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Preface

This thesis has been prepared at the IMSOR group of the Institute of Math-

ematical Modelling (IMM), the Technical University of Denmark, in partial

ful�llment of the requirements for the degree of Ph.D. in engineering.

The thesis discuss the di�erent aspects involved in the identi�cation of a

dynamical physical models. The work is focused on the use and incorpora-

tion of physical knowledge and other a priori information in all the phases

involved in identi�cation. Selected applications from modelling of building

thermodynamics and of combustion engines are given.

The main contributions to this �eld is thought to be on experiment design

for dynamical systems and on the implementation of the methods for es-

timation. A tool is developed and implemented, which is able to estimate

the parameters of sti� physical models. Also the applications on the real

systems represent new work in their respective �elds.

Lyngby, June 1994

Henrik Melgaard
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Summary

The problem of identi�cation of physical models is considered within the

frame of stochastic di�erential equations. Methods for estimation of param-

eters of these continuous time models based on discrete time measurements

are discussed. The important algorithms of a computer program for ML

or MAP estimation of the parameters of nonlinear stochastic di�erential

equations are described and the implemented tool is validated with respect

to bias and uncertainty of the estimated parameters.

The di�erent phases involved in identi�cation of this type of models are

considered in the thesis. This includes design of experiments, which is

for instance the design of an input signal that are optimal according to a

criterion based on the information provided by the experiment. Also model

validation is discussed. An important veri�cation of a physical model is to

compare the physical characteristics of the model with the available prior

knowledge.

The methods for identi�cation of physical models have been applied in two

di�erent case studies. One case is the identi�cation of thermal dynamics of

building components. The work is related to a CEC research project called



PASSYS (Passive Solar Components and Systems Testing), on testing of

building components related to passive solar energy conservation, tested

under outdoor climate conditions.

The second case study is related to the performance of a spark ignition car

engine. A phenomenological model of the fuel 
ow is identi�ed under vari-

ous operating conditions of the engine. This engine submodel is important

for controlling the air/fuel ratio, e.g. in a feed-forward controller.
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Resumé

Identi�kation af fysiske modeller betragtes inden for rammerne a stokastiske

di�erentialligninger. Metoder til estimation af parameterne i disse konti-

nuert tids modeller, baseret p
�

a diskrettids observationer, diskuteres. De

vigtigste algoritmer i et computer program til ML eller MAP estimation af

parameterne i ulin�re stokastiske di�erentialligninger beskrives og det im-

plementerede program-v�rkt�j valideres med hensyn til bias og usikkerhed

af de estimerede parametre.

De forskellige faser involveret i identi�kation af denne type modeller be-

handles i afhandlingen. Dette inkluderer fors�gsdesign, hvilket for eksem-

pel er design af et input signal, som er optimal med hensyn til et kriterium

baseret p
�

a informationen fra fors�get. Model validering diskuteres ligeledes.

En vigtig veri�cering af en fysisk model er at sammenligne fysiske karak-

teristika af modellen med den tilg�ngelige a priori viden.

Metoderne til identi�kation af fysiske modeller er anvendt i to forskel-

lige cases. Det ene case handler om identi�kation af varmedynamikken af

bygningskomponenter. Arbejdet er relateret til et EU forskningsprojekt,

PASSYS (Passive Solar Components and Systems Testing), som omhandler



testning af bygningskomponenter til udnyttelse af passiv solvarme, testet

under udend�rs forhold.

Det andet case er relateret til ydeevnen af en benzinmotor. Der er identi�-

ceret en f�nomenologisk model af benzin
owet i motoren under forskellige

belastningsforhold af motoren. Denne undermodel af motoren er vigtig til

kontrol af br�ndstof-luft forholdet, fx ved feed-forward kontrol af bland-

ingsforholdet.

x



Contents

Preface iii

Acknowledgements v

Summary vii
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Chapter 1

Introduction

1.1 Background

The construction of mathematical models for dynamical systems frommea-

sured data, is termed system identi�cation. The literature in this �eld

is extensive, and some good introductions on the topic in general, can be

found in (Goodwin & Payne, 1977; Ljung, 1987; S�oderstr�om & Stoica,

1989).

The identi�cation of a certain model involves a number of steps in an it-

erative process. The �rst step is to decide the purpose of the model, e.g.

should the model be used for controling the system, fault detection in the

system or for determination of characteristic physical parameters etc. In

any case, one of the important things is to make clear on which time scale

the interesting dynamics of the system are. From these considerations some



initial model is set up. Next step is to design an experiment for determina-

tion of the interesting parameters of the model. This experimental design

is based on the intended use of the model and our prior knowledge about

the system. From the observations provided by the experiment the param-

eters of the model structure are estimated. Then follows some iterative

process of validating, and possibly modifying the model. If necessary an-

other experiment is designed based on the new information gained and so

on.

Based on the goal for modelling and the a priori knowledge it is usually

possible to de�ne the framework for the model, i.e. de�ne the set of mod-

els, from which the solution of the identi�cation problem is to be sought.

Usually the de�nition of model structures are classi�ed in two extremes

according to their utilization of a priori knowledge about the process. The

one extreme assumes that the model structure is known and deterministic.

The parameters of the model are adjusted by minimizing the output error

between simulated and measured output. The advantage by this model-

ing approach is that prior information is exploited. Often this means that

the model structure is de�ned by the physical relations of the process (in

general nonlinear), e.g. energy conservation, Newton's laws etc.

The opposite extreme is known as black box modeling. In this approach

the model can be viewed as a box, which aims at describe the relations

between the measured input/output data. A priori knowledge about the

model structure is discarded and therefore the model and the parameters

of it usually have little physical signi�cance. Linear model structures have

been widely used for black box modeling because they are mathematically

attractive. This class of models is rich enough to cover a large number of

applications, since the model is only viewed as a tool for approximating

the data, thus selecting a model of su�ciently high order will often �t the



data. The parameters of the model are estimated by statistical methods,

which are also used for selecting and validating the models.

A third approach is a combination of the two extremes, and is called grey

box modeling (Bohlin, 1984; Graebe, 1989). This approach exploits the a

priori physical knowledge about the process, but the model structure and

parameters are not assumed to be completely known. Hence the model is

formulated in a stochastic framework as opposed to the white box approach.

The parameters of the model are estimated as for black box models, by

using statistically identi�cation methods. These statistical tools are also

used for validating and modifying the model. A typical grey box situation,

is when the the model structure is determined by the physical relations of

the process, hence the term physical models.

The main advantage of the grey box approach compared to the white box,

is that the estimation is kept in a stochastic framework, hence statistical

methods are available for model validation and structure modi�cation etc.

The advantage compared to the black box approach is the use of prior

physical information about the process for structure determination, which

in general is nonlinear. Because the grey box model is determined from the

physical relations of the system, it is expected that the model is valid be-

yond the range covered by the measured data. Therefore it is also expected

that a grey box model is able to make better long term predictions, than

a black box model. The parameters of the grey box model have physical

signi�cance which is seldom the case for black box models.

An important di�culty about grey box models, is the estimation of their

parameters. In general it is much more di�cult to calculate the prediction

errors, which is needed for the estimation, from a nonlinear stochastic

model, than either from a nonlinear simulation model or from a linear



stochastic model. That is one of the reasons for the rather limited use of

grey box models in practical applications: the lack of available software

tools for grey box identi�cation. Other authors who have contributed in

this �eld are (Bohlin, 1984, 1994; Graebe, 1990a, 1990b; Tulleken, 1993).

The grey box modelling approach, used here, is depicted in Fig. 1.1. It

consist of di�erent phases, which is also re
ected in the layout of this work.

The \greyness" of the resulting model is a matter of the weighting between

the use of a priori knowledge and the information in data when building the

model. If main weight is put on a priori knowledge the approach is merely

white. On the other hand, if the main weight is on the data samples from

the system, then it is called a black box approach.

grey

"greyness" of a model

black

data

white

a priori knowledge

The work presented in this thesis represents a grey box approach, where

the available physical knowledge about the system as well as available data

is used and incorporated in the iterative process of system identi�cation.

But since the a priori knowledge is only partial, measurements from the

system are used to estimate the unknown / partially unknown parameters

of the model. The incorporation of prior knowledge in the modelling, will

in
uence all the steps of the classical identi�cation process, see Fig. 1.1. On

one hand it complicates the identi�cation process, but hopefully the result



physical
knowledge

available
data

purpose

design

a priori
knowledge

including:

restrictions,

prior distribution
of parameters

optimality criterion,

model
validation

experimental

a posteriori
model

parameter
estimation

structure
model class/

characterization

measurements
data/

Figure 1.1. The grey box modelling approach.

is a better model, because it can be validated not only against measured

data, but also against the prior knowledge about the system.



1.2 Outline of the thesis

In the present chapter the background and motivation for the work is given,

and the organization of the thesis is outlined.

In Chapter 2 it is argued for that stochastic di�erential equations makes

the obvious frame for modelling a wide range of physical systems. The

mathematical and computational treatment of stochastic models is more

complicated than of deterministic models. Simulation of the sample paths

of stochastic di�erential equations is discussed in this chapter.

Chapter 3 is concerned with prediction error methods for parametric es-

timation of dynamical systems. Di�erent asymptotic properties for the

estimation procedures are discussed. This includes convergence and dis-

tribution of the parameters under certain conditions on the experimental

conditions, the model, the criterion function etc. There has mainly been

focused on the maximum likelihood estimator (ML) and on the maximuma

posteriori estimator (MAP), because of their attractive property as asymp-

totically e�cient estimator.

In Chapter 4 the general nonlinear �ltering problem for a continuous time

system, with discrete measurements is revealed. The conditional expected

value and variance of the output is needed for the likelihood function for the

parameter estimation. Di�erent approximate solutions are discussed which

are a compromise between the computational feasibility and the ability to

handle nonlinear stochastic models.

The validation of physical models is discussed in Chapter 5. A number of

di�erent methods are outlined: tests for model structure, residual analysis,

simulations and cross validation. An important veri�cation of a physical



model is to compare the physical characteristics of the model with the

available prior knowledge.

Chapter 6 is concerned with the design of experiments. It is important

for a good identi�cation result that the experimental conditions are in

accordance with the purpose of the model. The choice of input signal,

sampling time and presampling �lter are considered. Di�erent measures

of information all based on Fisher's information matrix are considered for

the determination of optimal experiments. Also a bayesian approach of

experimental design is discussed.

The methods for identi�cation of physical models is used in two case stud-

ies. In Chapter 7 the methods have been applied for identi�cation of

the energy dynamics of building components. The work is related to a

CEC (Commission of the European Communities) research project called

PASSYS (Passive Solar Components and Systems Testing) for testing of

building components related to passive solar energy conservation, tested

under outdoor climate conditions.

Chapter 8 is a case study related to the performance of a spark ignition

engine. A phenomenological model of the fuel 
ow is identi�ed. This

engine submodel is important for controlling the air/fuel ratio under tran-

sient conditions, and is therefore important for pollutant emissions and fuel

economy. The work is performed on a 1.1L Ford engine with a central fuel

injection.

In Appendix the implementation of the methods on a computer is dis-

cussed. The estimation of parameters in stochastic di�erential equations

from discrete observations is not simple, and it is important to consider

the numerical details of the calculations involved.





Chapter 2

Physical Models

Consider a real process or system. For some purpose we like to have a

mathematical model of the system. The model should to a certain extend

represent the system. If we have a good model then we expect the model

to behave like the system when exposed to di�erent manipulations. The

di�erent approaches for model building was brie
y discussed in the previous

chapter.

A typical grey box approach is based on physical modelling. This means

that the physical knowledge of the system is used in the model. But unlike

a white box model, the grey box model typically contains stochastic parts.

There are a number of arguments for including such stochastic parts in the

model. For one thing it represents the noise in the system, and noise is

an intrinsic part of any real world system. This could for instance be the

measurement noise when data are sampled from the system, using some

measuring device. The stochastic part may also represent disturbances or



inputs to the system which are not measured or known. It may further

represent unmodelled dynamics of the system, e.g. the movements of the

pistons in a meanvalue engine model, or turbulence in a 
ow. Often it is

not directly the model of the noise we are interested in, the parameters

of the noise model are considered as nuisance, but the noise model is still

necessary in order to obtain a good description of the system. Usually

though, some of the noise can be eliminated by �ltering the data before

using it for model estimation.

The inclusion of a stochastic part in the physical model complicates the

mathematical treatment of the model. Thus, the next sections will de�ne

the stochastic model and describe tools to handle it.

2.1 Preliminaries

In this section there will be a very brief introduction to probability theory.

The principal concept is the probability space (
;A; P) consisting of a

sample space 
 of possible outcomes, a �-algebra A of subsets of 
 called

events and a probability measure P, which assigns a probability P(A) to

each event A in A. A family

x(t;!); ! 2 
; t 2 J (2.1)

of random variables is called a stochastic process with parameter set J and

state space Rn. For each �xed t 2 J, x(t; �) denotes a random variable

on the probability space. For each �xed ! 2 
, x(�;!) corresponds to a

Rn-valued function de�ned on J. This is called a sample path, trajectory,

or realization of the process.



A stochastic dynamical system satis�es the Markov property if the future

state of the system at any time t > s is independent of the past behavior of

the system at times t < s, given the present state at time s. The stochastic

process generated by this system is called a Markov process. The Markov

property in terms of density functions, can be written

p(xtjAxs) = p(xtjxs) (2.2)

for 0 � s � t, where Axs is de�ned as the �-algebra generated by x in the

time interval [0; s]. The subscript is the time index, and the probability

space variable ! is suppressed in the notation. The increasing family

fAt; t � 0g of sub-�-algebras of A, i.e. As � At � A for 0 � s < t is

called a �ltration. It may be interpreted as the �-algebra containing all

information about the involved processes in [0; t]. The particular �-algebra

generated by the stochastic process fx�; � 2 [0; t]g is denoted Axt , and

correspondingly the sequence fAxt ; t � 0g is the �ltration generated by x.

The conditional densities p(s; x; t;y) = p(xt = yjxs = x) are called the

transition probability densities of the Markov process. A Markov process

xt with transition densities p(t; x; s;y) is called a di�usion process if the

following three limits exists for every s � 0, x 2 Rn, and � > 0:

lim
t#s

1

t � s
Z
jy�xj>�

p(s; x; t;y)dy = 0 (2.3)

lim
t#s

1

t � s
Z
jy�xj��

(y � x)p(s; x; t;y)dy = a(s; x) (2.4)

lim
t#s

1

t � s
Z
jy�xj��

(y � x)(y� x)Tp(s; x; t;y)dy = b(s; x) (2.5)

where a and b are well de�ned functions. The quantity a(s; x) is called

the drift of the di�usion process and b(s; x) its di�usion matrix. b is

symmetric and positive semide�nite. Condition (2.3) prevents a di�usion

process from having instantaneous jumps. Properties (2.4) and (2.5) can



be written,

E(xt � xsjxs = x) = a(s; x)(t� s) + o(t � s) (2.6)

E((xt � xs)(xt � xs)Tjxs = x) = b(s; x)(t� s) + o(t � s) (2.7)

so the drift gives the rate of change in the conditional mean of the pro-

cess. The di�usion matrix represents the rate of change of the conditional

covariance of the increment.

Solutions to stochastic di�erential equations, to be discussed in later sec-

tions, are Markov di�usion processes. The standard Wiener process, see

the next section, is a di�usion process with a = 0 and b = I, and is the

solution of the simplest stochastic di�erential equation.

A �nal concept to bring up in this section is that ofmartingale. A stochas-

tic process fxt; t � 0g adapted to the �ltration At is called a martingale if

E(jxtj) <1, and for all 0 � s < t,

E(xtjAs) = xs w.p.1 (2.8)

The simplicity of predicting a martingale according to (2.8) explain the

importance of this concept for applications. Such a process is sometimes

referred to as \fair game" processes; if xs represents a gampler's fortune at

time s, the game is fair if his expected fortune at a future time t > s given

the game history up to some previous time s is precisely the fortune at time

s. If the equality sign in (2.8) is replaced by a � then the process is called

a supermartingale, and similarly a submartingale if it is replaced by a

�. An example of a martingale is the Wiener process. A more thorough

discussion of the di�erent topics introduced in this section may be found

in e.g. (Doob, 1953; Gihman & Skorohod, 1979; Karatzas & Shreve, 1988).



2.1.1 Brownian Motion

Brownian movement is the name originally given to the irregular movement

of pollen, suspended in water, observed by the botanist Robert Brown in

1828. This random movement, usually attributed to the bu�eting of the

pollen by water molecules, results in a di�usion of the pollen in the water.

A standard Wiener process is a fundamental stochastic process providing a

mathematical description of the physical process of Brownian motion. The

range of application of this process goes far beyond a study of microscopic

particles in suspension and includes modeling of noise and perturbations

in thermal, electrical, biological and economical systems etc.

The mathematical properties de�ning a Wiener process, f�t; t � 0g, are

(i) �0 = 0 w.p.1

(ii) The increments �1��0, �2��1, � � �, �n��n�1, of the process, for
any partitioning of the time interval 0 � t0 < t1 < � � � < tn <1 are

mutually independent.

(iii) The increment �t � �s for any 0 � s < t is Gaussian with mean and

covariance respectively

E(�t � �s) = 0 ; V(�t� �s) = Ijt� sj (2.9)

here the standard Wiener process is de�ned by using the identity

matrix in (2.9) instead of a general positive de�nite matrix.

There are a number of other important properties which characterizes a

Wiener process, f�t; t � 0g adapted to the �ltration At. The Wiener



process is both Markov and a martingale with respect to At. The sam-

ple paths of the process is continuous with probability one, but they are

nowhere di�erentiable w.p.1. Since the sample paths are almost surely con-

tinuous functions of time and the variance of the process grows unbounded

as time increases, while the mean remains zero, according to (2.9), there

must be sample paths attaining larger and larger (absolute) values as time

increases. By using the strong law of large numbers one �nds

lim
t!1

�t

t
= 0 (2.10)

More precise statements about the asymptotic behavior is given by the law

of the iterated logarithm, which says that

lim sup
t!1

j�tjp
2t log log t

= 1 ; lim inf
t!1

j�tjp
2t log log t

= �1 (2.11)

Equations (2.10) and (2.11) are all valid with probability one.

Even though the Wiener process is not di�erentiable, one may consider

its time derivative _�t, called Gaussian white noise. Mathematically this

only make sense as a generalized function. The term white comes from the

fact that the process has a uniform spectral density function, f(�), for all

frequencies � 2 R, which is a characteristic of white light. The spectral

density is given by the Fourier transform of the covariance function, 
(t).

In the scalar case this is

f(�) =
1

2�

Z
1

�1
e�i�t
(t)dt ; � 2 R (2.12)

By setting the spectral density to a constant f(�) = c=(2�), for all frequen-

cies, the covariance function satisfy formally


(t) = c �(t) (2.13)



for all t, where �(t) is the Dirac delta function. The nature of the covariance

function (2.13) indicates that such a process cannot be realized physically,

and that (continuous time) white noise is not a stochastic process in the

usual sense. It can however be approximated to any desired degree of

accuracy by conventional stochastic processes with broad banded spectra,

such as the Ornstein-Uhlenbeck process, see (Gard, 1988).

2.1.2 Stochastic Integrals

In order to be able to handle stochastic di�erential equations it is neces-

sary to use other integral concepts than the standard Riemann integral.

Consider the following scalar stochastic di�erential equation

dxt = a(t; xt)dt + b(t; xt)d�t (2.14)

where a is the drift coe�cient and b is the di�usion coe�cient, and �t is

a standard Wiener process, representing the source of noise in the system.

A solution to (2.14) would have the form

xt(!) = x0(!) +

Z t
0

a(s; xs(!))ds +

Z t
0

b(s; xs(!))d�s(!) (2.15)

for each ! 2 
. As it was shown in the previous section the sample paths

of the Wiener process has unbounded variation so the Riemann integral

of the last term will not converge. An appropriate stochastic integral to

be de�ned is the Itô stochastic integral. This integral is de�ned as the

mean-square limit of the left hand rectangular approximation

I(b) ,
N�1X
i=0

b(ti; x(ti;!))(�i+1(!)� �i(!)) (2.16)



for all partitions t0 < t1 < � � � < tN = t as the maximum step size � =

maxi(ti+1 � ti)! 0. An existence and uniqueness theorem, proved using

successive approximations, holds for (2.16) when the drift and di�usion

coe�cients satisfy Lipschitz and bounded growth conditions, see (Gard,

1988; Kloeden & Platen, 1992). The limit of (2.16) is called the stochastic

integral in the sense of Itô. The solution process xt(!) is a Markov di�usion

process. An important di�erence between classical calculus and Itô calculus

occurs in their transformation or chain rules. For yt = f(t; xt) with xt a

solution of (2.14) and f a su�ciently smooth function we obtain

dyt = (
@f

@t
+ a

@f

@x
+
1

2
b2
@2f

@x2
)dt + b

@f

@x
d�t (2.17)

where all the terms on the right side are evaluated at (t; xt). Equation

(2.17), which is known as the Itô formula, contains an additional term
1
2
b2 @

2f
@x2

which would not be present if the rules of classical calculus held,

see (Gard, 1988).

Other stochastic integrals have also been proposed. The most important

of these is the Stratonovich integral. It evaluates the integrand of the

stochastic integral at the midpoint of each partition subinterval rather than

at the left hand point as in (2.16). Hence the Stratonovich integral is

de�ned as the mean-square limit of the approximation

S(b) ,
N�1X
i=0

b(�i; x(�i;!))(�i+1(!) � �i(!)) (2.18)

for �i = (ti + ti+1)=2 as �!0. The Stratonovich integral obeys the trans-

formation rules of classical calculus, i.e. it does not contain the additional

term of the Itô formula, which is a major reason for its use. Stochastic

processes de�ned by Stratonovich integrals do not satisfy martingale and

Markov properties of their Itô integral counterparts.



Fortunately, there is a connection between the two integrals, with the so-

lution of (2.14) in the Itô sense (2.16) being similar to the solution in the

Stratonovich sense with the drift coe�cient of (2.14) changed to

a0(t; xt) = a(t; xt) � 1

2
b(t; xt)

@b(t; xt)

@x
(2.19)

and similarly for a transformation in the other direction. Thus once one

of the calculi has been decided on, the advantages of the other can be

exploited by means of this simple modi�cation. It should be noted, that if

the di�usion coe�cient is only dependent on the time, then the solutions

by the two integrals coincide.

2.2 Stochastic Differential Equations

Ordinary di�erential equations which have the general form

dxt = f(t; xt)dt ; t � 0 (2.20)

provide deterministic descriptions of e.g. the laws of motion of physical

systems. But usually we a operating under noise levels that are too large

to be ignored, i.e. averaged out in the deterministic model. There are

di�erent approaches of how the noise of the system should be described by

the model. The �rst, and simpler, class arises when an ordinary di�eren-

tial equation has random coe�cients, a random initial value or is forced

by a fairly regular stochastic process, for which the solution processes have

di�erentiable sample paths. The equations are called random di�erential

equations and are solved sample path by sample path as ordinary di�er-

ential equations. The second class occurs when the forcing is an irregular

stochastic process such as Gaussian white noise. The equations are then



written symbolically as stochastic di�erentials, but are interpreted as in-

tegral equations with stochastic integrals, e.g. the Itô integral. They are

called stochastic di�erential equations. Here we have chosen to consider

models of the second class in the form of the Itô equation

dxt = f(t; xt)dt +G(t; xt)d�t ; t � 0 (2.21)

where �t is a n-dimensional standard Wiener process. As it was seen

in the previous section the solution xt of the Itô equation is a Markov

di�usion process. Hence the transition probability densities p(s; x; t;y)

of the solution of (2.21), described in section 2.1, satis�es Kolmogorov's

forward equation or the Fokker-Planck equation, which is discussed in

Chapter 4.

2.2.1 Physical and Mathematical Noise

There may be a problem of motivating that the process (2.21) is a good

choice for a model for physical reality. Let us consider a physical noise

�t. Being a physical quantity we would expect both that �t itself is ab-

solutely continuous (which is satis�ed by the Wiener process), and that it

has bounded derivative. Otherwise the physical signal it represents could

change its value discontinuously and in�nitely fast. The physically rea-

sonable properties of absolute continuity and bounded derivative imply

Lipschitz continuity, i.e. there exists a constant K such that for all t; s we

have j�t��sj � Kjt� sj. But the Brownian motion or Wiener process con-

sidered in (2.21) is almost surely non-di�erentiable and non-Lipschitzian,

thus placing us in the dilemma that physical noise is Lipschitzian, whereas

the mathematical abstraction we would like to employ is non-Lipschitzian.

The Wiener process as the forcing process is tractable from a mathematical



point of view because of its Markov and martingale properties. The prob-

lem is how to keep the Wiener process as the tool for the mathematical

analysis, but accept that physical noise is Lipschitzian. Graebe (1990b)

discusses di�erent approaches to this problem, but here we just consider

the use of shaping �lters.

Assume that we have modelled our system using quantities of the system

state xst, a physical noise vector �t to form the di�erential equation

dxst = fs(t; xst; �t)dt (2.22)

Since �t is Lipschitzian, (2.22) is simply an ordinary di�erential equation

for every sample path of �t. The idea of a shaping �lter now is to recognize

the physical noise properties of smoothness and bounded variation are also

shared by the output of an Itô equation. One might therefore investigate

the existence of an Itô equation that is driven by the Wiener process and

that has �t as its solution. Such an equation, is called a shaping �lter since

it shapes the spectrum of the Wiener process to the desired physical noise.

Assume that we have found a shaping �lter of the form

d�t = ff(t; �t)dt +G
f(t; �t)d�t (2.23)

where the superscript f denotes the �lter equations, and �t is a standard

Wiener process. We now consider the augmented state, xt, of the system

state, xst , and �lter state, �t, resulting in the de�nitions

xt ,

24 �t: :
xst

35 ; f ,

24 ff(t; �t)
: : : : : : : : : : :
fs(t; xst ; �t)

35 ; G ,

24Gf(t; �t): : : : : : : :
0

35 : (2.24)

Hence we have rewritten the original equation (2.22) into the form

dxt = f(t; xt)dt +G(t; xt)d�t (2.25)



which is again an Itô equation, though of higher order than originally. Us-

ing these arguments, we conclude that the Itô equation is able to represent

a wide range of physical models. Note that in the model structure (2.22)

the physical noise is not necessarily additive as is the Wiener process in

the Itô equation.

2.3 Qualitative Analysis

Explicit solutions for stochastic di�erential equations are in general not

possible to obtain. The qualitative theory of stochastic di�erential equa-

tions permits investigating the general behavior of solutions directly from

the form of the di�erential equation. The qualitative theory contains topics

as boundedness, stability, and uniqueness of solutions of stochastic di�er-

ential equations. Modern di�erential equations theory, much of which is

qualitative theory, had its beginnings at the end of the last century with

the work of Poincar�e on celestial mechanics and Lyapunov's study of the

stability of motions.

In the previous section it was mentioned that Lipschitz conditions on f

and G su�ce to guarantee the existence and uniqueness of the solution of

(2.21), see (Gard, 1988).

The counterpart of a deterministic equilibrium in a stochastic system is a

stationary solution, �xt, which has a probability distribution that does not

depend on time. Lyapunov functions provide one means of investigating

the stability of such stationary solutions (Kushner, 1967). When lineariz-

ing (2.21) about a stationary solution, �xt, we obtain a linear stochastic



di�erential equation, with zt = xt � �xt

dzt = f0(t; �xt)zt dt+G0(t; �xt)zt d�t (2.26)

where f0 denotes @f=@x etc. The exponential rate of convergence or diver-

gence of a solution zt of (2.26) from the null solution

�(z0) = lim
t!1

sup
1

t
log jztj (2.27)

is known as a Lyapunov exponent and play the same role as the real part

of an eigenvalue in deterministic systems. The asymptotic stability of the

null solution of the linear stochastic di�erential equation, and consequently

the stationary solution of the original equation, is thus characterized by

the negativity of the largest Lyapunov exponent �1. Lyapunov exponents

provide an indication of the time scales in a dynamical system. Consider

a system with Lyapunov exponents �d � � � � � �2 � �1 and d is the

dimension of the problem, if speci�cally

�d � �1 (2.28)

there is a vastly di�ering of time scales, and the system is said to be sti�.

The problem is that, unlike the eigenvalues of a deterministic system, the

Lyapunov exponents of a stochastic system are very di�cult to evaluate

explicitly. Numerical approximations have been derived to calculate the

top Lyapunov exponent �1. For instance Talay (1991) has proposed such

a method, which uses simulations of approximate trajectories of a system

to evaluate an approximation of its upper Lyapunov exponent.



2.4 Applications of Stochastic Differential Equations

In many cases a model of a physical system is speci�ed by deterministic

ordinary di�erential equations. There may then be a need to take into

account random phenomena explicitly in order to obtain the desired accu-

racy in the modelling. The random aspects considered may be intrinsic, for

example the mechanical noise from bearings in an engine, or external, such

as random environmental characteristics a�ecting the drivability of a car

on the road. Markov di�usion processes, which can be represented as solu-

tions of stochastic di�erential equations, arise as tractable approximations

to these stochastic model quantities.

In this section a selection of examples from the literature of applications

of stochastic di�erential equations is given, to show the variety of disci-

plines where stochastic di�erential equation have been used. Here exam-

ples from modelling of population dynamics in biological systems given in

(Gard, 1988, chapter 6) are shown. An example of an application in eco-

nomics, following (Karatzas & Shreve, 1988, section 5.8), modelling invest-

ment/consumption theory is also given. A number of other examples from

applications of stochastic di�erential equations may be found in (Kloeden

& Platen, 1992, chapter 7) which presents examples from a wide range of

�elds, including biology, economics and di�erent branches of physics. In

chapter 7 and 8 in this dissertation two cases, using stochastic di�erential

equations to model the thermal dynamics of buildings and the energy 
ows

of a car engine respectively are shown, see also (Melgaard, Hendricks, &

Madsen, 1990; Madsen, Melgaard, & Holst, 1990; Melgaard, Madsen, &

Holst, 1992a).

In this section we do not enter into detailed discussions about the exact



use of the models, but they are in general mainly used for qualitative

investigations and for simulating and predicting the sample paths of the

processes. If the parameters in the models are to be estimated on the

basis of measurements from the system, the requirements for computational

e�ort are high. The modelling aims in the cases considered in chapter 7

and 8 were parameter estimation in the models based on discrete time

observations. Similar examples may be found in (Graebe, 1990a).

2.4.1 Population Dynamics

The simplest population dynamics models take the form of the di�erential

equation dxt=dt = rxt, where r is a constant, representing the growth

rate of the species modeled. The random environmental e�ects on the

population can be modelled by replacing the growth rate by �+ ��t for a

Gaussian white noise process, �t. Thus resulting in a stochastic di�erential

equation. Both the deterministic and stochastic model exhibit unbounded

growth, which is untenable in an environment with �nite resources. Under

such circumstances a �nite supportable carrying capacity K is appropriate,

with the population decreasing whenever it exceeds this value. This results

in the deterministic logistic or Verhulst model

dxt=dt = rxt(1 � xt=K) (2.29)

where r is the intrinsic growth rate of the population. By replacing the

growth rate by �+��t as before, we obtain the following stochastic logistic

model

dxt = �xt(1� xt=K)dt+ �xt((1 � xt=K)d�t (2.30)



Usually the single species population dynamics models are unrealistic since

in nature most species coexist with others and are a�ected by their presence

one way or another. The Lotka-Volterra system of ordinary di�erential

equations

dxit=dt = x
i
t(a

i +
nX
j=1

bijx
j
t) ; 1 � i � n (2.31)

constitutes a simple nonlinear model of interacting multispecies popula-

tion dynamics. In (2.31), the intrinsic growth rates ai, and the interaction

rates bij are assumed, in the simplest case, to be constants whose signs

indicate whether the model represents prey-predator, competition, mutu-

alism, or some mixture of these population dynamics types. Randomizing

the growth rates ai as ai+�i�it leads to a system of stochastic di�erential

equations

dxit = x
i
t(a

i +
nX
j=1

bijx
j
t)dt + �

ixit d�
i
t (2.32)

which is a multidimensional Itô equation. There are other possibilities for

parameterizing the stochastic models, refer to (Gard, 1988).

2.4.2 Investment Finance

Stochastic di�erential equations have been used in continuous time mod-

elling of the trading of risky securities. Merton (1971) has formulated the

problem of optimal consumption/investment in this framework. He con-

sidered an investor who chooses between two types of assets, one is safe

and the other is risky. One of the assets, called the bond, has a price pbt



which evolves according to the di�erential equation

dpbt = rt p
b
t dt ; 0 � t � T (2.33)

where frt; 0 � t � Tg is called the interest rate process. The other assets,

called stocks, are risky, and their prices are modeled by the stochastic

di�erential equation

dpst = bt p
s
t dt+ �tp

s
t d�t ; 0 � t � T (2.34)

where �t is a standard Wiener process, bt is called the mean rate of

return. At each instant of time the investor must select the fraction ft of his

available capital or wealth that he will put into the risky investment, with

the remaining fraction 1� ft going into the safe one. By combining (2.33)
and (2.34) and assuming that his current consumption rate is ct � 0, it

follows that his wealth, xt satis�es the following equation

dxt = ft(bt xt dt + �txtd�t) + (1� ft)rt xt dt� ct dt (2.35)

which can be rewritten as the following Itô equation

dxt = ((ftbt + (1� ft)rt)xt � ct)dt + ft�txt d�t (2.36)

When the investor has perfect information about his current wealth, feed-

back controls of the form (ft ; ct)T = u(t; xt) provide a natural way for

choosing his current investment mixture and consumption rate. The in-

vestor wishes to choose u, so as to maximize the expected value of some

utility function U at time T. This formulates an optimal stochastic control

problem with pro�t functional

J(s; x;u) = E(U(xuT)jxus = x) (2.37)



to be maximized, where fxut ; 0 � t � Tg is the solution of (2.36) including

the feedback law. The problem is complicated by the presence of a non-

negative consumption rate, which may result in bankruptcy at a random

�rst exit time

� = inf(t � s : xut = 0jxus = x) (2.38)

If � < T we say that bankruptcy occurs at time �. The example of an

application in economics given here follows Karatzas & Shreve (1988, sec-

tion 5.8), where further examples may be found.

2.5 Simulation of Stochastic Differential Equations

Explicit solutions of stochastic di�erential equations are only possible for

simple linear equations. In general one has to resort to some numerical

approximation of the solutions. Di�erent numerical approaches have been

proposed (Gard, 1988; Kloeden & Platen, 1989), such as Markov chain

approximations where both the state and time variables are discretized.

Here we focus on time discrete approximations as they usually are e�ective

for a wider range of situations.

