
Real-time Volumetric Deformable
Models for Surgery Simulation using
Finite Elements and Condensation

Morten Bro-Nielsen1 and Stephane Cotin2

1 Dept. of Mathematical Modelling
Technical University of Denmark, Bldg. 321

DK-2800, Lyngby, Denmark
e-mail: bro@imm.dtu.dk WWW http://www.imm.dtu.dk/~bro

2 INRIA, Epidaure project, Sophia Antipolis, France

Abstract

This paper discusses the application of 3D solid volumetric Finite Element models to surgery
simulation. In particular it presents three new approaches to the problem of achieving real-time
performance for these models. The simulation system we have developed is described and we
demonstrate real-time deformation using the methods developed in the paper.

Keywords: Virtual Surgery, Real-Time Deformation, Solid Volumetric Deformable Mod-
els, Virtual Reality, Finite Element Models.

1 Introduction

Speed is overriding concern in Surgery Simulation and it is only in the last few years that real-time surgery
simulation has become practically possible.

The big problem in surgery simulation is modeling the deformation of solid volumetric objects, which
often can have very complex forms, in real-time, ie. 15-20 frames/second. Since human organs and tissue
have very complex elastic behaviour it has only been possible to model these using very simplistic models.

Almost all the attempts have used surface models as the basic modeling method [6] and realistic tissue
models have only been applied in very specialized simulators such as the eye-surgery simulator of Sagar et
al. [12].

The problem with surface models, besides the obvious non-solid behaviour, is the lack of an de�ned
interior when surgical procedures are modeled. The surgeon cannot cut a virtual organ modeled using a
surface model since there is nothing inside the surface. Some simple cuts can be modeled, such as cutting
an artery or other thin structures, but general surgical incisions are impossible.

Attention is therefore turning towards solid volumetric models which model the complete 3D volumetric
behaviour of the object [3, 5, 8] Unfortunately the complexity of the models rises dramaticly when volumetric
models are used and real-time performance is di�cult to achieve.

Another issue is the way elastic behaviour is simulated. Simulation can be performed using global
parametric models [6, 16] or local mesh based models [3, 5, 8, 14, 15] (eg. Finite Element models). We
believe the need to accommodate surgical incisions demand mesh based models. Only simplistic cuts can
be achieved with global parametric models.

We would like to emphasize that we believe all the models mentioned above will �nd some use in surgery
simulation, even in the same application.

This paper discusses real-time simulation of deformable objects using 3D solid volumetric Finite Element
(FE) models which result in linear matrix systems. We present the theory behind 3D FE models of linear
elasticity and then discuss various aspects of these models. In particular we present three new improvements
over previous applications of FE.

1

The �rst improvement is called Condensation and in practice it allows us to compress the linear matrix
system resulting from the volumetric FE model to a system with the same complexity as a FE surface

model of the same object. Although it has the same complexity as the surface model it still models the
volumetric behaviour of the object.

The second improvement concerns the way the linear matrix system is used for simulation. In contrast
to the normal approach and against the advice of �nite element people we explicitly invert the system
matrix and use matrix vector multiplication with this matrix to achieve a very low calculation time.

The third improvement is what we call Selective Matrix Vector Multiplication where we exploit the
sparse structure of the force vector.

In addition we describe a simulation system we have developed for surgery simulation. With this system
we are able to simulate solid volumetric deformation of relatively large objects with video frame-rates.

2 Theory

In this section we describe the model which we use to simulate elastic deformation of a volumetric solid in
real-time. To develop the model we formulate a number of requirements that the model should ful�l:

1. Speed is everything. Deformation should be calculated in the smallest amount of time possible.

2. We do not care about the time taken for one-time pre-calculation such as setting up equations,
inverting matrices etc. If something takes 24 hours extra in the pre-calculation stage, but will save
0.01 second in the simulation stage, we should do it.

3. The elastic model should be visually convincing. The model may be physically incorrect if it looks
right.

4. In the long run we want to be able to make cuts in the model to accommodate surgical procedures.
This involves changing the topology of the model and most importantly requires models that have
de�ned interiors, ie. volumetric models.

In particular the last requirement lead us to select mesh-based 3D Finite Element (FE) models. The
alternative would be parametric models such as [6]. But these models does not provide the needed freedom
to perform topology changes to allow cutting. Although some of the models can handle simple cuts we aim
towards being able to make completely general cuts in the models. We are convinced that only mesh-based
models will allow this.

