width => width+3) -- extended intermediate range of accumulator

port map (
INPUT => vec4_in,
OUT0 => vec4_out0,
OUT1 => vec4_out1);

vec6_tree: DW02_tree
generic map (

num_inputs => vec4,
input_width => width+2)

port map (
INPUT => vec6_in,
OUT0 => vec6_out0,
OUT1 => vec6_out1);

-- input connections for the vec4_tree
hh_sum_ext <= sgn_ext(hh_sum, 1);
hh_carry_ext <= sgn_ext(hh_carry, 1);
invert_sum_carry: for i in ll_sum’range generate

ll_sum_inv(i) <= ll_sum(i)xor op(MCX);
ll_carry_inv(i) <= ll_carry(i)xor op(MCX);

end generate invert_sum_carry;
ll_sum_ext <= sgn_ext(ll_sum_inv, 1);
ll_carry_ext <= sgn_ext(ll_carry_inv, 1);
ext_accum <= acc_res(width+1)&acc_res(width+1 downto 0);
vec4_in <= vec4_in0&vec4_in1&ll_sum_ext&ll_carry_ext;

vec4_tree_inputs: process (hh_sum_ext, hh_carry_ext, ext_accum, op)
variable ctrl_in0, ctrl_in1, reset_in1 : std_logic;
variable vec4_in1_v : std_logic_vector(width+2 downto 0);

begin -- process vec4_tree_inputs
ctrl_in0 := op(MCX);
ctrl_in1 := op(MCX);
reset_in1 := not(op(MSF)or op(MPF)or op(MHI)or op(MFI)or op(MCC));
for i in hh_sum_ext’range loop

vec4_in0(i) <= hh_sum_ext(i)and (ctrl_in0);
end loop; -- i
case ctrl_in0 is

when ’0’ =>
vec4_in1_v := ext_accum;

when others =>
vec4_in1_v := hh_carry_ext(width+2 downto 1)&op(MCX);

end case;
for j in vec4_in1_v’range loop

vec4_in1(j) <= vec4_in1_v(j)and reset_in1;
end loop; -- j

end process vec4_tree_inputs;

-- input connections for the vec6_tree
vec6_in <= hl_sum&hl_carry&lh_sum&lh_carry;

-- partial product generators instantiation
hh_A <= upper(HH);
hh_B <= lower(HH);
hh_pp: DW02_multp

generic map (
a_width => a_width,
b_width => b_width,
out_width => multp_width)

port map (
a => hh_A,
b => hh_B,
tc => TC_hh,
out0 => hh_sum,
out1 => hh_carry);

hl_A <= upper(HL);
hl_B <= lower(HL);

hl_pp: DW02_multp
generic map (

a_width => a_width,
b_width => b_width,
out_width => multp_width)

port map (
a => hl_A,

130 Appendix A. Source Code

b => hl_B,
tc => TC_hl,
out0 => hl_sum,
out1 => hl_carry);

lh_A <= upper(LH);
lh_B <= lower(LH);

lh_pp: DW02_multp
generic map (

a_width => a_width,
b_width => b_width,
out_width => multp_width)

port map (
a => lh_A,
b => lh_B,
tc => TC_lh,
out0 => lh_sum,
out1 => lh_carry);

ll_B <= lower(LL);
ll_A <= upper(LL);
ll_pp: DW02_multp

generic map (
a_width => a_width,
b_width => b_width,
out_width => multp_width)

port map (
a => ll_A,
b => ll_B,
tc => TC_ll,
out0 => ll_sum,
out1 => ll_carry);

end split;

-- configure simulation models for the dware components
-- pragma translate_off
library DW02;
configuration sim_models of design is

for split
for hh_pp, hl_pp, lh_pp, ll_pp : DW02_multp

use configuration DW02.DW02_multp_cfg_sim;
end for;

end for;
end sim_models;
-- pragma translate_on

A.3.6 The multiplier for the SPLIT-MD-MAC design

-- Title : multiplier
-- Project : High power arithmetic unit to be power managed

