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Abstract

We describe a system for meta-analytical model-
ing of activation foci from functional neuroimaging
studies. Our main vehicle is a set of density models
in Talairach space capturing the distribution of ac-
tivation foci in sets of experiments labeled by lobar
anatomy. One important use of such density mod-
els is identification of novelty, i.e., low probability
database events. We rank the novelty of the outliers
and investigate the cause for 21 of the most novel,
finding several outliers that are entry and transcrip-
tion errors or infrequent or non-conforming termi-
nology. We briefly discuss the use of atlases for
outlier detection.

1 Introduction

Given the rapid accumulation of functional neu-
roimaging data remarkably little effort goes into
mathematical and statistical meta-analyses. No-
table contributions are found in Indefrey and Lev-
elt (2000) who modeled the relation between the
cognitive components of language and the associ-
ated brain anatomy of the level of gyri, using the
binomial distribution, while Paus (1996) estimated
the mean and the standard deviation of a set of lo-
cations in order to describe the regions correspond-
ing to the frontal eye fields. Functional volumes
modeling (FVM) proposed by Fox et al. (1997,

1999, 2001) was used to model intersubject vari-
ability of activation foci corresponding to the M1-
mouth area. Multidimensional scaling was used
in Lloyd (1999, 2000) for visualization of 35 PET
(positron emission tomography) studies based on
activations in Brodmann areas. However, typi-
cal reviews and meta-analyses make little or no
modeling beyond tabulation and visualization, see
e.g., (Cabeza and Nyberg 2000; Farah and Aguirre
1999; Allison, Puce, and McCarthy 2000; Decety
and Grèzes 1999). A review of meta-analytic ap-
proaches can be found in Fox, Parsons, and Lan-
caster (1998).

In this contribution we will use non-parametric
modeling to identify outliers. Beckman and Cook
(1983) distinguish between two kinds of outliers,
discordant outliers are “any observation that ap-
pears surprising or discrepant to the investigator”
and contaminant outliers are “any observation that
is not a realization from the target distribution”.
An example of discordant outliers in functional neu-
roimaging would be the surprising tactile process-
ing in the occipital lobe (Zangaladze et al. 1999;
Hamilton et al. 2000). Contaminant outliers can
be typographical/transcription errors.

Classic outlier detection uses relatively simple
parametric models, see Beckman and Cook (1983)
for a review. In the context of anatomical “warp”
procedures, Schormann and Dabringhaus (2001)
have proposed a Rayleigh-Bessel distribution for
distortion amplitudes. By rejecting outliers, iden-
tified as low probability events with respect to this
distribution, they gain improved registration qual-
ity between magnetic resonance and histological
images. Flexible models of multidimensional distri-
butions have been promoted in the connectionistic
literature (Bishop 1994; Roberts and Tarassenko
1994), — here the method is often referred to
as “novelty detection”. Mixture models and ker-
nel methods are usually employed but also self-
organizing maps and so-called neural tree algo-
rithms have been used (Ypma and Duin 1998; Mar-
tinez 1998). These models have been applied in de-
tection of, e.g., epileptic episodes in EEG (Roberts
and Tarassenko 1994; Roberts 1999) as well as in-
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dustrial problems like early machine fault diagnos-
tics (Ypma and Duin 1998).

In this contribution we will focus on kernel den-
sity methods for detection of outliers in the Brain-
Map database (Fox and Lancaster 1994). We are
not analyzing the location-behavior correlate: In-
stead we will confine ourselves to the relationship
between 3D coordinates in Talairach space (Ta-
lairach and Tournoux 1988) and the anatomical la-
bels of the locations. In this connection the con-
taminant outliers will be transcription errors and
discordant outliers will be locations that have “sur-
prising” anatomical labeling.

Our method rests entirely upon the redundancy

in the relations between Talairach coordinates and
anatomical labels. This redundancy makes it pos-
sible to find regularities or “patterns” in the data
(Hertz, Krogh, and Palmer 1991, p. 197).

2 Methods

We downloaded the “paper”, “experiment” and
“location” web-pages from the BrainMap website
(http://ric.uthscsa.edu/services/). Each “paper”
contains one or more “experiments” and each “ex-
periment” contains one or more “locations”. A
“location” is a 3-dimensional coordinate represent-
ing an activation or deactivation focus with asso-
ciated anatomical labeling. From the “location”
web-pages (each containing one Talairach coordi-
nate) we obtained the values from two fields: “Co-
ordinates in Talairach, 1988 space” and “Lobar
anatomy”. The values (strings) from the “Lo-
bar anatomy” field were tokenized using non-letter
characters as separators. All words and all phrases
where recorded and given their own class, e.g., the
string “midline occipital lobe” generated an event
in the classes “midline”, “occipital”, “lobe”, “mid-
line occipital”, “occipital lobe” and “midline occip-
ital lobe”.

