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Preface

This thesis has been prepared at the Department of Mathematical Modelling
(IMM), Technical University of Denmark. It is a partial ful�llment of the re-
quirements for the degree of Ph.D. in engineering.

The subject is Medical Image Registration and Surgery Simulation, with a
speci�c focus on the physical models used in these �elds.

Many of the techniques, described and developed in the thesis, are on the
forefront of technology and, therefore, do not always have practical applications
today. But, I hope the reader will read the thesis with an open mind, and
enjoy the perspectives which some of the techniques open up for the future of
technology in medicine.

Reading this thesis requires a basic knowledge of image analysis, computer
graphics, physical models, and the nomenclature used in medical image analysis.

Lyngby, August 1996

Morten Bro-Nielsen
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Summary

This thesis explores the application of physical models in medical image regis-
tration and surgery simulation. The continuum models of elasticity and viscous

uids are described in detail, and this knowledge is used as a basis for most of
the methods described here.

Rigid image registration using voxel similarity measures are reviewed, and
new measures based on Grey Level Cooccurrence Matrices (GLCM) are intro-
duced. These measures are evaluated extensively using CT, MR, and cryosection
images from the Visible Human data set. The results show that mutual infor-
mation remains the best generally applicable measure. But for speci�c modality
combinations the new GLCM measures show considerable promise.

Results of registering the CT image to the red channel of the cryosection
image, and the CT image to the MR image are shown.

A new and faster algorithm for non-rigid registration using viscous 
uid
models is presented. This algorithm replaces the core part of the original al-
gorithm with multi-resolution convolution using a new �lter, which implements
the linear elasticity operator. Using the �lter results in a speedup of at least
an order of magnitude. Use of convolution hardware is expected to improve the
performance even more.

Non-rigid registration using a physically valid model of bone growth is also
presented. Using medical knowledge about the growth processes of the mandibu-
lar bone, a registration algorithm for time sequence images of the mandible is
developed. Since this registration algorithm models the actual development of
the mandible, it is possible to simulate the development.

Finally, real-time deformable models, using �nite element models of linear
elasticity, are developed for surgery simulation. The time consumption of the
�nite element method is reduced dramaticly, by the use of condensation tech-
niques, explicit inversion of the sti�ness matrix, and the use of selective matrix
vector multiplication.

Reviews of both medical image registration and surgery simulation work are
given.

Keywords: Medical image registration, rigid registration, non-rigid registra-
tion, grey level cooccurrence matrices, Visible Human data set, voxel sim-
ilarity measures, physical models, continuum models, elastic models, vis-
cous 
uid models, linear elasticity, convolution, elastic registration, 
uid
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registration, bone growth, growth models, virtual reality, surgery simula-
tion, cranio-facial surgery simulation, �nite element models, condensation,
linear matrix systems.



Resum�e

Denne afhandling behandler anvendelsen af fysiske modeller i medicinsk bille-
dregistrering og operationssimulering. Kontinuummodeller for elasticitet og
viskose 
uider beskrives detaljeret, og viden om disse modeller danner basis
for de 
este af de metoder der beskrives i afhandlingen.

Rigid billedregistrering vha. voxel-similaritetsm�al beskrives, og nye m�al baseret
p�a Grey Level Cooccurrence Matrices (GLCM) introduceres. Disse m�al testes
vha. CT, MT, og histologiske snitbilleder fra Visible Human databasen. Re-
sultaterne viser at mutual information forbliver det bedste generelt anvendelige
m�al til rigid registrering. Men, for enkelte modalitetskombinationer viser de nye
GLCM m�al lovende muligheder.

Resultater vises for registrering af CT billede til den r�de kanal af det his-
tologiske snitbillede, og CT billede til MR billede.

En ny og hurtigere algoritme til ikke-rigid registrering vha. viskose 
uide
modeller pr�senteres. Denne algoritme erstatter den centrale del af den originale
algoritme, med multi-skala konvolution vha. et nyt �lter, som implementerer
den line�rt elastiske operator. Ved at anvende dette �lter opn�as en hastigheds-
for�gelse p�a mindst en faktor. Med specialiseret konvolutions-hardware kan
endnu hurtigere behandling forventes.

Ikke-rigid registrering vha. en fysisk korrekt model af knoglev�kst beskri-
ves ogs�a. Med medicinsk viden om v�kstprocesserne i mandiblen, udvikles en
registreringsalgoritme til registrering af tidssekvensbilleder af mandiblen. Siden
registreringsalgoritmen modellerer den egentlige udvikling af mandiblen, er det
muligt at simulere denne udvikling.

Endelig udvikles real-tids deformerbare modeller til operationssimulering
vha. �nite element modeller af line�r elasticitet. Disse modellers tidsforbrug
reduceres kraftigt vha. kondenseringsteknikker, eksplicit invertering af stivheds-
matricen, og anvendelsen af selektiv matrix vektor multiplicering.

Reviews af b�ade medicinsk billedregistrering og operationssimulering gives.

N�gleord: Medicinsk billedregistrering, rigid registrering, ikke-rigid registrering,
grey level cooccurrence matrices, Visible Human databasen, voxel-similaritetsm�al,
fysiske modeller, kontinuummodeller, elastiske modeller, viskose 
uide
modeller, line�r elasticitet, konvolution, elastisk registrering, 
uid reg-
istrering, knoglev�kst, v�kstmodeller, virtual reality, operationssimuler-
ing, cranio-facial operationssimulering, �nite element modeller, kondenser-
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Chapter 1

Introduction

Medical imaging technologies are altering the nature of many medical pro-
fessions today. During the last decade many radiology departments have in-
stalled powerful imaging equipment for image modalities like Magnetic Reso-
nance (MR), Computed Tomography (CT), and Positron Emission Tomography
(PET). These systems have spawned new specialities, and have fundamentally
changed the waymany diseases are diagnosed, and even the way they are treated.

Smaller CT scanners are being marketed by the imaging system manufac-
turers, who expect such systems to be increasingly used at clinical department
instead of at centralized radiology departments.

In addition, cheap Ultra Sound (US) systems are increasingly being used in
the clinical departments. US is experiencing a dramatic development. 3D US
is available commercially now, and some people expect the resolution of US to
match the present MR resolution, in maybe 5-10 years or less.

Unfortunately, although the 'mechanical' equipment has seen a dramatic de-
velopment, the real power of these systems has not been released. The software
and knowledge, needed to take full advantage of the imaging systems, has not
followed the development of the hardware.

It is, therefore, still not unusual that hospitals, even with powerful and ex-
pensive 3D scanners, only have diagnostic procedures for handling 2D image
slices. In addition, when hospitals do use the 3D reconstruction capabilities
of the scanners, the available software is often not su�ciently 
exible and ad-
vanced, to allow real interaction with the 3D image data and provide useful
support for diagnosis.

Only advanced medical imaging research laboratories, which have their own
software development capability and access to the latest technology through
technical partners, are today able to explore more advanced uses of the 3D im-
ages produced by the scanners. Typical for these laboratories has been a speci�c
focus on technical research. The groups have participated in large technical ad-
vanced research projects, ie. European Union projects, and have built up the
necessary technical expertise through these projects.

But, from these research projects, and other research that is being per-
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Figure 1.1: Dual view of medical image registration and surgery simulation.

formed in the �eld of medical imaging, new technology is becoming available.
Recent years has seen the development of many new image processing, and
computer graphics algorithms. Algorithms that ultimately will lead to better
medical imaging software for diagnosis, treatment planning, surgery training,
and surgery assistance.

This thesis is a part of this volume of work.
The speci�c subjects of the thesis are Medical Image Registration and Surgery

Simulation. In particular, the main focus of the thesis is on the application of
physical continuum models of elasticity and viscous 
uids in these �elds.

The physical models constitute a theoretic view of registration and simula-
tion. A dual application oriented view could also be o�ered by regarding these
technologies as the basic elements of the next generation medical workstation
(see �gure 1.1).

1.1 Physical models

Physical continuum models are increasingly being used in medical imaging and
computer graphics. Both for modeling the natural behaviour of eg. human
tissue, but also to control registration processes etc. Unfortunately, fundamen-
tal knowledge about their actual physical basis and interrelationships, has been
sparse. Models have, therefore, often been used in cases where their assump-
tions were violated, and numerical problems could be anticipated with su�cient
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insight.

This thesis gives a coherent description of the basis of these models, pointing
out the algorithmic weaknesses and strengths. In addition, it shows how these
models are the backbone of all the image registration and surgery simulation
algorithms presented in the thesis.

1.2 Medical workstation of the future

With a longer view, the algorithms and methods, described and developed in this
thesis, can be seen as some of the basic elements of the next generation medical
workstation. A workstation, which would allow surgeons and other medical sta�
to diagnose patients, prepare surgery, practice surgery on a virtual patient in
the workstation, and perform surgery under the guidance of the computer.

The registration techniques are essential elements of the diagnostic part of
the workstation, providing the ability to combine multimodality images for mul-
tispectral classi�cation, and automatically segment images using atlas registra-
tion. In addition, the physically based methods for surgery simulation are the
main technology for creating realistic virtual surgery environments.

1.3 Thesis overview

The main structure of the thesis puts the work on medical image registration
�rst, followed by the work on surgery simulation. Introductions to these �elds
and reviews are given in chapters 2 and 7 respectively.

The main theoretical chapter of the thesis is chapter 4, where the physical
continuum elastic and viscous 
uid models are introduced. This chapter can be
seen as the hinge of the thesis, around which most of the remaining chapters
develop.

The medical image registration work is described in two chapters.

In chapter 3, voxel similarity measures for rigid image registration are eval-
uated. This chapter discusses the previous work, and shows that almost all of
it can be described using Grey Level Cooccurrence Matrices (GLCM). GLCMs
are used in texture analysis, and a range of measures based on these matrices
exists. A selection of these measures are compared to the existing voxel simi-
larity measures to evaluate them for rigid medical image registration. Images
from the Visible Human dataset are used for the evaluation.

After the introduction of the physical continuum models in chapter 4, chap-
ter 5 discusses their application for non-rigid registration of medical images. In
particular, a new and faster algorithm for viscous 
uid registration is developed.

Chapter 6 presents an alternative approach to non-rigid registration of med-
ical images. It uses actual medical knowledge of the development between two
images, to register the images non-rigidly. This chapter can be seen as a re-
sponse to those people, who have criticized the use of elastic and 
uid models
in non-rigid medical image registration. They have, correctly, pointed out that
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the elastic and 
uid models are poor models of the actual physical di�erence be-
tween images. By implementing a computer model of the growth process of the
mandibular bone, this chapter shows that it is possible to register two images
using a correct physical model.

After the introduction to surgery simulation in chapter 7, chapter 8 describes
the development of real-time deformable models for surgery simulation using
�nite element models of linear elasticity. New ways of improving the real-time
response of these models are presented, resulting in socalled Fast Finite Element
(FFE) models.

1.4 Thesis contributions

The main contributions of this thesis are listed in this section. Since de�nitions
and nomenclature de�ned in subsequent chapters are used to keep a compact
format, the reader might want to delay reading this section initially.

The main contributions of this thesis are (in order of importance):

Fast Finite Element models These models are developed in chapter 8, and
allow real-time deformation of volumetric deformable models. There are
three main contributions to the use of �nite elements:

1. The use of condensation to reduce the complexity of the volumet-
ric models to a complexity similar to that of a surface model (but
retaining the volumetric behaviour).

2. The direct inversion of the sti�ness matrix of the linear matrix equa-
tion resulting from the �nite element model. This reduces the simu-
lation time dramatically.

3. The use of static simulation instead of dynamic simulation. By ex-
ploiting the sparseness of the static force vector, a considerable re-
duction in computation time is achieved.

This work has been published in [BN95b, BN96c, BN96d].

Fast viscous 
uid registration algorithm In chapter 5 a new core algo-
rithm for the viscous 
uid registration algorithm of Christensen et al. [Chr93,
Chr94b, Chr94, Chr96] is developed. This new algorithm allows a speedup
of the viscous 
uid registration by at least a factor of magnitude. In prac-
tice, it means that the registration can be performed on a single worksta-
tion instead of on a massively parallel computer.

In addition, this chapter demonstrates that the 'demon'-based registra-
tion algorithm of Thirion [Thi96] is the rough simpli�cation of the 
uid
algorithm.

This work will be published in [BN96e].

Growth-based non-rigid registration Chapter 6 presents a new form of
non-rigid registration of medical images. Using the simplicity of the
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growth processes of the mandibular bone, a registration algorithm for
time sequence images of the mandible is developed. This algorithm uses
the actual physical process to control the deformation from one image to
the next.

Using the actual physical process to regularize the registration process,
rather than an arbitrary elastic or 
uid model, has not been described
before.

In addition, implicitly, the registration process is also the �rst computer
model of the physical bone growth processes of the human mandible.

This work is being submitted.

Rigid registration using GLCM features By using the analogy with Grey
Level Cooccurrence Matrices (GLCM), features from texture analysis are
identi�ed that could be used as voxel similarity measures for rigid image
registration.

Several of these measures are evaluated for registration and compared
to the previously known voxel similarity measures. The experiments are
carried out using cryosection, MR, and CT images from the Visible Human
data set.

The results are mixed, but show that Mutual Information is the best
general voxel similarity measure. For speci�c modality combinations, some
of the new texture measures perform better, though.

Results of registration of CT and MR images, and cryosection and CT
images are shown. Voxel-based registration of cryosection and CT images
has not been described before.

In addition, it is pointed out that the common scaling of rotations com-
pared to translations using degrees and millimeters, respectively, is wrong.
Experiments are carried out to calculate correct scaling factors.

This work is being submitted.

Description of physical continuum models The review and description in
chapter 4, of the physical continuum models used in medical image regis-
tration and surgery simulation, is believed to be the �rst complete review
of the theoretical aspects of the continuum models and their application
in medical imaging.

1.5 Credit

Some of the work in this thesis has been carried out in collaboration with other
people. This section speci�es their contributions.
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1.5.1 Viscous 
uid registration

The viscous 
uid registration work, described in chapter 5, was initiated dur-
ing my stay in the Epidaure group of INRIA. It was inspired by the work by
Nielsen et al. [Nie94], who showed that Thikonov regularization of a �eld could
be achieved by the simple application of a Gaussian �lter, and the work by
Thirion [Thi96] on 'demon'-based non-rigid registration. The latter work also
used the Gaussian �lter.

I continued this work after returning to Denmark. On my initiative and
under my supervision, M.Sc. Claus Gramkow joined me during his M.Sc. thesis.
Most of the software was written by Claus Gramkow.

1.5.2 Fast Finite Elements

During my stay in the Epidaure group I also developed the ideas for the Fast
Finite Element models. I had many discussions with Ph.D. student Stephane
Cotin on the basics of �nite element models. Stephane Cotin implemented the
�rst �nite element models.

The three contributions listed in the section on contributions, were devel-
oped by myself in Denmark. Although the use of inversion seems to have some
similarity with the approach of Cotin et al. [Cot96], it is formulated in a di�erent
way.

1.5.3 Growth registration

The work on bone growth models for non-rigid registration, was strongly in-
spired by discussions with Prof. Sven Kreiborg. His input, in the form of
medical knowledge of the growth of the mandibular bone, was essential for the
development of the computer models.



Chapter 2

Medical Image Registration

Segmenting medical images have turned out to be a more di�cult task than
many image processing researchers originally expected. The individual modal-
ities such as x-ray Computed Tomography (CT), Magnetic Resonance (MR)
imaging, Ultra Sound (US), etc., do not individually provide enough contrast
and information to reliably segment all tissue types in images acquired of human
patients.

Although much research is still being directed at improving segmentation
algorithms, the quality of the image data inherently gives a natural limit to the
possible quality of the segmentation results. Only when a limited number of
objects or tissue classes are present in the images and the imaging process has
been designed to provide good contrast for these classes, is it possible to obtain
good results. Contrast is sometimes su�cient in one of the normal modalities,
eg. bones in CT scans, but often injection of contrast media is used to extract
desired anatomical structures.

In addition, sometimes anatomical structures are made of the same tissue on
a microscopic level, and only di�er in function at a macroscopic level. Eg. brain
tissue is very homogeneous but have very di�erent function, depending on the
position in the brain. This di�erence is not visible in local images of the tissue
and can only be determined based on the position of the tissue in the global
structure of the brain.

Bones are another good example of tissue where function is determined at
a macroscopic level. Although they have very similar response in CT scans,
they should optimally be segmented into separate structures corresponding to
rib, femur, vertebrae, etc. With traditional classi�cation algorithms it is not
possible to solve this segmentation problem.

Because of these problems, much attention has been directed towards regis-
tration methods in recent years (see [Bro92] for a general review of image regis-
tration techniques). Image registration methods can solve some of the inherent
problems of mono-modality images and voxel-based classi�cation algorithms.

Rigid multi-modality registration methods allow images of the same patient,
but from di�erent modalities, to be registered. This provides joint information

7
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that is:

Complementary: Each modality provides di�erent information. Eg. x-ray
Computed Tomography (CT) provides information about bone and cal-
ci�cations, whereas Magnetic Resonance (MR) provides complementary
information about soft tissues.

Synergistic: The combination of two modalities may provide additional infor-
mation. Eg. Positron Emission Tomography (PET) and Single Photon
Emission Computed Tomography (SPECT) provide functional images of
the brain, but have very little information about anatomy. Combining
PET or SPECT images with MR images increases the value of the PET
and SPECT images, since the precisely imaged brain structures in the
MR images can be transferred to the functional images. Function can,
consequently, be described in terms of anatomy.

The result is that registered images contain more information in each voxel,
thus making the segmentation using standard classi�cation algorithms easier.

Another way of introducing more information is using non-rigid registration
methods to combine images from either time studies of the same patient or
di�erent patients. The latter method is often used with Positron Emission
Tomography (PET) images. These images are quite noisy, and the accumulation
of information from several di�erent patients, allows the noise to be suppressed
statistically.

The use of registered multi-modality images only improves the local infor-
mation content. The problem of segmenting anatomical structures with similar
characteristics is more complex, and a-priori knowledge of anatomy must be put
into the segmentation process. To solve this problem, non-rigid registration of
functional and topological atlases to patients has been proposed. By mapping
the atlas onto the patient it is possible to transfer function, topology, and other
information from the atlas to the individual patient.

Registration of medical images has traditionally been performed using either
manual methods or extrinsic markers. Unfortunately, these methods have se-
vere disadvantages in terms of precision and/or patient discomfort (stereotactic
frames). Much e�ort has therefore been put into development of non-invasive
retrospective image registration techniques, which are more precise and fully
automatic. This thesis contributes to this volume of work, and emphasis is
therefore put on retrospective image registration.

In this chapter an overview of the techniques used in medical image regis-
tration will be presented. Since very good reviews have been published previ-
ously by Brown [Bro92], Maurer and Fitzpatrick [Mau93], and Van den Elsen et
al. [Els93], there is no reason to repeat this work here. We will instead try to give
the reader an understanding of the basic issues in medical image registration
and the technical factors that distinguish di�erent registration methods.

There are basicly two factors that in
uence the classi�cation of medical
image registration methods: The motion model that determines what transfor-
mations are allowed and the driving potential that determines the forces driving
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Rigid (translation, rotation)

Elastic deformation

Free deformation

Figure 2.1: Rigid, elastic, and free motion. Left: Possible deformation of box.
Right: Possible deformation of line to curve.

the motion of the images wrt. each other.

2.1 Motion model

Motion models are normally classi�ed into either rigid or non-rigid in the com-
puter vision and medical imaging literature. This text proposes an extended
classi�cation into three classes: Rigid, elastic, and free motion models. Al-
though elastic and free motion models can be classi�ed together as non-rigid,
there are fundamental di�erences in the resulting transformations they achieve.
The three motion models are illustrated in �gure 2.1.

2.1.1 Rigid motion

Rigid body motion is composed of a rotation followed by a translation. The
body therefore retains its shape and form under a rigid transformation.

Extensions to the basic rigid transformation include scaling and more general
a�ne transformations. These motion models are not used in this thesis and we
therefore ignore them.

2.1.2 Elastic motion

Transformations governed by elastic motion models allow constrained deforma-
tion of images. The constraints are typicly implemented using potential energy
functions for elastic continua, and the transformation becomes a compromise
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between the driving forces and the restoring forces of the elastic continuum.
Consequently, the driving potential never completely vanishes (see �gure 2.1).

Although they never fully achieve the transformation implicitly desired by
the driving forces, these models are more robust and smooth than the free
motion models, because of the regularization e�ect induced by the elastic con-
tinuum.

In addition to elastic transformations this group of motions also includes
polynomial models. These are not used in this work.

2.1.3 Free motion

Free motion models typically allow any deformation that is well-formed. An
example of a free motion model is 
uid motion. Using 
uid motion any defor-
mation can be attained over time, but the transformation is restrained during
the deformation process to prevent a breakdown of the well-formedness require-
ment.

2.1.4 Parameter space

As the variability of these motion models increases, so does the complexity of the
parameter space. Whereas rigid motion models have 6 parameters, regularized
elastic models typically have in the hundreds of parameters and 
uid models in
the thousands or millions of parameters. Naturally, with an increasing number
of parameters the computational complexity and time consumption increase.
On the other hand with an increasing number of parameters more complex
motion is possible.

The classi�cation of the motion models can be seen as a motion model scale
using the number of parameters as the scale parameter. A multi-scale approach
is often used for elastic and free registration where �rst a rigid registration is
applied, followed by an elastic and possibly a free registration. An advantage
of this approach is that it introduces a regularization e�ect in the registration
that makes it more robust.

2.2 Driving potential/force

It is di�cult to �nd a useful classi�cation of the possible driving potentials,
since the methods often �t several categories at the same time. This is also
seen from the di�erent reviews of medical image registration methods [Bro92,
Mau93, Els93]. All use di�erent, though related, categories.

We choose to classify the driving potentials into point, curve, surface, mo-
ments and principal axes, and voxel similarity potentials. These are described
next.
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2.2.1 Point methods

Point methods are used when corresponding sets of points are available in the
two datasets. These points can either be extrinsic or intrinsic. Extrinsic points
are typically external skin markers on the patient or markers on stereotactic
frames.

Registration using markers on stereotactic frames is usually very precise.
But, the discomfort to the patient, caused by the frame which is screwed into
the skull of the patient, can be quite serious. See [Mau93] for more discussion
on registration using stereotactic frames and pointers to reviews.

External skin markers on the patient come in many di�erent forms and
materials (see [Mau93] for discussion of di�erent marker types). A problem
with these markers is movement of the skin. But on the other hand they are
relatively easy to locate and can be designed to allow subslice/pixel precision
(eg. the V shaped markers used by Van den Elsen [Els91])

Intrinsic points are typically anatomic landmarks, such as bloodvessels bifur-
cations [Hi91], which are located by the physician. Location of these anatomical
points can be quite di�cult, and the precision seldom match that of extrinsic
markers. The advantage of the intrinsic points is their retrospective nature.
Extrinsic points require that registration is planned before acquisition of the
images, since markers must be physically placed on the patient, whereas in-
trinsic points are determined in the image without special requirements for the
imaging process. This means that historic data (without extrinsic markers) can
be registered using intrinsic points. Hill et al. [Hi91, Hi92, Hi92b] suggested
several anatomic structures as intrinsic points.

Work by Thirion et al. [Thi93b] indicates that intrinsic points can be found
automatically. They detected socalled extremal points based on invariants of
di�erential geometry, and have used these points as automatically determined
anatomic registration landmarks.

Rigid registration of corresponding point data-sets can be formulated as a
least-squares problem. Several closed-form solutions exists [Mau93]: Singular
Value Decomposition (SVD) [Aru87], eigenvalue-eigenvector decomposition of a
matrix [Hor88] and dual quaternions [Hor87, Fau86]. Point set matching using
dual quaternions has been implemented in the software package Mvox [BN96].

Non-rigid registration of point sets has been used both for registration of two
di�erent images and for registration to an atlas. See [Mau93] for more details.
One method for non-rigid registration of images using corresponding point sets,
models one of the images as a thin-plate spline and uses the corresponding points
to deform it. An elegant implementation is given by Bookstein in [Boo89], which
has also been implemented in the software package Mvox [BN96].

2.2.2 Curve methods

Curves derived from intrinsic structures can be used to register images, if these
structures are present and positioned indentically in both images.

Interesting work on this subject has been pursued at the Epidaure group
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of INRIA. Based on extrema of curvature in the image intensity �eld, they
extract characteristic geometric features [Mon92, Thi92, Thi93] which they call
the extremal mesh [Thi93b]. This mesh includes ridge/crest lines and extremal
points.

Gueziec and Ayache smoothed the ridge lines and used a B-spline represen-
tation of them to register two CT images rigidly. Thirion et al. used the crest
lines for rigid registration of CT images in [Thi92b]. Declerck et al. [Dec95] and
Subsol et al. [Sub95] have used the crest lines as stable features of skull anatomy
and registered CT images non-rigidly to atlases. Medical applications of this
technique were represented in [Sub96].

The limitation of the algorithm seems to be the necessity for high resolution
images for stable extraction of the geometric features. But, work is ongoing by
Fidrich and Thirion [Fid94] to establish the behaviour of the extremal mesh in
scale-space, ie. lower resolution.

In addition, Pennec (eg. [Pen96]) is working on statistical treatment of the
geometric features. Crest lines and extremal points are well-suited for statistical
analysis of shape, and the application of these geometric features to probabilistic
atlases is an interesting aspect.

2.2.3 Surface methods

Three popular registration methods have dominated rigid registration algo-
rithms using surface information: The head-hat algorithm by Pelizarri et al. [Che88,
Pel89, Lev88], the Hierarchical Chamfer Matching (HCM) algorithm, which
were �rst proposed by Borgefors [Bor88] based on initial work by Barrow et
al. [Brw77], and later used for rigid registration of 3D medical images by Jiang
et al. [Jia92, Jia92b], and the Iterated Closest Points (ICP) algorithm by Besl
and Kay [Bes92].

