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In this paper, we propose a technique for intuitive, interactive modelling of 3D shapes.
The technique is based on the Level–Set Method which has the virtue of easily handling
changes to the topology of the represented solid. Furthermore, this method also leads to
sculpting operations that are very simple and intuitive from a user perspective. A final
virtue is that the LSM makes it easy to maintain a distance field representation of the
represented solid. This has a number of benefits such as simplification of the rendering
scheme and the curvature computation. A number of LSM speed functions which are
suitable for shape modelling are proposed. However, normally these would result in tools
that would affect the entire model. To facilitate local changes to the model, we introduce
a windowing scheme which constrains the LSM to affect only a small part of the model.
The LSM based sculpting tools have been incorporated in our sculpting system which
also includes facilities for volumetric CSG and several techniques for visualization.
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1. Introduction

Interactive modelling of 3D shapes on a computer should be as simple and intuitive

as doodling 2D shapes using pencil and paper. Simpler, in fact, since on a computer

changes can always be undone, and the user is more free to explore and experiment.

Unfortunately, completely intuitive, interactive modelling of shapes seems to be

an elusive goal. Some authors attack the problem of intuitive sculpting from a user

interface perspective. Perhaps the best example is the well–known gesture–based

system, Teddy, by Takeo Igarashi [21]. It seems likely that by a careful design of

user friendly interfaces, we can come a long way towards intuitive sculpting, but,

unfortunately, it also seems that the underlying representation will be an obstacle
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– simply because effective modelling often requires the user to be aware of the

parameters of the representation.

For instance, subdivision surfaces require the user to pay attention to the va-

lency of vertices and the placement of extraordinary vertices. In a similar vein,

modelling with implicit surfaces requires the user to be aware of the (often non–

intuitive) parameters controlling the shape of the implicit. Supposedly, the user (or

sculptor) thinks in terms of real world manipulations such as “squeezing”, “bend-

ing”, “pushing”, and having to manually translate this into e.g. changes to control

points or grid connectivity is bothersome. In other words, the desirable goal is to

completely decouple the user interface from the underlying representation.

When it comes to implicit surfaces, some efforts have been made in this direction.

Witkin and Heckbert proposed a technique whereby the user can indirectly control

an implicit surface by moving control particles distributed on the surface [41]. This

work has very recently been extended by Turk and O’Brien who use interpolating

implicit surfaces as the underlying implicit representation [37].

While this work seems promising, we are considering a different approach based

on the volumetric representation which does allow the desired decoupling: When

a shape is represented by a volume (i.e. a regular 3D grid of voxels), it is feasible

to create shape manipulation tools where the user only specifies what to do (e.g.

make a dent, create a protrusion, make something smoother) without any direct

control over voxel values. A number of techniques have been used for sculpting

systems based on the volume representation. In this paper, we propose the use of

the Level-Set Method (LSM). The LSM is a promising choice because it allows for

generic deformations. The LSM is usually a global method, but we have adapted it

for local manipulations and defined LSM based tools for sculpting. These tools have

been implemented in our volume sculpting system which also supports volumetric

CSG operations and several techniques for visualization.

In the next section, we discuss related work and motivate our departure from

previous volume based methods. In Section 3 we discuss the Level–Set Method

and our particular implementation. In Section 4 our interactive sculpting system

is presented. Results are found in Section 5, and finally we draw conclusions and

point to future work in Section 6.

2. Related Work

The past ten years have seen a number of publications pertaining to volume sculpt-

ing [3, 16, 31, 12, 39, 32, 7, 2, 30, 15, 4] as well as a commercial system from

SensAble Technologies. The proposals are diverse, and a number of the systems

support advanced 3D input and output facilities. However, the systems are sim-

ilar with respect to the tools they support. This is true at least if we focus on

the systems based on the grey–level volume representation (see next section). In

this case all manipulations are block manipulations where a region of the volume

is traversed and some operation performed on each voxel therein. This mode of
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operation has some drawbacks. In particular, it does not lead to generic technique

for deformations, and it is impossible to assign a precise significance to a voxel.