Simulating a nonlinear stochastic di�erential equation is usually easier and

requires less approximations than computing conditional expectations for

the same process. In principle it involves running sequences from a ran-

dom number generator through the discretized equation. Hence, we obtain

approximations to one or several sample paths of the solution. Simulating

the sample paths is an important tool both for applications in qualitative

analysis (Section 2.3) as for the visual validation of a model. If one is

also interested in the statistical properties of the solution, then a whole



family of sample paths of the solution is needed. This method is called

Monte Carlo simulation and it is able to give the evolution of the whole

distribution of the solution.

The solution of a (scalar) stochastic di�erential equation (2.14) is formu-

lated as an integral equation

xt(!) = x0(!) +

Z t
0

a(s; xs(!))ds +

Z t
0

b(s; xs(!))d�s(!) (2.39)

where the �rst integral is a standard Riemann integral for each ! 2 
 and

the second is an Itô stochastic integral de�ned in Section 2.1.2. Consider

a time discretization of the time interval [0; T] given as

0 = t0 < t1 < � � � < tn = T (2.40)

with step size �ti = ti+1 � ti. The maximum step size is � = max�ti. A

discrete time approximation of a solution xt of (2.21) is a sequence fykg,
with yi approximating xt at time t = ti. The simplest approximation of a

stochastic di�erential equation (2.21) is the Euler approximation. It has

the form

yi+1 = yi + a(ti; yi)�ti + b(ti; yi)��i (2.41)

for i = 0; 1; � � � ; n and initial value y0 = x0. The noise increments are given

by ��i = �ti+1 � �ti . Equation (2.41) is derived by �xing the integrands

of both integrals in (2.39) to the left end point of each discretization in-

terval, which corresponds to the de�nition of the Itô integral. If values

are required at intermediate instants either piecewise constant values from

the preceding discretization point or some interpolation, e.g. linear, of the

values at the two immediate enclosing discretization times could be used.

The standard Wiener increments ��i in (2.41) are N(0;�ti) distributed



random variables. They are easily generated by a pseudo random number

generator, see Section A.6.

2.5.1 Stochastic Taylor Expansion

In the previous section only the simple Euler integration was considered,

but also higher order approximations are possible for stochastic integrals.

There are di�erent criteria for grouping these methods according to their

properties. If y�T is a time discrete approximation at the terminal time

t = T with a maximum step length �, it is said to converge strongly with

order � > 0 if there exists some positive constant C independent of �

Ejy�T � xTj � C�� (2.42)

for all � 2]0; �0[ where �0 > 0. This criterion measures the absolute error of

the approximation at the terminal time. Another frequently used criterion

for strong convergence is by the quadratic mean squared expression

E(jy�T � xTj2); (2.43)

related to the largest increment �. The expression (2.43) measures the

global error over t 2 [0;T]. Expressions based on one-step errors measures

the local error. If only an approximation of the probability distribution is

required the closeness of moments is of interest and not the sample paths

themselves. The time discrete approximation converges weakly with order

� if

jE(g(y�n))� E(g(xT))j � C�� (2.44)



for some function g which is continuously di�erentiable of su�ciently high

order. This de�nition implies the convergence of all moments. It turns

out that under appropriate smoothness conditions the Euler approximation

(2.41) converges strongly with order � = 0:5 and weakly with order � = 1:0,

see Kloeden & Platen (1992).

Another way of classifying the di�erent methods is to compare them with a

truncated Taylor expansion. There are several possibilities for such a Taylor

expansion for a stochastic integral. One is based on iterated application of

the Itô formula (2.17), which is called the Itô-Taylor expansion following

Kloeden & Platen (1992). Consider a smooth function of an Itô process

f(xt) to be expanded about f(x0), for the scalar case

f(xt) = f(x0) + (af0 + 1
2
b2f00)jx0

Z t
0

ds+ (bf0)jx0
Z t
0

d�s

+(b(bf0)0)jx0
Z t
0

Z s
0

d�ud�s + R (2.45)

where quote denotes partial derivative with respect to x. The remainder

terms R involve higher order multiple stochastic integrals with variable

integrands. The expansion (2.45) has only been developed to one extra

term compared to �rst order. Applying such expansions over each time

discretization interval with f(xt) � xt and truncating (by neglecting R in

2.45), we obtain the Milshtein approximation, (Milshtein, 1974)

yi+1 = yi + a(ti; yi)�ti + b(ti; yi)��i

+ b(ti; yi)b
0(ti; yi)

Z ti+1
ti

Z s
ti

d�ud�s (2.46)

From Itô calculus it can be shown that the multiple stochastic integral

Z ti+1
ti

Z s
ti

d�ud�s =
1
2
((��i)

2 ��ti) (2.47)



The Milshtein approximation (2.46) has a strong order of convergence � =

1:0, see (Kloeden & Platen, 1992), which is higher than that of the Euler

approximation. Analogous stochastic Taylor expansions also hold for the

multidimensional case and for higher order of truncation, but they are

much more complicated.

Higher order of strong and weak convergence can be obtained by includ-

ing more terms from the stochastic Taylor expansion. Generally though,

they are cumbersome to implement as numerical schemes because they

involve increasingly higher order derivatives of the drift and di�usion co-

e�cients of the stochastic di�erential equation. There are time discrete

approximations which avoid the use of derivatives. These are called gen-

eral Runge-Kutta type approximations for sde. R�umelin (1982) considers

a very general explicit Runge-Kutta scheme. He shows that under certain

boundary conditions the scheme converges uniformly in quadratic mean to

the solution xt of

dxt =

�
a(t; xt) + � b(t; xt)

@b(t; xt)

@x

�
dt + b(t; xt)d�t (2.48)

where the correction factor � is a real number, de�ned through the speci�c

scheme used. Eulers method is of Runge-Kutta type with � = 0. Another

commonly used integration scheme is Heun's method, which is also of

Runge-Kutta type:

yi+1 = yi +
1

2
[a(ti; yi) + a(ti+1; ~yi+1)]�ti

+
1

2
[b(ti; yi) + b(ti+1; ~yi+1)]��i (2.49)

with the Euler predictor

~yi+1 = yi + a(ti; yi)�ti + b(ti; yi)��i (2.50)



The quadratic mean convergence of this scheme is to the Itô solution of

(2.48) with � = 1=2, which corresponds to the solution of (2.14) interpreted

in the sense of Stratonovich. It is shown by R�umelin (1982) that under

certain conditions Heun's method has a global mean square error of order

O(h2), where h is the stepsize. This is the same order as for the Milshtein

scheme, whereas Eulers method only has a global error of order O(h). It

should be noticed that if one replaces a by a��bb0 in the given integration
scheme one obtains convergence to the solution of the Itô equation (2.14).

2.6 Summary

In this Chapter it has been argued for stochastic di�erential equations

being an obvious choice for modelling a wide range of physical systems. The

usual way to model a number of physical systems using ordinary di�erential

equations is extended by models of the noise of the systems. Usually it is

necessary to include this noise model, to obtain a realistic representation

of the system. The mathematical and computational treatment of the

stochastic model is though more complicated than for the corresponding

deterministic model.

It is shown how to simulate the sample paths from a stochastic di�erential

equation. The basic element of the stochastic simulations is the pseudo

random number generator. The veri�cation of such generators is discussed

in Appendix. The next to decide on is how to perform the stochastic

integration. The most simple being the Euler integration. In order to

obtain a higher accuracy in the simulation one can either increase the

number of subintervals in the discretization of the time or resort to some

higher order integration scheme, e.g. general Runge-Kutta schemes.





Chapter 3

Parameter Estimation

Assume that a certain model structure M has been selected. A set of

candidate models is parameterized using the �nite dimensional parameter

vector � 2 �. A particular model is denoted M(�). The problem is now

to �nd the best model among the set M�

M
� = fM(�)j� 2 DMg (3.1)

where DM is a closed subset of Rd, where d is the dimension of the pa-

rameter vector.

The true system is denoted by S, and the experimental condition under

which the system operates by X. This includes the properties of the input

signal and possible feedback con�gurations. Sets of experimental conditions

are denoted by X.



The de�nition of a good model is speci�ed through its loss function. Ac-

cording to Ljung (1987) most of the methods used for parametric estimation

can be characterized as general prediction error methods.

3.1 Prediction Error Methods

In the following it is assumed that a �nite set of observations are obtained

from the system S, measured with equally spaced time intervals, with unit

sampling time. Hence the time index k 2 f0; 1; 2; � � � ; Ng. In order to

derive the loss function the following set of observations is introduced,

yk = [yk;yk�1; � � � ;y1;y0] (3.2)

i.e. yk is a matrix containing all the observations up to and including

time tk, and yk 2 Rs, where s is the dimension of the vector. The y's

are considered to be the outputs from the model, i.e. dependent variables.

Correspondingly the matrix of inputs to the model uk is de�ned, where

uk 2 Rm. The inputs may be controlled or not, but they are assumed

to be measurable. Furthermore the inputs may be generated from either

open- or closed-loop operation of the system. In closed-loop operation we

assume that the input is generated as a feedback of the output according

to

uk = �(tk;y
k;uk�1; �(tk)) (3.3)

where �(�; �; �; �) is a given deterministic function and �(tk) is a deterministic

signal, i.e. an external input. Closed-loop operation may be necessary

for some systems, e.g. for unstable plants, but data obtained from such

experiments can easily be defective, i.e. not informative enough, see e.g.



(Ljung, 1987). The joint set of the data (input and output) is de�ned as

zk = (yk;uk) (3.4)

The problem of estimation is a matter of how to use the information con-

tained in the data zN to select a proper value �̂N, and hence a proper

model M(�̂N) from the set M�.

The performance of a model is judged by its ability to predict the outputs

of a system. The one-step prediction error from a certain model M(�) is

given by

�(tk; �) , yk � ŷk (3.5)

ŷk = g(tk; �; z
k�1) (3.6)

where g(tk; �; zk�1) is a deterministic function of old data and the param-

eters. If we are using o�-line methods, the whole input sequence may be

considered as known and (3.6) can be replaced by

ŷk = g(tk; �;y
k�1;uN) (3.7)

A good model is now one that produces small prediction errors for a given

data set, zN. The idea is to choose some norm that measures the size

of �, and then �nd the parameter vector �̂N that minimizes this norm.

The criterion may be even further specialized as in the following. Let the

prediction error sequence be �ltered through a stable linear �lter L(q),

�f(tk; �) = L(q)�(tk; �) (3.8)

for all k 2 f1; 2; � � � ; Ng. Then use the following norm,

V(�; zN) =
1

N

NX
k=1

l(tk; �; �f(tk; �)) (3.9)



where l(�) is a scalar valued function. The estimate �̂N is chosen as the

minimizing value of (3.9),

�̂N = arg min
�2DM

V(�; zN) (3.10)

Following Ljung (1987) methods that corresponds to the approach of (3.10)

are called prediction error methods. This approach contains as special

cases a number of known methods, like the least squares and maximum

likelihood methods. The di�erent methods apply by speci�c choices of the

pre�lter L(q) and the norm l(�).

The e�ect of the �lter L is easy to understand in a frequency domain

interpretation of the criterion (3.10). L acts like a frequency weighting of

the criterion, i.e. if L is a low pass �lter then the criterion will only be

little a�ected by high frequency disturbances. By another choice of the

pre�lter it is possible to remove slow drift terms in the data. It should be

noted that the inclusion of the �lter is to allow extra freedom in dealing

with the properties of the prediction errors. The �lter can be considered

as a part of the model, by changing the predictor. If we consider a model

of the form

yk = G(q; �)uk +H(q; �)ek (3.11)

then the e�ect of pre�ltering the prediction errors according to (3.8) is

identical to changing the noise model from H(q; �) to

HL(q; �) = L�1(q)H(q; �) (3.12)

see Ljung (1987).

In the current treatment of the parameter estimation, it is assumed that

all the data zN are available for estimating �̂N, this is known as o�-line



estimation. In some cases it may be interesting to have estimates �̂k for all

k, with the data set zk, this is known as on-line estimation. One way to

accomplish this is to make an o�-line estimation at each sampling instant.

This will include all available information up to time tk, but the approach

may involve a large number of calculations. Instead, a recursive algorithm

of the following form is formulated

xk = H(tk; xk�1;yk;uk)

�̂k = G(xk) (3.13)

where xk is a state-vector of �xed dimension (typically dim(x) < N), that

represents some information state. H and G are explicit expressions with

a �xed amount of calculations. By applying these restrictions and formu-

lating the recursive algorithm (3.13) for the parameter estimation it can

be secured that the calculation of �̂k can be evaluated during a sampling

interval. The drawback in this approach is, that we do not make use o� all

available information in the calculation of �̂k. With an increasing amount

of available computer power, the need for applying the restrictions of (3.13)

for parameter estimation is vanishing. For the estimation cases in this re-

port only o�-line methods have been applied.

3.2 The Maximum Likelihood Method

We now turn to a special case of the prediction error method, which has

been used in most of the cases in this report, the maximum likelihood

method. It has been chosen for several reasons. Beyond the appealing con-

cept of formal statistical inference, it has nice asymptotic properties under

mild conditions. This makes it very useful for other aspects of identi�ca-

tion, e.g. for model validation by using di�erent kinds of likelihood based



statistical tests. Such aspects are addressed in Chapter 5.

3.2.1 Principle of Likelihood

In statistical inference, the observations are considered as realizations of a

stochastic variables. The observations from an experiment are represented

by yN, see (3.2). For convenience the inputs, fukg, are omitted in the

following derivations. Since we are concerned with o�-line methods it is

assumed that the whole sequence of inputs are known a priori.

The likelihood function is the joint probability density of all the observa-

tions assuming that the parameters are known,

L(�;yN) = p(yNj�)
= p(yNjyN�1; �)p(yN�1j�)

=
NY
k=1

p(ykjyk�1; �) (3.14)

where successive applications of the rule p(a; b) = p(a jb)p(b) are used to

express the likelihood function as a product of conditional densities.

It is now assumed that the sequence of innovations, f�kg are zero-mean, in-

dependent stochastic variables with the probability density function p(�k(�)j�).
We are then able to develop expression (3.14) for the likelihood function.

Now

p(ykjyk�1; �) = p(�k(�)jyk�1; �)
= p(�k(�)j�) (3.15)



and the following likelihood function is obtained

L(�;yN) =
NY
k=1

p(�k(�)j�) (3.16)

The maximum likelihood estimate is found as the parameter vector that

maximizes the likelihood function (3.16). Maximizing this function is the

same as minimizing the function � logL(�;yN), which gives the expression

for the estimator

�̂ml = arg min
�2DM

�
NX
k=1

logp(�k(�)j�) (3.17)

The maximum likelihood method can thus be seen to be a special case of

the prediction error criterion (3.9) and (3.10). When the prediction errors

are assumed to be Gaussian with zero mean, and covariance matrix Rk(�),

we have

� logL(�;yN) =
1

2

NX
k=1

�
�TkR

�1
k �k + log detRk + s log 2�

�
(3.18)

where s is the dimension of y. The simple expression for the criterion

arise from the fact, that the Gaussian distribution is characterized alone

by their mean and covariance. The implementation of the algorithm and

the use of a Newton algorithm for the optimization is denoted to Appendix

A, see also (Madsen & Melgaard, 1991; Melgaard et al., 1992a; Melgaard

& Madsen, 1993).



3.2.2 Separation of Filtering and Parameter Estimation

The estimation method requires access to the residuals, the di�erence be-

tween the predictions and the measurements. For the general class of mod-

els, the computation of the optimal predictions amounts to solving the

general �ltering problem. Exact solutions to this problem is only possible

in special cases, e.g. for linear models, otherwise it is necessary to employ

certain approximations to obtain implementable algorithms. However, it

turns out, that while the properties of the ML parameter estimates depend

upon the residuals and their properties, they do not depend on how they

were found. It is therefore natural to separate the �ltering problem from the

parameter estimation problem. In that way we may develop the parameter

estimator independently of the predictor, which according to the previous

discussion, Ljung (1987), is the model itself. In the present derivation of

the ML estimator there is only certain requirements on the residuals. As

stated earlier the problem of treating a general class of models, is focused

on the development of implementable predictors. This problem is treated

in Chapter 4.

3.3 Asymptotic properties of parameter estimates

In this section the properties of �̂N will be analyzed as N tends to in�nity.

The analysis is relevant for the con�dence one should put on an estimate

and hence a tool for comparing di�erent estimators.

When discussing the asymptotic properties of an estimate, there will always

be a tradeo� between the required conditions on the system and data, and

the strength of statements about the properties. The usual assumption



that the model set contains the true system, S 2 M, for a given set of

experimental conditions, X, will often not be ful�lled for real systems.

Usually the system is far more complex than we would allow the model to

be.

For practical applications the objective of system identi�cation is often

to �nd an approximate description, catching the relevant features of the

system. The discussion of consistency is therefore mainly of theoretical

interest. On one hand if the identi�cation method is not able to estimate

the true system within a model set, it is probably not a good method.

On the other hand, knowing that a method is consistent implies nothing a

priori about its performance in approximating a more complex system, and

the latter property is the most important when identifying a real process.

Even though we mainly consider the ML method, most of the results in

this section apply to the more general prediction error method applied

to the same model structure. This implies that if the conditions on the

distribution of innovations required by the MLmethod cannot be obtained,

we are still using a prediction error method. The asymptotic model thus

obtained gives under very general conditions, the best average prediction

performance. This result also implies a strong robustness property of the

method (Ljung, 1978).

3.3.1 Convergence

Lets introduce some regularity assumptions from Ljung (1978) and Ljung &

Caines (1979) which are relevant for analyzing the convergence properties

of the parameter estimates.



The �rst condition is on the system. It requires that the expectation E(yk)

exists and the system S is described by

yk = E(ykjZk�1) + �k (3.19)

where the sequence of innovations, f�kg is a stochastic process with E(�kjZk�1) =
0. In 3.19 the conditional expectation is E(ykjZk�1) = gS(tk;y

k�1;uk�1),

i.e. a deterministic function of old data.

A second condition is on the data, which concerns the system S and the

experimental condition X. The closed-loop system (3.3), (3.19) should be

exponentially stable. That is, the past is forgotten at an exponential rate.

If the system is linear, this condition simply requires that the poles of the

system is inside the unit circle.

The next condition concerns the model setM. It is required that g(tk; �; zk�1)

in (3.6) is three times continuously di�erentiable with respect to �. There

is also a restriction on how fast g may increase with uk and yk for nonlin-

ear models. E�ectively, it may not increase faster than linearly. Another

restriction is that the model and its derivatives with respect to � are ex-

ponentially stable.

Consider a stochastic, linear state-space model given by the equations

xk+1 = A(tk; �)xk +B(tk; �)uk + E(tk; �)vk (3.20)

yk = C(tk; �)xk +D(tk; �)uk + F(tk; �)ek (3.21)

where v � N(0; I) and e � N(0; I) are independent. Assume that the

matrix elements are continuously di�erentiable with respect to � 2 DM,
where DM is a compact set. If the system is completely observable and

controllable, uniformly in t and in � 2 DM, then the model ful�lls the

conditions on the model set previously described, and the predictor is the



associated Kalman �lter, see (Ljung, 1978).

The �nal conditions to set up, concerns the loss function l(tk; �; �) as given

in the general prediction error formulation (3.9). It is required that the loss

function is three times continuous di�erentiable with relation to � and �

and that these di�erentials are bounded, (Ljung & Caines, 1979). In our

case, where the maximum likelihood method is used, the loss function is

given by the negative logarithm of the prediction error density, usually

assumed to be Gaussian (3.17) and (3.18). Then the requirements on the

derivatives in � are ful�lled and the condition becomes mainly a question

of parameterization (Graebe, 1990b).

When studying convergence of parameter estimates, we consider the general

prediction error criterion

V(�; zN) =
1

N

NX
k=1

l(tk; �; �(tk; �)) (3.22)

which also contains the maximum likelihood method based on the Gaussian

distribution. The limit

�V(�) = lim
N!1

V(�; zN) (3.23)

exist under weak conditions on S and X, e.g. if the processes are asymptoti-

cally stationary or periodic (Ljung & Caines, 1979). However this may not

be valid for general time-varying and adaptive feedback, but even when

the limit in (3.23) does not exist it is still possible to make statements

about the convergence of the parameter estimates. If the limit exist the

parameter estimate, �̂N that minimizes the criterion converges to the set

D�V = f�j� 2 DM; �V � min
 2DM

�V( )g (3.24)



If however the limit does not exist, we de�ne the set

DV = f�j� 2 DM; lim inf
N!1

E(V(�)) � min
 2DM

lim sup
N!1

E(V( ))g (3.25)

This is clearly more general than (3.24) in that it does not require the

existence of the limit �V, if however the limit exists then DV = D�V. We are

now able to formulate the general theorem about parameter convergence.

Theorem 3.1 (Convergence) Let the conditions previously described in

this section be satis�ed. Then

sup
�2DM

jV(�; zN)� E(V(�; zN))j!0 w.p.1 as N!1 (3.26)

uniformly in � 2 DM. Moreover, since the estimate �̂N minimizes

V(�; zN), it follows that

�̂N!DV w.p.1 as N!1 (3.27)

if the limit (3.24) exists then DV = D�V. For a proof see (Ljung, 1978).

�

The theorem states that the value of the loss function calculated from a

realization of data will become arbitrarily close to its expected value as the

data length approaches in�nity, and that parameter estimates computed

by minimizing the loss function will converge into appropriate sets. Note

that in the conditions of the theorem it is not required that the model set

contains a system equivalent member.



3.3.2 Distribution of Parameters

Having established the conditions for convergence of the parameter esti-

mates it will now be established that the parameter estimates are asymp-

totically normally distributed under similar conditions. Also in this case

the approximate modelling approach of Ljung & Caines (1979) is adopted.

Theorem 3.2 (Distribution) Assume that the conditions of theorem 3.1

are satis�ed. Consider the general loss function (3.9)

V(�; zN) =
1

N

NX
k=1

l(tk; �; �(tk; �)) (3.28)

Let �̂N be the global minimum of (3.28) over the compact set DM.

Introduce the function WN(�) = E(V(�; zN)), where the expectation is

with respect to the data. Let ��N be the global minimum of WN(�).

Now introduce the term

PN = (W00
N(�

�
N))

�1UN(W00
N(�

�
N))

�1 (3.29)

where a quote denotes di�erentiation w.r.t. the parameters, and

UN = E(NV0(��N; z
N)(V0(��N; z

N))T) (3.30)

and assume that W00
N(�

�
N) and UN are invertible. Then the quantityp

NP
�1=2
N (�̂N � ��N) is asymptotically normal with zero mean and unit

covariance matrix. Assume furthermore that

WN(�)! �W(�) (3.31)

uniformly in DM as N!1. Let �W(�) have a global minimum at ��,

and assume that �W00(��) is invertible. Let UN be de�ned as (3.30),



and assume the limit U = limN!1UN exists and is invertible. If now

p
NW0

N(�
�)! 0 as N!1; (3.32)

then
p
N(�̂N � ��) is asymptotically normal with zero mean and co-

variance matrix

P = ( �W00(��))�1U( �W00(��))�1 (3.33)

�

The theorem is an adaption of theorem 1 and the corollary in Ljung &

Caines (1979), and a proof can be found there. The basic conditions are

the same as required for the convergence theorem, but the requirement of a

unique global minimum of the criterion function is fairly restrictive. From

theorem 3.1 we know that the minimization of V will lead us close to a

local minimum of W. We may then think of this theorem as applying to

the neighborhood of this local minimum point. The assumption, in the

second part of the theorem, of convergence ofWN(�) as N goes to in�nity

is satis�ed, for example, if the processes are asymptotically stationary or

periodic.

If the true parameter �0 is contained in the model set such that f�(tk; �0)g
is a sequence of independent random vectors, results from the asymptotic

distribution of the deviation of the estimate from �0 can be used to ob-

tain con�dence intervals for the parameters etc. If the limiting model ��

does not give a true description of the system (i.e., if f�(t; ��)g are not

independent) but only the best approximation available in M, then the

distribution may still be used for model validation, concerning e.g. the

relevance of certain parameters in the model, see (Ljung & van Overbeek,

1978).



Cramér-Rao Bound

As a quality measure of an estimator we use its mean square error matrix

P(�̂N) = E(�̂N � �0)(�̂N � �0)T (3.34)

where �0 denote the true parameter. We are interested in selecting an

estimator that makes P small. There is a lower limit to the values of P that

can be obtained by any unbiased estimator. This is shown by the following.

Theorem 3.3 (Cramér-Rao inequality) Let �̂N be an estimator of � 2 DM,
where DM is a compact subset in Rd such that E(�̂N) = �0. The

expectation is with relation to the data, assuming that the probability

density function of the data is p(yNj�0), for all values of �0. Suppose
that yN may take values in a subset of RN�s, whose boundary does

not depend on �. Then under mild regularity conditions

P(�̂N) �M�1 (3.35)

where

M , E( @
@�

logp(yNj�)( @
@�

logp(yNj�))T)j�=�0 (3.36)

is known as the Fisher information matrix.

Proof: see e.g. Goodwin & Payne (1977). �

Note that the evaluation ofM requires knowledge of �0, so the exact value

of M is usually not available to the user. If the covariance of an unbiased

estimator achieves the lower bound of the Cram�er-Rao inequality, it is said

to be e�cient.



We now return to the ML estimator (3.17), assuming independent innova-

tions with a known probability density function. Assuming that S 2M this

estimator converges to a normal random variable according to theorem 3.2,

with a covariance matrix P(�̂) = M�1, i.e. it attains, asymptotically, the

lower limit of the Cram�er-Rao inequality, see Goodwin & Payne (1977).

Another interesting property about e�cient estimators is that whenever

there exists an unbiased e�cient estimator, then it is also the maximum

likelihood estimator. This is shown e.g. by Goodwin & Payne (1977).

3.3.3 Consistency

Suppose, that the model set contains a system equivalent member, corre-

sponding to a parameter value �0, does then the estimate �̂N tend to this

true value of the parameters as the number of data tends to in�nity? This

matter of consistency is discussed in this section.

A suitable way to express that the true system is representable within the

model set M is to require that the set

DT(S;M; X) = f�j� 2 DM;

lim
N!1

1

N

NX
k=1

EjŷS(tk)� ŷM(tkj�)j2 = 0; 8X 2 Xg (3.37)

is nonempty, where X is the set of experimental conditions, under which

we would like our model to be valid. Here ŷS(tk) = E(ykjyk�1) assuming

condition 3.19 is satis�ed, and ŷM(tkj�) is the predictor as given in (3.6).

Hence if DT is nonempty and �� 2 DM, then the corresponding model

M(��) is, in the mean square sense of predicted output, indistinguishable

from the true system, (Ljung, 1978).



Theorem 3.4 (Consistency) Assume that the conditions of Theorem 3.1

apply. Assume also the following condition on the criterion functions

�0 2 DT(S;M; X))8k; � 2 DM : El(tk; �0; �) � El(tk; �; �) (3.38)

The condition is satis�ed e.g. for the ML criterion (3.18). Assume

that the parameter set of mean square equivalence,DT(S;M; X), de�ned

in (3.37) is nonempty. For a particular experiment, X 2 X, we de�ne
the set

DI(S;M;X) =

f�j� 2 DM; lim inf
N!1

1

N

NX
k=1

EjŷS(tk)� ŷM(tkj�)j2 = 0g (3.39)

Then

�̂N!DI(S;M;X) w.p.1 as N!1 (3.40)

�

The theorem is an adaption of lemma 4.1 in Ljung (1978). The basic

conditions of the theorem are the same as required for the asymptotic con-

vergence and distribution theorems, but additionally it is required that DT

from (3.37) is nonempty. This is a strong condition, but the discussion of

consistency is only meaningful if the model set contains a system equiva-

lent member in some sense. The set DT represents the correct descriptions

of the system in the sense of mean square equivalence. It is obvious that

8X 2 X : DT(S;M; X) � DI(S;M;X) (3.41)

since DI is dependent of a certain experimental condition X. If, under this

experimental condition, we are not able to get a su�ciently representative

picture of the system, then we are not guaranteed convergence to the right



model, according the theorem. The desired relation is that

DT(S;M; X) = DI(S;M;X) (3.42)

for the chosen experimental condition X. This is a matter of choosing the

right X, which includes properties like persistently exciting inputs, and

not too special feedback mechanisms. This discussion of experimental de-

sign is postponed to Chapter 6. Even when (3.42) is satis�ed, and theorem

3.4 guarantees the convergence to a system equivalent model, there might

still be several parameter values yielding this property. In order to obtain

uniqueness of the solution further restrictions on the model structure and

parameterization must be applied. This is a matter of structural identi�a-

bility which is considered in Section 6.1.

3.4 Maximum Aposteriori Estimate

Compared to classical estimation, the Bayesian approach gives a concep-

tually di�erent treatment of the parameter estimation problem. In the

Bayesian approach the parameter itself is considered as a random variable

with some prior probability density

� � p(�) (3.43)

Then based on observations of other random variables, the data set yN =

[yN;yN�1; � � � ;y1;y0], which is correlated with the parameters, we may

infer information about its value. Suppose the conditional probability den-

sity of the observations, given �, is

p(yNj�); (3.44)



which is the likelihood function. Then by combining the prior information

with the sample information, using Bayes' theorem, it is possible to form

the posterior information for �, i.e. the conditional probability density

given the observations

p(�jyN) = p(yNj�)p(�)
p(yN)

/ p(yNj�)p(�) (3.45)

It is seen, that the posterior probability density is proportional to the like-

lihood function multiplied by the prior probability density. From the pos-

terior probability density, di�erent point estimates of � can be determined,

for instance the value where the probability density attains its maximum.

This is called the maximum a posteriori estimate (MAP),

�̂map = argmax
�2


p(yNj�)p(�) (3.46)

over an admissible parameter set 
. The conventional maximum likelihood

estimator (ML) selects the parameter that maximizes the likelihood of the

data,

�̂ml = argmax
�2	

p(yNj�) (3.47)

If the prior distribution in 3.46 is uniform then the MAP estimator is

equivalent to an ML estimator that is restricted to 	 = 
. So the ML

estimator corresponds to the MAP estimator when the prior information

is di�use or non-informative, with the constraint 	 = 
.

Example 3.1 Assume that data can be described by:

yk = E(ykjyk�1; �) + �k(�) (3.48)

where the sequence of innovations f�k(�)g is a stochastic process with

the property E(�k(�)jyk�1) = 0. If we assume the innovations are mu-



tually independent and have the probability density function p(�k(�)j�),
we obtain the following likelihood function of the data:

p(yNj�) =
NY
k=1

p(�k(�)j�) (3.49)

If the innovations are assumed to be Gaussian with zero mean, and

covariance Rk(�), we have

p(yNj�) /
NY
k=1

(detRk(�))
�1=2 exp(�1

2
�k(�)

TR�1k (�)�k(�)) (3.50)

The maximizing argument of (3.50) with relation to � thus yields the

ML estimate, �̂ml. Let the prior distribution function for � be given

by a normal distribution with mean � = �� and covariance � = ��.

Then

p(�) / exp(�1
2
(� � ��)T��1� (� � ��)) (3.51)

Following (3.45), the conditional pdf for � given the data yN, that is

the posterior pdf for �, is given by

p(�jyN) / exp(�1
2
(�� ��)T��1� (�� ��)) �

NY
k=1

(detRk(�))
�1=2 exp(�1

2
�k(�)

TR�1k (�)�k(�)) (3.52)

The argument that maximizes (3.52) is the MAP estimate, �̂map.

The di�erence between ML and MAP is clearly seen from (3.50) and

(3.52). As the prior standard deviation increases, ��!1, the prior

pdf approaches a uniform and non-informative distribution, and the

MAP estimate becomes equivalent with the ML estimate. �



The advantage of considering MAP estimators instead of ML estimators is

of course that our prior information about the parameters of the model is

incorporated in the �nal estimate of the parameters. We may then be able

to reach the same level of con�dence of the �nal estimates, from a shorter

experiment. Or non-identi�able models may become identi�able, due to

the external information.

The problematic part of the MAP estimation approach, is the speci�cation

of the prior pdf. The prior information can either be generated from sam-

ples of past data, e.g. from ML estimation, in which case the asymptotic

distribution of the estimates is known. The prior information can also

be speci�ed from introspection, or theoretical considerations, and in this

case the prior information may di�er for individual persons, because they

have di�erent beliefs. One should also consider the sensibility of the �nal

estimate from the speci�cation of a wrong prior pdf. Often the prior pdf

represents both kinds of prior information, data-based and non data-based.

The Bayesian approach is quite appealing in relation to grey box identi�ca-

tion (Section 1.1), where the idea is to utilize the prior information about

the system, in the identi�cation. The MAP estimator is also called the

grey-box estimator by Tulleken (1993).

It can be shown that asymptotically (when the number of data observations

N!1) the MAP estimator converge with probability one to the conven-

tional ML estimator, provided the admissible model set contains the the

true parameters. That is, the MAP estimator is asymptotically unbiased

and e�cient then the a priori knowledge is correct. This is a direct conse-

quence of the fact that the likelihood will asymptotically become Gaussian

distributed, around the true parameters, with vanishing covariance matrix.

This also means that the in
uence from the prior distribution is vanish-



ing with increasing number of observations in the likelihood function, see

Tulleken (1993).

3.5 Robust Norms

From the previous sections it has been shown that for minimizing the

variance of the estimated parameters the optimal choice of l for the general

PEM criterion (3.9) is

l(�t(�)) = � logp(�t(�)) (3.53)

where p(�t(�)) is the probability density function of the innovations (the

ML criterion). The problem is that p(�t(�)) may not be known for the true

innovations. If we assume the density is Gaussian, but the true density

has thicker tails, this may have a large in
uence on the estimation, cf.

(Martin & Yohai, 1985). It is convenient to consider the innovations as

being generated from an outliers model, with the following distribution of

the innovations

P(�t) = (1� 
)N(0; �2) + 
G ; 
 > 0 (3.54)

where G is some symmetric outlier generating distribution and 
 is a small

fraction.

In order to evaluate the in
uence of the outliers on the estimates when using

a given norm l, it is valuable to rewrite the expression for the covariance

matrix of the parameters (3.33). Under the assumption that S 2 M and

that the limiting parameters equals the true ones, �� = �0, the expression



for the covariance of the parameters can be written,

P� = �(l) ( �W
00(�0))�1 (3.55)

where the covariance of the parameters is scaled by the scalar

�(l) = E� 
2(�t(�0)) = (E� 

0
�(�t(�0)))

2 (3.56)

where  (�t) = l0�(�t) (derivation is with respect to �) and expectation

should be taken with respect to the true distribution of the innovations.

