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Images of Thin Sections1
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This paper addresses the problem of classifying minerals common in siliciclastic and carbonate rocks.
Twelve chemical elements are mapped from thin sections by energy dispersive spectroscopy in a scan-
ning electron microscope (SEM). Extensions to traditional multivariate statistical methods are applied
to perform the classification. First, training and validation sets are grown from one or a few seed points
by a method that ensures spatial and spectral closeness of observations. Spectral closeness is obtained
by excluding observations that have high Mahalanobis distances to the training class mean. Spatial
closeness is obtained by requesting connectivity. Second, class consistency is controlled by forcing each
class into 5–10 subclasses and checking the separability of these subclasses by means of canonical
discriminant analysis. Third, class separability is checked by means of the Jeffreys–Matusita distance
and the posterior probability of a class mean being classified as another class. Fourth, the actual clas-
sification is carried out based on four supervised classifiers all assuming multinormal distributions:
simple quadratic, a contextual quadratic, and two hierarchical quadratic classifiers. Overall weighted
misclassification rates for all quadratic classifiers are very low for both the training (0.25–0.33%) and
validation sets (0.65–1.13%). Finally, the number of rejected observations in routine runs is checked to
control the performance of the SEM image acquisition and the classification. Although the contextual
classifier performs marginally best on the validation set, the simple quadratic classifier is chosen in
routine classifications because of the lower processing time required. The method is presently used as a
routine petrographical analysis method at Norsk Hydro Research Centre. The data can be approximated
by a Poisson distribution. Accordingly, the square root of the data has constant variance and a linear
classifier can be used. Near orthogonal input data, enable the use of a minimum distance classifier.
Results from both linear and quadratic minimum distance classifications are described briefly.
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INTRODUCTION

Mineral classification and quantification is traditionally done using point counting
of thin sections or by x-ray diffraction. The first of these methods is very time-
consuming and requires a trained petrographer; the latter does not give any spatial
information about the samples being analyzed. Point counting also has an element
of subjectivity in that a more skilled petrographer is better at recognising rare
minerals, separating cement from detrital grains, etc.

A third method is to do x-ray mapping or energy dispersive spectroscopy
(EDS) in a scanning electron microscope (SEM). Here, an x-ray spectrum is ac-
quired for each pixel. By means of this spectrum, the mineral present in each pixel
can be identified using a manual or an automatic classification method. Spatial
information about the mineral composition can thereby be obtained by an objec-
tive and reproducible method. Earlier work in this field (Minnis, 1984; Tovey and
Krinsley, 1991; Clelland and Fens, 1991) used classification methods that range
from lookup table to maximum likelihood classification. Earlier, long image ac-
quisition times made the use of EDS images for mineral classification difficult.
New equipment enables acquisition of a 256× 256 pixels image with 12 elements
mapped in 36 min. Accelerating voltage, current, dwell time, and sensor param-
eters are adjusted for an acceptable trade-off between data noise level and image
acquisition time. The chosen configuration results in 40% dead time in the EDS
detector. Typical pixel size is 2.4µm× 2.4µm.

This paper addresses methods for classification of EDS images. The methods
applied all presume that the data (within each mineral class) are described by a
multivariate normal distribution. As the data are basically photon counts from the
decay of excited atoms the Poisson distribution applies. The normal distribution
(ideally with the mean value equal to the variance for each variable in each class)
is used as an approximation to the Poisson distribution.

We put emphasis on building a model for the classification and validating the
model. The resulting classification model is used in a routine laboratory method
at Norsk Hydro Research Centre for quantification of mineral composition in
sedimentary rocks.

METHODS

This section describes the methods used for training and validation set gen-
eration, classification, and validation of the model.

Training Set Generation

Good supervised classification is contingent on good training sets. Stipulat-
ing a multinormal distribution for the data, statistically sound training sets are not
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Figure 1. Validation area for chlorite 2. An example on training and valida-
tion areas grown with the seed algorithm.

necessarily obtained when handdrawn by a human operator. One reason for this
is the human inability to obtain an overview of multidimensional spaces. Another
problem with training sets drawn by humans is inconsistency. Training sets need
to be extracted in a consistent way across time and classes irrespective of operator
and shape of image structures. Therefore, we propose a new semiautomatic algo-
rithm for generation of a set of training classes from a series of seed points. For
each class, the operator needs only supply one or a few observations. From these
points, training classes are grown in a fashion that ensures spatial and spectral
closeness.

Spatial closeness is ensured by demanding that all the pixels in one training
class be connected with the seed point. This is a very useful condition, because
most relevant phenomena appear as connected objects. The connectivity may be
defined in terms of first-order or second-order neighbors etc., which allows for
small holes in the training sets. Here we apply second-order neighbors. This is
useful for classes that occur as clusters of smaller objects in the image, and also
in the case of classes that occur as thin strings or layers, as illustrated in Figure 1.

Spectral closeness is achieved by restricting the distance to the current mean
value of the class while growing the training set. Here two distance measures are
considered. One is the Euclidean spectral distance,

D2
E =

(
x− µ∗i

)T(
x− µ∗i

)
wherex= (x1, x2, . . . , xn)T is the value observed in a pixel, andµ∗i is the current
estimate of the class mean. The application of Euclidean distance to seed-growing is
suggested by ERDAS (1990). The other distance measure used is the Mahalanobis
distance,

D2
M =

(
x− µ∗i

)T
6∗−1

i

(
x− µ∗i

)
Σ∗i is the current estimate of the class dispersion matrix.

For the Euclidean distance, an upper limit for the distance should be supplied
by the user. The Mahalanobis distance isχ2-distributed withndegrees of freedom.
This enables us to choose a systematic threshold, defined by, e.g., the 0.99 quantile,
which is a major advantage over use of the Euclidean distance.
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If the seed growing begins with a single pixel, we cannot get an estimate of the
dispersion matrix. Therefore, we first grow the seed point to an initial training set
using the Euclidean distance method with a preset maximum distance, spectrally
and spatially. From the pixels thus included, an estimate of the dispersion matrix
is obtained. This estimate may first be used to exclude any outliers in the current
set, and second, used to grow the initial training set further using the Mahalanobis
distance method.

The application of this method gives us training data that are in good cor-
respondence with normal distributions. Validation data are generated in the same
fashion.