To meet the �rst two requirements we choose the linear elastic deformation model which is also known
as Hooke's law. Using linear elasticity as the basic model involves a number of assumptions regarding the
physical material that is modeled. Most importantly linear elastic models are only valid for very small
deformations and strains. They are typically correct for such rigid structures as metal beams, buildings
etc. Although they are used extensively in modeling, the visual result of large deformation modeling using
linear elasticity is seldom satisfying.

But when used with FE these models lead to linear matrix systems which are easy to solve and fast.
There is, therefore, a trade-of between the speed of the system and the visual deformation result.

Linear elastic models are used here because modeling general elastic volumetric deformation using FE
is only just possible with todays computers. With faster computers in the future we expect more realistic
models, such as incompressible Mooney-Rivlin material models [4], to be used.

2.1 Linear elastic material model

We de�ne the elastic solid
 as the positions x = [x y z]T where x 2
 (see �gure 1). The displacement
of particle x is de�ned as u(x) = [u(x) v(x) w(x)]T so that the particle x is moved by the deformation to

2

x + u

x

u

0

Γ

Ω

1Γ

Γ

Figure 1: Solid elastic object.

x+u. The boundary � = �0 [�1, �0 \ �1 = � where �0 has �xed displacements u(x) = u0(x) and forces
f(x) are applied to �1.

The strain energy of a linear elastic solid
 is de�ned as [10]:

E(u) =
1

2

Z Z Z

�T�dx (1)

where the strain vector � = [�x �y �z
xy
xz
yz]
T
consists of:

�x =
�u

�x
�y =

�u

�y
�z =

�u

�z

xy =
�u

�y
+

�v

�x

xz =

�u

�z
+

�w

�x

yz =

�v

�z
+

�w

�y
(2)

We can rewrite this as � = Bu where

B =

2
666666664

�

�x
0 0

0 �

�y
0

0 0 �

�z
�

�y

�

�x
0

�

�z
0 �

�x

0 �

�z

�

�y

3
777777775

(3)

The stress vector � is related to the strain vector through Hooke's law by � = D�, where D is a symmetric
6� 6 material sti�ness matrix. For a homogenous and isotropic material this matrix is de�ned by the two
lam�e material constants � and �:

D =

2
66666664

�+ 2� � � 0 0 0
� �+ 2� � 0 0 0
� � �+ 2� 0 0 0
0 0 0 � 0 0
0 0 0 0 � 0
0 0 0 0 0 �

3
77777775

(4)

Using these relations we can now rewrite the strain energy and add work done by external forces f to
yield the potential energy function:

E(u) =
1

2

Z Z Z

uTB
T
DBu dx�

Z Z
�1

f
T
u da (5)

where �1 is the part of the surface � = �0 [�1 where external forces are applied. Fixed displacements
u(x; y; z) = u0(x; y; z) are applied to �0.

3

. . .

. . .
. . .

.

. . .

Ω

Ω

Ω

Ω
Ω

Ω

2

1

3

4
N-1

N
εΩ

3

4

2

1

e

e

e

e

P

P

P

P

Figure 2: Left: Discretization of the domain into �nite elements (2D illustration) Right: Tetrahedral
�nite element.

2.2 Discretization using FE model

We assume that the domain
 of the volumetric solid has been discretized into a number of �nite elements

e in the form of tetrahedrons and nodes Pq de�ned by xq = [xq yq zq]

T (see �gure 2). The deformation at
each node is speci�ed by the deformation vector uq = [uq vq wq]T . In addition we also stack these vectors
into two compound vectors:

x
�
=
h
xT1 xT2 : : : xTn

iT
u
�
=
h
uT
1 uT

2 : : : uTn

iT
(6)

The nodes of each �nite element
e are denoted P e
i , where i is the local number of the node which is

unrelated to the global numbering of the nodes.
As �nite elements we use four-node tetrahedrons with linear interpolation of the displacement �eld

between the nodes:

u(x) =
4X

i=1

N e
i (x)u

e
i (7)

The basis functions N e
i (x) are de�ned as the natural coordinates Li of the tetrahedron:

N e
i (x) = Li =

1

6V e
(aei + beix+ ceiy + deiz); i = 1; 2; 3; 4 (8)

The natural coordinates, the volume V e and the coe�cients aei ; b
e
i ; c

e
i ; d

e
i are de�ned in appendix A.