Consider for simplicity the scalar case of Gaussian ML with the given vari-

ance 1, then (3.53) is l(�t) = 1
2
�2t (neglecting the constant term). For

the ideal case where the true distribution of the innovations is Gaussian

we have �(l) = 1. If on the other hand the true distribution is given by

(3.54) with a 
 > 0 this scalar can become much larger than 1, cf. (Ljung,

1987, pp. 397{398). This means, that even if the fraction of outliers is

very small the variance of the parameters can be much deteriorated when

using the norm (3.53). Thus, the norm (3.53) is very sensitive to the true

distribution of the innovations. This is of course not desirable because the

true distribution is usually unknown. In order to make the criterion more

robust to the unknown variations of the distribution of the innovations, it

is suggested to modify (3.53) in such a way that  (x) in (3.56) behaves like

x for small values of x, then saturates, and even tend to zero as x increases

(redescending). One choice of a  -function, is called Huber's psi

 H(x) =

(
x jxj � cH

cH sgn(x) jxj > cH
(3.57)

If one wants protection against extremely heavy-tailed distributions, a re-

descending psi-function can be used. A frequently used type of redescend-



ing function is Tukey's bisquare function

 B(x) =

(
x (1� x2=c2B)2 jxj � cB

0 jxj > cB
(3.58)

see Martin & Yohai (1985) for a discussion of the psi-functions and robust-

ness. When o�-line methods are of greatest interest we have the possibility
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Figure 3.1. Huber's psi-function and Tukey's bisquare function.

of repeating the estimation on the data set. Hence, we are able to detect

and handle outliers in the data set, e.g. in connection with the model vali-

dation, see Chapter 5. Thus for o�-line methods it may not be necessary to

be protected against very heavy-tailed distributions, but it is still useful to

modify the estimation criterion according to e.g. Huber's psi-function and

with a cH value that is not too small, e.g. cH = 3 �̂. When such a robust

norm is used there will only be a small increase of �(l) when outliers are

present and also when the true distribution is Gaussian (no outliers) there

is only a small loss of optimality compared to the original norm (3.53). The

price of a small increase of the variance for the nominal case is thus worth

paying to have robustness against small variations in the true distribution

of the innovations.



3.6 Preprocessing of Data

When the data has been collected from an identi�cation experiment it

usually needs some preprocessing before it can be used by an estimation

algorithm. There may be outliers in the data or missing observations in the

data set. When redundant information is available, that is, more sensors

measuring the same quantity of the system for a given simpli�ed model, it

must be decided how this information is compounded into a representative

measurement. Preprocessing of the data can turn out to be a non-trivial

task. But proper handling is required in this phase, because the resulting

estimate is based on these data.

How redundant information is used to create a single representative mea-

surement of a certain quantity, if this is required for a simpli�ed modeling,

is highly dependent of the individual case. Usually some weighted sum of

the signals can be used. The weights can either be found by a principal

components analysis as the weights for the �rst principal component or

by physical arguments, e.g. that a temperature sensor represents a certain

area of the surface to be measured. Ideally, if the redundant sensors have

been placed properly, the �rst principal component will put equal weights

on each sensor. If this is not the case, this could be a way to detect a failing

sensor.

If outliers or missing values are detected in the data, e.g. by plotting the

data or from residual analysis, there are di�erent possibilities of handling

the problem. To some degree the estimation algorithm can be protected

against outliers by using robust methods as discussed in Section 3.5. Some

estimation methods can be used regardless of missing observations in the

outputs of the system. When a prediction error method is used, this is



done e.g. by replacing the missing output with the predicted output.

When using o�-line methods it is possible to repair the data before using

it for model identi�cation. If redundant or highly correlated signals are

available, regression techniques can be used to replace or �ll gaps of one

signal based on other signals. Otherwise, robust dynamical methods can

be used to estimate e.g. robust AR models of the timeseries followed by a

robust smoother to replace the outliers or �ll the gaps of missing values,

see e.g. (Martin & Yohai, 1985).

3.7 Summary

In this chapter the general concept of parametric estimation of dynami-

cal systems has been set up. The procedures deals with the sequence of

prediction errors f�(tk; �)g computed from the proposed models using the

observed data. In this sense we have separated the predictor (model) from

the estimation procedure. It is, for example, of none importance for the

estimation procedure if the model has a discrete time or continuous time

formulation.

A number of asymptotic properties for the estimation procedures has been

discussed. Results for convergence and distribution of the asymptotic es-

timate is shown for the general case, when S 62 M, which is called ap-

proximate modeling. In the case where the true parameter is available

in the model set, results concerning e�ciency and consistency have been

presented.

There has mainly been focused on the maximum likelihood method, be-

cause of its attractive property as an asymptotically e�cient estimator.



The MAP estimator has been presented as obvious choice for grey box

identi�cation by including the a priori distribution of the parameters in

the estimation. The asymptotic properties of the MAP estimator are un-

der reasonable conditions equal to those of the ML estimator. In all cases,

though, it may be necessary to use a modi�cation of the estimation crite-

rion to obtain robustness against outliers in the data.





Chapter 4

Filtering the State

Referring to Chapter 2, let the model be described by the vector Itô stochas-

tic di�erential equation

dxt = f(xt;ut; �; t)dt+G(xt; �; t)d�t (4.1)

with � being a standard Wiener process. The observations yk are taken

at discrete time instants, tk

yk = h(xk;uk; �; tk) + ek (4.2)

where e is a Gaussian white noise process independent of �, and ek �
N(0;S(�; tk)). (The super- and subscript k is shorthand notation for tk

throughout the chapter). In order to estimate the parameters of the con-

tinuous time model (4.1) and (4.2), based on discrete time observations,

we need access to the one-step prediction errors, de�ned in (3.5) and (3.7),



repeated here

�k(�) , yk � ŷk (4.3)

ŷk = h(x̂k;uk; �; tk) (4.4)

= g(tk; �;y
k�1;uN) (4.5)

where the predictor, g(tk; �;yk�1;uN) is a deterministic function of old

outputs, the parameters and the inputs. In the following derivations the

input sequence uN is skipped for convenience, but since we are considering

o�-line methods the inputs are assumed to be known a priori. The issue

now, is to formulate the predictor corresponding to the model (4.1) and

(4.2). For the Gaussian maximum likelihood method (3.18), in addition

to the one-step predictions, we also need the covariance of the predictions,

for evaluation of the likelihood function. For non-Gaussian maximum like-

lihood we also need higher order moments or even the whole distribution

p(ykjyk�1; �).

To solve these problems, we must establish the conditional density for xk

conditioned on the measurements up to an including time tk, p(xkjyk). If
this objective can be accomplished, then various estimators can be de�ned,

optimal with respect to some speci�ed criterion, such as the conditional

mean or the conditional mode.

4.1 Exact Filtering

We will now describe the solution to the continuous-discrete �ltering prob-

lem conceptually. We are considering a continuous time model with dis-

crete time observations, therefore the term continuous-discrete �ltering.

We solve the problem conceptually, because only in certain special cases it



is possible to implement the exact solution.

4.1.1 Conditional Density

Before establishing the results about the conditional density, we have to

impose certain assumptions on the model (4.1).

Condition 4.1 (Itô Equation) Suppose the real functions f and G, and

initial condition x0, satisfy the following conditions. f and G satisfy

uniform Lipschitz conditions in x:

kf(x2; t)� f(x1; t)k � Kkx2 � x1k;
kG(x2; t)�G(x1; t)k � Kkx2 � x1k:

f and G satisfy Lipschitz conditions in t on [t0; T]:

kf(x; t2)� f(x; t1)k � Kkt2 � t1k;
kG(x; t2)�G(x; t1)k � Kkt2 � t1k:

The initial condition x0 is a random variable with E(kx0k2) < 1, in-
dependent of f�t; t 2 [t0; T]g. �

If condition 4.1 is satis�ed then fxtg is a Markov process, and, in the

mean square sense, is uniquely determined by the initial condition x0, see

(Jazwinski, 1970).

The evolution of the probability density p(xtjyk); t 2 [tk; tk+1[ of the

Markov process generated by the Itô equation (4.1) is described by a partial

di�erential equation, which is known as Kolmogorov's forward equation

or the Fokker-Planck equation.

dp(xtjyk) = L(p)dt t 2 [tk; tk+1[ (4.6)



where

L( � ) = �
nX
i=1

@( � fi)
@xi

+
1

2

nX
i;j=1

@2( � (GGT)ij)
@xixj

(4.7)

is the forward di�usion operator, see (Jazwinski, 1970; Maybeck, 1982).

This is the evolution between observations. The initial condition, at tk,

is p(xkjyk). We assume this density exists and is once continuously dif-

ferentiable with respect to t and twice with respect to x. It remains to

determine how p changes at an observation at tk, that is to determine the

relationship between p(xkjyk) and p(xkjyk�1). In addition to the earlier

stated conditions we also assume that the observation mapping h, given

in (4.2), is continuous in x and in t and bounded for each tk w.p.1. Since

p(xkjyk) = p(xkjyk;yk�1) we can use Bayes' rule to obtain

p(xkjyk) = p(ykjxk;yk�1)p(xkjyk�1)
p(ykjyk�1) (4.8)

This expression can be simpli�ed, since the process fekg is assumed to be

Gaussian white noise, with ek � N(0;Sk),

p(ykjxk;yk�1) = p(ykjxk)
= ((2�)s detSk)

�1=2 exp(�1
2
~yTkS

�1
k

~yk) (4.9)

where ~yk = yk � h(xk;uk; �; tk). Similarly, we can compute

p(ykjyk�1) =
Z
[xk ]

p(ykj�)p(�jyk�1)d� (4.10)

Hence equation (4.8) becomes

p(xkjyk) = p(ykjxk)p(xkjyk�1)R
[xk ]
p(ykj�)p(�jyk�1)d� (4.11)

with p(ykjxk) given by (4.9).



Conceptually we now have the entire density function p(xtjyk); t 2 [tk; tk+1[

for all k > 0 for some given initial state p(x0). Kolmogorov's forward equa-

tion describes the evolution between the observations and equation (4.11)

gives the update formula, when a new observation is available at time tk.

The conditions we have imposed on the system are merely to guarantee

the existence of the conditional probability density function.

With this density function available we are now able to calculate the terms

ŷk and Rk required for the parameter estimation, using Gaussian maximum

likelihood

ŷk =

Z
[xk]

h(�;uk; �; tk)p(�jyk�1)d� (4.12)

Rk =

Z
[xk]

h(�;uk; �; tk)h(�;uk; �; tk)
Tp(�jyk�1)d�

+Sk � ŷkŷTk (4.13)

Thereby we have de�ned all the elements for conceptually solving the iden-

ti�cation problem. The di�culty is that the solution requires the entire

density function p(xtjyk); t 2 [tk; tk+1[, involving partial di�erential equa-

tions, which can not be solved exactly for general nonlinear models.

When h(xk;uk; �; tk) is linear with respect to xk the situation is less com-

plicated. Then, when using Gaussian ML, the distribution of p(xtjyk); t 2
[tk; tk+1[ is also Gaussian and only the �rst two moments of the distribu-

tion is needed.



4.1.2 Evolution of Moments

Let '(x) be a twice continuously di�erentiable scalar function of the state-

vector x. De�ne

Ek('(xt)) , E('(xt)jyk) =
Z
[xt ]

'(�)p(�jyk)d� (4.14)

the expectation of ' using the conditional density p(xtjyk) for t > tk. Be-
tween observations p(xtjyk); t 2 [tk; tk+1[ satis�es Kolmogorov's forward

equation (4.6), hence we get

dEk('(xt)) = E
k(
@'

@x
f(xt))dt +

1

2
trEk(GGT

@2'

@x2
)dt (4.15)

for t 2 [tk; tk+1[, see (Jazwinski, 1970). Then the change in Ek('(xt)) is

computed, when a new observation becomes available at time tk using the

di�erence equation (4.11) for the conditional density. Multiplying (4.11)

by '(x) and integrating over x, we have

Ek('(xk)) =
Ek�1('(xk)p(ykjxk))
Ek�1(p(ykjxk)) (4.16)

Now the tools to determine the evolution of all the moments of the condi-

tional density p(xtjyk); t 2 [tk; tk+1[ for all k > 0 are available. Consider

the propagation of the conditional mean and covariance

x̂tjk = Ek(xt) (4.17)

P̂tjk = Ek((xt � x̂tjk)(xt � x̂tjk)T) = Ek(xtxTt )� x̂tjkx̂Ttjk (4.18)

The results can be obtained by setting '(x) = x and '(x) = xxT respec-

tively in (4.15) and (4.16).

Theorem 4.1 Assume the conditions required for the derivation of the

conditional density in (4.6) and (4.11). Between observations, the



conditional mean and covariance satisfy

dx̂tjk=dt = \f(xt; t) (4.19)

dPtjk=dt = dxtfT � x̂tjkcfT + df xTt � bf x̂Ttjk +[GGT (4.20)

for t 2 [tk; tk+1[, where c( � ) , Ek( � ). When a new observation arrives

at tk we have

x̂kjk =
Ek�1(xkp(ykjxk))
Ek�1(p(ykjxk)) (4.21)

Pkjk =
Ek�1(xkxTkp(ykjxk))
Ek�1(p(ykjxk)) � x̂kjkx̂Tkjk (4.22)

Predictions x̂tjk and Ptjk, with t > tk, based on yk, also satisfy (4.19)

and (4.20).

Proof: is found e.g. in (Maybeck, 1982).�

Notice that the equations in theorem 4.1 are not ordinary di�erential and

di�erence equations. The right-hand sides of the equations involve expec-

tations which require the whole conditional density for their evaluation.

Apparently, in order to obtain a computationally realizable and practi-

cal predictor in the general nonlinear case, some approximations must be

made. There are however two interesting special cases, where exact �ltering

is possible.

4.1.3 Deterministic Model

The �rst class is trivial, but so common that it is worth mentioning. It

involves a deterministic general nonlinear state space model and an asso-

ciated measurement equation with additive, uncorrelated Gaussian noise.



This corresponds to the Itô equation (4.1) with the term G � 0,

dxt = f(xt;ut; �; t)dt: (4.23)

The observations yk are taken at discrete time instants, tk

yk = h(xk;uk; �; tk) + ek (4.24)

where e is a Gaussian white noise process ek � N(0;Sk(�)). This class of
models do not have a noise model and in this sense they may be called white

box because the process is assumed to be deterministic. The parameters,

though, are still unknown. In this case a stochastic framework is not needed

at all. The �ltering becomes trivial since ŷk = h(xk;uk; �; tk) with xk

given by the deterministic solution of (4.23).

The model (4.23) and (4.24) may be viewed as a degenerate innovations

representation, because the innovations are given by the sequence fekg
and the model is formulated explicitly as an additive function of them.

Generally though models must be transformed into this form. Finding

such a transformation may be di�cult, and in the general case, amounts

to solving the general �ltering problem.

4.1.4 Linear Model

A second class of models allowing exactly �ltering, is the common class of

linear models. For this class of models the Kalman �lter provides the exact

solution for the �ltering problem. Consider the model

dxt = A(ut; �; t) xt dt + B(ut; �; t)ut dt+G(�; t)d�t (4.25)

yk = C(uk; �; tk) xk +D(uk; �; tk)uk + ek (4.26)



There are di�erent approaches leading to the model (4.25) and (4.26). The

model may be formulated directly in this form, notice that we do not

require linearity in the parameters. The model may typically be formu-

lated as a linear model, but with coe�cients varying according to some

known external signal. Another approach leading to this class of models,

is a linearization of the general Itô di�erential equation (4.1) and (4.2)

around some reference signal x�. In this case the matrices are calculated

by A(ut; �; t) =
@f
@x

��
x=x�

, B(ut; �; t) =
@f
@u

��
x=x�

etc.

For the class of linear models (4.25) and (4.26) the Kalman �lter provides

the exact solution. The following equations are obtained for updating the

state estimate:

x̂kjk = x̂kjk�1 + Kk�k (4.27)

Pkjk = Pkjk�1 �KkRkjk�1KTk (4.28)

Kk = Pkjk�1CTR�1kjk�1 (4.29)

The formulas for prediction of mean and covariance of the state-vector and

observations are given by,

dx̂tjk=dt = A x̂tjk +But ; t 2 [tk; tk+1[ (4.30)

dPtjk=dt = APtjk + PtjkAT +GGT ; t 2 [tk; tk+1[ (4.31)

ŷk+1jk = C x̂k+1jk +Duk+1 (4.32)

Rk+1jk = CPk+1jkCT + S (4.33)

The initial conditions are x̂1j0 = �0 and P1j0 = V0. The dependencies

of time and external input of the matrices in the Kalman �lter equations

have been suppressed for convenience. This implementation of the Kalman

�lter thus involves the solution of a set of ordinary di�erential equations

between each sampling instant. If, on the other hand the matrices A, B



and G are time invariant, then it is possible to �nd an explicit solution

for (4.30) and (4.31), by integrating the equations over the time interval

[tk; tk+1[ and assuming that ut = uk in this interval, thus obtaining

x̂k+1jk =�x̂kjk + �uk (4.34)

Pk+1jk =�Pkjk�T +� (4.35)

where the matrices �, � and � are calculated as,

�(�) = eA� ; �(�) =

Z �
0

eAsBds ;

�(�) =

Z �
0

�(s)GGT�(s)T ds

(4.36)

and � is the sampling time. This implementation of the Kalman �lter thus

involves the calculation of the exponential of a matrix. This calculation

may be done once for a given set of parameters if the matrices A, B and

G are time invariant.

If the time dependence is slow compared to the dominating eigenvalues

of the system, this implementation of the Kalman �lter may also be used

for time varying systems, by evaluating (4.36) for each sampling instant,

assuming that A, B and G are constant within a sampling time. This

solution requires less computations and is more robust than integrating

(4.30) and (4.31), see (Moler & van Loan, 1978; van Loan, 1978). This

point is also discussed in Graebe (1990b, p. 81).

External Inputs

In the derivation of (4.34) and (4.35) it is assumed that the external input

is constant throughout the sampling interval, i.e. for t 2 [tk; tk+1[ we

have ut � uk. This may be true in some cases, e.g. when the input is



controlled. There is however in general a problem with external inputs.

In the predictor the external input is assumed to be known, and in the

continuous �lter, this goes for all t 2 [t0; T]. Usually we have only discrete

observations, at times tk, of both inputs and outputs. One approach is to

consider it as an continuous-discrete smoothing problem, that is to estimate

ut, given u
k for t < tk We then have to impose certain assumptions,

basically on the model for generating the input. A simple approach is to

use linear interpolation for ut through the sampling interval, hence

ut =
t� tk
�

(uk+1 � uk) + uk ; t 2 [tk; tk+1[ (4.37)

where � is the sampling time. When inserting this equation for ut, we

obtain the following equation to replace (4.34),

x̂k+1jk =�x̂kjk + �uk +� (uk+1 � uk) (4.38)

where � and � are the same as before, and

�(�) =

Z �
0

eAsB��s
�
ds (4.39)

Notice that this approach is very simple to implement as an integrated part

of the discretization procedure, see Chapter A for details about implemen-

tations. Also for most cases the assumption of linear interpolation between

consecutive observations of inputs is more realistic than that of a constant

value between the samples.

4.1.5 Other Criteria of Optimality

In the previous section the �lter was derived in a Bayesian manner by

generating explicit recursions for the conditional probability density for the



states, conditioned on the entire measurement history. In the linear model

case we get the Kalman �lter, and the conditional density is Gaussian. The

optimal state predictions were given as the conditional mean.

Theorem 4.2 The estimate that minimizes E((xt�x̂t)TW(xt�x̂t)), where
W � 0 is some weight matrix, is called the minimum variance esti-

mate. Let the estimate, x̂t be a functional on yk for t � tk. Then the

minimum variance estimate is the conditional mean.

Proof: see (Jazwinski, 1970). �

There are other criteria of optimality that might be interesting for an es-

timation problem, e.g. the maximum (mode) or the median of the a pos-

teriori conditional density. When the probability density is Gaussian, the

mean is also the mode (= MAP estimate) and median of the density func-

tion, this holds for all symmetric and unimodal (only one peak) densities.

It is possible to derive formulas for the evolution of the mode and the

covariance similar to those in section 4.1.2. During time propagations from

tk to tk+1 the mode is de�ned by

dp(�; tjyt)=d���� = x̂map
� 0 (4.40)

provided the second derivative is positive de�nite to assure that the mode is

well de�ned, it is also required that the mode is unique. The time derivative

in (4.40) must also be identically zero. Also for the mode estimator we

obtain an in�nite dimensional estimator, and as before approximations are

required to generate an implementable �nite dimensional �lter. It seems,

from the literature, that the practical experiences with this alternative

formulation of the predictor is little, (Jazwinski, 1970; Maybeck, 1982).



4.2 Approximate Filters

We will now concentrate on computing the conditional mean and covari-

ance in the nonlinear �lter. It was shown in previous sections that generally

the calculations of these moments requires access to the whole conditional

density function. In general the conditional density function can not be

characterized by a �nite set of parameters (e.g. its moments). An impor-

tant exception is of course the linear �ltering problem, in which case the

conditional density is Gaussian, and therefore completely determined by

its mean and covariance. We may consider the mean and covariance as

the hyper-state of the linear �lter. In the nonlinear case, the �lter state is

essentially in�nite dimensional.

It was shown in section 4.1.1 that the calculation of the conditional den-

sity involve solution of partial di�erential equations, which is infeasible for

computation. Thus we are forced to consider approximations to the condi-

tional density function. The approach is to parameterize the conditional

density via a �nite and small set of parameters. The nonlinear �lter would

then consists of equations of evolution for these parameters, which would

comprise the state of the �lter. If we could �nd a �nite set of parameters

that completely determine the conditional density, these parameters would

be su�cient statistics. Unfortunately, it is virtually impossible to �nd

su�cient statistics for nonlinear problems, the linear case being a unique

exception.

There are a number of possible means of approximately parameterizing the

conditional density function. A valid approach is to express the density in

terms of a complete orthogonal series and then truncating the series at a

speci�ed order, (Maybeck, 1982). However, here will be focused on the



parameterizing via moments.

4.2.1 First Order Filters

The simplest form of approximations in nonlinear �ltering is based on the

Kalman �lter applied to some linearization of the model. Filters of this

class are called �rst order approximations. We presented the Kalman �lter

applied to a linear model in section 4.1.4. Here we consider the linear model

as generated from a linearization of the Itô equation using (4.44). In this

case the matrices are calculated by A(ut; �; t) =
@f
@x

��
x=x�

, B(ut; �; t) =
@f
@u

��
x=x�

etc., where x� is some reference signal. This reference trajectory

is chosen as the one obtained by setting the noise to zero in the nonlinear

model

dx�t = f(x
�
t ;ut; �; t)dt (4.41)

yk = h(x
�
k;uk; �; tk) (4.42)

and integrating these deterministic equations over each sample period. Lin-

earizing about x� yields the linear perturbations model, in the form of a

linear time varying state-space model. This method, called the linearized

Kalman �lter, will only converge if the noise levels are su�ciently small.

This is due to the assumption of zero noise in the nonlinear model for

calculating the reference trajectory.

A better choice for the linearization trajectory, is to use the current esti-

mate of the state. Linearizing about it at every sampling time and applying

a Kalman �lter to the resulting linearized model yields the algorithm known

as extended Kalman �lter. In this manner, one enhances the validity of the

assumption that deviations from the \true" trajectory are small enough to

allow linear perturbation techniques to be employed with adequate results.



Performance improvement for the extended Kalman �lter may be obtained

by local iterations (over a single sample period) on nominal trajectory re-

de�nition and subsequent relinearization. If we iterate on the equations for

the measurement update, by replacing equation (4.27) with the following

iterator

�i = x̂kjk�1 +Kk(yk � h(�i�1; tk)� C (x̂kjk�1 � �i�1)) (4.43)

with C = (@h=@x)
��
x=�i�1

, and Kk = Kk(�i�1), iterated for i = 1; � � � ; l,
starting with �0 = x̂kjk�1, and terminating with the result x̂kjk = �l, we

have the algorithm called iterated extended Kalman �lter. The �lter just

described addresses the problem of nonlinearities by reevaluating h and

C to achieve a better x̂kjk. This will also improve estimation over future

intervals because of improved succeeding reference trajectories. It is also

possible to improve the reference trajectory backward in time once the mea-

surement yk is taken, by applying smoothing techniques backward to time

tk�1. Incorporating such a local iteration into the extended Kalman �lter

structure yields what is termed the iterated linearized �lter-smoother.

It has been demonstrated by simulations, that these �lters are e�ective

in nonlinear problems, but both of these iterated �lters produce biased

estimates in general, see e.g. (Ljung, 1979). However, as the error vari-

ance becomes small, so does the bias in the estimate, see (Jazwinski, 1970,

pp. 278{281).

Another �lter to be considered in this section is based on statistical lin-

earization, and therefore called the statistically linearized �lter. This

�lter can be applied if the di�usion term is independent of the state, xt,

i.e. the term

G = G(�; t) (4.44)



in (4.1) is only a function of � and t. Contrary the other �lters mentioned

in this section this �lter does not imply series representations of f and

h. For this reason, it is a method that does not require f and h to be

di�erentiable, thereby admitting such important nonlinearities as satura-

tion. This advantage is gained at the expense of requiring evaluation of

conditional expectations, i.e. knowing the entire conditional density, ac-

cording to (4.17). Typically, the density is approximated as Gaussian, and

the resulting implementable algorithm often has better characteristics than

those based on truncated series expansions of f and h about the conditional

mean approximate estimate, see (Maybeck, 1982, pp. 243{245). Consider

approximating f(xt; t) by a linear approximation of the form

f(xt; t) = f0(t) + F(t) xt + �t (4.45)

which has the minimum mean square error

J = E(�TtW�tjzk�1) (4.46)

for all t 2 [tk�1; tk[, where W � 0 is a weighting matrix. Calculating

the partial derivatives of (4.46), with respect to f0(t) and F(t) and setting

them to zero yields, using the notation of Theorem 4.1

f0(t) = bf� F(t) x̂t (4.47)

F(t) = (dfxTt � bfx̂Tt )P�1tjt (4.48)

with Ptjt being the conditional covariance of xt. F(t) is close related to

describing function theory for approximating nonlinearities. In the scalar

case (4.48), with zero mean, becomes bfx=cx2, which is the describing func-

tion gain for an odd-function nonlinearity (such as a symmetric saturation),

see (Gelb, 1974, pp. 204{220). Using similar approximations for the mea-



surement equation yields

h(xk; tk) �= h0(tk) +H(tk) xk (4.49)

with the coe�cients statistically optimized to get

h0(tk) = bh�H(tk) x̂k�1 (4.50)

H(tk) = (dhxTk � bhx̂Tk�1)P�1kjk�1 (4.51)

The issue now is the computing of bf, bh, F(t) and H(tk). They all depends

upon the conditional probability density function of x, which is generally

not available. We therefore assume the density is Gaussian. Since this

density is completely de�ned by its mean and covariance, both of which

are part of the computation in the �ltering algorithm, it will be possible to

compute all the conditional expectations introduced in (4.48) and (4.51).

We obtain the statistically linearized �lter, with the following equations

for the time propagation

dx̂tjk=dt = bf(xtjk; t) ; t 2 [tk; tk+1[ (4.52)

dPtjk=dt = F(t)Ptjk + PtjkFT(t) +GGT ; t 2 [tk; tk+1[ (4.53)

with F(t) given by (4.48), and the conditional expectations involved cal-

culated assuming xt to be Gaussian with mean x̂tjk and covariance Ptjk.

The measurement update at time tk is given by

Kk = Pkjk�1HT(tk)[H(tk)Pkjk�1HT(tk) + S]�1 (4.54)

x̂kjk = x̂kjk�1 + Kk(yk � bh) (4.55)

Pkjk = Pkjk�1 �KkH(tk)Pkjk�1 (4.56)

with H(tk) given by (4.51), and the conditional expectations calculated as

though xk were Gaussian with mean x̂kjk�1 and covariance Pkjk�1. Struc-

turally, the equations for the gain and covariance are the same as those



for the extended Kalman �lter, but with F(t) replacing (@f=@x)
��
x=x̂tjk

and

H(tk) replacing (@h=@x)
��
x=x̂kjk�1

. The computational requirements of the

statistically linearized �lter may be greater than for �lters derived from

Taylor series expansions of the nonlinearities because the expectations must

be performed over the assumed Gaussian density of x. However, Monte

Carlo simulations have demonstrated that the performance advantages of-

fered by statistical linearization may make the additional computations

worthwhile, see (Gelb, 1974).

4.2.2 Second Order Filters

There are mainly two di�erent approaches, for approximating the exact so-

lution given in section 4.1.2, leading to �lter expressions belonging to the

class of second order �lters. One might assume that the conditional density

is nearly symmetric so that third and higher order odd central moments are

essentially zero, and also that it is concentrated su�ciently closely about

the mean that the fourth and higher order even central moments are small

enough to be neglected, this leads to the truncated second order �lter.

The other approach is to assume that the conditional density is nearly

Gaussian, so that third and higher order odd central moments are again

essentially zero, and the fourth and higher order even central moments

can be expressed in terms of the covariance, this leads to the Gaussian

second order �lter. Typically, sixth and higher order even moments are

also assumed small enough to be neglected. For both �lters further ap-

proximations of the functions f and h are applied, via a truncated Taylor

series expanded about the current state estimate. However there are also

assumed density �lters that do not require such series approximations,

corresponding to the statistically linearized �lter in the previous section.



It should be noted, that the Gaussian approximation in general has a wider

range of validity than the truncated approximation. The di�erence be-

tween the two approaches is the assumption about the fourth moment, in

the truncated second order �lter it is neglected, while in the Gaussian case

it is approximated as

E�((xi � x̂i)(xj � x̂j)(xk � x̂k)(xl � x̂l)) =
PjkPil + PjlPik + PklPij (4.57)

where P is the conditional covariance matrix. For both second order �lters,

we get the equations for the time propagation, between observations

dx̂tjk=dt = f(x̂tjk; t) +
1

2
Ptjk

@2f(x̂tjk; t)
@x2

; t 2 [tk; tk+1[ (4.58)

dPtjk=dt = FPtjk + PtjkFT +[GGT ; t 2 [tk; tk+1[ (4.59)

where F = @f(x̂tjk; t)=@x. The evaluation of[GGT di�er for the two �lters,

due to the relation (4.57). The predictions of the output is needed for the

residual generation

ŷkjk�1 = h(x̂kjk�1; tk) +
1

2
Pkjk�1

@2h(x̂kjk�1; tk)
@x2

(4.60)

For measurement updating at sample time tk, one could attempt to ap-

proximate the expectation integrations inherent in (4.21) and (4.22). It

turns out, that a better approximation is to assume that the conditional

mean and covariance can be expressed as a power series in the innova-

tions, (Jazwinski, 1970; Maybeck, 1982). For computational tractability,

this power series is truncated at �rst order terms

x̂kjk = a0 + a1(yk � ŷkjk�1) (4.61)

Pkjk = b0 +
sX
i=0

b1;ifyk � ŷkjk�1gi (4.62)



where a0 in an n-vector, a1 is n � s, b0 is n � n and the matrices b1;i

are n�n. The calculation of the terms a0, a1, b0, b1;i for the two �lters

may be found in e.g. (Maybeck, 1982).

Setting 8i : b1;i � 0 in equation (4.62) of the full second order �lters, yields
themodi�ed Gaussian second order �lter andmodi�ed truncated second

order �lter respectively. Hereby the computations are reduced signi�cantly

compared to the full second order �lter, but still maintaining correction

terms compared to �rst order �lters. When G is not a function of x and

the second partial derivatives @2f=@x2 and @2h=@x2 are neglected in the

second order �lters, they reduce to the extended Kalman �lter. Similarly it

is observed that all the approximate nonlinear �lters reduce to the Kalman

�lter when the dynamics and observations are linear. If we use equation

(4.58) and (4.60) from the second order �lter, but maintain the covariance

expression from the �rst order �lter, we obtain a �rst order �lter with

bias correction. The last terms of these two equations are called the bias

correction terms. With this compromise, we may bene�t essential from the

second order �ltering, but without the signi�cant additional computational

burden of the full second order �lter.

4.2.3 Convergence of the approximate filters

The important questions for all the mentioned approximate �lters are about

their convergence properties and bias of estimates. It was shown by Ljung

(1979) that for the EKF when used for parameter estimation in linear

models convergence is not guaranteed. By adding a bias correction term

Ljung showed that this new �lter is convergent for a general class of models.

The EKF was designed for the case G = G(�; t), i.e. the di�usion term

is not dependent of the state vector. When the state vector is extended



with the parameter vector the di�usion term becomes dependent of the

augmented state vector and in general the estimates are biased when the

EKF without bias correction is used.

In general it is not possible to guarantee convergence of any of the ap-

proximate �lters. The convergence properties and bias of the estimates

will depend upon the type and magnitude of the nonlinearities. For the

methods implying series representation of f, G and h it is required that

they are di�erentiable, whereas this is not a requirement for the assumed

density �lters. The bene�t from including higher order terms increases

with the magnitude of the nonlinearity. But the signi�cance of including

extra terms is lowered if the level of the noise is increased, i.e. biases due

to neglecting higher order e�ects are masked the substantial spreading of

the density functions, see (Maybeck, 1982).

4.3 Summary

In this chapter we have described the nonlinear �ltering problem for a

continuous time system, with discrete time measurements. Essentially we

are interested in the �rst two conditional moments of the output. They

are to be used in the calculation of the Gaussian likelihood function for the

parameter estimation, described in chapter 3.

The formulas for the exact evaluation of these moments has been derived.

This is mainly a conceptual solution of the problem, since only in special

(but important) cases the exact solution is computationally feasible. In

the general case one has to go for an approximate solution to the �ltering

problem. In the chapter a number of approximate �lters are mentioned



ranging from simple �rst order �lters to full second order �lters. From

a practical and computational point of view it is probably some of the

\compromise" �lters that are most interesting, e.g. the extended Kalman

�lter with bias correction and modi�ed Gaussian second order �lter. It

should also be mentioned that the �lters with an assumed density (usually

Gaussian) of the state vector, have a wider range of validity in practical

applications.

In general there is always a tradeo� between the validity of a certain ap-

proximative �lter and the computational burden involved. The approxi-

mate �lters have been found useful in a number of applications (Jazwinski,

1970; Maybeck, 1982), but in general it is not possible to guarantee the

convergence for any of the approximate �lters. The stability and conver-

gence properties for the �lter in a particular application must be tested by

Monte Carlo simulations. It will also be dependent of the character of the

nonlinearities in a particular application which of the approximate �lters

is the most favorable to use for that application.



