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Abstract

This Ph.D. thesis proposes methods for information redtievfunctional neuroimaging through automatic comp uztenli
authority identification, and searching and cleaning in@roscience database.

Authorities are found through cocitation analysis of thtattdn pattern among scientific articles. Based on data from
single scientific journal it is shown that multivariate arsss are able to determine group structure that is intexipleeas
particular “known” subgroups in functional neuroimagihndethods for text analysis are suggested that use a comininati
of content and links, in the form of the terms in scientific doents and scientific citations, respectively. These ol
context sensitive author rankirapd automatic labeling of axes and groups in connection mithivariate analyses of
link data.

Talairach foci from the BrainMap™ database are modeled wotiditional probability density models useful for ex-
ploratory functional volumes modeling. A further applicatis shown withconditional outlier detectiowhere abnormal
entries in the BrainMap™ database are spotted using keemdity modeling and the redundancy between anatomical
labels and spatial Talairach coordinates. This represecsnbination of simple term and spatial modeling. The djgeci
outliers that were found in the BrainMap™ database coristitamong others: Entry errors, errors in the article and
unusual terminology.

Statistical analysis and visualization have received mattdmtion in neuroinformatics for functional neuroimagin
and a large set of methods have been developed. Some of thanpostant analysis methods are reviewed with emphasis
on cluster analysis, singular value decomposition, ModyeHchuster independent component analysis and lineaglsod
with FIR-filters. Furthermore, canonical ridge analysisnigoduced as a mean for analysis of singular data. It can be
viewed as a regularized canonical correlation analysisratite limit of infinite regularization this is similar to apg of
partial least squares. The model is also related to redwydaralysis, thus canonical ridge analysis subsumes éliifter
multivariate analyses and the solutions between them cémupel by varying a continuous regularization parameter.

Scientific and information visualization methods are alsdawed with emphasis on VRML-based 3D visualization
for functional neuroimaging results.






Dansk resumé

Denne Ph.D-afhandling foreslar metoder til informatisagsing i forbindelse med funktionel hjernebilleddanngjee-
nem automatiseret og computerbaseret autoritetsbestsmog gennem sggning og rensning i en neurovidenskabelig
database.

Autoriteter bliver fundet gennem kociteringsanalyse &rimngsmegnstret blandt videnskabelige artikler. Baseéet
data fra et enkelt videnskabeligt tidsskrift bliver dett\as flerdimensionelle analysemetoder er i stand til at ineste
gruppestrukturer der er fortolkelige som visse “kendtedengrupper i funktionel hjernebilleddannelse. Metoddetist-
analyse er foreslaet der bruger en kombination af indholdetgeerksled, henholdsvis i form af termer i videnskabe-
lige dokumenter og videnskabelige citeringer. Dette otefsammenhaengsfglsom forfatterrangordniggautomatisk
meerkning af akser og grupper i forbindelse med flerdimemdi@analyser af netveerksdata.

Talairach punkter fra BrainMap™ databasen er modellereat betinget taethedsfordelingsmodeller anvendelige til
udforskende funktionel volumemodellering. En anden adetse er vist med betinget udligger-detektion, hvor unor-
malle registringer i BrainMap™ databasen er opdaget vedphgdekernetaethedsmodellering og redundansen mellem
anatomiske betegnelser og rumlige Talairach koordin&tette repraesenterer en kombination af simpel term og rumlig
modellering. De specifikke udliggere der blev fundet i BMap™ databasen omfattede blandt andre: Registreringsfejl
fejl i artiklen og useedvanlig terminologi.

Statistisk analyse of visualisering har modtaget megetapmomhed indenfor neuroinformatik for funktionel
hjernebilleddannelse og et stort seet metoder er blevekladviNogle af de vigtigste analysemetoder er gennemgaet
med vaegt pa klusteranalyse, singuleer veerdi-dekompogdifiolyedey-Schuster uafhaengig komponentanalyse og lseaer
modeller med FIR-filtre. Endvidere er kanonistge analyse introduceret som et middel til analyse af singutiate.
Modellen kan betragtes som en regulariseret kanonisk ladisasanalyse og i graensen mod uendelig regularisering er
den sammenfaldende med en typ@aftial least squaresModellen er ogsa relateret til redundansanalyse og iradieef
séledes forskellige flerdimensionelle analysemetodelgsginger mellem dem kan findes ved at variere en kontinuert
regulariseringsparameter.

Videnskabelig og informations-visualiseringsmetodeogsa gennemgaet med veegt pd VRML-baseret 3D visuali-
sering af resultater fra funktionel hjernebilleddannelse
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Chapter 1

Introduction

1.1 What is functional neuroimaging?

Functional neuroimagingims to understand the link between anatomical brain lonatand psychological functions and
especially deals with establishing pictures of the braiand&ional neuroimaging techniques include positron eigniss
tomography (PET) or functional magnetic resonance ima¢fMil).

1.2 Why functional neuroimaging?

« Scientific exploration and understanding of the brain Functional neuroimaging is often regarded as fundamental
science that has no direct goals and concerned with “truthrerthan “usefulness”.

« Direct clinical application

— Neurosurgery. One area often mentioned as an application of functionalaiemaging is preoperative and
intraoperative brain mapping for surgery guidance. In pegative brain mapping important areas of the brain
are identified prior to an neurosurgical operation, e.gis important to identify in which hemisphere the
language resides and the usual methods has been the ab“védida-test” (Wada and Rasmussen 1960) that
is very invasive for the patient. Functional neuroimagiag be less invasive and more accutate

— Diagnostic Functional neuroimaging can provide objective measurgsdf mental activities that previously
only have been available to the medical doctor/psychadldigieugh the “subjective” account of the patient,
which is useful, e.g., in connection with examination hyistd patients (Davis, Giannoylis, Downar, Kwan,
Mikulis, Crawley, Nicholson, and Mailis 2001). Infants trmannot communicate their perception abilities
can be examined by functional neuroimaging with a possitg#diptive value for later perception performance
(Born, Miranda, Rostrup, Toft, Peitersen, Larsson, and 2000b).

« Artificial intelligence . Understanding how the brain works can help artificial iigehce in developing more ad-
vanced algorithms that have practical importance in maegsof the engineering sciences. Models of biological
neuronal network have inspired the development of artifitéaural networks that have been applied in numerous
fields. Deeper understanding of the human visual systemtrhi&gh computer vision, understanding how the brain
handles language might help develop computer programsbgitier natural language capabilities and understand-
ing of the binding problem might help database development.

» Methodology development If a question is difficult enough the task of answering itlddioster development of
new methods, that in turn can be of use in other technicaliensfic areas. The questions in functional neuroimag-
ing are often quite difficult and the field has a large methogigial subfield. Some of the methods developed can
be of use in other areas: An example is the development af tesandom fields, with application in astrophysics
(Worsley 1995).

