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Abstract

This paper addresses the problem of assessing
the robustness with respect to change in parame-
ters of an integrated training and classification rou-
tine for minerals commonly encountered in silici-
clastic or carbonate rocks. Twelve chemical ele-
ments are mapped from thin sections by energy
dispersive spectroscopy (EDS) in a scanning elec-
tron microscope (SEM). Extensions to traditional
multivariate statistical methods are applied to per-
form the classification. Training sets are grown
from one or a few seed points by a method that
ensures spatial and spectral closeness of observa-
tions. Spectral closeness is obtained by excluding
observations that have high Mahalanobis distances
to the training class mean. Spatial closeness is ob-
tained by requiring connectivity. The marginal ef-
fects of changes in the parameters that are input
to the seed growing algorithm are evaluated. Ini-
tially, the seed is expanded to a small area in order
to allow for the estimation of a variance-covariance
matrix. This expansion is controlled by upper lim-
its for the spatial and Euclidean spectral distances
from the seed point. Second, after this initial ex-
pansion the growing of the training set is controlled
by an upper limit for the Mahalanobis distance to
the current estimate of the class centre. Also, the
estimates of class centres and covariance matrices
may be continuously updated or the initial esti-
mates may be used. Finally, the effect of the op-
erator’s choice of seed among a number of poten-
tial seeding points is evaluated. After training, a
standard quadratic classifier is applied. The per-

formance for each parameter setting is measured
by the overall misclassification rate on an indepen-
dently generated validation set. The classification
method is presently used as a routine petrographi-
cal analysis method at Norsk Hydro Research Cen-
tre.

1 Introduction

Mineral classification and quantification is traditionally
done using point counting of thin sections or by x-ray
diffraction (XRD). The first of these methods is very
time consuming and requires a trained petrographer; the
latter does not give any spatial information about the
samples being analysed. Point counting also has an ele-
ment of subjectivity in that a more skilled petrographer
will be better at recognising rare minerals, separating
cement from detrital grains, etc.

A third method is to do x-ray mapping or energy dis-
persive spectroscopy (EDS) in a scanning electron mi-
croscope (SEM). Here, an x-ray spectrum is acquired
for each pixel. By means of this spectrum the mineral
present in each pixel can be identified using a manual or
an automatic classification method. Spatial information
about the mineral composition can thereby be obtained
by an objective and reproducible method. Earlier work
in this field [9, 13, 2] used classification methods that
range from lookup tables to maximum likelihood classi-
fication. Earlier, long image acquisition times made the
use of EDS images for mineral classification difficult.



New equipment enables acquisition of a 256 x256 pixels
image with 12 elements mapped in 36 minutes. Acceler-
ating voltage, current, dwell time and sensor parameters
are adjusted for an acceptable trade-off between data
noise level and image acquisition time. The chosen con-
figuration results in 40% deadtime in the EDS detector.
Typical pixel size is 2.4pmx2.4pum.

A method for classification of EDS images based on a
semi-automatic training algorithm is described in [10, 4].
This paper aims at evaluating the robustness of this
semi-automatic training algorithm to parameter settings
and operator influence.

2 Data: minerals and elements

The purpose of the analysis is to evaluate mineralogical
composition of sedimentary rocks from thin sections of
core samples from different wells and fields.

As the aim is to use the method for standard studies
of sedimentary rocks, it is important to cover the most
frequently occuring minerals. In Table 1 all the minerals
in the model are shown. In some cases more than one
class is needed to describe a mineral. This can be due
to natural variation in the chemical composition of the
mineral, such as in the biotites, the chlorites, the garnets
and the siderites. There is also a case, for illite and
muscovite, where it is known in advance that different
minerals have the same chemical composition, and they
will therefore be overlapping in the EDS measurement.
In addition to minerals it is of course also important to
have a class for porosity. It is possible to map porosity
as the samples are impregnated with epoxy.