As a remedy, we propose to use the Level–Set Method as the basic technology of

a sculpting system. This approach lends itself well to any sort of deformative ma-

nipulation of volumetric solids, and it maintains a “cleaner” volume representation

where voxels have (and retain) the property that their value is the signed shortest

distance to the boundary of the represented solid.

Recently, Museth et al. [22] proposed a surface editing system also based on the

Level–Set Method. Their (independent) work is similar to ours in this respect, but

differs in aim since they focus on editing existing shapes whereas we are concerned

with free–form sculpting.

2.1. Background and Motivation

Existing volume sculpting systems can, roughly, be divided into three categories:

Systems that employ the binary volume representation, e.g. [31, 12, 32], and systems

which employ the grey–level or scalar volume representation [3, 16, 39, 7, 30, 15].

In addition a number of systems are related to volume sculpting systems, but differ

in significant ways: For instance, some authors have investigated Adaptive Distance

Fields [18, 29] or volumes where the voxels are linked [17].

In this paper, we focus on the systems based on the scalar volume representation,

since the binary representation does not lend itself well to the sculpting of solids

with smooth surfaces. The alternative approaches solve certain problems, but they

also introduce new difficulties. For instance, Adaptive Distance Fields allow for

higher resolution features, but seem to be suitable only for volumetric CSG and

not manipulations that deform the solid. The linked volume representation is an

augmented binary volume representation, and like binary volumes probably not

suitable for the sculpting of solids with smooth surfaces.

In the case of the scalar volume representation, it is generally assumed that

voxels are placed at the points of an isotropic 3D lattice. The distance between two

adjacent voxels (one voxel unit – vu) is often a convenient unit. A scalar value is

associated with each voxel. We can see this value as a sample of a V–model [38]

also called a characteristic function. A V–model is, essentially, an implicit surface

representation of a solid. More precisely, given a solid S, an associated V–model

V(S) : IR3→[a, b] ⊂ IR

should have the property that V(S)(p) > τ if p is outside the solid, V(S)(p) = τ

if p ∈ ∂S and p < τ if p is inside the solid. The iso–value τ is arbitrary, and in

the following we always assume that τ = 0. In the context of scalar volumes, the

process of sampling a V–model is called voxelization. In other words, in the context

of scalar volume, voxelization denotes the conversion from some representation to

the volumetric by way of a V–model representation.

It is known that V(S) should be smooth and vary slowly with respect to the
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voxel grid. It would seem logical to use a V–model that jumps from, say, zero to

one on the boundary of a solid. However, such a function is, of course, rich in

high frequency components and when it is sampled (at the voxel positions), the

reconstruction (the value is reconstructed using interpolation between voxel values)

will exhibit artifacts. See also [19, 26, 9].

In the following, we will assume that the V–model is simply the signed shortest

distance to the boundary of the solid clamped to a certain range, i.e.

V(S)(p) = min(max(−r,dS(p)), r) (1)

where r is the width of the transition region and

dS(p) =

{

− inf∀q∈∂S ||p− q|| p ∈ S

inf∀q∈∂S ||p− q|| p /∈ S
(2)

Voxels in the transition region are called transition voxels, and voxels outside the

transition region are called interior or exterior depending on their sign. To avoid

artifacts in reconstruction, it is best if r is about 2.5 vu or larger [9, 38]. This value

has been used in the work presented here.

The scalar volume representation will be called the distance field volume repre-

sentation (DFV) when voxels are sampled from a function of the type (1). Distance

field volumes hold a number of advantages. First of all, finding the distance to a

solid is a common operation in computer graphics. Hence DFVs can be generated

using technologies also used for e.g. collision detection. Secondly, the value of a

transition voxel now has a clear geometric significance. Finally, certain operations

are simplified. In this paper, we shall see that it is easier to compute curvature and

find points on the boundary of a solid if the volume is a DFV than it is in general

for scalar volumes.

a b

Fig. 1. a: Model created using old sculpting system. b: New system.