Chapter 5

Model Validation

A number of methods involved for validation of physical models or grey

box models are closely related to the techniques used for black box mod-

els. However, the advantage of physical models is the prior information

about the model structure and the parameters. Compared to a traditional

black box model, the physical model often has a nonlinear model structure

assumed to be partly known a priori. This also imply that the class of al-

ternative model structures is often limited. The a priori information about

the parameters of the physical model can either be in terms of an allowed

range of the parameters or even a prior distribution of the parameters. The

prior distribution can either express a prior belief or be determined from

data from a previous experiment. The introduction of prior information

implies a special demand on the statistical tests, which have to be evalu-

ated in the domain of the claimed information. For some of the methods

this can be done in a formal way using a Bayesian approach where prior

information is speci�ed as a prior distribution of e.g. the parameters. A



less formal but still important validation for physical models is to confront

the estimated parameters and their covariance with the prior knowledge.

The intended use of the model is important in the validation. If the pur-

pose of the model is re
ected by the experimental conditions X, under

which the data is collected, then a given model should be valid under these

experimental conditions. So the model validation is dependent upon the

experimental conditions, see Chapter 6. By taking this approach, we omit

the di�culty of de�ning a speci�c class of \purposive" models for the model

validation as used by Bohlin (1989). If, however, a class of purposive mod-

els can be de�ned, it may be adequate to evaluate the resulting models in a

Bayesian framework and de�ne the purposivity by loss functions. The sep-

aration between purposive and non-purposive models can then be achieved

via an appropriate choice of loss function. Hence, the validation procedure

can also be studied using a Bayesian approach.

In the following di�erent tests concerning model validation are discussed

including both time and frequency domain methods. Classical methods

based on repeated sampling are compared with Bayesian techniques. Model

validation of grey box models are discussed by e.g. (Holst, Holst, Madsen,

& Melgaard, 1992; Bohlin, 1978; Graebe, 1990a).

5.1 Test for Model Structure

The tests typically compare alternative model structures. This type of tests

are usually applied for checking over-�tting and possible model reduction.



5.1.1 Likelihood based tests

For the kind of physical models that are considered here, the structural

information is formulated in continuous time. However, the data are given

in discrete time. For the actual identi�cation of the embedded parameters

in the continuous time model, the family of likelihood based methods are

adequate because they are invariant over complicated transformations like

the transformation from continuous time models to discrete time models,

see Chapter 3.

Consider the problem of testing the hypothesis:

H0 : � 2M0 against H1 : � 2M1 (5.1)

where M0 � M1 and M0 and M1 represent two model structures. A test

based on the likelihood ratio

� = L(�̂0)=L(�̂1) (5.2)

where L(�̂0) is the likelihood function for the maximum likelihood estimate

�̂0 under H0 and L(�̂1) is the likelihood function for the maximum likeli-

hood estimate �̂1 under H1 can be a \high powered" test for the hypothesis

testing, see (Kendall & Stuart, 1979; Goodwin & Payne, 1977). In a few

cases it is possible to derive exact distributions of the test quantity under

H0. When this is not possible the following large sample test can be used.

Under weak assumptions the following holds asymptotically under H0

LR = �2 log � � �2(r) (5.3)

where � is the likelihood ratio and the degrees of freedom is r = dim(M1)�
dim(M0).



It is known from Section 3.3.2 that the maximum likelihood estimator, �̂

is asymptotically normally distributed with mean � and covariance M�1,

whereM is the Fisher information matrix. This can be used for asymptotic

tests on individual parameters. From the covariance estimate it is also

possible to calculate the correlation matrix of the parameters. Inspection

of this matrix may indicate if parameters are highly correlated, such that

one of them can be removed from the model.

Consider the testing of a general hypothesis of the form

H0 : R(�) = 0 against H1 : R(�) 6= 0

where the restriction R is a k-dimensional vector function. In order to

derive the Wald test we have the following result analogous to that of the

ML estimator

(R(�̂)� R(�)) d! N(0; FTM�1F) (5.4)

where F = @RT= @�, and �̂ is the unrestricted maximum likelihood estima-

tor, i.e. the estimator under H1. The Wald test statistic is given by

W = R(�̂)T[FTM�1F]�1R(�̂) (5.5)

where F is evaluated at � = �̂. Under H0 the W-statistic is asymptotically

�2-distributed with k degrees of freedom. The likelihood ratio test requires

a maximum likelihood estimation for both the restricted and unrestricted

estimators, while the Wald test is based only on the unrestricted estimator.

A third likelihood based test is the Lagrange multiplier test which is also

called score test. The test statistic is given by

LM = S(�̂0)
TM(�̂0)

�1S(�̂0) (5.6)



where S = @ logL=@�, which is called the score statistics for �, and �̂0

denotes the maximum likelihood estimate of � under H0. S as well as M

are computed in the alternative model but still evaluated for the parameter

values corresponding to the null hypothesis, i.e. the parameters in the

alternative model do not have to be estimated. It can be shown that the

test statistic LM is asymptotically chi-square distributed. The LM test may

be used for choosing among two nested model structures, corresponding

to the hypothesis (5.1). The information matrix and score statistics are

calculated for the extended model M1, but evaluated at the ML estimate

�̂0 of the restricted model M0. In this case LM is asymptotically chi-

square distributed with r = dim(�1) � dim(�0) degrees of freedom. H0 is

rejected if LM > �2�(r) for some level �, where � speci�es the maximal

probability of rejecting H0 when it is true. As opposed to the LR test

this test does not require explicit computation of �̂1 hence, it does not

require over-�tting (Bohlin, 1978). If for example a linear AR structure

is to be tested against various nonlinear alternatives such as e.g. bilinear,

threshold or exponential autoregressive models, the test statistic re
ects

the properties of the alternative, cf. (Tong, 1990). The test can also be

used to evaluate the necessity of model extensions.

There are also other applications of the LM test, Graebe (1990b, pp. 93{

101) uses the test in cross validation of the model using an independent

data set (see Section 5.4). He also uses the LM test for validation of

the approximations involved in the estimation procedure. This question

is of speci�c interest for physical models, which are often of nonlinear

nature, hence involving a complex/approximative estimation procedure.

As discussed in Chapter 4 it is not practically feasible to use exact �ltering

for a general nonlinear model. Hence, some approximative �lter is involved

for producing the residuals for the ML (or MAP) estimation. The question

is whether the error introduced by the approximations are su�ciently small.



The principle of the test is the following. First the parameters of the

model are estimated from the measured data, then the same model with the

estimated parameters are used for simulating new data (using the methods

for stochastic simulation described in Section 2.5). Now the test statistic

is calculated from the simulated data with the same model and parameters

estimated from the real data. LM is tested in a chi-square distribution with

r = dim(�) degrees of freedom. If the test rejects H0 then the errors from

the approximations involved in the estimation procedure are not su�ciently

small on the chosen level of �. The test is of course based on the fact that

there are only small approximations involved for simulating the model.

This is a reasonable requirement according to the discussion in Section 2.5.

The LR test, the Wald test and the LM test all have an asymptotic chi-

square distribution with the same degrees of freedom. However, according

to Rao (1973) none of the tests is in general uniformly most powerful.

5.1.2 Information Criteria for Order Selection

If order selection is a part of the identi�cation procedure, the likelihood

based tests discussed above readily are applied to the problem. One ap-

proach is to measure the marginal improvement by a test quantity, as the

LR test, Wald's test or the LM test. Another possibility is to consider var-

ious extensions of the maximum likelihood procedure by assigning a cost

for high complexity.



Average Information Criterion

This criterion can be derived by minimizing the Kullback-Leibler mean

information criterion (Akaike, 1976). The resulting criterion

AIC = 2n� 2 logL(�;yN) (5.7)

is thus a slight but important modi�cation of the log-likelihood that pe-

nalizes large n = dim(�). The optimal order n is the one that minimizes

the AIC criterion.

Bayesian Information Criterion

It has been pointed out in Schwarz (1978) that the AIC criterion is not a

consistent estimator of the model order, it has a tendency to overestimate

n. Using Bayesian arguments another criterion for choosing the model

which is a posteriori most probable can be derived. This results in the

criterion

BIC = n logN � 2 logL(�;yN) (5.8)

where N is the number of observations. As opposed to the AIC criterion

the BIC criterion gives a consistent estimate of the model order at least for

some type of models (L�utkepohl, 1985).



Final Prediction Error

For scalar autoregressive models it can be shown that the estimated mean

square prediction error of the process is

FPE =
N + n

N � n �̂
2 (5.9)

where �̂2 is the maximum likelihood estimate of the variance of the driving

white noise sequence, see (Brockwell & Davis, 1987). The FPE criterion is

asymptotically equivalent to the AIC criterion and thus determines the

same optimal n for large N.

5.2 Residual Analysis

The purpose of the residual analysis is primarily to check whether any

obtained information contradicts the assumptions upon which the models

and methods are build. But secondly we are interested in any information

that indicates in which direction to develop or extend the models. There

are a number of statistical tests available for these purposes.

5.2.1 Tests for Independence

It is important always to plot the residuals, and judge the graph for trends

and inhomogeneity of the variance. From the plot of standardized residuals

it is possible to check the data for outliers and bad data, which is good

practice even if some robust norm was used for the identi�cation, see Sec-

tion 3.5. The next step is to check the sample autocorrelation function of



the residuals. Instead of checking the individual values of the autocorrela-

tion function, it is possible to pool the information into a single statistic,

and perform a Portmanteau Test, see e.g. (Ljung & Box, 1978). In addi-

tion to the tests based on the sample autocorrelation function there are a

number of tests for checking the hypothesis of the residuals being an i.i.d.

sequence, such as e.g. Test Based on Turning Points, Di�erence-Sign

Test and Rank Test, see (Brockwell & Davis, 1987).

5.2.2 Kolmogorov-Smirnov test

The Kolmogorov - Smirnov test is designed for testing hypotheses con-

cerning equality between e.g. an assumed, F0, and an empirical distribu-

tion, Fn. The test statistic is

Dn = sup
x
jFn(x) � F0(x)j

which has a known distribution under F0. Fn is the empirical distribution

of x1; � � � ; xn. A test on level � is therefore given by the critical area C =

f(x1; � � � ; xn)jDn > cg, where c is evaluated from PrfDn > cjF = F0g = �,
see (Kendall & Stuart, 1979). The test has a number of advantages, com-

pared to other methods. It is exact and easy to apply, since the probability

for no value exciting the con�dence limits is computed.

The information basis for the grey box modelling may be formulated as

prior distributions of e.g. data or disturbances. The modelling results in

a posteriori distributions for data as well as disturbances, which can be

tested against the prior belief, cf. (Holst et al., 1992).

Tests for distribution may also be used as a means for checking the white-

ness of the residuals as in the black box case. The cumulated periodogram



for the residual sequence has the same properties as a distribution func-

tion, and is tested against the distribution of white noise, cf. (Brockwell

& Davis, 1987). There is no need for (troublesome) smoothing in the fre-

quency domain, when using this test.

5.2.3 Cross Spectra

If the residuals are white noise, then the model is in good agreement with

the true system. Another interesting question is whether the residuals are

independent of inputs. If not, then there is more information contained in

the output that originates from the input than explained by the current

model. Independence may be tested using the sample cross covariance

function, see e.g. (Box & Jenkins, 1976).

The cross spectrum, given as the Fourier transform of the cross covariance

function between residuals and inputs is primarily used as a diagnostic

tool, to indicate how further improvement is possible.

A useful quantity derived from the cross spectrum, ��u(k), is the coherency

spectrum

�2�u(!) =
j��u(!)j2

��(!)�u(!)
(5.10)

where �� and �u are the auto covariance functions of f�tg and futg respec-
tively. �2�u(!) 2 [0; 1] can be interpreted as a non dimensional measure of

the correlation between two time series at a certain frequency.

An alternative way of inspecting the correlation between residuals and mul-

tiple inputs is by the multiple coherency spectrum. Consider the sequence

of residuals f�tg and q di�erent inputs fu1;tg; fu2;tg; � � � ; fuq;tgwith their



means subtracted. It is then possible to separate the variation of f�tg the
following way

�t =
X
k

h�;1u1;t�k + � � �+
X
k

h�;quq;t�k + Zt (5.11)

In other words, a linear model for the residuals based on the inputs is

�tted, and a new set of residuals fZtg obtained. The spectrum of the noise

process fZtg is given by

�z(!) = ��(!) �
qX
i=1

H�i��ui(!) (5.12)

which can also be written as

�z(!) = ��(!)[1� �2�12���q(!)] (5.13)

where �2�12���q is the squared multiple coherency spectrum of the output

process and the q input processes. This quantity measures the proportion

of the residual spectrum which can be predicted linearly from the inputs at

the di�erent frequencies. It is a useful diagnostic tool for model improve-

ment and assessment of the partial prior knowledge.

5.2.4 Bispectra

The bispectrum is the frequency domain representation of the third order

moment of the stochastic process fxtg.

M3(u; v) = E[(xt � �)(xt+u � �)(xt+v � �)] (5.14)

It is the natural extension to the usual second order representation of the

spectrum, and is useful when dealing with non Gaussian/non linear pro-



cesses. The bispectrum of the stationary process fxtg is de�ned as the two

dimensional Fourier transform of the third moment

�3(!1;!2) =
X
u;v

M3(u; v) exp(�i2(u!1 + v!2)) (5.15)

where �� � !1;!2 < �. By inserting an estimate of (5.14) in (5.15) we

obtain an estimate of the spectrum which is called the raw spectrum. This

estimate is central but not consistent, and we have to smooth the estimate

with a lag kernel, in order to get a consistent estimate.

For a linear and Gaussian process we have �3(!1;!2) = 0 in the whole

frequency plane. There is an approximative test, cf. (Subba Rao & Gabr,

1984), for the hypothesis

H0 : 8!1;!2 : �3(!1;!2) = 0
H1 : 9!1;!2 : �3(!1;!2) 6= 0

If H0 is accepted, then the stochastic process fxtg is considered linear and

Gaussian. If on the other hand H0 is rejected, the process can be either

non Gaussian and/or nonlinear. A second step is proposed in Subba Rao

& Gabr (1984) to test the hypothesis:

H0 : xt is linear and M3 = 0

H1 : all alternatives

where M3 is the third order moment given in (5.14). It should be noted

that the tests above is just one example of a nonlinearity test. Other

possibilities are e.g. the Lagrange Multiplier test discussed previously, see

also (Priestley, 1988; Tong, 1990).

The bispectrum and the tests above are useful to check the assumptions

on which the methods are build. Furthermore if the stochastic process is



nonlinear or non Gaussian, the bispectrum contains valuable information

about the process, which can be used for model improvement. In general

it is necessary to estimate and analyze higher order moments or spectra

in order to be able to establish the need for nonlinear or non-Gaussian

components in the model, cf. (Tong, 1990).

5.3 Graphical Methods

In traditional time series modelling a number of graphical methods are

used as standard. These includes plot of the time series data, sample

autocorrelation function plot, sample partial autocorrelation function plot,

sample spectral density functions, histograms, phase diagrams (plotting xt

versus xt�1, etc. These are valuable tools whether the primary interests

are linear modeling or not, cf. (Tong, 1990).

A test of the model's ability for simulation is to simulate the system (the

deterministic part) with the measured inputs and compare the simulated

output with the measured either visually in a plot or by some measure of

the distance. This will indicate if the model is able to catch the relevant

features of the dynamics of the system, see (Ljung, 1987). If also the

statistical properties of the solution is of interest (including the stochastic

part of the model), stochastic simulation must be used, cf. Section 2.5. A

Monte Carlo technique can be used to simulate a whole family of sample

paths of the estimated model. This technique reveals the approximate

distribution of the sample paths from the given model.

The estimated parameters are asymptotically normally distributed, cf. Sec-

tion 3.3.2. A parametric bootstrap technique can then be used to sample



a sequence of parameter estimates from the obtained distribution and use

each of them in a Monte Carlo simulation, where usually only the determin-

istic part of the system is simulated. This gives a reasonable illustration of

the robustness of the measured variables against variations of the parame-

ters described by the distribution of the estimated parameters, cf. (Holst

et al., 1992).

5.4 Cross Validation

The principle of cross validation is to compare the results from a model

identi�ed from one data set, D0, with the same model applied on a new data

set, D1, from the same system. It is expected that the model perform well

to the data from which is was identi�ed, but if the same model also perform

well to the new data set we believe the model gives a good description of

the system.

A formal test for cross validation is the use of the Lagrange Multiplier test

described previously in Section 5.1.1. This is done by �rst estimating the

parameters in the model from one data set. With the resulting parameters,

the LM test statistic (5.6) is calculated, using the new data set. The

hypothesis can be formulated as:

H0 : The correspondence (as measured by the likelihood

function) between the model estimated from D0 and

from D1 can not be signi�cantly improved by rees-

timating the parameters from D1 itself.

H1 : the opposite statement.

see (Graebe, 1990b). The obtained LM value (5.6) is chi-square distributed



with n = dim(�) degrees of freedom. The hypothesis is accepted if LM <

�2�(n) for the chosen level �.

5.5 Bayesian Methods

In this section we will take advantage of the prior information associated

with grey box identi�cation in a formal framework. If the prior informa-

tion can be parameterized via prior probability density functions, which

expresses the prior degree of belief, the testing of hypotheses can be han-

dled in a Bayesian framework.

Consider the problem of testing two mutually exclusive and exhaustive

hypotheses, (Zellner, 1971):

H0 : model M0 with parameters � = �0

H1 : model M1 with parameters � = �1

where �0 and �1 are speci�c values of the parameter vectors � and �,

respectively. Our prior probabilities associated with the hypotheses are

p(H0) and p(H1) with p(H0) + p(H1) = 1. The prior information is then

combined with the sample information to form the posterior probabilities:

p(H0jyN) = p(H0)p(yNj� = �0)
p(yN)

(5.16)

p(H1jyN) = p(H1)p(yNj� = �1)

p(yN)
(5.17)

The posterior odds in favor of H0, denoted by K01, are given by

K01 =
p(H0jyN)
p(H1jyN) =

p(H0)

p(H1)

p(yNj� = �0)
p(yNj� = �1)

(5.18)



From (5.18) it is seen that the posterior odds are the product of the prior

odds, p(H0)=p(H1), and the likelihood ratio, p(yNj� = �0)=p(y
Nj� =

�1). If a decision is to be taken, that is either to accept H0 or reject H0,

a loss function is needed stating the consequences of the action depending

on the truth. Assume that the loss is zero for correct decisions, that is

L(H0; Ĥ0) = L(H1; Ĥ1) = 0. The loss from selecting H1 if H0 is true (error

of �rst kind) is denoted L(H0; Ĥ1) and the loss from selecting H0 if H1

is true (error of second kind) is L(H0; Ĥ1). With this loss structure we

can evaluate the expected loss associated with the actions accept H0 and

accept H1 respectively

E(LjĤ0) = p(H1jyN) L(H1; Ĥ0) (5.19)

E(LjĤ1) = p(H0jyN) L(H0; Ĥ1) (5.20)

Having calculated the expected losses, we are able to compare them and

choose the action which minimizes our expected loss. That is, H0 is ac-

cepted if

E(LjĤ0) < E(LjĤ1) (5.21)

By using (5.16) and (5.17) the inequality can be expressed

p(yNjH0)
p(yNjH1) >

p(H1) L(H1; Ĥ0)

p(H0) L(H0; Ĥ1)
(5.22)

In this expression the likelihood ratio, p(yNjH0)=p(yNjH1), is compared

with the ratio of prior expected losses. The higher the prior expected loss

associated with accepting H0 in relation to that associated with accepting

H1 the greater the sample evidence in favor of H0 as re
ected by the

likelihood ratio on the left hand side of (5.22). This appears to be a sensible

procedure for determining the \critical value" in a likelihood ratio test

procedure. That is, in a classical likelihood ratio test procedure H0 is



accepted if p(yNjH0)=p(yNjH1) > �, where � is determined by choice

of the signi�cance level for the test. In the Bayesian approach explicit

considerations is given to the loss structure, whereas in the classical test

this is done implicitly by the choice of signi�cance level.

The test above was a comparison of simple hypotheses. In the following

the more complicated composite hypotheses are considered (Zellner, 1971)

H0 : model M0 with parameters � � p(�)
H1 : model M1 with parameters � � p(�)

where the parameters � and � are assumed to have the prior probability

density functions p(�) and p(�), respectively. This is opposed to the situ-

ation above, where only speci�c values of the parameters was considered.

The posterior probability for H0 can be expressed

p(H0jyN) = p(H0)
R
p(�)p(yNj�)d�
p(yN)

(5.23)

From this expression and a similar one for p(H1jyN), we can calculate the

posterior odds in favor of H0

K01 =
p(H0jyN)
p(H1jyN) =

p(H0)

p(H1)

R
p(�)p(yNj�)d�R
p(�)p(yN j�)d� (5.24)

As pointed out by Zellner (1971) the posterior odds are equal to the prior

odds times the ratio of averaged likelihoods with the prior pdf's p(�) and

p(�) serving as weighting functions. This contrasts with the usual likeli-

hood ratio testing procedure which involves taking the ratio of maximized

likelihood functions under H0 and H1. If a decision is to be made on ac-

ceptance or rejection of H0 then a loss function is needed. An inequality

similar to (5.22) can be made for minimizing the expected loss, except that

the ratio of maximized likelihood functions is replaced by the ratio of av-



eraged likelihood functions weighted by the prior pdf's of the parameters

under H0 and H1, respectively.

5.6 Summary

In this chapter a number of di�erent methods have been discussed which

can used in validation by comparing and testing particular models. Some

of the methods also have diagnostic properties which is useful for indicating

the next step to take in the iterations of building the model. For model

validation it is useful to have access to a number of di�erent methods

and tests, but normally just a few of them are necessary for an initial

validation of a model. The following constitute a rough list of simple (and

fast) methods, su�cient for this initial validation:

� Test the parameters of the model for signi�cance and check the cor-

relation matrix of the parameters for near singularities.

� Test the residuals for whiteness and for independence of the inputs.

� Compare measured and simulated outputs.

� Compare estimated physical parameters with prior information.

If the model is accepted in these tests, it should be followed by some cross

validation. This could be done simply by splitting the available data set in

two parts and estimating the parameters from the one part and testing the

resulting model against the other part of the data set. Dependent of the

intended use of the model some of the more powerful (and cumbersome)

tests may be used.



The advantage of grey box modelling is the available prior information.

This information can be incorporated in a uni�ed way when comparing

and testing hypothesis by using Bayesian methods. The Bayesian decision

theoretic approach for testing (and choosing between) simple hypotheses

leads to a test procedure similar to the likelihood ratio test, except that

the critical value in the test is not determined from an arbitrary chosen

signi�cance level, but rather from explicit consideration of the loss structure

and prior information.

The choice of level for acceptance will always be the subjective decision of

the user. In this context the intended use of the model has a large in
uence.

Hence, as stressed in the beginning of the chapter, it is preferable that

the class of purposive models is de�ned by the experimental conditions

under which the model is identi�ed. This approach simpli�es the model

validation. If, however, a class of purposive models can be de�ned, it may

be adequate to evaluate the resulting models using a Bayesian decision

theoretic approach and de�ne the purposivity via loss functions, see also

(Holst et al., 1992).





Chapter 6

Experimental Design

The purpose of experiment design is to ensure that the information pro-

vided by the experiment is maximized within given limitations. The design

of experiments for identi�cation of dynamical models includes choice of in-

put and output ports of the system, as well as choice of input signals,

sampling time, presampling �lters and, if necessary, �ltering of input and

output data.

Any design must take into account the constraints on the allowable experi-

mental conditions. Some typical constraints that might be met in practice

are amplitude constraints on inputs, outputs or internal signals; power con-

straints on signals; limited total experimental time or limited number of

samples. Further more, the available measureing and/or actuating equip-

ment introduces constraints like least possible sampling interval, highest

possible accuracy, etc.



There is a substantial litterature on optimal experiment design. In the

books by Fedorov (1972) and P�azman (1986), among others, the theory

and mathematical treatment of optimal experiment design in general is

considered. Surveys on this subject speci�cally for dynamic systems iden-

ti�cation are given by Mehra (1974), and more recently by Walter & Pron-

zato (1990). The books by Goodwin & Payne (1977) and Zarrop (1979) are

important contributions for optimal experiment design for linear dynamic

systems. Design of experiments for identi�cation of transfer functions in

the frequency domain has been considered by e.g. Yuan & Ljung (1985),

who discuss the use of prior information. The intended use of the transfer

function models is considered by Gevers & Ljung (1986).

Prior information about the system and the intended use of the model

are both inevitable terms in connection with design of experiments. Con-

cerning physical models there are certain characteristics which should be

re
ected in the design. The criteria of optimality should be formulated in

terms of the interesting physical characteristics of the system. Especially

for physical models there are often available prior information about the

model. This prior information should also be used in the design of experi-

ments. This can be done either in a classical way using only prior expected

values of the parameters or in a Baysian approach, by incorporating prior

distributions of the parameters for the design of optimal experiments, see

(Melgaard, Sadegh, Madsen, & Holst, 1993; Sadegh, Melgaard, Madsen, &

Holst, 1994).



6.1 Structural Identifiability

It is a crucial question whether the parameters of a speci�ed model can

be identi�ed. If a non identi�able model is speci�ed, the methods for

estimation will not converge. Identi�ability is a concept that addresses

the problem whether the given identi�cation procedure will yield a unique

value of the parameters. One aspect of the problem has to do with the

experimental conditions, e.g. whether the data set is informative enough

(persistently exciting) to distinguish between di�erent models for a given

estimation method. Another aspect has to do with the model structure,

i.e. if di�erent sets of parameters will give equal models, given that the

data is informative. This qualitative aspect of experiment design has to

do with the selection of input and output ports for the model, the param-

eterization and structure of the model. Hence, the questions of structural

identi�ability can be answered even before the data have been collected on

the system. The parameter �i is said to be structurally globally identi�able

if for almost any ��

M(�) =M(��))�i = ��i : (6.1)

It is called structurally locally identi�able if for almost any �� there exits

a neighborhood �(��) such that if � 2 �(��), then the implication (6.1) is

true.

For convenience the input, here, is assumed to be generated independently

from the output. The inclusion of a feedback may result in loss of iden-

ti�ability, see e.g. the example given in Chap. 14 by Ljung (1987). For

none of the cases in this study it was necessary to consider feedback. It

may be necessary, though, in other cases to operate under closed-loop con-

trol. This can be for safety reasons if e.g. the system is unstable. If there



are limitations on the maximum allowable power of the output signals it

may even be advantageous to use feedback. In these cases it is possible to

retain identi�ability by considering the feedback mechanism properly, see

(S�oderstr�om & Stoica, 1989, Chap. 10).

The notion of structural identi�ability is of importance for both linear

and nonlinear models, but there are some speci�c properties which di�ers

for the two types. In this context it is relevant to speak of two kinds of

nonlinearities of the model, one is nonlinear in the inputs, which means

that the output does not satisfy the superposition principle concerning the

inputs:

yM(�; �u1 + �u2; t) 6= �yM(�;u1; t) + �yM(�;u2; t) (6.2)

for some real � and �. The other kind of nonlinearity, is when the model is

nonlinear in the parameters, which means that the output from the model

does not satisfy the superposition principle concerning the parameters:

yM(� �1 + ��2;u; t) 6= �yM(�1;u; t) + �yM(�2;u; t) (6.3)

Most often phenomenological models are nonlinear in the parameters.

Remark 6.1 It should be remarked that only models that are nonlinear

in the parameters can have structurally locally identi�able parameters

which are not at the same time structurally globally identi�able, see

(Walter & Pronzato, 1990). The outputs of models that are linear in

the parameters can be written as

yM(t; �;u) = �(t;u)
0� (6.4)



and

M(�) =M(��), �(t;u)0� = �(t;u)0�� (6.5)

This set of linear equations has a unique solution if the columns of �

are linearly independent, or else it has an in�nite number of solutions.

Remark 6.2 Ljung & Glad (1994) have shown that testing global iden-

ti�ability is equivalent to the possibility to express the model structure

as a linear regression

 (t) = �(t)0� : (6.6)

This is a generalization of (6.4) where  (t) and �(t) are matrices,

entirely formed from past values of y(t), u(t) and their derivatives.

Ljung & Glad (1994) treat this problem for models that have polyno-

mial nonlinearities with respect to the parameters and the inputs.

In the following when the model is only refered to as linear or nonlinear

this means with respect to the inputs.

6.1.1 Linear Models

The problem of structural identi�ability of linear state space models arises

from the fact that for a given transfer function model corresponds, in gen-

eral, a continuum of state space models. It is therefore necessary to put

restrictions on the structure of the state space model in order to provide a

unique relation between the parameters of the state space model and the

transfer function.



In this section the descriptions are kept in continuous time even though

our observations are in discrete time for any practical applications. It is

obvious that the sampling of the observations (inputs and outputs) may

deteriorate the identi�ability properties of the model, but concerning only

the structural identi�ability it will have no in
uence.

Consider a continuous time state space model, which is linear in the states

but in general nonlinear in the parameters

dx(t) = A(�)x(t)dt + B(�)u(t)dt + de1(t); (6.7)

y(t)dt = C(�)x(t)dt +D(�)u(t)dt + de2(t); (6.8)

where the state vector x(t) has dimension n, the input u(t) has dimen-

sion m and the output y(t) has dimension s, de1(t) and de2(t) are mu-

tually independent Wiener processes with incremental variances �1(�)dt

and �2(�)dt of dimension n and s respectively. The part of the output,

that cannot be predicted from past data is d�(t) = (y(t) � ŷ(t))dt. This
quantity, denoted by d�(t) is called the innovation. It is a Wiener pro-

cess of dimension s with incremental variance �(�)dt. The incremental

variance of the innovation process d�(t) is calculated from

�(�) = C(�)�P(�)C(�)T + �2(�) (6.9)

where �P(�) is the positive semide�nite solution to the stationary Riccati

equation:

0 = A(�)�P(�) + �P(�)A(�)T + �1(�)

��P(�)C(�)T�2(�)�1C(�)�P(�): (6.10)

By rewriting (6.7) and (6.8) we obtain the innovations form of the state

space model

dx̂(t) = A(�)x̂(t)dt + B(�)u(t)dt +K(�)d�(t) (6.11)



y(t)dt = C(�)x̂(t)dt +D(�)u(t)dt + d�(t) (6.12)

where K(�), the continuous time Kalman gain is given as

K(�) = �P(�)C(�)T�2(�)
�1: (6.13)

Introducing p as the di�erentiation operator the corresponding transfer

function model has the form

y(t)dt = G(p; �)u(t)dt +H(p; �)d�(t); (6.14)

where the transfer functions are determined as

G(p; �) = C(�)(pI �A(�))�1B(�) +D(�); (6.15)

H(p; �) = C(�)(pI �A(�))�1K(�) + I: (6.16)

From the observations of u(t) and y(t) we are able to observe the transfer

matrices G(p) and H(p) with elements of the form

Gij(p) =
b0p


 + b1p
�1 + � � �+ b

p� + a1p��1 + � � �+ a� (6.17)

By comparing the parameterization of (6.16) with elements of the form

(6.17) it is possible to check the structural identi�ability of the parameters

of a speci�ed model. Then we have

M(�) =M(��),
G(p; �) = G(p; ��) ^H(p; �) = H(p; ��); (6.18)

and the identi�ability properties of the model are directly related to the

number of solutions for � of this equation.

There are di�erent ways of parameterizing the noise model of the sys-

tem. One possibility is directly to estimate the stationary Kalman gain.



It is easy to verify the identi�ability of this parameterization of the noise

model, through (6.16), but it is on the other hand di�cult to use phys-

ical insight about the noise with this parameterization. The other way

to specify the noise model, is in terms of the incremental variance of the

process noise, �1(�)dt and measurement noise �2(�)dt. Verifying struc-

tural identi�ability is more complicated in this case, because the solution

of the stationary Riccati equation (6.10) is needed for calculation of the

Kalman gain (6.13) to be inserted in (6.16). Generally it is not possible

to estimate all elements of the variance matrices, but e.g. only the diag-

onals. This is due to the fact that the direct parameterized innovations

form contain ndir = ns + s(s + 1)=2 elements for the noise properties,

through K and �, whereas the model with separated noise sources has

nsep = n(n + 1)=2 + s(s + 1)=2 elements, assuming the process noise

and measurement noise are mutually independent. This means, that if

a model, with its noise structure speci�ed through the direct innovations

form, is identi�able, then ndir is the maximum number of identi�able

\noise"-parameters. By noise-parameters is meant the subset of � which is

not identi�able via G(p; �). It is, on the other hand, easier to implement

the physical insight by a separated noise structure, for instance that the

noise is only a�ecting certain states of the model.

Example 6.1 The problem of structural identi�ability of linear timein-

variant models is illustrated by an example. Consider a model (6.7)

and (6.8) with matrices:

A =

"
�a a

b �(b + c)

#
; B =

"
0

d

#
;

C =
h
0 1

i
; D =

h
0

i (6.19)

with parameters � = (a b c d)0. The transfer function G(p) as given



by (6.15) is

G(p) =
d(p + a)

p2 + (a + b+ c)p + ac
(6.20)

This must be compared with the structure we are able to observe,

namely

G(p) =
b0p + b1

p2 + a1p + a2
(6.21)

By comparing (6.20) and (6.21), it is seen that we are able to identify

a, b, c and d from b0, b1, a1 and a2. Hence the model is struc-

tural identi�able. For the noise model H(p) given by (6.16), there a

more possibilities for parameterization. One possibility is a direct pa-

rameterization of the innovations form, i.e. directly estimation of the

kalman gain

K =

"
k1

k2

#
(6.22)

By calculating the noise model, H(p), from (6.16) we optain:

H(p) =
p2 + (a + b + c + k2)p + (k1b+ k2a + ac)

p2 + (a + b + c)p + ac
: (6.23)

Comparing this model with the modelstructure (6.21) it is seen, that

it is possible to identify k1, k2 and the variance of the innovations �,

when already the parameters of G(p) in (6.20) are identi�able. The

total model including the noise model is in this case structural identi�-

able. Another way to parameterize the noise model is via the matrices

�1 and �2. These matrices are connected to K and � through (6.13),



(6.10) and (6.9) in a complex way. From (6.9) we have

� = P22 + �2; (6.24)

and from (6.13)

K =

"
P12=�2

P22=�2

#
: (6.25)

Since, in this case, we are able to identify � and K, then it is also pos-

sible to identify P12, P22 and �2. From the stationary Riccati equation

(6.10) a set of equations must be solved

0 = �2aP11 + 2aP12 + �1;11 � P212=�2 (6.26)

0 = 2bP12 � 2(b + c)P22 + �1;22 � P222=�2 (6.27)

0 = bP11 � (a+ b + c)P12 + aP22 + �1;12 � P12P22=�2 (6.28)

From (6.26) it is seen that a linear combination of P11 and �1;11 is

identi�able. From (6.27) �1;22 can be identi�ed. A linear combina-

tion of P11 and �1;12 is identi�ed from (6.28). Since both P and �1

have to be positive semide�nite it is not possible to identify the full

parameterized matrices. By �xing �1;12 = 0 all the other parameters

are identi�able. This problem could already be seen by considering

the dimensions of the matrices. The dimensions of K is n � s and

� has s(s + 1)=2 elements, where n is the order of the system and s

is number of outputs from the system, ndir = ns + s(s + 1)=2 is the

maximum number of parameters which can be identi�ed for �1 and

�2. In this example we are able to identify ndir = 3 parameters for

the noise model, as previously seen. This is done by considering only

the diagonals of �1 and �2, thus �xing �1;12 = 0. �



6.1.2 Nonlinear Models

Testing for structurally identi�ability in a nonlinear model is slightly more

complicated. One method consist of linearizing the model around some

equilibrium point and then apply the method for linear models. A second

approach uses a series expansion of the output either in the time domain or

in the time and input domain (Walter & Pronzato, 1990). M(�) =M(��)

then implies that the coe�cients of the series should be equal, which, as

in the linear case, yields a set of equations in � parameterized by ��.