Table 1: Mineral classes in the model

Albite Chlorite 2 | Gypsum Quartz
Ankerite Chlorite 3 | Illite/Muscovite | Rutile
Apatite Dolomite Ilmenite Siderite 1
Barite Fe-calcite Kaolin Siderite 2
Biotite 1 Garnet 1 K-feldspar Titanite
Biotite 2 Garnet 2 Monazite Tourmaline
Calcite Garnet 3 Porosity Zincblende
Chlorite 1 | Glauconite | Pyrite Zircon

The input data are not continuous x-ray spectra but
mappings of 12 regions of interest in the spectra cov-
ering wavelengths for selected elements. The mapped
elements reflect the major components in the minerals.
It is normally the K, line that is mapped, but in some
instances this is superimposed by another element’s L,
line. This is the case for P and Zr, Ti and Ba, and Na
and Zn. There have not been any problems with this
duality in the data, rather it potentially increases the

discriminatory power between more minerals. The set

of mapped elements are shown in Table 2.

Table 2: Mapped elements

Al C Ca

Fe K Mg

Mn Na(+Zn) P(+Zr)
S Si Ti(+Ba)

3 Methods

3.1 The seed algorithm

Good supervised classification is contingent on good
training sets. In order to obtain a properly performing
classification algorithm the training classes should re-
present statistically well separated classes. This is not
always the case for training sets drawn by human op-
erators. This is partly due to the human inability to
get an overview of multidimensional spaces. Another
problem with training sets drawn by humans is inconsis-
tency. Training sets need to be extracted in a consistent
way across time and classes irrespective of operator and
shape of image structures.

Therefore we propose a semi-automatic algorithm for
generation of a set of training classes from a series of
seeding points, i.e. for each class the operator need only
supply one (or more) points in the image that belongs
to that particular class. This algorithm was previously
descibed in [10, 4].

From these points training classes are grown. This
ensures at least these two important points: spatial and
spectral closeness.

Spatial closeness is ensured by demanding that all the
pixels in one training class are connected with the seed-
ing point. This is a very useful condition, because it is
the nature of most relevant phenomena to appear as ob-
jects. The connectivity may be defined in terms of first-
or second-order neighbours etc. This definition has the
advantage of being able to allow for small gaps in the
training sets by specifying that pixels should be higher
order neighbours. This is useful for classes that occur
as clusters of smaller objects in the image, and also in
the case of classes that occur as thin strings or layers.

Spectral closeness is achieved by making restrictions
on the distance to the current mean value of the class
while growing the training set. Here, two types of dis-
tance are considered. The first distance is the Euclidean
spectral distance

D = (x — pu))" (x — ) (1)



where = (z1,2,...,7p)7 is the value observed in a
pixel, and p} is the current estimate of the class ¢ mean.
The application of Euclidean distance to seed growing is
suggested in [3]. The second distance is the Mahalanobis
distance

Diy = (= pi)"(Z) (@ — ). (2)

Here the distance is scaled by the inverse of the current
estimate of the covariance matrix of training class i, 3.

For the Euclidean distance an upper limit for the dis-
tance should be supplied by the user. For the Ma-
halanobis distance we can utilise that these distances
are approximately y2-distributed with p degrees of free-
dom, i.e. we include only pixels that have a Maha-
lanobis distance to the current estimates of the class
means less than a preset quantile of the corresponding
x2-distribution.

Since we often do not have any prior knowledge of the
scales of variation of the phenomena at hand the Ma-
halanobis distance is often preferred. However, here a
problem is encountered. If the seeding is started by a
single pixel we cannot get an immediate estimate of the
covariance matrix. Therefore our algorithm starts with
growing the training set to a small preset maximum spa-
tial radius using the Euclidean spectral distance method
with a preset maximum spectral distance. From the
small number of pixels thus included estimates of the
mean vector and the covariance matrix are obtained.
These estimates are first used to exclude possible out-
liers in the current set, and second, the training set is
grown using the Mahalanobis distance method from this
point on.

Finally, there is a choice to update the estimates of
the mean value and the covariance matrix continuously
as pixels are included in the training set, as opposed to
basing the Mahalanobis growing on the initial estimates
obtained from the Euclidean expansion.

Use of this method gives us training classes that are
in good correspondence with normal distributions with
the estimated means and covariances.