We downloaded 7263 location web-pages. 3935 of
these locations had an associated anatomical label,
thus went into one or several of the word/phrase
classes. There were 1231 word/phrase classes, see
figure 1.

We next construct a probability density model in
the three-dimensional Talairach space x by condi-
tioning on the word/phrase w class: p(x|w). We use
a relative simple estimator to model the probability
density: A variation of the Specht kernel estimator
(Specht 1990), where the width of the Gaussian ker-
nel (σ2) is optimized by leave-one-out (LOO) cross-
validation. Our implementation is based on a fast
one-dimensional Newton optimization of the leave-
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Figure 1: The 1231 classes sorted according to fre-
quency. The most occurring words are “gyrus”,
“cortex” and “frontal”. The most occurring phrase
is “frontal gyrus” as the 12th most frequent class.
There are approximately 600 classes with more
than two examples.

one-out cost function (negative log probability),

E(σ2, w) = −

Nw
∑

n=1

log p−n(xn|σ
2, w), (1)

where xn is the three-dimensional Talairach coor-
dinate of the n’th location with label w, Nw is
the number of locations labeled w, and the den-
sity based on all examples except the n’th is given
by

p−n(x|σ2, w) =
1

Nw − 1

Nw
∑

n′ 6=n

(

2πσ2
)−3/2

exp

(

−
1

2σ2
(x − xn′)2

)

.

(2)
The choice of optimization method is not crit-

ical. The Newton method has quadratic conver-
gence speed compared to the linear convergence of
simple gradient descent. Since the second deriva-
tive is easily obtained for the present cost function,
the Newton method is a suitable choice.

The kernel method is flexible enough to model,
e.g., a bimodal distribution which will be necessary
in connection with a bilateral set of locations asso-
ciated with the temporal lobes. Indeed, since the
kernel method is based on placing a Gaussian ker-
nel in each of the N locations it is possible to model
not only a bimodal distribution but a distribution
with any number of modes between 1 and N . A sin-
gle mode is obtained if the width σ2 is large while
the density will have N modes if σ2 is small.

As the probability density estimation will be af-
fected by outliers we use a two-stage heuristic: In
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the first stage we use all coordinates of the given
class to obtain the probability density. In the sec-
ond stage we exclude the 5% most unlikely coordi-
nates and estimate the probability density on the
remaining 95%. If there are no outliers in the train-
ing data this procedure will introduce a small bias
in the probability density (the width of the distribu-
tion will be under-estimated). This can potentially
make the novelty detector more conservative, thus
increasing the sensitivity to outliers, which we will
accept for the present application. The bias could
potentially be controlled by use of a set of carefully
screened test foci.

Having established a probability density model
we are able to evaluate new sets of foci. Novelty de-
tection is implemented using the estimated density
value p(x) as test statistic. We rank the locations
according to their densities with potential outliers
among the low density values, see, e.g., (Hansen
et al. 2000). Schormann and Dabringhaus (2001)
used a heuristic similar in spirit to identify and re-
ject outliers in a statistical model of spatial distor-
tions of histological images.

By using the bibliographic information from the
BrainMap “paper” web-pages the Entrez-PubMed
service (http://www.ncbi.nlm.nih.gov/PubMed/)
can be inquired. Authors, volume, first page and
year of publication in an AND query were found
to identify an article uniquely for those articles
we investigated. There were a few entries with
discrepancies in the bibliographic information be-
tween BrainMap and Entrez-PubMed that made
the AND-query void.

3 Results and Discussion

In figure 2 we present the density formed by mod-
eling the 294 entries labeled “cerebellum” in a Cor-
ner Cube Environment (Rehm et al. 1998). The
first level density is shown as wireframe, and the
trimmed second level density is shown as filled poly-
gons. Note that two isolated “blobs” (that were cre-
ated by isolated outlying locations in the training
data) were correctly eliminated by the heuristic.