6.2 Criteria for Optimality

When the model is made structurally identi�able by proper selection of

input and output ports and model structure, we still have to select the

best experiment to be performed for collecting maximum information of

the system to be identi�ed, with respect to the selected method of identi-

�cation.

In order to perform the quantitative part of the experiment design, a mea-

sure of the information achieved from an experiment is needed. It is com-

mon practice, cf. (Goodwin & Payne, 1977), to select a performance mea-

sure related to the expected accuracy of the parameter estimates to be

obtained, in general the covariance of the parameters. The Cram�er-Rao

inequality, see Theorem 3.3, gives a limit to the covariance of any unbi-

ased estimator �̂(Y) of �, subject to certain regularity conditions, cf. (Rao,

1973),

V(�̂) �M�1
F (6.29)



where MF is the Fisher information matrix, de�ned by

MF = EYj�

�
(
@ logp(Y j�)

@�
)(
@ log p(Yj�)

@�
)T
�
; (6.30)

Y is a vector of all observations, � is the unknown parameter vector, and

p(Y j�) is the conditional probability density of Y for given �. When the

estimator is asymptotically e�cient, the rationale for using the Fisher infor-

mation matrix as a suitable characterization of the asymptotic parameter

uncertainty is obtained.

It should be remarked that an experiment satisfying detMF(�) 6= 0 is

called informative, this ensures local identi�ability for the model parame-

ters. Designing an experiment by minimizing a suitable criterion

J(�) = �(MF(�; �)) (6.31)

can thus be seen as maximizing a measure of identi�ability, where � is a

scalar function and � is the design.

6.2.1 Local Design

A number of di�erent standard measures of information has been studied.

For a review of the properties of the di�erent measures of information see

(P�azman, 1986; Walter & Pronzato, 1990). A large number of these stan-

dard measures are particular cases of the general Lk-class of the optimality

criteria. The criterion belonging to this class is de�ned by a function of

the form

�(MF) =

(
[n�1tr(VM�1

F VT)k]1=k if detMF 6= 01 if detMF = 0
(6.32)



where k > 0 and V is a nonsingular n � n matrix. The local optimal

design refers to the case where the criterion is minimized for a given value

of the parameters ��, say. This value is often chosen as the expected mean

�� = E�(�) calculated from the prior distribution of the parameters p(�).

D-optimality

The most studied criterion is the D-optimality criterion, which is de�ned

by

�(MF(�)) = � logdetMF(�) : (6.33)

The criterion is obtained for V = I and k! 0 in (6.32). Thus this design

minimizes the generalized variance of the parameter estimates. The crite-

rion has a geometrical interpretation: The asymptotic con�dence regions

for the maximum likelihood estimate of � are ellipsoids, and a D-optimal

experiment thus minimizes the volume of these ellipsoids. An important
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Figure 6.1. D-optimal design minimizes the volume of the con�dence
ellipsoid.

property of D-optimal experiments is their independence of the scaling of



parameters, due to the geometrical property of the determinant.

L-optimality

Criteria that are linear in the inverse Fisher information matrix (= disper-

sion matrix of the best linear estimator) are obtained from (6.32) by setting

k = 1. The particular choices V = I and V = diag(��1i ; i = 1; � � � ; n) re-
spectively, correspond to A- and C-optimality. A-optimal experiments

minimize the sum of variances of �. C-optimal experiments are related to

the relative precision of the estimates, actually they summarize 1=t2i , where

ti is the t-statistic of the ith parameter. This criterion is also independent

of the parameter scale. The A- and C-optimality criteria does not take

..........................................................................................................................................................................................
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Figure 6.2. C-optimal design minimizes the relative precision of the
single parameters, without paying attention to the correlation struc-
ture.

the correlation between the parameters into account. From a pragmatic

point of view such criteria should be seen with suspicion because they can

lead to design of experiments in which the parameters are unidenti�able,

detMF = 0, see (Goodwin & Payne, 1977).



E-optimality

The E-optimality criterion is obtained from (6.32) by setting V = I and

k!1, this corresponds to minimizing the maximum eigenvalue ofM�1
F ,

�(MF(�)) = �max(MF(�)
�1) (6.34)

Geometrically this can be understood as minimizing the maximum diame-

ter of the asymptotic con�dence ellipsoids for the parameters, because the

semi-axes of the ellipsoids are directed as the eigenvectors of M�1
F with

lengths proportional to the eigenvalues of the matrix. In other words, an

E-optimal design aims at improving the most uncertain region of the pa-

rameter space and making the con�dence region as spherical as possible.

By using V = diag(��1i ; i = 1; � � � ; n), the criterion is independent of the
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Figure 6.3. E-optimal design minimizes the maximum eigenvalue of
the inverted information matrix, thus making the con�dence region of
the parameters as spherical as possible.

scaling of parameters. The geometrical interpretation is still valid, but for

the normalized inverted information matrix.



6.2.2 Physical Measures

Other criteria for optimality than the standard ones can be speci�ed.

Speci�cally when dealing with physical models nonstandard criteria may

be of interest, since the physical parameters of greatest interest might not

be directly entering into the system description but rather through some

transformation of these parameters. Assume that the parameters of inter-

est are described by the functional relation f(�), where � is the parameters

of the model. It is important to take this transformation into account in

the design of experiments. The asymptotic covariance of f is calculated by

using Gauss' formula

M�1
F;f =

@f

@�T
M�1
F (�)

@f

@�
: (6.35)

Any of the standard measures of information can now be applied forMF;f.

In Melgaard, Madsen, & Holst (1992b) a physical model of the thermal

characteristics of a building is considered. The classical measures of in-

formation all lead to the same optimal design of input signal, a certain

PRBS sequence. It turned out, however, that the main interest is not fo-

cused on the individual parameters of the model, but on the overall heat

transmittance and internal heat capacity of the building. These physical

characteristics are given as a function of the model parameters. An optimal

design considering this application speci�c measure of information leads to

an input signal, which is a step. This design turns out to be much di�erent

from the original design, (more weight on low frequencies), but it re
ects

the demands of the building physicists.



6.2.3 Bayesian Design

In general the designs of the previous sections are dependent upon the

unknown parameter values. Any design will and shall be dependent upon

the prior information available about the system to be identi�ed. From a

statistical point of view it is obvious, that one way of incorporating this

prior information is to use a Bayesian procedure. In this approach the prior

knowledge of the parameters are expressed via their the prior distribution

function, which expresses the partial information on the system available

prior to an experiment.

In the Bayesian approach a loss function L(�; �̂) is de�ned, which describes

the consequences of obtaining �̂, when � is the true parameter vector. This

function is then used as a basis for obtaining the optimal experiment design.

Prior to the experiment the expected performance is

J1 = E�;Y[L(�; �̂)]: (6.36)

The criterion may be optimized directly with respect to the allowable ex-

perimental conditions. By making suitable assumptions and using trun-

cated Taylor expansion J1 can be simpli�ed to:

J1 = E�;Y[L(�; �̂)] = E�EYj�[L(�; �̂)]

' E�[L(�; �) + 1

2
trf(@2L=@�̂2)M�1

F g] ; (6.37)

whereMF is given by (6.30) and it is assumed that �̂ is an e�cient unbiased

estimator. Optimizing this criterion is thus equivalent to optimizing a

criterion of the form E�(trfWM�1
F g), where W = @2L=@�̂2 is a weight

matrix, see (Goodwin & Payne, 1977). Generalizing this criterion yields

J2 = E�(�(MF(�; �))) ; (6.38)



where expectation is taken over the prior distribution of �, and � is suitable

scalar function. In general � can be of the form considered in the previous

sections for local designs. As pointed out by Walter & Pronzato (1990)

there are several average optimality criteria (6.38) corresponding to one

local design (6.31). This is due to the fact that integration is not a com-

mutative operator with nonlinear functions, e.g. inversion and logarithm.

This implies that considering the maximization of � = detMF leads to a

di�erent design than considering the minimization of � = (detMF)�1 in

the criterion (6.38). For a local design these functions result in the same

design.

6.2.4 Minimax Design

The Bayesian design presented in the previous section is a design criterion

based on the expected prior performance. The criterion takes into account

the whole prior distribution of the parameters. This approach is preferred

compared to the classical case of local design, where the prior distribu-

tion, and speci�cally the uncertainty, of the parameters is not considered.

However optimization of this criterion does not give any guard against a

single non-informative experiment, because the average performance does

not highlight the worst case performance. One might prefer to maximize

the worst possible performance of the designed experiment. Such mini-

max approach relies on the knowledge of some prior admissible domain of

the parameters � 2�, without requesting any prior information about �.

Minimax criteria can be deduced from local optimality criteria by

J(�) = max
�2�

�(MF(�; �)) ; (6.39)



where J(�) is to be minimized with respect to �. Classical functions �

correspond to L- and D-optimality, see (Walter & Pronzato, 1990).

6.3 Design of Optimal Inputs

We will now evaluate the information matrix in order to determine optimal

designs of input signals. Consider for simplicity a scalar discrete time model

of the form:

yt = G1(q)ut +G2(q)�t (6.40)

where futg and fytg are the input and output sequences, respectively,

and f�tg is a sequence of Gaussian random variables with variance �2. G1

and G2 are transfer functions in the shift-operator. In the following an

expression forMF is derived for the model (6.40). De�ne �t as the residual

sequence, then:

�t = G
�1
2 (q)[yt � G1(q)ut] : (6.41)

By using this expression in the de�nition of Fisher's information matrix

(6.30), we obtain

MF = EYj�f 1
�

NX
t=1

(
@�t

@�
)(
@�t

@�
)Tg+ N

2�2
(
@�

@�
)(
@�

@�
)T ; (6.42)

Goodwin & Payne (1977, p. 131). Di�erentiating expression (6.41) and

using superposition yields:

@�t

@�
= (

@��t
@�

) + (
@~�t
@�

) ; (6.43)



where

@��t
@�

= �G�1
2 (q)(

@G1(q)

@�
)ut ; (6.44)

@~�t
@�

= �G�1
2 (q)(

@G2(q)

@�
)�t : (6.45)

After substituting these expressions in (6.42) and assuming no feedback in

the system (futg is independent of f�tg), we get:

MF =
1

�

NX
t=1

(
@��t
@�

)(
@��t
@�

)T +Mc ; (6.46)

where Mc does not depend upon the choice of input signal.

Now make the following simplifying assumptions:

1) The experiment time (i.e. N) is large.

2) The input futg is restricted to the class admitting a spectral represen-

tation with spectral distribution function F(!); !�[��; �].
3) The allowable input power is constrained.

Since N is large it is more convenient to work with the average information

matrix, which gives the following:

�MF = lim
N!1

1

N
MF =

1

�

Z �
0

( ~MF(!) + �Mc)d�(!) ; (6.47)

where �(!) is de�ned by

d�(!) =

(
1
2
dF(!) ! = 0;! = �

dF(!) !�]0; �[

and

~MF(!) = Ref 1
�
[
@G1(e

j!)

@�
]G�1
2 (ej!)



�G�1
2 (e�j!)[

@G1(e�j!)
@�

]Tg (6.48)

and

�Mc(!) =
1

2�

Z �
��
[
@G2(e

j!)

@�
]G�1
2 (ej!)

�G�1
2 (e�j!)[

@G2(e
�j!)

@�
]Td!

+
1

2�2
(
@�

@�
)(
@�

@�
)T : (6.49)

It should be remarked that both ~MF(!) and �Mc(!) are dependent upon

the parameters �. This means that if a local design is used then only

~MF(!) need to be considered. On the other hand if a Bayesian design like

(6.38) is used then both ~MF(!) and �Mc(!) must ve evaluated.

The power restriction of the input signal can be formulated as

Pu =
1

�

Z�
0

d�(!) = 1 : (6.50)

We are now ready to give the following theorem, which states that it is

always possible to �nd an optimal input comprising a �nite number of

sinusoids.

Theorem 6.1 For any power constrained design �1(!) with correspond-

ing n � n average information matrix �MF(�1), there always exists a

power constrained design �2(!) which is piecewise constant with at

most n(n + 1)=2 + 1 discontinuities and �MF(�2) = �MF(�1). For the

design criterion J = � log det �MF, optimal designs exist comprising not

more than n(n+ 1)=2 sinusoids.

Proof: Only an outline of the proof is given. It can be shown that the

set of all average information matrices corresponding to input power



constrained designs is the convex hull of the set of all average informa-

tion matrices corresponding to single frequency designs. Hence, from

Caratheodory's theorem (see (Fedorov, 1972)) the result for the �rst

part of the theorem follows. For a convex function of the informa-

tion matrix the optimal design is a boundary point of the convex hull,

therefore one less sinusoidal component is needed. For the complete

proofs see (Fedorov, 1972; Goodwin & Payne, 1977). �

6.3.1 Bayesian Approach

We now turn to the Bayesian approach, considering the generalized cri-

terion (6.38). Assume that the prior knowledge of the system is given in

terms of a prior distribution of the parameters. Hence we are able to eval-

uate the expectation of the considered criterion with respect to the prior

distribution of the parameters cf. (6.38), in stead of simply evaluating the

criterion at some �xed values of the parameters. In general the resulting

design will be di�erent for the two approaches, cf. the example following.

In the Bayesian case it is possible to prove a theorem similar to Theorem

6.1.

Theorem 6.2 Using J = E�(� log det �M) as criterion, optimal designs

exist comprising not more than n(n+ 1)=2 sinusoidal components.

Proof: The criterion may be written as

J =

Z

�

� log det �M(�(!); �))p(�)d� ; (6.51)

where 
� � Rn is assumed to be a closed and bounded interval of the

parameters and p(�) is the prior probability density of the parameters.



The mean-value theorem states, that for all �(!) there exists a �� 2 
�

such that

J = K(� log det �M(�(!); ��)p(��)) (6.52)

for some constant K which is independent of �(!) and ��. It is seen

that (6.52) has the form of the criterion considered in the previous

Theorem. The di�erence is that now �� depends upon �(!). But since

(6.47) is still valid, we conclude that the set of all average informa-

tion matrices is the convex hull of all average information matrices

corresponding to single frequency designs, and the proof follows im-

mediately. �

Since in (6.52) �� depends upon �(!) this is a more complicated optimiza-

tion problem than the previously considered. In a practical application,

though, it is not necessary to actually �nd ��, one would use the result of

the theorem and apply it to the criterion (6.51) directly. From the proof

it is readily seen that in the general case (6.38) it is also possible to �nd

an optimal design comprising a �nite number of sinusoids, as long as � is

a continuous convex function of the information matrix.

The criteria discussed so far have all been based on ML estimation of the

parameters. If instead a MAP estimator is used to estimate the unknown

parameters the criteria for optimality must be changed accordingly. The

following theorem establishes a relation between the posterior covariance

of the parameters and Fisher's information matrix when a MAP estimator

is used.

Theorem 6.3 Assume that the prior knowledge about the model param-

eters is embodied in a Gaussian distribution with covariance matrix

�pre. Also assume that a MAP estimator is used to estimate the un-



known parameters based on sampled observations for a model brought

into the regression form

yt = '
T
t �+ �t

where f�tg is a sequence of Gaussian random variables with known

covariance, uncorrelated with f'tg. Then the posterior covariance

matrix �post is given by

��1post = ��1pre +MF = ��1pre +N �MF (6.53)

MF is Fisher's information matrix, �MF the average information ma-

trix, and N the length of experiment.

Proof: see (Sadegh et al., 1994). �

In the following, the concept of information is related to Lindley's measure

of average information. In this way, we are able to formulate design criteria

also based on MAP estimators. First some de�nitions are needed.

Definition 6.1 The entropy of a random variable X having probability

density function p(X) is de�ned as

Hx = �EX[logp(X)] : (6.54)

Definition 6.2 Lindley's measure of the average amount of information

provided by an experiment � with data y and parameters � is de�ned

as

J(�) = H� � Ey[H�jy] : (6.55)



Now the relation between Fisher's information matrix and Lindley's mea-

sure of average information can be established via the following theorem

(Sadegh et al., 1994).

Theorem 6.4 With the same assumptions as in Theorem 6.3, maxi-

mizing Lindley's measure of the average amount of information, J(�),

is equivalent to solving the optimization problem

min�J

J = �E�[log detf��1pre +MFg]
(6.56)

Proof: The estimation is regarded as a means by which further in-

formation about the system parameters is provided. Since MAP is the

mode of the posterior distribution, the maximum amount of informa-

tion with respect to Lindley's measure is obtained by MAP. Since the

prior distribution of the parameters and the distribution of observa-

tions given � is Gaussian, the posterior distribution of the parameters

is also Gaussian. Denote the posterior mean and covariance by �� and

�post. From (6.53) we have

��1post = ��1pre +MF

From De�nition 6.2

J(�) = �E�flogp(�)g + EyE�jyflogp(�jy)g (6.57)

= �E�flogp(�)g + EyE�jyf�n
2
log(2�)g

�EyE�jyf1
2
logdet�post +

1

2
(�� ��)T��1post(�� ��)g (6.58)

As all the other terms obviously are constants, we only focus on the

last two terms

EyE�jyf1
2
logdet�postg



= E�Eyj�f
1

2
logdet�postg (6.59)

= E�f1
2
logdet�postg (6.60)

= �E�f1
2
logdet��1postg (6.61)

The other term can be written as

EyE�jyf
1

2
(� � ��)T��1post(� � ��)g

= EyE�jyf1
2
trace��1post(� � ��)(� � ��)Tg (6.62)

= Eyf1
2
trace��1postE�jy[(�� ��)(�� ��)T]g (6.63)

= Eyfn
2
g = n

2
(6.64)

where n is the number of parameters. Now using (6.53) establishes

the theorem. �

An approximation of the mean value in (6.56) is optained by setting the

parameters equal to their prior mean values. This approximation, which

corresponds to a local design, simpli�es the computations considerably.

Thus depending on the estimation method, ML or MAP, and the choice of

local or average criterion the following criteria would be of interest:

J1 = �[logdet( �MF)]�=Ef�g
J2 = �[logdet(N �MF + ��1

pre)]�=Ef�g
J3 = �E�[logdet( �MF)]

J4 = �E�[logdet(N �MF + ��1
pre)]

(6.65)

These criteria demonstrate di�erent levels of including partial prior infor-

mation about parameter values. Optimization with respect to J1 results

in designs which are strongly dependent upon the prior information. The

dependence is even more pronounced in J2. It may therefore be wise to



perform a sensitivity analysis, i.e. determine the sensitivity of the design

to changes in the parameters, when using these criteria. An alternative is

to choose an average criterion like J3 and J4. Table 6.1 summarizes the

relation between the choice of estimators and the optimization criterion,

expressed in both a local and average form. Applications with these criteria

ML MAP
Local design J1 J2

Bayesian/average J3 J4

Table 6.1. Summary of the optimality criteria

are found in e.g. (Melgaard et al., 1993; Sadegh et al., 1994).

6.4 Sampling Time and Presampling Filters

When estimating the parameters in a continuous time model from sampled

data, the parameters will in general depend on the input to the system, the

sampling instants and the presampling �lter. The aims of designing optimal

sampling instants and presampling �lters is to avoid loss of information

from the data due to sampling. Consider the following scalar continuous

time system

y(s) = G(s)u(s) + �(s) ; s = j! ; (6.66)

where u and y are the input and output, respectively, and � denotes colored

measurement noise having spectral density  (!) for all ! 2 ]�1;1[.

Assume that the input signal spectrum is band limited to [�!h;!h]. The
case of uniform sampling interval is considered. Suppose that the output



is sampled faster than the Nyquist rate for !h, i.e.

!s > 2!h (6.67)

where !s = 2� fs and fs is the sampling frequency. Such a sampler does

not distort the part of the output spectrum arising from the input. The part

of the output spectrum arising from the noise will, however, be distorted

due to aliasing. The aliased noise spectrum is a superposition of di�erent

parts of the original spectrum

 s(!) =  (!) +

1X
r=1

( (! + r!s) + (! � r!s)) (6.68)

for ! 2 ] � !s=2;!s=2[. From expression (6.68) it is seen that  s(!) �
 (!) is positive de�nite. It follows that the experiment with sampled

data cannot be better than the corresponding experiment with continuous

observations, see (Goodwin & Payne, 1977). However by inclusion of a

suitable presampling �lter, equality can be achieved.

Assume the presampling �lter has the transfer function F with the ideal

property

jF(j!)j = 0 ; for ! � �!s=2 or ! � !s=2 ; (6.69)

and invertible otherwise. By including the presampling �lter the �ltered

and sampled noise spectrum  fs(!) is

 fs(!) =  f(!) +

1X
r=1

( f(! + r!s) + f(! � r!s)) (6.70)

and  f(!) is the �ltered noise spectrum given by

 f(!) = F
T(j!) (!)F(�j!) : (6.71)



For a presampling �lter satisfying (6.69),  fs(!) reduces to  f(!). This

shows that the speci�ed ideal presampling �lter F eliminates the informa-

tion loss due to sampling.

The approach discussed so far for optimal design of sampling time and

presampling�lter has considered the average information matrix per unit

time. This is useful for design of experiments with a �xed experiment time,

but without constraints on the number of samples. This leads to separate

design of optimal input followed by choice of sampling time and presam-

pling �lter according to (6.67) and (6.69). However, if the total number of

samples is constrained, then it is more appropriate to consider the average

information matrix per sample. If the input spectrum is band limited to

[�!h;!h] and the sampling time and presampling �lter is chosen accord-

ing to (6.67) and (6.69) as before, then the average information matrix per

sample is given by

~MF = �MF=fs ; (6.72)

where �MF is the average information matrix per unit time and fs is the

sampling rate. Optimizing a criterion based on this expression leads to

a joint optimal design of input and sampling time for experiments with

constrained number of samples. Such a design will in general lead to a

compressed optimal input spectrum with a lower sampling rate and hence

increased experiment time compared with the continuous observation case

(Goodwin & Payne, 1977).



6.5 Example

In the following a simple example is given on the use of some of the di�erent

criteria for optimal design of input signal. The optimal design of sampling

time is not covered by this example, a �xed sampling time is used. Consider

a �rst order stochastic di�erential equation with discrete observations:

dx(t) = �ax(t)dt + bu(t)dt + dw(t) ; (6.73)

yk = xk + e2;k ; (6.74)

where w(t) is a Wiener process with E(dw(t)) = 0, V(dw(t)2) = r dt, and

e2;k is a Gaussian white noise process with V(e2;k) = r2. dw(t) and e2;k

are assumed to be independent; subscript k is shorthand for tk. We are

interested in the set of parameters � = [a; b]0, and to �nd an optimal input

signal for the system. Since the inputs are assumed to be constant within

a sampling interval, the corresponding discrete time model is written:

xk+1 = �xk + �uk + e1;k ; (6.75)

where �, � and V(e1;k) depends on the sampling time � by the following

expressions:

� = e�a� ; � =

Z �
0

e�asbds =
b

a
(1� e�a�) ;

V(e1;k) =

Z �
0

e�asre�as ds =
r

2a
(1� e�2a�) :

The discrete time model is brought into the innovations form

x̂k+1 = �x̂k + �uk + K�k ; (6.76)

yk = x̂k + �k ; (6.77)

where

V(�k) = �P+ r2 ; (6.78)



K = ��P(�P + r2)
�1 ; (6.79)

and �P is the positive semide�nite solution of the stationary Ricatti equa-

tion,

�P = �2�P+ r1 � (��P)2(�P+ r2)
�1 : (6.80)

The innovations form of the model (6.76) and (6.77) may be rewritten as:

yk =
�q�1

1� �q�1uk +
1+ (K� �)q�1
1� �q�1 �k : (6.81)

Since equation (6.81) is of the form (6.40) we are now ready to formulate

the average Fishers information matrix for the problem. Considering a

power constrained input in the frequency domain we use equations (6.47),

(6.48) and (6.49).

By considering the criterion min� J1 = min�(� log det �MF), Theorem 6.1

states that it su�ces to look for designs comprising no more than 3 sinusoids

for this example,

�MF(�) =
3X
k=1

�k �MF(!k) ; (6.82)

where �k � 0 and
P
�k = 1. �MF(!k) can be separated into ~MF(!k) and

�Mc according to (6.48) and (6.49). It should be remarked, that when a

local design is considered, only �MF(!k) need to be calculated, but when

a Bayesian design is used the total �MF(!k) must be calculated. For the

calculation of the matrices in this example the computer algebra language,

MAPLE, was used. Hence the optimization problem is formulated and

some general available software for solving nonlinearly constrained mini-

mization can be applied.
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Figure 6.4. Convex hull of single frequency designs for the example and
contours of constant det �MF (increasing to the right).

It turns out, that a single sinusoid is su�cient for optimality in the con-

sidered case. A plot of this optimal input frequency for di�erent values of

a is shown below for b = 1:0, r = 1, r2 = 0:1 and � = 1.
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Figure 6.5. Optimal design of input frequency !� for di�erent values
of a.



Now we like to compare this traditional local design of experiments with the

Bayesian approach for a given prior probability density of the parameters.

Hence we consider the criterion min� J2 = min� E�(� log det �MF). It is

assumed that parameter a is uniformly distributed in the interval [0:5; 1:1]

and the other parameters are �xed to the same values as above. The

optimal design in this case is

!�
2 = 0:4575 ; J2(!

�
2) = 1:1951 : (6.83)

This should be compared to the previous design using the expected value

of the parameters, E(a) = 0:8, which has the optimal design, according to

J1

!�
1 = 0:6606 ; J1(!

�
1) = 0:6107 ; (6.84)

hence, here the two approaches give a di�erent design. The average in-

formation when a Bayesian design is used is smaller than the information

from the local design, when the used E(a) is true.

Instead of optimizing the average performance with respect to the prior

distribution one might be interested in a design which optimize the worst

possible design. A plot of the performance of single frequency designs for

di�erent values of a is given below. Consider the minimax criterion

min
�
J3 = min

�
(max
a2�

� log det �MF) (6.85)

Minimizing this criterion for the example with a 2 [0:5; 1:1] and the other

parameters as above gives the optimal design

!�
3 = 0:8128 ; J3(!

�
3) = 1:3741 ; (6.86)
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Figure 6.6. The performance of single frequency designs for di�erent
values of a. The frequency axis has the scale f = 2�!.

which is seen to di�er from the previous designs. The value of the criterion

expresses the worst possible performance from this design depending on

the true value of a.

6.6 Summary

In this chapter the di�erent aspects of experimental design has been dis-

cussed. Mainly the choice of optimal input signal is discussed. Di�erent

criteria for optimality of the design have been considered, mostly based on

the information matrix as a characterization of the parameter uncertainty.

A measure of information is selected as a function of the information matrix

to represent the importance of the di�erent parameters of the model or a

transformation of these parameters. This measure can either be evaluated

as a local design, i.e. at some �xed value of the parameters, e.g. the prior

mean, or the criterion can be treated in a Bayesian approach by using the



expectation of the measure with respect to the prior distribution of the

parameters. Finally a minimax criterion can be de�ned for the measure of

information. This last class of criteria is the least sensitive against single

non-informative experiments.





Chapter 7

Case #1 Building Performance

The application considered in this chapter is related to the Commission of

the European Communities' (CEC) research project called PASSYS. The

aim of this project is to establish a common basis within the European

Community for determining the energy dynamics of building components,

especially components related to passive solar energy. Passive solar de-

sign has been recognized as an important potential for energy conserva-

tion. Many new components and systems have been developed in the late

1970s and 1980s. However, little is known about their actual thermal and

solar dynamic characteristics. A further uncertainty is their unknown per-

formance when the components are applied to buildings and exposed to

variations in climate.

Within the PASSYS project, a test procedure for building components,

using short-term performance data from a test cell, is developed and de-

�ned. The south wall and, for some test cells, the roof are removable. The



test cell is calibrated using a highly insulated opaque south wall. Di�erent

south wall components could then be inserted in place of the calibration

wall. The south wall, which is the actual passive solar system, is �xed in an

insulated frame. Any kind of wall can be incorporated in this frame. The

Figure 7.1. The PASSYS test cell. The south wall is not as shown here
installed directly in a steel frame, but in an insulated frame in order
to decrease the thermal bridges.

test cell has a test room of 13:8 m2 ground surface and 38 m3 air volume

with an adjoining service room to the north, accommodating measuring

and air-conditioning equipment. The U-value of the envelope is less than

0:1 W/m2K. A further description of the test cell is found in (Wouters &

Vandaele, 1990).



7.1 The Heat Diffusion Equation

In order to understand the derivation of physical models for buildings the

heat transfer across a uniform slab of building material will be investi-

gated. The formalism of (Sonderegger, 1977) and (Lindfors, Christo�ers-

son, Roberts, & Anderlind, 1992) is followed. Under some ideal situation,

the temperature v(x; t) at time t and position x in the slab, is described

by the one-dimensional heat conduction equation

@v(x; t)

@t
= �

@2v(x; t)

@x2
(7.1)

where � = �
��

[m2=s] is the thermal di�usivity, � [W=(Km)] is the ther-

mal conductivity, � [kg=m3] is the density, and � [J=(kgK)] is the speci�c

heat capacity. By this ideal situation, corner e�ects, thermal bridges, radi-

ation from surfaces and heat transport, such as moisture e�ects has been

neglected, as well as other non-linear phenomena. Equation (7.1) is a linear

time-invariant partial di�erential equation. This kind of models are also

known as distributed parameter models, and they are characterized by a

state vector, which is in�nite dimensional. There are in principal two ways

to deal with this kind of models. One approach is to replace the space

derivative by di�erence expressions, which will approximate the PDE by

a �nite set of ordinary di�erential equations. Then a lumped parameter

model is obtained, which means that the distributed states are lumped into

a �nite set. The other approach is to keep the PDE description and only

in the �nal numerical stage, introduce some approximations to make the

computations feasible.

The type of models that is used for building modeling described in the

following sections are based on the lumped parameter approach. It will be

demonstrated in this section how simple low order lumped models will ap-



proximate the di�usion equation (7.1) quite well, in realistic environments,

where also noise is present.

The complete solution of (7.1) is determined if initial conditions and the

boundary conditions at each surface of the slab are given

v(x; 0) (7.2)

v(x1; t) or q(x1; t) (7.3)

v(x2; t) or q(x2; t) (7.4)

where

q(x; t) = ��@v(x; t)
@x

(7.5)

denotes the heat 
ux, and x1 and x2 are the positions at the respective

surfaces. The problem is sketched in Fig. 7.2.

It is now assumed that the initial conditions (7.2) has lost their in
uence

on the solution. That is, we assume that the slab has been exposed to its

ordinary environment for a suitable long time, related to its thickness, d,

and its thermal di�usivity, �

t� d2

�
(7.6)

where the term on the right hand side, loosely speaking, is called the time

constant of the slab. This assumption is also a requirement on the system

to be operating under stationary conditions, which allows for a frequency

representation of the model.

The Laplace (or Fourier) transform of (7.1) is given by

@2v(x; s)

@x2
=
s

�
v(x; s) (7.7)



v(x; t)

d

x1 x2

v(x1; t) v(x2; t)

t t

Figure 7.2. Schematic temperature distribution and boundary condi-
tions for the heat conduction through a wall.

where s is the Laplace operator. By letting s = j!, where ! is the angular

frequency and j =
p�1, the Fourier transform is obtained. Equation 7.7

is an ordinary di�erential equation, which has the general solution

v(x; s) = F1(s) sinh(x
p
s=�) + F2(s) cosh(x

p
s=�) (7.8)

where the functions F1(s) and F2(s) are found by matching (7.8) to the

boundary conditions of (7.3) and (7.4). In principle Equation 7.8 provides

the distribution of temperatures or heat 
uxes across the entire wall, but

usually one is only interested in the conditions on the boundaries, that

is either surfaces of the wall. For that purpose it is possible to express

the solution in the following matrix formulation, see (Sonderegger, 1977;



Lindfors et al., 1992)"
v(x1; s)

q(x1; s)

#
=24 cosh(d

p
s=�)

sinh(d
p
s=�)

�
p
s=�

�
p
s=� sinh(d

p
s=�) cosh(d

p
s=�)

35"v(x2; s)
q(x2; s)

#
(7.9)

where q(x; s) is the Laplace transform of the heat 
ux. Normally, and in

this case, we are not interested in the heat 
ux on the outside or cold side

of the wall. If we denote x1 as the inside and x2 as the outside, Equation

(7.9) can be reduced to a one dimensional equation, without q(x2; s). The

relations can also be formulated in the thermal parameters we are interested

in, namely

R = d=� (7.10)

C = d�� (7.11)

where R is the thermal resistance [Km2=W] of the wall, the inverse of the

U-value. C is the overall thermal capacity per unit area [J=(Km2)] of the

wall. By using these parameters and reducing Equation (7.9) into one

equation, we get

v1(s) =

Rp
sRC

sinh(
p
sRC)

cosh(
p
sRC)

q1(s) +
1

cosh(
p
sRC)

v2(s) (7.12)

which can also be written

v1(s) = G1(s)q1(s) +G2(s)v2(s) (7.13)

where v1(s) denotes v(x1; s) etc., and G1(s) is the transfer function between

the heat 
ux and the indoor temperature and G2(s) is the transfer function

between the outdoor temperature and the indoor temperature. Note that

the transfer functions are analytic functions of s but not rational.



In the limit, where jsRCj!0, which can be thought of as for very thin, light
and conductive walls or slow time variability of the boundary conditions,

making j!j, and hence s small, Equation 7.12 becomes

q1(s) =
v1(s)� v2(s)

R
(7.14)

which is the well known static heat balance equation.