The head-hat algorithm was developed speci�cly for registration of images of
the head [Che88, Pel89, Lev88]. The surface of one of the images is used as the
head and a set of points is extracted from surface contours in the other image
to represent the hat. The hat is then registered to the head by minimizing
the distance of hat points from the head surface along a line from the point
to the centroid of the head surface. The rigid transformation parameters are
determined by minimizing the distance energy using Powell's algorithm [Pow64].

In the Hierarchical Chamfer Matching (HCM) algorithm, a chamfer distance
map (thus the name) is generated from the surface of one of the images [Bor88,
Jia92, Jia92b]. This distance map is used as a potential function for surface
points in the other image and the total potential is minimized to �nd the rigid
registration parameters.

Instead of using the surface of the image objects, Van den Elsen et al. [Els92]
proposed using geometric features extracted from the images using di�erential
geometry. Van den Elsen et al. applied this to registration of MR and CT
images.

The Iterated Closest Points (ICP) algorithm was introduced by Besl and
Kay [Bes92], and later algorithmicly improved by Zhang [Zha94] by the use
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of k-D trees, as suggested for future work by Besl and Kay. Images must be
represented using points on the surface for this algorithm. In each iteration of
the algorithm, the closest point in one image is determined for all points in the
other image. These point correspondences are used to register the images using
closed-form point registration methods as described in section 2.2.1.

The Epidaure group at INRIA has used this algorithm extensively for rigid,
a�ne and locally a�ne registration (Feldmar and Ayache [Fel94]), and rigid,
a�ne and local spline registration (Declerk et al. [Dec96]). In addition Collignon
et al. was inspired by the algorithm in [Col93b].

Rigid registration of 3D surfaces using the ICP algorithm has been imple-
mented in the software package Mvox [BN96].

Szeliski and Lavallee have suggested an alternative representation of the
surfaces and their deformation [Sze94]. Using an octree-approximation of the
distance potential �eld and an octree-spline deformation �eld they registered
surfaces non-rigidly.

Other non-rigid surface registration work include that of Moshfeghi et al.,
who have extended the 2D work by Burr [Bur81] to 3D for non-rigid registration
of surface contours [Mos94].

2.2.4 Moments and principal axes methods

With the moments and principal axes methods, image objects are modeled as
ellipsoidal point distributions. Such distributions can be described using the
�rst and second moments of the point positions. Registration is performed by
overlaying the centroids of the objects, and aligning the principal axes, which
are determined by the eigen-vectors of the covariance matrix. Scaling can be
determined from the eigen-values of the covariance matrix.

These methods have been widely used for registration of medical images
[Alp90, Ara92, Fab88, GA86]. Unfortunately, a major limitation of the moments
and principal axes methods is the high sensitivity to shape di�erences. Missing
details or pathology can severely distort the registration results. They are,
therefore, mostly used as a rough initial registration step, eg. [Baj89, BN96e].

2.2.5 Voxel similarity methods

Voxel similarity methods register images based on all the voxels in the images.
They are therefore, generally robust and results can be quite exact. On the
other hand, they have a high computational complexity, and it is only in recent
years that practical applications of these methods have turned up.

In this thesis the focus of the registration work is on voxel similarity based
methods, and reviews of existing work are therefore giving in the respective
chapters. See chapters 3 and 5 for rigid and non-rigid registration methods
respectively. In addition see the next section on electronic atlases.
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2.3 Registration to electronic atlases

An important application of non-rigid registration methods is registration of
images to an electronic atlas. Precise registration allows syntactic and semantic
information from the atlas to be transferred to individual patient images.

The immediate application is of course automatic segmentation of images,
by transferring the topological information, implicitly stored in the atlas, to
the patient. Other information that could be transferred include functional,
relational, and hierarchical information.

Another application of registration to an atlas is accumulation of data from
images of many patients. This is used in functional imaging, where eg. PET
activation images from many patients are registered to the same reference frame,
to allow statistical treatment of the functional information.

In PET imaging, the Talairach atlas [Tal88] has often been used as such a
reference frame. Patient images are mapped to the atlas by piecewise a�ne
transformations [Eva92, Fox85, Ge92, Lem91]. Although the mapping is rough
this approach has been widely used.

Other atlases include the pioneering VoxelMan atlas by Hoehne et al. [Hoe92,
Hoe92b, Hoe94]. This atlas has set a standard in visualization and manipula-
tion of anatomical data. It includes both the original modalities (CT/MR) as
well as functional, topologic and hierarchic information, thus allowing the user
literally to point out regions of a 3D brain and ask 'what is that' or 'what is
this part of'.

The development of the Visible Human/Woman [Vis96] data set is another
milestone in electronic atlases. Although it has not been completely segmented
(or registered), this data set covers the entire body with CT, MR, and RGB
cryosection images of histological slices. Several groups are currently working
on electronic atlases based on this data set, eg. [Ker96, Tie96].

The algorithms for registration of images to an atlas, can be classi�ed based
on the level of human intervention in the registration process.
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Manual alignment of image to atlas: Fox et al. [Fox85] and Evans et al. [Eva88]
registered images manually to an atlas by performing a rigid or a�ne
transformation followed by nonlinear scaling. Greitz et al. [Gre91] also
used manual registration using rigid transformations, but followed this by
a small set of non-rigid transformations.

Supervised alignment of image to atlas: These methods are all based on
registration using landmarks. Bajcsy et al. [Baj88], Pelizzari et al. [Pel89],
and Undrill et al. [Und92] registered the images using rigid transformations
followed by scaling. Undrill also allowed non-rigid boundary registration.
Bookstein et al. [Boo92] and Evans et al. [Eva91] used thin-plate spline
models to elasticly warp the images based on the landmark correspon-
dences.

Automatic alignment of image to atlas: Both Bajcsy et al. [Baj89, Gee93]
and Collins et al. [Cli92] used cross-correlation to drive the non-rigid reg-
istration. Both groups regularized the deformation by using a multires-
olution framework, but Bajcsy et al. also modeled the image as a linear
elastic object. Bajcsy et al. were the �rst to introduce physical continuum
models to the problem of voxel-based non-rigid image registration.

Instead of using a multiresolution framework to regularize the registration
process, Miller et al. [Mil93, Chr94] used a limited set of eigen-functions
of the linear elastic model. This was �rst applied followed by registration
with a full linear elastic model.

In later work Christensen et al. have used viscous 
uid continuum models
instead of the elastic models, to obtain a more 
exible registration, and
also to avoid mathematical problems associated with the linear elastic
model [Chr93, Chr94b, Chr94c, Chr96].

Subsol et al. [Sub95] used crest lines as the driving potential and registered
images to a skull atlas using parametric modal elastic models.

The development of these models has proceeded from manual semi-rigid meth-
ods over elastic and parametric/polynomial models to the free registration meth-
ods de�ned by 
uids. The 
uid models have unfortunately not been used by
other groups than Christensen et al., because of the previous enormous com-
putational complexity of the solution problem. In this thesis a new algorithm
for 
uid registration is proposed, which is considerably faster than the original
and, therefore, progress can hopefully be expected with these models.

2.4 Summary

This chapter have presented a review of the most important techniques in med-
ical image registration. Image registration is a wide �eld and many techniques
were described. The following chapters will present new work in voxel-based
rigid registration, free 
uid registration, and free growth-based registration.
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Chapter 3

Rigid Registration using

Voxel Similarity Measures

In this chapter, we will concentrate on rigid registration of medical images using
voxel similarity measures. An advantage of the voxel-based registration methods
presented in this chapter, is the fact that they are fully automatic and require
no pre-processing of the images, as do eg. the surface registration methods
mentioned in the previous chapter.

The main part of the chapter discusses existing and some new voxel sim-
ilarity measures. Elaborate tests are used to evaluate the di�erent measures
and compare them. Finally, a registration algorithm based on voxel similarity
measures is described and some results are presented.

3.1 Image data

The algorithms developed in this chapter have been applied to registration of
images from the Visible Human data set [Vis96]. From this data set, images of
the head from the following modalitites have been used (see �gure 3.1):

� MR, Proton Density weighted (PD)

� MR, T1 weighted (T1)

� CT, windowed for bone (CT)

� Red channel of the cryosection colour image (R)

These images were taken from the Research Systems' Visible Human CD.
Using a combination of manual and automatic tools the images were reg-

istered to each other to get an initial ground truth. This registration was
performed carefully using visual inspection for validation of the results. Un-
fortunately, during this registration process, the voxel size of the MR images

17
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Figure 3.1: Images from the Visible Human data set. Top left: MR T1 weighted.
Top right: MR proton density weighted. Bottom left: CT bone windowed. Bot-
tom right: Red cryosection image.
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turned out to be inconsistent with the size of the other images. By measuring
the distance between anatomical landmarks the voxel size were estimated to 1.05
x 1.05 x 5 mm instead of 1.016 x 1.016 x 5 mm as given in the documentation
for the MR images.

The following combinations of modalities are explored in this chapter: PD/T1,
CT/T1, and CT/R. PD/T1 is only used to show the basic behaviour of the sim-
ilarity measures and registration results for this combination are consequently
not reported. Voxel-based registration of CT and cryosection images has not
been documented before.

3.2 Voxel similarity measures

For registration of uni-modal images, correlation has been used extensively in
both remote sensing, medical imaging and other application areas.

Simple correlation of grey-values assumes that a linear relationship between
the grey-values exists [Bro92]. This is seldom the case, and grey-level correlation
has, therefore, not provided convincing results for multi-modality registration
of images.

In recent years, though, renewed interest in voxel-based multi-modality reg-
istration has been revived by the successful work on PET/PET and PET/MR
registration by Woods et al. [Woo92, Woo93]. The basic assumption of this
work is the same as for correlation, ie. that a linear mapping exists between
grey-values g1 and g2 of the two images. As mentioned above, this assumption
is seldom valid for multi-modality images. But Woods et al. circumvent this
problem by looking instead at the variance of the coe�cient R = g1=g2, where
g1 is the PET image grey-value. They argue that this coe�cient of variation
is minimized when the images are in register, and have achieved good results
for PET/PET registration [Woo92] using this measure. For PET/MR regis-
tration they have proposed a modi�ed version of the initial measure [Woo93],
where the variance is calculated independently for each MR grey-value and sub-
sequent summed weighted by the probability estimate of the MR grey-values.
To achieve successful registration, only the intracranial structures are used in
the registration process, and this algorithm, therefore, needs some manual seg-
mentation to work. But, the coe�cient of variation is today probably the best
measure for registration of PET/PET and PET/MR [Wes96].

Inspired by this work, Hill et al. proposed a modi�ed algorithm for registra-
tion of CT/MR in [Hi93, Hi93b]. In this algorithm CT is used as the denomi-
nator g2, and only certain ranges of CT intensities are used in the calculation
of the resulting coe�cient.

In [Hi93] Hill also proposed an alternative measure based on the third order
moment of the 2D histogram created from the images. This was inspired by
intensive studies of the development of the 2D histograms for changing registra-
tion parameters. A general observation was that intensity concentrations in the
histograms seemed to disperse when the registration deviated from an optimal
registration.
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Van den Elsen has proposed a modi�ed correlation approach for CT/MR reg-
istration [Els94, Els94b, Els95], where the images are pre-processed to extract
similar structures in both modalities, typicly bones. In [Els94, Els95] these struc-
tures were extracted using complex di�erential operators in scale-space. Similar
results were later obtained using simple ramp intensity remapping in [Els94b].

At this point all the measures proposed for multi-modality registration had
been based on heuristics. Several groups independently realized that the in-
trinsic problem of registering two independent image modalities, could be cast
in an information theoretic framework. Collignon et al. [Col95] and Studholme
et al. [Stu95] both suggested using the joint entropy of the combined images
as a registration potential, and Collignon et al. [Col95b], and Wells and Vi-
ola [Vio95, Wel96] �nally suggested the relative entropy or mutual information
as a registration measure. Mutual information is more robust to truncation
of images than joint entropy, and has been applied to other registration tasks
than medical imaging. It is a very general measure of correspondence between
two images, and in a recent evaluation of a range of di�erent multi-modality
registration methods [Wes96], mutual information was quite succesful.

It turns out that most of the proposed voxel similarity measures have a
correspondence in the �eld of texture analysis. This chapter shows this cor-
respondence and compares the standard voxel similarity measures to measures
used in texture analysis.

3.2.1 GLCM matrices

Except for the work of Van den Elsen [Els94, Els94b, Els95] all the voxel simi-
larity measures introduced above can be formulated based on the 2D histogram
or joint probability distribution of the two images.

A similar family of measures is found in the texture analysis literature on
Grey Level Cooccurrence Matrices (GLCM) [Cnr80, Cnr84, Har73, Har79]. The
GLCM is determined as the 2D plot of grey-values of voxels in an image with a
�xed displacement between them.

Let g(x) be the grey-value of the pixel at position x = [x1; x2; x3]
T in the

image, and let u = [u1; u2; u3]
T be the displacement vector between corre-

sponding voxels. The GLCM is generated by accumulating the grey-value pairs
[g(x); g(x + u)] in a 2D histogram for all image positions x. The normalized
GLCM can be seen as an estimate of the joint probability distribution of voxels
g(x) and g(x+ u).

By extending the de�nition of the displacement vector u to be, not only
between voxels in one image, but also between voxels in di�erent images, the
GLCM turns out to be the 2D histogram of voxel intensities used by Hill et
al. [Hi93, Hi93b, Hi94c], and the normalized GLCM becomes an estimate of the
joint probability distribution of voxels in the two images.

In the GLCM texture analysis literature a range of di�erent measures exists.
On the following pages we evaluate these measures as voxel similarity measures
for multi-modality image registration, and compare them to the existing voxel
similarity measures.
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Figure 3.2: GLCM matrix for MR-T1 against itself. Top: GLCM for registered
images. Middle: GLCM when one MR-T1 image is moved 2, 6 and 15 mm in
the x-direction. Bottom: GLCM when one MR-T1 image is rotated 2, 6 and 15
degrees around the x-axis.
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Figure 3.3: GLCM matrix for MR-PD / MR-T1 images (X/Y). Top: GLCM
for registered images. Middle: GLCM when the MR-T1 image is moved 2, 6 and
15 mm in the x-direction. Bottom: GLCM when the MR-T1 image is rotated 2,
6 and 15 degrees around the x-axis.



3.2. VOXEL SIMILARITY MEASURES 23

Figure 3.4: GLCM matrix for CT / MR-T1 (X/Y). Top: GLCM for registered
images. Middle: GLCM when the MR-T1 image is moved 2, 6 and 15 mm in
the x-direction. Bottom: GLCM when the MR-T1 image is rotated 2, 6 and 15
degrees around the x-axis.
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Figure 3.5: GLCM matrix for CT / Red cryosection (X/Y). Top: GLCM for
registered images. Middle: GLCM when the Red image is moved 2, 6 and 15
mm in the x-direction. Bottom: GLCM when the Red image is rotated 2, 6 and
15 degrees around the x-axis.
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The GLCM for two identical images (T1/T1) is shown in the top of �gure 3.2.
As would be expected, the GLCM shows a diagonal line since identical grey-
values have been plotted against each other.

In the lower part of �gure 3.2 the evolution of the GLCM is displayed for
translation in the x-direction and rotation around the x-axis. The following
general observations can be made: With increasing mis-registration,

� diagonal features are dispersed,

� peaks are smoothed out,

� lines parallel to the axes appear.

When the images are in register, grey-values in one image tend to map to a
limited range of grey-values in the other image, corresponding to the grey-
values of the particular anatomical structures which they both represent. Lines
occur since the range of grey-values is contaminated by grey-values from other
anatomical structures, when the images are mis-registered. This way each grey-
value ends up being mapped to a large range of grey-values in the other image.

Figures 3.3, 3.4 and 3.5 show the characteristics and evolution of the GLCM
for the other combinations of modalities. Note, how the GLCMs associated
with the CT image have a strong vertical line. This line occurs, because CT
has poor contrast for the corresponding tissue type. Since both MR and the red
cryosection images have better contrast for this tissue, the CT grey-values are
mapped to a wide range of grey-values.

From these GLCMs, the characteristics of the CT/T1 and CT/R registration
could be interpreted to be very similar. But this is not the case when features
are calculated from the GLCMs and caution should, therefore, be taken when
they are interpretated.

3.2.2 GLCM features

In the literature approximately 20 GLCM features appear which can be used
to extract information from cooccurrence matrices. Most of these features are
derived by weighting the entries of the GLCM with a weighting function and
summing the result. Here a limited number of features are investigated. These
features fall in three classes based on the character of the weighting function.

Using the notation P (i; j) for elements of the normalized GLCM, the general
form of the GLCM features is:

F =
X
i;j

w(i; j)P (i; j) (3.1)

where the weighting function w depends either on the normalized GLCM value
P (i; j), the spatial position in the GLCM (i; j), or both:

w(i; j) =

8<
:

f(P (i; j))
f(i; j)
f(i; j; P (i; j))

(3.2)
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Notation

As above P (i; j) is the value of the normalized (ni; nj) GLCM at position (i; j).

N = ninj (3.3)

Pi(i) =
X
j

P (i; j) Pj(j) =
X
i

P (i; j)

�i =
X
i

iPi(i) �j =
X
j

jPj(j)

�2i =
X
i

(i� �i)
2Pi(i) �2j =

X
j

(j � �j)
2Pj(j)

w(i; j) is the weighting function applied to the element (i; j) of the normalized
GLCM.

Features: Weighting dependent on P (i; j)

� Energy:

Energy =
X
i;j

P (i; j)2 (3.4)

w(i; j) = P (i; j)

� Variance:

V ariance =
X
i;j

(P (i; j)� 1

N
)2 (3.5)

= (
X
i;j

P (i; j)2)� 1

N

w(i; j) � P (i; j)

� Entropy:

Entropy = �
X
i;j

P (i; j)logP (i; j) (3.6)

w(i; j) = �logP (i; j)

� Relative entropy (Mutual Information) [Col95b]:

MI = �
X
i;j

P (i; j)log

�
P (i; j)

Pi(i)Pj(j)

�
(3.7)

w(i; j) = �log
�

P (i; j)

Pi(i)Pj(j)

�
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Features: Weighting dependent on i; j

� Inverse Di�erence Moment:

IDM =
X
i;j

1

1 + (i+ j)2
P (i; j) (3.8)

w(i; j) =
1

1 + (i+ j)2

� Inertia:

Inertia =
X
i;j

(i� j)2P (i; j) (3.9)

w(i; j) = (i� j)2

Features: Weighting dependent on i; j; P (i; j)

� Diagonal moment:

Dmoment =
X
i;j

ji� jj(i+ j � �i � �j)P (i; j) (3.10)

w(i; j) = ji� jj(i+ j � �i � �j)

� Correlation coe�cient:

Correlation =
X
i;j

(i� �i)(j � �j)

�i�j
P (i; j) (3.11)

w(i; j) =
(i� �i)(j � �j)p

�i�j

� Cluster shade:

Cshade =
X
i;j

(i+ j � �i � �j)
3P (i; j) (3.12)

w(i; j) = (i+ j � �i � �j)
3

� Cluster prominence:

Cprominence =
X
i;j

(i+ j � �i � �j)
4P (i; j) (3.13)

w(i; j) = (i+ j � �i � �j)
4
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Figure 3.6: Weighting functions for energy and entropy.

� Woods MR-PET [Woo93]:

Woods =
X
i>0;j

si
ai
P (i; j) (3.14)

w(i; j) =
si
ai

where

ai =
1

Pi(i)

X
j

P (i; j)j (3.15)

si =
1

Pi(i)

X
j

P (i; j)(j � ai)
2

Note, that the Woods MR/PET registration measure is not symmetric.

Some of these features have been used before for multi-modality image
registration (entropy, mutual information, correlation coe�cient, and Woods
MR/PET) whereas the rest are new for medical image registration. Both groups
are included for comparison.

In �gure 3.6 the weighting functions for energy and entropy are shown. It is
interesting to note that the GLCM images shown previously were pre-processed
by applying the log-function. If this is not done, it is impossible to see anything
than the largest peaks because of the wide dynamic range of the GLCMs. By
applying the log-function, we are able to see the details. The entropy mea-
sure, consequently, uses the same weighting function as humans do when we
interpretate the GLCM images.

Figure 3.7 shows the weights for the position dependent features. For calcu-
lation �i = �j = 127, �i = �j = 30 and the GLCM size is 256� 256.

One should keep in mind that the features can be used with an opposite sign
and it is, therefore, the contrast between di�erent areas of the weight plots that
is interesting, not the bright or dark areas alone.

Without going into details, it is clear that the position dependent feature
weights cover most general con�gurations of the GLCM space.
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IDM Inertia Dmoment

Correlation Shade Prominence

Figure 3.7: Weights for the position dependent GLCM features. (0,0) is lower
left corner and white is high weights.

3.2.3 Implementation

The rotation of a rigid transformation can be de�ned in a number of di�erent
ways. Two representations are used here: The axes-and-angles system, where
the successive rotations around the x-, y- and z-axis are given in angles, and
rotation by orthonormal matrices.

The axes-and-angles system is useful for minimization algorithms, since the
6 parameter vector with the 3 rotations and 3 translations is a minimal repre-
sentation of the rigid transformation. In addition, the axes-and-angles represen-
tation gives an intuitive description of the transformation. Results and inputs
are therefore given in this format.

The orthonormal matrix representation is useful on the other hand for inter-
nal calculations and has been used in all programs. Using orthonormal matrices,
a rigid transformation may be written as:

x0 = Rx+ t (3.16)

where R is a orthonormal rotation matrix and t is a translation vector. In this
representation we rotate around the origin of the coordinate system. In practice,
we rotate around the center of the image, but we ignore that for simplicity. The
rotation matrix is generated from the axis-angles using:

R =

2
4 r11 r12 r13

r21 r22 r23
r31 r32 r33

3
5 (3.17)
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r11 = cos(ry)cos(rz)

r12 = �cos(rx)sin(rz) + sin(rx)sin(ry)cos(rz)

r13 = sin(rx)sin(rz) + cos(rx)sin(ry)cos(rz)

r21 = cos(ry)sin(rz)

r22 = cos(rx)cos(rz) + sin(rx)sin(ry)sin(rz)

r23 = �sin(rx)cos(rz) + cos(rx)sin(ry)sin(rz)

r31 = �sin(ry)
r32 = sin(rx)cos(ry)

r33 = cos(rx)cos(ry)

where rx, ry and rz are the rotation angles around the x-, y- and z-axis.

Sample selection

A sample size or sample frequency must be decided upon when the GLCM is
calculated. The sample has to be large enough to incorporate enough informa-
tion about the registration, but at the same time small enough to allow e�cient
computation.

Collignon et al. [Col95] have illustrated that the sample size in
uences the
behaviour of the similarity measures. They showed that a change from 3 over 1
to 1/3 samples per voxel caused the similarity measures to become increasingly
noisy and introduced local minima. In their work [Col95b], they recommend
sub-sampling to be used in the beginning, and super-sampling at the end of the
iterative process that is used to optimize the registration parameters. Woods et
al. [Woo92, Woo93] used a similar scheme, but did not super-sample.

Hill et al. [Stu96b] actually sub-sample the images to create a pyramid using
both integer and non-integer reduction factors. They did not super-sample the
images.

Wells and Viola [Wel96] used a very di�erent optimization algorithm than
did Collignon et al., Woods et al. and Hill et al. In a statistical framework
relatively small random samples were used.

Pokrandt [Pok96] has reported preliminary good results using an extremely
low 1 in 64 sampling rate combined with random selection of the sampling
positions. These results still need to be validated independently.

In this work we have used a scheme similar to that of Collignon et al. The
tests described in this section have all been performed using super-sampling
with a factor of 2.

Interpolation

When the GLCM is calculated for two images, which overlap in such a way
that voxels of one image maps to inter-voxel positions in the other image, it is
necessary to estimate the grey-values using interpolation.
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Hill et al. and Van den Elsen et al. [Hi94c, Els95] used tri-linear interpolation
as the best interpolation method, when computational complexity and quality
of the results were weighted.

Collignon et al. [Col95b] recommended trilinear partial volume distribution
to be used. Instead of using the interpolated grey-value to index the GLCM,
they add the partial volume of each of the closest 8 voxels to the GLCM using
the grey-values of the original voxels. The advantage should be that no new
grey-values are introduced in the images, thus minimizing noise.

For initial runs, nearest neighbour interpolation is recommended in [Col95,
Hi94c].

Hill et al. [Hi94b] discusses the use of sinc interpolation and Studholme
[Stu96b] comments on using a Gaussian �lter, but these interpolation methods
have not been used in practice, except in the discussion in [Hi94b].

In this work tri-linear interpolation is used.

Probability estimation

The joint probability P (i; j) is estimated from the GLCM. For 12-bit images
the raw GLCM contains 4096 � 4096 bins which is bigger than some images.
A reduction of the number of bins is therefore necessary to allow e�cient com-
putation. Parzen-windowing could be used to estimate stable probability es-
timates [Du73]. But Parzen windowing is computationally expensive. Instead
all authours use binning which can be considered a crude approximation of
parzen-windowing [Col95b].

In practice the integer grey-values are binarily shifted an appropriate number
of bits. Binning is used here.

3.2.4 Plotting GLCM features

In [Hi94b, Hi94c] Hill et al. used socalled similarity measure plots to determine
the quality of voxel similarity measures. These plots show curves for displace-
ments in the di�erent directions, and rotations around the three axes under the
assumption that the other parameters are zero.

Obviously this kind of plot does not provide any information about the
quality of the measures for deviations where several parameters are non-zero.
In addition, these plots do not allow quantitative evaluation of the measures
and objective comparison is not easy. On the other hand they do tend to give a
good impression of the behaviour of the measures in terms of local minima and
precise localization.

In the following the measures are evaluated using two types of plots:

The similarity measure plot that Hill et al. have used. The similarity mea-
sure is determined for a sequence of deviations with a single parameter
at a time. This gives a curve for each parameter and these curves are
combined in a single plot.
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Distance/Feature plots. For a large number of random displacements, the
length of the parameter vector is plotted against the feature. It turns out
that these plots are reasonably linear for good similarity measures. We
therefore choose the linearity as an objective measure of the feature qual-
ity. Linear regression [Con84] is used to determine the best approximating
line (using the Splus software package) and the R2 is used as a quality
measure.