We �nd the solution to the deformation problem when the potential energy of the system assumes its
minimum value. This happens when the �rst variation of the functional E vanishes, ie. when �E(u) = 0.

Using the fact that:

�u

�x
=

4X
i=1

�N e
i (x)

�x
ue
i

�u

�y
=

4X
i=1

�N e
i (x)

�y
ue
i

�u

�z
=

4X
i=1

�N e
i (x)

�z
ue
i (9)

where
�N e

i (x)=�x = bei �N e
i (x)=�y = cei �N e

i (x)=�z = dei (10)

we can rewrite the equilibrium equation for each element as

0 =

Z Z Z

e

B
eT
DB

e
u
�
edx� f

�

e (11)

where f
�

e is a discretized force vector for the element and Be is a constant matrix given in appendix A 1.

1u
�
e is 12� 1, f

�

e
is 12� 1 and Be is 6� 12

4

Because everything inside the integration sign is constant the equilibrium equation for the �nite element
becomes a linear matrix equation Ke

u
�
e = f

�

e, where Ke = BeT
DB

eV e is called the sti�ness matrix 2 and
V e is the volume of the tetrahedron (see appendix A).

The only remaining step is assembly of the global sti�ness matrix from the element sti�ness matrices:

K =
X
e

t(Ke) (12)

where t() is a transfer function from element node numbers to global node numbers. The result is a large
sparse linear system Ku

�
= f

�
.

2.3 Condensation

The linear matrix systemKu
�
= f

�
models the behaviour of the solid object. This includes both surface nodes

as well as the internal nodes of the model. But for simulation purposes we are usually only interested in the
behaviour of the surface nodes since these are the only visible nodes. We, therefore, use condensation [11]
to remove the internal nodes from the matrix equation.

The matrix equation for the condensed problem has the same size as would result from a FE surface

model. But, it is important to understand that it will show exactly the same behaviour for the surface
nodes as the original solid volumetric system.

Without loss of generality, let us assume that the nodes of the FE model have been ordered with the
surface nodes �rst, followed by the internal nodes. Using this ordering we can rewrite the linear system as
a block matrix system (surface / internal):"

Kss Ksi

Kis Kii

"
u
�s
u
� i

#
=

"
f
�sf
� i

#
(13)

From this block matrix system we can create a new linear matrix system K
�

ssu�s
= f

�

�

s
which only involves

the variables of the surface nodes:

K�

ss =Kss �KsiK
�1

ii Kis f
�

�

s
= f

�s
�KsiK

�1

ii f
� i

(14)

The displacement of the internal nodes can still be calculated using u
�i

=K�1

ii (f
� i
�Kisu�s

) Notice, that if
no forces are applied to internal nodes, f

�

�

s
= f

�s
.

Generally the new sti�ness matrix will be dense compared to the sparse structure of the original system.
But, since we intend to solve the system by inverting the sti�ness matrix in the pre-calculation stage, this
is not important.

2.4 Simulation

In this section we will discuss the di�erent simulation methods available to us. We have two linear matrix
equations. One with all the nodes of the FE model and a sparse sti�ness matrix. And a reduced version
with only the surface nodes and a dense sti�ness matrix.

2.4.1 Solving linear matrix system

Implicit solution of a linear system is often performed using iterated algorithms such as the Conjugate
Gradient (CG) algorithm [1]. In principle this algorithm performs a sparse matrix vector multiplication,
three vector updates and two inner products in an iterative loop. The complexity can therefore roughly be
seen as n� tMv+3v+2vv where tMv+3v+2vv is the time required for the operations in one iteration and n is the

2Ke is 12� 12

5

number of iterations. n is seldom less than 5-10 and cannot in practice be predicted. Especially for a system
where the response must come at speci�c frame rates, unpredictable solution time is very unfortunate.

The alternative that we use here is explicitly inverting the sti�ness matrix. Normally this is never done
when linear systems resulting from FE models are solved. The precision of the result su�ers from numerical
errors and the amount of storage needed to store a dense inverted sti�ness matrix is huge compared to the
sparse sti�ness matrix itself. But, as we stated in the beginning, we are not concerned about precision or
memory size, only speed.