7.1.1 Lumped Parameter Models

For the purpose of simulating (or predicting) the dynamic behavior of a

particular wall, one may wish to estimate the parameters in (7.12) from

measurements of the heat 
ux and surface temperatures. This may not

seem necessary for a homogeneous slab of well known material and dimen-

sion. But when the ideas are extended to cover multilayer walls and more

complex systems, as a whole building, there are no other way than to esti-

mate the parameters of the model frommeasurements, if an accurate model

is needed. In the following models for the homogeneous slab are discussed,

but it is kept in mind that the ideas will later be extended to more complex

systems.

One possibility for estimating the parameters directly in (7.12) from mea-

surements is to keep the calculations in the frequency domain, by Fourier

transforming the time series of measurements. This approach has been

used by (Lindfors et al., 1992) to �nd least-squares estimates of R and C

for a homogeneous slab.

Another approach, which will be discussed here, is to approximate the

partial di�erential equation by a set of ordinary di�erential equations and

then estimate the parameters in the time domain. Usually a low order



approximation is su�cient. The parameters of the original partial di�eren-

tial equation can easily be calculated from the parameters of the ordinary

di�erential equations afterwards if that is of interest. The advantage of

this approach is that it is easy to extend it to more complex systems and

even consider non-linearities in the model. The resulting lumped parame-

ter models are also often called R-C network models because they can be

constructed from networks of thermal resistors and capacitors equivalent

to an electrical network. Following the discussions in (Sonderegger, 1977)

it shall be demonstrated how the exact transfer functions of (7.12) can be

approximated by an equivalent R-C network.

A distributed system, as opposed to lumped-element systems, is charac-

terized by an in�nite number of poles and zeros of its transfer functions.

The dynamic response of the system is determined by its poles and zeros,

and therefore it is important how the approximating lumped model has

its poles and zeros. It has been demonstrated by (Goodson, 1970) that by

using the in�nite product expansion technique the exact poles and zeros

of the transfer functions are preserved for any order approximation. This

imply that the criterion for determining the number of products to use (for

deterministic models) is the frequency bandwidth of the desired model.

For a stochastic system, where noise is present, there is an upper limit for

the number of products, which is necessary for representing the system.

The transfer functions in (7.12) can be written as

v1(s) =
B(s)

D(s)
q1(s) +

1

D(s)
v2(s) (7.15)

with the nominator, B(s) = Rp
sRC

sinh(
p
sRC) and the denominator,D(s) =

cosh(
p
sRC). Their zeros are put in evidence by their in�nite product ex-



pansion:

B(s) =
Rp
sRC

sinh(
p
sRC) = R

1Y
n=1

�
1+

sRC

n2�2

�
(7.16)

D(s) = cosh(
p
sRC) =

1Y
n=1

�
1+

sRC

(n� 1=2)2�2

�
(7.17)

which can be found in (Goodson, 1970).

We now wish to �nd the R � C network that corresponds to a given trun-

cation of Equation 7.16 and 7.17. The considered network models are

sketched in Figure 7.3. A �rst order approximation corresponds to the

solid components in the �gure, the second order approximation is obtained

by also adding the dashed components. The polynomials corresponding to

r3 r2 r1

c2 c1

v2 v1

q1

Figure 7.3. R�C network models of the wall. First (solid) and second
(solid + dashed) order models are shown.

(7.15) for the �rst order model is given by:

B1(s) = (r1r2c1)s + (r1 + r2) (7.18)

D1(s) = (r2c1)s+ 1 (7.19)

Both polynomials are of �rst order, thus only the �rst zero from the in�nite

product expansion of each polynomial B(s) and D(s) can be matched, in



addition to the gain of B(s), jB(s = 0)j = R. The resistances and capac-

itance of the lumped model that preserves the gain and the �rst zeros of

B(s) and D(s) are given by:

�rst order model from in-

�nite product expansion

8>><>>:
r1 = 0:2500 R

r2 = 0:7500 R

c1 = 0:5404C

(7.20)

The polynomials corresponding to (7.15) for the second order model is

given by:

B2(s) = (r1r2r3c1c2)s
2 + (r1r3c2 + r1r3c1 + r1r2c1 + r2r3c2)s

+(r1 + r2 + r3) (7.21)

D2(s) = (r2r3c1c2)s
2 + (r3c2 + r3c1 + r2c1)s + 1 (7.22)

Since both polynomials are of second order, we are able to match the two

�rst zeros from the in�nite product expansion of each polynomial B(s)

and D(s), in addition to the gain of B(s). The resulting resistances and

capacitances of the second order lumped model that preserves the gain and

the two �rst zeros of B(s) and D(s) are given by:

second order model from

in�nite product expansion

8>>>>>>><>>>>>>>:

r1 = 0:1406 R

r2 = 0:3125 R

r3 = 0:5469 R

c1 = 0:2882C

c2 = 0:3705C

(7.23)

By using this technique for approximating the distributed model, we obtain

the characteristics that
P
i ri = R, which also mean that the gain (dc-

component) is preserved by the model. Furthermore we have that for the

�rst order model
P
i ci = 0:54C, and for the second order model

P
i ci =

0:66C (it can be shown that if the model order !1 then
P
i ci!C). The



technique also imply that the criterion for determining the model order is

given by the required bandwidth of the model.

The frequency response of the transfer functions B(s)=D(s) and 1=D(s) for

the exact solution as well as �rst and second order approximations using

in�nite product expansion are shown on Figure 7.4 and 7.5.

Another way to view a lumped parameter model is to consider directly the

approximation of the space-derivative of the partial di�erential equation.

Let us consider the general approximation

@2v(x; t)

@x2

����
x2

'
�
v(x1; t)� v(x2; t)

�1
� v(x2; t)� v(x3; t)

�2

�
=�1 (7.24)

where x2 2 ]x1; x3[ , �1 = x1�x2 and �2 = x2�x3. It is also assumed that

"1 2 ]min(�1; �2);max(�1; �2)[ . By inserting this approximation in (7.1)

we obtain

@v(x2; t)

@t
'

d2

RC

1

"1

�
1

�1
v(x1; t) � (

1

�1
+
1

�2
)v(x2; t) +

1

�2
v(x3; t)

�
(7.25)

since � = d2=(RC). By comparing Equation 7.25 with the similar expres-

sion for the R �C network as Fig. 7.3 it is seen that they match with the

following terms:

ri = R
�i

d
(7.26)

ci = C
"i

d
(7.27)

hence ri can be considered as a fraction of the total R, directly proportional

to a distance of the material, and since
P
i �i = d we have that

P
i ri = R.

The same holds for ci except that
P
i "i < d, and only in the limit we haveP

i ci!C.
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Figure 7.4. Frequency response of B(j!)=D(j!) shown for the �rst and
second order R �C approximation as well as the exact model.

7.1.2 Measured Data

Attention is now focused to the model formulation (7.13), but with the

extension that all the signals have been measured through some measuring
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Figure 7.5. Frequency response of 1=D(j!) shown for the �rst and
second order R �C approximation as well as the exact model.

device. This means that all signals are corrupted by noise. For simplicity



we consider all the signals to be disturbed by additive white noise, i.e.

v1(s) = v
0
1(s) + �v1(s) (7.28)

v2(s) = v
0
2(s) + �v2(s) (7.29)

q1(s) = q
0
1(s) + �q1(s) (7.30)

where v01(s) denotes the true (undisturbed) signal and �v1(s) is the mea-

surement noise, assumed to be zero mean Gaussian i.i.d. with standard

deviation �v1, etc. For simplicity, the calculations in this section is kept

in the continuous time domain, but the results also apply to discrete time

if the data are sampled properly. This imply that the information loss,

due to the sampling, is minimized by selecting a proper sampling time and

anti-aliasing �lter, see Section 6.4. By inserting (7.28) - (7.30) in (7.13) we

obtain the model formulation:

v01(s) = G1(s)q
0
1(s) +G2(s)v

0
2(s) +N(s) (7.31)

where the noise term is

N(s) = ��v1(s) +G1(s)�q1(s) +G2(s)�v2(s) (7.32)

A statistical tool which is useful for analyzing the relationship between a

variable and some other variables is the multiple coherency, see Section

5.2.3. In this case the multiple coherency, W2
v1q1v2

(!), between v1(t) and

q1(t), v2(t) represents the proportion of the power of v1(t) which can be

explained by the relationship with q1(t) and v2(t), at frequency !. It is

given by the relation:

�N(!) = �v1(!)[1�W2
v1q1v2

(!)] (7.33)

Of course the shape of W2
v1q1v2

(!), and hence the ability to identify the

transfer functions, is dependent upon the actual experiment, the sensors



etc. Usually though the sensors will have the frequency characteristics of

a low pass �lter.

Example 7.1 In this example we consider the situation where the RC of

the component (wall) is large compared to the bandwidth of the input

signals to the system, i.e. q1(t) and v2(t). This situation could be the

case for a heavy, well insulated wall exposed to outdoor climate, v2(t),

and a fast responding indoor heat supply. The frequency distribution

is assumed to be uniform, in the considered scale:

q1(!) = 1 (7.34)

v2(!) = 1 (7.35)

Furthermore, 4 di�erent levels of white noise added to all the signals

have been considered, cf. (7.28) - (7.30). The following 4 levels of the

noise have been analyzed:

1 : �2v1(!) = �
2
v2(!) = �

2
q1(!) = 0:0001 (7.36)

2 : �2v1(!) = �
2
v2(!) = �

2
q1(!) = 0:001 (7.37)

3 : �2v1(!) = �
2
v2(!) = �

2
q1(!) = 0:01 (7.38)

4 : �2v1(!) = �
2
v2(!) = �

2
q1(!) = 0:1 (7.39)

In Figure 7.6 the squared coherency is shown for the given example,

with increasing level of the noise. For a low level of the noise (curve

no. 1) the squared coherency is almost equal to 1 at all frequencies, in

the considered scale. This is expected, since if there where no noise

at all, then from Equation 7.33 we have that W2
v1q1v2

(!) = 1 for all

frequencies, where �v1(!) 6= 0. As the level of the noise is increased,

the correlation between the inputs and the output decreases at high fre-

quencies. This can be explained by the low-pass nature of the system,

see Figure 7.4 and 7.5. The output v1 is dominated by low frequen-
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Figure 7.6. Squared coherency.

cies, whereas the noise on the output, �v1 is white, i.e. represented

uniformly at all frequencies. Therefore we have the high values of the

squared coherency spectrum at low frequencies.

In the �rst example the inputs were supposed to be represented uniformly

at all frequencies, relative to the RC of the system. For in-situ applications

of building components it is more likely that the power spectrum of the

inputs have a low frequency dominance relative to the system, and a peak

at the frequency corresponding to the daily cycle of the climate. This

situation is considered in the next example.

Example 7.2 In this example the power spectra of the inputs are as-

sumed to have a low frequency dominance, relative to the system dy-

namics. This could be the case for a light-weight construction with thin



insulation. In the considered scale of frequencies, the power spectra of

the input signals are:

q1(!) = 1=!
2 (7.40)

v2(!) = 1=!
2 (7.41)

The di�erent levels of additive white noise are the same as in the

previous example. As can be seen from Figure 7.7 the coherency almost

disappears at high frequencies and this is especially true for large noise

levels (curve no. 4).
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Figure 7.7. Squared coherency .

In both of these examples the data series are supposed to be measured. For

this reason, measurement noise was taken into account. In real application

the data series will also be of �nite length. This imply that the squared

coherency determined from the data, has some associated uncertainty. It is



then possible to test for zero coherency (at frequency !). From Priestley

(1981) pp. 706 we have that, under the hypothesis that W2
v1q1v2

(!) = 0,

2mcW2
v1q1v2

(!)

(1�cW2
v1q1v2

(!))
= F2;4m (7.42)

where m is related to the spectral estimate, using a Daniell window. This

spectral estimate is computed by averaging (2m+1) periodogram ordinates.

For a �xed length of data, N, the parameter m must be chosen as a trade

o� between the bias and variance of the spectral estimate. As m ", the
variance of the estimate #, and the bias ", and vice versa. If the shape

of the true spectrum is known, then it is possible to design more optimal

parameters for the window smoother, see (Priestley, 1981). The main point

in this discussion is that for �nite length data series there is a limit > 0,

determined from Equation 7.42, below which we can not reject that the

coherency is equal to zero at the given frequencies. Because the curves in

Figure 7.6 and 7.7 are monotonous decreasing, such a limit would determine

a certain frequency above which we could not reject that the coherency is

equal to zero. This further imply, that if a model is �tted to the data,

we are not able to distinguish between di�erent models above this upper

frequency limit. By comparing the frequency responses of the models in

Figure 7.4 and 7.5 we conclude that it is not possible to distinguish between

the exact model and a �nite order lumped parameter model, if the models

are to be �t to measured data of �nite length.

The introduction of the in�nite product expansion as an approximation to

the exact model was merely done to argue for the structure of the R � C
network models in Figure 7.3, and demonstrate the capability of the R�C
network models to �t the exact model within a required bandwidth. In a

real application one would prefer to �t the individual parameters of the R�



C network instead of estimating R and C directly from the in�nite product

expansion (7.20) or (7.23) or higher order. There are more reasons for this

statement. Maybe some of the assumptions and simpli�cations used for the

derivation of the exact model do not fully hold, e.g. the assumption of only

one dimensional heat losses. The in�nite product expansion approximates

the exact model best at low frequencies and then it is worse as the frequency

increases. This is usually what is needed, compare with the examples in

this section, but normally the spectral distribution of the measured data is

not as smooth as in the examples, e.g. the climate data have a peak around

the frequency for the daily cycle. By estimating the individual parameters

some extra degrees of freedom allows for a better �t to the data, which is

necessary for the above reasons.

7.2 Validation of the Estimation Tool

The thermal characteristic of buildings is frequently approximated by a

simple network with resistors and capacitances, see for instance (Sondereg-

ger, 1977; Subbarao, 1985; Hammersten, van Hattem, Bloem, & Colombo,

1988; Madsen & Holst, 1993). In this section, such a (simpli�ed) lumped

parameter model for the dynamics of the test cell is presented. The model

is used for simulations and estimations in the following sections. The ob-

jective of this work is to validate the tool used for estimation. If a number

of stochastic independent data sets are simulated from a known model,

and later the parameters of this model is estimated by the given tool, it

is possible to validate the estimated parameters and the estimated uncer-

tainty of the parameters. This will require from the estimation method

that it is able to handle the considered type of model, but also that the

method is implemented correctly on the computer, taking properly care of



the numerics.

The dominating heat capacity of the test cell is located in the outer wall.

For such buildings, the model with two time constants shown in Figure

7.8 is frequently found adequate. The states of the model are given by
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.........................................................................................
........ ..............................................................................
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HiHm TiTm

TeTe Ttr
Qh

Figure 7.8. A model with two time constants of the test building and
the equivalent electrical network.

the temperature, Ti, of the indoor air and possibly inner part of the walls

with heat capacity Ci, and by the temperature, Tm, of the heat accumu-

lating medium, with the heat capacity Cm. Hi is the transmittance of the

heat transfer between the room air and the walls, while Hm is the heat

transmittance between the inner part of the walls and the external sur-

face of the walls. The input to the system is the heat supply, Qh, and

the outdoor surface temperature, Te. The test cell is covered outside by a

thin metal shell on which a large number of thermocouples are mounted

(5 on each surface). Te is calculated as an area-weighted mean of all the

sensor signals. By considering the outdoor surface temperature instead of

the outdoor air temperature as the input, the e�ect of solar radiation is

automatically taken into account. The assumption of no feedback from the

test cell to the external temperature is still valid because there is always

some wind around the test cell, which will assure that the external surface

temperature is determined from the external air temperature and the solar

radiation on the surface alone.



In state space form the model is written,"
dTi

dTm

#
=

"
�Hi=Ci Hi=Ci

Hi=Cm �(Hi +Hm)=Cm

#"
Ti

Tm

#
dt +"

0 1=Ci

Hm=Cm 0

#"
Te

Qh

#
dt +

"
dwi(t)

dwm(t)

#
: (7.43)

An additive noise term is introduced to describe deviations between the

model and the true system, the term can also be considered as noise on

the input signals. Hence, the model of the heat dynamics is given by the

(matrix) stochastic di�erential equation

dT = ATdt+BUdt + dw(t) ; (7.44)

where w(t) is assumed to be a Wiener process with incremental covariance

matrix

� =

"
�21;i 0

0 �21;m

#
: (7.45)

The measured air temperature is naturally encumbered with some mea-

surement errors, and hence the measurement equation is written

Ttr(t) = [1 0]

"
Ti

Tm

#
+ e(t) ; (7.46)

where e(t) is the measurement error, assumed to be normally distributed

with zero mean and variance �22.

The following values of the parameters have been estimated in an earlier

experiment on a test cell: Hi = 55:29 W/K, Hm = 13:86 W/K, Ci =

325:0 Wh/K, Cm = 387:8 Wh/K, �21;i = 0:00167 K2, �21;m = 0:00978 K2,

and �22 = 0:00019 K2. Corresponding to these parameters, the time con-



stants of the system are �1 = 3:03 hours and �2 = 54:28 hours.

Using these parameters for the model, we are able to simulate the sample

paths of the system. By simulating several sample paths from the system

and estimating the parameters of the model from each sample path this

is a way of validating the estimation procedure. By considering several

simulated sequences this investigation considers both the mean values and

the variances of the estimated parameters. For the simulation study the

following input and output signals of the model have been used: Te is

measured surface temperature, from a Danish test building, Qh the heat

supply, is a PRBS (pseudo-random binary sequence) with the number of

stages, n = 6 and smallest switching interval Tprbs = 8 hours, (Godfrey,

1980), switching between 0 W and 300 W, and Ttr is the indoor room tem-

perature, simulated from the speci�ed model. In this study the sampling
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Figure 7.9. The signals in the simulations: the outdoor surface tem-
perature, the controlled heat power and the indoor air temperature.

time is �xed to Tsampl = 20 minutes, and the length of each experiment



is 21 days, which is equal to 1512 observations per simulated series. We

have simulated 50 equal series, but with di�erent realizations of the noise

sequences. Refer to Section 2.5 for the details about simulating stochastic

di�erential equations and noise generation.

In Table 7.1 and Table 7.2 the results are summarized from estimations

using CTLSM (Melgaard & Madsen, 1993). This is a tool for maximum

likelihood estimation of multivariate stochastic di�erential equations with

a linear or non-linear state space formulation. In the tables results are

summarized for the parameters of the model and for two physical char-

acteristics, which can be calculated as functions of the model parameters.

The UA-value is the overall heat transmittance and CI is the internal heat

capacity of the building. For all parameters, the mean of the estimated

values are given, which can be compared to the simulated values. Also the

empirical variance and the mean of the estimated variances of the parame-

ters are given. A comparison of these values will indicate if the method is

able to estimate the right uncertainty of the parameters.

In Table 7.1 the results are obtained using 1-step predictions in the criterion

for maximum likelihood. When estimating the true model, which is the

case here, using 1-step predictions is the optimal choice (Kabaila, 1981;

Stoica & Nehorai, 1989). On the other hand if the true model is not

contained in the model set, it can be advantageous to �lter the residuals

before estimating the parameters. One way of doing this is to use a k-step

prediction-horizon in the criterion for some k > 1. This kind of �ltering

works like a low-pass �lter and will put more weight on the low frequency

part of the dynamics. In the considered case the physical characteristic

parameters UA- and CI-values represent low frequency dynamics. The

columns of the tables are: xsim, the simulated values, �x, the mean of the

estimated values, s2x is the empirical variance of the estimated parameters,



Parameter xsim �x s2x
�s2 F-stat. jtj-stat.

Hi [W/K] 55.290 55.279 2.1645 2.3772 0.9105 0.053

Hm [W/K] 13.860 13.867 0.0360 0.0390 0.9244 0.261

Ci [Wh/K] 325.00 325.0 9.5667 10.746 0.8902 0.011

Cm [Wh/K] 387.78 387.33 162.26 159.89 1.0148 0.250

�2
1;i

[K2] 1.670e-3 1.650e-3 2.185e-8 2.475e-8 0.8825 0.975

�2
1;m

[K2] 9.780e-3 9.554e-3 8.650e-7 1.109e-6 0.7803 1.716

�2
2
[K2] 1.900e-4 1.912e-4 7.956e-10 7.446e-10 1.0686 0.308

UA [W/K] 11.082 11.084 0.0112 0.0111 1.0114 0.125

CI [MJ/K] 2.2862 2.2846 1.4553e-3 1.3815e-3 1.0535 0.304

Table 7.1. Results from estimation of ne = 50 series, using 1-step
predictions in the criterion. The mean autocorrelation of residuals is,
��(1) = �0:001.

�s2 is the mean of the estimated variance of the parameters, F-stat. is

an F statistic given by ZF = s2x=
�s2 and jtj-stat. is a t statistic given by

Zt = j�x� xsimj=(sxpne).

In order to verify if the variance of the parameters provided by the estima-

tion tool is equal to the empirical variance, one wish to test the hypotheses

H0 : s2x =
�s2

H1 : s2x 6= �s2 :

Under H0 we have in this case that ZF � F(49;1). The critical set for

this test is fz < F(49;1)�=2 _ z > F(49;1)1��=2g on level �. By choosing

� = 0:1 we obtain the critical set fz < 0:74 _ z > 1:35g. It is seen from

Table 7.1 that we cannot reject H0 for any parameter on the chosen level.

Another test is performed in order to verify that the estimated parameters



are not biased. The following hypotheses are tested

H0 : �x = xsim

H1 : �x 6= xsim :

Under H0 the distribution of the test statistic is Zt � t(49). The critical

set for this test is fz > t(49)1��=2g on level �. For � = 0:1, the critical

set is fz > 2:0g, thus from Table 7.1 we cannot reject H0 for any of the

parameters on the chosen level.

Parameter xsim �x s2x
�s2 F-stat. jtj-stat.

Hi [W/K] 55.290 55.339 2.2259 0.6154 3.617 0.232

Hm [W/K] 13.860 13.863 0.0383 0.0099 3.877 0.109

Ci [Wh/K] 325.00 324.8 9.486 3.3338 2.842 0.481

Cm [Wh/K] 387.78 387.20 163.74 47.685 3.4338 0.3210

�2
1;i

[K2] 1.670e-3 1.616e-3 4.158e-8 1.620e-8 2.5665 1.880

�2
1;m

[K2] 9.780e-3 9.562e-3 8.680e-7 4.156e-7 2.0884 1.656

�2
2
[K2] 1.900e-4 2.072e-4 3.700e-9 4.145e-9 0.8926 1.997

UA [W/K] 11.082 11.084 0.0115 0.0028 4.1290 0.107

CI [MJ/K] 2.2862 2.2837 1.469e-3 3.954e-4 3.7159 0.460

Table 7.2. Results from estimation of ne = 50 series, using 4-step
predictions in the criterion. The mean autocorrelation of residuals is,
��(1) = 0:712.

In Table 7.2 the results from estimation using a 4-step prediction-horizon

in the criterion are shown. In this ideal case where the true model is con-

tained by the model set there is no di�erence in the estimated parameters

which is also seen from the tables, they are still unbiased. A problem,

though, when \�ltering" the residuals in this way is that the residuals are

no longer white noise. From the tables we have that the mean autocorrela-

tion of residuals are ��(1) = 0:712 when using the criterion based on 4-step



predictions against ��(1) = �0:001 for 1-step predictions. When the residu-

als are autocorrelated a number of statistical tests for model validation are

no longer valid. Another problem in Table 7.2 is that the uncertainties of

the parameters are underestimated when the autocorrelation of residuals is

not taken into account in the calculation of the uncertainties. Wahlberg &

Ljung (1986) has shown, that asymptotically, it is only the prediction hori-

zon itself, that a�ects the weighting in the frequency domain, and not how

it is split up into sampling interval times number of predicted sampling in-

stants. This means that, asymptotically, we could obtain the same results

as using a k-step prediction, by using a proper anti-aliasing �lter followed

by a new sampling of the data and then estimate with a one-step prediction

criterion. In this way one could avoid the autocorrelated residuals.

7.3 Selection of Input Sequence

In this section a Monte Carlo approach similar to that described in the pre-

vious section is used for choosing an optimal input signal among a number

of candidates. The details of the study is presented in (Melgaard et al.,

1992b). The model for this study is the same as in the previous section,

but the sampling time has been �xed to one hour. For each candidate

of input signal 100 sample paths of the system has been simulated. Then

Fisher's information matrix is estimated on the basis of these sample paths.

The determination of optimal inputs for the same system is discussed in

(Sadegh, 1993), and the main results are brie
y presented in the last part

of this section.

Di�erent test signals for the heating power have been investigated in order

to compare their properties in relation to the di�erent optimality criteria,



described in Section 6.2. Most attention is paid to binary signals because

of their simplicity (they are easy to implement). All binary signals switch

between 0 W and 300 W and they all have equal power. The set of con-

sidered test signals is shown below. A step input and a number of PRBS

sequences with di�erent clock periods and orders have been considered.

Also, a few signals containing two sinusoids, with the same total power as

the binary signals, have been tested. PRBS sequences with increasing clock

Sequence Description

prbs1 PRBS (Tprbs = 1 h, order n = 9)

prbs2 PRBS (Tprbs = 2 h, order n = 8)

prbs3 PRBS (Tprbs = 5 h, order n = 7)

prbs4 PRBS (Tprbs = 8 h, order n = 6)

step step of period 252 h

sin1 sinusoids (�1 = 3 h, �2 = 54 h, power 1 : 1)

sin2 sinusoids (�1 = 3 h, �2 = 54 h, power 1 : 2)

sin3 sinusoids (�1 = 3 h, �2 = 54 h, power 1 : 9)

Table 7.3. The considered test signals.

periods have been selected to examine the in
uence of increasing the period

of the PRBS sequence compared to the sampling time. In other words, an

optimal k in Tprbs = k � Tsampl is sought. The step signal is a very low

frequency signal commonly used as the �rst test signal for identi�cation.

sin1 - sin3 consists of two sinusoids with periods �1 = 3 hours and �2 = 54

hours, which are close to the time constants of the system. The partition

of the total power between the two sinusoids changes from 1 : 1 to 1 : 9,

putting more weight on the low frequency sinusoid.

The results from the calculation of the optimality criteria, see Section 6.2.1,

for the considered test signals are shown in Table 7.4. The Ds-optimality

was calculated when all parameters except the noise terms are of inter-



est, thus considering the noise parameters as nuisance. Within each col-

umn, representing an optimality criterion, the optimal test signal is the one

that minimizes the value of the criterion. It is seen from Table 7.4 that,

Sequence D Ds C E

prbs1 -41.74 (4) 7.786 (7) 0.327 (4) 0.291 (4)

prbs2 -42.42 (3) 7.121 (4) 0.321 (3) 0.289 (3)

prbs3 -43.11 (1) 6.360 (1) 0.308 (1) 0.278 (1)

prbs4 -42.82 (2) 6.486 (2) 0.319 (2) 0.287 (2)

step -40.94 (5) 8.760 (8) 0.451 (5) 0.426 (5)

sin1 -39.29 (7) 7.328 (5) 1.551 (8) 1.474 (8)

sin2 -39.71 (6) 7.087 (3) 1.304 (7) 1.232 (7)

sin3 -39.18 (8) 7.609 (6) 1.231 (6) 1.155 (6)

Table 7.4. The value of the criteria of the standard measures of infor-
mation from Section 6.2, for the di�erent test sequences. The value
of the criterion is given, and a ranging of the results in parentheses.

according to all optimality criteria, the PRBS sequences have the best

performance and prbs3 is the optimal choice. The results clearly point

out that we gain from increasing the clock period of the PRBS sequence

compared to the sampling period. In this case, an optimum is found for

Tprbs = 5Tsampl.

When dealing with physical models, nonstandard measures may be of inter-

est, since the parameters of greatest interest might not be directly entering

into the system description, but some transformation of these parameters.

When designing optimal input sequences, it is very important to take the

transformation into account.

The UA-value and the CI-value are parameters that are probably of major

interest in many applications of building performance. The UA-value is

the overall thermal transmission coe�cient between the inside air and the



outdoor surface, and the CI-value is the internal heat capacity, de�ned as

the amount of heat needed for raising the room air temperature by 1 K.

These parameters are calculated as functions of the model parameters and

we can use the precision of these characteristic numbers as the basis for an

information measure instead of using the precision of the model parameters

as before.

The characteristic parameters are given as a function, f(�), of the param-

eters of the model. Then Gauss' formula is used to approximate the infor-

mation matrix in the domain of the characteristic parameters, cf. Section

6.2.2, i.e.,

M�1
F;f(�) =

�
@f

@�

�T
M�1
F (�)

�
@f

@�

�
: (7.47)

Then any of the standard measures of information can be applied toMF;f(�).

For the model speci�ed previously, the characteristic parameters UA and

CI are calculated as 
UA

CI

!
=

 
HmHi=(Hm +Hi)

Ci + HiCm=(Hm + Hi)

!
: (7.48)

In Table 7.5 the results from using the these application-oriented measures

are given. Both optimality with relation to UA- and CI-criterion is calcu-

lated as well as D-optimality for the vector of the physical characteristic

numbers. The purpose of the physical measures is to focus on the UA-

and CI-values. It is clearly seen from Table 7.5 that the step sequence now

gives optimal information. Among the sinusoids, the sequence that has

the most weight on the low-frequency part has the best performance, and

among the PRBS signals the one with the largest clock period is performs

best. In summary, the signals that have a major part of the variation at low

frequencies are optimal for identi�cation of the UA- and CI-values. This



Sequence UA CI DUA;CI

prbs1 0.3068 (8) 485.0 (8) 70.14 (8)

prbs2 0.2596 (7) 268.1 (7) 45.55 (7)

prbs3 0.1180 (3) 164.3 (6) 15.80 (5)

prbs4 0.0907 (2) 132.2 (4) 10.71 (3)

step 0.0374 (1) 67.04 (1) 2.507 (1)

sin1 0.1636 (6) 138.1 (5) 18.89 (6)

sin2 0.1596 (5) 94.78 (3) 13.52 (4)

sin3 0.1453 (4) 71.80 (2) 10.03 (2)

Table 7.5. Results from calculation of the physical measures of opti-
mality. The ranging of the results is given in parentheses.

corresponds nicely to the fact that these values mostly a�ect the frequency

response at lower frequencies.

The conclusion of the study is that signals that are commonly considered

generally good input signals, which is the case for PRBS signals, may

not be optimal when the purposivity of the model is taken into account

by using some physical measures of optimality. At least the weighting

of frequencies of the optimal input sequence can change remarkably by

changing the criterion of optimality, in this case towards low frequencies.

In this section only the selection of input sequence among a number of

alternatives has been considered. The Monte Carlo approach is easy to

apply for complex models also when non-controllable inputs are present

(the outdoor climate). Alternatively an analytical solution of the problem

might be considered. This approach is discussed in Chapter 6. By estimat-

ing a frequency spectrum for the external surface temperature, it should

be possible to �nd the analytical solution for the considered case. It will

though, require some computations, compare with the example of optimal



design for the scalar case of an embedded continuous time stochastic model

with discrete time data in Section 6.5.

The design of D-optimal experiments for the system considered in this

section is discussed in (Sadegh, 1993). In his study, though, the in
uence

of the external climate, (Te), is neglected. By assuming a large experiment

time and a power constrained input power, the results of Section 6.3 apply.

The design can be formulated as an optimization problem,

min
�1;:::;�n;!1;:::;!n

f(�1 ; : : : ; �n;!1; : : : ;!n) (7.49)

nX
i=1

�i = 1

0 � �i � 1 i = 1; : : : ; n

0 � !i �1 i = 1; : : : ; n

with the cost function

f(�1; : : : ; �n;!1; : : : ;!n) = � log det[
nX
i=1

�i �MF(!i)] (7.50)

where !i is the single frequency and �i is the power proportion of that

frequency. It turns out, from geometrical considerations, that an optimal

design exists comprising not more than n = 2 sinusoids for this case. The

optimal frequencies are !1 = 0h�1 and !2 = 0:5h�1, with power propor-

tions �1 = 0:813 and �2 = 0:187 respectively. The optimal design is shown

in Figure 7.10 below. The poles for the transfer function corresponding to

the test cell model are

p1 = �0:0184 p2 = �0:3300 ; (7.51)

which are also marked on Figure 7.10. It is seen that the rule of thumb, to

excite a system at the frequencies close to the eigenvalues of the system is
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Figure 7.10. The D-optimal input power distribution for the test cell model.
The optimal input signal comprises 2 sinusoids.

also valid here. There seem, though, to be some discrepancy between this

optimal design and conclusions of the previous simulation study, see Table

7.4. There may be more reasons for this di�erence. The experiment length

is about 9 times the largest time constant in the simulation study. For the

optimal design, in�nite experiment time is assumed. Another important

reason for the di�erence may be the sensitivity of the 2 sinusoids input

sequence to the speci�c choice of frequencies. It may seem that the sequence

sin3 is quite close to the optimal design, whereas the performance of this

sequence is not very good in the simulation study. The frequencies in sin3

are exactly at the poles of the system, while the frequencies of the optimal

design are shifted towards lower and higher frequency, c.f. Figure 7.10.



7.4 Identification of Passive Solar Components tested

in situ

The case that stimulated this work on physical modelling and grey-box

estimation is related to a CEC research project on identi�cation of thermal

characteristics of building components tested in situ. In Figure 1 is shown

a rough sketch of a test building used for testing the building components

which is placed as the south wall of the building. In this case the wall

to be tested consists of a lightweight insulated sandwich panel, provided

with a double glazed window. Also in Figure 7.4 is mentioned the main
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Figure 7.11. A cross section of the test building with an installed south
wall, here a lightweight component with a double glazed window in the
middle.

measured quantities, which includes Ttr;a, Ttr;s: internal air temperature

and surface temperature, respectively, Tsr;a: the air temperature of the

service room, Te;s, Te;a: the external surface and air temperature of the

test building, respectively, qh: the internal heat supply, and Gdif;v, Gdir;v:

global vertical di�use and direct solar radiation on south, respectively. The

total vertical global radiation is Gv = Gdif;v + Gdir;v. The solar angle of

incidence, �inc, is calculated from a physical model based on the ground

location and the time of the year.
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Figure 7.12. Some of the data series from the experiment. The unit
on the horizontal axis is hours. The holes in the series are missing
observations due to di�erent errors during data logging of the experi-
ment.

The procedure is �rst to perform a calibration experiment with a thick

opaque insulation panel replacing the test component and subsequently

identify the model of the test cell from this experiment. Then a second

experiment is performed with the test component installed, and by includ-

ing the information obtained from the calibration experiment it is possible

to extract information about the test component separately. One of the



questions to ask about this procedure is how to incorporate the infor-

mation from previous experiments in the estimation on the new data

in a proper way. One possibility, and the usual approach, is to �x the

previously estimated parameters in the total model of the test cell and

test component and estimate the remaining parameters. Due to the rather

high correlation between some of the inputs to the model, mainly between

the climate series, it is necessary that some of the parameters are �xed, in

order for the system to be identi�able. The parameters to �x have been

estimated from the calibration experiment, with an associated uncertainty.