Correcting for wrong scaling of rotation

When the length of the parameter vector is determined, an implicit choice of
scaling for the rotation parameters, compared to the translation parameters, has
to be made. The obvious choice is using millimeters for translations and degrees
for rotations. In the medical image registration literature this has been used
widely (if not exclusively), eg. [Col95b, Els95, Hi94c]. There is no theoretical
basis for this choice and any other could just as well have been used. Work in
this chapter indicates that it is often wrong.

For algorithms that use a brute-force approach to determine the minimum
of the similarity function [Els95, Hi94c] this has little in
uence. But where
more advanced methods such as Newton-Raphson [Woo92, Woo93] or Powell's
method [Col95b] are used, di�erent scaling of the rotation and translation axes
can in
uence the direction of steps or stop-requirements. For calculation of the
distance/feature plots the scaling also has an e�ect. It is therefore necessary to
estimate the correct scaling.

Two distance/feature plots are created, where one uses only rotation and
the other only translation in the parameter vector. Using linear regression,
approximating lines are determined for these two plots. Assuming that the
estimates of the slopes of the lines are �rot and �tr for rotation and translation,
respectively, a correction factor is determined as:


rot2tr =
�rot
�rtr

(3.18)

This correction factor is pre-multiplied all rotation parameters before the length
of the parameter vector is determined. Using corrected rotation parameters,
a �nal distance/feature plot is calculated where all parameters take random
values.

3.2.5 Results

In appendix D the entire set of plots is shown. The linear regression results for
the distance/feature plots are listed along with calculated correction values and
R2 for the corrected and uncorrected plots.

The similarity measure plots call for a subjective evaluation and we have
performed this evaluation using the following scale:

1. Useless,
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Table 3.1: Pd-T1: Similarity measure plot of quality result and R2 compared
with uncorrected R2. 500 samples are used.

Quality R2 Uncorrected R2

Energy 2 0.9384729 0.9088758
Variance 2 0.9384698 0.9088723
Entropy 5 0.9760593 0.9708134
MI 5 0.9260448 0.9214459
IDM 5 0.9685928 0.9599456
Inertia 4 0.9173130 0.9061781
Dmoment 4 0.9187858 0.9159433
Correlation 4 0.9057705 0.8883932
Cshade 3 0.8380936 0.8114711
Cprominence 3 0.8265533 0.8120783
Woods MR/PET (X:Pd) 3 0.7361181 0.7412743
Woods MR/PET (X:T1) 3 0.5480094 0.5482602

2. Poor localization with serious local minima,

3. Reasonable localization of optimum, some small local minima,

4. Reasonable localization of optimum, smooth curve without local minima,

5. Perfect localization of optimum, smooth curve without local minima.

The results of the classi�cation and corrected linear regression are shown
in tables 3.1, 3.2 and 3.3. They show that the information theoretic measures
entropy and mutual information perform consistently well. This is in line with
the image registration literature [Col95, Col95b, Stu95, Stu96, Stu96b] which
also indicates that mutual information is better than entropy for truncated
images [Stu96], ie. where parts of one image is not present in the other.

The results of the other measures are mixed, but it is interesting to note
that the measures with weights based on the position (i; j) (and P (i; j)) in the
normalized GLCM do quite well in the CT/R experiments. Indeed the Diagonal
Moment perform better than the entropy and mutual information measures.
Without jumping to any conclusions, this could indicate that position weighted
measures can do well if the weighting matches the problem.

3.2.6 Adaptive position-dependent weights

Since the position dependent weights for the feature function can have some
positive in
uence on the resulting behaviour of the feature, it is natural to try
to design a position dependent weight function that improves the registration
performance.

Work has been done to determine the weights automatically as a function of
the correlation coe�cient of the individual P (i; j) and the mutual information
measure calculated from the images. The idea being that if a position (i; j) is



34CHAPTER 3. RIGID REGISTRATIONUSING VOXEL SIMILARITYMEASURES

Table 3.2: CT/T1: Similarity measure plot quality results and R2 compared with
uncorrected R2. 500 samples are used.

Quality R2 Uncorrected R2

Energy 4 0.9505296 0.9493070
Variance 4 0.9505302 0.9493080
Entropy 5 0.9666757 0.9638251
MI 4 0.8077108 0.7595025
IDM 2 0.9416978 0.9384330
Inertia 1 0.6917992 0.6948765
Dmoment 1 0.2931991 0.2798332
Correlation 1 0.5524907 0.5277128
Cshade 1 0.0773453 0.0773202
Cprominence 1 0.3667449 0.3952463
Woods MR/PET (X:CT) 4 0.6376055 0.6018653
Woods MR/PET (X:T1) 4 0.8147630 0.8139735

Table 3.3: CT/R: Similarity measure plot quality results and R2 compared with
uncorrected R2. 500 samples are used.

Quality R2 Uncorrected R2

Energy 1 0.4335973 0.3803990
Variance 1 0.4335405 0.3803409
Entropy 5 0.9801963 0.9790247
MI 4 0.9016652 0.8648146
IDM 3 0.9476440 0.9375267
Inertia 5 0.9721051 0.9725199
Dmoment 5 0.9896430 0.9720567
Correlation 4 0.9176131 0.8917624
Cshade 4 0.8500580 0.7844821
Cprominence 4 0.8491666 0.7947552
Woods MR/PET (X:R) 3 0.7792640 0.7764421
Woods MR/PET (X:CT) 2 0.9013030 0.8753324
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important for the similarity measure, P (i; j) should be strongly correlated with
the MI measure.

Unfortunately, it was not possible to obtain better results using the adaptive
weight calculation and this work is consequently not reported here.

3.3 Image registration using voxel similarity mea-
sures

A registration algorithm similar to that of Collignon et al. [Col95b] has been im-
plemented. The method optimizes the registration using Powell's algorithm for
optimization without derivatives [Pow64]. Multi-resolution is used to speedup
the algorithm.

A Quasi-Newton algorithm was tested, but problems calculating stable esti-
mates of the �rst derivatives caused the results to be somewhat poor.

All the voxel similarity measures may be used for the registration. But in
practice we have preferred the mutual information most of the time, since it
provides consistent results for di�erent modalities.

The result of the 3D registration of the MR T1 weighted image to the CT
bone windowed image using mutual information, is shown in �gures 3.8, 3.9
and 3.10. The 3D registration of the Red channel of the cryosection image to
the CT bone windowed image is shown in �gures 3.11, 3.12 and 3.13.

Results of the registration could only be validated by visual inspection and
exhaustive test were therefore not performed. But the visual inspection of the
results showed that the registration was quite precise.

3.4 Summary

In this section voxel similarity measures for registration of the Visible Human
data set have been explored.

The 2D histogram of joint voxel intensities, used in the literature as a basis
for de�nition of many voxel similarity measures, was shown to be similar to the
GLCM matrices used in texture analysis of images.

A range of features from texture analysis were compared to the state-of-the-
art features. This comparison showed that the state-of-the-art features entropy
and mutual information were best for general registration, since they performed
consistently well for both registration of MR-T1 to MR-PD, MR-T1 to CT bone,
and red cryosection to CT bone. For each of the other combinations, some of the
texture measures were at least as good as the information theoretic measures.
But, these results were not consistent from one modality combination to the
next.

Together with the information from the literature, this leads to the conclu-
sion that mutual information is the best generally applicable voxel similarity
measure.
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Figure 3.8: Result of 3D registration using mutual information of the CT bone
windowed image to the MR T1 weighted image. The outline of the thresholded
CT image has been overlayed on the MR image.
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Figure 3.9: Result of 3D registration using mutual information of the CT bone
windowed image to the MR T1 weighted image. The outline of the thresholded
CT image has been overlayed on the MR image.
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Figure 3.10: Result of 3D registration using mutual information of the CT bone
windowed image to the MR T1 weighted image. The outline of the thresholded
CT image has been overlayed on the MR image.
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Figure 3.11: Result of 3D registration using mutual information of the CT bone
windowed image to the Red channel of the cryosection image. The outline of
the thresholded CT image has been overlayed on the Red image.
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Figure 3.12: Result of 3D registration using mutual information of the CT bone
windowed image to the Red channel of the cryosection image. The outline of
the thresholded CT image has been overlayed on the Red image.
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Figure 3.13: Result of 3D registration using mutual information of the CT bone
windowed image to the Red channel of the cryosection image. The outline of
the thresholded CT image has been overlayed on the Red image.
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Since most of the texture measures were dependent on the position in the
GLCM, in contrast to the information theoretic measures, it should be ex-
plored whether position dependent weights adapted to the registration problem
(modality combination) could improve registration results. Preliminar work in
this direction did not yield positive results.



Chapter 4

Physical Continuum Models

Physical continuum models of elasticity etc. are well-known in computer vision
and computer graphics, where they have been used for many years to track and
model non-rigid shapes. Although they seldom have been actual models of the
physical phenomena and rather have been used to regularize problems, they have
enjoyed great succes.

Because of the emphasis on the regularization e�ect, these models have often
been used without much understanding of their limitations and relationships.
But, in recent years, and in particular in the core �elds of this thesis - registration
and simulation - attention has begun to turn towards understanding rather than
blind use of the models.

In medical image registration, some of the �rst work on non-rigid regis-
tration used linear elastic models [Baj89, Chr94]. Christensen et al. illus-
trated in [Chr94b, Chr94c] that for large deformations, the invalid assump-
tion of linearity of the elasticity operator, can cause changes in the topology
of the images. Christensen et al. solved this problem by applying models of

uids [Chr94b, Chr94c] or hyperelasticity (Rabbitt et al. [Rab95]) which can
handle large deformations.

This chapter presents a coherent description of the elastic and viscous 
uid
continuum models of deformation used in the thesis. By using a consistent
notation, it is shown how elastic and 
uid transformations are closely related to
each other. The assumptions used in di�erent practical models are described,
and the relationship to previous work is shown.

4.1 Introduction

The continuum models, that are presented in this chapter, can all be described
by the sequential relationship between the four factors: Displacement, strain,
stress and force (see �gure 4.1). By displacement we understand the movement
of particles in the continuum. This movement changes the con�guration of
small volume element, and we measure this using strain tensors (in practice 3x3

43
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Physical model

InternalExternal

Stress

Strain

Force

Displacement

Figure 4.1: Relationship between physical entities.

matrices). Using the strain tensors, we can express the elongation, shear etc. of
the volume elements.

Forces are similar to displacements, in that they are applied to particles of
the continuum. To measure their e�ect on volume elements we use the stress
tensor.

Forces and displacements can be seen as external factors that can be ob-
served. Strain and stress are internal mathematical tools to measure the e�ects
of displacements and forces respectively.

The relationship between stress and strain is what determines the actual
physical behaviour of the continuum. We study this relationship closer in the
sections on elastic and viscous 
uid motion, where di�erent models are pre-
sented. Although these models have very di�erent practical behaviours, they
all satisfy the basic assumptions of continuum mechanics: conservation of mass,
force, and momentum.

Indeed, an interesting aspect of this chapter is that the actual physical mod-
els are introduced rather late. This illustrates the fact that elastic and viscous

uid models have a common theoretical basis.

Non-linearities occur both between displacement and strain, and strain and
stress1. Solving the general problems of elasticity and viscous 
uid mechanics
can, therefore, be quite di�cult. To simplify it, some models assume linear
relationships. These simpli�cations are basicly truncated Taylor series, and
only valid for small changes in the variables.

We say that a model is a small displacement/small strain model for com-
pletely linear displacement/stress relationships. When only the strain/stress

1Forces are not always constant and can contribute to the non-linearity of the problem.
For the simplicity of the presentation we ignore that in this chapter.
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relation is linear we say that the model is a large displacement/small strain
model, etc.

4.2 Mathematical preliminaries

This section presents the mathematical conventions used in this and later chap-
ters.

For sets, the plus operator is de�ned as working on non-overlapping sets and
yielding the union of the sets:

A+B � A [ B; A \ B = ; (4.1)

Vectors and matrices are written with bold letters. Lower case signi�es
vectors (eg. v) and upper case matrices (eg. M ). In general, the subelements
of vectors and matrices are denoted vi and Mij respectively. In addition, for

positions in space we use x = [x; y; z]
T
.

The zero vector and zero matrix are de�ned as o and 0 respectively.
Let @f=@x be the partial derivative of the function f. We de�ne:

fxi = @if =
@f

@xi
(4.2)

The gradient operator r is de�ned as:

r =

�
@

@x
;
@

@y
;
@

@z

�T
(4.3)

Used with a scalar function f it yields the gradient vector of the function:

rf = [fx; fy; fz]
T (4.4)

With vectors we override the r as:

ru � (r(uT ))T

= [ux;uy;uz] =

2
4 @1u1 @2u1 @3u1

@1u2 @2u2 @3u2
@1u3 @2u3 @3u3

3
5 (4.5)

The divergence of a vector is implemented using r as:

r � u � div u =rTu = @1u1 + @2u2 + @3u3 = tr(ru) (4.6)

and for matrices as:

r �M � divM = (rTM)T

=

2
4 @1M11 + @2M21 + @3M31

@1M12 + @2M22 + @3M32

@1M13 + @2M23 + @3M33

3
5 (4.7)
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Figure 4.2: Deformation of the body �
.

With ~r we understand the gradient operator wrt. the Eulerian reference
frame (introduced later):

~r =

�
@

@~x
;
@

@~y
;
@

@~z

�
(4.8)

The derivative wrt. the matrix M is de�ned as:

@W

@M
=

�
@W

@Mij

�
(4.9)

The determinant of a matrix M is denoted:

jM j = detM (4.10)

The cofactor matrix CofM of the matrix M is:

CofM = jM jM�T (4.11)

In general we treat tensors as matrices in this text. We do not distinquish
between co-variant and contra-variant tensors, although this is abuse of nota-
tion. Since we only consider the cartesian coordinate system here, there is no
need for this distinction.

4.3 Continuum models

The continuum model, which we present in this section, is the common basis for
the elastic and viscous 
uid models generally found in the literature and used
here.

Part of the notation is super
uous, and some equations are trivial for es-
pecially elastic models. But, it is through this insight, that the text attempts
to provide an understanding of the commonality of the basic set of notations,
equations and axioms.
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x~x + u =

u

x

Figure 4.3: De�nition of displacement.

The presentation builds mostly on [Cia87] for notation and results on elas-
ticity, and on [Car86] for results on 
uid mechanics. Rigid proofs are not given
here and the reader should consult these texts for additional information.

4.3.1 De�nitions

For generality, let us consider the body to be deformed as:

�
 = Closure(
) (4.12)

where 
 is an open connected subset of R3. We call �
 the reference con�gura-
tion.

By a deformation we will understand a smooth, injective and orientation
preserving mapping ' [Cia87] that displaces the particle x = [x1; x2; x3]

T
to

'(x; t) = x+ u(x; t) = ~x(x; t) (4.13)

where u(x; t) = [u1; u2; u3]
T
is the displacement of particle x at time t. We call

~�
 = '(�
) the deformed con�guration.

Lagrangian and Eulerian reference frames

An alternative formulation of equation 4.13 is:

x = ~'(~x; t) = '(~x; t)�1 = ~x� ~u(~x; t) (4.14)

In this case, the displacement has been parametrized in terms of the deformed
variable ~x.

There is an important distinction between the two approaches: In equa-
tion 4.13 particles are tracked using their original position as the independent
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variable. This parametrization is mostly used in elasticity and is called the
Lagrangian reference frame. In 
uid mechanics, tracking particles using their
original position x can be cumbersome for very large deformations. Instead the
current position ~x is used as in equation 4.14. This parametrization is called
the Eulerian reference frame. We use a tilde (~) to denote entities parametrized
using this reference frame. A particle ~x in the Eulerian reference frame at time
t, originated from position x = ~'(~x; t) at time t0.

Note, that displacements and velocities are physical entities and independent
of the reference frame:

u(x; t) = ~u(~x; t)

v(x; t) = ~v(~x; t) (4.15)

In the Lagrangian reference frame the velocities are calculated directly using:

v(x; t) =
@'(x; t)

@t

�
=

@~x(x; t)

@t

�
=

@u(x; t)

@t
(4.16)

But, in the Eulerian reference frame the coordinate system depends on the time
variable, and a full derivative has to be used:

~v(~x; t) =
d

dt
~u(~x; t) (4.17)

With the chain rule we �nd:

d

dt
~u(~x; t) =

@~u

@t

����
(~x;t)

+
X
i

@~u

@~xi

����
(~x;t)

@~xi
@t

����
(x;t)

(4.18)

Using equation 4.16 we write this as:

d

dt
~u(~x; t) =

@~u

@t

����
(~x;t)

+ ~r~u(~x; t) ~v(~x; t) (4.19)

which is called the material derivative of ~u in the Eulerian reference frame.
Let us now consider the integral:

f =

Z
~
(t)

g d~x (4.20)

for the arbitrary function g. We take the material derivative of this integral:

df

dt
=

d

dt

Z
~

g d~x (4.21)

and transform it to the reference con�guration (d~x = jr'(x)jdx):
d

dt

Z
~

g d~x =

d

dt

Z


(gjr'(x)j) dx (4.22)
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In this case, since the volume of integration is independent of the time variable
t, the derivative can be brought inside the integration sign.

d

dt

Z
~

g d~x =

Z



d

dt
(gjr'(x)j) dx (4.23)

Using the result that @jr'(x)j=@t = (r � v)jr'(x)j [Car86] and transforming
back to the deformed con�guration:

d

dt

Z
~

g d~x =

Z
~


�
dg

dt
+ g ~r � ~v

�
d~x (4.24)

Or using the material derivative equation:

d

dt

Z
~

g d~x =

Z
~


�
@g

@t
+ ~r � (g~v)

�
d~x (4.25)

This is the formal statement of the transport theorem.
The material derivative and the transport theorem describe how simple vari-

ables and integrals can be di�erentiated wrt. time in the Eulerian reference
frame.

4.3.2 Strain

To measure the local deformation we introduce the deformation gradient:

r' =
�
'x;'y;'z

�
=

2
4 @1'1 @2'1 @3'1

@1'2 @2'2 @3'2
@1'3 @2'3 @3'3

3
5 (4.26)

Since the deformation is orientation preserving by de�nition, the determinant
of the deformation should satisfy the condition:

jr'(x; t)j > 0; 8x 2 
 (4.27)

jr'(x; t)j is the Jacobian of the transformation and commonly denoted J in
the literature.

We also express the deformation gradient in terms of the displacement gra-
dient ru:

r' = I +ru (4.28)

Using the deformation gradient, we de�ne the right Cauchy-Green strain
tensor2:

C =r'T
r' (4.29)

C is symmetric and positive de�nite because r' is invertible (jr'j > 0).
The strain tensor is supposed to be a measure of the pure deformation of

the domain, and independent of rigid transformations. To investigate whether

2In di�erential geometry, this is also known as the metric tensor
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this is the case, we assume that the deformation ' can be split into a non-rigid
(ud) and rigid (R; t) part:

'(x) = R(x+ ud) + t; R 2 Q3 (4.30)

where Q3 is the set of rotation matrices, ie. orthonormal matrices of size 3 with
determinant +1. The deformation gradient becomes:

r'(x) = Rr(x+ ud) = R(I +rud) = Rr'd(x) (4.31)

Which also follows from the polar factorization theorem ([Cia87], theorem 3.2-
2).

We can now calculate the strain tensor C:

C = r'(x)Tr'(x) = (Rr'd(x))
TRr'd(x)

= r'd(x)
TRTRr'd(x)

= r'd(x)
T
r'd(x) = Cd (4.32)

Thus the strain tensor C is independent of the rigid component. For completely
rigid motion the strain tensor is the identity matrix, C = I .

Another well-known strain tensor is the Green-St. Venant strain tensor3:

E =
1

2
(C � I) =ruT +ru+ruTru (4.33)

The subtraction of I ensures that this tensor is zero for rigid transformations,
and it can, therefore, be seen as a measure of the pure deformation. The factor
1
2 has been introduced for historical reasons.

In general, a number of di�erent strain tensors exist. There is no 'best'
strain tensor, and they can all be derived from each other.

The velocity can be analyzed in a similar fashion. The spatial velocity gra-
dient is de�ned as:

L(x;') =rv(x) (4.34)

The symmetric part of L is called the rate of strain tensor:

D =
1

2
(L+LT ) (4.35)

4.3.3 Forces

We assume that in the deformed con�guration ~�
 with the boundary ~� = @ ~
,
two kinds of forces are applied to the body:

Applied body forces which work on the interior of the body:

~f : ~
! R3 (4.36)

where ~f is the density of the applied body force per unit volume in the
deformed con�guration.

3Also known as the Almansi or Green-Lagrange strain tensor
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Applied surface forces which work on the boundary of the domain:

~g : ~�1 ! R3 (4.37)

where ~g is the density of the applied surface forces per unit surface area
in the deformed con�guration, and ~�1 is a subset of the full boundary
~� = ~�0 + ~�1. Fixed displacements are applied to the other part of the
boundary (~�0).

We note that these forces are given in the Eulerian reference frame. Since
f(x)dx = ~f(~x)d~x and d~x = jr'(x)jdx using the Jacobian, we have that:

f(x) = jr'(x)j ~f(~x) (4.38)

A similar relation exists for the surface forces [Cia87]:

g(x) = jr'(x)j kr'(x)�Tnk ~g(~x) (4.39)

and the mass density
�(x) = jr'(x)j ~�(~x) (4.40)

4.3.4 Equations of motion for a continuum

The elastic and viscous 
uid continuum models all satisfy the basic physical
axioms of balance of mass, and linear and angular momentum. We discuss
these axioms and their implications in general terms in this section. The next
section will introduce model speci�c considerations.

Conservation of mass

The axiom of conservation of mass, means that the total mass of the body is
constant. Constant mass also implies that for an arbitrary volume ~V � ~
 we
can write:

d

dt

Z
~V

~�(~x; t) d~x = 0 (4.41)

where ~� is the density in the deformed con�guration.
Setting g = ~� in the transport theorem (4.25) we get:Z

~V

�
@~�

@t
+ ~r � (~�~v)

�
d~x = 0 (4.42)

Since the volume ~V is an arbitrary subset of the domain, we can extract the
integrand as the continuity equation:

@~�

@t
+ ~r � (~�~v) = 0 (4.43)

For incompressible continua, ~� is constant, and:

~r � ~v = 0 (4.44)
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Stress tensor - conservation of momentum

In this section we consider a small volume element. From the axioms of local
balance of linear momentum and balance of angular moment it follows according
to the Cauchy theorem [Cia87], that for each volume element of the body, there
exists a vector �eld ~t(~x; ~n) and a symmetric tensor �eld ~T (~x), such that:

~t(~x; ~n) = ~T (~x)~n (4.45)

where ~n is the unit outer normal to the surface of the volume element. ~t and
~T are called the Cauchy stress vector and Cauchy stress tensor respectively. At
the boundary of the domain ~t(~x; ~n) = ~g(~x).

The axiom of global conservation of linear momentum can be written for an
arbitrary subset ~V � ~
 as:

d

dt

Z
~V

~�~vd~x =

Z
~V

~f (~x)d~x+

Z
@ ~V

~t(~x; ~n)d~a (4.46)

where ~f is the force working on a volume element in the interior of the body.
Using Gauss's divergence theorem, the transport theorem and the continuity
equation, we rewrite this as:Z

~V

~�

�
@~v

@t
+ ( ~r~v)~v

�
d~x =

Z
~V

~f(~x)d~x+

Z
~V

~r � ~T (~x)d~x (4.47)

After collecting terms and using the material derivative equation:Z
~V

�
~�
d~v

dt
� ~f(~x)� ~r � ~T (~x)

�
d~x = 0 (4.48)

Since this has to hold for any sub-volume of the continuum, the integrand must
be independently zero and we �nd the momentum equation:

~�
d~v

dt
= ~f(~x) + ~r � ~T (4.49)

Summary

In this section we have derived the general equations of motion for a continuum:

~�
d~v

dt
= ~f(~x) +r � ~T (~x); ~x 2 ~
 (4.50)

~g(~x) = ~T (~x)~n; ~x 2 ~� (4.51)

Together with the formulas for displacement, velocity and strain these equations
form a general set of equations for continuum models. In the next section speci�c
models will be introduced linking stress to strain. This linkage is what de�nes
the actual physical characteristics of the continuum.
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We note that equations 4.50-4.51 have similar formulations in the Lagrangian
reference frame. We associate with ~T the non-symmetric �rst Piola-Kircho�
stress tensor T :

T (x) = jr'(x)j ~T (~x)(r'(x))�T = ~T (~x)Cof'(x) (4.52)

The main advantage of this choice is the simple relationship between the diver-
gences of both tensors:

r � T (x) = jr'(x)j ~r � ~T (~x) (4.53)

thus giving equation 4.50 in the Lagrangian reference frame as:�
jr'(x)j~�d~v

dt
=

�
�
d2u

dt2
= f(x) +r � T (x) (4.54)

One can also transform the Cauchy stress vector ~t into a vector in such a way
that:

t(x;n) = T (x)n (4.55)

where n is the normal vector of the undeformed subdomain. It follows, using
equation 4.39, that t(x;n) = g(x) on �1 and we can write equation 4.51 in the
Lagrangian reference frame as:

g(x) = T (x)n; x 2 �1 (4.56)

In some cases a symmetric stress tensor is desirable. We, therefore, de�ne the
second Piola-Kirchho� stress tensor by:

�(x) =r'(x)�1T (x) (4.57)

For elastic motion, equation 4.54 corresponds to harmonic motion. A damp-
ing factor cdu

dt
is often added to give the equation for damped harmonic motion4:

�
d2u

dt2
+ c

du

dt
= f(x) +r � T (x) (4.58)

For static elastic deformation, the motion equation is rewritten as:

o = f (x) +r � T (x) (4.59)

The time derivatives are all zero because there is no temporal change.

4.4 Elastic continuum models

An elastic material is characterized by a deterministic relationship between
stress and strain which is independent of any history.