Consistency Check of Training Sets

Training and validation data should be checked for consistency to make sure
that the multivariate data in each assumed class make up one class only. Here, a
method based on a partitioning of the training and validation data for each class
into five subclasses by means of an unsupervised clustering algorithm is used.
First, observations called cluster seeds are selected as a first guess of the subclass
means. Second, clusters are formed by assigning observations to the nearest seed
as measured by Euclidean distance. After all observations are assigned, new cluster
means are calculated. This step is repeated until changes in cluster means become
zero (or small). This clustering is followed by a canonical discriminant analy-
sis, which combines the original variables into new orthogonal variables called
canonical discriminant functions (CDFs), which are the best possible linear dis-
criminators between the subclasses into which the training and validation data have
been clustered. If a scatter plot of the first two CDFs shows no outliers and no sign
of grouping, the training and validation data are considered as being consistent.

Canonical Discriminant Analysis

Considerk groups withm1, . . . ,mk multivariate (n-dimensional) observa-
tions represented by stochastic variables{X i j }, wherei is the group index andj is
the observation number. The group expectations are denotedµ1, . . . ,µk. Without
loss of generality the overall expectation is assumed to be0. As in a one-way
analysis of variance the total sum of squares matrixT is split up into a sum of the
“among group” matrixA, and the “within group” matrixW,

T =
k∑

i=1

mi∑
j=1

X i j XT
i j =

k∑
i=1

miµiµ
T
i +

k∑
i=1

mi∑
j=1

(X i j − µi )(X i j − µi )
T ,

i.e.,

T = A +W
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or in words: the total variation can be written as a sum of the variation of the group
expectations around the overall expectation and the variation around the group
expectations.

We are looking for new variablesY = eTX that maximise the ratio between
variation among groups and variation within groups; the latter can be considered
as the natural level of variance of the variablesX. The idea of maximizing this ratio
is due to Fisher (1936). This ratio equals the Rayleigh coefficienteTAe/eTWe,
i.e., the transformation is defined by the conjugate eigenvectorsel of A with
respect toW

Ael = λl Wel

We define the canonical correlation coefficientsRl by their squaresR2
l =

eT
l Ael/eT

l Tel . This gives the relationR2
l = λl/(λl+1). The new variablesYl = eT

l X
are the CDFs. The first CDF defined bye1 is the linear transformation of the
original variables that gives the best discrimination between thekgroups. A higher
order CDF is the linear combination of the original variables that gives the best
discrimination between thek groups subject to the constraint that it is orthogonal
(with respect toA andW) to the lower order CDFs. Note, that the number of
CDFs is given by rank considerations forA andW. If A andW have full rank, this
number equals min(k− 1, n).

Scatterplots of the first few CDFs give a good visual impression of the sepa-
rability of the groups.

Classification

We apply a series of classifiers. All of these are parametric supervised classi-
fiers. For general references on classifiers, see Swain and Davis (1978) or Richards
(1993). In accordance with the training set generation method, all classifiers pre-
sume that the data may be described by a multivariate Gaussian distribution. The
Gaussian distribution is by far the most commonly adopted density model for con-
tinuous image features. This is partly supported by the central limit theorem, and
partly due to the resulting simple analytical expressions obtained in various kinds
of analyses.

Suppose that a pixel is an observation from one of the populationsπ1, π2, . . . ,

πk. The classification of the observation depends on its feature vector, which we will
denoteX = (X1, X2, . . . , Xn)T . The Gaussian class conditional density function
of classπi is

fi (x) = P(X = x |C = πi ) = 1√
2π

n
1√

det6i
exp

(
−1

2
(x− µi )

TΣ−1
i (x− µi )

)
for i = 1, . . . , k, whereC is the class variable. Furthermore, let us assume
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knowledge of the prior distribution of the classes, i.e., the prior probabilities,
P(C = πi ) = pi , i = 1, . . . , k. This distribution determines the probability with
which an arbitrary feature vector from a particular class has been generated. The
posterior probability for the class variable becomes

k(πi | x) = pi fi (x)∑k
i=1 pi fi (x)

The Bayes solution to a classification problem chooses the action that minimizes
the posterior expected loss. In the case of equal losses, i.e., the same loss is as-
signed to all misclassifications, the Bayes solution consists of choosing the class
that has the highest posterior probability. For computational efficiency, we may
simplify the decision rule by taking the logarithm of the posterior probability
and excluding terms that are common to all classes. The decision function then
becomes

Si = log pi − 1

2
log(det6i )− 1

2
(x− µi )

T6−1
i (x− µi )

If this function is maximum fori = v we assign the pixel to populationπv.
In the case of class-dependent dispersion matrices, the logarithm of the pos-

terior probability is a quadratic function ofx. This is therefore denoted quadratic
classification. In the case of equal dispersion matrices,6i = 6, we only need to
consider a linear function ofx because some terms in the logarithm of the posterior
probability are common to all classes and can be neglected.

In minimum distance classification, off-diagonal elements in6 are set to zero
(i.e., the input variables are noncorrelated), which makes inversion and determinant
calculation easy and fast.

Contextual Classifiers

When applying classical classification schemes in image analysis, the spatial
structure of the data is neglected. This is not satisfactory because more information
obviously can be drawn from the spatial arrangement of pixels; e.g., neighboring
pixels tend to be of the same class. We will refer to this type of information as
contextual information.

Contextual information can be taken into account in a number of ways when
performing classification. One way is to include derived features that hold infor-
mation of the neighborhood of a given pixel, i.e., contextual features. Another
way to take the spatial nature into account is in the classification itself. Here we
will consider a technique for including spatial information in the classifier that
was first published by Owen (1984), Hjort (1985), and Hjort and Mohn (1984).
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An alternative algorithm has been proposed by Welch and Salter (1971) and by
Haslett (1985).

We will denote the feature vector of the neighboring pixelsXN,XS,XE, and
XW for the north, south, east, and west pixel, respectively. The augmented feature
vector consisting of the feature vectors for the neighbors of a pixel will be denoted
D1 = (XT

N,X
T
S,X

T
E,X

T
W)T . The augmented feature vector consisting of the feature

vector of a pixel and those of its neighbors will be denotedD = (XT ,DT
1)T .