1Posner and Raichle (1995) describe that Pardo and Fox (1893) that the assessment of the dominant hemisphere fgudge was performed
more accurately with PET than with the Wada test, as theredigasepancy between the PET and Wada test in one of the rijectsiin the study, —
and the PET was correct in that single case. Assessmentgfdge lateralization for preoperative evaluation has ladsm performed with fMRI, see
e.g, Desmond et al. (1995), Xiong et al. (1998), Lin et al.9@9 Brockway (2000), Hund-Georgiadis et al. (2001), J. Bcdck and Matthews (2001).
Kennan and Constable (2001) describes the assessmenfNiBiSg
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» Brain-computer interfaces.

— Brain to computer interface (BCI). This type of interface enables the brain (e.g. inguatiwith total motor
paralysis) to control computers or machines. A system basedneurotrophic electrode implanted “into the
outer layers of the human neocortex” made a patient ablertsa@a cursor on a computer monitor (Kennedy
et al. 2000). fMRI was used to identify a suitable area of @haent (motor cortex). Other techniques use
surface electrodes with, e.g., P300-detection or “sloviicarpotentials” (SCP) (Kubler et al. 1999). The
output is still limited to very few parameters: x- and y-cdimiates, and “enter”, and systems with higher
“bandwidth” has probably a long way to go yet.

— Computer to brain interface. As a brain-computer interface can help patients with motsalilities, a
computer-to-brain interface can help patients with petioegisabilities. An example (for peripheral nerves)
is cochlear implants that stimulate the nerve fibers in thnerimear of people with profound or total hearing
loss (Brown 1999, page 796—797). Commercial systems ekistA® electrodes that receive their signal from
a small digital signal processing computer with an attaghémophone. Dobelle (2000) describes a visual
prosthesis system — the “Dobelle Eye” — which features amitiature television, a processing computer
and an array of 68 electrodes implanted on the surface ofitu@hcortex.

1.3 Computers, mathematics and statistics in functional ngroimaging

Computers, mathematics and statistics play an importéamimdunctional neuroimaging. At the very basic level tomo-
graphic brain scanners such as PET, CT and MRI rely on matteaheeconstruction for the production of the brain
image, and the data sets are so large that this reconstrustamly feasible with the help of computers. The ways in
which computer engineers can contribute to functionalbma@pping can be grouped in:

» Development of new mathematical and statistical methogsdcess and analyze functional neuroimaging data and
development of useful tools that the neuroscientist canadiately handle.

» Development of computer visualization techniques foualiation of the functional neuroimaging data.
» Development of database tools for searching, comparisdre@aluation across experiments.

The termneuroinformatichias been used to denote the field that are concerned withifisess.

The body of research in functional neuroimaging and theedlfields in cognitive and neuroscience are becoming so
large (e.g., the exponential rise in citations to the Talgiratlas, Fox 1997) that it is difficult for a human to navégie
data without the support of computers, — in the words of BUSi4b)

The investigator is staggered by the findings and conclgsdbthousands of other workers — conclusions
which he cannot find time to grasp, much less to rememberggsajpear.

This writing inspired the development of the world wide wélthe Internet (Berners-Lee, Cailliau, Groff, and Pollerma
1992; Berners-Lee, Cailliau, Luotonen, Nielsen, and Set984), that in connection with functional neuroimaging is
used for search and retrieval of textural information suels@entific literature, as well as distribution of softwared
neuroscientific data. Perhaps the most important issue dethbases and other information interfaces is knowledge
access efficiency (Pitkow 1997, page 7):

One goal of information interfaces is to maximize user iat&on by increasing the amount of accessible
knowledge in shorter periods of time.

Databases containing neuroscientific data are still s@ardet is not clear what information is relevant to collectdéed
one of the tasks of neuroinformatics is tHefinition of useful information. The utility of the databases is notyon
determined by their ability of organizing data, but also imaleling collaborations between researcher of differeitissk
i.e., experimental/observational and theoretical/aiedl e.g., Tycho Brahe’s astronomical database (Brald@ liéepler
1627) formed the basis for the development of Johannes Kepiedel (Kepler 1609; Kepler 1619).

1.4 Contribution

On the descriptive level the main contributions of this these:
» Overview of preprocessing for functional neuroimages.

» Overview of analysis of functional neuroimages. This dtidae useful as a description of the algorithms in the
Lyngby Matlab toolbox (Hansen et al. 1999b) , (Hansen et 800b), (Hansen et al. 2001b), and can act as a
companion to the manual (Toft, Nielsen, Liptrot, and Hanzeol).
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» Overview of visualization of functional neuroimages.
* Introduction of neuroinformatics.

Apart from the direct application as a reference the two éiv&rviews can also form the basis for a discussion on what
information should be collected in neuroinformatics datss for functional neuroimaging.
On the level of analysis the main contributions in this thesk:

» General canonical analysis model. Identification of a tyfygartial least squares as a canonical ridge analysis, with
the possibility of interpolating between a canonical clatien analysis and a partial least squares solution.

* VRML visualization in connection with functional neurcéming.

» Analysis of functional neuroimaging locations with flebalprobability density modeling for outlier detection.
Specifically this means finding outliers in the BrainMap ™atetse via kernel density estimation.

 Author cocitation and journal cocitation analysis, sfieally applied in functional neuroimaging with the analysi
of a single journal “Neurolmage”. In this connection termddimk based analysis is combined to what is here
calledcontext sensitive author rankindwuthor cocitation analysis was first described by White8)9 but to my
knowledge it has not been based on data directly obtained fne@ publisher’'s website and link and text based
analysis has not been combined in connection with sciewliiftmments.

1.5 Outline

Chapter 2 describes the objects under study: The brain saagsbciated mental processes, how they are related and how
it is possible to measure the functional activity.

Chapter 3 describes the computerized and mathematicalsial functional neuroimages, beginning with general
principles with no particular reference to analysis of fiilmtal brain mapping (models, estimation and testing)nthe
describingoreprocessingf functional neuroimages and finally describing of soméefindividual mathematical models
encountered in functional neuroimaging analysis.

Chapter 4 describes the scientific visualization of 2D andwBigtional neuroimages and information visualization in
connection with functional neuroimaging research.

Chapter 5 introduces neuroinformatics and focus on texyaisaeand (meta-)analysis of activation foci from funcidn
neuroimaging experiments.

Abbreviations are expanded in section A.3 page 140, and sdithe expanded terms can be looked up in the word
list in section A.2 page 134. The abbreviations and wordsiaided between neuroanatomical names and other general
names. A few derivations appear in section B, and acknowteahg is on page 155.

The bibliography starting on page 267 is with URLs, Pubmemhiifiers (PMID) and with links to Researchindex
(see section 5.2.5). The URLs might be invalid but most o$¢hiavalid URLs should be locatable with the suggestion
provided by Lawrence et al. (2001).

Author index and ordinary index begin on pages 319 and 33peaively.
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Chapter 2

Brain, mind and measurements

The following sections introduce the information strueswirused in functional neuroimaging for organizing the
mind/behavior and the brain. The coupling between the rbittvior and brain is further described, and finally tech-
niques for in vivo measurement of the brain are discussed.