4The equation for damped harmonic motion is often called the Lagrangian equation of
motion
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The stress/strain relationship of a general class of elastic materials can be
described using the concept of stored energy. These materials are called hyper-
elastic materials, and the stored energy function W completely determines the
stress/strain relation by:

�(x;') =r'(x)�1T (x) =
@W

@E
(x;') (4.60)

where E is the Green-St. Venant strain tensor (4.33).
Although these hyperelastic materials do not cover all elastic material mod-

els, they form a general class of materials which covers most practical material
models.

The potential strain energy for the body �
 can be written using the stored
energy function as:

Estrain(') =

Z


W(x;')dx (4.61)

For isotropic and homogeneous materials the stored energy function is com-
pletely characterized by the socalled principal invariants of the right Cauchy-
Green strain tensor C. These invariants appear as the coe�cients in the charac-
teristic polynomial jC��I j, and are written in terms of the right Cauchy-Green
and Green-St. Venant strain tensors as:

�1 = trC = 3 + 2trE

�2 = 1
2 [(trC)2=trC2] = 3 + 4trE + 2[(trE)2 � trE2]

�3 = jCj = j2E + I j
(4.62)

Using these invariants the stored energy function for the general hyperelastic
material can be formulated as an in�nite series:

W =
1X

rst=0

Crst(�1 � 3)r(�2 � 3)s(�3 � 1)t; C000 = 0 (4.63)

It is interesting to note, that the third invariant measures the volume change
of an in�nitesimal volume element. For incompressible materials this invariant
must be trivially 1. An often used approach to enforce the incompressibility
constraint, is to introduce a Lagrange multiplier � which then works as an
internal pressure, forcing the material to �nd an incompressed equilibrium state.
The incompressible version of the stored energy can be written as:

Wi =

1X
rs=0

Ci
rs(�1 � 3)r(�2 � 3)s + �(�3 � 1); Ci

00 = 0 (4.64)

In the next sections the Mooney-Rivlin and St. Venant Kirchho� material mod-
els are introduced. TheMooney-Rivlin material model is a completely non-linear
model in both the stress/strain and the displacement/strain relationships. The
St. Venant Kirchho� material model is linear in the stress/strain relationship,
but non-linear in strain/displacement. Because it is the simplest of the non-
linear hyperelastic material models, it is often used. More popular, though, is
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the linearized version, where the strain/displacement relationship is made linear
by the assumption of in�nitesimal displacements. This linearized version of the
St. Venant Kirchho� model is also known as linear elasticity or Hooke's Law.

4.4.1 Mooney-Rivlin materials

The compressible Mooney-Rivlin material model is described by the approxima-
tion to the general stored energy function by:

W = C100(�1 � 3) + C010(�2 � 3) + �(
p
j�3j) (4.65)

�(�) = c�2 � d log �; c; d > 0

The �-function ensures that large volume changes are accompanied by in�nite
stress.

The incompressible version ignores the third element and can be written as:

W = C100(�1 � 3) + C010(�2 � 3); j�3j = 1 (4.66)

The Mooney-Rivlin material model has been used in surgery simulation and
for general modeling of human tissue, eg. [Sag94, Beg88].

4.4.2 St. Venant Kirchho� materials

For Crst = 0 except for

C100 = � C200 =
�+ 2�

8
C010 = ��

3
(4.67)

we get the St. Venant Kirchho� material model:

W =
�

2
(trE)2 + �trE2 (4.68)

where � and � are the Lam�e material constants.
Note, that this material model has a linear stress/strain relationship, since:

� =
@W

@E
= �(trE)I + 2�E (4.69)

and that the volume change measured by �3 does not play any role.
The St. Venant Kirchho� material has been used in computer graphics (eg.

Terzopoulos [Ter88]).

4.4.3 Linear elastic materials

Linear elasticity is with no doubt the most well-known of the elastic models.
It has the remarkable property, that it is completely linear in terms of the
force/displacement relationship. Systems derived from the linear elastic op-
erator are, consequently, easy to solve compared to the other elastic models
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which in general are non-linear. Unfortunately, the assumption leading to the
linerization of the St. Venant Kirchho� material model is seldom satis�ed.

The basic assumption is that the non-linear Green-St. Venant strain tensor:

E =
1

2
(C � I) = 1

2
[ruT +ru+ruTru] (4.70)

can be approximated by the linearized strain tensor

El =
1

2
[ruT +ru] (4.71)

This is only valid for in�nitesimal displacements, since in that case the quadratic
term ruTru disappears.

Using the linearized Green-St. Venant strain tensor we can write the stored
energy function for the linear approximation of the St. Venant Kirchho� material
model as:

Wl =
�

2
(trEl)

2 + �trE2
l (4.72)

The linear elastic material model is popularly known as Hooke's Law.
To follow the "engineering" notation often used with linear elasticity, we

introduce the engineering strain vector �:

� = [ux; vy; wz ; uy + vx; uz + wx; vz + wy]
T (4.73)

The linearized strain tensor can be written as:

El =
1

2
[ruT +ru]

=

2
4 ux

1
2 [uy + vx]

1
2 [uz + wx]

1
2 [uy + vx] vy

1
2 [vz + wy ]

1
2 [uz + wx]

1
2 [vz + wy] wz

3
5 (4.74)

We note that:

trEl = [111000]� = ht�

trE2
l = �TDiag

�
111

1

2

1

2

1

2

�
� = �TH� (4.75)

We can thus rewrite the linearized St. Venant Kirchho� stored energy function
as:

Wl =
�

2
(trEl)

2 + �trE2
l

=
�

2
(hT �)2 + ��TH�

=
1

2
�T [�hhT + �H]�

=
1

2
�TM� =

1

2
�T� (4.76)
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where � =M� is the engineering stress vector and M is the material matrix:

M = �hhT + �H =

2
6666664

�+ 2� � � 0 0 0
� �+ 2� � 0 0 0
� � �+ 2� 0 0 0
0 0 0 � 0 0
0 0 0 0 � 0
0 0 0 0 0 �

3
7777775

(4.77)

To those familiar with linear elasticity, the stored energy function might be more
recognizable, when written using the actual partial derivatives:

Wl =

3X
i=1

3X
j=1

�

2
(@iui) (@juj) +

�

4
(@jui + @iuj)

2
(4.78)

The governing partial di�erential equation (PDE) for static linear elastic defor-
mation is formulated using equation 4.69:

o = f (x) +r � T (x) (4.79)

= f (x) + ��u(x) + (�+ �)r(r � u(x))

where � =rT
r is the Laplacian operator.

The linear elastic material model has been used in both computer graphics
(eg. [Gou89, Pie92, BN96c]), and image processing (eg. [Baj89, Mil93]).

Two other well-known linear material models are the Laplacian or membrane
model:

Wl
membrane =

X
i=1

(@iui)
2

(4.80)

0 = f (x) +�u(x)

and the biharmonic or thin-plate model:

Wl
thin�plate =

X
i=1

X
j=1

�
@2ijui

�2
(4.81)

0 = f(x) +�2u(x)

The membrane model can be seen as a simpli�cation of the linear elastic model,
where the cross-directional e�ects due to r(r � u(x)) are ignored.

These models have been used extensively in image processing and computer
vision, both alone (eg. [Boo89]) and together (eg. [Kas88, Coh89]).

4.5 Viscous 
uid continuum models

In contrast to elastic models the strain in 
uid models is history dependent.
Elastic models are characterized by spatial smoothing of the displacement �eld.
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Fluid models, on the other hand, are characterized by spatial smoothing of the
velocity �eld. In practice, this means that any displacement can be obtained
given enough time because the internal stresses in the 
uid disappear temporar-
ily.

The 
uid model used in this thesis is de�ned by the viscous 
uid Navier-
Stokes equations, which we derive below.

As a �rst step, the viscous and pressure contributions to the stress tensor
are written explicitly:

~T = ~V � ~pI (4.82)

where ~V is the reduced stress tensor representing the viscous e�ects, and ~p is
the pressure.

The basic assumption of the Navier-Stokes equations is based on Stokes'
hypothesis. This hypothesis states that ~V is a function of the deformation rate

tensor ~D = 1
2 (
~L + ~L

T
) which is the symmetric part of the spatial velocity

gradient ~L (equation 4.34). The relation is:

~V = 2� ~D + �( ~r � ~v)I (4.83)

Inserting this into the momentum equation gives:

~�
d~v

dt
= ~f � ~r~p+ � ~�~v + (�+ �) ~r( ~r � ~v) (4.84)

where ~� = ~r
T ~r is the Laplacian5.

For very low Reynold's number 6 
ow, a simpli�ed model is obtained when

we ignore the pressure gradient ~r~p and the inertial term ~�d~v
dt

[Chr94c]:

o = ~f + � ~�~v + (�+ �) ~r( ~r � ~v) (4.85)

Surprisingly, this is actually the linear elasticity PDE (equation 4.80), where
the displacement u has been replaced by the velocity ~v. This similarity is used
extensively to transfer results from linear elasticity to the solution of the viscous

uid problem.

4.6 Eigen-function parametrization of the linear
elastic operator

In this section we focus on the linear operator associated with linear elasticity:

Lu = ��u(x) + (�+ �)r(r � u(x)) (4.86)

Following the approach of Miller, Christensen, et al. [Chr94, Chr94c, Mil93], we
reparametrize the linear elasticity operator using the eigen-functions and eigen-
values for a speci�c case of boundary conditions. Since mapping the boundary

5The � and � parameters are not the same as those used for linear elastic transformations.
We use the same notation anyway for simplicity

6The Reynold's number is a measure of the 'velocity' or complexity of the 
uid motion.



4.6. EIGEN-FUNCTION PARAMETRIZATIONOF THE LINEAR ELASTIC OPERATOR59

onto the boundary is important later in this work, the sliding boundary condi-
tions are chosen. They are de�ned for the [0; 1]3 domain (the unit cube) using
the Dirichlet boundary conditions:

u1(0; x2; x3) = u2(x1; 0; x3) = u3(x1; x2; 0) = 0 (4.87)

u1(1; x2; x3) = u2(x1; 1; x3) = u3(x1; x2; 1) = 0

and Neumann boundary conditions:

@u1
@x2

����
(x1;0;x3)

=
@u1
@x2

����
(x1;1;x3)

= 0 (4.88)

@u1
@x3

����
(x1;x2;0)

=
@u1
@x3

����
(x1;x2;1)

= 0

@u2
@x1

����
(0;x2;x3)

=
@u2
@x1

����
(1;x2;x3)

= 0

@u2
@x3

����
(x1;x2;0)

=
@u2
@x3

����
(x1;x2;1)

= 0

@u3
@x2

����
(0;x2;x3)

=
@u3
@x2

����
(1;x2;x3)

= 0

@u3
@x3

����
(x1;0;x3)

=
@u3
@x3

����
(x1;1;x3)

= 0

The sliding boundary conditions map the unit cube onto the unit cube, in such
a way that boundary points are allowed to slide along the boundary.

With these boundary conditions the eigen-functions and eigen-values have
been derived by Miller, Christensen, et al. [Mil93, Chr94, Chr94c]. See [Chr94c]
for the complete derivation. To simplify the equations a set of help functions
are �rst de�ned:

scc(x) = sin(i�x1) cos(j�x2) cos(k�x3) (4.89)

csc(x) = cos(i�x1) sin(j�x2) cos(k�x3)

ccs(x) = cos(i�x1) cos(j�x2) sin(k�x3)

With these de�nitions the orthogonal eigen-functions are given as:

�ijk1(x) = �1

2
4 i scc(x)

j csc(x)
k ccs(x)

3
5 (4.90)

�ijk2(x) = �2

2
4 �j scc(x)

i csc(x)
0

3
5

�ijk3(x) = �3

2
4 ik scc(x)

jk csc(x)
�(i2 + j2) ccs(x)

3
5
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The eigen-values corresponding to the eigen-functions are:

�ijk1 = ��2(2�+ �)(i2 + j2 + k2) (4.91)

�ijk2 = �ijk3 = ��2�(i2 + j2 + k2)

For i = j = k = 0 the �i are zero, otherwise they are chosen to ensure that
the eigen-functions are normalized, ie. the inner product of each eigen-function
with itself is one:

< �ijkm;�ijkm > =

Z


�Tijkm�ijkmdx = 1 (4.92)

For i+ j + k > 0 this is obtained when:

�1 =

s
8

�ijk(i2 + j2 + k2)
(4.93)

�2 =

s
8

�ijk(i2 + j2)

�3 =

s
8

�ijk(i2 + j2)(i2 + j2 + k2)

where

�ijk =

8<
:

1 if none of i,j,k are zero
2 if one of i,j,k are zero
4 if two of i,j,k are zero

(4.94)

The function � was not included in the work of Miller, Christensen, et al. [Chr94c],
but in the non-general cases, where one or more of the i; j; k parameters are zero,
it cannot be omitted.

Using the orthonormal eigen-function basis we write the displacement �eld
as:

u(x) = lim
IJK!1

IX
i=0

JX
j=0

KX
k=0

3X
r=1

�ijkr�ijkr(x) (4.95)

where �ijkr are the eigen-function coe�cients for the displacement �eld.
The number of basis functions in the decomposition of the displacement �eld

is determined by I , J and K. The �nite truncation of the series to the common
N is denoted by:

uN (x) =

NX
i;j;k=0

3X
r=1

�ijkr�ijkr(x) (4.96)

We now apply the linear operator L to the displacement �eld:

LuN (x) = L
X
ijkr

�ijkr�ijkr(x) =
X
ijkr

�ijkrL�ijkr(x) (4.97)

=
X
ijkr

�ijkr�ijkr�ijkr(x)

where we used the linearity of the operator.
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4.6.1 Projection of forces onto the eigen-function basis

Let us consider the static elastic deformation equation using linear elasticity:

Lu(x) + f(x) = o (4.98)

where f is the applied force �eld. Using the truncated decomposition in equa-
tion 4.97 we rewrite this as:X

ijkr

�ijkr�ijkr�ijkr(x) + f(x) = o (4.99)

We take the inner product < a; b >=
R
aT bdx of the equation with �lmns(x)

and get: X
ijkr

�ijkr�ijkr < �ijkr(x);�lmns(x) > + < f(x);�lmns(x) > = o

m
�lmns�lmns+ < f (x);�lmns(x) > = o

m
�lmns = � 1

�lmns

< f (x);�lmns(x) > (4.100)

where the fact, that < �ijkr(x);�lmns(x) > is zero for (ijkr) 6= (lmns), was
used to pick out the lmns element of the summation, in the step from line 1 to
line 2. We call equation 4.100 the decomposition projection equation.

This result is interesting, since it provides us with a simple way of deter-
mining the coe�cients for the eigen-function decomposition of the displacement
�eld given a force f . Indeed the eigen-basis coe�cients are simply the projec-
tion by the inner product of the force onto the eigen-functions, scaled by the
inverse of the eigen-values.

4.6.2 2D eigen-function basis

For completeness we also give the eigen-functions and eigen-values for the 2D
version of the linear elastic operator:

Lu = ��u(x) + (�+ �)r(r � u(x)) (4.101)

With the sliding boundary conditions on the domain [0; 1]2:

u1(0; x2) = u2(x1; 0) = 0 (4.102)

u1(1; x2) = u2(x1; 1) = 0

@u1
@x2

����
(x1;0)

=
@u1
@x2

����
(x1;1)

= 0 (4.103)

@u2
@x1

����
(0;x2)

=
@u2
@x1

����
(1;x2)

= 0
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the eigen-functions are:

�ij1(x) = �1

�
i sc(x)
j cs(x)

�
(4.104)

�ij2(x) = �2

� �j sc(x)
i cs(x)

�

where

sc(x) = sin(i�x1) cos(j�x2) (4.105)

cs(x) = cos(i�x1) sin(j�x2)

The eigen-values corresponding to the eigen-functions are:

�ij1 = ��2(2�+ �)(i2 + j2) (4.106)

�ij2 = ��2�(i2 + j2)

For i = j = 0 the �i are all zero, otherwise they are given by:

�1 = �2 =

s
4

�ij(i2 + j2)
(4.107)

�ij =
1

2
�ij0 (4.108)

4.7 Summary

This chapter has presented the joint theoretical basis of elastic and viscous 
uid
models. A comprehensive understanding of this theory is necessary to take full
advantage of the continuum models and to avoid the pitfalls created by the
many assumptions used in the �eld.

The following chapters all build on this theory, and thus refer to this chapter
repeatedly.



Chapter 5

Non-rigid Registration

using Continuum Models

The subject of this chapter is non-rigid registration using physical continuum
models. The �rst section de�nes the non-rigid registration problem. In the
second section elastic registration methods are discussed.

Some of these methods use linear models of elastic deformation. Unfortu-
nately, registration using linear elasticity often violates the inherent small defor-
mation assumption. For large deformations the topology cannot be guaranteed
and an alternative approach is needed.

The next section describes such an alternative registration method using vis-
cous 
uid continuum models, which were originally proposed by Christensen et
al. [Chr93, Chr94b, Chr94c, Chr96]. These models have the advantage that they
allow large complex deformations and implement free registration as opposed
to elastic registration.

The chapter then proceeds to propose a new algorithm for viscous 
uid
registration, which is at least an order of magnitude faster than the previous
algorithm by Christensen et al. This speedup is important, since it allows the
viscous 
uid registration algorithm to be run on an ordinary single-processor
workstation, instead of the massively parallel computer needed by the algorithm
of Christensen et al.

The algorithm uses convolution with a new �lter which implements the linear
elasticity operator described in the previous chapter.

Thirion [Thi96] has recently proposed a 'demon'-based algorithm for free
registration of medical images. We show that the work of Thirion is actually
a primitive version of the 
uid registration algorithm, and discuss the possible
consequences of the use of the Gaussian �lter in Thirion's work, instead of our
linear elasticity �lter. The advantage of the Gaussian �lter is that it is separable
and thus allows fast computation.

63
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5.1 De�ning the problem

Following the de�nitions of Christensen et al. [Chr93, Chr94b, Chr94c, Chr96]
the non-rigid registration problem is regarded as a question of mapping or warp-
ing a template image onto an individual study image.

The template image can be part of an anatomical atlas1, which possibly in
addition to the template image includes other modalities, topological informa-
tion, functional information, etc.

Denote the template image T (x) and the study image S(x) where x 2 [0; 1]3.
Formulated in the Lagrangian reference frame the purpose of the registration is
consequently to �nd a transformation '(x) = x + u(x) that maps T (x) onto
S(x), in such a way that T (x) matches S('(x)). In the Eulerian reference frame
we seek a transformation ~'(~x) = ~x� ~u(~x) so that T (~'(~x)) matches S(~x).

The transformation '(x) : 
 ! ~
 must be homeomorphic to ensure that
the transformation maintains the topology and structure of the original tem-
plate image. A homeomorphic mapping is de�ned as being continuous, 1-to-1
and onto. A thorough discussion of the homeomorphism can be found in Chris-
tensen [Chr94c].

In practice, to ensure that the transformation is homeomorphic, we demand
that the boundary of the domain is mapped onto itself, and that the Jacobian of
the transformation is greater than zero everywhere. The boundary requirement
is satis�ed, when �xed or sliding boundary conditions are employed, as they are
with the linear elastic eigen-basis introduced in the section 4.6. Also note that
the concatenation of homeomorphic mappings yields a homeomorphic mapping.

5.2 Elastic registration

Bajcsy et al. [Baj89, Gee93] were the �rst to describe 3D voxel-based non-rigid
registration of medical images using elastic models. Building on initial work by
Broit [Brt81], they modelled the template image as a linear elastic solid and
deformed it using forces derived from an approximation of the local gradient of
a correlation based similarity measure. In addition they used multi-resolution
to increase the speed.

Miller, Christensen, et al. [Mil93, Chr94] also used the linear elastic defor-
mation model, but applied a Gaussian sensor model, ie. a least-squares measure
of the grey-level di�erences in the two images. To regularize the registration
problem they �rst registered the images using a truncated linear elastic eigen-
basis (as de�ned in section 4.6), and then followed this initial registration with
a registration using the full linear elastic model.

Christensen et al. [Chr94c] later realized, that using the linear elastic con-
tinuum model was not appropriate, since the assumption of in�nitisimal defor-
mation was frequently violated for the kind of deformation that is required in
non-rigid registration. The transformation is not guaranteed to be homeomor-
phic and, therefore, not well-behaved.

1Called anatomical textbook in Christensen et al. [Chr93, Chr94b, Chr94c, Chr96]
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Figure 5.1: The result of registering a 2D square to a rectangle using linear elas-
tic registration. Top: Template and study image. Bottom: Result and deformed
grid.

The group has since then proposed two non-rigid registration methods which
satisfy the large deformation requirement. First Christensen et al. [Chr93,
Chr94b, Chr94c, Chr96] proposed the 
uid registration method which we will
discuss in the next section, and later Rabbitt et al. [Rab95] proposed the use of
a non-linear (unspeci�ed) hyperelastic model, instead of the linear elastic model
used previously in elastic registration. Rabbitt optimized a 2D example using
non-linear Finite Elements.

Following our de�nitions, the 
uid registration approach by Christensen et
al. allows free registration, and the approach of Rabbitt et al. elastic registration.
Both these methods are therefore useful and well-behaved algorithms in their
respective classes of registration methods.

Examples of linear elastic and viscous 
uid registration using the algorithms
of Miller, Christensen, et al. [Mil93, Chr93, Chr94, Chr94b, Chr94c, Chr96] are
shown in �gures 5.1 and 5.2, where a 2D square is registered to a rectangle. Note,
how the elastic e�ect limits the possible deformation of the elastic registration,
whereas the 
uid algorithm allows full registration of the template to the study



66CHAPTER 5. NON-RIGID REGISTRATIONUSING CONTINUUMMODELS

Figure 5.2: The result of registering a 2D square to a rectangle using viscous 
uid
registration. Top: Template and study image. Bottom: Result and deformed
grid.
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image. This was also illustrated in �gure 2.1 in chapter 2.
The next section describes the viscous 
uid registration algorithm used by

Christensen et al. and then continues to propose a new and faster algorithm.

5.3 Viscous 
uid registration

In [Chr93, Chr94b, Chr94c, Chr96] Christensen et al. described a free regis-
tration approach in which they use a viscous 
uid model to control the defor-
mation. The template image is modelled as a thick 
uid which 
ows out to
match the study, under the control of the same Gaussian sensor model used
in [Chr94, Mil93]. In [Chr94c] Christensen argues that this Gaussian sensor
model is theoretically better than correlation based similarity measures.

Unfortunately, the algorithm proposed by Christensen et al. is rather slow.
They originally implemented the algorithm using a massively parallel
DECmpp 128x64 MasPar computer, on which the algorithm used on the or-
der of 5-10 minutes for 2D and 2-6 hours for 3D registrations. In a recent
paper [Chr96] they show estimates of the execution time on a MIPS R4400
processor on the order of 2 hours for 2D and 7 days for 3D. In practice this
means that the algorithm is not useful unless a massively parallel computer is
available.

The contribution of this chapter is a new fast algorithm based entirely on
convolution with �lters, which gives a speedup of at least an order of magnitude.

The original viscous 
uid algorithm by Christensen et al. [Chr93, Chr94b,
Chr94c, Chr96] is �rst described. The viscous 
uid model is introduced along
with the force �eld and the numerical solution method. We discuss the core part
of Christensen's numerical solution, and introduce the general idea behind the
convolution approach, which is proposed to increase the speed of the method.
And �nally, the new �lter for the convolution approach is derived.

5.3.1 Viscous 
uid model

Following Christensen et al., the viscous 
uid PDE de�ned in equation 4.85 is
used. Note, that the viscous 
uid PDE was derived here without introducing the
mass source term � that Christensen et al. use. Although, they emphasize the
introduction of this mass source term they quickly proceed to remove it, using
the assumption of low Reynold's number 
ow (which is also used here). In the
simpli�ed models which both Christensen et al. and this text use, this mass
source term is consequently without in
uence (although theoretically relevant).

In the Eulerian framework we can write the partial di�erential equation
(PDE) for the viscous 
uid deformation of the template as (equation 4.85):

� ~�~v(~x) + (�+ �) ~r( ~r � ~v(~x)) + ~f (~x; ~u(~x)) = 0 (5.1)

where ~� = ~r
T ~r is the Laplacian operator, and � and � are controlling pa-

rameters. The force �eld ~f(~x; ~u(~x)) is used to drive the 
ow.
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For a constant force ~f this is the PDE for linear elasticity working on the
instantaneous velocity �eld ~v. The equation, consequently, works by elasticly
smoothing the instantaneous velocity �eld of the 
uid in the Eulerian reference
frame.

The term ~�~v is called the viscous term because it constrains the velocity
�eld spatially. The ~r( ~r � ~v) term allows for contraction or expansion of the

uid.

5.3.2 Force �eld

The force �eld is the link between the physical model of the 
uid and the image
data. It is crucial for the success of the registration algorithm, and can take on
many forms as shown in chapter 3 on multimodality voxel similarity measures.
In a statistical framework it is called the sensor model.

Bajcsy et al. [Baj89] used the local gradient of the normalized cross-cor-
relation of a small region in the template image T with a neighbourhood in
the study image S. To smooth the local cost-function they used a quadratic
Taylor series expansion of the cost-function around each voxel. In addition
the cross-correlation function were projected onto a truncated series of Hermite
polynomials to enhance the response of particular features such as edges.

Miller, Christensen et al. [Mil93, Chr93, Chr94, Chr94b, Chr94c, Rab95,
Chr96] have used a Gaussian sensor model throughout their work. For MRI
images this Gaussian sensor model appears to be an appropriate model of the
variation between the registered template and study images [Chr94c, McV85].
But for other modalities such as CT it might not be appropriate. It is used here
for CT anyway because of it's simplicity.

The cost function for the Gaussian sensor model is written as the sum of
squared di�erences between the two images:

C(T (~x); S(~x); ~u) =
1

2

Z
~

jT (~x� ~u(~x; t))� S(~x)j2d~x (5.2)

The expectation of this function is zero when the images are perfectly registered.
The force �eld is determined as the variation of the cost-function wrt. the

displacement �eld:

~f(~x; ~u(~x; t)) = �(T (~x� ~u(~x; t))� S(~x))rT j~x�~u(~x;t) (5.3)

This force function has two terms. The rT jx=~x�~u(~x;t) term is the gradient of

the template image in the Lagrangian reference frame. It responds to intensity
changes in the template image, such as edges and ridges, and can be compared
to the demons in Thirion [Thi96], which act as 'tra�c wardens' on the edge of
image objects by determining the local force �eld.