The posterior distribution for the class variable becomes

k(πv | d) = P(C = πv |D = d) = P(C = πv)P(D = d |C = πv)∑k
i=1 P(C = πi )P(D = d |C = πi )

=
∑

a,b,c,dpvP(D = d |C = (πv, πa, πb, πc, πd))g(πa, πb, πc, πd |πv)
h(d)

whereh(d) is the unconditional density of the augmented feature vector, (a, b, c, d)
is one of the possiblek4 configurations of the class variables of the neighboring
pixels,C is the class configuration corresponding to the augmented feature vector
D, andg(πa, πb, πc, πd |πv) is the probability of the configuration of the class
variables of the neighboring pixels given that the centre pixel has classπv. In the
numerator the prior probabilitypv is assumed known as before. Also as before
the class conditional density,P(· · · | · · ·), is assumed multidimensional Gaussian.
In order to reduce the huge number of terms in the summation,g(· · ·) is nonzero
only for very few configurations of the class variable. The nonzero configurations
are shown in Figure 2. In this figure, pixels with the same greytone are the same
class. Contextual information enters into the model in two ways, first in the spatial
dependence of the feature vectors (specification of the conditional distribution of
the augmented feature vector), and second in the specification of prior distribution
of the class configurationsg.

Figure 2. Nonzero probability configuration of pixels for contextual
classification.
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Hierarchical Classifiers

When applying a classification scheme it is desired to use as few features
as possible. This will minimize the computational load as well as optimize the
estimation accuracy (Hughes, 1968). The problem of choosing few variables with
sufficient discriminating power may basically be addressed in two ways. In many
cases, we see high correlations between original features, which allows us to
concentrate the relevant information in a lower dimensional space. Traditionally
linear transformations such as principal components (Anderson, 1984) or maxi-
mum autocorrelation factors (Switzer and Green, 1984; Green and others, 1988;
Nielsen, 1994; Nielsen, Conradsen, and Simpson, 1998) are used. Another pos-
sibility is to perform a selection among the original features. This may be done
using (stepwise) selection schemes based on different measures of class separabil-
ity, e.g., the Mahalanobis distance, the divergence or the Jeffreys–Matusita (JM)
distance,JMi j , (or equivalently, the Bhattacharyya distanceαi j ). The JM measure
of separability between classesi andj is given by

JM2
i j =

∫
(
√

fi (x)−√ f j (x) )2dx = 2(1− e−αi j ) = 2

(
1−

∫ √
fi (x) f j (x) dx

)
where fi and f j are the density functions for classesi and j, respectively (see
Matusita, 1966; Ersbøll, 1989).

When applying feature selection schemes to classification problems the fea-
ture selection will normally be based on a weighted sum of the separability among
all class pairs. This approach may be regarded as suboptimal in the sense that
separation of certain class pairs may be given little weight. Also, in general more
features are required to separate more classes. We use the following definition (in
which we assume that the prior probabilities of all classes are equal),

JMAVE = 2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

JMi j ,

whereas in the literature, average JM value is calculated from the entire JM matrix,
including the diagonal elements which are zero. Therefore, the maximum value of
the average JM is a function of the number of classes. With the definition above,
the maximum value for the average JM value is

√
2.

In order to reduce the number of features needed, we may consider hierar-
chical classifiers. An overview of hierarchical classifiers is given by Safarian and
Landgrebe (1991). A particular implementation is described by Jia and Richards
(1996). However, the technique described by Jia and Richards (1996) suffers from a
potential drawback, namely that the classes are considered in a given (preselected)
order. The selection of the ordering may influence the classification result. The
classification scheme is sketched in Figure 3. In the first layer, all pixels pass
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Figure 3. Schematic chart for the hierarchical classifi-
cation. D(Ci,Cj) is the classification rule used for dis-
criminating between classesi and j .

through the classification rule that discriminates between classes 1 and 2. All pix-
els that have been assigned class label 1 are then passed to the classification rule
that discriminates between classes 1 and 3, whereas the pixels that received the
label 2 in the first layer are passed to a classification rule that discriminates be-
tween classes 2 and 3. In this way, we progress down through the tree until a final
classification has been reached in the last layer. Note that at each node a feature
selection for that particular class pair is performed.

We propose an extension to this algorithm that eliminates the problem of
using a preselected ordering of the classes by considering all pairs of classes for
all pixels. This will greatly increase the computational load, because all pixels have
to pass through all classification rules. Furthermore, an ambiguity is introduced:
what should be done if for instance class 1 has higher posterior probability than
class 2 (using one feature set), class 2 has higher posterior probability than class 3
(using another feature set), and class 3 has higher posterior probability than class 1
(using yet another feature set). We solve this problem by introducing a majority-
voting scheme. In ak class classification problem a single pixel will be considered
by k(k−1)/2 classification rules corresponding to all possible pairs of classes. We
will then assign this pixel to the class that has been selected most often by these
classification rules.

Reject Class

We may introduce a reject class to the classification schemes described above.
By this we mean a null class consisting of pixels that in some sense are too far
from the known populations to be classified as any of these.

If we restrict each class to a certain Mahalanobis distance from the class mean
we obtain a consistent way of doing this. The Mahalanobis distance from a feature
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vectorx to thei th class mean is given by

D2
M = (x− µi )

T6−1
i (x− µi )

As D2
M ∈ χ2(n), a convenient way of specifying the reject class is by a quantile in

theχ2-distribution.

Distance Between Class Centers

Having generated a series of training sets, it is useful to establish a measure
of class uniqueness. The purpose of this is to determine which classes we can
differentiate between and which classes should be merged. The elements of the
posterior probability matrix for classification of class centers are given by

Ai j = k(πi | x = µ j )

i.e., in thejth column we find the posterior probabilities for all classes given that
the class centre for thej th class has been observed. Thus, each column adds to 1.
This matrix of posterior probabilities gives important information on the unique-
ness of a class. If the center of a particular class has a high probability of belonging
to another class, then this is an indication for overlap between the classes. This
should result in the classes being merged after classification. On the other hand,
if the posterior probability of the center of a particular class belonging to that
particular class is close to 1, then this class may be considered as unique. This
procedure may also be used to evaluate a validation set.