3.2 Classification

We will apply a standard supervised classifier. We pre-
sume that noise may be described by a multivariate
Gaussian distribution possibly after some transforma-
tion. The Gaussian distribution is by far the most com-
monly adopted density model for continuous image fea-
tures. This is partly supported by the central limit the-
orem, and partly due to the resulting nice analytical
expressions in various kinds of analyses.

Suppose that a pixel is an observation from one of the
populations 7y, ms, ..., 7. The classification of the ob-
servation depends on the vector of features of that pixel,

which we will denote X = (X1, Xa,...,X,)T. Assum-
ing a Gaussian feature model, we find the class condi-
tional density function of class m; to be
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where C' is the class variable, and i = 1,2,... k.

Furthermore, let us assume knowledge of the prior
distribution of the classes, i.e. the prior probabilities,
P(C = m;) = p;. This distribution determines the prob-
ability with which an arbitrary feature vector has been
generated from a particular population.

The combined knowledge of the class conditional den-
sity and the prior distribution allows us to write the
unconditional feature vector density function; this is a
compound distribution

k
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The posterior distribution for the class variable is

k(mi | @) = p—hf(g) (5)

The Bayes solution of a classification problem is to
choose the action that minimises the posterior expected
loss. In the case of equal losses, i.e. the same loss is as-
signed to all misclassifications, the Bayes solution con-
sists of choosing the class that has the highest posterior
probability.

In the case of class dependent covariances the poste-
rior probability, after taking logarithms and excluding
terms that are common to all classes is given by

1 1 B
Si = log pi— log(det )~ (w—p,) "= (2 —ps,), (6)

i.e., a quadratic function of the observations. Therefore
this is denoted quadratic classification. If this function
is maximum for ¢ = j we assign the pixel to population
7Tj .

For a general statistical reference, see [1].

3.3 Evaluation of classification

The evaluation of the classification resulting from a par-
ticular training set is made using a validation set. This
validation set is the same as used in [10, 4]. To assure
independence samples for the validation set are prefer-
ably chosen from other wells (or fields) than samples
used for the training set. For some rarer minerals it has
not been possible to find independent samples and no
validation therefore exists.



4 Results

In [10, 4] classifications of a SEM EDS dataset consisting
of the elements in Table 2 were carried out using four
different classifiers with the purpose of discriminating
between the mineralogical classes listed in Table 1. The
classifiers used were a quadratic classifier as described
above, a contextual quadratic classifier, [6, 11, 7, 5], a
hierarchical quadratic classifier, [12, 8], and an extension
of the hierarchical classifier, [4].

The training and validation sets were grown using the
seed algorithm described above from seed points identi-
fied by an experienced geologist. In [10, 4] it is shown
that some of the mineralogical classes could not be dis-
criminated between using the set of features at hand.
This goes for the three garnets (garnet 1, garnet 2, gar-
net 3, cf. Table 1) and for the two calcites (Fe-calcite
and calcite, cf. Table 1). These classes were therefore
combined into two superclasses after classification. The
validation set included samples from all minerals except
biotite 2, chlorite 3, siderite 2, and zincblende. Fur-
thermore biotite 1 was removed from the validation set
as it was concluded by geologists that the sample cho-
sen for validation was altered so that it was closer to
the chlorites in its chemical composition. Taking the
combination into superclasses and the exclusion of the
validation sample for biotite 1 into account the misclas-
sification rates for the training set (resulting in the so-
called resubstitution rate) and the validation set as well
as the computing time relative to the classical quadratic
classifier are shown in Table 3.

Table 3: Misclassification rates and computing times for
the four classifiers tested in [10, 4]

Training Validation | Processing

Set Set Time
Quadratic 0.0025 0.0106 1
Contextual
Quadratic 0.0033 0.0065 5.48
Hierarchical | 0.0025 0.0109 0.47
Extended
Hierarchical | 0.0025 0.0113 3.49

The performances of the four classifiers are more or
less the same. The classical quadratic classifier was cho-
sen for its low processing time. Although the hierar-
chical classifier had a lower processing time it was not
used because it was demonstrated that the classifica-
tion results were dependent of the order in which the
populations were presented to the classifier.