Although the time for inversion is considerable, the solution time is very small since it only involves a
dense matrix vector multiplication (u

�
= K

�1
f
�
). We have performed numerical tests using the Meschach

library [13] to solve a linear system generated by a FE model. These experiments included both explicit
inversion, CG with and without preconditioner, Gauss elimination and several factorization techniques such
as QR and Cholesky. When the pre-calculation time was ignored, solution by matrix vector multiplication
with the inverted sti�ness matrix was at least 10 times faster than any other method. We have not stated the
actual numerical results here, since the implementations of the di�erent algorithms in the Mescach library
have not been properly optimized. The timings could therefore be di�erent for other implementations
although the general result would be the same.

2.4.2 Dynamic system

In order to use a physically correct model of the solid we add mass and damping to the model. We do this
by formulating the Lagrangian equation of motion for the object:

M �u
�
+C _u

�
+Ku

�
= f

�
(15)

where M is the mass, C is the damping and K is the sti�ness matrix of the system. K is calculated as
shown above. Assuming lumped masses at the nodes we use diagonal damping and mass matrices:

M
e
ii =

1

3
�V e C

e
ii = �M e

ii (16)

where � is the mass-density and � is a scaling factor.
The global element matrices are assembled into global matrices. Since the mass and damping matrices

are diagonal they are also block diagonal. The Lagrangian equation of motion for the reduced system,
therefore, simply becomes:

M ss �u
�s

+Css _u
�s

+K�

ssu�s
= f

�

�

ss
(17)

Using �nite di�erence estimates in time we can write the Lagrangian equation for the full system as:

M

�t2
(u
�t+�t

� 2u
�t
+ u
�t��t

) +
C

2�t
(u
� t+�t

� u
� t��t

) +Ku
� t+�t

= f
�t+�t

(18)

or ~Ku
� t+�t

= ~f
� t+�t

where:

~K =
M

�t2
+
C

2�t
+K

~f
� t+�t

=
M

�t2
u
� t
� (

M

�t2
�
C

2�t
)u
� t��t

+ f
� t+�t

(19)

We leave it to the reader to formulate the same equations for the condensed system.

2.4.3 Static system and Selective Matrix Vector Multiplication

Generally the ~f
� t+�t

vector is a full vector because of the contribution from the previous displacement
vectors u

� t
and u

� t��t
. In contrast the original force vector f

�t+�t
can be a sparse vector in cases where

6

Figure 3: Voxel data from the visible human data set.

forces only are applied to a few surface nodes. Since this is often the case in simulation we were inspired to
develop an alternative simulation method which for sparse force vectors is considerably faster.

The cost of this simulation method is the loss of dynamics. The idea is to use the original static linear
system Ku

�
= f

�
(or the condensed version) instead of the Lagrangian dynamic system above and exploit

the sparse structure of the force vector.
Formally, solving the system using the inverted sti�ness matrix is performed using u

�
= K�1

f
�
. If only

a few positions of the force vector are non-zero, clearly standard matrix vector multiplication would involve
a large number of super
uous multiplications. We note that

u
�
=K�1

f
�
=
X
i

K
�1

�i f
� i

(20)

where K�1

�i is the i'th column vector of K�1 and f
� i

the i'th element of f
�
. Since the majority of the f

� i
are

zero, we restrict i to run through only the positions of f
�
for which f

� i
6= 0. If n of the N positions in f

�
are

non-zero this will reduce the complexity to o(n=N) times the time of a normal matrix vector multiplication.
We call this approach Selective Matrix Vector Multiplication (SMVM).

The SMVM method and the dynamic model converge for slow changes in forces applied to the solid
body.

3 Simulation system

We �rst summarize the theory of the last section and then present the simulation system that has been
developed for surgery simulation. In addition we also describe how we generate the FE mesh model of the
physical organ, limb etc.

3.1 Summary of simulation methods

In the previous theory section we have presented a number of ideas related to simulation using FE models.
In general two criterias separate the possible algorithms: Full FE model contra condensed FE model, and
dynamic simulation contra selective matrix vector multiplication (SMVM).

7

Dynamic simulation SMVM

Full FE model FD FS

Condensed FE model CD CS

The choice of algorithm depends on the requirements of the application. Whether one chooses dynamic
simulation or SMVM is a question of the speed requirement and size of the problem. If the problem can be
processed fast enough using dynamic simulation it would be the best choice.