DATA: MINERALS AND ELEMENTS

As the aim is to use the method for standard studies of sedimentary rocks,
it is important to cover the most frequently occurring minerals. Table 1 shows all

Table 1. Mineral Classes in the Model

Albite Chlorite 2 Gypsum Quartz
Ankerite Chlorite 3 Illite/Muscovite Rutile
Apatite Dolomite Ilmenite Siderite 1
Barite Fe-calcite Kaolin Siderite 2
Biotite 1 Garnet 1 K-feldspar Titanite
Biotite 2 Garnet 2 Monazite Tourmaline
Calcite Garnet 3 Porosity Zincblende
Chlorite 1 Glauconite Pyrite Zircon
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Table 2. Parameter Setting on the SEM

Pulse processing time 19µs
Energy range 10 keV
Channel width 10 eV
Dwell time 0.020 s
Map resolution 256× 256 pixels
Magnification (typical) 100 x
Pixel size (100× magnification) 2.4µm× 2.4µm
Accelerating voltage 12 V
Current 1 nA
Deadtime 40%

minerals in the model. In some cases, more than one class is needed to describe
a mineral. This can be due to natural variation in the chemical composition of the
mineral, such as in the biotites, the chlorites, the garnets, and the siderites. There
is also a case, for illite and muscovite, where it is known in advance that different
minerals have the same chemical composition. They will therefore be overlapping
in the EDS measurements. In addition to minerals, it is also important to have a
porosity class.

The data are counts from the EDS detector. The data are stored as 16 bits per
pixel, as the range of the data goes beyond the value 255 with the current setting
of the microscope parameters, which is shown in Table 2.

The mapped elements reflect the major components in the minerals. It is
normally theKα line that is mapped, but in some instances this is superimposed
by another element’sLα line. This is the case for P and Zr, Ti and Ba, and Na
and Zn. There have not been any problems with this duality of the data; it has
rather increased the possibility of discriminating between more minerals. An image
with all elements is shown in Figure 4. The set of mapped elements is given
in Table 3. The range of data in the different bands is shown in Table 4. To
give an impression of correlation between the variables, Table 5 and Figure 5
show eigenvalues of correlation matrices for the 32 training classes and simple
statistics. We see that most eigenvalues for most classes are close to 1 indicating
very little correlation between the variables. Chlorite 1, chlorite 2, illite/muscovite,
kaolin, zincblende, and siderite 2 have both higher and lower eigenvalues than most
other classes, indicating slightly higher correlations between variables for these
classes.

During the course of this work, the data quality has been improved in several
ways. The parameter settings in the SEM have been varied in order in obtain
well-separated peaks in the EDS spectra, to obtain an intensity level that clearly
separates the peaks from the background noise level and to obtain a balance in the
EDS sensor sensitivity of light vs. heavy elements. Dwell time and dead time in
the EDS sensor affect the acquisition time for an image and thereby the number
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Figure 4. Example on SEM EDS image. The elements mapped are (rowwise) Al, C, Ca, Fe, K, Mg,
Mn, Na (+Zn), P (+Zr), S, Si, and Ti (+Ba).
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Table 3. Mapped Elements

Al C Ca
Fe K Mg
Mn Na (+Zn) P (+Zr)
S Si Ti (+Ba)

Table 4. Range of Values of the Mapped Elements for All Training Areasa

Al C Ca Fe K Mg Mn Na P S Si Ti

Minimum 0 1 0 0 0 0 0 0 0 0 0 0
Maximum 149 165 124 44 60 99 16 228 171 282 331 110
Mean 34.00 44.48 28.48 6.18 9.26 24.30 1.91 10.89 12.38 21.10 73.55 5.29
Median 16 44 8 6 6 17 2 9 9 7 57 3
SD 30.58 20.39 32.65 6.54 9.61 19.03 1.50 13.85 14.66 43.53 80.81 10.22

aThe total number of pixels in the training areas is 59207.

Table 5. Eigenvalues for the Correlation Matrices for the Individual Classes

Albite 1.25 1.17 1.12 1.11 1.08 1.03 0.96 0.94 0.92 0.90 0.78 0.72
Ankerite 1.26 1.14 1.06 1.05 1.03 1.00 0.97 0.95 0.94 0.92 0.85 0.82
Apatite 1.65 1.50 1.40 1.21 1.14 0.99 0.90 0.80 0.67 0.63 0.58 0.53
Barite 1.61 1.40 1.15 1.10 1.04 0.96 0.92 0.90 0.82 0.75 0.72 0.63
Biotite 1.50 1.24 1.10 1.04 1.03 1.00 0.96 0.94 0.86 0.85 0.79 0.70
Biotite 2 1.21 1.15 1.12 1.10 1.09 1.05 1.01 0.99 0.94 0.90 0.82 0.61
Calcite 1.15 1.10 1.10 1.05 1.03 1.01 0.99 0.96 0.95 0.93 0.91 0.82
Chlorite 1 2.42 1.16 1.14 1.04 0.97 0.94 0.91 0.85 0.76 0.68 0.59 0.54
Chlorite 2 2.37 1.26 1.11 1.07 1.01 0.96 0.91 0.85 0.78 0.66 0.55 0.48
Chlorite 3 1.28 1.15 1.08 1.07 1.05 0.99 0.98 0.97 0.91 0.89 0.84 0.81
Dolomite 1.21 1.08 1.08 1.07 1.05 1.02 0.99 0.97 0.95 0.89 0.85 0.83
Fe-calcite 1.15 1.10 1.07 1.06 1.03 1.03 1.00 0.96 0.95 0.92 0.89 0.85
Garnet 1 1.40 1.30 1.16 1.13 1.09 1.02 0.99 0.96 0.80 0.74 0.71 0.70
Garnet 2 1.18 1.15 1.13 1.10 1.03 0.99 0.98 0.95 0.93 0.89 0.87 0.79
Garnet 3 1.22 1.17 1.15 1.10 1.09 1.02 0.98 0.96 0.86 0.85 0.82 0.79
Glauconite 1.21 1.18 1.13 1.10 1.06 1.00 0.95 0.94 0.93 0.92 0.83 0.74
Gypsum 1.33 1.24 1.04 1.04 1.01 0.99 0.98 0.94 0.92 0.87 0.85 0.79
Ill/Musc 1.99 1.21 1.18 1.13 1.07 1.00 0.99 0.87 0.82 0.71 0.60 0.44
Ilmenite 1.29 1.22 1.19 1.09 1.07 1.01 0.99 0.97 0.93 0.85 0.74 0.65
Kaolin 2.25 1.14 1.10 1.08 1.02 0.97 0.94 0.92 0.88 0.83 0.44 0.42
K-feldspar 1.21 1.15 1.08 1.07 1.03 1.01 0.98 0.95 0.92 0.91 0.87 0.82
Monazite 1.40 1.31 1.25 1.15 1.09 1.03 0.96 0.90 0.86 0.75 0.69 0.61
Porosity 1.33 1.13 1.11 1.07 1.04 1.02 1.00 0.94 0.92 0.88 0.84 0.72
Pyrite 1.29 1.20 1.15 1.11 1.06 1.02 0.99 0.96 0.92 0.84 0.78 0.66
Quartz 1.10 1.09 1.08 1.05 1.03 1.01 1.00 0.97 0.93 0.92 0.91 0.89
Rutile 1.56 1.36 1.25 1.14 1.08 1.02 0.95 0.86 0.83 0.71 0.62 0.61
Siderite 1.32 1.18 1.16 1.07 1.06 1.03 0.95 0.94 0.90 0.83 0.81 0.75
Siderite 2 2.22 1.20 1.10 1.04 1.00 0.91 0.89 0.84 0.80 0.74 0.66 0.60
Titanite 1.29 1.16 1.14 1.11 1.08 1.01 0.98 0.93 0.87 0.86 0.81 0.77
Tourmaline 1.37 1.14 1.12 1.09 1.04 0.99 0.98 0.97 0.90 0.89 0.87 0.64
Zincblende 2.13 1.43 1.23 1.07 1.01 0.94 0.87 0.84 0.76 0.68 0.64 0.40
Zircon 1.43 1.18 1.16 1.12 1.07 0.99 0.96 0.93 0.86 0.84 0.74 0.73