2.1 Behavioral and cognitive components

A cognitive componern$ a separate entity of the mind. The cognitive componenhitriig the first instance just be a
heuristic classification by the researcher, — in the secnatince we might hope that the cognitive component consti-
tutes a “true” class. The cognitive components can be giupeajor cognitive components, e.g., perception, mation,
cognition, and emotion. These may consists of subgroupsrtharn consists of “mind atoms” arore processesBrain
mapping (and cognitive psychology) aims at identifying e appropriate cognitive components are, their relation
and how they are related to brain areas.

The termbehavioral componentsan be used to denote a broader class of mental processes, stamuli and re-
sponses, e.g., heurological diseases and pharmacoletjiioali, which would incorporate the variables that arerér-
est to collect in a neuroscientific database. Some of thg agtdmpts in classification of behavioral components were
made by Galen (129-199 AD) with the four temperaments (dargphlegmatic, melancholic and choleric) and Franz
Joseph Gall (1758-1828) with the 27 “faculties” (Gade 199X)modern system of cognitive/behavioral components
is the hierarchy in the BrainMap™ database (see sectiod)ssBown in figure 2.1. The organization of the cognitive

Type Subtype Example
Perception| Audition Noise
Gustation Salt
Olfaction
Somethesis | Pain
Vision Motion
Motion Execution Hand flexion
Music
Preparation | Articulatory coding
Speech Word repetition
Cognition | Attention Divided
Language Phonology
Mathematics
Memory Primed words
Emotion Anxiety
Disease Depression
Drug Apomorphine

Table 2.1: BrainMap™ "Behavioral effects" — a hierarchy of behavioral and cognitive components. More detail is available
in table A.2.

components is not necessarily a tree-structure, e.g.nfitthematical cognitive component” might consists of a legg
circuit associated part (in the left frontal lobe) and a vispatial associated part (Dehaene, Spelke, Pinel, $tanssd
Tsivkin 1999; Simon 1999; Spelke and Dehaene 1999). Thukenadtical processing can be see as part of a language
cognitive component and of a visuospatial cognitive congmbysee figure 2.1.
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Language Visuo-spatia

Mathematics

Figure 2.1: Segregation of mathematics cognitive components — “numerical thinking” as suggested by Spelke and De-
haene (1999). The visuo-spatial non-linguistic numerical processing are believed to occur in the inferior parietal cortices
bilaterally.

In BrainMap™ “mathematics” presently has its own group urfdegnition”. Furthermore, obsessive-compulsive
disorder (as in e.g. Rauch, Jenike, Alpert, Breiter, Savagéd Fischman 1994) is categorized under “emotion” while it
might also be appropriate to group it under “disease”. Tieasenples suggest that a simple tree structure for organizin
cognitive components is too restrictive. Perhaps a diregtlec graph is sufficiently general to described the retaship
between the components.

When ataskis performed or @timulusis presented (collectively, any elicitation of mental prsses during an exper-
iment whether internal or external generated is often refeto as thearadign) one or more cognitive components are
involved. These may be engaged in parallel or serial, — asémtord production model of Indefrey and Levelt (2000)
shown in figure 2.2, e.g., the task of silent picture naming meolve all but the last two core processes.

Conceptual Lexical Phonologica| | Phonologica Phonetic

preparation[™ selection [ code retrieva]”| encoding [*] encoding [ Articulation

Figure 2.2: Core processes cognitive components involved in word production as proposed by Indefrey and Levelt (2000,
figure 59.2).

Though functional networks can be revealed by measuringjgsiinone(resting) state (Lowe et al. 2000), a typical
functional neuroimaging experiment will try to elicit a gle cognitive component by exposing subjects to two task: on
where the cognitive component appear (the “activationt) amother where it does not appear (the “baseline” or “cdéntro
condition”). The brain activations are measured in botkestand the two measurements are (in some way) subtracted
from each other — the so-callembgnitive subtraction paradigr{Friston et al. 1996c; Law 1996, section 1.6.2). It is
often difficult to find two tasks that will mask out the apprigppe cognitive component. Often simple so-called “rest”
states are used as the baseline where the subject is suppalsethothing”, — usually either with closed eyes of fixation
on a target. However, when the subject is “doing nothingésttight be engaged in “semantic knowledge retrieval,
representation in awareness, and directed manipulatizgpoésented knowledge for organization, problem-sohamgl
planning” and the performance of the task can be interprasea interruption of such “conceptual” processes (Binder
et al. 1999). Along a similar line Gusnard, Akbudak, Shulireamd Raichle (2001) find that medial prefrontal cortex is
engaged in “self-referential mental activity”, see alsa@®dire, Paulesu, Frackowiak, and Frith 1996). Thus it caarbe
advantage to engage the subject in an extra task that redfamgnitive load”. It is, on the other hand, convenient for
meta-analysis studies that the same baseline is used atudsss.

If two (or more) cognitive components are investigated ¢iameously one can investigate tinéeractioneffect with
a2 x 2 factorial design. If it is not possible to factor out both quenentscognitive conjunctiorcan be used (Price and
Friston 1997).

It is interesting to note that a task can be regarded as a nugrefprocesses. Furthermore, if a cognitive component
should constitute a core process it would be useful to regjaasl independent from other core processes. Under these
assumption the identification of core processes can be sedeEendent component analysiee section 3.11.

2.2 Specialization of the Brain

The mental processes engage the neurons of the brain. Thensere special cells with neurites (dendrites or axons)
which are long projection from the cell body that connecttteeo neurons through junction points callgthapsesAreas
with high density of neuron bodies are referred to as grayenésM) and areas with high density of connections are
referred to as white matter (WM). These connections arellysaggregated in bundles. Other areas of the brain contain
cerebrospinal fluid (CSF) and vessels.
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There have been established standardized hierarchidssfonacroscopic anatomy of the brain: National Library of
Medicine has as a service: The “MeSH Browser” which contaimme of the major parts of the brain organized in a
hierarchy (http://www.ncbi.nim.nih.gov:80/entrez/mbrowser.cgi). Another effort is NeuroNames (Bowden andtia
1995) which main components of the hierarchy are displayés list in figure 2.3. The hierarchy can further be divided,
e.g., according to the sulci and gyri of the cerebral corfEixe precise appearance and location of these sulci and gyri
varies among individuals (Ono, Kubik, and Abernathey 1990)

Forebrain
Telencephalon
Cerebral cortex
Frontal lobe
Parietal lobe
Insula
Temporal lobe
Occipital lobe
Cingulate gyrus
Parahippocampal gyrus
Archicortex
Supracallosal gyrus
hippocampal formation
Cerebral white matter
Lateral ventricle
Basal ganglia
Striatum
Globus pallidus
Amygdala
Septum
Fornix
Diencephalon
Epithalamus
Thalamus
Hypothalamus
Subthalamus
Third ventricle
Midbrain
Tectum
Cerebral peduncle
Mindbrain tegmentum
Substantia nigra
Hindbrain
Metencephalon
Pons
Cerebellum
Medulla oblongata

Figure 2.3: Main components of NeuroNames brain Hierarchy (Bowden and Martin 1995).
http://rprcsgi.rprc.washington.edu/neuronames/index1.htmi

Correlation between cognitive variables and the statieammce of brain structure has been found, e.g., Maguire
et al. (2000) showed that the posterior hippocampi wereelaggnd the anterior hippocampal region smaller) in taxis
drivers compared with a group of controls, suggesting therar hippocampus being involved in navigation.