The parameters of the seed growing are shown in Ta-

ble 4.

Table 4: Seed growing parameters for the classification
performed in [10, 4], nominal values

Parameter Value
Euclidean distance threshold 30*
Range for Euclidean growing 5
Mahalanobis distance threshold | X2 go(p)
Update (u, X) no update

*For classes barite, K-feldspar, zincblende, and zircon
the Euclidean distance is set to 50 in order to include a
sufficient number of pixels.

4.1 Euclidean seed growing

The parameters for the initial step of the seed algorithm
are varied one at a time, and the results are summarised
below. For selected changes in the Euclidean spectral
distance threshold the misclassification rates are shown
in Table 5, and for the spatial range parameter the re-
sults are shown in Table 6.

Table 5: Misclassification rate as a function of selected
changes in the Euclidean spectral distance threshold

FEuclidean | Training Validation
Distance Set Set
0| 0.0025 0.0106
+5 | 0.0033 0.0085
410 | 0.0052 0.0103
+50 | 0.0175 0.0106
+100 | 0.0403 0.0111

When increasing the Euclidean spectral distance
threshold the misclassification rate for the validation set
is fairly constant whereas the rates for the training set
increases from 0.25% at the nominal setting to 4.03% at
nominal setting +100 as shown in Table 5. The latter
increase is mainly explained by misclassification rates
of 57.5% for monazite (classified mainly as porosity),
19.2% for chlorite 2 (classified mainly as porosity and
chlorite 1) and 13.1% for chlorite 1 (classified mainly as
chlorite 2).

The variation of the spatial range for the Euclidean
seed growing results in almost no change in misclassifi-
cation rates (Table 6). For the validation set the rates
are constant, and for the training set there is a slight in-
crease with the quantile from the nominal range 5 and
up. For range 4 the rate is slightly higher. This may
well be caused by estimation variation.



Table 6: Misclassification rate as a function of selected
changes in the spatial range for the Euclidean seed grow-

ing
Training Validation
Range Set Set

-1| 0.0113 0.0104

0| 0.0025 0.0106

+1 | 0.0051 0.0111

+2 | 0.0060 0.0107

+3 | 0.0066 0.0107

4.3 Seed point sensitivity

Finally, we examine how sensitive the classification is to
the particular choice of seeding point. For each class a
new seeding point is picked at random from the origi-
nally generated training set within a 5x5 neighbourhood
of the original seeding point. This procedure is repeated
4 times. The results in terms of misclassification rates
are shown in Table 9.

Table 9: Misclassification rates as a function of using
different seeding points.

4.2 Mahalanobis seed growing

Table 7 shows the misclassification rate as a function
of selected values of the y2-quantile. We see that the
misclassification rate for the validation only varies a
little, whereas the rates for the training set, though
small, steadily increase with the quantile. This is simply
because larger quantiles increase the overlap between
classes in feature space, and thus result in higher mis-
classification.

Table 7: Misclassification rate as a function of selected
values of the yZ-quantile

Seed point | Training Validation
set Set Set
original | 0.0025 0.0106
set 1 | 0.0035 0.0099
set 2 | 0.0028 0.0104
set 3 | 0.0026 0.0083
set 4 | 0.0027 0.0218

Training Validation
Quantile Set Set
0.950 | 0.0005 0.0094
0.975 | 0.0011 0.0083
0.990 | 0.0025 0.0106
0.995 | 0.0032 0.0083
0.999 | 0.0058 0.0091

With respect to continuously updating the parame-
ters of the distributions when performing the Maha-
lanobis seed growing we see from Table 8 that a change
is induced in the misclassification rates. The reason for
this is that some classes, mainly those that occur in the
images as clay or cement (e.g. thin layers of a class coat-
ing another class that occurs as grains) or are otherwise
spatially dispersed grow beyond they spatial boundaries.