Mean 1.49 1.21 1.14 1.09 1.05 1.00 0.96 0.93 0.88 0.83 0.76 0.68
SD 0.39 0.10 0.07 0.04 0.03 0.03 0.04 0.05 0.07 0.09 0.12 0.13
Min 1.10 1.08 1.04 1.04 0.97 0.91 0.87 0.80 0.67 0.63 0.44 0.40
Max 2.42 1.50 1.40 1.21 1.14 1.05 1.01 0.99 0.95 0.93 0.91 0.89
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Figure 5. Mean value and range of eigenvalues from correlation matrices of all training classes.
Values close to 1 indicate noncorrelated input variables. The values are given in Table 5.

of samples that it is possible to analyze. Also, the suite of samples selected for
training and validation of the model are chosen so that they represent the most
common minerals in both siliciclastic and carbonate rocks.

The total data set used in the study comprise 36 images each with 256×
256 pixels. This gives 2,359,296 observations in total. The pixel size is 2.4µm×
2.4µm.

Training Areas

Training areas are made with the seed algorithm as described above. Only
one pixel is chosen as the starting point for each training area. In the first step,
a radius of 5 pixels is normally sufficient to get an initial estimate of the mean
value and the dispersion matrix of the class. For more spatially dispersed minerals,
such as chlorite 2 (which is a chlorite coating on grains) and illite/muscovite it is
necessary to increase the radius to 10. The Euclidean distance that is used as an
acceptance limit is normally set to 30. Barite, K-feldspar, zincblende, and zircon
need a Euclidean distance of 50 in order to include a sufficient number of pixels.
The final training areas are grown based on the Mahalanobis distance method with
a 0.99 quantile in theχ2-distribution with 12 degrees of freedom. The resulting
training area for chlorite 2 is shown in Figure 1.

Scatter plots of the two first CDFs from most training areas show a consis-
tent set, with no subgroups and with little scatter around the main cluster. This
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is contrary to results from training areas created by painting an area in the im-
age, which is what most classification packages encourage. Poor definition of the
structure of the real class and inclusion of much noise is often the result from such
an approach. Figure 6 shows the scatter plots as described above of a hand drawn
training area compared to a seed-grown training area for kaolin.

Validation Areas

Validation areas are defined in exactly the same manner as the training areas.
Validation samples are preferably chosen from other wells (or fields) than the sam-
ples for the training areas to assure independence. For some of the rarer minerals,
it has not been possible to find independent samples and no validation therefore
exists. The results of the validation are discussed below.

Selection of Features—Jeffreys–Matusita Distance

It is relatively easy to figure out which elements to map in order to cover
the most important components in the minerals of the model. However, we cannot
know in advance that all of these elements are needed to discriminate between
the classes. Nor do we know in advance that it will be possible to separate all
classes that we have included. The JM distance measure estimates the separation
ability for all input variables (features), single and in groups, for all classes. The
classes are assumed to have multinormal distributions, and the mean vectors and
dispersion matrices that are estimated from the training areas are used as input.

Table 6 shows the results of the average JM valueJMAVE. It is shown in the
table that all features contribute to the overall separation ability of the model, but
the last included features have little influence on the classification. The average
JM value for the training set is 1.4102 against the maximum value of 1.4142,
or 99.72% of the maximum. This result is very good, and it must be ascribed to
the way the training areas are constructed. Standard ways of making training areas
would have included more outliers that would increase the tolerance of the classes,
and thereby decrease the separability between the classes.

The detailed result of the JM analysis is a 32× 32 matrix, which is too large to
reproduce here. Instead, the pairs of classes that have the highest degree of overlap
are shown in Table 7. It is clear that calcite and Fe-calcite cannot be separated and
that they should be combined into one class after classification. The accelerating
voltage in the SEM favors good resolution in the lightest elements at the expense
of resolution in the heavy elements. This may be a reason for the poor separation
between calcite the Fe-calcite. There are no other overlaps between the calcites
and other classes. The three garnet classes also have a degree of overlap that is
too high and they should therefore be combined into one class after classification.
Other classes overlap as well, but not to such an extent that it is necessary to
combine them. All class pairs that are not mentioned in Table 7 have a JM value
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Figure 6. Scatter plots of training areas for kaolin, comparison between the results of
a training area grown with seed algorithm and a hand drawn training area. The training
areas (in the same scale) are shown in the plots.
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Table 6. Optimal Selection of Features According to the JM Method

No. of features Included features Average JM value

1 Si 1.1257
2 Ca, Si 1.3081
3 C, Ca, Si 1.3679
4 C, Ca, S, Si 1.3876
5 Al, C, Ca, Mg, S 1.3992
6 Al, C, Ca, Mg, S, Si 1.4035
7 Al, C, Ca, K, Mg, P, S 1.4060
8 Al, C, Ca, Fe, K, Mg, P, S 1.4083
9 Al, C, Ca, Fe, K, Mg, Mn, P, S 1.4093