Figure 3 shows the top rank outliers. The most
extreme outlier is termed “SMA” and clearly has a
z-coordinate that is wrong: z = 54 cm. This would
correspond to an activation half a meter outside
the brain! Such a highly abnormal location could
easily be detected, e.g., by plotting all the data in
the same three-dimensional plot

A location that could not be detected using a
simple measure like plotting is the seventh entry
of figure 3. This location is inside the brain (see
also figure 2) and is not an outlier with respect

to the complete set of locations. However, when
conditioning on the given label “cerebellum” it is
high novelty. A systematic manual screening would
require that the locations are plotted conditioned
on maybe 100+ classes.

Examples where a phrase provides more infor-
mation than a single word are given by the second
and third entries in figure 3 — both referring to
the same BrainMap location: Adding “superior”
in front of “parietal” makes the location yet more
unlikely.

We note that so far the analysis requires no
human intervention, e.g., manual selection of the
set of analyzed locations as in most current meta-
analyses. To investigate the cause of the novelty
it is now necessary to manually acquire, read and
interpret the articles with the associated outlier lo-
cations. To speed up the investigation the context
should be readily available: In figure 3 is shown hy-
perlink to the Brain database and — if available —
a link to Entrez-PubMed and the full text article
at the publisher.

Table 1 shows a listing of the 21 most “novel” lo-
cations from the BrainMap database as well as our
“manual” interpretation of the cause of the outlier.
Most of the errors can be characterized as database
entry errors:

The typical entry error is where the reported co-
ordinates are given in millimeter and one of them
has been interpreted as centimeter (during data en-
tering). In table 1 entries 1, 3, 13 and 17 are ex-
amples of this. Errors like this are easy to resolve
by reading the article and comparing it with the
BrainMap entry. To resolve the cause of the novelty
for other locations we contacted authors by email:
The large novelty of the second entry was due to
the error in the sign of the z-coordinate: z = −51
should have been z = 51 (Maurizio Corbetta, per-
sonal communication). The 15th outlier was due to
a location being mixed up with an other location:
The reported coordinate −24, 42, 4 should be either
−42,−14, 0 or −44,−12, 4 (Endel Tulving, personal
communication). The 16th entry was perhaps due
to the x- and y-coordinate being permuted (David
J. Brooks, personal communication).

Other entries are discordant outliers: Entries 4,
8, 12 and 21 from table 1 are all correct. In all four
cases the word “lobe” produces the high novelty,
and this is due to that in 71 of the 82 locations
associated with “lobe” the word appear in connec-
tion with “parietal” and in 6 locations in connec-
tion with “occipital”. Thus the “lobe” probabil-
ity density volume is focused on these two partic-
ular lobes and locations in other lobes will have
low probability density, i.e., inflated high novelty.
Hence the four entries are not contaminant, but
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No. BrainMap x y z BrainMap label Comment Reference

1 267, 2, 1 −5 7 540 SMA Millimeter and centimeter
for z-coordinate confused
during BrainMap entry

(Buckner et al. 1996,
table 4, entry 1)

2 29, 10, 8 48 −23 −51 Lateral superior
parietal

Resolved: Transcription
mistake.

(Corbetta et al. 1993,
table 5)

3 141, 1, 10 35 150 28 Dorsolateral pre-
frontal

Millimeter and centimeter
for y-coordinate confused
during BrainMap entry

(Kosslyn et al. 1994,
table 2, entry 10)

4 249, 1, 59 −31.8 48.1 2.2 Subgyral frontal
lobe

Correct S. K. Brannan, 1997,
Unpublished

5 280, 1, 9 24 −70 −24 Dorsal parietal
cortex

Is labeled “Right cerebel-
lum” in the article

(Schlösser et al. 1998,
table 1, entry 9)

6 4, 2, 7 −6 42 −8 Cerebellum —
superior anterior

Not possible to find the foci
in the article.

(Petersen et al. 1988)

7 280, 1, 7 38 24 −8 Dorsolateral
parietal

Is labeled “Right or-
bitofrontal cortex” in the
article

(Schlösser et al. 1998,
table 1, entry 7)

8 249,1,29 −2 26 16 Limbic Lobe Correct S. K. Brannan, 1997,
Unpublished

9 277, 3, 3 −50 −42 −14 Inferior frontal
gyrus, posterior

Is labeled “inferior temporal
gyrus posterior (area 37)” in
the article

(Owen et al. 1996, ta-
ble 2, entry 3)

10 115, 2, 5 −38 54 0 Middle temporal
gyrus

Not resolved. (Shaywitz et al. 1995,
page 155)

11 19,2,17 24 −47 38 Frontal Not resolved (Pardo et al. 1991, Ta-
ble 1a, entry 17)

12 47,4,1 −36 32 28 Medial frontal
lobe

Correct (George et al. 1994)

13 65, 2, 23 57 26 45 Anterior cingu-
late

Millimeter and centimeter
for x-coordinate confused
during BrainMap entry.