The second term T (~x � ~u(~x; t)) � S(~x) scales the �rst term, such that in
positions with large intensity di�erences, movement is encouraged and in similar
regions movement is discouraged. The force �eld is consequently zero in regions
that are locally similar.
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Although the Gaussian cost function is minimized, when the images are reg-
istered, the force �eld will not necessarily lead us to this minimum. There might
be many local minima. In addition, since the force �eld for the Gaussian sensor
model is derived based on only one voxel and the �nite di�erence estimators
footprint, there is likely to be more local minima than when the force �eld is
determined using a small region as Bajcsy et al. do.

Region-based approaches like that of Bajcsy et al., which can be compared to
the image pro�les used by Cootes et al. [Coo95] in their Active Shape Models,
use more information to build the local force �eld and can, consequently, be
expected to be better and more robust.

On the other hand, region-based local force �elds incur an added compu-
tational cost. Since the viscous 
uid registration algorithm discussed here is
already time consuming, we are forced to use the Gaussian sensor model.

5.3.3 Numerical solution

Solution of the viscous 
uid registration problem requires solving the joint
set of equations determined by the viscous 
uid PDE, the material derivative
(eq. 4.19), and the force �eld equation de�ned above [Chr94c]:

� ~�~v(~x; t) + (�+ �) ~r( ~r � ~v(~x; t)) + ~f(~x; ~u(~x; t)) = o (5.4)

~f(~x; ~u(~x; t)) = �(T (~x� ~u(~x; t))� S(~x))rT j~x�~u(~x;t) (5.5)

@~u(~x; t)

@t
= ~v(~x; t)� ~r~u(~x; t)~v(~x; t) (5.6)

This set of equations includes non-linearities in both the force and the material
derivative. To solve it, Euler integration is applied over time, using a forward
�nite di�erence estimate of the time derivative in equation 5.6:

~u(~x; ti+1) = ~u(~x; ti) + (ti+1 � ti)(I � ~r~u(~x; ti))~v(~x; ti)

= ~u(~x; ti) + (ti+1 � ti) ~r ~'(~x; ti)~v(~x; ti) (5.7)

The solution can be found by iteratively solving equation 5.4 for the instanta-
neous force determined by equation 5.5, and integrating over time using equa-
tion 5.7.

Regridding

In section 5.1 we discussed the requirements for the transformation to be well-
formed, ie. homeomorphic. One of the requirements were that the transforma-
tion should have a non-zero Jacobian. From a theoretical point of view the
Jacobian could be negative or positive, but to follow the de�nitions for the
continuum models, we require the deformation to have a positive Jacobian, ie.
J = j ~r ~'(~x; ti)j > 0.

The requirement for a non-zero Jacobian can also be seen from the Euler
integration equation 5.7. Reliable Euler integration requires a well-conditioned
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transformation gradient ~r~'(~x; ti). Since the Jacobian provides a measure of
the condition of ~r~'(~x; ti) we get the same requirement that J 6= 0.

The transformation becomes singular for large curved transformations. To
evade this problem, the regridding method of Christensen [Chr94c] is used. Ev-
ery time the Jacobian J drops below 0:5 a new template is generated by applying
the current deformation. The displacement �eld is set to zero, whereas the cur-
rent velocities remain unchanged. The total deformation becomes the concate-
nation of the displacement �elds, associated with the sequence of propagated
templates. Remember, that the concatenation of homeomorphic mappings is a
homeomorphic mapping.

Algorithm

The complete algorithm for solving the viscous 
uid registration problem be-
comes [Chr94c]:

1. Let i = 0 and ~u(~x; 0) = 0

2. Calculate the body force ~f(~x; ~u(~x; ti)) using equation 5.5.

3. If ~f (~x; ~u(~x; ti)) is below a threshold for all ~x, then STOP.

4. Solve the linear PDE equation 5.4 for instantaneous velocity ~v(~x; ti) and
force ~f (~x; ~u(~x; ti)).

5. Choose a timestep (ti+1 � ti) so that k(ti+1 � ti) ~r ~'(~x; ti)~v(~x; ti)k <
d~umax, where d~umax is the maximal 
ow distance allowed in one iteration
(0.7 in this work).

6. Prepare for Euler integration using equation 5.7.

7. If the Jacobian J = j ~r~'(~x; ti)j becomes less than 0.5 with the prepared
Euler integration, then regrid the template.

8. Execute the Euler integration using equation 5.7.

9. i = i+ 1, goto 2

The only remaining question is how to solve the PDE equation in step 4. We
discuss this in the following section.

5.3.4 Solving the linear PDE

In the algorithm shown above, the core problem is solving the linear PDE:

~L~v = � ~�~v + (�+ �) ~r( ~r � ~v) = � ~f (5.8)

for constant force and time. In practice, solving this PDE is the most time
consuming part of the 
uid registration. The contribution of this chapter is a
fast way of doing this.
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As seen previously, for constant force ~f the PDE is linear, and the linear
operator ~L is the linear elasticity operator working on ~v. Linear elastic problems
are normally solved using implicit �nite element or �nite di�erence methods.
But in the case of images, we assign nodes in the elastic model to each pixel
or voxel. The size of the problem is, therefore, huge and in practice unsolvable
with these techniques.

Christensen et al. [Chr93, Chr94b, Chr94c, Chr96] used successive overre-
laxation (SOR), with checker board update, to solve the linear elastic problem.

We suggest solving the linear PDE with multi-resolution convolution. Using
the linearity of the PDE and the superposition principle, we create a �lter as
the impulse response of the linear operator ~L and, subsequently, apply this �lter
to the force �eld ~f .

There is an algorithmic simularity between the SOR algorithm and the con-
volution approach proposed here, since the SOR algorithm can be seen as re-
cursive convolution with a small �lter. But, where the SOR algorithm requires
many iterations to �nd the solution of the PDE, our approach gives a closed-
form solution directly.

This work has been inspired by the work of Nielsen et al. [Nie94], who show
that Tikhonov regularization can be implemented using Gaussian scale-space,
and Thirion [Thi96], who propose a 'demon'-based registration algorithm, which
we will demonstrate later, is an approximation to the viscous 
uid registration
problem.

5.3.5 Convolution �lter for linear elasticity

In this section, we develop the convolution �lter used to solve the linear PDE.
First the impulse response of the linear operator is determined in the linear
elasticity eigen-basis. The impulse response of a linear operator is a �lter that
implements the operator. Finally, the impulse response is discretized to get a
discrete �lter.

Determining the impulse response of ~L
The impulse response in the direction of ~x1 is determined as the displacement
�eld corresponding to an impulse force ~f c applied in the middle ~xc of the do-
main:

~xc =

2
4 0:5

0:5
0:5

3
5 (5.9)

~fc =

2
4 �(~x� ~xc)

0
0

3
5 (5.10)

(5.11)

where �(~x) is Dirac's delta.
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Using the result of section 4.6.1 in the previous chapter, we apply the de-
composition projection equation 4.100 to the impulse force ~fc to get the decom-
position coe�cients of the impulse response:

�lmns = � 1

�lmns

< ~fc;�lmns(~x) >

= � 1

�lmns

�~x1lmns(~xc) (5.12)

where �~x1lmns is the ~x1-coordinate of �lmns.
The coe�cients are inserted into the equation for the decomposition of the

displacement �eld. After some rearrangement of the terms, which is shown in
appendix B, the result becomes:

~v(~x) =

1X
ijk

3X
r=1

�ijkr�ijkr(~x)

=
1X
ijk

3X
r=1

� 1

�ijkr
�~x1ijkr(~xc)�ijkr(~x)

=
8

�2�(2�+ �)

1X
ijk=0

scc(~xc)

(i2 + j2 + k2)2�ijk2
4 (�i2 + (2�+ �)(j2 + k2))scc(~x)

�ij(�+ �)csc(~x)
�ik(�+ �)ccs(~x)

3
5 (5.13)

This equation gives us the response of the linear operator ~L for an impulse force
in the ~x1 direction applied in ~xc, ie. the impulse response. The impulse response
for the other directions are determined by simple rotation of the response for
the ~x1 direction. In the next section, we will see how this impulse response can
be used to determine a discrete �lter implementing the linear operator ~L.

Discretizing the impulse response

In general the impulse response of the linear operator is the linear �lter imple-
menting the operator. In the continuous case, a force applied to a single point
yields an in�nitely large displacement of this particular point. However, in the
discrete case we sample the �lter on a discrete grid, and apply a lowpass �lter-
ing with a cut-o� at the Nyquist frequency, to eliminate aliasing from higher
order frequency components. The force is thereby smoothed over a small area
or volume.

We note that the decomposition of the impulse response based on the eigen-
function basis is a frequency based decomposition. Large i, j and k correspond
to high frequencies and small to low frequencies. An ideal lowpass �ltering of
the impulse response can, therefore, be performed by truncating the sequence
at N instead of summing to in�nity.
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The sampled �lter is de�ned with dimensions D � D � D, D odd, in the
domain [0; 1]3. The sampling interval is consequently � = 1=(D � 1) which
Shannon's sampling theorem relates to the cut-o� frequency f by � � 1=2f .
From equation 5.13 the frequencies corresponding to the summation variables
are determined:

fi =
1

2
i fj =

1

2
j fk =

1

2
k (5.14)

and the common truncation point becomes i = j = k = N = D � 1. We gather
everything in:

Theorem 5.1 Consider a 3D �lter of size D�D�D, D odd, and let the lattice
be addressed by ~y = [~y1; ~y2; ~y3]

T , where ~yi 2 [�D�1
2 ; D�12 ] \ N , r = 1; 2; 3. The

�lter implementing the 3D linear elastic operator ~L for the ~x1 direction is then:

~v(~x) =
8

�2�(2�+ �)

D�1X
ijk=0

scc(~xc)

(i2 + j2 + k2)2�ijk2
4 (�i2 + (2�+ �)(j2 + k2))scc(~x)

�ij(�+ �)csc(~x)
�ik(�+ �)ccs(~x)

3
5

where scc(~x), csc(~x), and ccs(~x) are de�ned in section 4.6, and

~x =
1

D � 1
~y +

2
4 0:5

0:5
0:5

3
5 ~xc =

2
4 0:5

0:5
0:5

3
5 (5.15)

2

A �lter for 2D linear elasticity can be derived in a similar fashion (see Bro-
Nielsen and Gramkow [BN96d]):

Theorem 5.2 Consider a 2D �lter of size D�D, D odd and let the lattice be
addressed by ~y = [~y1; ~y2]

T , where ~yi 2 [�D�1
2 ; D�12 ] \ N , r = 1; 2. The �lter

implementing the 2D linear elastic operator ~L for the ~x1 direction is then:

~v(x) =
4

�2�(2�+ �)

PD�1
ij=0

sc(~xc)

(i2 + j2)2�ij
(5.16)� �j2(i2�+ (2�+ �))sc(~x)

ij(�+ �)cs(~x)

�

where sc(~x) and cs(~x) are de�ned in section 4.6.2, and

~x =
1

D � 1
~y +

�
0:5
0:5

�
~xc =

�
0:5
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Figure 5.3: Displacements of 2D linear elastic �lter.
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We leave it to the reader to determine the �lter components for the other
directions.

A plot of the displacement �eld of the 2D �lter is shown in �gure 5.3. Note,
how the �lter pulls in material vertically behind the horizontal impulse force.
This orthogonal e�ect is due to the ~r( ~r � ~v(~x)) term in the linear elastic
deformation equation and, is important for the viscous e�ect of the 
uid.

To show that the application of the �lter for linear elastic deformation works,
we have made some experiments using the �lter as the linear elasticity operator,
and compared the results with a Finite Element Model (FEM) of linear elasticity.
The results show quite similar deformations. A comparison for a deformation
corresponding to forces applied to 6 nodes in the domain is shown in �gure 5.42.

5.3.6 Multi-resolution implementation

Because of the limited span of the discrete �lter, we have implemented the
viscous 
uid registration algorithm using the �lter in multi-resolution. The

uid registration is �rst performed on a rough scale. The result of this scale is
then propagated to a �ner scale and the 
uid registration restarted here. This
process is continued down to the �nest scale of the scale-space, yielding the
�nal registration result. All the results shown in this chapter used 3 levels of
resolution.

5.3.7 Results

In the previous sections the original theory of the viscous 
uid registration
method has been described, and a convolution �lter was developed to replace
the linear operator in the core routine of the 
uid registration.

Figure 5.2 shows the result of registering a square to a rectangle. Figure 5.5
show the result of registering a circle to a 'C' using viscous 
uid deformation.
The grid shows the curved and very large deformations that are applied to the
template. Although the deformation is very large, the topology of the template
is maintained as shown by the rings in the 'bull's eye'. Figure 5.6 shows the
developing deformation as the 
uid circle deforms into the 'C'. These results are
very similar to �gures 10.20-23 in [Chr94c].

Figure 5.7 shows the results for two adjacent CT slices. Topologically similar
regions have been registered correctly. But, if the images are studied closely,
they show that the topology of the original image has been retained to such an
extent, that a full registration of the topologically di�erent regions has not been
achieved. This is a practical example of the topology-maintaining characteristics
of the viscous 
uid registration algorithm, ie. the homeomorphic mapping. A
similar example of registration of two adjacent MR slices is shown in �gure 5.8.

Figure 5.9 shows a practical application of 3D 
uid registration. In this
case 3 jaws, from the same patient at di�erent times, have been extracted from

2The calculations are not exactly comparable since the �nite element model used �xed
displacements on the boundary instead of the sliding boundary conditions used by the linear
elastic �lter.
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Figure 5.4: Complex deformation resulting from three leftward forces in (0,2),
(0,3) and (0,4), and three rightward forces in (0,-2), (0,-3) and (0,-4), the center
is (0,0). Left: Using �lter. Right: Using FEM.
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Figure 5.5: Circle deforming to a 'C' using viscous 
uid registration. Top:
Template and study images. Bottom: Result and deformed grid.
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Figure 5.6: Development of deformation of grid for viscous 
uid registration of
circle to 'C'.
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Figure 5.7: CT slice registered to another slice using viscous 
uid model. Top:
Template and study images. Bottom: Result and deformed grid.
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Figure 5.8: MR slice registered to another slice using viscous 
uid model. Top:
Template and study images. Bottom: Result and deformed grid.



5.3. VISCOUS FLUID REGISTRATION 81

Figure 5.9: Fluid registration of 3 binary jaw images - top left, 2. row middle,
and bottom right. The other images show intermediate results.



82CHAPTER 5. NON-RIGID REGISTRATIONUSING CONTINUUMMODELS

CT scans and binarized. The binary images have then been registered. The
�gure shows extracts from a movie generated from intermediate images. This
application is similar to that of Christensen et al. in [Chr96b] where they register
skulls of infants elasticly, or that of Subsol et al. [Sub96] who also register skulls
of infants elasticly.

5.4 Comparing 
uid with 'demon'-based regis-
tration

In [Thi96] Thirion proposed a 'demon'-based registration method. This is an
iterative algorithm, where forces are determined in the template image based
on equations that are very similar to the body force used in this work. His
equation 4:

~f =
�(T � S)rT

rT 2 + (T � S)2
(5.18)

is in fact just a scaled version of the body force used here (equation 5.5).

When Thirion deforms an image to match another, he performs an iterative
process where body forces are determined using equation 5.18, the force �eld is
lowpass �ltered using a Gaussian �lter and �nally integrated over time.

Comparing the 'demon'-based algorithm with the algorithm in this paper,
we see that:

� The body forces are almost the same.

� The lowpass �ltering using a Gaussian corresponds to the application of
the linear elastic �lter.

� The time integration of the lowpass �ltered force �eld corresponds to the
Euler integration performed using equation 5.6.

We, therefore, conclude that the approach proposed in [Thi96] is similar to
the viscous 
uid registration using convolution, which is proposed here. Apply-
ing the Gaussian, instead of the linear elastic �lter, is faster since the Gaussian
�lter is separable in contrast to the linear elastic �lter. In the next section the
relationship between the Gaussian and the linear elastic �lter is illustrated by
theoretical arguments.

5.4.1 Characteristics of the Gaussian �lter

The linear elastic �lter works by elasticly smoothing the applied force over the
domain. In this respect the linear elastic �lter can be regarded as a lowpass
�lter like the Gaussian. On the other hand, the Gaussian �lter can also be seen
as a physical model. Let us illustrate this by the following theorem constructed
using work by Nielsen et al.:
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Theorem 5.3 Finding the Tikhonov regularized solution f(x) of the signal
g(x) 2 L2(R) by minimizing the energy:

E[f ] =
1

2

Z "
(f � g)2 +

1X
i=1

�i

�
@i

@xi
f

�2
#
dx (5.19)

with the coe�cients (t > 0):

�i =
ti

i!
(5.20)

is the same as convolving the signal g with a Gaussian with the Fourier trans-
form:

ĥ =
1P

1

i=0
ti

i!!
2i

= e�!
2t (5.21)

Proof Nielsen et al. [Nie94], proposition 1 and 3, and result 1. 2

This result shows that convolution with a Gaussian can be seen as �nding a
solution corresponding to the minimization of an energy functional, ie. a physical
problem. A similar result exists for the multi-dimensional Gaussian [Nie94].

We note that the solution obtained by convolving with a Gaussian does not
satisfy any speci�ed boundary conditions. Remember that boundary condi-
tions are implicitly a condition for the homeomorphic mapping of the domain,
since the homeomorphic mapping requires the mapping to be onto. This was
partly satis�ed by requiring the boundary of the domain to be mapped onto the
boundary.

In theory the solution using the Gaussian does, therefore, not strictly satisfy
the homeomorphic requirement for the transformation. But, in practice it is
possible to circumvent this problem by inserting the image into a larger domain,
thus adding a broad boundary to the image in all directions. On the other hand
this increases the computational complexity of the problem.

We state another result from the work of Nielsen et al. [Nie96]:

Theorem 5.4 Any analytical function f : R ! R, that is faster than polyno-
mially decaying, can be decomposed into a weighted sum of Gaussian derivatives
�(i)(x; s) with scale parameter s:

f(x) =
X
i


i
(�s)i
i!

Hi(
x

s
)�(i)(x; s) (5.22)

where Hi are the Hermite polynomials and the weights 
i are identi�ed by the
Hermite moments:


i =

Z
Hi(

x

s
)f(x)dx (5.23)

Proof Nielsen et al. [Nie96, Nie96b]. 2

This theorem indirectly states, that the zero-order approximation of any func-
tion that satis�es the requirements of the theorem is the Gaussian. A similar
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proof exists for the multi-dimensional case [Nie96b]. We can thus understand
the Gaussian as a (very) low-order approximation of the linear elastic �lter. It
is, therefore, reasonable to conclude that the approach of Thirion [Thi96] is an
approximation to the viscous 
uid registration.

When compared to the linear elastic �lter it is obvious that the Gaussian
�lter gives no displacement orthogonal to the direction of a force. The linear
�lter does this (see �gure 5.3) and it is important for the viscous e�ect of the
�lter.

5.4.2 The Gaussian versus linear elastic �lter for registra-

tion

To investigate the di�erences between the two �lters, the 
uid registration al-
gorithm has been reimplemented using the Gaussian �lter. Experiments using
the linear elastic and Gaussian �lters are shown in �gures 5.10, 5.11, and 5.12.

All the results look very similar and quite acceptable, although sometimes
di�erent when the grids are observed. In particular the circle to 'C' experiment
shows that the stretching of the template is not quite the same. Indeed when
one looks closely on the inside of the 'C', the right side of the middle of the
stretched bullseye has been compressed more with the Gaussian �lter. This
could indicate a topological problem for thin anatomical structures.

In addition, the patch to 'C' experiment in �gure 5.10 shows that the central
grid for the Gaussian �lter is more dilluted than for the linear elastic �lter. This
is probably caused by the lack of viscous contraction, which the elastic �lter
introduces with the ~r( ~r � ~v(~x)) term.

Whether these problems are of any concern must depend on the application.

5.5 Timings

Table 5.1 shows the results of the 2D experiments which can be compared to the
similar experiments reported in [Chr94c]. To be able to compare the number
of iterations for multi-resolution and single-resolution, the number of iterations
for the multi-resolution work has been calculated, as a weighted sum of the
iterations in each resolution. As weight are used the relative voxel distance in
the resolution, since in each resolution the maximum 
ow distance is scaled to
a factor of a voxel.

The table shows that the results of using the convolution approach on a
single workstation, can be compared to those of Christensen et al. on a 128x64
DECmpp 12000 Sx/Model 200 massively parallel computer. These timings are
stable and consistent with the other results using realistic data.

Using the Gaussian instead of the linear elastic �lter gives faster results. But,
it is interesting to note that more iterations are required in each resolution. This
could be interpretated as a problem related to using the Gaussian �lter.

When comparing our results using the linear elastic �lter to estimates of
timings on a MIPS R4400 processor [Chr96], it is estimated that a speedup of
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Figure 5.10: Comparison between the linear elastic and Gaussian �lters for the
patch to 'C' experiment. Top: Template and study images. Middle: Result using
linear elastic �lter. Bottom: Result using Gaussian �lter.
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Figure 5.11: Comparison between the linear elastic and Gaussian �lters for the
circle to 'C' experiment. Top: Template and study images. Middle: Result
using linear elastic �lter. Bottom: Result using Gaussian �lter.
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Figure 5.12: Comparison between the linear elastic and Gaussian �lters for
the square to rectangle experiment. Top: Template and study images. Middle:
Result using linear elastic �lter. Bottom: Result using Gaussian �lter.
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Table 5.1: Timings for 2D viscous 
uid registration experiments with �lters
compared to results using original algorithm.

Linear Gaussian Christensen
elastic �lter �lter et al. [Chr94c]
(seconds [iter.]) (seconds [iter.]) 128x64 MasPar

(seconds [iter.])
Square - Rect. 37.8 [123] 7.2 [138] 45 [180]
128x128 (5.2) [20/13/17] [20/19/20]
Patch - 'C' 46.9 [408] 11.3 [630] 91 [250]
128x128 (5.10) [90/15/18] [90/90/90]
Circle - 'C' 44.2 [167] 32.6 [210] 423 [600]
128x128 (5.11) [30/13/21] [30/30/30]

Note: The triple numbers below the timings are the number of iterations in
the three resolutions (reduction [2,1,0]). The numbers in [:::] after the timings
are the number of iterations. For multi-resolution the number of iterations are
determined as 4n2+2n1+n0, where ni is the number of iterations for a resolution
with reduction factor i.

at least an order of magnitude is achieved for the same single processor platform.
This speedup is based on a software implementation of the convolution.

Use of specialized convolution hardware, as found in eg. the RealityEngine II
graphics board from SiliconGraphics, should speedup the registration even more.

5.6 Summary

This chapter has presented a new algorithm, which reduces the time consump-
tion of the viscous 
uid registration algorithm by Christensen et al. [Chr94c],
with at least an order of magnitude. This speedup was achieved by implement-
ing the core process of the registration method using convolution with a �lter
developed in this chapter. The results are similar to those of Christensen et al.

It was also shown that the 'demon'-based registration method by Thirion
[Thi96] is similar to the viscous 
uid registration method developed here. This
insight comes from the implementation of the core routine as a �lter. Using this
�lter, the numerical implementations of the two methods look very similar. With
results from scale-space theory [Nie94, Nie96, Nie96b] it was shown that the
Gaussian �lter is indeed an approximation to the linear elastic �lter. Examples
showed quite similar results although some problems were indicated for the
Gaussian �lter.



Chapter 6

Non-Rigid Registration

using Bone Growth Model

Bone growth is a biological process far more complex than immediately ex-
pected by the layman. Although, the growth is controlled by some very simple
processes, the pattern of the growth can be surprisingly sophisticated.

This chapter studies the process of bone growth in the human mandible.
Based on the available medical knowledge, a bone growth model is established,
and experiments are carried out to determine the validity of the model. These
experiments uses a unique data set containing three voxel images of the mandible
of a child, taken at di�erent times1.

Being able to model the growth of the facial bones is both interesting for un-
derstanding the development of the cranio-facial complex, and for understanding
the e�ects of cranio-facial surgery on children. After children with growth de-
fects have undergone surgery to restore normal function and appearance, the
bones continue to grow. This growth often introduces new deformations and
new surgery has to be performed.

It is, therefore, important to understand the growth of the bones. Optimally,
it would be useful for the surgeon to be able, not only to predict the instanta-
neous result of the surgery (as discussed in the next chapter), but also to predict
the evolution of the face after surgery. Using such knowledge, the surgeon could
possibly anticipate this development and correct for it in advance.

The process of modeling the growth can be seen as a registration problem,
and the discussion follows the notation and semantics of the general registration
methodology used in the previous chapters. Indeed the inspiration, for the de-
velopment of the growth based registration algorithm, came from the experience
with 
uid registration of the jaw images (�gure 5.9).

1This data set was kindly made available by Prof. Sven Kreiborg of the School of Dentistry,
University of Copenhagen, Denmark.

89
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6.1 Non-rigid registration as a physical problem

Non-rigid registration is used to register images that are di�erent. As 'non-rigid'
indicates, more than just a simple superposition of the images is required to get
a complete correspondence, and some sort of deformation must be included in
the transformation, to map dissimilar images onto each other.

Optimally, the non-rigidness of the transformation allow a full correspon-
dence to be determined, and at the same time limit excessive deformations by
including some sort of regularization e�ect.

As illustrated in the previous chapter, most non-rigid registration methods
are directly or indirectly based on elastic or viscous-
uid models. Although
many methods do not use the terminology of these continuum models, they
follow the same ideas algorithmicly. As an example, the application of the
Gaussian �lter, to a driving force �eld, is the same as Thikonov regularization
of this �eld [Nie94], and thus the application of a physical model similar to an
elastic deformation.

The use of elastic and viscous 
uid models for registration of images has
often been criticized, because they represent the application of a physical model,
which does not re
ect the actual physical development between the images.