The choice between the full FE model versus the condensed model is based on whether it is necessary to
modify the FE model during simulation or not, eg. to model a surgical cut in the model. If modi�cation is
necessary, the standard full system would probably be easier to modify, rather than the condensed system
which is one step further in re�nement. Without the need for modi�cation the condensed model should
clearly be used.

We have implemented the CS, CD and FS methods in our simulation system.

3.2 Mesh generation using Nuages and Mvox

In addition to a range of simple box-like structures we have used data from the Visible Human project [17]
to make a model of the lower leg.

Since the Visible Human data set is voxel-based (see �gure 3) it was necessary to generate a mesh model
of it. To do this, we �rst used the Mvox software [2] to manually draw contours on the boundary of the
skin and bone in the voxel data (see �gure 4). We then applied the Nuages software [7] to create a 3D
tetrahedral mesh model of the leg. The result was the FE mesh model shown in �gure 4. This model was
used in the simulation system described in the next section.

3.3 SGI Performer parallel pipe-lining system

The simulation system has been implemented on an Silicon Graphics ONYX with four Mips R4400 pro-
cessors using the SGI Performer graphics library. SGI Performer allows the programmer to create parallel
pipe-lining software quite easily by providing the basic tools for communication, shared memory etc.

Currently our system can run with 3 processes: The Application, Culling and Drawing processes. The
Application process handles the actual simulation of the deformable solid, ie. calculates displacements etc.
The Culling process analyzes the scene that the simulation process provides, and determines which parts
are visible in the current window. It then pipes the visible parts on to the Drawing process which �nally
renders the scene.

Notice, that although the entire system is a parallel system the actual deformation simulation system
still runs on a single processor. We use the parallel features only to separate rendering from simulation,
although we plan to implement a parallel version of the simulation process in the future.

Figure 5 shows a screen dump with the Virtual Operating room environment and the leg lying on the
operating table. Figure 6 shows the surface of the FE mesh shown in the simulator.

4 Conclusion

In this paper we have described four methods for real-time simulation of elastic deformation of a volumetric
solid based on linear elastic �nite elements. We have also described the simulation system we have developed
for surgery simulation using these methods.

Performance of the dynamic simulation methods are determined solely by the size of the linear system.
We have achieved 20 frames/second for models with up to 250 nodes in the system equation. For the full
linear system this includes all nodes, both internally and on the surface. But for the condensed system it
only includes the surface nodes. The number of internal nodes of the model, therefore, does not matter for
the condensed system since they have been removed from the system equation.

8

Figure 4: Contours created using Mvox (left) and FE mesh created from contours using Nuages
(right).

Figure 5: Simulation system implemented using SGI Performer.

Figure 6: Wireframe model of lower leg in simulator.

9

Figure 7: Simulation of pushing on a the lower leg. Top: Default shape. Bottom: Deformation of
leg when a push is applied to the black triangle.

10

It is more di�cult to predict the performance of the methods using Selective Matrix Vector Multiplica-
tion (SMVM). The above comments concerning the full contra condensed systems apply here also. But in
addition the number of nodes that have forces applied to them is very important also.

The example using a leg from the Visible Human data set with 700 system nodes (condensed system
with only surface nodes) ran comfortably using only 1/3 of a frame (20 frames/second) when forces were
applied to 3 nodes. This included calculation of the deformation and also basic processing. So although
both more nodes and more surface nodes with forces applied would increase the time requirement, we
believe bigger models could be accommodated using the SMVM method.

Although we have shown that real-time simulation of solid volumetric deformable models is possible
there is still much work to be done before realistic surgery simulation can be performed. Most importantly
we are currently working on the implementation of cutting in a FE mesh.

In addition to more realistic tissue models we also need detailed segmentation of the organs, limbs etc.
to allow di�erent material properties and models to be used. The current parallel research in digital atlasses
such as the VoxelMan atlas [9] is a signi�cant step in this direction.