10 Al, C, Ca, Fe, K, Mg, Mn, P, S, Ti 1.4099
11 Al, C, Ca, Fe, K, Mg, Mn, P, S, Si, Ti 1.4101
12 Al, C, Ca, Fe, K, Mg, Mn, Na, P, S, Si, Ti 1.4102

Table 7. Pairs of Overlapping Classes with Their JM Value

JM value Mineral 1 Mineral 2

0.6336 Fe-calcite Calcite
0.8715 Garnet 3 Garnet 1
1.1504 Garnet 3 Garnet 2
1.2139 Garnet 2 Garnet 1
1.3665 Kaolin Ill/Musc
1.3725 Siderite 2 Siderite 1
1.3768 Chlorite 3 Chlorite 2
1.3768 Chlorite 2 Chlorite 1

that is higher than 1.400 or 98.99% of maximum value, and the absolute majority
of those have perfect separation to 4 decimal places.

CLASSIFICATION

Due to the expected Poisson nature of the data (which means that the mean
equals the variance for all variables in each class), we find it necessary to have
separate dispersion matrices for each class in order to define the natural variation
in the variables. Therefore, it is not advisable to use linear classification. The hi-
erarchical method described by Jia and Richards (1996) is found to introduce a
small bias with respect to the ordering of the classes and is therefore considered
not fully satisfactory. We will go through the results of four different classification
methods—namely, simple quadratic classification, contextual quadratic classifi-
cation, and hierarchical and extended hierarchical quadratic classification—with
the main emphasis on the simple quadratic classification method. The effect of
choosing different classification methods with regard to error rates is covered in
more detail in the next sections. Here we will discuss some aspects that are not
clear from the confusion matrices and reject class.
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Figure 7. Example on classified images. In the left image, we see how quartz cement engulfs
a pyrite grain. The pore space between the grains is mostly filled with clays, such as illite and
kaolin. In the right image, we see chlorite coating the pores. There is also some siderite cement.
See Figure 8 for color legend.

Figure 8. Color legend for classified images.

The different classification methods have different complexity and thus differ-
ent computation time. For many purposes, the fastest method, i.e., the hierarchical
quadratic method, may be preferred. However, there are some advantages of the
other methods that should be noted.
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Figure 9. Result of different classification methods and reject class. The upper left image is
classified with the quadratic classification method, the upper right with the extended hierarchical
classification method, and the lower right with the contextual classification method. The lower
left image is the same as the upper left, but with reject class added in black. The large area
with mixed color is a clast of detrital clay. The pores are coated with chlorite. See Figure 8 for
color legend.

An illustration of classification results is seen in Figure 7. In the left part of
the image, we see how quartz cement engulfs a pyrite grain. In the right part, we
see how chlorite coats the quartz grains, thereby inhibiting quartz cementation. A
color legend for the classified images is shown in Figure 8.

The contextual classification estimates the posterior probability based on
a neighborhood around each pixel. The result is that the classes have a more
continuous distribution in space. The images classified with this method look less
noisy, compare upper left and lower right sections of Figure 9.

The visual appearance of the simple quadratic classification and the extended
hierarchical classification may be similar, see upper left and upper right sections of
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Table 8. Processing Time for Different Classification Methods

Method Total time (s) Time per pixel (ms) Relative time

Min. dist. linear 85.72 0.04 0.19
Min. dist. quad. 216.19 0.09 0.48
Quadratic 452.39 0.19 1.00
Context-Q 2497.83 1.06 5.52
Hierarchical 319.58 0.14 0.71
Ext. hierarchical 1353.96 0.57 2.99

Figure 9, but the results differ, especially in areas with detrital clays. The strength
of the hierarchical method is its possibility to optimize the selection of variables
for two classes at a time as opposed to all classes simultaneously. This will ensure
a robust classification, and it is found that the JM selection of variables is similar
to the intuitive choice. For example, to separate quartz and albite, only the Al
feature is used, which is very satisfactory. The only cases where several variables
are included are the ones where we know that the classes overlap. Even with the
reduced number of variables, this method requires more CPU time than simple
quadratic classification, as the number of classifications is far higher. Table 8
shows the processing time on an HP 9000/782 system with PA-2 8200 236 MHz
processors for a 1536× 1536 pixels image and processing time per pixel for the
different classification methods.

Based on the observations above, we see that the classification methods all
have their pros and cons. The choice of method is governed by the application where
demand for system throughput or accuracy may be the most important factors. The
conclusions of the sections on training and validation set based confusion matrices
(below) must also be taken into account.

Poisson Distributed and Near Orthogonal Data

To support the remarks on the expected Poisson nature of the data mentioned
in the introduction and in previous section, a plot of element variance vs. element
mean for all elements and all mineral classes is shown in Figure 10. The data used
are based on results from the simple quadratic classification with a 99% reject
quantile. A weighted regression analysis shows that Variance= 1.61×Mean with
R2= 0.94 (the intercept is not significant), which indicates some overdispersion.
As a (standard) remedy for variance stabilization of Poisson-distributed data,
square roots of all quantities are taken. Ideally this causes all variances to become
constant (equal to14). In this case the results of taking the square root are shown in
Figure 11 (with the same training and validation areas, i.e., grown on the original
data prior to taking the square root). An alternative to the classification methods
described above is thereby possible. With constant variance a linear classification
can be performed. Considering the near orthogonality of the features measured
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Figure 10. Scatter plot of element variance and mean for all elements and all mineral
classes.

linear and quadratic minimum distance classifications are carried out (with the
same training and validation data as above). Summary of the results are shown in
Table 10 and Table 12. Processing times are shown in Table 8. These results are
not discussed further.

POSTCLASSIFICATION ANALYSIS—QUALITY CONTROL

Training Set Based Confusion Matrix

We assume that this analysis will show much of the same results as the
JM analysis did. From Table 9 we see that the highest error rates occur for the
same minerals, which showed class overlap in the JM analysis. Regardless of
classification method, the garnets and calcites have the highest error rates. Apart
from these, chlorite 2 and illite/muscovite have the highest error rates, but these
are very low. When comparing the total error rates, we find that the contextual
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Figure 11. Scatter plot of element variances and mean for all elements and classes after taking the
square root of all data.

quadratic classification method is the best. However, because of the simpler method
and therefore much lower computing time, the simple quadratic method may be
preferred.