Sculpting systems based on the scalar volume representation are generally simi-

lar in the way manipulations work (a notable exception being the method proposed
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by Arata et al. in [2] where voxels represent cellular automata that exchange mate-

rial.). The user positions a tool somewhere inside the volume, and the tool affects a

box shaped Region of Influence (ROI). For each voxel of value v and position p in

the ROI, a simple operation is carried out. Typically either

1. v is replaced by a weighted average of v and the values of neighboring voxels.

2. v is replaced by a combination of v and the value of a V–model evaluated at

the voxel position. v ← g(v,Vtool(p)) where Vtool is the V–model of a tool.

1. is the simplest to explain. The averaging corresponds to convolving the volume

with a blurring kernel, and the result is that the represented solid becomes smoother.

2. is really volumetric CSG. Many implementations are possible. If the volume is

a DFV, g(a, b) = min(a, b) is sometimes used since for most (but not all!) voxels

the correct signed shortest distance is the minimum of the shortest distance [8, 27].

However, many other per–voxel operations have been proposed.

The motivation for the work presented here is twofold. First of all, the two

operations above allow for smoothing and volumetric CSG but do not provide a

general method for deforming volumetric solids. Secondly, the above method does

not preserve the distance field representation. This easily leads to noise at other

iso–values than τ = 0 as illustrated in Figure 1. The model shown in Figure 1a is

sculpted using the system discussed in [7] whereas the methods presented in this

paper are used for Figure 1b. In both figures, the left hand image shows τ = 0

whereas the right hand image shows a value of τ near the maximum. Notice that

the right hand picture in Figure 1a exhibits considerable noise.

In the following, we will discuss the Level–Set Method which has been adapted

to volume sculpting. Using this method it is possible to perform more general

deformations. Moreover, the Level–Set Method preserves the distance field repre-

sentation. In practical terms, we rebuild the transition region for each manipulation

to ensure that voxel values correspond to distances with reasonable precision.

The Level–Set Method is a flexible tool which has found diverse applications.

In the context of volume graphics, LSM has recently been used for segmentation

problems [40], and the metamorphosis of volumetric solids [6].

3. The Level–Set Method

The Level–Set method [34] is a technique for tracking the evolution of a deforming

interface or surface. The aim of this section is to inform the reader about how it

works and how it is implemented. For the finer details on e.g. upwinding, stability

and convergence, the reader is referred to [34, 24]. Assume that we are dealing with

a surface X(t) ⊂ IR3 where t is the time parameterization. X is assumed to change

according to some speed function that pushes X in the normal direction.

The motion of X is expressed through a relationship with an embedding function

Φ : R3 × R+ → R. For all points on X the value of Φ must be zero. This leads to
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the equation

Φ(X(t), t) = 0 (3)

where X(t) denotes the set of points belonging to X at time t. (3) simply says that

X(t) is an isosurface (here called a level–set) of Φ(·, t). Because this holds for any

point in time, both X and Φ may evolve but the Level–Set equation continues to

hold implying that

dΦ(X(t), t)/dt = 0 (4)

To see how the change of Φ and X are coupled, we compute the derivative using

the chain rule

dΦ(X(t), t)/dt =
∂Φ

∂t
+∇Φ ·

dX

dt
(5)

where ∇Φ =
[

∂Φ
∂x

∂Φ
∂y

∂Φ
∂z

]

. Because all motion is in the normal direction, we can

write the change of X in terms of a speed function F times the normal ∇Φ
||∇Φ||

dX(t)

dt
= F

∇Φ

||∇Φ||
(6)

Thus F (p) where p ∈ X is a voxel position is literally the speed at which that

point on X moves in the normal direction. Plugging (6) back into (5), we obtain

the Level–Set equation
∂Φ

∂t
+ F ||∇Φ|| = 0 (7)

The Level–Set Method works on a discrete grid representation of Φ, that is

(assuming below that unit time step is used and that the grid spacing is also unit)

Φn[i, j, k] = Φ(i∆x, j∆y, k∆z, n∆t)