If the uncertainty is small there is no problem with this approach, but

this is not always the case. Therefore a Bayesian approach is proposed,

where the prior information is speci�ed as a prior distribution function,

and hence accounts for the associated uncertainty of the parameters. Since

the parameters from the calibration experiment are ML estimates they are

approximately normally distributed, see Section 3.3.2. Thus the prior dis-

tribution is determined uniquely from the estimated parameters and their

associated covariance matrix. Then MAP estimates for the model are ob-

tained by maximizing (3.52) as in Example 3.1.

The model of the test building is mainly build up as an R-C network, of

heat resistors and heat capacitors by analogy with an electrical network.

This is basically a linear model which is a lumped model of the equations

for heat di�usion. The main structure of the model is shown in Figure

7.4. The top branch of the model in Figure 7.4 represents the east wall,

west wall, 
oor and roof test cell. The middle branch is the partition wall

between the service room and the test cell. In the calibration experiment

the parameters of these to branches of the model are estimated. The south

wall is then replaced by a calibration wall, which is highly insulated and

homogeneous. Thus, the heat 
ow through this wall can be measured by

a heat-
ow meter during the calibration experiment. In the calibration
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Figure 7.13. Network model of the test building with the installed test
component.

experiment there is no solar radiation entering the internal test cell surface

(the arrow on the top branch of the model). The parameters of these

two branches of the model can then either be �xed, or included as a prior

distribution function, when a MAP estimator is used for estimation based

on the new experiment.

The bottom branch of the network model in Figure 7.4 describes the heat

transfer through the test wall. The parameter Hpsc1 is �xed to some

prior expected value, expressing the prior expected conductance between

the middle of the test cell and the internal surface on the south wall.

f(Gdif;v; Gdir;v) is a nonlinear function describing the solar transmittance



through the window. The direct radiation is known to have a transmit-

tance which is dependant upon the angle of incidence of the radiation, due

to re
ection by the window. A theoretical expression for the direct trans-

mittance with relation to losses by re
ections for di�erent numbers of glass

covers is used as the basis for estimating the nonlinear relation for a real

window, which also includes a frame etc.

f(Gdif;v; Gdir;v) = AdiffGdif;v + AdirF(�inc; �eff)Gdir;v (7.52)

where Adiff and Adir are constants (to be estimated). F(�inc; �eff) is the

theoretical function for the direct transmittance dependent on the angle of

incidence and for �eff number of glass covers. The expression is plotted

in Figure 7.4. Theoretically the shape of the curve, in this case, should
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Figure 7.14. Theoretical direct transmittance w.r.t. losses by re
ections
for di�erent number of glass covers.

correspond to double glazing, but due to unmodelled boundary conditions,



(the frame etc.), the shape of the curve is estimated from the data. The

estimated number, �eff, may be considered as the e�ective number of glass

covers, which can take any positive real number.

The nonlinear model is compared to a linear model, which was used earlier

in the PASSYS project. For the linear model, the expression for the solar

transmittance is given by

f(Gdif;v; Gdir;v) = Atot(Gdif;v + Gdir;v) ; (7.53)

where Atot is some constant.

In addition to the linear R-C network in Figure 7.4 and the nonlinear

expression for the direct transmittance shown in Figure 7.4, the total model

of the system also contains a model for the noise. The noise model accounts

for the measurement noise on the inputs and outputs of the system, and

un-modelled dynamics. The inputs to the model are

uT = (Te;s Tsr;a Te;a qh Gdif;v Gdir;v �inc)
T : (7.54)

The outputs of the model are

yT = (Ttr;a Ttr;s)
T : (7.55)

The whole model can be put in the form of (4.25) and (4.26), described

in Section 4.1.4, with an additive noise term on the state vector and an

additive measurement noise on the output equation. We are then able to

estimate the parameters of the model, using e.g. CTLSM, see (Melgaard

& Madsen, 1993).



7.4.1 Results

From the overall model a number of characteristic physical parameters

are calculated, these include: UAtr;e, steady state overall thermal trans-

mission coe�cient between test room and outdoor surfaces, UAtr;sr, the

steady state overall thermal transmission coe�cient between test room and

service room, UApsc, steady state overall thermal transmission coe�cient

for the test component, gApsc, steady state overall solar transmittance, or

total solar heat gain factor of the test component, which is the ratio of heat

entering the test-cell caused by solar radiation on the component, divided

by the intensity of incident solar radiation on the component, CItr;e, in-

ternal test room heat capacity, i.e. the amount of heat which goes into the

test room-envelope as a result of a change from one steady state situation

to the same steady state situation except for the indoor temperature being

raised by 1 K, CItr;sr, similar for the partition to service room, and CIpsc,

similar for the test component.

Four situations of the estimation have been considered and compared.

�xed/ML versus MAP/ML estimates have been compared, and models

with or without the nonlinear function for the solar transmittance have

been compared. The main results from the four situations are shown in

Table 7.4.1 below. Beyond the estimated values of the characteristic pa-

rameters and their associated standard deviation in brackets, is also listed

the mean and variance of the one-step prediction errors, for the internal

surface temperature, Ttr;s, for the di�erent cases.

It should be mentioned that in all cases the estimated physical characteris-

tics are reasonable compared to the expected theoretical values, except for

UAtr;sr in both �xed/ML cases, in which the values are too low compared

to the theoretical values. The theoretical values, however, only covers one-



linear non-linear

Parameter �xed/ML MAP/ML �xed/ML MAP/ML

UAtr;e 7.826 8.265 7.826 8.294

[W=K] (0.096) (0.066) (0.096) (0.088)

CItr;e 2.045 1.976 2.043 2.000

[MJ=K] (0.045) (0.015) (0.045) (0.023)

UAtr;sr 1.001 2.096 1.001 2.170

[W=K] (0.148) (0.237) (0.148) (0.242)

CItr;sr 0.274 0.350 0.274 0.355

[MJ=K] (0.024) (0.006) (0.024) (0.009)

UApsc 6.047 5.885 5.917 5.735

[W=K] (0.044) (0.055) (0.049) (0.094)

CIpsc 0.136 0.153 0.116 0.119

[MJ=K] (0.006) (0.006) (0.009) (0.011)

gApsc 0.573 0.594 0.612 0.633

[m2] (0.006) (0.008) (0.004) (0.005)

�eff - - 3.391 3.401

- - (0.811) (0.340)

mean p.e. -0.0076 0.0016 -0.0054 0.0004

var p.e. 0.0151 0.0122 0.0131 0.0105

Table 7.6. Main results from the estimations.

dimensional heat loss; i.e. thermal bridges etc. are not taken into account.

The gA values can not be compared directly, because the linear cases con-

sider some mean value of the solar aperture, whereas in the non-linear

cases it is an angle dependant function, (the numbers are speci�ed for 25%

di�use radiation, and 45� angle of incidence for the direct radiation).

The di�erence in the estimated physical parameters from linear to non-

linear model is small, except for the gA value; but the inclusion of the



non-linear part has increased the capability of the model for prediction,

the variance of the prediction error has decreased about 13 % for both the

ML and MAP case. The larger di�erence is between the ML and MAP

approach. In the pure ML approach, a number of the parameters have

been �xed to the expected value estimated from the calibration experi-

ment, whereas in the MAP approach, all parameters are estimated with a

prior distribution determined by the calibration experiment. It is seen, that

the physical characteristics which are mainly determined by the calibration

experiment, i.e. UAtr;e and especially UAtr;sr have changed signi�cantly

from their prior expected value to their posterior expected value. This

means, that despite the fact that the inputs of exterior climate variables to

the model are rather high correlated, there is still enough information in

the new experiment to change these physical characteristics. Especially for

UAtr;sr it was only possible to obtain vague information from the calibra-

tion experiment, due to a badly excited input signal, Tsr;a, for that part

of the model. This fact was also con�rmed by visually plotting the inputs

for the calibration experiment. In the new experiment this input signal

has a better excitation. Still, though, this signal does not have a very

good excitation, compare Figure 7.12, for large parts of the experiment

Tsr;a = Ttr;a.

It has been shown that the proposed method and model are superior to

the earlier approach for modelling this system. This includes the use of

MAP estimation as a means of including the prior information about the

system, and the use of a nonlinear model for the solar transmission through

the window. A plot of the measured and simulated output from the model

gives an indication of the performance of the model, see Figure 7.15. Even

though the model seems to perform well with respect to simulated output,

it is still not perfect, which is clearly seen from a cumulative periodogram

of the residuals (the one-step prediction errors). A plot of the cumulative
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Figure 7.15. Plot of Ttr;s, measured (solid) and simulated from the
proposed model (dashed). The unit on the horizontal axis is hours.

periodogram for the residuals of the two outputs of the model is given in

Figure 7.16 below. From the cumulative periodogram it is seen that none

of the residual sequences will pass a white noise test. This is especially true

for Ttr;s. A closer look at the plot reveals that the curve for Ttr;s has some

well de�ned steps. These are located at the frequency of daily cycle and

the higher harmonics of this frequency. This could indicate that the model

of the transmitted solar radiation hitting the internal surface of the test

cell (
oor and wall) need further improvements. This may not be possible

with the current measurement setup. Either more temperature sensors are

needed at the inside surface of the test cell (where the sun hits the 
oor) or

it should be realized that Ttr;s can not be modelled by a one-dimensional

model of the test cell, when the test wall has a window.
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Figure 7.16. The cumulative periodogram of the residuals of the two
outputs of the model. The 95 % and 99 % con�dence limits for a
white noise test are depicted.

7.4.2 conclusion

The incorporation of prior information for system identi�cation has been

considered twofold in this case. First by considering a model structure

determined by a physical model of the system extended with a model of

the noise. The strength of this approach is demonstrated by an example of

estimation of physical parameters of building components, based on mea-

surements from the system. The second way of including prior information

is by the use of MAP estimation, where a prior distribution function of the

parameters is speci�ed and incorporated in the estimation. The example

demonstrates that this approach is a better way of including prior informa-

tion, than simply �xing certain parameters of a large model to their prior



expected values.

The Bayesian approach makes a nice frame for combining information from

previous experiments with new data. In this study it was demonstrated

speci�cally for the parameters of the partition wall (the middle branch on

Figure 7.4). In the calibration experiment the excitation of this part of

the model was pour, but when the uncertain information is combined with

the new data, the result is good also for this branch of the model. This

also means that identi�ability problems need not be very severe, because

the (vague) information can still be combined with information from new

experiments.

7.4.3 Future Experimental Setup

It has been realized that the current setup of the test cell with highly

insulated walls results in a system with a large time constant from the heat

transfer of the walls. Since the time constant of the internal heat dynamics

is short, the test cell is a sti� system. This makes the identi�cation of the

system more complicated and a long experiment duration is necessary.

For future setup of experiments a modi�cation of the test cell has been

proposed. On all the inside surfaces an extra layer is mounted with heat


ow meters and heating elements with a feedback control, thus working

like a pseudo adiabatic shell. This setup has a number of advantages, by

eliminating the long time constant of the test cell. The identi�cation is

more accurate and the experiment duration is much shortened (from 9

weeks to about 4 days).



7.5 Summary

In this chapter the use of physical modelling for identi�cation within the

PASSYS project has been demonstrated. The advantages compared to

traditional testing of building components is that full scale passive solar

components are tested under real, dynamic outdoor conditions and not

under some arti�cial laboratory conditions.

Di�erent aspects of the work of parameter estimation are discussed in the

chapter. First the use of lumped parameter models as approximations of

the heat di�usion equation is discussed. Then the estimation tool, CTLSM,

is validated by estimating the parameters from simulated sequences. It is

veri�ed that the program gives reliable parameter values and reliable uncer-

tainties of the parameters. Such a validation of the tool is very important

before using it on real data. In this way numerical approximations etc.

from the tool can be separated from modelling approximations applied to

real data.

A Monte Carlo approach is used to estimate the information from a certain

experiment. This approach is used to select the optimal input heating

sequence for the test room. It is found that if all the parameters of the

model is of equal interest then a certain PRBS sequence is the optimal

input. If, on the other hand, only the global thermal characteristics, like

UA and CI values are of interest then a very low frequency input, as a step

function gives the maximum information. Results from optimal design of

input sequence are also compared.

Finally CTLSM is used for the identi�cation of a real building component,

a light weight wall with a window. Di�erent approaches are compared and

a Bayesian approach is proposed as a means of combining the information



from previous experiments with new data. Furthermore a nonlinear (angle

dependent) model for the solar transmittance through the window is shown

to perform better than the previous linear model.



Chapter 8

Case #2 Car Engine

Compact engine models often consist of a set of nonlinear di�erential equa-

tions which predict the time development of the mean value of the engine

state variables and perhaps some other internal variable. Such models are

sometimes called mean value engine models, see e.g. (Hendricks, 1992).

In this chapter the identi�cation of a fuel 
ow submodel for a mean value

engine model is described. The experiments are conducted on a 1.1L spark

ignition (SI) Ford engine. The engine has a central fuel injection (CFI).

The fuel 
ow submodel is of speci�c interest because it has a large in
uence

on the fuel/air ratio during transient operation of the engine. Exact control

of the fuel/air ratio during transient operation is important for controlling

the pollutant emissions and fuel economy of the engine. A good model of

the fuel 
ow is needed in order to implement a feed-forward control on the

engine. This is much faster than feed-back control which is limited by an

un-avoidable delay through the engine.



8.1 Introduction

In spite of the large interest in identifying physical parameters of engines

there is very little work of this nature reported in the literature. This is

mainly because an engine is a nonlinear system which is even di�cult to

describe physically and it is a very noisy control object which requires the

use of statistical identi�cation techniques. These di�culties are re
ected

in the rather sparse collection of literature references in this area and in

the large variety of engine and engine model types treated in that which

is available. The models identi�ed range from very simple continuous or

discrete transfer function models to linearized continuous mean value en-

gine models. Mean value engine models are continuous dynamic models

which predict the mean value of important engine variables several engine

cycles. References to earlier work in this �eld are given in (Hendricks, 1992;

Melgaard et al., 1990; Hendricks & Sorenson, 1990).

8.2 Model Formulation

In order to successfully estimate parameters in a model of a dynamic sys-

tem, it is very important at the stage of experimental design to de�ne the

frequency ranges of the important dynamic engine subsystems. This is

necessary, since for practical estimation it is not possible to estimate si-

multaneously time constants which di�er too widely at the same time. In

the table below, the characteristic frequency ranges of the most important

SI engine subsystems are tabulated. For control and condition monitor-

ing applications the fuel 
ow and rotational dynamic subsystems are the

most important identi�cation objects. This is because the fuel 
ow dy-



engine subsystem subsystem bandwidth

temperature changes � 0.01 Hz

rotational dynamics � 0.2 Hz

fuel 
ow dynamics � 2 Hz

manifold �lling � 20-200 Hz

noise from crankshaft rotations � 20-80 Hz

noise pulses from piston � 30-170 Hz

noise from bearings, gear etc. � 400-600 Hz

Table 8.1. The characteristic frequency ranges of the most important
subsystems of a SI engine (Collacott, 1977, pp. 170{178).

namics are of great signi�cance for controlling the fuel/air ratio, �, while

the crank shaft dynamics determine an engine's drivability characteristics.

The crank shaft dynamics also re
ect the condition of the engine. In these

experiments we consider only warmed up engines, i.e. temperature e�ects

are ignored here.

_mfi

N

Intake manifold Exhaust manifold

Pman

_ma

_mfv

_mff�

BT

Engine
Load

�

Figure 8.1. Schematic block diagram of a CFI engine.

In Figure 8.1 a schematic block diagram of the CFI engine is given. The



relevant physical components and physical variables are indicated. These

are the fuel injector, providing the injected fuel 
ow, _mfi [g=s]; the throttle

plate, with an opening angle, � [deg]; the intake manifold, from where

the manifold air pressure, Pman [kPa], is measured; the engine, where the

energy contained in the air/fuel mixture by combustion is transformed into

kinetic energy (and heat), the crank shaft speed isN [rpm]; the load, which

is a dynamometer in this case, absorbs the kinetic energy and measures

the brake torque, BT [Nm]; the exhaust manifold, at the end of which an

oxygen sensor (= lambda sensor) is mounted to measure the fuel/air ratio,

�. The intake air mass 
ow, _ma, is measured before the intake manifold.

The fuel mass 
ows, _mfv and _mff, which denotes vaporized and fuel �lm

respectively, are not measured directly, but they are part of the fuel 
ow

model.

The fuel 
ow dynamic submodel for a CFI engine has been identi�ed in

the literature using classical identi�cation techniques, e.g. (Aquino, 1981).

For this study the model proposed by Aquino (1981) has been used as the

basic identi�cation object. The model is a semi-empirical representation

of the behavior of the fuel �lm in the intake manifold. In this case the

intake manifold is heated by the engine coolant to 80�C for a warmed up

engine. A block diagram of the fuel 
ow submodel is shown in Figure 8.2.

As indicated on the �gure, the injected fuel mass 
ow, _mfi, divides into

two contributions: a vapor phase mass 
ow, _mfv, and a liquid phase mass


ow, _mff, which is the fuel �lm. The proportion of the fuel which goes

into the 
uid phase is X 2 [0; 1] while the remaining proportion 1 � X is

entrapped in the air stream as vapor. The time constant which describes

the dynamics of the entrapment process is expected to be of the same

order as the manifold �lling dynamics, and is considered to be very fast

compared to the bandwidth of the fuel 
ow dynamics. The time constant,

�ff describes the mean evaporation time for the fuel �lm from the intake
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Figure 8.2. The fuel 
ow model. The constant kb is given by Lth= _ma,
where Lth = 14:67 is the mass ratio for stoichiometric mixture of the
fuel and _ma is the air mass 
ow.

manifold.

In order to complete the fueling dynamics submodel, a model for the dy-

namics of the lambda sensor must be given. A lambda sensor measures the

air/fuel mass ratio normalized with the ratio at stoichiometric conditions:

� = _ma=( _mfLth), where Lth = 14:67 is the mass ratio for stoichiometric

mixture of the fuel. The fuel/air equivalence ratio, � is given as the inverse

of �, i.e. � = ��1. The dynamics of the sensor is approximated by a �rst

order low pass �lter, with an expected time constant about 0.1 seconds

according to the manual. There is a delay time included in the model,

which is the time for the exhaust gases to pass through the engine and the

exhaust valves and down the exhaust pipe to the lambda sensor. The term

kb, which is given by kb = Lth= _ma accounts for the mixing of air and fuel

in the intake manifold. Since the air
ow is kept close to constant during

the experiment, kb is estimated as a constant value.



8.3 Measurement Setup and Experiment Design

The experiments were conducted on a four cylinder, four-stroke, 1.1L Ford

CFI engine mounted on an eddy current dynamometer. The engine was

fully equipped with sensors for all the relevant engine input and output

variables, these are the ones mentioned in connection with Figure 8.1 in

addition to Tman, the temperature of manifold, which is heated by the

coolant, and �, the spark advance angle, measured in degrees BTDC (before

top dead center). The air/fuel ratio was measured with a NGK Micro

Oxivision MO-1000 Air/Fuel Ratio Meter with its own linear O2 sensor.

All measurements on the engine were logged by a PC based data acquisition

system.

To keep the engine at the desired operating point during the experiment,

the engine was given constant input biases: injected fuel 
ow, ignition spark

angle BTDC and throttle angle. All experiments were conducted under

open loop conditions. For the dynamic experiments, a PRBS perturbation

was superimposed on the injected fuel 
ow signal. The minimum time

between switching of the PRBS was chosen to Tprbs = 0:5s, and the number

of stages was chosen as n = 6, then it should be possible to estimate time

constants in the approximate interval 0.05 sec to 6 sec. In order to avoid

aliasing e�ects, all the data logging channels are pre�ltered with identical

fourth order analogue �lters, with a bandwidth of 20 Hz. The sampling

frequency was selected as four times this bandwidth, i.e. Ts = 0:0125 sec.

Each experiment has 3000 observations, which is the storage limit for the

logging system. The intention is to select a number of operating points

in a speed-load map of possible operating conditions for the engine. It

should be remarked that an engine is di�cult to operate manually in open-

loop control, because only a limited deviation of the fuel/air ratio from



stoichiometric mixture is possible, and the spark angle must be adjusted

simultaneously when changing the operating conditions (speed and load)

of the engine.

8.4 Results

The state space formulation of the fuel 
ow sub-model including process-

and measurement noise is given by:"
d _mf(t)

d _mff(t)

#
=

"
�1=�s 1=�s

0 �1=�ff

#"
_mf(t)

_mff(t)

#
dt+"

(1� X)=�s
X=�ff

#
_mfi(t)dt +

"
dwf(t)

dwff(t)

#
(8.1)

where w(t) is assumed to be a Wiener process with incremental covariance

matrix

� =

"
�21;f 0

0 �21;ff

#
(8.2)

and _mf(t) is the fuel 
ow as measured by the lambda-sensor (except for

the pure time delay). The measurement equation is written

�(t +�t) = [kb 0]

"
_mf(t)

_mff(t)

#
+ e(t) (8.3)

where e(t) is the measurement error, assumed to be normally distributed

with zero mean and variance �22.

The experiment outlined in the previous section was carried out for dif-

ferent points in the normal engine operating region, for varying values of



the throttle angle and load. The maximum likelihood method is used for

estimating the parameters of the model. In Table 8.2 the results from esti-

mation on the di�erent experiments are summarized. The operating region

is indicated by the the throttle angle in degrees and the engine speed in

rpm. In all cases the engine is warmed up, and the intake manifold is heated

by the coolant at 80�C. Before making any conclusions on the estimated

parameters it should be veri�ed that the proposed model actually �ts the

measured data. By analyzing the residuals from the model it is con�rmed

that the model �ts the data nicely. The cumulative residual periodogram

for one of the data sets is shown in Figure 8.3. It is seen that the residuals

are close to white noise, and a Kolmogorov-Smirnov test for white noise

can not be rejected on a 5 % level (the dashed lines). This is also the

case for the other data sets in Table 8.2. A plot of the simulated fuel/air
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Figure 8.3. Cumulative residual periodogram for the fuel 
ow model
and data set s60g4, with 95 % con�dence limits.

equivalence ratio is compared with the measured ratio in Figure 8.4. This

plot also indicates that the model is a good representation of the data. It

is also seen that the measurements are quite noisy, and that the model is



able to handle this fact.

0 1 2 3 4 5 6 7 8 9 10s
0.9

0.95

1.00

1.05

1.10

..

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

..

.

.

....
.
.
.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

..

..
..
.
.
.

.

.

.

.

.

.

.

.

.

.

.

..
..

..
.
.
.

.

.

.

.

.

.

.

..

....
..

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

.

..

..
..

..

..
.
.
.

.

.

..

.

.

.

..

..

..

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

..

..

.

.

...

.

.

..

..

..
.
.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

..
.
.
.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..
.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

..
.
.

.

.

.

..

.

.

.

..

...

.

.

.

..

.

......................................................................................................................................................................................................................................................
........................................
.............
..............
.............
..............
.............
..............
.............
..............
.............
..............
..............
..............
.............
..............
..............
..............
........................................
.................................................................................................................................................................................................................................................
...................................
.............
..............
..............
.............
..............
.............
..............
.............
..............
...............
.............
.............
.............
..............
.............
....................................................
..................................
.......................................
.....................................
............................
...................................................................................................................

....................
..............................................................................................................................................................................................................................................................................................................

.................................................
..................................................
.............................................................................

..........................................................................................................
........................
.............
.............
..............
.............
..............
..............
.............
..............
.............
...............
...............
..............
.............
.............
..............
......................................................
.............
.....................................................................................................................................................................................................................................................

.........................................
.............................................................................................

..........................................................................................................................
.............
..............
.............
..............
..............
.............
..............
.............
..............
..............
..............
.............
..

�

Figure 8.4. The measured (dots) and simulated (line) fuel/air equiva-
lence ratio, �. Only the last part of the sequence is shown for the data
set s60g4.

Hence it has been veri�ed that the proposed model is a good representation

of the data for all the data sets. Then it will be investigated if and how the

variation of the parameters of the model are correlated with the di�erent

engine characteristics at the di�erent points of operation of the engine. In

order to obtain some idea of the correlation of the variables a multivariate

linear regression analysis was performed. The explanatory variables were,

the throttle angle, �, the engine speed, N, the manifold pressure, Pman,

and the air mass 
ow, _ma. The response variables were, the sensor time

constant, �s, the fuel �lm time constant, �ff, and the fraction of liquid

fuel, X. A method known as leaps and bounds is used, which is a general-

ization of the stepwise regressionmethods, by operating with all possible



subsets of the explanatory variables. The criterion is Mallow's Cp statistic,

measuring the residual mean square against the mean square for the total

regression, see e.g. (Weisberg, 1985).

First the variation of X, the fraction of liquid fuel, is investigated. From the

regression analysis it is concluded that the best model is obtained by using

N and Pman as explanatory variables. In order to visualize this correlation

the variables are plotted in a 3-D plot by interpolating a surface on the

observations, see Figure 8.5. The second best model is found for only one
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Figure 8.5. Interpolated surface of X as function of N and Pman.

explanatory variable, namely intake air mass 
ow. Figure 8.6 is a plot

of X versus the air
ow, the linear regression line is also drawn to show

the correlation. In the same plot is also shown the data from (Melgaard



et al., 1990), which were obtained from the same engine, but with a slightly

di�erent measurement setup. It is not expected that data from the two set

of experiments are the same, but they are just plotted for comparison. It
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Figure 8.6. The estimated fraction, X of the metered fuel 
ow entering
the puddle in the intake manifold, plotted against the air
ow. The
manifold is heated by coolant at 80 �C. The empty circles are data
from (Melgaard et al., 1990).

is seen that X is decreasing as the air 
ow increases. Other authors, (Wu,

Aquino, & Chou, 1983; Hendricks & Sorenson, 1990), have suggested that

X is dependent upon the opening of the throttle angle, but with increasing

X as the throttle angle increases. The theoretical argument is that there is

a spray e�ect on the edge of the throttle plate when the opening is small.

In Melgaard et al. (1990) this relation was also suggested, from estimation

in a slightly di�erent model, but based on measurements from the same

engine as in this case. The data from the previous paper has been analyzed

with the current model, and the resulting estimates are plotted as empty

circles in the �gures. When it is taken into account that there has been a

recalibration of all instruments between the two sets of experiments and the

di�erent experimental conditions etc. it must be concluded that there is a



good correspondence between the two batches. It is not expected, though,

that data are the same, and the old data are not pooled in the analysis, but

just plotted for a visual comparison. From the linear regression analysis

it is concluded, that a model of X based on � alone is among the worst

performing of possible models according to the criterion.

The observation of X being a decreasing function of the air 
ow is in good

connection with empirical observations of other authors, e.g. (Heywood,

1989; Kay, 1978). Through transparent sections of the intake manifold

Kay (1978) observed visually the presence of liquid fuel and puddles on

the manifold walls under di�erent operating conditions. They concluded

that the largest amount of liquid fuel was present at high engine loads and

low speeds, and at high engine speeds almost no fuel �lm could be detected.

This corresponds nice to our observations, compare Figure 8.5.

The correlation between the estimated time constants and the operating

region of the engine has also been investigated from the linear regression

analysis. The sensor time constant, �s, is modelled best from � and N. A

3-D plot of the interpolated surface of �s as a function of � and N is shown

in Figure 8.7 to indicate this correlation. It is seen that the sensor time

constant is largest for low speed and small opening of the throttle plate.

The second best model is with the sensor time constant as a function of

the intake air mass 
ow alone. The correlation is seen in Figure 8.8. It is

seen, that the time constant is decreasing when the air 
ow is increasing.

From a physical point of view this is an expected behavior for the lambda

sensor. The sensor is situated at the exhaust pipe, and the outer electrode

of the sensor is exposed to the exhaust gases, which have to pass through

a slotted shield to reach the electrode. It is obvious that this passing time

will decrease when the 
ow rate is increased.
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Figure 8.7. Interpolated surface of �s as function of � and N.

For the other time constant, �ff there seems not to be a very clear cor-

relation with the operating conditions of the engine. There is, though, a

tendency of decreasing value of this time constant for increasing engine

speed, which is the best model from the linear regression analysis. A plot

of �ff as a function of N together with the regression line is given in Figure

8.9. The mean of the estimated values of the fuel �lm time constant is

��ff = 1:22 sec

This can be compared to (Heywood, 1989, p. 319) where the time constant

is said to be of the order of 1 second for typical manifold conditions.
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Figure 8.8. The estimated time constant of the oxygen sensor �s in
seconds plotted against the air
ow.

The estimated time delay, �t, which represents the time lag from the

intake ports and down the exhaust pipe to the lambda sensor is expected

to be correlated with the mass 
ow through the engine. In Figure 8.10

the time lag is plotted versus the intake air mass 
ow. From physical

considerations it is expected that the time delay can be modelled as a

function proportional to the inverse of the air mass 
ow, which is indicated

by the dashed line in the �gure.

All the results from the linear multivariate regression analysis shown in the

plots in this study have signi�cant parameters in their models. Only the

plots are given here, and not the individual values of the parameters. The

number of experiments in the possible operating region of the engine is still

to small to give the exact functional relations between the variables, and

therefore only the linear correlation between the variables is considered in

this study.
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Figure 8.9. Linear regression of �ff as a function of N.

It can be seen from Table 8.2 that the variances of the noise terms in

the model have some variation between the di�erent experiments. When

looking at the plots of the signals from the di�erent experiments this fact

becomes quite clear. The shape of the signals is di�erent from one experi-

ment to the other due to the di�erent operating conditions of the engine.

High speed will give a di�erent noise in the signals than low speed etc. Fur-

thermore the engine is very sensitive to the correct settling of the ignition

spark angle. If this is not correct, the engine may be \knocking", which

cause a large noise on the signals.
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Figure 8.10. The estimated 
ow transport delay, �t from the injector
to the oxygen sensor in seconds plotted against the air mass 
ow.

8.5 Conclusions

In this study, the methods for grey-box identi�cation have been used to

identify an important submodel of an SI engine. The fuel 
ow model is

of great importance especially for feed-forward control purposes because

it has a large in
uence on the air/fuel ratio at transient operation of the

engine. It has been possible to estimate the parameters of the model from

measurements on the 1.1L CFI engine in a wide range of the realistic op-

eration conditions for a warmed up engine.

Using these statistical methods it has been possible to verify some expected

behavior of the model and getting insight to some more or less unknown

behavior, e.g. the variation of liquid fuel fraction, X on a speed-load map

of the engine. It was also possible by this method, to take into account

the sometimes large and di�erent levels of noise at the di�erent operating



conditions of the engine.
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Table 8.2. Summarize of the experiments. The numbers in brackets are
the corresponding standard deviations. The units of the two process
variances are [g2=s2].



�le Pman[kPa] _ma[g=s] _mfi[g=s] � BT[Nm]

s20g2 39.49 6.89 0.4385 0.9314 17.43

s30g1 45.67 17.07 1.1072 0.9498 14.04

s30g4 83.56 12.56 0.8546 0.9962 59.73

s40g2 70.26 33.09 2.3097 1.0220 28.54

s40g3 77.15 29.00 1.9932 1.0062 48.55

s40g4 93.25 18.03 1.2428 1.0092 71.85

s50g3 85.36 36.48 2.4197 0.9710 47.11

s50g4 95.58 19.69 1.3654 1.0154 73.01

s60g4 97.08 22.91 1.5819 1.0108 73.88

s70g4 98.06 23.48 1.6209 1.0107 74.72

s80g4 98.45 21.92 1.5064 1.0060 72.09

Table 8.3. Summarize of the experiments.





Chapter 9

Conclusion

In this thesis a number of aspects of identi�cation of physical models have

been considered.

It is argued for that physical models often can be formulated inside the

framework of stochastic di�erential equations. By this formulation of the

dynamical system, the physical understanding of the model and its param-

eters is preserved. At the same time the inevitable noise of a real world

system may be included in the model description.

This approach for modeling of dynamical systems has some advantages

compared to traditional black box modeling. The a priori knowledge is

more easy incorporated in the model identi�cation in terms of the model

structure and a priori knowledge of the parameters. The physical knowl-

edge is also used in the validation of the estimated model.

The thesis describes the di�erent steps to be taken for identi�cation of



dynamical systems, when prior information is available and included in

the identi�cation:

� Design of the experiment. There are di�erent levels for including the

prior knowledge in the design.

� Choose the estimator for the parameters of the model. Mainly the

maximum likelihood method has been considered, but the MAP esti-

mator can also be useful for combining prior information with data.

� De�ne the class of model structures to consider, and select the cor-

responding state �lter, which will produce the residuals for the es-

timator. (Unfortunately only a limited number of state �lters are

implemented at the time of writing this).

� Model validation. Many of the methods are closely related to the

validation techniques for black box models, but the prior informa-

tion about model structure and parameters is also included in the

validation of the model.

The main drawback of this approach is the computational e�orts involved.

The estimation of parameters of stochastic di�erential equations from dis-

crete observations is not a simple task, not even in the linear case. A

thorough implementation of the numerical calculations involved is neces-

sary, in particular the implementation of the predictor is important.

The methods of physical modeling have been applied to two di�erent case

studies. The �rst case is the determination of global thermal characteristics

for building components, tested in situ.

First the use of lumped parameter models for approximating the heat dif-

fusion equation is discussed. Then a way of validating the estimation tool



is proposed, by which it is possible to test the bias and uncertainty of the

estimated parameters. Such a validation of the tool is important, especially

when it is going to be applied for estimation of lumped parameter models

of buildings, because they are often described as a sti� system. When es-

timating sti� systems it is important that the numerics of the program is

handled properly.

Then a Monte Carlo method is used for estimating the information matrix

for a given choice of input sequence. The approach is used to select the

optimal input among a number of candidates, from a given criterion based

on the information matrix. It is concluded that the weighting of the im-

portance of the individual model parameters has a large in
uence on the

optimal choice of input sequence. If all the parameters of the model are

equally weighted, then a certain PRBS is the optimal choice. If only the

global thermal characteristics is important then a low frequency input, like

a step input, is the optimal choice.

Finally the global thermal parameters are estimated for a light weight wall

with a double glazed window. The use of a Bayesian approach for combin-

ing the previous information with new data is proposed as an alternative to

the earlier approach of �xing parameters to their expected mean. The es-

timated parameters are found to be in good correspondence with expected

theoretical values.