If we combine the calcites into one class and the garnets into one class, we
find that the rates of misclassification drop from 1.8–4.2% to 0.25–0.33% (see
Table 9 and Table 10).

Validation Set Based Confusion Matrix

Validation of a classification model is more trustworthy if an independent val-
idation set, not used in building the model, is used. In this case, we have validation
samples for all minerals except the following four: biotite 2, chlorite 3, siderite 2,
and zincblende. The error rates from classification of the validation set are given
in Table 11.
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Table 9. Summary of Training Set Based Confusion Matrix: Fractions of Misclassification

Contextual
Quadratic quadratic Hierarc. Ext. hierarc.

Albite 0.000 0.000 0.000 0.000
Ankerite 0.001 0.000 0.005 0.005
Apatite 0.000 0.000 0.000 0.000
Barite 0.000 0.000 0.000 0.000
Biotite 0.003 0.001 0.002 0.002
Biotite 2 0.000 0.000 0.003 0.005
Calcite 0.274 0.138 0.290 0.290
Chlorite 1 0.021 0.036 0.027 0.016
Chlorite 2 0.008 0.006 0.014 0.012
Chlorite 3 0.009 0.001 0.012 0.012
Dolomite 0.001 0.002 0.003 0.003
Fe-calcite 0.238 0.097 0.239 0.239
Garnet 1 0.250 0.047 0.282 0.280
Garnet 2 0.088 0.010 0.092 0.091
Garnet 3 0.200 0.022 0.206 0.205
Glauconite 0.000 0.000 0.001 0.001
Gypsum 0.000 0.000 0.000 0.000
Illite/Musc 0.021 0.087 0.036 0.036
Ilmenite 0.000 0.000 0.000 0.000
Kaolin 0.008 0.010 0.018 0.018
K-feldspar 0.000 0.000 0.001 0.002
Monazite 0.000 0.000 0.000 0.000
Porosity 0.000 0.000 0.000 0.000
Pyrite 0.000 0.000 0.000 0.000
Quartz 0.000 0.000 0.000 0.000
Rutile 0.000 0.008 0.000 0.000
Siderite 0.008 0.017 0.007 0.007
Siderite 2 0.007 0.002 0.020 0.020
Titanite 0.000 0.000 0.000 0.000
Tourmaline 0.002 0.001 0.004 0.003
Zincblende 0.000 0.031 0.000 0.000
Zircon 0.000 0.000 0.000 0.000

Total 0.038 0.018 0.042 0.042

Table 10. Overall Misclassification Rates with Calcite and Fe-Calcite Combined, the Three Garnet
Classes Combined and Biotite Removed from the Validation Set

Contextual Min. distance Min. distance
Quadratic quadratic Hierarc. Ext. hierarc. linear quadratic

Training set 0.0025 0.0033 0.0025 0.0025 0.0046 0.0034
Validation set 0.0106 0.0065 0.0109 0.0113 0.0188 0.0141

We expect to find the same errors here as reported in the section above, and this
is the case. In addition, there is one clear error in that biotite is totally misclassified.
The reason for this turns out to be that the sample picked for validation of biotite is
altered to such a degree that it is closer to the chlorites in its chemical composition.
Biotite is a mineral that is easily altered and therefore hard to validate with deeply
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Table 11. Summary of Validation Set Based Confusion Matrix: Fractions of Misclassification

Contextual
Quadratic quadratic Hierarc. Ext. hierarc.

Albite 0.000 0.000 0.000 0.000
Ankerite 0.067 0.006 0.037 0.037
Apatite 0.000 0.000 0.000 0.000
Barite 0.000 0.000 0.000 0.000
Biotite 1.000 1.000 1.000 1.000
Biotite 2
Calcite 0.325 0.196 0.318 0.316
Chlorite 1 0.070 0.002 0.128 0.078
Chlorite 2 0.115 0.072 0.131 0.124
Chlorite 3
Dolomite 0.000 0.005 0.005 0.004
Fe-calcite 0.859 0.948 0.924 0.928
Garnet 1 0.119 0.009 0.178 0.119
Garnet 2 0.059 0.004 0.078 0.076
Garnet 3 0.964 0.996 0.960 0.960
Glauconite 0.000 0.000 0.014 0.005
Gypsum 0.000 0.000 0.000 0.000
Illite/Musc 0.003 0.000 0.013 0.011
Ilmenite 0.068 0.000 0.111 0.111
Kaolin 0.042 0.092 0.111 0.131
K-feldspar 0.000 0.001 0.000 0.000
Monazite 0.000 0.000 0.000 0.000
Porosity 0.000 0.000 0.000 0.000
Pyrite 0.000 0.000 0.000 0.000
Quartz 0.000 0.000 0.000 0.000
Rutile 0.000 0.027 0.000 0.000
Siderite 0.002 0.011 0.004 0.004
Siderite 2
Titanite 0.000 0.000 0.000 0.021
Tourmaline 0.003 0.000 0.010 0.013
Zincblende
Zircon 0.000 0.000 0.000 0.000

Total 0.169 0.165 0.185 0.185

buried samples. Apart from these obvious errors, the highest error rate is found for
chlorite 2—namely, 11.5% for quadratic classification—but most of this is against
chlorite 1. The rest of the error rates are less than 7%, which must be characterised
as low.

With combined classes as above and disregarding biotite and the minerals that
lack validation, the misclassification rates drop from 16.5–18.5% to 0.65–1.13%
(see Table 10 and Table 11).

We can therefore conclude that the classification model is highly successful,
after combination of identified overlapping classes. This combination of classes
makes sense from a mineralogical point of view.
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Table 12. Fraction of Rejects

Contextual Min. distance Min. distance
Quadratic quadratic Hierarc. Ext. hierarc. linear quadratic

Rejects in 0.00 0.00 0.00 0.00 0.02 0.00
training areas

Rejects in 0.12 0.14 0.07 0.07 0.10 0.12
validation areas

Reject Class

Whereas the confusion matrices can be used in the model building phase only,
reject class is used in all future classifications. The numbers given in Table 12 are
estimated from the images used for training and validating the model. The reject
class contains data points with a Mahalanobis distance to the nearest class center
beyond the 0.99 quantile in theχ2-distribution. Choosing a smaller quantile in
the estimation of the dispersion matrices would produce more rejects. We have a
trade-off between being able to separate classes and rejecting natural variation in
the chemical composition of the minerals.