-- File : mult.vhd
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/11/2002

-- Description :
-- A component insantiating a multiplier. Different architectures in the future
-- will accommodate different kind of mulipliers.

library ieee, SYNOPSYS;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use SYNOPSYS.attributes.all;
library WORK;
use WORK.design_utils.all;

entity mult is

port (
rst : in std_logic;
clk : in std_logic;
en : in std_logic;
op1 : in std_logic_vector(width-1 downto 0);
op2 : in std_logic_vector(width-1 downto 0);
res : out std_logic_vector(width-1 downto 0);
ovf : out std_logic);

end mult;

A.3 Experiment 3: Multi-datatype MAC unit (MD-MAC) 131

architecture structural of mult is
signal reg_A, reg_B : std_logic_vector(width-1 downto 0);
signal result64 : std_logic_vector(2*width-1 downto 0);
begin -- behavioral

mult32_iregs: process (clk, rst)
begin

if rst = ’0’ then -- asynchronous reset (active low)
reg_A <= (others => ’0’);
reg_B <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
if en = ’1’ then

reg_A <= op1;
reg_B <= op2;

end if;
end if;

end process mult32_iregs;

multiplication: process (reg_A, reg_B)
variable a, b : signed(width-1 downto 0);
variable c : signed(2*width-1 downto 0);

begin -- process addition
a := signed(reg_A);
b := signed(reg_B);
c := a*b;
result64 <= std_logic_vector(c);

end process multiplication;

res <= result64(63)&result64(width-2 downto 0);
ovf <= ((not result64(63)) and det_one(result64(62 downto width-1)))or

((result64(63)) and det_zero(result64(62 downto width-1)));

end structural;

A.3.7 The MD-MAC NCS design

-- Title : design_ncs_shared.vhdl
-- Project : A multi-datatype MAU unit

-- File : design_ncs_shared.vhdl
-- Author : Georgios Plakaris
-- Company : Computer Systems Engineering, DTU
-- Date : 12/02/2003

-- Description :
-- The processing unit of the core design. A clearly combinatorial circuit,
-- apart from some latches to gate control signals and the accumulator

library ieee, SYNOPSYS, DW01, DW02, DWARE, WORK;
use WORK.design_utils.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use SYNOPSYS.attributes.all;
use DWARE.DWpackages.all;
use DW01.DW01_components.all;
use DW02.DW02_components.all;

entity design_ncs_shared is

port (
rst : in std_logic;
clk : in std_logic;
op : in std_logic_vector(inst_count-1 downto 0);
HH, HL : in std_logic_vector(width-1 downto 0);
LH, LL : in std_logic_vector(width-1 downto 0);
Z : out std_logic_vector(width-1 downto 0);
accum : out std_logic_vector(width-1 downto 0); -- 34bit accumulator
ovf : out std_logic);

end design_ncs_shared;

architecture structural of design_ncs_shared is
-- parameters for the multp trees
constant a_width, b_width : integer := half_width;
signal hh_prod, ll_prod : std_logic_vector(width-1 downto 0);
signal hl_prod, lh_prod : std_logic_vector(width+1 downto 0);
signal ll_prod_inv : std_logic_vector(width-1 downto 0);
signal TC_hh, TC_hl, TC_lh, TC_ll : std_logic;