The second case study is the modeling of an important process of a spark

ignition engine. A phenomenological model of the fuel 
ow including a fuel

�lm in the intake manifold has been proposed in the literature. A good

model of the fuel 
ow is important for controlling the air/fuel ratio under

transient conditions. In particular when a feed-forward control should be

applied. Although it appears that fuel �lms may have an appreciable in-




uence on engine operation, attempts to quantitatively characterize that

in
uence apparently have not been undertaken. By using stochastic dif-

ferential equations as the basis for the modeling, it has been possible to

use the proposed phenomenological model combined with a model of the

noise, which is indeed present for operating engines. It is concluded that

the proposed phenomenological model (combined with a model of the sen-

sor dynamics) �ts nicely to the measured data. The estimated models have

gained new information about the fuel 
ow behavior at di�erent operating

conditions of the engine.



Appendix A

Implementation and Numerics

All practitioners have realized that the theoretical development of an algo-

rithm is quite a di�erent thing than the implementation of the algorithm

on a computer. Important problems arise due to the �nite arithmetic in

the computer, which introduces a rounding error for every calculation with

real numbers. In certain cases these rounding errors will accumulate so the

solution could be misleading.

Even when a certain algorithm is chosen, there may be many algebraically

equivalent ways of performing the calculations. The di�erent ways of orga-

nizing the computations may have a substantial in
uence on the numerical

properties of the algorithm, such as:

� computing time,

� memory requirement,

� numerical accuracy and stability related to rounding errors,



� programming e�ort.

A software tool called CTLSM has been developed for estimation of pa-

rameters in linear or non-linear stochastic di�erential equations, based on

discrete time measurements, see also (Melgaard & Madsen, 1993). A large

part of the important numerical considerations involved in this implemen-

tation is discussed in this appendix in the following sections.

A.1 Matrix Computations

A general class of problems, which is closely related to both the Kalman

�ltering algorithm and the optimization, is to �nd the unique matrix X

which solves the least squares problem of minimizing

kB�AXk2 (A.1)

where A is a real m � n matrix of rank n, m � n, and B is a m � l real
vector.

Focus on an algorithm to solve (A.1) that minimizes the error on the solu-

tion X due to 
oating point operations, and of course with an eye on the

computer time and memory, as mentioned above.

The condition number of a matrix is a measure of the sensitivity of matrix

calculations to element perturbation. The condition number for the A-

matrix, corresponding to the L2-norm, is de�ned as

�(A) =
q
max�(ATA)=min�(ATA) (A.2)



where �(�) denotes eigenvalue. The solution to (A.1) is X = (ATA)�1ATB

when A has full rank. So generally when using t-digit binary arithmetic,

it is not possible to obtain even an approximate solution to (A.1) unless

�(A) � 2t=2 (A.3)

since �(ATA) = �2(A) see e.g. (Bj�orck, 1967). WhenA is n�n and has full

rank the solution could be written X = A�1B and the limit corresponding

to (A.3) would now be

�(A) � 2t (A.4)

If further A is positive de�nite (PD), it is possible to perform a factorization

A = SST, where S is a square root of A, see e.g. (Bierman, 1977). In the

latter case the solution can be written X = S�TS�1B, and in this case the

limit on A would be

�(A) � 22t (A.5)

The accuracy of the solution, of course depends on the actual method

used. One conclusion to these considerations is, that it is important to

be aware of the type of the A-matrix and to use an algorithm �t for that

type. If we e.g. are dealing with a PD matrix and want to �nd its inverse

through factorization, we will achieve accuracies that are comparable with

those given by a general method (i.e. no factorization) that has twice the

numerical precision of the factorization algorithm.

Methods for solving (A.1) depending on the speci�c type of A, have been

widely discussed in the literature, e.g.



1. A is general m � n : Modi�ed Gram-Schmidt orthogonalization is

a good method, see (Bj�orck, 1967; Jordan, 1968).

2. A is square n � n : then Gaussian elimination is used (Jordan,

1968).

3. A is n�n and PD : methods based on Cholesky decomposition have

good performance, e.g. (Bierman, 1977).

PD matrices are important items in both the optimization algorithm and

the Kalman �lter, as Hessian and covariance respectively, so PD matrices

will be the subject for the next section.

A.1.1 PD matrices and Cholesky decomposition

If A is PD it can be decomposed as A = SST where S is a nonsingular

matrix. It is possible to constrain the matrix S to be triangular. Then

the decomposition is the Cholesky decomposition. A popular factorization

is known as LDLT factorization, also called square root free Cholesky

decomposition, see e.g. (Fletcher & Powell, 1974). In this case A is written

as

A = LDaL
T (A.6)

where L is unit lower triangular, and Da is diagonal. This factorization

avoids scalar square roots unlike the traditional Cholesky decomposition.



A.1.2 Updating of LDLT Factorizations

A problem with applications to both the Kalman �lter update and recur-

sions in quasi-Newton methods is how to modify a LDLT factorization.

Assume that an n � n PD matrix A is given in factorized form as (A.6),

we want to compute the modi�ed matrix

~A = A +GDgG
T (A.7)

where ~A is known from other considerations to be PD, andDg is a diagonal

matrix. Thus it is necessary to compute a unit lower triangular matrix ~L

and a diagonal matrix ~D with ~di > 0 such that

~A = ~L ~D~LT (A.8)

Di�erent authors have treated this problem, and some relevant references

are found in e.g. (Fletcher & Powell, 1974) and (Thornton & Bierman,

1980). It can be shown that the solution to (A.7) is equivalent to performing

some orthogonalization methods normally used for the least-squares prob-

lem (A.1). The basic idea for solving (A.1) is to compute the factorization

A = QR, where Q is orthogonal i.e. QTQ = I and R is upper triangular.

Then minimizing (A.1) is equivalent to minimizing kQTB�RXk2, which is
easily solved by back-substitution. Some wellknown algorithms of this type

are based on Householder, modi�ed Givens or modi�ed Gram-Schmidt or-

thogonalization, see (Golub & van Loan, 1983). Algorithms based on these

transformations have comparable accuracy and numerical stability, so dif-

ferences are basically in the number of computations and memory required,

see (Bj�orck, 1967; Jordan, 1968; Lawson & Hanson, 1974).

A method for solving rank one updates, that is (A.7) with Dg being a



scalar, using modi�ed Givens transformation is very thoroughly described

in (Fletcher & Powell, 1974) and the method is implemented as a FOR-

TRAN subroutine, code MC11A, which is in the Harwell Subroutine Li-

brary.

A method for solving (A.7) for a general Dg matrix, using modi�ed Gram-

Schmidt is described in (Thornton & Bierman, 1980). Their idea is to

set

W = [LjG] =

2664
w1
...

wn

3775 ; D = diag(Da;Dg) (A.9)

and to view the rows ofW as elements of a weighted inner product vector

space, with an inner product de�ned as

hwi;wji = wiDw
T
j (A.10)

One can then apply Gram-Schmidt orthogonalization to the row vectors of

W and obtain an array ~W, such thatW = ~L ~W , ~L is unit lower triangular

and

h ~wi; ~wji = ~Di�ij (A.11)

where ~wi and ~wj are row vectors of ~W, and �ij is the Kronecker delta.

The result of the construction is that

~A =WDWT

= (~L ~W)D(~L ~W)T

= ~L( ~WD ~WT)~LT

= ~L ~D~LT (A.12)



where ~D = diag( ~D1; � � � ; ~Dn). Thus ~L is the transformation of W to

"D-orthogonal" coordinates. The construction of ~L and ~D via a modi�ed

Gram-Schmidt orthogonalization are summarized below

LDL0-updating algorithm

~Dj = hw(j)
j ;w

(j)
j i

~Li;j = hw(j)
i ;w

(j)
j i= ~Dj

w
(j+1)
i = w

(j)
i � ~Li;jw

(j)
j

9=; i = j+1, � � � , n

9>>>=>>>; j = 1, � � � , n-1

~Dn = hw(n)
n ;w

(n)
n i

where the w-superscripts indicate that the original w vectors are written

over by the new ones in each iteration.

The modi�ed Gram-Schmidt orthogonalization is described by (Lawson &

Hanson, 1974); and (Bj�orck, 1967) and (Jordan, 1968) have investigated its

numerical characteristics. Their studies establish that the computed ~w vec-

tors are nearly orthogonal, and that the ~L basis transformation coe�cients

and the ~D vector are relatively insensitive to the e�ects of computer round-

o�. Their results establish that the modi�ed Gram-Schmidt algorithm has

accuracy comparable to that attained using Givens or Householder trans-

formation methods.

A.2 Optimization

A crucial point in any statistical analysis based on the maximum likelihood

method is concerned with the actual maximization of the likelihood func-

tion. In our case an explicit method does not exist, and the maximization

has to be found using a numerical method of iterative character.



The problem can also be formulated as to �nd the minimizing point of a

nonlinear function f : Rn!R
min
x
f(x) (A.13)

Among optimization methods, the Newton-Raphson's method is very ef-

fective when attainable. A minimum of f is found where g = @f=@x = 0.

The method is based on a Taylor expansion of g to �rst order

g(xn + h) = g(xn) +
@g

@x
(xn)h+ o(h) (A.14)

Putting g(xn + h) = 0 and neglecting o(h) the algorithm takes the form

sn = �H(xn)�1g(xn) (A.15)

xn+1 = xn + sn (A.16)

where the Hessian H = @2f=@x2 in the regular case is positive de�nite.

Since, in our case, we are not able to provide the optimization procedure

with the �rst and second partial derivatives of f(x), these will have to

be approximated by the algorithm. We have to use �nite-di�erence ap-

proximation to the �rst derivative g in (A.16), and we will use a secant

approximation Bn to the Hessian. The secant approximation is more e�ec-

tive and robust than a �nite-di�erence Hessian in the optimization. This

class of secant methods are called quasi-Newton, and the most successful

seems to be the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for it-

erative Hessian approximation combined with soft line search (Dennis &

Schnabel, 1983). The implementation of the minimization algorithm is an

extended and modi�ed version of the subroutine code VA13CD from the

Harwell Library (1989).



A.2.1 Finite-difference derivatives

In order to estimate the gradient, an obvious method is the forward dif-

ference approximation

gi(xn) ' f(xn + hiei) � f(xn)
hi

; i = 1; � � � ; n (A.17)

where ei is the ith basis vector, and the approximation having the error

o(hi) in the ith component. Although this forward di�erence approxima-

tion in general is accurate enough sometimes central di�erences are useful

because of better estimates

gi(xn) ' f(xn + hiei) � f(xn � hiei)
2hi

; i = 1; � � � ; n (A.18)

which has error o(h2i ). The gradient computed with central di�erences

is more accurate than the gradient based on forward di�erences, but it

requires 2n rather than n evaluations of f assuming that f(xn) is already

available.

The optimal choice of step size for the well-scaled case is for the forward

di�erences

hi = �
1=2xi (A.19)

where � � �m is the relative error in calculating f(x) and �m is the machine

epsilon (which is the smallest positive number such that 1+�m > 1 on the

computer in question), and for the central di�erences

hi = �
1=3xi (A.20)

see (Dennis & Schnabel, 1983). The optimal step size is of course the

balance between minimal truncation error and rounding errors. The trun-



cation error vanishes as hi!0 but because of �nite precision arithmetic

the rounding error then will grow.

Usually the forward di�erence will provide approximate gradients of accept-

able accuracy unless kg(x)k is small. Since the gradient approaches zero at

the solution of an unconstrained problem, this means that the gradient ap-

proximation should switch to the (more expensive) central di�erence when

coming closer to the optimum. The switch should be e�ectuated when the

line search (see Section A.2.3) fails in �nding a lower point. This tends to

happen only when the relative error in the overall gradient vector, based

on �nite di�erences, becomes too large (Gill, Murray, Saunders, & Wright,

1983).

A.2.2 BFGS-update

The most e�ective secant approximation Bn to the Hessian in (A.16) is the

BFGS method (Dennis & Schnabel, 1983)

Bn+1 = Bn +
yny

T
n

yTnsn
� Bnsns

T
nBn

sTnBnsn
(A.21)

where yn = g(xn+1) � g(xn) and sn = xn+1 � xn. The necessary and

su�cient conditions for this formula to have a positive de�nite solution

Bn+1 is that Bn is positive de�nite and

yTnsn > 0 (A.22)

The soft line search will meet this last demand. Since the Hessian is sym-

metric and positive de�nite we prefer to write it in terms of its Cholesky



factors (square root free)

Bn = LnDnL
T
n (A.23)

with Ln lower triangular and Dn diagonal. Instead of actually calculate

and factor (A.21) at each iteration, the Cholesky factorization of Bn can

be updated using the QR scheme mentioned in Section A.1.2.

A.2.3 Soft Line Search

The idea of the soft line search is to choose a �n > 0 for

xn+1 = xn + �nsn (A.24)

to assure that the next iterate decreases f(x) su�ciently and that the con-

dition (A.22) is satis�ed. sn is the secant direction obtained from (A.16)

with the BFGS update of the Hessian, this step will always be a descent

direction: g(xn)Tsn < 0. Often �n = 1 will satisfy the demands, so that

the line search method reduces to the secant method (A.16).

It has been shown that the line search will be globally convergent if each

step satis�es two simple conditions. The �rst is that the decrease in f(x)

is su�cient in relation to the length of the step s0n = �nsn; the relation

f(xn+1) < f(xn) + �g(xn)
Ts0n (A.25)

where � 2]0; 1[ is some constant, is chosen to implement this condition.

The second condition is that the step is not too short. The equation

g(xn+1)
Ts0n � �g(xn)Ts0n (A.26)



where � 2]�; 1[ will implement this condition. This last expression and

g(xn)
Ts0n < 0 imply

yTns
0
n = (g(xn+1)� g(xn))Ts0n � (�� 1)g(xn)Ts0n > 0 (A.27)

which is the condition (A.22).

A.3 Kalman Filter

For linear models the Kalman �lter provides the exact solution for the

�ltering problem discussed in Chapter 4, see e.g. (�Astr�om, 1970). The

equations for the Kalman �lter are given in Section 4.1.4 but is repeated

below. The routine calculates the conditional mean ŷkjk�1 and the con-

ditional variance Rkjk�1 to be used for the estimation. The Kalman �lter

performs the optimal (minimum variance) linear updating and prediction

of the state variables. If the model is time invariant the model can be dis-

cretized before �ltering. If the time dependency is weak compared to the

dominating eigenvalues of the system, this implementation of the Kalman

�lter may also be used for time varying systems, by discretizing the con-

tinuous model at each sampling instant, assuming that A, B and G are

constant within the sampling interval.

For the discrete time model speci�ed in Section 4.1.4 the equations for

updating the estimate of the state x becomes

x̂kjk = x̂kjk�1 + Kk(yk � ŷkjk�1) (A.28)

Pkjk = Pkjk�1 �KkRkjk�1KTk (A.29)



where Kk is given by

Kk = Pkjk�1CTR�1kjk�1 (A.30)

The formulas for prediction becomes

x̂k+1jk =�x̂kjk + �uk (A.31)

ŷk+1jk = Cx̂k+1jk +Duk+1 (A.32)

Pk+1jk =�Pkjk�T +� (A.33)

Rk+1jk = CPk+1jkCT + S (A.34)

The formulas require some initial values, which describes the prior knowl-

edge about the states of the system in terms of the prior mean and variance

x̂1j0 = �0 and P1j0 = V0. The matrix Pk+1jk is the variance of the one-step

prediction of the state, x, of the system.

It is well known that the Kalman �lter in some situations is numerically

unstable. The problems arise when some of the variances, because of round-

ing errors, become non-positive de�nite. Therefore careful handling of the

equations for the variances (A.29), (A.30), (A.33) and (A.34) is needed in

order to numerically stabilize the Kalman �lter. Since all variances should

be symmetric and positive de�nite, it is desirable to use their Cholesky

factorization. We use the LDLT-factorization, i.e. the square root free

Cholesky decomposition, where L is unit lower matrix and D is diagonal.

An equation for updating a factorized matrix is

~A = A +GDgG
T (A.35)

where ~A is known from other considerations to be positive de�nite, and

Dg is a diagonal matrix. Thus, it is necessary to compute a unit lower



triangular matrix ~L and a diagonal matrix ~D with ~di > 0 such that

~A = ~L ~D~LT (A.36)

Algorithms to solve this problem are outlined in Section A.1.2. It is obvious

that equation (A.33) and (A.34) easily are brought into this form. Equation

(A.29) can be rewritten as

Pkjk = Pkjk�1 �KkRkjk�1KTk ,
Pkjk = Pkjk�1 � Pkjk�1CTR�1kjk�1CPTkjk�1 ,

~L ~D~LT = LDLT � LDLTCT(LrDrLTr )�1C(LDLT)T ,
~L ~D~LT = L(D �GD�1

r GT)LT (A.37)

where

G = DLTCTL�Tr (A.38)

The expression (D�GD�1
r GT) in (A.37) are in the form (A.35), and can

thus be solved for the factors �L �D�LT, and we have ~L = L�L and ~D = �D.

This implementation of the Kalman �lter is able to handle the multiple-

input, multiple-output case with a high degree of accuracy and stability,

see e.g. (Bierman, 1977).

A.4 Extended Kalman Filter

Let the model be described by the stochastic di�erential equation

dxt = f(xt;ut; �; t)dt+G(�; t)d�t (A.39)



with � being a standard Wiener process. The observations yk are taken

at discrete time instants, tk

yk = h(xk;uk; �; tk) + ek (A.40)

where e is a Gaussian white noise process independent of �, and ek �
N(0;S(�; tk)). In this case the extended Kalman �lter is used as a �rst

order approximative �lter. Being linearized about x̂t the state and covari-

ance propagation equations have a structure similar to the Kalman �lter

propagation equations for linear systems. Hence, we are able to reuse the

numerical stable routines implemented for the Kalman �lter from the pre-

vious section.

The necessary modi�cations of the equations in the previous section are the

following. The matrix C is the linearization of the measurement equation,

C(x̂kjk�1;uk; �; tk) =
@h

@x

��
x=x̂kjk�1

; (A.41)

and A is the linearization of the system equation,

A(x̂t;ut; �; t) =
@f

@x

��
x=x̂t

; (A.42)

and � is the discrete system matrix calculated as a transformation of A,

see the following section. The prediction of the output, Equation A.32, is

replaced by

ŷk+1jk = h(x̂k+1jk;uk+1; �; tk+1) (A.43)

The formulas for prediction of mean and covariance of the state-vector are

normally given by,

dx̂tjk=dt = f(x̂tjk;ut; �; t)) ; t 2 [tk; tk+1[ (A.44)



dPtjk=dt = A(x̂tjk;ut; �; t)Ptjk + PtjkAT(x̂tjk;ut; �; t)

+G(�; t)GT(�; t) ; t 2 [tk; tk+1[ (A.45)

where A is given by (A.42). In order to make the integration of (A.44)

and (A.45) computational feasible and numerically stable for sti� systems,

the time interval [tk; tk+1[ is sub sampled and the equations are linearized

about the state estimate at the given sub sampling time. For the state

propagation the equation becomes

dx̂t=dt = f(x̂j) +A(x̂j)fx̂t � x̂jg ; t 2 [tj; tj+1[ (A.46)

= A(x̂j) x̂t + ff(x̂j)�A(x̂j) x̂jg ; t 2 [tj; tj+1[ (A.47)

where [tj; tj+1[ is one of the sub intervals of the sampling interval [tk; tk+1[,

assuming the sampling interval has been divided in ns sub intervals. In

these derivations only the state dependency is mentioned for clarity. Equa-

tion A.47 is a linear ordinary di�erential equation which has the exact

solution

x̂j+1 = x̂j + (eA(x̂j)�s � I)(A(x̂j)�1f(x̂j)) (A.48)

= x̂j + (�s(x̂j) � I)(A(x̂j)�1f(x̂j)) (A.49)

where �s = tj+1 � tj = �=ns, and � is the sampling time. E�cient algo-

rithms to calculate the matrix exponential in (A.48) is described in the next

section. Correspondingly the equation for the state covariance becomes

Pj+1 =�s(x̂j)Pj�s(x̂j)
T +�s(x̂j) ; (A.50)

which is similar to (A.33). The algorithm to solve (A.44) and (A.45) is use

x̂kjk and P̂kjk as starting values for (A.49) and (A.50) and then perform

ns iterations of (A.49) and (A.50) simultaneously. This algorithm has the

advantage of being numerically stable for sti� systems and still computa-

tionally e�cient, since the fast and stable routines of the linear Kalman

�lter can be used.



A.5 Discretizing the Model

When using the Kalman �lter from the previous sections we need to dis-

cretize the model either once for a given set of parameters, for time invariant

models or at each sampling instant, or more frequently, for time invariant

models and for the extended Kalman �lter. Hence we need to calculate the

following quantities in an e�cient way

�(�) = eA� ; �(�) =

Z �
0

eAsBds ;

�(�) =

Z �
0

�(s)GGT�(s)T ds

(A.51)

where � is the sampling time, i.e. we need to calculate the exponential of

a matrix and integrals involving the matrix exponential.

A.5.1 Matrix Exponential

An approach, which has proven to be very successful for calculating exp(A)

uses diagonal Pad�e approximation with repeated squaring, see (Moler &

van Loan, 1978). The estimation of the matrix exponential is given by

eA =
�
Rqq(A=2

j)
�2j

; q; j � 0 (A.52)

where Rqq(z) is the (q; q) Pad�e approximation to exp(z)

Rqq(z) =

Pq
k=0 ckz

kPq
k=0 ck(�z)k

; ck =
(2q� k)!q!

(2q)!k!(q� k)! (A.53)

The scaling by 2j followed by the repeated squaring greatly enhances the

numerical properties of ordinary Pad�e approximation (Moler & van Loan,



1978). Usually j is chosen as the smallest nonnegative integer such that

kAk=2j � 1=2, where k � k denotes the Frobenius norm

kAk =
�X
i

X
j

jAijj2
�1=2

(A.54)

Other norms are possible, but the Frobenius norm is convenient for both

practical and theoretical reasons. According to Moler & van Loan (1978)

the resulting algorithm is one of the most computationally e�cient.

A.5.2 Integrals Involving Matrix Exponentials

The most e�ective way to calculate the integrals involved in (A.51) is by

computing the exponential of a certain block triangular matrix and com-

bining the resulting sub matrices. The principle and algorithms for the

calculation are given in (van Loan, 1978), where the method is also com-

pared with alternative techniques, e.g. Simpson integration.

By calculating the exponential of the following block triangular matrix

exp

0@24 �A R 0

0 AT I

0 0 0

35 �
1A =

24 F1(�) G1(�) H1(�)
0 F2(�) G2(�)
0 0 0

35 (A.55)

where R = GGT from (A.51), we are able to calculate the quantities of

(A.51) by simple algebraic operations. It can be shown that

�(�) = F2(�)
T (A.56)

�(�) = G2(�)
TB (A.57)

�(�) = F2(�)
TG1(�) (A.58)

see (van Loan, 1978). For calculation of the matrix exponential the Pad�e



approximation described in the previous section is used. However, in the

interest of e�ciency, the algorithm does not repeatedly square the matrix

Rqq(A=2j) as suggested by (A.52). Instead doubling formulas for the terms

(A.56), (A.57) and (A.58) are repeatedly exploited, see (van Loan, 1978).

The resulting algorithm for calculating the integrals of (A.51) is very e�-

cient and superior to other algorithms concerning computational speed as

well as accuracy according to van Loan (1978).

A.6 Random Number Generation

For applications of stochastic simulation sequences of pseudorandom num-

bers are needed. Usually they are generated by a deterministic algorithm

which produces a sequence of numbers that behave as a realization of a

sequence of independent identically distributed random variables having a

uniform distribution on the unit interval. In a second step these standard

pseudorandom numbers are transformed to �t some other distribution, e.g.

the Gaussian distribution, (Devroye, 1986). It is very important to be

aware of the algorithm calculating the random numbers, because they are

the foundations of our simulations. \Often problems on higher levels are

traced back to faulty foundations", (Ripley, 1987).

Most frequently pseudorandom numbers are generated by the linear con-

gruential method, which is de�ned by

xi � (axi�1 + b) modm (A.59)

for a multiplier a, a shift b, and modulus m, all integers. If b = 0 the gen-

erator is called multiplicative congruential. The pseudorandom sequence



fuig, taking values in [0; 1], is determined by ui = xi=m once the seed x0

is chosen. For the purpose of obtaining as large a period length as possible,

m should be chosen large. Since the generated sequence fuig is periodical
with period length � m, the parameters a and b should be chosen, so

the generator achieves its maximum period length. The maximum period

length for a multiplicative congruential generator is m� 1.

If we consider the k-tuples (ui; � � � ; ui+k�1) from the generator, as points in

the hypercupe [0; 1]k, then can be shown that the k-tuples from a maximal-

period linear congruential generator will always lie on a �nite number of

hyperplanes in [0; 1]k, see (Ripley, 1987, chapter 2). In order to obtain

a generator which \behaves" su�ciently randomly the parameters a and

b should be chosen, such that the sequence of points (ui; � � � ; ui+k�1)
does not concentrate on too few hyperplanes, for reasonable dimensions

k = 2; 3; 4 and preferably for k � 10, i.e. the k-tuples are as uniformly

distributed as possible in [0; 1]k for these dimensions, recommended by

Ripley (1987, p. 45). Various measures of the \granularity" of the lattice

generated by the hyperplanes, have been developed. One method is to

measure the maximum distance between the hyperplanes. This distance

should be as little as possible for a good generator. Another way of ana-

lyzing the lattice structure is by calculation of a basis of shortest vectors

e1; e2; � � � ; ek. The unit cell of the lattice is de�ned as e1 being the shortest

nonzero vector in the lattice, e2 as the shortest vector independent of e1,

e3 as the shortest vector independent of e1 and e2, and so on. Hence we

have that ke1k � ke2k � � � � � kekk, and the Beyer ratio qk = ke1k=kekk
measures the \uniformity" of the lattice. One is interested in generators

with qk close to one, for reasonable dimensions, k. Procedures to calculate

these lattice constants for congruential generators may be found in (Ripley,

1987).



As a generalization of the linear congruential method Knuth (1981) intro-

duced multi-recursive generators

xi � (a1xi�1 + � � �+ arxi�r) modm (A.60)

for recursion depth r and modulus m. The maximum period length of this

generator is mr � 1. If we con�ne the modulus in (A.60) to m = 2, it is

very easy to implement by the use of a shift register, hence the algorithm

is called a shift-register generator.

Both the linear congruential method of (A.59) and the generalized method

(A.60) su�er from the lattice structure described above. In an attempt to

get rid of the lattice structure of the generators, the inversive congruential

method have been introduced, see (Lehn, 1991). It is de�ned by

xi � (a�xi�1 + b) modm (A.61)

where m is a prime modulus, the starting value x0 as well as the coe�cients

a and b are integers between 0 and m�1. �x is de�ned in the following way:

for any x 2 f1; 2; � � �;m�1g there is exactly one �x 2 f1; 2; � � �;m�1g where
x�x = 1 modm. Together with �0 = 0 this de�nes �x. In (Lehn, 1991) is given

an algorithm for calculating �x, witch asymptotically need O(logm) steps

of iteration. Therefore, the generation of inversive congruential pseudoran-

dom numbers takes more time than is needed with the linear congruential

method. The inversive congruential method do not create a lattice struc-

ture as the linear congruential methods, and have in this sense a behavior

closer to truly random numbers, see (Lehn, 1991).

A number of statistical tests exists, which can be applied to a sequence

of the output (u1; � � � ; un) from a pseudorandom generator. The relevant

tests for random number generators include tests for independence, e.g.



gaps test, runs test and permutation tests, see (Ripley, 1987), others may

be found in (Brockwell & Davis, 1987; Kendall & Stuart, 1979), and tests

for uniformity, e.g. Kolmogorov-Smirnov test for distribution, see (Kendall

& Stuart, 1979). The theoretical tests (Beyer ratios etc.) discussed earlier

have been found to be more powerful than statistical tests in the sense that

\good" generators by the theoretical criteria have been found to fail the

statistical tests no more often than would be expected by chance. Never-

theless it is always worth conducting some empirical tests to check that the

generator has been implemented correctly, following Ripley (1987, pp. 43{

45).

Di�erent approaches of transforming the standard pseudorandom numbers

to some given non-uniform distribution is discussed in (Devroye, 1986).

From the pair (u1; u2) of independent random numbers, uniformly dis-

tributed on [0; 1] we have used the Box and Muller transformation:

(� ; r) = (2�u1 ;
p
�2 logu2) and (A.62)

(y1 ; y2) = (r cos � ; r sin �) (A.63)

for generating independent standard normal deviates (y1; y2).

A.7 Validation of The Estimation Tool - Predator/Prey

Relations

In order to validate the implementation of the estimation tool and specif-

ically the extended Kalman �lter, an example using a nonlinear model is

considered. The example is a classical type of nonlinear system describing

the temporal oscillations of a population of predators and their prey in a

localized geographic region. The prey population is denoted by N1(t) and



the predator population by N2(t). It is assumed that the growth rate of

prey, in the absence of predators, is aN1(t), while the predator multiplica-

tion rate is cN1(t)N2(t). Further, is is assumed that the loss rate of prey

is proportional to the numbers of prey and predators, i.e. loss rate of prey

equals bN1(t)N2(t), while the loss rate of predators equals their death rate

dN2(t). Putting together these assumptions, the dynamics of the preda-

tor - prey interaction are described by the deterministic Lotka-Volterra

equations

_N1(t) = aN1(t) � bN1(t)N2(t) ; (A.64)

_N2(t) = cN1(t)N2(t) � dN2(t) ; (A.65)

where a, b, c and d all are positive constants. The point N�
1 = d=c,

N�
2 = a=b is the only nontrivial equilibrium of the Lotka-Volterra system.

If the initial condition (N1(0); N2(0)) 6= (N�
1; N

�
2) , the trajectory of the

system is a closed orbit as depicted in Figure A.1. In the �gure, the tra-

jectory is moving anti-clockwise. Thus, for any given initial condition, the

populations of predator and prey will oscillate cyclically. Neither species

will die out, nor will it grow inde�nitely. Furthermore, except for the im-

probable initial state (N�
1; N

�
2), the populations will not remain constant.

The deterministic Lotka-Volterra model is modi�ed in order to give a more

likely picture of a real world system. It is assumed that the rate of change

of each population is in
uenced by an additive random term representing

the e�ect of other factors not included in the model, such as other predators

in the food chain and weather variables. This results in a stochastic Lotka-

Volterra model

dN1(t) = (aN1(t) � bN1(t)N2(t))dt + �1d�1(t) ; (A.66)

dN2(t) = (cN1(t)N2(t) � dN2(t))dt + �2d�2(t) ; (A.67)

where �1(t) and �2(t) are mutually independent standard Wiener pro-
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Figure A.1. Phase-plane of the deterministic Lotka-Volterra system.

cesses and �1 and �2 are positive constants giving the levels of the noise.

If we are able to observe the populations, by measuring the system at given

time instants, the measurements are assumed to by in
uenced by a random

error, i.e. the measurement equation is

N1;m(tk) = N1(tk) + �1;me1(tk) ; (A.68)

N2;m(tk) = N2(tk) + �2;me2(tk) ; (A.69)

where e1(tk) and e2(tk) are standard Gaussian white noise and �1;m and

�2;m are positive constants giving the levels of the noise. An example of the

measurements of such a system is simulated, using stochastic simulation,

and the timeseries of measured populations are shown in Figure A.2. In this

example the following dimensionless variables were chosen, a = 10, b = 1,

c = 2, d = 10, �21 = �
2
2 = 0:3, �

2
1;m = �22;m = 0:03, and the sampling time,

Ts = 0:005, and initial populations, (N1(0); N2(0)) = (2; 5). A phase-plane
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Figure A.2. Timeseries plot of the populations N1 and N2 for the
stochastic Lotka-Volterra system.

of the same realization as in Figure A.2 is shown in Figurelv-stoc2. The

qualitative structure of the trajectory is the same as for the deterministic

system and it is still a stable oscillating system.

For the purpose of validating the estimation software, in this case is CTLSM

(Melgaard & Madsen, 1993), and speci�cally the extended Kalman �lter

implementation, 50 sequences of stochastic independent realizations of the

system was simulated. Each sequence with the length of 500 observations

of the populations. In Table A.1 the results from estimation of the param-

eters of the model from the 50 series are summarized. For all parameters,

the mean of the estimated values are given, which can be compared to the

simulated values. Also the empirical variance and the mean of the esti-

mated variances of the parameters are given. A comparison of these values
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Figure A.3. Phase-plane of the stochastic Lotka-Volterra system.

will indicate if the tool is able to estimate the right uncertainty of the pa-

rameters. The columns of the table are: xsim, the simulated values, �x, the

mean of the estimated values, s2x is the empirical variance of the estimated

parameters, �s2 is the mean of the estimated variance of the parameters,

F-stat. is an F statistic given by ZF = s2x=
�s2 and jtj-stat. is a t statistic

given by Zt = j�x� xsimj=(sxpne).

In order to verify if the variance of the parameters provided by the estima-

tion tool is equal to the empirical variance, one wish to test the hypotheses

H0 : s2x =
�s2

H1 : s2x 6= �s2 :

Under H0 we have in this case that ZF � F(49;1). The critical set for

this test is fz < F(49;1)�=2 _ z > F(49;1)1��=2g on level �. By choosing



Parameter xsim �x s2x
�s2 F-stat. jtj-stat.

a 10.000 9.985 8.568e-3 9.589e-3 0.8936 1.151

b 1.0000 0.9990 6.453e-5 8.267e-5 0.7805 0.914

c 2.0000 2.0012 1.253e-4 1.095e-4 1.1441 0.758

d 10.000 10.001 4.756e-3 4.481e-3 1.0614 1.446

N1(0) 2.0000 2.0066 5.426e-3 5.888e-3 0.9215 0.630

N2(0) 5.0000 5.0175 7.893e-3 5.902e-3 1.3373 1.393

�2
1

0.3000 0.2909 2.883e-3 3.529e-3 0.8169 1.196

�2
2

0.3000 0.2896 9.011e-3 7.981e-3 1.1290 0.773

�2
1;m

0.03000 0.02966 3.229e-6 3.855e-6 0.8377 1.346

�2
2;m

0.03000 0.03047 4.593e-6 4.184e-6 1.0978 1.534

Table A.1. Results from estimation of the ne = 50 series from the
stochastic Lotka-Volterra system.

� = 0:1 we obtain the critical set fz < 0:74 _ z > 1:35g. It is seen from

Table A.1 that we cannot reject H0 for any parameter on the chosen level.

Another test is performed in order to verify that the estimated parameters

are un-biased. The following hypotheses are tested

H0 : �x = xsim

H1 : �x 6= xsim :

Under H0 the distribution of the test statistic is Zt � t(49). The critical

set for this test is fz > t(49)1��=2g on level �. For � = 0:1, the critical

set is fz > 2:0g, thus from Table A.1 we cannot reject H0 for any of the

parameters on the chosen level.
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