The rejects represent three different cases:

• minerals not included in the classification model,
• variations in the chemical composition of the minerals that are not reflected

in the samples used for training,
• variations in the image acquisition.

Whereas the first two of these conditions result in isolated grains, the third condi-
tion results in large areas with rejects, especially in the quartz grains. This is used as
an indication that the image acquisition must be repeated for the affected samples.
Precautions are taken to keep the conditions in the SEM as steady as possible, but
it is still worthwhile to have the reject class as a quality control. Table 12 shows
that the amount of rejects for quadratic and contextual classifications is approxi-
mately the same and that the hierarchical classifications give a smaller amount of
rejects.

The lower left part of Figure 9 shows that most rejects are found in an area
with detrital clays, but that we also find some scattered rejected pixels within the
grains.

Routine analyses of more than 2000 images from 28 different wells based
on the classification model developed, show a constant rate of rejects. Closer
inspection of the rejects shows that most of them come from minerals not included
in the classification model. Variation in the image acquisition has not given rise to
rejects except in extreme cases such as filament breakage during image acquisition.
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We can therefore conclude that the reject class serves its purpose as a quality
control, and that the image acquisition is stable.

Distance to Nearest Class

The estimates of distances between class centers show the effect of removing
a class from the model. If a class were removed from the model, the data originally
belonging to that class would most likely be classified as the nearest class. In this
manner, we get an idea of the behavior of the reduced model without having to
build and validate the model once more.

The distance to the nearest class center is defined as the minimum posterior
probability of a class center belonging to all other classes. Thus, we can construct
a matrix that shows distances to all other classes. If the probability of belonging to
the nearest class is comparable to that of belonging to the correct class, we have
once more an indication of partly overlapping classes. If the probability is clearly
below that of the correct class, but still within measurable range, we identify
the nearest class and see whether the choice makes sense from a mineralogical
point of view. In some cases, it is found that the probability of belonging to
another class is extremely low. This is the case for several of the heavy minerals
that have chemical compositions that are far from those of the other classes. In
one extreme case, for zincblende, the posterior probability of the nearest class
is so small that it is zero to the precision of 8 bytes floating-point numbers (see
Figure 12).

In most cases, the choice of nearest class corresponds to mineral grouping.
It seems right that albite is the nearest class to K-feldspar (it should be noted
that the opposite is not the case). However, for the heavy minerals, the chemical
composition can be so different from the other classes that the choice of nearest
class becomes more arbitrary.

Sensitivity Study of the Seed-Growing Algorithm

In a separate sensitivity study (Larsen, Nielsen, and Flesche, 1999) it is found
that the seed-growing algorithm is very robust with respect to the setting of its
parameters. The sensitivity is evaluated with respect to the misclassification rate
of the validation set.

The Mahalanobis seed growing requires one parameter setting—namely, the
choice of quantile for the threshold. The algorithm is insensitive to the choice of
this quantile.

For the initial Euclidean seed growing, two parameter settings are required—
in particular, a maximum spatial range and a threshold for the spectral distance.
Sensitivity to the setting of these two parameters is restricted to the spatially
dispersed classes.
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Figure 12. Distance to nearest class.

Furthermore, the initial choice of seeding point is not critical, except for the
spatially dispersed classes.

The conclusion of the study is that the seed growing is very robust—only
in the case of spatially dispersed classes tuning of the parameters for the initial
Euclidean growing is necessary. The study also shows that updating parameters
during the Mahalanobis distance growing should not be carried out.
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CONCLUSIONS

This paper describes a system for classification of minerals based on SEM
EDS images. In spite of the noisy visual appearance of the input data, 29 different
mineral classes are successfully classified, covering the most common minerals
in both siliciclastic and carbonate rocks. The success of the system is a result of
improvements in the data acquisition and the systematic use of multivariate statis-
tical methods such as the semiautomatic training and validation set generation, the
Jeffreys–Matusita distance measure, canonical discriminant analysis, and different
supervised classification methods.

Although we have linked the methods closely with an application in SEM
EDS imagery, we believe they can be used for other types of data as well, such as
air- or satellite-borne remote sensing data.

Some mineral classes are found to be overlapping. It is not possible to dis-
criminate between ferrous and nonferrous calcite. Likewise, the garnets show too
high a degree of overlap to separate them. Both siderite and biotite are divided into
two subclasses, and chlorite into three.

The analysis prior to classification covers construction of training and valida-
tion areas and Jeffreys–Matusita analysis. These steps in the analysis give a clear
indication of the performance of the classification model. Much of the success in
separating the classes is attributed to the seed algorithm used for defining training
and validation areas.

Selection of classification method should be done based on requirements of
accuracy and processing time. Analysis shows that the data are close to orthogonal.
This suggests use of a minimum distance classifier. It is also shown that due to the
Poisson nature of the data, linear classification can be performed after taking the
square root of the data.

Distances to other classes are calculated as the posterior probability of a class
center belonging to the other classes. By comparing the posterior probability of the
assumed class with that of the nearest class, we obtain a measure of the uniqueness
of the class. If a class is deleted from the model, observations from this class are
likely to be classified as the nearest class.

The most important quality control measure of the classification model is the
validation set based confusion matrix. In most cases, the validation areas are similar
to the training areas with regard to the degree of misclassification. Validation
of the biotites has proven difficult, as the assumed validation area for biotite is
mostly classified as chlorite. This is explained as an effect of alteration of biotite.
With combination of the two calcite classes and the three garnet classes, and also
disregarding the validation of biotite, the misclassification rates of the validation
set is 0.65–1.13%. These results are considered remarkably good.

The amount of rejects in the classified images gives an indication of the
performance of the classification model. This is used both in the model-building
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phase and later when the classification is run as a standard analysis. Tests from
28 wells show a constant rate of rejects.

This model is found suitable for classification of 29 classes covering 24
different minerals (and porosity) that are common in both siliciclastic and carbonate
rocks.

A separate sensitivity study shows that the seed growing is very robust, only
in the case of spatially dispersed classes tuning of the parameters for the initial
Euclidean growing is necessary. The study also shows that updating parameters
during the Mahalanobis distance growing should not be carried out.

The classification model described here is now used for routine analyses of
mineral composition in rock samples at Norsk Hydro Research Centre.
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