A correct physical model, for registration of images of the brain of two in-
dividuals, would re
ect the actual biologic and genetic development of these
brains. Since a common genetic basis exists for these brains, it should, theoreti-
cally, be possible to create a development model for the two brains down through
history to a common ancestor. Using this development model a correspondence
could be created.

The di�erence between the traditional registration models and the idea of
a physically correct model of development, is illustrated in �gure 6.1. Rigid
registration methods basicly register images to derivatives of themselves. The
traditional non-rigid registration methods attempt to model the di�erence be-
tween two images, using an arbitrary physical model, which does not re
ect the
actual physical process. The development methods, on the other hand, use the
actual physical process as the model of change.

One of the important advantages, of using a physically correct model, is the
ability to simulate what happens between the images. Where traditional non-
rigid methods only provide a correspondence between the images, the physically
valid models describe the actual development, which can then be simulated.
Naturally, these models have generally been viewed as impossible, although
conceptually interesting.

In this chapter a physically valid development model, for non-rigid registra-
tion of time sequence images of the human mandible is developed. With a model
of physical bone growth, images are registered by allowing the initial image to
grow to the second image. The initial and �nal images are used as boundary
conditions.

A set of three images of the mandible of the same child at di�erent times,
is used to validate the growth model (see �gure 6.2). These images have been
acquired at the age of 9, 21 months and 7 years.
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Image 2

Non-rigid
registration
using arbitrary
physical model

registration
Rigid

Unknown physical model

Elastic or fluid model

Known physical model
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Non-rigid
registration
using valid
physical model

Image 1

Figure 6.1: Di�erent registration methods and their use of physically valid or
invalid models of the change between two images.

Figure 6.2: Images of the mandible of a child at the age of 9, 21 months and 7
years.
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Figure 6.3: Anatomic description of the mandible.

During this period both actual bone growth, and teeth growth and eruption
take place. But for simplicity, we ignore the teeth growth and consider the
mandible as one coherent piece of bone. The teeth and other internal structures
are only used for initial rigid registration of the images.

6.2 Bone growth

A general rule for bone growth, is that growth only takes place on the sur-
face of bones. The interior of bones is calci�ed and rigid, and do not change
shape [Goo82, Lin86]. Bone growth is consequently di�erent from normal bio-
logical growth, where growth happens by cell division.

Bones grow by a complex process of deposition2 and resorption. Deposition
adds new material to the surface of the bone and resorption removes material
from the surface of the bone. These processes only occur in a thin boundary
layer, in which cells called osteoblasts and osteoclasts are responsible for the
deposition and resorption of bone material respectively.

Deposition can take place both on the surface of normal bone, in which case
it is called surface deposition, in sutures where bones are connected by thin
bands of �brous material, and in the cartilages that join some bones. Examples
of sutures are found in the skull, where they accommodate the growth of the
brain, and examples of cartilages are found on the condyles of the mandible,
where they form the joint between the mandible and the skull.

Surface deposition is considerably slower than the other forms of growth,
but takes place on the entire surface. Cartilage and suture growth only take
place in isolated areas.

6.2.1 Growth of the mandible

The general anatomy of the mandible is shown in �gure 6.3.

2Sometimes called apposition.
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Figure 6.4: Stable features in the mandible.

Up to the second half of the �rst year the mandible has cartilage in the
midline. But after this period the two halves are connected and the cartilage
disappears. The mandible is then a single bone, with cartilages on the two
condyles (the mandibular condylar cartilages).

Growth of the mandible takes place by growth in the condylar cartilages, and
by surface deposition and resorption on the remaining surface of the mandible.

That the mandible only grows by surface processes can seem surprising,
considering the large size di�erence between the jaw of a child and an adult.
But implant studies by Bj�ork [Bj61, Bj63] and Bj�ork and Skieller [Bj72, Bj77]
have shown this model of the growth process to be valid at least for the corpus.
The growth pattern of the condyles is still under discussion.

6.2.2 Stable structures

Since the interior of the mandible does not grow, it should be expected that
stable structures could be detected here.

Indeed based on his implant studies, Bj�ork [Bj69] suggested the inferior
dental nerve channel, the inner cortical surface of the symphysis, the lower
margin of the third molar tooth germ before it erupts, and the tip of the chin
as stable features of the mandible (see �gure 6.4).

There is general agreement on these features, although the third molar is
only stable during the period, in which it has not started developing roots. It
can, therefore, not be used in studies over many years.

6.3 Non-rigid registration of mandibles using bone
growth model

Using the information about the growth of the mandible, this section establishes
a mathematical model of the growth process, and a simulation algorithm, which
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Figure 6.5: Overlayed mandibles after rigid registration.

allows non-rigid registration of time sequence images of a developing jaw and,
thereby, simulation of it's development.

The basic algorithm �rst rigidly registers the mandibles using the stable
structures suggested by Bj�ork [Bj69]. When these structures have been overlaid,
the remaining di�erence between the images re
ects the growth that has taken
place between their acquisition.

A partial di�erential equation for the growth on the surface of the bone is set
up, using the estimated distance between corresponding features to determine
the growth velocity.

Finally, the growth process is simulated to register the images.

6.3.1 Rigid registration of stable structures

A combination of surface based rigid registration, based on the Iterated Closest
Point (ICP) algorithm by Besl and Kay [Bes92], and manual correction, were
applied to register the mandibles. Using the ICP algorithm, the tip of the chin
was �rst registered and the result subsequently validated and corrected using
the other stable structures. Figure 6.5 shows the three mandibles after rigid
registration.

From the overlapping mandibles it is possible to discern some of the changes
caused by the growth. The most dramatic growth takes place on the ramus,
which is the large structure at the end of the mandible, and the condyles, which
are the attached to the rami and serve as the connection to the rest of the skull.

6.3.2 Growth model

As we saw above, the deposition and resorption processes work in a thin bound-
ary layer on the surface of the mandibles. During the work of the osteoblast
and osteclast cells, the density of the bone increases or decreases in the bound-



6.3. NON-RIGID REGISTRATIONOFMANDIBLES USING BONEGROWTHMODEL95

−1

0

Ω

Γ

Γ1 Γ

Figure 6.6: De�nition of growth domain.

ary layer until bone has either been completely deposited or resorped. The
boundary layer then moves, and the process restarts.

To model this, the bone density �(x; t) 2 [0; 1] is used as the primary vari-
able. Bone is de�ned as �(x; t) = 1 and air is de�ned as �(x; t) = 0. Thus, the
de�nition of the bone body becomes:


 = fxj�(x; t) = 1g (6.1)

Using the same notation as in the previous chapter, we de�ne the initial image
as the template image T (x) 2 [0; 1] and the desired end-state as the study image
S(x) 2 [0; 1]. The initial domain can therefore be written as:


 = fxj�(x; 0) = T (x)g (6.2)

The registration problem is formulated as changing the density map using a
model of growth, so that �(x; tend) = S(x) where tend is the time of full regis-
tration.

The boundary of the domain is denoted ~� (see �gure 6.6), and consists of a
stable part ~�0, where the template and study boundaries match, and unstable
parts ~�1, and ~��1 where deposition and resortion take place respectively:

~� = ~�0 + ~�1 + ~��1
~�0 = fx 2 ~� j T (x) = S(x)g
~�1 = fx 2 ~� j T (x) < S(x) ^ �(x; t) 2 [0; 1[g

~��1 = fx 2 ~� j T (x) > S(x) ^ �(x; t) 2]0; 1]g (6.3)

For completeness we de�ne the boundary as having a thickness � > 0.
We now proceed to de�ne the partial di�erential equation (PDE) governing

the growth process. The general requirements for this PDE is that change in
density should happen only for x 2 ~�1 + ~��1, and that the change in density
should re
ect the velocity of the actual growth. The PDE is de�ned as:

@�(x; t)

@t
=

8<
:

cvg(x; t) x 2 ~�1
�cvg(x; t) x 2 ~��1
0 x 2 ~�0 [ ~


(6.4)
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Slow growth

Fast growth

Figure 6.7: The speed of growth must be depend on the distance to be �lled.

where vg(x; t) is the growth velocity and c is a constant. The equation is concep-
tually simple, and states that the density should increase in areas of deposition,
and decrease in areas of resorption. The rate of change is proportional to the
growth velocity.

Determining the growth velocity

A major problem, in developing the growth registration algorithm, is the se-
lection of an appropriate growth velocity. The initial suggestion is a constant.
With a constant growth velocity, the growth process can be compared to the

uid model in the previous chapter.

Consider �gure 6.7. As this drawing illustrates, for the growth to look nor-
mal, it is necessary that the growth velocity re
ects the distance, which needs
to be covered by the process. Otherwise, the growth would �rst �ll out the thin
spaces, and then gradually �ll out the wide spaces, thus falsely indicating that
the thin spaces only grow in the beginning of the process.

Instead of a constant, the actual remaining distance from the boundary of
the current bone body to the boundary of the study image S(x), could be used
as the velocity. But this does not work either since the velocity would decrease
as the gap was narrowed. The growth velocity must re
ect the initial distance
from the template image boundary to the study image boundary.

The suggested growth velocity is therefore determined using the following
algorithm:

1. Initially, determine a distance map dist(x) from the study image S(x) to
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Figure 6.8: Line process.

the template image T (x).

2. For each boundary voxel xb 2 ~�1 + ~��1 in the currently evolved image:

(a) Perform a line search, perpendicular to the boundary starting from
the current bone body ~
, until a boundary voxel xs in the study
image S(x) is found (see �gure 6.8).

(b) Set the growth velocity vg(xb; t) to dist(xs).

3. Lowpass �lter the velocity �eld using a Gaussian kernel.

The last action has been introduced to smooth discontinuities in the velocity
�eld, and to remove spikes.

6.3.3 Implementation

The complete growth registration is implemented with the following iterative
algorithm:

1. Determine a distance map dist(x) from the study image S(x) to the tem-
plate image T (x),

2. Determine the correct boundary ~� = ~�0 + ~�1 + ~��1 of the bone body ~
.

3. For all voxels on the changing boundary ~�1 + ~��1 determine the growth
velocity using the algorithm above,

4. Calculate @�=@t using equation 6.4,

5. Perform time integration of the density:

�(x; t) = �(x; t) +4@�(x; t)

@t
(6.5)

where 4 is the time step.

6. Where the density �(x; t) > 1 or �(x; t) < 0, disperse the excess equally
to neighbouring boundary voxels.
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Figure 6.9: Initial image (left), image to grow to (middle), and the areas of
di�erences (right).

Figure 6.10: Development of growth when a simple velocity model is used.

7. If �(x; t) has changed, go to 2

The dispersion of excessive density in step 6 is necessary because of the �nal
size of the time step.

6.3.4 Results

A 2D example is used to illustrate the e�ect of the choice of non-constant growth
velocity. Figure 6.9 shows the template and study images and their di�erences.
As can be seen in the �gure, both deposition and resorption is necessary during
the growth process.

Figures 6.10 and 6.11 show the growth pattern for growth with constant
growth velocity (6.10) and distance dependent growth velocity (6.11). The
image in the bottom right of both �gures shows the development pattern. Dark
values indicate early growth and bright values late growth. It is easy to see how
the growth, using the distance dependent growth velocity, has a more uniform
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Figure 6.11: Development of growth when a distance dependent velocity model
is used.

development, whereas the pattern of the growth using constant velocity is more
non-uniform.

The result of using the growth registration algorithm on the mandible images
is shown in �gure 6.12. When this �gure is compared to �gure 5.9 in the last
chapter, the growth registration is more uniform than the 
uid registration and
also looks more realistic.

6.4 Summary

In this chapter a model of bone growth in the human mandible has been de-
veloped. The results provide documentation that the theories of bone growth,
which the model is based upon, may be correct. The documentation is not a
de�nite proof, since it only shows that the theory can explain the growth of the
mandible.

An important result of modeling the growth, is the time images, such as
those in �gures 6.10 and 6.11, which are a by-product of the simulation. To-
gether with corresponding images of the density change in each iteration, they
convey important information about the structure of the growth. The clinical
importance of these images has yet to be investigated.

This chapter has argued that modeling the growth process, is an image
registration process. As such, using the growth model as the basic control
mechanism, represents a new form of medical image registration. All previous
non-rigid registration algorithms have used physical models as regularization
methods, and have not modeled the actual physical development responsible for
the di�erences between the images.
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Figure 6.12: Result of growth registration of 3 binary jaw images - top left, 2.
row middle, and bottom right. The other images show intermediate results.



Chapter 7

Soft Tissue Modeling in

Surgery Simulation

Just like 
ight simulators are essential today in the education of aircraft pilots,
surgery simulators are expected to have an important impact on the education
of surgeons in the future [Sa93].

Currently training of surgeons is either performed using animals, cadavers,
or actual human patients. But, it is expected that these training methods
will be restricted in the future. Animal protection groups are pressuring the
medical industry to restrict the use of animals for experiments, cadavers are
generally problematic, and the use of direct training (under supervision) on
human patients will probably increasingly be limited by insurance problems and
patient scepticism. In addition, the facilities necessary for training on animals
are quite expensive.

Virtual reality techniques are, therefore, being developed to replace experi-
mentation on live objects with simulated environments. In particular, the �elds
of cranio-facial and minimally invasive surgery have seen the development of
some initial surgery simulators.

7.1 Cranio-facial surgery simulation

Cranio-facial surgery is used to change the bone structure of a patient's face.
The purpose of this kind of surgery, is to enhance the appearance of the pa-
tient or to restore normal function, when abnormal bone growth has resulted in
restriction of body function or development.

During surgery, parts of the cranio-facial bones are separated from the re-
mainder, and rearranged like building blocks, by the surgeon. Naturally, exten-
sive planning takes place to determine the best procedure.

This planning is usually performed using x-ray cephalometric techniques and
reconstructed CT images. Some cranio-facial teams are using solid modeling
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software (eg. [Lo94]), but most use manual ad-hoc methods during the planning
phase.

Although the surgery generally aims at improving the overall facial appear-
ance of the patient, traditionally only the e�ects on the bone structures have
been considered systematicly during planning. The relationship to the soft tis-
sue surface of the patient has often been left to experience and guessing.

But, in recent years promising work has been done to develop simulation
software, which can model the soft tissue changes, that are the result of changes
in the underlying bone structure of the patient.

The requirements for such simulators are primarily realism, and since speed
is not an important concern, most of the attention has been directed at the
development of realistic soft tissue models.

These simulators are therefore not realistic models of the surgery situation,
but rather software tools for modeling and planning surgery.

7.2 Minimally invasive surgery simulation

Minimally invasive procedures such as endoscopy and laparascopy are replacing
more and more normal procedures, with extensive bene�ts for both patients and
hospitals in terms of reduced hospitalization time and fewer complications.

These procedures all share the characteristic that the surgeon's interface
to the patient is limited to a TV screen, and tools that are inserted into the
patient through either natural body openings or small incisions. The interface
is, consequently, dramatically reduced in comparison to open surgery, where the
surgeon has direct contact to body tissues and 
uids.

Because of the simplicity of the patient/surgeon interface, surgery simulators
are relatively easier to develop for minimally invasive surgery. At the same time
special motoric skills are needed for this kind of surgery, which can only be
acquired by extensive practice with the actual instruments. Together these
factors have driven the research into virtual reality techniques to replace the
current use of either animals or simplistic 'brick and block' setups for training
of surgeons.

Since virtual reality simulators require real-time response, research has con-
centrated on developing high-speed simpli�ed elastic models and computer graph-
ics.

7.3 Technical requirements

The requirements of a general surgery simulator can be characterized by the
following three demands:

Computer graphics: Graphics is needed to render realistic views of the vir-
tual surgery scene, and provide the surgeon with a visual illusion of reality.

Haptic interface: A haptic interface is provided through the instruments and
tools which the surgeon uses to work on the virtual reality simulator. By
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tracking the position of these tools and sensing their state, the computer
is able to determine the actions of the surgeon in the virtual scene, and
act accordingly.

In addition, the haptic interface provides the surgeon with a physical sen-
sation of touching and sensing objects in the scene using force-feedback
techniques. The haptic interface thus represents the sense of touch illusion
of reality.
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Physical modeling: Physical models provide the surgeon with a behavioural
illusion of reality. By modeling the visco-elastic behaviour of human skin,
the 
uid 
ow of blood from a wound etc., these models ensure that the
virtual scene re
ects the expectations of the behaviour of the physical
reality.

Computer graphics have been extensively developed over the last decades, and
is today quite su�cient for surgery simulation systems. Only speed and price is
still problematic, but the general development of hardware leaves no doubt that
it is only a question of time before the necessary computers will be available at
reasonable prices.

Haptic interface devices for minimally invasive surgery simulation can be
bought commercially, and although bene�ts of continued development are ex-
pected, the quality is already su�cient for many purposes.

Physical models represent the biggest obstacle today in surgery simulation.
In particular, the development of real-time elastic models of human soft tissue
is essential for the continued evolution of surgery simulation systems.

In engineering and physics, elastic models have been developed during the
last century, and the immediate idea would be to apply these models directly
for surgery simulation. Unfortunately, this is only feasible for the cranio-facial
simulators that were described above.

Traditional elastic mathematical models have been developed with high em-
phasis on precision, and solution time has only had secondary importance. Since
cranio-facial surgery simulators have similar requirements, the traditional meth-
ods can be used to some degree. But for real-time simulators, such as those used
for minimally invasive surgery, the demands are often contrary to those of engi-
neering and physics models. Virtual reality surgery simulation models are being
developed with emphasis on speed. For training simulators the requirement for
precise physical models is much less than the demand for visually satisfying and
fast models.

Because of the di�erent demands of cranio-facial surgery simulation and
virtual reality systems, the development currently follows two parallel tracks as
illustrated in �gure 7.1. Cranio-facial simulation models use relatively realistic,
but time-consuming models, and virtual reality systems use very simple real-
time models. It is probable that these tracks will converge in the future as more
powerful computers become available.

The contribution of this thesis, in surgery simulation, is centered on the
development of visually satisfying elastic models for real-time deformation of
human soft tissue. This work is described in the next chapter.

7.4 Previous work

Without going into speci�c technical details this section reviews the most im-
portant work on soft tissue modeling in surgery simulation.
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Virtual reality systems
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Soft tissue modeling

Figure 7.1: Parallel development of soft tissue models for realistic (cranio-facial
surgery) and real-time models (virtual reality training systems).

7.4.1 Cranio-facial surgery simulation models

Early work using solid modeling techniques have been reported by Yasuda et
al. [Yas90], Satoh et al. [Sat92], Caponetti et al. [Cap93], Lo et al. [Lo94], and
Delingette et al. [Del94]. Delingette et al. used 2-simplex surface meshes [Del94b]
to represent the surface of the skull, and also reported on some preliminary
experiments using 3-simplex meshes as models of the soft tissue between the
2-simplex meshes of the skull and the skin.

In his Ph.D. thesis Pieper [Pie92, Pie92b] presented work on a complete
system for simulating plastic surgery. His system used a volumetric linear elastic
�nite element model for the skin, and showed validation results comparing real
plastic surgery results to predictions obtained using the system.

Interesting work has been reported by Waters and Terzopoulos on facial
animation [Wat87, Wat91, Ter91b, Wat92, Ter93, Lee93, Lee95] in which they
created non-linear mass-spring models of the facial soft tissues. By adding
muscles, and modeling the muscle activity for general human expressions, they
developed the ability to animate human expressions.

Keeve et al. [Kee95b, Kee95, Kee96c] have been strongly in
uenced by this
work. They developed a similar system in which they created individualized
models from CT scans and added the ability to perform surgical procedures
on the bone structures using interactive computer graphics. By moving sepa-
rated bone pieces and modeling the corresponding soft tissue deformation, they
obtained an estimate of the resulting facial changes for the particular surgery.
Some validation results have been reported.

In [Kee95b, Kee95, Kee96c] Keeve et al. used the mass-spring models orig-
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Figure 7.2: Active cube is deformed to match the shape of a patient.

inally proposed by Waters and Terzopoulos with slight modi�cations. In later
work [Kee96b, Kee96] they have used �nite element models of the soft tissue.

A similar system for modeling facial expressions around the mouth has also
been developed by Tanaka et al. [Tan95].

Koch et al. [Koc96] have used commercially available tools to build a cranio-
facial surgery simulation system. In this system, soft tissue changes are modeled
using a 2D �nite element surface model of the skin. The skin model is connected
to the skull using springs with spring constants depending on the soft tissue type
they span. The soft tissue type is determined automatically by classi�cation of
the CT scan, which provides the 3D model of the patient.

Since only a surface model of the soft tissue is used, the work of Keeve et al.
seems more convincing, although the calculation of the spring constants based on
the grey-level values of the CT scan, is an interesting new idea. Unfortunately,
it is questionable whether su�cient information can be gathered from CT scans
which normally are optimized for bone visualization.

In [BN95, BN95b] some preliminary work on cranio-facial surgery simulation
was reported by this authour. Using a volumetric elastic model proposed earlier
by Terzopoulos and Fleischer [Ter88] the deformation of the face of an individual
was modeled for horizontal movement of the jaw. The elastic model can be
shown to be equivalent to a St. Venant Kirchho� hyper-elastic continuum model.

The procedure is illustrated in �gures 7.2 and 7.3. First an active cube [BN94]
is deformed to match the surface of the patient (�gure 7.2). The active cube is a
volumetric model and the deformed cube provides a curvi-linear parametrization
of the patient tissue. Using simple brute-force techniques, the deformation of
the soft tissue is then calculated when bone structures in the patient are moved
(�gure 7.3).

This work was discontinued in favour of the work on real-time models re-
ported in the next chapter. Recently, M.Sc. Bo Rasmussen has implemented
work similar to that of Keeve et al. during his M.Sc. thesis project, on the
initiative and under the supervision of this authour [Ras96].
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Figure 7.3: The jaw of the patient model is moved forward 1 cm (top). After
modeling the corresponding deformation of the soft tissue, the estimated shape
of the 'operated' patient is shown (bottom).
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7.4.2 Real-time surgery simulation models

The demands of real-time performance have forced most researchers to develop
or adapt very simplistic models of elastic deformation to the needs of surgery
simulation. Eg. instead of using implicit solution methods which require the
solution of matrix systems, explicit models (aka. mass-spring models) have
frequently been used. Although these models su�er from poor precision and
stability problems, they are very easy to implement and yield reasonable speeds.
In addition they can be easily implemented on parallel processors.

Cover et al. [Cov93] were the �rst to present real-time models for surgery
simulation. They used a simple surface-based mass-spring model to simulate
deformation of a gall-bladder.

K�uhnapfel, Deussen, and Kuhn [Kue93, Kue94, Kue95, Deu95, Ku96] have
implemented mass-springmodels in their KISMET simulation system. Although
the models basicly are surface models, they introduce volumetric behaviour by
including parent nodes which connect nodes on di�erent sides of an object.
Interesting work on determining the optimal positioning of nodes and their
masses were presented in [Deu95] in which they used simulated annealing to
�nd the optimal con�guration. The resulting system, eg. as presented in [Ku96],
looks quite convincing.

Surface models are also used in the commercial Teleos software developed
by HT Medical, Inc., Maryland, USA1. They use tubular spline surface models
and can only model simple structures derived from the tubular topology (eg.
arteries, gall-bladder). On the other hand this system is the �rst commercial
simulation toolkit, and functional additions can probably be expected in the
future.

Implicitly solved �nite element systems have been used in the on-going paral-
lel work of Bro-Nielsen [BN95b, Cot96, BN96c, BN96d] and Cotin et al. [BN95b,
Cot96, BN96c, Cot96]. The �rst work on the use of implicit �nite element mod-
els of linear elastic models was presented in [BN95b, Cot96]. The next chapter
describes later work by Bro-Nielsen [BN96c, BN96d] where a technique called
condensation was introduced to reduce the complexity of volumetric �nite el-
ement models. The resulting models are called Fast Finite Element (FFE)
models.

The most advanced use of �nite elements has been presented by Sagar
et al. [Sag94]. Their eye surgery simulator used a non-linear incompressible
Mooney-Rivlin elastic model with �nite elements to model deformation of the
eye. The �nite element solution to this kind of model is normally computation-
ally expensive, and it is currently only in such very specialized simulators it is
possible to use these models.

7.4.3 Work for the future

Just as line drawing were replaced by pixel drawing for 2D graphics, today
volume rendering is used more and more instead of polygonal models for visu-

1Previously known as High Techsplanations, Inc.
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alization of 3D volume data.
All the simulators described above basicly use polygonal models such as

triangle surfaces or tetrahedral �nite element meshes. It is thus an interesting
thought that these polygonal models one day might be replaced by volumetric
voxel models.

In an eye-opening paper [Gib95], Gibson suggested the use of voxel-based
models for deformable models. Gibson demonstrated how intuitively simple
such tasks as collision detection become in this environment.

Unfortunately, the stumbling block for development of such models is the
rendering speed which follows that of traditional volume rendering. Some speed-
up can be achieved by only rendering objects in the scene that change shape or
position, but the low speed is still prohibitive.

In addition, deformation of volumetric models is a considerable problem.
But in contrast to the normal �nite element mesh models, the size of the mesh
elements is equal to the sampling size of the voxel grid, and techniques, such as
those developed in chapter 5 for viscous-
uid motion modeling, could probably
be used for solving the voxel-mesh deformation problem.

Although Gibson only presented 2D deformation experiments, the basic idea
of using voxel-based models seems very promising.

7.5 Summary

In this chapter the basic lines of research into surgery simulation systems have
been presented. The technical problems were discussed and previous work was
described. The next chapter presents the contribution of this thesis to surgery
simulation models in the form of Fast Finite Element models.
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Chapter 8

Real-time Deformable

Models for Surgery

Simulation

The main problem in real-time surgery simulation, is modeling the deformation
of solid volumetric objects. These objects are typicly human organs or tissues,
which often have quite irregular shape and complex visco-elastic behaviour.

Some of the previous work have used surface models as the basic model-
ing method [Cov93, HT95], and realistic tissue models have only been applied
in very specialized simulators, such as the eye-surgery simulator of Sagar et
al. [Sag94].