There exists several brain atlases that renders the braindordinate space, so-called stereotactic space. Tlseoétla
Talairach and Tournoux (1988) has been particular used amy fiunctional neuroimaging studies report results in the
coordinate system set up in this atlas.

2.2.1 Microscopic structure

There is a number of criteria for classifying brain areash@nrhicroscopic level. This can be done from cyto-, myelo-, or
receptor architectonic criteria, see e.g., (Zilles anadmairo-Gallagher 2001).

Cytoarchitectonical maps can be made of the brain by cleasiin of the appearance of neurons, their network and
density. It is usually performed by examining the cells in mnoscope after staining of the cellular components, —
e.g., the cell bodies as in thdiss| methodHeimer 1994, section 7). The Brodmann classification is @elyi used
cytoarchitectonic classification system for the cereboatex (Brodmann 1909). It delineates what has now been trme
Brodmann areag¢BA) and assigrBrodmann numberfom 1 to 47 to each region, see table A.1 on page 143. Another
cytoarchitectonic classification less widely used is tHatom Economo (1929). Other classifications of the brain @n th
anatomical level can be made by receptor-based maps; treesereelating well with the cytoarchitectonics maps (Geye
Schleicher, and Zilles 1997). On the other hand will the apthitectonic classification usually not be related toisulc
structure (Roland et al. 1997; Rorden and Brett 2000; Ameinas. 1999; Amunts et al. 2000; Morosan et al. 2001), and
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large intersubject variability exists, e.g., “the volunoésirea 44 differed across subjects by up to a factor of 10" (Ats
etal. 1999).

The Talairach atlas (Talairach and Tournoux 1988) mark8tbeémann areas, and the Talairach Daemon (Lancaster,
Summerlin, Rainey, Freitas, and Fox 1997c) is able to tea@sletween stereotactic coordinates and Brodmann numbers
The cytoarchitectonic observations are based on nongliviaterial as no technique has been developed for imaging the
cytoarchitectonic structure in vivo.

2.2.2 Functional specialization

Even though the mental processes can be split into separgtative components it does not mean that the cognitive
components are specialized in specific brain regions. Tsediidences that the brain is specialized — at least to some
extent — were the studies of patients with aphasia by Pieateé Broca and Wernicke (Broca 1960). Later, functional
specialization was also found between the left and rightisginere with split brain patients, see e.g., Shepherd (1994
p. 678-679).

Brain mapping rests on the paradigm that the bisispecialized — at least to some degree. How much is still a
controversy: In one end the most radical would argue thabth& is segregated into discrete regions and each region
performs one unique cognitive task. Any fuzziness thatés $e brain mapping is due to limitations in the measurements
e.g., low image resolution in brain scanners, the filternogfthe neurovascular coupling or subject variations. Vigs/
is called “locationistic”. At the other end is the view thditareas of the brain are participating in all cognitive mgkst
with differing degrees. This view is sometimes called “cectionistic” and other phrases used in this domain is “pelral
distributed processing” and “integrated networks”.

The two views differ in what they believe the result of a fuooal neuroimage analysis should be: The “discrete seg-
regation” view holds that the result should be a labeledm@pwith each unique label referring to a cognitive compaonen
The center of mass of a connected region with the same labhdbe@xtracted and put into a table that is publishable.
The “distributed” view holds that the result should be a weébr each cognitive component with values for each voxel
indicating its “degree of involvement” in the cognitive kas

There is not necessarily a one-to-one mapping between ativegromponent and a brain area: One cognitive com-
ponent might be “implemented” in two or more different braireas (this is referred to as degeneracy, e.g, by Price
and Friston 1999), and one brain area might process two oe cagnitive processes. An example of the latter is the
syntax processing in the Broca'’s area that both processggidtic syntax processing as well as musical syntax psaces
ing (Maess, Koelsch, Gunter, and Friderici 2001), thoughdistic syntax processing is normally confined to the left
hemisphere, while music processing is found in the rightiephere.

Do all cognitive components have spatial specialization®b&bly not, but even (general) intelligence has been
correlated with a specific brain region (the lateral froetattex) (Duncan et al. 2000).

2.3 Coupling

Mental activity manifests itself as electrochemical attiin the neurons of the brain: When a neuron “fires” it chage
its electric potential over a period of milliseconds and $pie travels along the axon, — the so-called action paiknti
When the signal is transferred from the axon via the synapsstsynaptic potential is generated on the receiving meuro
The postsynaptic potentials can be excitatory or inhilgitfrabout 100 excitatory synapses, on average, get aetivar

a single cell within in a short time interval they trigger aangction potential (Longstaff 2000).

The electrochemical activity in turn requires energy cagisi number of physiological changes in the brain. Angelo
Mosso in 1878 and Roy and Sherrington (1890) were the firsismoder a relationship between mental activity and a
physiological response. Later Kety and Schmidt (1945) wabte to measure the global cerebral blood flow, and Lassen,
Ingvar, and Skinhgj (1978) created the first 2-dimensioatation images.

Stimulus / Internal event __,|  Mind / brain Hemodynamics— E.g., CMRyy, CMRo,

Figure 2.4: Coupling

As shown in figure 2.4 the coupling can be thought of as cdngistf two stages which will be described below: a
stimulus-neural coupling and a hemodynamic coupling.
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Component Increase Comment
rCMRglu 20-40% Mostly oxydative glucolysis

rCMRO2 5-25%
rCBF 20-70% Increases in velosity rather than capillaryuiment
rCBV 5-30% Mostly in the venous vessels.

Table 2.2: Regional hemodynamic changes with activation. From Jezzard (1999). Hoge et al. (1999) get “CBF and
CMRO?2 increases of 48 + 5% and 25 + 4%, respectively”.

2.3.1 Stimulus-neuronal coupling

How does the neuronal activation depend on cognitive peieg? If an stimulus is imposed on the brain does it then
respond linearly?

For stimuli that activate primary sensory area there migtda bne-to-one mapping in the timing between the stimulus
and the neuronal response. However, for more complicada tdhe neuronal response is not necessarily one-to-one
associated in the timing with external events, e.g., Karéshl. (2001) finds activation associated with the traasgiin
a block design.

Another complexity might appear in connection with leaghand memory where the neuronal response are on a
longer time scale than the stimulus, e.g., memory condididanight happen during sleep (Graves, Pack, and Abel 2001)
many hours after the stimulus occurred.