132 Appendix A. Source Code

signal hh_A, hh_B, ll_A, ll_B : std_logic_vector(half_width-1 downto 0);
signal hl_A, hl_B, lh_A, lh_B : std_logic_vector(half_width downto 0);
attribute implementation : string;
attribute implementation of hh_mp, hl_mp, lh_mp, ll_mp : label is "nbw";
constant vec4 : integer := 4;
signal add4_in0, add4_in1 : std_logic_vector(width+2 downto 0);
signal add6_in : std_logic_vector(vec4*(50)-1 downto 0);
signal add6_out0, add6_out1 : std_logic_vector(49 downto 0);
signal add6_in0, add6_in1 : std_logic_vector(49 downto 0);
signal tmp_add6_in0 : std_logic_vector(half_width-1 downto 0);
signal tmp_add6_in3 : std_logic_vector(47 downto 0);
signal add6_in2, add6_in3 : std_logic_vector(49 downto 0);
signal ext_accum : std_logic_vector(width+2 downto 0);
-- parameters for the cp adders for the vec trees
signal add4_res : std_logic_vector(width+2 downto 0);
signal add6_res : std_logic_vector(50 downto 0);
signal add4_CI : std_logic;
-- parameters for the steering logic
signal MSF_res, MPF_res, MCX_res : std_logic_vector(width-1 downto 0);
signal MHI_res, MFI_res : std_logic_vector(width-1 downto 0);
-- parameters for the accumulator
attribute sync_set_reset_local of accumulator : label is "accum_en" ;
signal accum_en : std_logic;
signal acc_res : std_logic_vector(width+1 downto 0);
-- parameters for the overflow logic
signal MHI_ovf_flag, MFI_ovf_flag : std_logic;
signal overflow_flags : std_logic_vector(inst_count-1 downto 0);
begin -- structural

-- signed number selector
TC_hh <= ’1’;
TC_hl <= ’1’;
TC_lh <= ’1’;
TC_ll <= not op(MFI);

-- overflow control
MHI_ovf_flag <= ((not ll_prod(31)) and det_one(ll_prod(30 downto 15)))or

((ll_prod(31)) and det_zero(ll_prod(30 downto 15)));

MFI_ovf_flag <= ((not add6_res(47)) and det_one(add6_res(46 downto half_width-2)))or
((add6_res(47)) and det_zero(add6_res(46 downto half_width-2)));

overflow_control: process(op, add4_res, add6_res, hh_prod, ll_prod, MHI_ovf_flag, MFI_ovf_flag, ll_A, ll_B, acc_res)
variable ovf_vec : std_logic_vector(inst_count-1 downto 0);
variable MPF_ovf_h, MPF_ovf_l, MCX_ovf_re, MCX_ovf_im : std_logic;
variable MAC_ovf_flag, ACC_ovf_flag, SA, SB : std_logic;

begin -- process overflow_control
ovf_vec := (others => ’0’);
MPF_ovf_l := (ll_prod(31) xor ll_prod(30));
MPF_ovf_h := (hh_prod(31) xor hh_prod(30));
MCX_ovf_re := (add4_res(32)xor add4_res(31))or

(add4_res(32)xor add4_res(30))or
(add4_res(32)xor add4_res(33))or
(add4_res(32)xor add4_res(34));

MCX_ovf_im := (add6_res(32)xor add6_res(31))or
(add6_res(32)xor add6_res(30))or
(add6_res(32)xor add6_res(33))or
(add6_res(32)xor add6_res(34));

ovf_vec(MSF) := op(MSF) and MPF_ovf_l;
ovf_vec(MPF) := op(MPF) and (MPF_ovf_h or MPF_ovf_l);
ovf_vec(MCX) := op(MCX) and (MCX_ovf_re or MCX_ovf_im);
ovf_vec(MHI) := op(MHI) and MHI_ovf_flag;
ovf_vec(MFI) := op(MFI) and MFI_ovf_flag;
SA := ll_A(half_width-1)xor ll_B(half_width-1);
SB := acc_res(width+1);
MAC_ovf_flag := (SA xnor SB) and (SA xor add4_res(34));
-- to be fixed
ACC_ovf_flag := (add4_res(31)xor add4_res(32))or

(add4_res(31)xor add4_res(33))or
(add4_res(31)xor add4_res(34));

ovf_vec(MAC) := op(MAC) and MAC_ovf_flag;
ovf_vec(MCC) := ’0’;
ovf_vec(ACC) := op(ACC) and ACC_ovf_flag;
overflow_flags <= ovf_vec;

end process overflow_control;
-- connect overflow flag to output;
ovf <= det_one(overflow_flags);