A Linear tetrahedral �nite element

We assume that the nodes of the tetrahedron have been numbered as illustrated in �gure 2. The natural

coordinates L1, L2, L3 and L4 of the tetrahedron are related to the global coordinates x, y and z by (we
ignore element superscripts): 2

6664
1
x

y
z

3
7775 =

2
6664
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

3
7775
2
6664

L1
L2
L3
L4

3
7775 (21)

This equation can be inverted to give2
6664

L1
L2
L3
L4

3
7775 =

1

6V

2
6664

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

3
7775
2
6664
1
x

y
z

3
7775 (22)

where

6V =

���������

1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

���������
a1 =

�������
x2 x3 x4
y2 y3 y4
z2 z3 z4

�������

b1 = �

�������
1 1 1
y2 y3 y4
z2 z3 z4

������� c1 =

�������
1 1 1
x2 x3 x4
z2 z3 z4

������� d1 = �

�������
1 1 1
x2 x3 x4
y2 y3 y4

������� (23)

The other coe�cients are found by cyclic interchange of the indices.
The Be matrix becomes:

Be =
1

6V

2
66666664

b1 0 0 b2 0 0 b3 0 0 b4 0 0
0 c1 0 0 c2 0 0 c3 0 0 c4 0
0 0 d1 0 0 d2 0 0 d3 0 0 d4
c1 b1 0 c2 b2 0 c3 b3 0 c4 b4 0
0 d1 c1 0 d2 c2 0 d3 c3 0 d4 c4
d1 0 b1 d2 0 b2 d3 0 b3 d4 0 b4

3
77777775

(24)

11

References

[1] R. Barret et al., Templates for the solution of linear systems: Building blocks for iterative methods,
WWW http://www.netlib.org/templates/templates.ps

[2] M. Bro-Nielsen, Mvox: Interactive 2-4D medical image and graphics visualization software, submitted
to CAR'96, 1996

[3] M. Bro-Nielsen, Modelling elasticity in solids using Active Cubes - Application to simulated operations,
Proc. Computer Vision, Virtual Reality and Robotics in Medicine (CVRMed'95), pp. 535-541, 1995

[4] P.G. Ciarlet, Mathematical elasticity, vol. I: Three-dimensional elasticity, North-Holland, ISBM 0-444-
70529-8, 1988

[5] S. Cotin, H. Delingette, M. Bro-Nielsen, N. Ayache, J.M. Cl�ement, V. Tassetti and J. Marescaux, Ge-
ometric and Physical representations for a simulator of hepatic surgery, Proc. Medicine Meets Virtual
Reality, 1996

[6] S.A. Cover, N.F. Ezquerra and J.F. O'Brien, R. Rowe, T. Gadacz and E. Palm, Interactively deformable

models for surgery simulation, IEEE Computer Graphics & Applications, pp. 68-75, Nov. 1993

[7] B. Geiger: Three-dimensional modeling of human organs and its application to diagnosis and surgical

planning, INRIA Tech. Rep. 2105, Dec. 1993

[8] J-P. Gourret, N.M. Thalmann and D. Thalmann, Simulation of object and human skin deformations

in a grasping task, 23(3):21-30, 1989

[9] K.H. H�ohne, M. Bomans, M. Riemer,R. Schubert, U. Tiede and W. Lierse, A 3D anatomical atlas

based on a volume model, IEEE Computer Graphics Applications, 12(4):72-78, 1992

[10] K.H. Huebner, The �nite element method for engineers, John Wiley & Sons, ISBN 0-471-41950-8, 1975

[11] H. Kardestuncer, Finite element handbook, McGraw-Hill, ISBN 0-07-033305-X, 1987

[12] M.A. Sagar, D. Bullivant, G.D. Mallinson, P.J. Hunter and I. Hunter, A virtual environment and model

of the eye for surgical simulation, Proc. SIGGRAPH'94, pp. 205-212, 1994

[13] D.E. Stewart, Meschach: Matrix computations in C, WWW
ftp://ftpmaths.anu.edu.au/pub/meschach/meschach.html, 1992

[14] D. Terzopoulos and K. Fleischer, Deformable models, The Visual Computer, 4:306-331, 1988

[15] D. Terzopoulos and K. Waters, Analysis and synthesis of facial image sequences using physical and

anatomical models, IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(6):569-579, 1993

[16] D. Terzopoulos and D. Metaxas, Dynamic 3D models with local and global deformations: Deformable

superqudraics, IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(7):703-714, 1991

[17] The Visible Human Project, WWW
http://www.nlm.nih.gov/extramural research.dir/visible human.html

12