2.3.2 Hemodynamics: Coupling between neuronal activity,lbod flow and metabolism

The electrochemical activity of the neurons requires energinly in connection with Na+ and K+-ATPase activity, and
almost all neuronal energy derives from oxydative glucos&atmolism (Jezzard 1999). A smaller part derives from non-
oxydative (anaerobic) metabolism (Prichard et al. 199h dlucose uptake is not completely correlated with thealeur
activity since there is a higher uptake than required by bwitsm (Fox and Raichle 1986; Fox, Raichle, Mintun, and
Dence 1988). There is evidence that the glucose is storedised later during non-activation (Madsen et al. 1999;
Madsen 2000), see also (Barinaga 1997) for an introduatidimeise matters.

Apart from an increased glucose (CMRglu) and oxygen (CMR@&abolism neural activation results in increased
blood flow (CBF), blood volume (CBV) and blood oxygenatiomelCBF usually increases more than is “needed”, — the
phenomenon termed “uncoupling” or “luxury perfusion” (Fad Raichle 1986; Buxton and Frank 1997). The amount
of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hbr) is a timtof the CBF, CMRO2 and CBV, see Table 2.2. Thus
the BOLD response of fMRI (see section 2.4.5) which is depahdn HbO2 and Hbr is a function of several variables
that each can have different time and spatial behavior. &kasgables are in turn dependent on other variables of the
brain. Bandettini et al. (1993) list the activity variabkbst are likely to influence the coupling between stimulud an
BOLD response: blood pressure, hematocrit (Hct), bloodima, blood p®@ (oxygen partial pressure), perfusion rate,
vascular tone (amount of vasodilatory capacity), neurameatiabolic rate, vasodilation (enlargement of blood vegssel
blood oxygenation, blood perfusion.

Aguirre, Zarahn, and D’Esposito (1998b) and Glover (1999) that the fMRI response varies across subjects so that
an individual model should be used for each subject. Inbjgst intersession non-stationarities are seen by McGenig
et al. (2000) and Miki et al. (2000). This is supported by “gbzounting” across trials and subjects by Cohen and DuBois
(1999). Rostrup et al. (2000) found a “considerably differe’ between the response in WM and GM.

The form of the hemodynamic response function

The hemodynamic response is filtered in space and time: Amitiglff short and point-like neuronal activation will elici
hemodynamic response that lasts some seconds and is didparse millimeters. A temporally linear and stationary
model for the hemodynamic response is implemented in SPMhanidhpulse response to that filter is shown in figure 2.5.
This model was originally found in a study by (Glover 1999)iear stationary model cannotimplement different shapes
for the onset and the cessation from a block stimulus — theylshhave the same (mirrored) curve. Bandettini et al.
(1993) mention that the delay in signal change is 5-8 secrods stimulus onset to 90% maximum and 5 to 9 seconds
from stimulus cessation to 10% above baseline. If there isaepancy between the onset and cessation then a linear and
stationary model is only an approximation.

The main components in the impulse response function (IRfechemodynamic response (as seen in BOLD fMRI)
are a positive peak around 5 seconds and a post-activatiershmot (post peak dip) approximately at 15 seconds, see
figure 2.5. The IRF obtained empirically by Zarahn, Aguimed D’Esposito (1997, figure 4) has the maximum at 6
seconds and the post-activation undershot minimum at Idhssc These values approximately corresponds to the filter
found by Goutte, Nielsen, and Hansen (2000, figure 6a).



26 Brain, mind and measurements

Response

02 L L L L I I
0 5 10 15 20 25 30

Seconds

Figure 2.5: The “Glover” impulse response function for a simple linear and stationary model of the hemodynamic response
function (Glover 1999; Friston 1999a). The minimum is at 15.7 seconds and the maximum at 5 seconds.

More components have been attributed to the hemodynanpomss function. One of the most interesting is the
so-called “initial dip” (early dip or fast response) whicha negative response that should occur in the few first second
of the response with a peak after approximately 2 secondso(aand Hu 2001). It is interpreted as a quick local
oxygen metabolism that is not compensated for by an incde&®®BF which results in an increase in deoxyhemoglobin,
detected by the fMRI scanner. The initial dip should be moralized than the rest of the hemodynamic response as
the deoxygenation is more local than rCBF. Thus the initialgtomise higher spatial and temporal resolution than the
ordinary response. Unfortunately the effect is not vergdaiand it is not seen in all experiments. Some of the positive
reports are: imaging spectroscopy (Malonek and GrinvaRbL.¥MRI (Ernst and Hennig 1994), fMRI at 4T (Menon,
Ogawa, Hu, Strupp, Anderson, and Ugurbil 1995), fMRI at 1('83coub and Hu 1999), dependence on TE (Yacoup, Le,
Ugurbil, and Hu 1999), initial dip in motor and visual areaagoub and Hu 2001), initial dip with oxygen dependent
phosphorescence quenching optical imaging (Vanzetta aimdakd 1999). For a discussion of the divergent results on
detection of the initial dip see Buxton (2001) and Vanzettd &rinvald (2001). A physiological model — the so-called
“balloon model” can account both for the postactivation erstiot and the initial dip (Buxton, Wong, and Frank 1998)
(see (Glover 1999)).

Apart from the short term response (scale of seconds) ther@so long term effects on the scale of minutes. Kriger,
Kleinschmidt, and Frahm (1996) report an initial overshaignal decrease extending over 4-5 min, post-activation
undershot (of response) mirroring of initial overshoone®(1999) reports that the post-activation undershotastrup
to 1 minute.

2.3.3 Deactivation

In some functional neuroimaging studisactivatioris seen. This is not directly related to increased activityhibitory
synapses since they also require energy for their actittywever, inhibition will presumably cause a decrease in the
total number of firings.

A negative BOLD response can be found in sedated (pentdabbudiilor-hydrate) and anaesthetised (helothane/rstrou
oxide) children (Born et al. 1996; Joeri et al. 1996). Bormalet(2000b) also found a negative BOLD response among
some young sleeping or sedated (chloral hydrate) childvbiig Hykin et al. (1999) demonstratedsitiveBOLD-signal
in the fetus brain, when applying a auditory stimulus). Tkgative BOLD response is not restricted to sedated children
but can be found in sleeping adults (Born et al. 2000a). Tlyatnee response is also seen in rCBF PET (Born et al.
2001).

Artifactual deactivations can be seen if confounds are eadacorrectly, see section 3.5.8, and if subjects engage i
paradigm-unrelated mental processes during “rest” scaessection 2.1.