(O’Sullivan et al.
1994, table 4, en-
try 10)

14 52, 1, 2 36 −46 36 Inferior frontal
gyrus

Probably misunderstanding
of the text during entry. The
foci is around the supra-
marginal gyrus and denoted
“BA40”.

(Becker et al. 1994,
page 287)

15 61, 1, 12 −24 42 4 Temporal/insular Resolved: Transcription
mistake.

(Tulving et al. 1994,
table 1)

16 130,5,8 −38 −8 4 cingulate Perhaps a transcription er-
ror with the x- and y-
coordinate being permuted

(Wills et al. 1994, ta-
ble 5, entry 14)

17 48,2,3 80 −56 −16 anterior cerebel-
lum

Millimeter and centimeter
for x-coordinate confused
during BrainMap entry

(Grafton et al. 1993,
table 1, entry 18)

18 273,1,6 43 −14 15 parietal-occipital
junction

Not resolved (Imaizumi et al. 1997,
table 1, entry 6)

19 89,1,8 −58 −37 −17 Wernicke’s area Correct, though labeled
“Lt inferior temporal gyrus;
Lt middle temporal gyrus
(Wernicke’s area)” in the
article

(Leblanc et al. 1992,
table 1, entry 8)

20 29,8,5 −37 −93 −8 Lingual/fusiform Perhaps correct (Corbetta et al. 1993,
table 6)

21 26,3,4 40 −74 4 medial occipital
gyrus/temporal
lobe

Correct. Labeled “middle

occipital gyrus...” in the ar-
ticle

(Howard et al. 1992,
page 1776)

Table 1: BrainMap outliers. The entries are ordered according to novelty. The second column indicates
the paper, experiment and location identifier of the BrainMap database. The third to fifth column are x,
y and z with the “reported” coordinates from BrainMap (not the corrected “Talairach 1988” coordinates).
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Figure 2: Probability density estimate of the “cerebellum” class in Talairach space in a Corner Cube
Environment. The wireframe-model is the first stage probability density estimation where all the loca-
tions are included and the polygon model is the second stage probability density estimate where the 5%
most extreme are excluded. Note that two isolated “blobs” created by isolated, outlying locations were
eliminated going from the first to the second level density. This figure as well as figures 4 and 5 are made
with the Brede Matlab toolbox available at http://hendrix.imm.dtu.dk/software/brede.

rather discordant outliers induced by the less com-
mon phrases: “temporal lobe” (entry 21), “limbic
lobe” (entry 8), “subgyral frontal lobe” (entry 4)
and “medial frontal lobe” (entry 12).

The 19th entry has a high novelty due to the word
“area”: The word appear 131 times in our data but
only 5 times in connection with “Wernicke’s area”.
The outlier entry is almost 2 centimeters below the
AC-PC plane while the four other locations are
around 1 centimeter above the AC-PC plane with
two on the right and two on the left. The reported
Wernicke’s area location is a discordant outlier be-
cause it is located in the inferior/middle temporal
gyrus while Wernicke’s area is usually located more
superior1.

1The Wernicke area is not distinctly defined: Reber
(1995) defines Wernicke’s areas as “a loosely circumscribed
cortical area in the temporal region of the dominant hemi-
sphere of the brain”. Other definitions are “left posterior
temporoparietal cortex” (Price et al. 1999), “temporal-
occipital region” (Atkinson et al. 1990, page 344) and “su-

Whether the locations associated with the terms
“lobe” and “area” are “false positives” is a question
of what the goal of the analysis is: If it is just to
clean a neuroscientific database by identifying erro-
neous entries then the discordant outliers are false
positives. However, if the goal is also to spot (po-
tentially interesting!) non-conforming terminology
then the locations are innovations rather than false
positives.