-- accumulator
accum_en <= op(MAC)or op(ACC) or op(MCC);
accumulator: process (clk, rst)
begin -- process accumulator

if rst = ’0’ then -- asynchronous reset (active low)
acc_res <= (others => ’0’);

A.3 Experiment 3: Multi-datatype MAC unit (MD-MAC) 133

elsif clk’event and clk = ’1’ then -- rising clock edge
if accum_en = ’1’ then

acc_res <= add4_res(33 downto 0);
end if;

end if;
end process accumulator;

-- create results
MHI_res <= conv_std_logic_vector(0,16)&ll_prod(31)&ll_prod(half_width-2 downto 0);
MFI_res <= add6_res(47)&add6_res(half_width-2 downto 0)&ll_prod(half_width-1 downto 0);
MSF_res <= conv_std_logic_vector(0,16)&

ll_prod(31)&ll_prod(width-3 downto half_width-1);
MPF_res <= hh_prod(31)&hh_prod(width-3 downto half_width-1)

&ll_prod(31)&ll_prod(width-3 downto half_width-1);
MCX_res <= add4_res(width)&add4_res(width-3 downto half_width-1)

&add6_res(width)&add6_res(width-3 downto half_width-1);
accum <= acc_res(width+1)&acc_res(width-2 downto 0);
-- steering output multiplier
output_mux: process(op, MSF_res, MPF_res, MCX_res, MHI_res, MFI_res)

variable MSF_mux, MPF_mux, MCX_mux : std_logic_vector(width-1 downto 0);
variable MHI_mux, MFI_mux : std_logic_vector(width-1 downto 0);

begin -- process output_mux
for i in width-1 downto 0 loop

MSF_mux(i) := MSF_res(i)and op(MSF);
MPF_mux(i) := MPF_res(i)and op(MPF);
MCX_mux(i) := MCX_res(i)and op(MCX);
MHI_mux(i) := MHI_res(i)and op(MHI);
MFI_mux(i) := MFI_res(i)and op(MFI);

end loop; -- i
Z <= MCX_mux or ((MSF_mux or MPF_mux)or (MFI_mux or MHI_mux));

end process output_mux;

add4_CI <= op(MCX);
-- propagate adder for vec4_tree
add4_cpa: process (add4_in1, ll_prod_inv, add4_CI)
constant r0 : resource := 0;
attribute map_to_module of r0 : constant is "DW01_add";
attribute implementation of r0 : constant is "bk";
attribute ops of r0 : constant is "cpa4";

variable add4_CI_v : signed(width+2 downto 0);
variable add4_res_i : signed(width+2 downto 0);

begin -- process vec4_cpa
add4_CI_v := (others => ’0’);
add4_CI_v(0) := add4_CI;
add4_res_i := add4_CI_v + signed(add4_in1) + signed(ll_prod_inv); -- pragma label cpa4
add4_res <= std_logic_vector(add4_res_i);

end process add4_cpa;

vec6_cpa: process(add6_out0, add6_out1)
constant r1 : resource := 0;
attribute map_to_module of r1 : constant is "DW01_add";
attribute implementation of r1 : constant is "bk";
attribute ops of r1 : constant is "cpa6";

variable add6_res_v : unsigned(50 downto 0);
variable op1, op2 : std_logic_vector(50 downto 0);

begin -- process vec6_cpa
op1 := (not add6_out0(49))&add6_out0;
op2 := ’1’&add6_out1;
add6_res_v := unsigned(op1)+unsigned(op2); -- pragma label cpa6
add6_res <= std_logic_vector(add6_res_v);

end process vec6_cpa;

vec6_tree: DW02_tree
generic map (

num_inputs => vec4,
input_width => 50)

port map (
INPUT => add6_in,
OUT0 => add6_out0,
OUT1 => add6_out1);