2.3.4 Coupling nonlinearity

The hemodynamic response on the scale of seconds is fourdapgdroximately linear if the stimuli is sufficiently long
(Boynton, Engel, Glover, and Heeger 1996). However, fortenatimuli nonlinearities are found: (Vazquez and Noll
1998), auditory stimuli shorter than 6 seconds (RobsonpBrrand Gore 1998), speech syllables (Binder, Rao, Ham-
meke, Frost, Bandettini, and Hyde 1994), rapidly presenteohs (Friston, Josephs, Rees, and Turner 1998b), meteonom
paced finger tapping (Glover 1999) and visual checkerbdardiB shorter than 4 seconds and with varying on and off
periods (Birn and Bandettini 2001).
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Abbrv. Exp. Name
CT/CAT 0 Computerized (axial) tomography
MRI/fMRI/pMRI/MRS/MRSI 18 Magnetic resonance imaging
PET 619 Positron emission tomography
SPECT 1 Single photon emission computed tomography
fNIR/fNIRS/NIRS 0 Functional near-infrared spectroscopy
TCD 0 Transcranial Doppler
EEG/ERP 8 Electroencephalography/ Event-related patisnti
MEG 0 Magnetoencephalography
EIT 0 Electrical Impedance Tomography
ECoG/SEEG 0 Electrocorticography / Stereoelectroendeghaphy
LFP/FP 0 (Local) field potential
ol 0 Optical imaging with voltage sensitive dyes
oIS 0 Optical intrinsic signal imaging
LD 0 Laser-Doppler
0 Single-cell/Multiple-cell electrophysiology
ESM 0 Electrocortical stimulation mapping / Electrical toostimulation
T™MS 0 Transcranial magnetic stimulation

Table 2.3: Brain mapping techniques (modality). The “Exp.”-column shows the number of experiments in the BrainMap™
database (2000 May) being marked as performed with the modality, — some of these experiments combining two modali-
ties.

Furthermore when several cognitive components are stiedikimultaneously the effect might not be additive.

2.4 Functional neuroimaging and other brain measurement tehniques

Almost all experiments recorded in the BrainMap™ databaseaither PET or fMRI, see second column in table 2.3.
A few use EEG (ERP) in combination with PET and (Allison et E994) is the only study where Talairach coordinates
are given based on EEG (ERP) measurements. Walter et al2)188s MEG, PET and MRI (but is presently marked
“PET-MRI").

Apart from the techniques described below there are amdmgrstranscranial Doppler (ultrasound sonography)
(TCD) which can measure on the blood flow velocities in thebeal arteries, anidser-Doppler (flowmetry/velocimetry)
(LDF/LDV) which measure microcirculatory blood flow. Laseoppler can also construct images, — so-calkeser
Doppler perfusion images

If different modalities are combined it is possible to ohtgood time resolution (with the electrical/magnetic mei$jo
together with good spatial resolution (with, e.g., an fMB&sner), e.g., structural MRI scans can be used to form more
spatial precise MEG and EEG images (Dale and Sereno 1993paimdersubject alignment, see section 3.5.6.

2.4.1 Electrophysiology

Direct measurement of the electric state of the single eslli= made bpatch recording®rintracellular recordingswith
micropipettes (Shepherd 1994, pages 68—-69). Multiples @ah be recorded simultaneously by extracellular recgsdin
from a crowd of neurons and their relationship can be andly@erstein and Perkel 1972). The individual neurons can be
distinguished from each other by the form of the action piaé(the spike), e.g., through principal component analys
(Kirkland 2001) or some form of clustering (Rinberg, Dawdtz, and Tishby 1999).

As the measured spikes are point process-like it is not plest analyze this data with the methods typically used
with functional neuroimaging data. However, the spikatidata can be converted to a spike density (in time) and déscre
time samples can be represented in a matrix and analysee sathe way as PET and fMRI are.

Local field potential (LCD) is an intermediate step betwelecteophysiology and EEG.

2.4.2 EEG, MEG, EIT

ElectroencephalographfEEG) andmagnetoencephalograpfyIEG) measure the electric and magnetic field generated
from a neuron assemble. In the case where the EEG signal s&pbeked to a stimulus and averaged across trials it is
often calledevent-related potentialE€RP) orevoked potentials

Usually EEG is measured noninvasively on the scalp by ary afr@lectrodes with the first measurement done by
Hans Berger in 1924 (Berger 1929). However, there existsineaintracranial variations of EE@&lectrocorticography
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(ECoG) typically performed preoperative or intraopemiivhere an electrode grid (e.g.8 & 8 array) is placed directly
on the cortical surface, and stereoelectroencephalog(&iEG) — also called “depth-EEG” or intra-cerebral redogd

— where the electrodes are placed deeper in the brain. Thaseranial EEG techniques are usually performed in
connection with neurosurgery on epileptic patients. Exaspf this technique are available in (Towle et al. 1998),
(Chkhenkeli et al. 1999), (Widman et al. 1999) and (Allisarak 1994) — the only one presently recorded in the
BrainMap™ database.

The ERP signal exhibits some characteristic excursionsedanith a combination of the polarity (negative (N) or
positive (P)) and the approximate time of extremum in neltisnds, e.g., N200. The signals are sometimes denoted by
the applied stimulus: auditory evoked potential (AEP)uaisevoked potential (VEP), somatosensory evoked potentia
(SEP/SSEP) or proprioceptive evoked potential (PEP) (@&dhEt al. 2000). Rather than a signal of its own the ERP
might (just) be a modulation of the alpha-rhythm of the EEGK#ig, Jung, Westerfield, and Sejnowski 2001).

If EEG is measured from a set of electrodes it is possible e gn estimate of the 3-dimensional distribution of
the electric activity or give an estimate of the optimal dépposition if a fixed number is assumed, — so-called source
localization. One such approach is LORETA (Low-resoluttettromagnetic tomography) (Pascual-Marqui et al. 1999)

MEG measures the very small magnetic field that arises fraimomal activity (Cohen 1968). The small signal (hun-
dreds of femtoTesla) is measured with a so-called SQUIDgisgpantum interference device) and with multiple SQUIDs
(presently up to several hundreds) a surface magnetic fisdgyé can the measured. As with EEG the magnetic field in
the brain can be estimated. This is usually referred to aswetagsource imaging (MSI). Models with a few sources ex-
ist together with current density models, — so-called mégtiield tomography, see, e.g., (lonnides, Bolton, and K&ar
1990). Some of the methods are synthetic aperture magnetof8AM), multiple signal classification (MUSIC, Mosher,
Lewis, and Leahy 1992), Bayesian power imaging (BPI, HassmhSwithenby 2000) and LORETA mentioned above.

There are EEG-related techniques that measure the pealpatrer than the central nervous system, e.g., electromyo
graphy (EMG). These are sometimes measured in connecttbrfuvictional neuroimaging studies to monitor behavior,
performance and confounding signals, e.g., control for mpgements can be monitored with EOG or with a video
camera (as in Law 1996, page 53) and Richter, Andersen, Geoudps, and Kim (1997) monitor finger movement by
electromyography.

Electrical impedance tomography (EIT, Holder 1987) apgpéetiny current (e.g., at some frequency 200-80kHz) to
a number of electrodes on the scalp and measures the statloatvity or the dynamics of the conductivity. Activation
images can be obtained (Holder, Rao, and Hanquan 1996) arstitic images can be used in connection with EEG and
MEG source localization.