A possible alternative scheme for detecting of
novelty in the BrainMap database would be to use
anatomical atlases: Figure 4 shows the Talairach
cerebellum from a triangulation of manually digi-
tized points on the surface using the Nuages pro-
gram (Geiger 1993). Many of the locations lie out-
side the Talairach cerebellum. Some of these should
presumably not be called outliers. Other anatom-
ical atlases are labeled probability volumes: The
ICBM atlas (Evans, Collins, and Holmes 1996) be-

perior temporal” (Fox et al. 2001).
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Figure 3: An automatically generated list of those locations estimated to have the highest novelty.
“Paper”, “Exp.” and “Loc.” correspond to the identifiers used in the BrainMap database. X, y, z and
“Lobar anatomy” are the associated fields in the database with the coordinates in centimeter and the
“loglikehood” is our novelty measure. The “Full text” column indicates whenever it is possible to extract
a link from the Entrez-PubMed to the electronic full text of the articles.

ing a prominent example. In this atlas the cere-
bellum has been identified and each voxel is given
a probability for being “cerebellum”, see figure 5.
It should be noted that the volume is a probability

volume P (w|x), rather than density volume p(x|w),
and thus cannot be directly compared with the ac-
tivation focus densities. Evaluating the BrainMap
location in this model we find that some of the loca-
tions have zero probability of being “cerebellum”:
P (w = ”cerebellum”|x) = 0. Again these are pre-
sumably not outliers. The locations in figure 5
have been transformed by the inverse operation of
Matthew Brett’s nonlinear transformation (Brett
1999). It is possible that more complex spatial
transformation such as a three-dimensional warps
produce slightly better fit between the location and
the probability volume, but probably not enough
to encapsulate all of the variation in the coordinate
labeling. Some variation might be attributable to
the anatomical reference volume and the software
used in the spatial normalization. The BrainMap
database does not fully record this information.

With atlas-based approaches locations in brain
regions that have very few reported locations are
not classified as outliers. This is an advantage if the
sole purpose is to catch erroneous locations. It will,
however, fail to catch non-conforming terminology.
Further disadvantages are that atlases for the sev-
eral hundred words/phrases have to be defined and
(probabilistic) models for the relations between the
atlases and the reported locations have to be con-
structed.

Detection of outliers from their anatomical labels
as carried out here is relevant for database clean-
ing, while it might be of less neuroscientific interest
on its own. A more interesting opportunity lies
in the modeling of the relationship between coor-
dinate/anatomical labels and the cognitive compo-
nents. This is, however, complicated by the fact
that BrainMap — and the typical neuroscientific
brain mapping article — does not tabulate the in-
terpreted cognitive components for each individ-
ual location. In BrainMap the cognitive compo-
nent (“behavioral domain”) is associated with the
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Figure 4: Surface of the cerebellum from the Talairach Atlas with the “cerebellum” locations. The
inferior part of the cerebellum is not in the atlas, thus not in the visualization. The contour shadows are
the convex hull of the digitized Talairach cerebellum.

anatomical information on the level of the experi-
ment and seldom does an experiment involve only
a single reported location or cluster of locations,
though see, e.g., (Tervaniemi et al. 2000) where
two experiments with automatic auditory process-
ing, phonetic and musical, respectively, result in a
two individual locations or clusters of locations.

Apart from novelty detection our density vol-
umes could be used to automatically label coor-
dinates in the style of the Talairach Daemon, see,
e.g., Lancaster et al. (1997, 2000).

The kernel density modeling approach applied to
coordinate/anatomical labels in relation to cogni-
tive components would not address a specific hypo-

thesis but rather generate hypotheses, — hypothe-
ses that might be non-trivial and surprising, cf., the
discussion in (Fox, Parsons, and Lancaster 1998)

4 Conclusion

We have described a meta-analysis scheme for
activation foci in functional neuroimages. Our
approach is based on probability density model-
ing using a fully automatic non-parametric ker-
nel approach. Based on data from the BrainMap
database we constructed a model of the relation be-
tween anatomical labels (words and phrases) and
corresponding focus location, enabling outlier de-
tection by ranking foci novelty according to the
density value. Among 21 of the most novel outliers
investigated we found both discordant (infrequent
or non-conforming terminology) and contaminant
(e.g. transcription errors) outliers.

To our knowledge our system is the first to com-
bine simple text analysis with spatial modeling. It
can potentially assist the neuroscientists in quality
control of neuroimaging data and be helpful as part
of a database entry program.
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Figure 5: The ICBM cerebellum with all the cerebellum locations from BrainMap. The locations have
been transformed by the inverse operation of Matthew Brett’s nonlinear transformation (see text).
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