-- input connections for the add4_cpa
invert_ll_prod: for i in ll_prod’range generate

ll_prod_inv(i) <= ll_prod(i)xor op(MCX);
end generate invert_ll_prod;
ext_accum <= acc_res(width+1)&acc_res(width+1 downto 0);

add4_inputs: process (hh_prod, ext_accum, op)
variable ctrl_in1, reset_in1 : std_logic;
variable add4_in1_v : std_logic_vector(width+2 downto 0);

begin -- process vec4_tree_inputs
ctrl_in1 := op(MCX);
reset_in1 := not(op(MSF)or op(MPF)or op(MHI)or op(MFI)or op(MCC));

134 Appendix A. Source Code

case ctrl_in1 is
when ’0’ =>

add4_in1_v := ext_accum;
when others =>

add4_in1_v := sgn_ext(hh_prod, 3);
end case;
for j in add4_in1_v’range loop

add4_in1(j) <= add4_in1_v(j)and reset_in1;
end loop; -- j

end process add4_inputs;

-- input connections for the add6_tree
tmp_add6_in0 <= ll_prod(width-1 downto half_width);
tmp_add6_in3 <= hh_prod(width-1 downto 0)&conv_std_logic_vector(0,16);
vec6_tree_inputs: process (tmp_add6_in0, tmp_add6_in3)

variable ctrl_vec6 : std_logic;
variable add6_in0_i : std_logic_vector(49 downto 0);
variable add6_in3_i : std_logic_vector(49 downto 0);

begin -- process vec6_tree_inputs
ctrl_vec6 := op(MFI);
add6_in0_i := sgn_ext(tmp_add6_in0,34);
add6_in3_i := sgn_ext(tmp_add6_in3,2);
for j in add6_in0_i’range loop

add6_in0(j) <= add6_in0_i(j)and ctrl_vec6;
add6_in3(j) <= add6_in3_i(j)and ctrl_vec6;

end loop; -- j
end process vec6_tree_inputs;
add6_in1 <= sgn_ext(hl_prod,16);
add6_in2 <= sgn_ext(lh_prod,16);
add6_in <= add6_in0&add6_in1&add6_in2&add6_in3;

--product generators instantiation
hh_A <= upper(HH);
hh_B <= lower(HH);
hh_mp : DW02_mult

generic map (
a_width => a_width,
b_width => b_width)

port map (
a => hh_A,
b => hh_B,
tc => TC_hh,
product => hh_prod);

fix_inputs_hl: process (HL, op)
variable signB : std_logic;

begin -- process fix_inputs_hl
signB := HL(half_width-1);
if op(MFI) = ’1’ then

signB := ’0’;
end if;
hl_A <= HL(width-1)&upper(HL);
hl_B <= signB&lower(HL);

end process fix_inputs_hl;

hl_mp : DW02_mult
generic map (

a_width => a_width+1,
b_width => b_width+1)

port map (
a => hl_A,
b => hl_B,
tc => TC_hl,
product => hl_prod);

fix_inputs_lh: process (LH, op)
variable signA : std_logic;

begin -- process fix_inputs_hl
signA := LH(width-1);
if op(MFI) = ’1’ then

signA := ’0’;
end if;
lh_A <= signA&upper(LH);
lh_B <= LH(half_width-1)&lower(LH);

end process fix_inputs_lh;

lh_mp : DW02_mult
generic map (

a_width => a_width+1,
b_width => b_width+1)

port map (
a => lh_A,
b => lh_B,

A.3 Experiment 3: Multi-datatype MAC unit (MD-MAC) 135

tc => TC_lh,
product => lh_prod);

ll_B <= lower(LL);
ll_A <= upper(LL);
ll_mp: DW02_mult

generic map (
a_width => a_width,
b_width => b_width)

port map (
a => ll_A,
b => ll_B,
tc => TC_ll,
product => ll_prod);

end structural;

-- pragma translate_off
library DW02;
configuration sim_models of design_ncs_shared is

for structural
for hh_mp, hl_mp, lh_mp, ll_mp : DW02_mult

use configuration DW02.DW02_mult_cfg_sim;
end for;

end for;
end sim_models;
-- pragma translate_on