2.4.3 Computerized tomography

Computerized tomography (CT) — or more seldom computerizeal (or assisted) tomography (CAT) — uses X-rays
together with Radon/Hough transform to obtain 2D or 3D inzsaffeormack 1963; Hounsfield 1973). It is the most
used tomographic medical imaging technique (Kevles 1988et1), though usually used in connection with structural
imaging and not used in any serious degree for functionalaieaging. It is, however, possible to get functional imsge
from a CT-scanner, e.g., rCBF can be measured by xenon-eattaomputed tomography (XeCT) (Hagen, Bartylla, and
Piepgras 1999), and commercial systems exist that medwmipetfusion and estimate CBF, CBV and MTT (mean transit
time) (Eastwood 2000): so-called “Perfusion CT”. Non of &émdries in BrainMap™ are made with CT.

2.4.4 Positron emission tomography and single photon emissi computed tomography

Isotope Half-life Tracers Exp. Reference
0-15 122 sec BPO (Water) 384
C150, 193
Butanol 23
150, 0(?) Jones, Chesler, and Ter-Pogossian (1976)
F-18 109 min  Fluoro-deoxyglucose (18-FDG) 11
C-11 20 min  Fluoromethane 6
C11-flumazenil 0 E.g.,Ashburner et al. (1996)
C-10 19sec °CO, 0 Jensen, Nickles, and Holm (1998)
N-13 10 min 0

Table 2.4: Examples of PET beta-sources and tracers. “Exp.” column shows the number of experiments performed with
the tracer as recorded in the BrainMap™ database 2000 May.

Positron emission tomography (PET) and single photon eomissomputed tomography (SPECT) use radioactive
isotopes (“radioisotopes”) and attach them to a molecule se-aalled tracer. This tracer is injected in or inhaled by
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Figure 2.6: Model of a PET scanner with a subject in VRML.

the subject and distributed in the body. When the PET isotigmays it emits a positrot) that after a short distance

of travel annihilates with an electron. The annihilatiosui¢s in a radiation of two gamma photons with an angle of
approximately 180 degrees. The photons can be measuregavitma detectors in a ring around the subjects head, see
figure 2.6, and the line of annihilation can be determined leplamator or by a coincidence technique where the two
gamma photons are detected with opposite detectors atriieetsae (Phelps 1975; Ter-Pogossian, Phelps, Hoffman, and
Mullani 1975).

PET isotopes and tracers used in activation studies arersindable 2.4. In functional neuroimaging research studies
radioactive water is commonly used as it has a conveniemt blatf-life, though a poorer spatial resolution than F-18.
After injection the tracer distributes proportionally teetr CBF. SPECT scanners have a lower resolution than PETiecan
and not used as much in research as PET.

A related technique iautoradiographywhere the functional brain images can be obtained on anwwtadse radioac-
tive tracers are injected and distributed in the brain waitimulus is being applied. After the experiment the anisal
killed and high resolution histological images can be otséli

2.4.5 Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI) uses a property of the mtonncleus to make either 2D or 3D image of the brain
or other anatomical parts. Atomic nucleus with either an nddhber of protons or an odd number neurons will have
an observable spin (Rabi and Cohen 1933). By applying anredtenagnetic fieldB the spins can be aligned and
occupy two states with different energy levels. The distitn between states can be affected externally by photons
matched in frequency (the resonance frequenay Lamor frequencyto the energy differenc& = hv, with h being

the Planck constant (Purcell, Torrey, and Pound 1946; Blblemsen, and Packard 1946), — the phenomenon termed
nuclear magnetic resonanc&he energy difference is dependent on the external mayjfiield B and the relation to the
Larmor frequency i = vB, wherey is thegyromagnetic ratispecific for every nucleus, e.42.58MHz/T for common
hydrogen H. At equilibrium there are more spins aligned in the samectiivas asB than in the opposite direction
resulting in a net magnetization from the spins.

In a simplified non-quantum mechanistic model an ensembkpirfs forms a macroscopic magnetization vector.
The application of the external photons (in MRI usually edlthe RF-pulse — radio frequency pulse) will disturb the
vector and the relaxation back to its equilibrium value soagated with measurable signals, e.g., the free indudgoay
(FID) which decaying envelope is characterized by the T2feticonstant. Other time constants are the T1 (longitudinal
relaxation) and T2 (transversal relaxation) that are redday different RF-pulses. Apart from the decays the MRxalg
can also be characterized by the amplitude of the signallwihithe MR is related to thproton density

As the time constants depend on the surrounding matterogidl! tissue) the non-spatial MR-signal can be used
in medical application, e.g., with the potential to detechbrs (Damadian 1971). However, by varying the strength of
the external magnetic fiel® spatially (apply the so-callegradient field the Larmor frequency will vary spatially, and
by controlling of the variation of the field and proper sigaalalysis of the relaxation signal an image can be formed
(Lauterbur 1973): magnetic resonance imaging (MRI) presitermed zeugmatography or (spatially localized) nuclear



30 Brain, mind and measurements

magnetic resonance (NMR).

By controlling the gradient field together with the applioatof the RF-pulses and the readout of the signals a large
number of differenMRI sequencesan be made, c.f., spin echo (SE), gradient echo (GE), iimrerscovery (IR), satu-
ration recovery, FAIR, etc. Some of the parameters are:egpetition time (TR) which is the scanning period or interval
between the start of each scanning, echo time (TE) whichsscisted with MR-sequences that use echos (inverting
RF-pulses), inversion time (TI) and flip angle (FA). Aparbrir the modification introduced by varying these parame-
ters the image characteristics can also be changed by émiag contrast agent, such as gadolinium in the form of the
paramagnetic Gd-DTPA, e.g., angiographic images can b&treared from pre- and post Gd-DTPA scans.

A tutorial on MRI is (Hornak 1999) and another introductisr{lLeach 1988).

Functional magnetic resonance imaging

With contrast agents in the blood images can be produceatbaensitive to vascular dynamics (Villringer et al. 1988)
The applied contrast agents are able to generate imageskadtivation (Belliveau, Kennedy Jr, McKinstry, Buchbémd
Weisskoff, Cohen, Vevea, Brady, and Rosen 1991). Hemogldirnges its magnetic properties depending on whether it
is oxygenated or deoxygenated: Deoxyhemoglobin (Hbr) iarmpagnetic while oxyhemoglobin (HbO2) is diamagnetic
(Pauling and Coryell 1936). Thus hemoglobin can be used amt@ast agent —blood oxygenation level dependent
contrast (BOLD) — for detection of oxygenation (Ogawa, Li€ay, and Tank 1990; Turner, Le Bihan, Moonen, Despres,
and Frank 1991), and subsequently also for detection ofi lactivation (Ogawa, Tank, Menon, Ellermann, Kim, Merkle,
and Ugurbil 1992; Kwong, Belliveau, Chesler, Goldberg, $8koff, Poncelet, Kennedy, Hoppel, Cohen, Turner, Cheng,
Brady, and Rosen 1992).