Table 8: Misclassification rate as a function of using
update vs. no update of the distribution parameters

Update | Training Validation
option Set Set
No update | 0.0025 0.0106
Update | 0.0548 0.0200

We see that the misclassification rates for the training
set remain very similar when varying the seeding point.
With the exception of the last new training set this is
also the case for the misclassification rates for the vali-
dation set. For the fourth new training set the increase
in misclassification rate for the validation set is almost
exclusively explained by a misclassification rate of 29.9%
for kaolin (as chlorite 2 and illite/muscovite). Kaolin is
the mineral that has the highest inhomogeneity of the
5x5 neighbourhood from where the new seed point was
chosen (9 out of 24 of the neighbours of the original seed
point were rejected as kaolin pixels in the original seed
growing).

5 Discussion

In Figure 1 examples of the seed growing of chlorite 2
are shown. Corresponding elements are shown in Fig-
ures 2 and 3. We see from Figures 1, 2 and 3 that
the region included into the training set for the extreme
value of range, “4+3”, as well as that resulting from us-
ing the extreme value of quantile for the Mahalanobis
growing, “0.999”, does not seem to include pixels that
are spectrally different from those included in the orig-
inal training set. This is in good correspondence with
the fairly small changes in misclassification rates shown
in Tables 6 and 7. However, when using the updating
option for the Mahalanobis seed growing, it is evident
that regions that are spectrally different (in this case
porosity) are included in the new training set. When
comparing with the misclassification rates in Table 8 we
see that these are significantly higher than for the origi-
nal training set. Also, when applying the extreme value



Figure 1: Example of training sets for the class chlo-
rite 2; upper left: original training set; upper right: us-
ing range “+3” for Euclidean seed growing; middle left:
using Euclidean distance threshold of “4100”; middle
right: using quantile “0.999” for Mahalanobis seed grow-
ing; lower left: using update option for Mahalanobis
seed growing; lower right: using new a seed point

of the Euclidean distance threshold, “+100”, we see that
a smaller region of porosity is included in the training
set here. This is also reflected in the misclassification
rates of the training set. But it does not seem to have
an impact on the misclassification rate of the validation
set. Finally, the insensitivity of the method to changes
in the seeding point is illustrated by the training set re-
sulting from a new seed. No spectrally different pixels
seem to be included here. This is confirmed by the low
misclassification rates seen in Table 9.

6 Conclusions

We have conducted a sensitivity study with respect to
the parameters of the generation of training set of a

Figure 2: Elements corresponding to the training set
example shown in Figure 1; row-wise: Al, C, Ca, Fe, K
and Mg

semi-automatic classifier for classification of minerals
from x-ray mapping images. The marginal change in
misclassification rates as a function of selected changes
in five parameters is evaluated.

The initial seed growing based on the Euclidean dis-
tance measured seems independent of the maximum spa-
tial range whereas some sensitivity with respect to the
Euclidean distance threshold is seen. The increased mis-
classification rates are connected with classes where the
seeding point is placed in inhomogeneous regions. This
cannot always be avoided, particularly in the cases of
clay classes (e.g. classes that occur as thin layers or are
otherwise spatially dispersed).

For the Mahalanobis distance seed growing we see in-
dependence of the choice of quantile used for the Maha-
lanobis distance threshold. However, it is evident that
using a continuous update of the class parameters during
seed growing has a negative effect on the misclassifica-
tion rates.

Finally, with respect to the interaction of the opera-



Figure 3: Elements corresponding to the training set
example shown in Figure 1; row-wise: Mn, Na, P, S, Si
and Ti

tor with the classifier through the identification of seed
points, we see from randomly choosing new seed points
in the vicinity of the original seed points that increased
misclassification rates may occur. Again, the problem
occurs with classes that are spatially dispersed (as op-
posed to classes occurring as grains).

In conclusion we have found that a tuning of the Eu-
clidean distance threshold is necessary for the seed grow-
ing in its current form to obtain good training sets for
the spatially dispersed classes. Also, it is demonstrated
that the update option should not be used for the Ma-
halanobis seed growing.

Future work should include the definition of a pro-
cedure for the initial seed growing (without parameter
tuning). Also, a more thorough study examining the
sensitivity to choosing seed points from different grains,
from different wells, from different fields should enter
into consideration. Finally, a study on sensitivity to si-
multaneous change in all parameters as opposed to this
marginal sensitivity study would be interesting.
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