The problem with surface models, is that they do not behave like volumetric
3D objects, and lack a de�ned interior. The �rst problem is purely visual,
but the second is a serious limitation to the possible applications. The surgeon
cannot cut a virtual organ, modeled using a surface model, since there is nothing
inside the surface. Some simple cuts can be modeled, such as cutting an artery
or other thin structures, but general surgical incisions are impossible.

Attention is, therefore, turning towards solid volumetric models, which
model the complete 3D volumetric behaviour of the objects [BN95, BN95b,
BN96c, BN96d, Cot96, Cot96b, Deu95, Ku96, Kue93, Kue94, Kue95]. Unfortu-
nately the complexity of the models rises dramaticly when volumetric models
are used, and real-time performance is di�cult to achieve.

Another issue is the way elastic behaviour is simulated. Simulation can be
performed using global parametric models [HT95, Ter91] or local mesh based
models [BN95, BN95b, BN96c, BN96d, Cot96, Cot96b, Deu95, Ku96, Kue93,
Kue94, Kue95] (eg. Finite Element models). To accommodate surgical incisions
demands mesh based models are necessary. Only simplistic cuts can be achieved
with global parametric models. Mesh based models are therefore used in this
work.

This chapter discusses real-time simulation of deformable objects using 3D
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volumetric Finite Element (FE) models, which result in linear matrix systems.
The theory behind 3D FE models of linear elasticity is presented and various
aspects of these models discussed. In particular three new improvements over
previous applications of FE are suggested.

The �rst improvement is called condensation. In practice this allows us to
compress the linear matrix system, resulting from the volumetric FE model, to a
system with the same size as a FE surface model of the same object. Although it
has the same size as the surface model, it still models the volumetric behaviour
of the object.

The second improvement, concerns the way the linear matrix system is used
for simulation. In contrast to the normal approach, and against the advice
of �nite element experts, the system matrix is explicitly inverted, and matrix
vector multiplication is used to achieve a very low calculation time.

The third improvement is called selective matrix vector multiplication. By
exploiting the sparse structure of the force vector, additional time is saved by
only using the non-zero elements of the vector.

In addition, the simulation system, which has been developed for surgery
simulation, is described. With this system it is possible to simulate volu-
metric deformation of relatively large objects with video frame-rates, ie. 15-20
frames/second.

8.1 Choice of model

The choice of a particular model must depend on the requirements of the ap-
plication. A number of requirements that the model should ful�l are, therefore,
formulated:

1. Deformation should be calculated in the smallest amount of time possible.

2. We do not care about the time taken for pre-calculation such as setting
up equations, inverting matrices etc. If something takes 24 hours in the
pre-calculation stage, but will save 0.01 second in the simulation stage, it
should be done.

3. The elastic model should be visually convincing. The model may be phys-
ically incorrect, if it looks right.

4. In the long run it should be possible to make cuts in the model to accom-
modate surgical procedures. This involves changing the topology of the
model, and most importantly requires models that have de�ned interiors,
ie. volumetric models.

In particular the last requirement motivates the choice of mesh-based 3D Fi-
nite Element (FE) models. The alternative would be parametric models such
as [Cov93, HT95, Ter91]. But these models do not provide the needed freedom
to perform topology changes to allow cutting. Although some of the models can
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Figure 8.1: Solid elastic object.

handle simple cuts, the aim is to be able to make completely general cuts in the
models. Only mesh-based models appear to allow this.

To meet the �rst two requirements, the linear elastic deformation model
(see section 4.4.3) is chosen. Using linear elasticity as the basic model involves
a number of assumptions regarding the physical material that is modeled. Most
importantly, linear elastic models are only valid for very small deformations
and strains. They are typically correct for such rigid structures as metal beams,
buildings etc. Although they are used extensively in modeling, the visual result
of large deformation modeling using linear elasticity is not always satisfying.

But when used with FE, these models lead to linear matrix systems which
are fast, and easy to solve . There is, therefore, a trade-o� between the speed
of the system and the visual deformation result.

Linear elastic models are used here, because modeling general elastic volu-
metric deformation using FE is only just possible with todays computers. With
faster computers in the future, more realistic models, such as incompressible
Mooney-Rivlin material models [Cia87], can be expected.

8.2 Linear elastic material model

Following chapter 4 we de�ne the elastic solid 
 as the positions x = [x; y; z]T

where x 2 
 (see �gure 8.1). The displacement of particle x is de�ned as
u(x) = [u; v; w]T so that the particle x is moved by the deformation to x+ u.
The boundary is � = �0 + �1 where �0 has �xed displacements u(x) = u0(x)
and forces g(x) are applied to �1.

The strain energy of a linear elastic body 
 is de�ned as (equation 4.61):

Estrain =
1

2

Z



�T�dx (8.1)
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where the engineering strain vector � = [�x �y �z 
xy 
xz 
yz]
T consists of:
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We can rewrite this as � = Bu where
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(8.3)

The stress vector � is related to the strain vector through Hooke's law (see
section 4.4.3):

� =M� (8.4)

where M is the material matrix. For a homogenous and isotropic material this
matrix is de�ned by the two Lam�e material constants � and �:

M =

2
6666664

�+ 2� � � 0 0 0
� �+ 2� � 0 0 0
� � �+ 2� 0 0 0
0 0 0 � 0 0
0 0 0 0 � 0
0 0 0 0 0 �

3
7777775

(8.5)

Using these relations we can now rewrite the strain energy, and add work
done by internal and external forces f and g respectively, to yield the total
energy function:

E(u) =
1

2

Z


uTBTMBu dx�

Z


fTu dx�

Z
�1

gTu da (8.6)

where �1 is the part of the surface � = �0+�1 where external forces are applied.
Fixed displacements u(x; y; z) = u0(x; y; z) are applied to �0.

8.3 Discretization using FE model

We assume that the domain 
 of the volumetric solid has been discretized into a
number of �nite elements 
e in the form of tetrahedrons, and nodes Pq de�ned
by xq = [xq ; yq; zq]

T (see �gure 8.2). The deformation at each node is speci�ed
by the deformation vector uq = [uq; vq ; wq ]

T . In addition we also stack the
displacement vectors into a compound vector:

u
�

=
�
uT1 ; uT2 ; : : : ; uTn

�T
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Figure 8.2: Left: Discretization of the domain into �nite elements (2D illustra-
tion) Right: Tetrahedral �nite element.

The nodes of each �nite element 
e are denoted P e
i , where i is the local number

of the node, which is unrelated to the global numbering of the nodes. The
discretized element factors are denoted with a superscripted e. The compound
element displacement vector is:

u
�
e =

�
ue1

T ; ue2
T ; ue3

T ; ue4
T
�T

(8.7)

As �nite elements, four-node tetrahedrons are used with linear interpolation
of the displacement �eld between the nodes:

u(x) =

4X
i=1

Ne
i (x)u

e
i (8.8)

The basis functions Ne
i (x) are de�ned as the natural coordinates Li of the

tetrahedron:

Ne
i (x) = Li =

1

6V e
(aei + beix+ cei y + dei z); i = 1; 2; 3; 4 (8.9)

The natural coordinates, the volume V e and the coe�cients aei ; b
e
i ; c

e
i ; d

e
i are all

de�ned in appendix C.

Using the fact that:

@u

@x
=

4X
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@Ne
i (x)
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uei (8.10)
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where

@Ne
i (x)=@x =

bei
6V e

(8.11)

@Ne
i (x)=@y =

cei
6V e

@Ne
i (x)=@z =

dei
6V e

the discretized strain energy may be written as:

Estrain(u
�
) =

1

2

X
e

Z

e

u
�
eTBeTMBeu

�
edx (8.12)

where Be is de�ned in appendix C.
The solution to the deformation problem is found when the total energy of

the system assumes its minimum value. This happens when the �rst variation
of the functional E vanishes, ie. when �E(u) = 0.

The equilibrium equation �E(u) = 0 can be split into element contributions:

�E(u) =
X
e

�Ee(u) = 0 (8.13)

where

�Ee(u) =

4X
i=1

@Ee

@uei
�uei +

4X
i=1

@Ee

@vei
�vei +

4X
i=1

@Ee

@we
i

�we
i (8.14)

But since the uei , v
e
i and we

i are independent this means that

@Ee

@uei
=

@Ee

@vei
=

@Ee

@we
i

= 0; i = 1; 2; 3; 4 (8.15)

The resulting equilibrium equation for each element thus becomes:

o =

Z

e

BeTMBeu
�
edx� f

�

e (8.16)

where f
�

e is a generalized discretized element compound force vector 1.
Because everything inside the integration sign is constant, the equilibrium

equation for the �nite element becomes a linear matrix equation:

Keu
�
e = f

�

e (8.17)

where
Ke = BeTMBeV e (8.18)

is called the sti�ness matrix 2 and V e is the volume of the tetrahedron (see
appendix C).

1u
�
e is 12� 1, f

�
e is 12 � 1 and Be is 6� 12

2Ke is 12� 12
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The only remaining step is assembly of the global sti�ness matrix and force
vector from the element sti�ness matrices and force vectors:

K =
X
e

global(Ke) (8.19)

f
�

=
X
e

global(f
�

e)

global() is a transfer function from element node numbers to global node num-
bers. The result is a large sparse linear system Ku

�
= f

�
.

8.3.1 Fixing nodes

Fixing nodes means clamping them to a �xed position, as a tree is clamped to
the ground at the base. If no nodes are clamped it is impossible to solve the
linear system Ku

�
= f

�
because K is singular. At least 3 nodes must be �xed

for the system to be well-formed.
When nodes are assigned a �xed displacement, it changes the sti�ness matrix

K. This change can be applied both on the element sti�ness matrices and the
global sti�ness matrix. Only the approach for the global matrix is shown here,
but the same procedure can be applied directly to the element matrices.

Without loss of generality let us assume that the displacement of the last
node PN is to be �xed as uN = u0N = [u0N v0N w0

N ]
T . Since the procedure can

be seen as three identical operations modifying rows/columns 3N � 2, 3N � 1
and 3N of the linear system, only the modi�cation of last row/column 3N is
described. The modi�ed linear system becomes:2

6664
k1;1 : : : k1;3N�1 0
...

...
...

...
k3N�1;1 : : : k3N�1;3N�1 0
0 : : : 0 1

3
7775u�

=

2
6664

f1 � w0
Nk1;3N

...
f3N�1 � w0

Nk3N�1;3N
w0
N

3
7775 (8.20)

The sti�ness matrix is modi�ed by setting the columns and rows corresponding
to the elements of node N to zero with ones in the diagonal. The force vector
is modi�ed to re
ect the �xed displacement of node N .

8.4 Simplifying the system using condensation

The linear matrix system Ku
�
= f

�
models the behaviour of the volumetric ob-

ject. This includes both surface nodes as well as the internal nodes of the model.
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But for simulation purposes we are usually only interested in the behaviour of
the surface nodes since these are the only visible nodes.

Fortunately, it is possible to remove the internal nodes from the matrix equa-
tion using a technique called condensation [Kar87]. The matrix equation for the
condensed problem has the same size as would result from a FE surface model.
But, it is important to understand that it shows exactly the same behaviour for
the surface nodes as the original volumetric system.

Let us assume that the nodes of the FE model have been ordered with the
surface nodes �rst, followed by the internal nodes. Using this ordering the linear
system can be rewritten as a block matrix system (surface / internal):�

Kss Ksi

Kis Kii

��
u
�s
u
� i

�
=

�
f
�sf
� i

�
(8.21)

From this block matrix system a new linear matrix system may be derived,
which only involves the variables of the surface nodes:

�Kssu
�s

= �f
�s

(8.22)

where

�Kss = Kss �KsiK
�1
ii Kis (8.23)

�f
�s

= f
�s
�KsiK

�1
ii f

� i

The displacement of the internal nodes can still be calculated using:

u
� i

=K�1
ii (f

� i
�Kisu

�s
) (8.24)

Note, that if no forces are applied to internal nodes, �f
�s

= f
�s
.

Generally the new sti�ness matrix will be dense compared to the sparse
structure of the original system. But, since the system is to be solved by invert-
ing the sti�ness matrix in the pre-calculation stage, this is not important.

8.5 Solving the linear matrix system

Implicit solution of a linear system is often performed using iterated algorithms
such as the Conjugate Gradient (CG) [Brt95]. This algorithm performs a sparse
matrix vector multiplication, three vector updates and two inner products re-
peatedly in an iterative loop. The complexity can therefore roughly be seen as
n�tMv+3v+2vv , where tMv+3v+2vv is the time required for the operations in one
iteration and n is the number of iterations. n is seldom less than 5-10 and can-
not in practice be predicted. Especially for a system where the response must
come at speci�c frame rates, unpredictable solution time is very unfortunate.

The alternative, which is used here, is to explicitly invert the sti�ness matrix.
Normally this is never done when linear systems resulting from FE models are
solved. The precision of the result su�ers from numerical errors, and the amount
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of storage needed to store a dense inverted sti�ness matrix is huge, compared
to the sparse sti�ness matrix itself. But, as indicated in the beginning of the
chapter, precision and memory size are not important when compared with
speed in a trade-o�.

Although the time for inversion is considerable, the solution time is very
small, since it only involves a dense matrix vector multiplication:

u
�
=K�1f

�
(8.25)

Numerical tests have been performed using the Meschach library [Ste92] to solve
a linear system generated by a FE model. These experiments included explicit
inversion, CG with and without preconditioner, Gauss elimination and several
factorization techniques such as QR and Cholesky. When the pre-calculation
time was ignored, solution by matrix vector multiplication with the inverted
sti�ness matrix, was at least 10 times faster than any other method.

We have not stated the actual numerical results here, since the implementa-
tion of the di�erent algorithms in the Meschach library has not been properly
optimized. The timings could therefore be di�erent for other implementations,
although the general result would be the same.

8.6 Simulation

In this section we will discuss the di�erent simulation methods available to us.
We have two linear matrix equations. One with all the nodes of the FE model
and a sparse sti�ness matrix. And a reduced version with only the surface nodes
and a dense sti�ness matrix.

8.6.1 Dynamic system

In order to use a physically correct model of the body, mass and damping are
added to the static model. This is done by formulating the equation for damped
harmonic motion (discrete version of equation 4.58):

R�u
�
+C _u

�
+Ku

�
= f

�
(8.26)

where R is the mass, C is the damping and K is the sti�ness matrix of the
system. K is calculated as shown above. Assuming lumped masses at the nodes,
we use diagonal damping and mass element matrices:

Re
ii =

1

3
�V e Ce

ii = �Re
ii (8.27)

where � is the mass-density and � is a scaling factor.
The global element matrices are assembled into global matrices. Since the

mass and damping matrices are diagonal, they are also block diagonal. The
damped harmonic motion equation for the reduced system, therefore, simply
becomes:

Rss �u
�s

+Css _u
�s

+ �Kssu
�s

= �f
�ss

(8.28)
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Time discretization

To discretize the time derivatives, �nite di�erence estimates are used. A semi-
implicit Euler method is derived using:

R

�t2
[u
�
(t+�t)� 2u

�
(t) + u

�
(t��t)]

+
C

2�t
[u
�
(t+�t)� u

�
(t��t)] +Ku

�
(t+�t) = f

�
(t) (8.29)

or K̂u
�
(t+�t) = f̂

�
(t) where:

K̂ =
R

�t2
+

C

2�t
+K

f̂
�
(t) =

2R

�t2
u
�
(t) +

�
C

2�t
� R

�t2

�
u
�
(t��t) + f

�
(t) (8.30)

The equations for a comparable explicit solution are:
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�t2
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(t��t)]

+
C

2�t
[u
�
(t+�t)� u

�
(t��t)] +Ku

�
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or
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�
R

�t2
+

C

2�t

�
�1

�
2
R

�t2
u
�
(t)�

�
R

�t2
� C

2�t

�
u
�
(t��t)

� Ku
�
(t) + f

�
(t)

�
(8.32)

Since both R and C are diagonal matrices, they are easily inverted.
The main feature of the explicit solution method is that the sti�ness matrix

K does not have to be inverted. In practice, this allows us to split the large
global equation into simple independent local equations for each node:

uq(t+�t) =

�
�V e

3�t2
+
��V e

6�t

�
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�
2
�V e

3�t2
uq(t)�

�
�V e

3�t2
� ��V e

6�t

�
uq(t��t))

� fKu
�
(t)gq + fq(t)

�
=

�
1

�t
+
�

2

�
�1

�
2

�t
uq(t)�

�
1

�t
� �

2

�
uq(t��t))

� 3�t
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�fKu
�
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��
(8.33)



8.6. SIMULATION 121

where fKu
�
(t)gq is the result of the matrix-vector multiplication related to the

node q.

Simulation using this equation would be similar to the mass-spring mod-
els used by eg. K�uhnapfel, Deussen, and Kuhn [Deu95, Ku96, Kue93, Kue94,
Kue95] and Waters and Terzopoulos [Wat87, Wat91, Ter91b, Wat92, Ter93,
Lee93, Lee95].

The non-zero elements of the row associated with the q'th node of K, indi-
cate which nodes that are connected to it with springs.

The semi-implicit solution algorithm is preferred because of the better sta-
bility and more direct solution of the system. System response is more global
with the implicit approach. Using explicit methods, the response to forces is
only spread globally after some iterations.

A drawback with the semi-implicit models is the greater di�culty of model-
ing cuts. Any change in the sti�ness matrix implies that the inverted sti�ness
matrix has to be updates or recalculated. This can be quite expensive. But
with domain decomposition techniques, the domain may be split up into sub-
domains, which use explicit and semi-implict solution methods, depending on
whether cuts have been or have not been performed in the sub-domain. See the
later section 8.9.1 for a wider discussion of these aspects.

Although the discussion above has been carried out using the full system,
the same equations could be formulated for the condensed system. We leave
this to the reader.

8.6.2 Static system and selective matrix vector multipli-

cation

Generally the f̂
�
(t) vector is a full vector because of the contribution from the

previous displacement vectors u
�
(t) and u

�
(t��t). In contrast the original force

vector f
�
(t) is a sparse vector when forces only are applied to a few surface

nodes. Since this is often the case in simulation, we were inspired to develop an
alternative simulation method, which for sparse force vectors, is considerably
faster.

The cost of this simulation method is the loss of dynamics. The idea is to
use the static linear system Ku

�
= f

�
(or the condensed version) instead of the

dynamic damped harmonic motion system, and exploit the sparse structure of
the static force vector.

Formally, solving the system using the inverted sti�ness matrix is performed
using:

u
�
=K�1f

�
(8.34)

If only a few positions of the force vector are non-zero, clearly standard matrix
vector multiplication would involve a large number of super
uous multiplica-
tions. Note that:

u
�
=K�1f

�
=
X
i

K�1
�i fi

�
(8.35)
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whereK�1
�i is the i'th column vector ofK�1 and fi

�
the i'th element of f

�
. Since

the majority of the fi
�
are zero, i is restricted to run through only the positions of

f
�
for which fi

�
6= 0. If n of the N positions in f

�
are non-zero this will reduce the

complexity to O(n=N) times the time of a normal matrix vector multiplication.
We call this approach Selective Matrix Vector Multiplication (SMVM).

The SMVM method and the dynamic model converge for slow changes in
forces applied to the solid body.

8.6.3 Summary of simulation methods

A number of methods related to simulation using FE models have been pre-
sented. In general two criterias separate the possible implicit algorithms: Full
FE model contra condensed FE model, and dynamic simulation contra selective
matrix vector multiplication (SMVM).

Dynamic simulation SMVM

Full FE model FD FS
Condensed FE model CD CS

The choice of algorithm depends on the requirements of the application. Whether
one chooses dynamic simulation or SMVM is a question of the speed require-
ment and size of the problem. If the problem can be processed fast enough using
dynamic simulation, this would be the best choice.

The choice between the full FE model versus the condensed model, is based
on whether it is necessary to modify the FE model during simulation or not, eg.
to model a surgical cut in the model. If modi�cation is necessary, the standard
full system is easier to modify, rather than the condensed system, which is one
step further in re�nement. Without the need for modi�cation the condensed
model should be used.

The CS, CD and FS methods have been implemented in the simulation
system described below.

8.7 Simulation system

This section brie
y discusses the practical aspects of implementing the simu-
lation methods and generating models from voxel data. Screen shots from the
SGI Performer based system are used to illustrate the results.

8.7.1 Mesh generation using Mvox and Nuages

In addition to a range of simple box-like structures, data from the Visible Human
project [Vis96] has been used to make a model of a lower leg.

Since the Visible Human data set is voxel-based (see �gure 8.3), it must
�rst be turned into a mesh model. The Mvox software [BN96] is used to draw
contours manually on the boundary of the skin and bone in the voxel data
(see �gure 8.4). The Nuages software [Gei93] is then applied to create a 3D
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Figure 8.3: Voxel data from the visible human data set.

tetrahedral mesh model of the leg. The result for the lower leg is shown in
�gure 8.5. This model is used in the simulation system described in the next
section.

8.7.2 SGI Performer parallel pipe-lining system

The simulation system has been implemented on a Silicon Graphics Onyx with
four Mips R4400 processors using the SGI Performer 1.2 graphics library. SGI
Performer allows the programmer to create parallel pipe-lining software quite
easily by providing the basic tools for communication, shared memory etc.

Currently, the system runs with 3 processes (see �gure 8.7): The Application,
Culling and Drawing processes. The Application process handles the actual
simulation of the deformable solid, ie. calculates displacements etc. The Culling
process analyzes the scene that the simulation process provides, and determines
which parts are visible in the current window. It then pipes the visible parts to
the Drawing process which �nally renders the scene.

Note, that although the entire system is a parallel system, the actual defor-
mation simulation system still runs on a single processor. The parallel features
are only used to separate rendering from simulation.

Figure 8.6 shows a screen dump of the virtual surgery room with the leg
lying on the operating table. Figure 8.8 shows the surface of the FE mesh in
the simulator.



124CHAPTER 8. REAL-TIMEDEFORMABLEMODELS FOR SURGERY SIMULATION

Figure 8.4: Contours created using Mvox.
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Figure 8.5: FE mesh created from contours using Nuages.



126CHAPTER 8. REAL-TIMEDEFORMABLEMODELS FOR SURGERY SIMULATION

Figure 8.6: Simulation system implemented using SGI Performer.

DrawingCullingApplication
process process process

Scene database

Figure 8.7: Diagram showing relationship between the processes of the simulation
system.
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Figure 8.8: Wireframe model of lower leg in simulator.

8.8 Results

This chapter has described four methods for real-time simulation of elastic defor-
mation of a volumetric solid based on semi-implicit linear elastic �nite elements.
Examples of deformation of a lower leg are shown in �gures 8.9 and 8.10.

Performance of the dynamic simulation methods is determined solely by
the size of the linear system. 20 frames/second have been achieved for models
with up to 250 nodes in the system equation. For the full linear system this
includes all nodes, both internally and on the surface. But for the condensed
system it only includes the surface nodes. The number of internal nodes of the
model, therefore, does not matter for the condensed system since they have been
removed from the system equation.

It is more di�cult to predict the performance of the methods using Selective
Matrix Vector Multiplication (SMVM). The above comments, concerning the
full contra condensed systems, apply here also. But in addition, the number of
nodes which have forces applied to them is very important.

The example using a leg from the Visible Human data set with 700 system
nodes (condensed system with only surface nodes) ran comfortably using only
1/3 of a frame (20 frames/second) when forces were applied to 3 nodes. This
included calculation of the deformation and also basic processing. So although
both more nodes and more surface nodes with forces applied, would increase
the time requirement, larger models could be accommodated using the SMVM
method.

As a group, we call the optimized models Fast Finite Elements (FFE).
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Figure 8.9: Simulation of pushing on a the lower leg. Top: Default shape.
Bottom: Deformation of leg when a push is applied to the black triangle.
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Figure 8.10: Simulation of pulling on a the lower leg. Top: Default shape.
Bottom: Deformation of leg when a push is applied to the black triangle.
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8.9 Extensions

This section describes two extensions to the basic fast �nite element algorithms,
which could be used in larger practical systems. Full implementation of these
extensions requires considerable database handling facilities, and access to par-
allel systems with at least 5-10 processors.

8.9.1 Domain decomposition

The computational complexity of the �nite element models is generally high.
Although computational improvements have been presented in this chapter,
there is still a low limit on the possible size of the deformable models, if real-
time response is necessary.

Parallel processors are starting to become generally available on eg. the Sili-
con Graphics Onyx series of high-end graphics computers. A natural suggestion
is, therefore, to create parallel versions of the �nite element models.

Explicit models are very easy to parallelize, since the solution is determined
locally. In principle, each node can therefore be assigned to one processor in the
parallel computer.

Creating parallel versions of implicit models is more di�cult. Fortunately,
there is currently a great deal of attention on these problems. Domain decom-
position techniques are being developed with the speci�c aim of implementing
�nite element models on parallel systems. Although the �eld is still being de-
veloped, there are reasonable methods available.

In the following, the basic ideas of domain decomposition are described.
Domain decomposition methods can be quite complex, and it is not clear which
method should be used for the real-time deformable models. A more detailed
description is, therefore, not given here. Refer to the recent book by Smith et
al. [Smi96] for a more in-depth discussion.

Let us assume that the domain 
 can be separated into non-overlapping
sub-domains 
(i) with boundaries �(i) (see �gure 8.11). Adjacent domains i

and j only share the common boundary �(i) \ �(j).
Let the linear system for sub-domain i be:

K(i)u
�
(i) = f

�

(i) (8.36)

Using the same approach as used for the condensation, the nodes of the sub-
domain are split into interior and common nodes. The common nodes are those
shared by two or more sub-domains.

With these de�nitions, the equilibrium matrix equation for the sub-domain
can be written as: "

K(i)
cc K

(i)
ci

K
(i)
ic K

(i)
ii
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u
�
(i)
c

u
�
(i)
i

#
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"
f
�

(i)

c

f
�

(i)

i

#
(8.37)

From this block matrix system a new linear matrix system may be derived,
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Figure 8.11: Domain decomposition.

which only involves the variables of the common nodes:
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(8.38)

where
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The sub-domain variables are assembled into a global system

�Kccu
�c

= �f
�c

(8.41)

where �Kcc is called the Schur's complement.
Finally, when a solution has been found for the common nodes, the displace-

ments of the internal nodes in the sub-domain can be calculated using:

u
�
(i)
i =K

(i)�1
ii (f

�

(i)

i
�K(i)

ic u�
(i)
c ) (8.42)

In theory, the following approach could be used to solve the global matrix
equation using domain decomposition (Parallel indicates that the step can be
carried out in parallel):

1. Parallel: The common forces are determined locally in each sub-domain
using equation 8.40,

2. These forces are assembled into a global force vector, which is used to �nd
the displacements of the common nodes using equation 8.41,
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3. Parallel: When the displacements of the common nodes are found, the
displacements of the internal nodes can be determined using equation 8.42.