The BOLD response is usually positive: Though oxygen is aored and the CBV is increased the increase in CBF is
larger (luxury perfusion) and the result is a decrease invithr lower field inhomogeneity. However sedation/anesthes
sleep or age can modulate it, so the response becomes medBtivn, Rostrup, Leth, Peitersen, and Lou 1996; Born
1998; Martin, Thiel, Girard, and Marcar 2000), see alsoisr@.3.3.

fMRI is generally regarded as less stable than PET. This éstdunstabilities of the MRI scanner, susceptibility
artifacts and the complexity of the BOLD signal. Susceptibartifacts are a special problem for experiments invodv
activations in the temporal region, e.g., Devlin et al. (@00 Devlin et al. (2000a) and Veltman et al. (2000) found
reduction in signal strength and fewer activations in tinegeral region in fMRI compared to PET. Several compensation
methods exist (Deichmann and Turner 2001). FurthermoeefMRI signal will depend on the details of the MR-
sequence, e.g., the TE (Peltier 2000).

Diffusion and Perfusion and other

Apart from BOLD MR-scanners are able to generate other tgpesages that are of interest in functional neuroimaging:
Diffusion weighted image (DWI) are tensor images — diffustensor images (DTIl) — (6 values for each voxels) that
are able to image the laminar structure of the brain, e.gtewhatter tracts can be traced (Tuch, Belliveau, and Wedeen
2000) and the thalamic nuclei can be identified (Wiegell ifu@rsson, and Wedeen 2000; Wiegell 2000).

Perfusion weighted images (PWI or pMRI) are scalar timéesamages (as with BOLD fMRI) and from these it
is possible to obtain estimates of parameters such as CB¥, &Bcalled mean transit time (MTT) and time-to-peak.
The mathematical modeling associated with PWI resembkesnithods used in modeling the hemodynamic response
in BOLD fMRI, e.g, (dstergaard, Weiskoff, Chesler, Gyldists and Rosen 1996) uses principal component regression.
However, as input to the mathematical model it is rather thput curve” — an estimate of the input of the injected
contrast agent.

Furthermore, MRI can be used to measure brain temperatun®dié et al. 2001) and electromagnetic activity of a
comparable magnitude to that of neuronal firing (BodurkaBaddettini 2001).

2.4.6 Optical methods: Optical intrinsic signal, near-infared spectroscopy and voltage sensi-
tive dyes

Optical intrinsic signal

Optical intrinsic signal (OIS) (Grinvald, Lieke, Frosti§perling, and Wiesel 1986) — sometimes called intraoperati
optical intrinsic signal (iOIS) when performed on humansimy surgery — measures how white light is reflected at
different wavelengths or how a bandbass filtered light iotéld on an exposed cortex. The reflected light is a function
of among other variables “blood volume, blood flow, cell dimgl and the oxidative state of the tissue” and the method
provides one of the best spatial and temporal resolutionfufectional neuroimaging: 5@m and 50 ms (Mazziotta and
Frackowiak 2000, page 18), where the oxidative (deoxygempsignal has the highest resolution (Stetter et al. 2000)
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Voltage sensitive dyes

Certain substances — so calledltage sensitive dygd/SD) — change reflectance or fluorescence depending on an
applied electric field. The changes can be recording by alealpimaging technique (Grinvald, Salzberg, and Cohen
1977; Grinvald, Cohen, Lesher, and Boyle 1981). Anothexteel technique is oxygen-dependent phosphorescence, see,
e.g., (Vanzetta and Grinvald 1999).

NIRS

If the frequency of the light is sufficiently low it is able tepetrate biological tissue: The non-invasize near-ieftar
spectroscopy (NIRS or NIROE — near infrared optical encéggdraphy) technique uses a light source (laser diode or
halogen lamp) and a spectrograph with wavelengths aroubrii8Qe.g., Neufang et al. (1999) analyzed the spectral range
720-940nm.) A functional activation signal can be obtaiagthe scatterings from deoxyhemoglobin and oxyhemoglobin
are different: Wavelengths around 760nm is primarily démmoglobin and 830nm is mainly oxyhemoglobin (Chance,
Chen, and Cowen 1999). The spatial resolution of NIRS is dmdrthe sampling time can potentially be high, though it
is usually 0.5-1 seconds (see, e.g. Kato et al. 1998). A nstuely has used 6.25 Hz (Franceschini et al. 2000). NIRS
in the brain was first developed by Jobsis (1977) and funatinoauroimaging NIRS was first described by Kato et al.
(1993)

Multisource and multidetector NIRS has also been develofiéis is sometimes referred to aptical topography
(Maki, Yamashita, Ito, Watanabe, Mayanagi, and KoizumiDO0® similar technique that is under development is optical
tomography, where “photon density is measured at varioirdparound the medium” (George et al. 2000).

2.5 Stimulation of the brain

Apart from the stimulation through perception the brain barstimulated directly by electric, magnetic or pharmagelo
ical means.

Electrocortical stimulation can either be applied intragive or during neurosurgery evaluation of epilepsyguds:
An electrode grid is placed on the surface of the brain andgsubr stimulus trains can be applied with following mea-
surements of the evoked signal (Ray, Meador, Smith, WheSisgenfeld, and Clifton 1999).

Transcranial magnetic stimulation (TMS) applies a shagdamagnetic field on a region of the brain from a caoill
outside the head (Barker, Jalinous, and Freeston 1985 .caluses a short virtual lesion effect. The TMS pulses can als
be repeated: so-called repetitive TMS (rTMS).
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Chapter 3

Analysis

3.1 Models

A modelis a representation of a part of a world, e.g., the braimahematical modés a mathematical representation:
States and variables of the models are represented by matibahvariables or functions and inter-relation betwedwen t
model states and variables are described with mathematjcakions. Astatistical modeis a mathematical model where
some of the states or variables are regarded as stochas#cstatistical model there exist variables that are known (o
directly observed, given or assumed) and variables thatidden

In many cases it is convenient to speak afigectionin the model with internal states of the model influenced by
aninput(or “independent variables”, predictor, target, regresscplanatory variable) and responding withartput(or
“dependent variables”, response, regressand, explaarébles), see figure 3.1. The variables in the model thatlaég

Input — Model — Output

Figure 3.1: Model with input and output.

the input-output mapping is callgghrametersConsider, e.g., the mathematical model
Y = XB, (3.1)

where a data matriX can be considered the input which is multiplied by the modeameter®8 to form the outpuly.
This can be augmented to a statistical model by the inclusioandom disturbancdg

Y =XB + U. (3.2)

Now XB forms hidden variables that are contaminated by the a@ditise inU before the model forms the outpit

The direction of the model is not always obvious, and in soases it can be an advantage to do “inverse regres-
sion” where the direction is reversed (Krutchkoff 1967).nfoanalyses disregard the direction altogether viewing the
modeling as symmetric. This has been caliet@rdependence analysis— as opposed to the symmetdependence
analysis corresponding to what in the connectionistic literatuas been called unsupervised and supervised modeling,
respectively.

The operations that can be performed on the input-modgltbgystem can be grouped according to what is known
and unknown, see table 3.