Normal domain decomposition methods do not use this approach directly. In-
stead iterated conjugate gradient methods [Brt95] are often used with precon-
ditioners based on the Schur's complement.

The actual application will determine what form of domain decomposition
algorithm should be used. In the case of cutting, the Schur's complements are
changed and iterated methods are probably necessary.

Experiments have been carried out to solve the global linear system:

Ku
�
= f

�
(8.43)

by applying domain decomposition based on the conjugate gradient algorithm.

First a preconditioner is created from the global sti�ness matrix by zeroing
the o�-diagonal elements, which are related to the common nodes. Since the
sub-domain blocks of the preconditioner are now independent, the application
of the preconditioner in the conjugate gradient algorithm, can be carried out in
parallel by sub-domain processors. The remaining part of the conjugate gradient
algorithm is global, and can be performed on a specially assigned processor.

Preliminary results have been obtained showing the validity of the algorithm.
But, the conjugate gradient algorithm is slow, and the solution of the global
system was not fast enough for real-time performance. More work is therefore
necessary, to determine an appropriate domain decomposition algorithm.

8.9.2 Cutting in �nite element systems

Implementing cutting in �nite element systems causes two major problems. The
�rst, which we ignore here, is related to the geometric modi�cation of the �nite
element mesh. These modi�cations should ensure that the cut looks smooth
when rendered using computer graphics. In general, it is necessary to re�ne the
mesh around the cut, and the geometric aspects of this are non-trivial.

The second problem concerns the necessary change of the sti�ness matrix
and the linear system. For explicit methods this is simple. But, for implicit
systems, where the sti�ness matrix has been inverted, the inverted sti�ness
matrix needs to be updated.

For simplicity, let us assume that the cutting implies removing the �nite
element number e from the system. The modi�ed sti�ness matrix becomes:

K =K � global(Ke) (8.44)

Since the size of the element sti�ness matrix is 12� 12, this involves changes in
12 rows and 12 columns.

To change the inverted sti�ness matrix, the Woodbury formula [Num92]
is used. The Woodbury formula is a matrix extension of the original scalar
Sherman-Morrison update formula.
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Let us assume that the sti�ness matrix is updated with a matrix, which can
be written as the outer product of two 3N � 12 vectors (N is the number of
nodes):

K !K +UV T (8.45)

The updated inverted sti�ness matrix then becomes:

(K +UV T )�1 = K�1 (8.46)

�
h
K�1U (I12�12 + V

TK�1U )�1V TK�1
i

(8.47)

where I12�12 is a 12 by 12 identity matrix.
The vectors U and V are easily determined: Ke and the identity matrix

are inserted in the rows of U and V , respectively, corresponding to the global
row/column positions of the element nodes.

The computation consists of the inversion of the 12 by 12 matrix:

I12�12 + V
TK�1U (8.48)

and 6 matrix multiplications of di�erent sizes and two matrix additions. In total
324N2 +O(N) 
ops.

To demonstrate the applicability of this approach, a simple cutting algo-
rithm has been implemented in the simulation system. This algorithm allows
individual �nite elements to be removed. The resulting modi�cation of the
linear system is obtained using the algorithm described above.

An example is shown in �gure 8.12. This simple �nite element model has only
75 nodes and the modi�cation of the linear system is more or less instant. For a
more complex mesh with 1125 nodes, the modi�cation of the inverted sti�ness
matrix takes about one minute. The time consumption is, consequently, too
high for general real-time response. But, it could be used in speci�c cases,
where the waiting time can be accepted or otherwise disguised.

8.10 Summary

In this chapter, a comprehensive description of the issues facing a developer of
real-time deformable models has been given. In particular, new results using
condensation techniques, direct matrix inversion, and selective matrix vector
multiplication were presented. These methods are essential to obtaining accept-
able response in surgery simulation systems.

A simulation system developed using SGI Performer was described, and a
routine for creating the basic �nite element mesh was suggested.

Two important extensions of the work were outlined in the �nal section.
These extensions are the use of domain decomposition for parallel implemen-
tation of the �nite element system, and the procedure for modi�cation of the
system matrix in response to cuts in the mesh.

A simple example of a cut were demonstrated, in which a single �nite element
was removed from the sti�ness matrix and a hole appeared.
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Figure 8.12: Simple cutting in �nite element mesh.
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The implementations of the two extensions are non-trivial and require com-
prehensive book-keeping and computer power to work in practice. Both exten-
sions, consequently, need more work before they can be used in practice.

In general, there is still a considerable amount of work to be performed. An
important example is the introduction of detailed segmentations of the organs,
limbs etc. to allow di�erent material properties and models to be used. The
current parallel research in digital atlasses such as the VoxelMan atlas [Hoe92]
is a signi�cant step in this direction.
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Chapter 9

Conclusion

In this thesis, medical image registration and surgery simulation techniques have
been explored. Reviews of previous work in these �elds were given in chapters 2
and 7.

If rigid transformation is understood as physical motion, physical models
has been the common denominator of all the work presented here.

In general, physical models are becoming more and more important in the
�elds of image processing, computer graphics, medical imaging, and simulation.
This is happening, because in all these �elds there is a movement in these years,
from regarding the world as consisting of rigid objects, to taking the natural
path of regarding the world as simply - the world.

The environment is, therefore, increasingly being simulated and interpre-
tated using non-rigid modeling techniques, which have their basis in physical
models of natural phenomena.

Often the physical models have been used without regard to their actual
applicability for the speci�c problem. This is natural when new techniques are
introduced to a �eld, but unfortunate in the long run, since problems inevitably
occur. This text has, therefore, been written with a strong emphasis on really
understanding the physical models and their limitations. In particular, chapter 4
were dedicated to a in-depth description of physical continuum models.

Some of the results in this thesis have come about because this understanding
opened up new ways of handling the speci�c problems. This was seen in chap-
ter 5, where the viscous 
uid registration algorithm were improved using results
from linear elasticity. This transfer of knowledge from one model to another,
was made possible by a general understanding of continuum models.

In addition, the implementation of the linear elasticity operator as a �l-
ter, depended on an understanding of the characteristics of quadratic energy
functions, and their linear partial di�erential equations.

Sometimes, it is not possible to use the appropriate physical model because
of computational complexity considerations. The real-time �nite element mod-
els of linear elasticity in chapter 8 are a good example of a case where a model
is selected entirely based on timing concerns. But, although the speci�c appli-
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cation without doubt violates basic assumptions of the model, the knowledge of
the continuum models allows us to understand when and how these assumptions
are violated. Thus, we are able to make an intelligent trade-o�, rather than a
blind decision.

In some cases, the real physical model is not known. Naturally, this hampers
the use of realistic models, and often an arbitrary model is used instead. This
has typicly happened for non-rigid registration of medical images. Since no
model of the change from one image to the next is generally available, elastic
and viscous 
uid models have been used instead.

But, in isolated cases it is possible to determine the real physical model.
Chapter 6 described such a case, where theories about the real model were used
to build a speci�c model for the problem at hand. In this chapter, time sequence
images of the mandibular bone were registered using a growth model, based on
medical knowledge of the growth processes of bone.

Finally, there are alternative aspects to this thesis than the physical mod-
els. Physical models have been the theoretical hinge of thesis. But, the thesis
can also be seen from an application point of view. Indeed, as argued in the
introduction, the image registration and simulation algorithms presented here,
can be seen as some of the basic elements of the next generation medical work-
station. A workstation, where all the components of visualization, automated
diagnosis, surgery simulation, and surgery assistance, come together.

Whether this workstation will ever see the light is another question. There
is still a long way to go, and this thesis has only solved a small part of the
problems. Much of the next generation workstation is still visions of the future
of medicine.

There is a lot of work in front of us.



Appendix A

Mvox

Mvox is a general-purpose tool for visualization, segmentation and manipulation
of a wide range of 2-4D greylevel and color images, and 3D surface graphics.
The software provides a 
exible tool, that handles all the data types typically
used in a research environment, for medical imaging and visualization.

Mvox is easy to use, and has a consistent user interface, based on software
standards such as Unix, X/Motif and OpenGL.

Mvox can handle images with di�erent numbers of slices, colors, and time
steps. It has been successfully used to visualize and segment:

� 2D and 3D medical images with stacks of slices (CT, MRI, etc).

� 2D and 3D color images, such as histological slices from the Visible Human
data set.

� 2D remote sensing images with many channels,

� 3D surface graphics, such as those used in CAD software and produced by
the iso-surface routine in Mvox [Wyv86] (similar to Marching Cubes [Lor87]).

� time sequences of any of the above.

In Mvox, image segmentation can be performed manually using editing and
contour drawing facilities (see �gure A.3). For semi-automatic segmentation,
Mvox has interactive/automatic thresholding (see �gure A.2) and statistical
classi�cation using discriminant analysis [Con84], both with multiple classes.

Segmented images can be visualized in 3D, along with the original images,
using either iso-surfacing [Wyv86], volume rendering or fast display of slices (see
�gure A.4 and A.5). Also stacked contours can be turned into 3D structures.

Additional features include image registration, computation and manipula-
tion of image histograms, computation of image statistics, colormap alteration,
etc. User-developed C programs can use Mvox as a front-end through a shared
memory interface by including as little as two lines of extra user code. All this
makes Mvox a very 
exible tool suited to a wide variety of user needs.

Images in this appendix show di�erent screen-shots from Mvox.
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Figure A.1: Mvox main 2D image handling window.
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Figure A.2: Mvox thresholding window.
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Figure A.3: Mvox drawing window.
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Figure A.4: Mvox 3D graphics window.
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Figure A.5: Mvox 3D volume rendering window.



Appendix B

Derivation of Linear Filter.

The decomposition of the impulse response displacement �eld is determined by
inserting:

�lmns = � 1

�lmns

< ~fc;�lmns(~x) >

= � 1

�lmns

�x1lmns(~xc) (B.1)

into the decomposition equation.
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Appendix C

Linear Tetrahedral Finite

Element

We assume that the nodes of the tetrahedron have been numbered as illustrated
in �gure 8.2. The natural coordinates L1, L2, L3 and L4 of the tetrahedron are
related to the global coordinates x, y and z by (we ignore element superscripts):2

664
1
x
y
z

3
775 =

2
664

1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

3
775
2
664

L1

L2

L3

L4

3
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This equation can be inverted to give2
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where
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The other coe�cients are found by cyclic interchange of the indices.
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The Be matrix becomes:

Be =
1

6V

2
6666664

b1 0 0 b2 0 0 b3 0 0 b4 0 0
0 c1 0 0 c2 0 0 c3 0 0 c4 0
0 0 d1 0 0 d2 0 0 d3 0 0 d4
c1 b1 0 c2 b2 0 c3 b3 0 c4 b4 0
0 d1 c1 0 d2 c2 0 d3 c3 0 d4 c4
d1 0 b1 d2 0 b2 d3 0 b3 d4 0 b4

3
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Appendix D

GLCM Plots

D.1 MR-Pd / MR-T1 (moved)
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Table D.1: Pd/T1: Regression slope of rotation and translation experiments.
Calculated correction factor. 500 samples are used.

Rotation Translation Correction
Energy 0.004092872 0.002872422 1.4249
Variance 0.00409286 0.002872399 1.4249
Entropy 0.03425994 0.02847779 1.2030
MI 0.01463079 0.01619386 0.9035
IDM 0.004175296 0.00336414 1.2411
Inertia 22.96762 28.85428 0.7960
Dmoment 20.0902 21.56672 0.9315
Correlation 0.01217191 0.01629539 0.7470
Cshade 4154.166 5863.871 0.7084
Cprominence 1120958 1408187 0.7960
Woods MR/PET (X:Pd) 0.1528903 0.1322085 1.1564
Woods MR/PET (X:T1) 0.1832248 0.1417444 1.2926

Table D.2: Pd/T1: Corrected linear regression results (y = ax+b). 500 samples
are used.

Slope (a) Intercept (b)
Energy 0.002860538 -0.310261424
Variance 0.002860496 -0.310235623
Entropy 0.02886965 2.86163008
MI 0.01669293 -0.69676310
IDM 0.003402034 -0.770857566
Inertia 29.40917 134.97652
Dmoment 21.98069 516.35668
Correlation 0.01652248 -0.94779800
Cshade 5985.225 -414008.242
Cprominence 1434930 -71745585
Woods MR/PET (X:Pd) 0.1300614 0.9164917
Woods MR/PET (X:T1) 0.1390098 1.6041555
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Table D.3: Pd/T1: Similarity measure plot quality result and R2 compared with
uncorrected R2. 500 samples are used.

Quality R2 Uncorrected R2

Energy 2 0.9384729 0.9088758
Variance 2 0.9384698 0.9088723
Entropy 5 0.9760593 0.9708134
MI 5 0.9260448 0.9214459
IDM 5 0.9685928 0.9599456
Inertia 4 0.9173130 0.9061781
Dmoment 4 0.9187858 0.9159433
Correlation 4 0.9057705 0.8883932
Cshade 3 0.8380936 0.8114711
Cprominence 3 0.8265533 0.8120783
Woods MR/PET (X:Pd) 3 0.7361181 0.7412743
Woods MR/PET (X:T1) 3 0.5480094 0.5482602
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Figure D.1: Pd/T1: Distance/energy: Rotation only, Translation only, Normal
and Corrected.
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Figure D.2: Pd/T1: Distance/variance: Rotation only, Translation only, Nor-
mal and Corrected.
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Figure D.3: Pd/T1: Distance/entropy: Rotation only, Translation only, Normal
and Corrected.
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Figure D.4: Pd/T1: Distance/MI: Rotation only, Translation only, Normal and
Corrected.
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Figure D.5: Pd/T1: Distance/IDM: Rotation only, Translation only, Normal
and Corrected.
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Figure D.6: Pd/T1: Distance/inertia: Rotation only, Translation only, Normal
and Corrected.
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Figure D.7: Pd/T1: Distance/Dmoment: Rotation only, Translation only, Nor-
mal and Corrected.
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Figure D.8: Pd/T1: Distance/correlation: Rotation only, Translation only,
Normal and Corrected.
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Figure D.9: Pd/T1: Distance/Cshade: Rotation only, Translation only, Normal
and Corrected.
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Figure D.10: Pd/T1: Distance/Cprominence: Rotation only, Translation only,
Normal and Corrected.
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Figure D.11: Pd/T1: Distance/Woods MR/PET X-�xed: Rotation only, Trans-
lation only, Normal and Corrected.
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Figure D.12: Pd/T1: Distance/Woods MR/PET X-moved: Rotation only,
Translation only, Normal and Corrected.
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Figure D.13: Pd/T1: Sequence plots of energy.
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Figure D.14: Pd/T1: Sequence plots of variance.
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Figure D.15: Pd/T1: Sequence plots of entropy.
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Figure D.16: Pd/T1: Sequence plots of MI.
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Figure D.17: Pd/T1: Sequence plots of IDM.
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Figure D.18: Pd/T1: Sequence plots of inertia.



D.1. MR-PD / MR-T1 (MOVED) 167

450

500

550

600

650

700

750

800

-10 -8 -6 -4 -2 0 2 4 6 8 10

’t1pd_s2_seq21.tx.dmoment’
’t1pd_s2_seq21.ty.dmoment’
’t1pd_s2_seq21.tz.dmoment’
’t1pd_s2_seq21.rx.dmoment’
’t1pd_s2_seq21.ry.dmoment’
’t1pd_s2_seq21.rz.dmoment’

Figure D.19: Pd/T1: Sequence plots of Dmoment.
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Figure D.20: Pd/T1: Sequence plots of correlation.
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Figure D.21: Pd/T1: Sequence plots of Cshade.
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Figure D.22: Pd/T1: Sequence plots of Cprominence.
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Figure D.23: Pd/T1: Sequence plots of woods MR/PET X-�xed.
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Figure D.24: Pd/T1: Sequence plots of woods MR/PET X-moved.
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D.2 CT Bone / MR-T1 (moved)
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Table D.4: CT/T1: Regression slope of rotation and translation experiments.
Calculated correction factor. 500 samples are used.

Rotation Translation Correction
Energy 0.002121621 0.002009519 1.0558
Variance 0.002121672 0.002009571 1.0558
Entropy 0.02802454 0.02428523 1.1540
MI 0.00670787 0.0117882 0.5690
IDM 0.00362897 0.003410634 1.0640
Inertia 5.461116 9.80069 0.5572
Dmoment 1.748049 1.489533 1.1736
Correlation 0.001697926 0.005628386 0.3017
Cshade -690.077 117.8507 NA
Cprominence -261518.8 -107152.9 2.4406
Woods MR/PET (X:CT) 0.003373523 0.006965458 0.4843
Woods MR/PET (X:T1) -0.52275 -0.5289265 0.9883
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Table D.5: CT/T1: Corrected linear regression results (y = ax+b). 500 samples
are used.

Slope (a) Intercept (b)
Energy 0.002057912 -0.266409973
Variance 0.002057961 -0.266383099
Entropy 0.02477265 3.14184302
MI 0.01177012 -0.56200238
IDM 0.003384401 -0.559729930
Inertia 9.502501 417.867211
Dmoment 1.686948 763.647000
Correlation 0.004953982 -0.726158360
Cshade -280.9123 -179466.4671
Cprominence -88517.09 -23050940.62
Woods MR/PET (X:CT) 0.006881338 0.511511804
Woods MR/PET (X:T1) -0.5372226 10.8869138

Table D.6: CT/T1: Similarity measure plot quality results and R2 compared
with uncorrected R2. 500 samples are used.

Quality R2 Uncorrected R2

Energy 4 0.9505296 0.9493070
Variance 4 0.9505302 0.9493080
Entropy 5 0.9666757 0.9638251
MI 4 0.8077108 0.7595025
IDM 2 0.9416978 0.9384330
Inertia 1 0.6917992 0.6948765
Dmoment 1 0.2931991 0.2798332
Correlation 1 0.5524907 0.5277128
Cshade 1 0.0773453 0.0773202
Cprominence 1 0.3667449 0.3952463
Woods MR/PET (X:CT) 4 0.6376055 0.6018653
Woods MR/PET (X:T1) 4 0.8147630 0.8139735
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Figure D.25: CT/T1: Distance/energy: Rotation only, Translation only, Nor-
mal and Corrected.
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Figure D.26: CT/T1: Distance/variance: Rotation only, Translation only, Nor-
mal and Corrected.
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Figure D.27: CT/T1: Distance/entropy: Rotation only, Translation only, Nor-
mal and Corrected.
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Figure D.28: CT/T1: Distance/MI: Rotation only, Translation only, Normal
and Corrected.
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Figure D.29: CT/T1: Distance/IDM: Rotation only, Translation only, Normal
and Corrected.
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Figure D.30: CT/T1: Distance/inertia: Rotation only, Translation only, Nor-
mal and Corrected.
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Figure D.31: CT/T1: Distance/Dmoment: Rotation only, Translation only,
Normal and Corrected.
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Figure D.32: CT/T1: Distance/correlation: Rotation only, Translation only,
Normal and Corrected. 500 samples are used.
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Figure D.33: CT/T1: Distance/Cshade: Rotation only, Translation only, Nor-
mal and Corrected.
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Figure D.34: CT/T1: Distance/Cprominence: Rotation only, Translation only,
Normal and Corrected. 500 samples are used.
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Figure D.35: CT/T1: Distance/Woods MR/PET X-�xed: Rotation only, Trans-
lation only, Normal and Corrected.
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Figure D.36: CT/T1: Distance/Woods MR/PET X-moved: Rotation only,
Translation only, Normal and Corrected.
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Figure D.37: CT/T1: Sequence plots of energy.
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Figure D.38: CT/T1: Sequence plots of variance.
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Figure D.39: CT/T1: Sequence plots of entropy.
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Figure D.40: CT/T1: Sequence plots of MI.
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Figure D.41: CT/T1: Sequence plots of IDM.
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Figure D.42: CT/T1: Sequence plots of inertia.
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Figure D.43: CT/T1: Sequence plots of Dmoment.
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Figure D.44: CT/T1: Sequence plots of correlation.
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Figure D.45: CT/T1: Sequence plots of Cshade.
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Figure D.46: CT/T1: Sequence plots of Cprominence.
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Figure D.47: CT/T1: Sequence plots of woods MR/PET X-�xed.
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Figure D.48: CT/T1: Sequence plots of woods MR/PET X-moved.
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D.3 CT Bone (moved) / Red
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Table D.7: CT/R: Regression slope of rotation and translation experiments.
Calculated correction factor. 500 samples are used.

Rotation Translation Correction
Energy 0.0005420492 0.001327608 0.4083
Variance 0.000541966 0.001327518 0.4083
Entropy 0.02588123 0.02403076 1.0770
MI 0.007414116 0.01177257 0.6298
IDM 0.003686641 0.002958455 1.2461
Inertia 41.46096 43.05321 0.9630
Dmoment 25.55221 19.4613 1.3130
Correlation 0.006270843 0.01010701 0.6204
Cshade 2307.93 4829.543 0.4779
Cprominence 654420.1 1230892 0.5317
Woods MR/PET (X:R) -0.7466082 -0.7829702 0.9536
Woods MR/PET (X:CT) 0.007124646 0.01166874 0.6106
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Table D.8: CT/R: Corrected linear regression results (y = ax+ b). 500 samples
are used.

Slope (a) Intercept (b)
Energy 0.001147005 -0.366643038
Variance 0.001146895 -0.366614460
Entropy 0.02419387 2.81064684
MI 0.01171179 -0.52855416
IDM 0.003042153 -0.497452392
Inertia 43.6012 2478.7321
Dmoment 19.61375 3368.52580
Correlation 0.009952641 -0.849778911
Cshade 4729.952 -915478.910
Cprominence 1233293 -185829490
Woods MR/PET (X:R) -0.7840236 16.7303990
Woods MR/PET (X:CT) 0.01132891 0.36588970

Table D.9: CT/R: Similarity measure plot quality results and R2 compared with
uncorrected R2. 500 samples are used.

Quality R2 Uncorrected R2

Energy 1 0.4335973 0.3803990
Variance 1 0.4335405 0.3803409
Entropy 5 0.9801963 0.9790247
MI 4 0.9016652 0.8648146
IDM 3 0.9476440 0.9375267
Inertia 5 0.9721051 0.9725199
Dmoment 5 0.9896430 0.9720567
Correlation 4 0.9176131 0.8917624
Cshade 4 0.8500580 0.7844821
Cprominence 4 0.8491666 0.7947552
Woods MR/PET (X:R) 3 0.7792640 0.7764421
Woods MR/PET (X:CT) 2 0.9013030 0.8753324
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Figure D.49: CT/R: Distance/energy: Rotation only, Translation only, Normal
and Corrected.
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Figure D.50: CT/R: Distance/variance: Rotation only, Translation only, Nor-
mal and Corrected.
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Figure D.51: CT/R: Distance/entropy: Rotation only, Translation only, Normal
and Corrected.
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Figure D.52: CT/R: Distance/MI: Rotation only, Translation only, Normal and
Corrected.
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Figure D.53: CT/R: Distance/IDM: Rotation only, Translation only, Normal
and Corrected.
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Figure D.54: CT/R: Distance/inertia: Rotation only, Translation only, Normal
and Corrected.
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Figure D.55: CT/R: Distance/Dmoment: Rotation only, Translation only, Nor-
mal and Corrected.
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Figure D.56: CT/R: Distance/correlation: Rotation only, Translation only,
Normal and Corrected.
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Figure D.57: CT/R: Distance/Cshade: Rotation only, Translation only, Normal
and Corrected.



D.3. CT BONE (MOVED) / RED 203

-1.88e+08

-1.86e+08

-1.84e+08

-1.82e+08

-1.8e+08

-1.78e+08

-1.76e+08

-1.74e+08

-1.72e+08

0 2 4 6 8 10 12 14 16

’ctr_s2_dist_rot.cprominence’

-1.9e+08

-1.85e+08

-1.8e+08

-1.75e+08

-1.7e+08

-1.65e+08

-1.6e+08

0 2 4 6 8 10 12 14 16

’ctr_s2_dist_tr.cprominence’

-1.9e+08

-1.85e+08

-1.8e+08

-1.75e+08

-1.7e+08

-1.65e+08

0 2 4 6 8 10 12 14 16

’ctr_s2_dist.cprominence’

-1.9e+08

-1.85e+08

-1.8e+08

-1.75e+08

-1.7e+08

-1.65e+08

0 2 4 6 8 10 12 14

’ctr_s2_dist.cprominenceC’

Figure D.58: CT/R: Distance/Cprominence: Rotation only, Translation only,
Normal and Corrected.
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Figure D.59: CT/R: Distance/Woods MR/PET X-�xed: Rotation only, Trans-
lation only, Normal and Corrected.
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Figure D.60: CT/R: Distance/Woods MR/PET X-moved: Rotation only,
Translation only, Normal and Corrected.
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Figure D.61: CT/R: Sequence plots of energy.
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Figure D.62: CT/R: Sequence plots of variance.
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Figure D.63: CT/R: Sequence plots of entropy.
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Figure D.64: CT/R: Sequence plots of MI.
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Figure D.65: CT/R: Sequence plots of IDM.
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Figure D.66: CT/R: Sequence plots of inertia.
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Figure D.67: CT/R: Sequence plots of Dmoment.
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Figure D.68: CT/R: Sequence plots of correlation.
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Figure D.69: CT/R: Sequence plots of Cshade.
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Figure D.70: CT/R: Sequence plots of Cprominence.
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Figure D.71: CT/R: Sequence plots of woods MR/PET X-�xed.
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Figure D.72: CT/R: Sequence plots of woods MR/PET X-moved.
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