This is a 4D discrete function, but, in general, only one time step is stored. In

other words, Φ is really represented by a 3D voxel grid. Moreover, the initial

value, Φ0 is typically a distance field. In other words, the voxel grids that are

used throughout this paper are precisely the same type of representation as the

discretized embedding function Φ which the Level–Set Method works on. The time

derivative of Φ is approximated using

∂Φ

∂t
≈ D+tΦ = Φn+1[i, j, k]− Φn[i, j, k] (8)

and if that estimate of the derivative is plugged into (7), we obtain a method for

computing one time step:

Φn+1[i, j, k] = Φn[i, j, k]− F ||∇Φn|| (9)

where the gradient ||∇Φn|| must be computed using one sided derivatives in the

upwind direction [34]. The reason is that the solution otherwise has a tendency to

become unstable in the presence of discontinuities in the evolving surface. However,
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based on the observation that ||∇Φ|| = 1 everywhere (except at singularities) in a

distance field, we have simplified the formula to

Φn+1[i, j, k] = Φn[i, j, k]− F (10)

It might be thought that this could introduce numerical problems, but we have not

observed ill effects.

An important question is how to define F . Adalsteinsson et al. have shown that

if the speed function fulfills ∇F · ∇Φ = 0 then Φ remains a distance field [1]. In

other words, the speed function should be constant along the gradient direction.

To achieve this, F is always evaluated at the closest surface point – i.e. the point

we reach by following the gradient towards the surface. Since we are dealing with

distance fields, it is easy to find the closest surface point to a point p using the

boundary mapping

B(p) = p−∇ΦΦ(p) (11)

In the following, it is understood that to evaluate the speed function, the boundary

mapping is first used to find the closest surface point (the foot point), and then the

speed function is evaluated there.

3.1. Alternative Technique: CIR

The CIR (Courant Isaacson Rees) scheme has recently been used to solve the Level–

Set equation by John Strain [36]. Say we are following the characteristic curve

s(t) defined by

s′(t) = F∇Φ s(0) = p (12)

for some point p, then

d

dt
Φ(s(t), t) =

∂Φ

∂t
+∇Φ · s′ =

∂Φ

∂t
+ F||∇Φ|| = 0 (13)

In other words, Φ is constant along s. At any given point, we can approximate a

step along s by the speed function times the gradient, and that leads to the CIR

scheme which is, essentially, to track the characteristic curve from a voxel position

one time–step back and then assign the value at that point.

The algorithm as implemented by Strain consists of three steps carried out for

all grid points. Let the grid point be p. First we evaluate the speed function F (p).

A step back along the characteristic is approximated by s = p − F(p)∇Φ where

(as usual) unit time step is assumed. The value of Φ at s is computed. Strain uses

the so–called ENO scheme [24] to find the value at s (which is not in general a

grid point) – we use trilinear interpolation. Finally, the interpolated value Φ(s) is

assigned to the grid point p.



8 International Journal of Shape Modeling

3.2. Mean Curvature Flow

Mean curvature [13] constitutes a very useful, geometry dependent speed function

Fcurv(p) = −κm (14)

where κm denotes the mean curvature. The sign of the curvature is defined to be

positive at a convex point and negative at a concave point. The result is that all

regions of high curvature are made smoother, protrusions shrink, and cavities are

filled in. This process is known as mean curvature flow and it is a well known and

explored application of the Level–Set Method [14].

The formula typically (see e.g. [34]) used to compute mean curvature is

κm =
1

2









(Φyy + Φzz)Φ
2
x

+(Φxx + Φzz)Φ
2
y

+(Φxx + Φyy)Φ2
z

−2(ΦxΦyΦxy + ΦxΦzΦxz + ΦyΦzΦyz)









(Φ2
x + Φ2

y + Φ2
z)

3/2
(15)

but, based on the observation that Φ is a distance field, we can use a much simpler

formula [20]

κm =
trace(H)

2
=

Φxx + Φyy + Φzz

2
(16)

where H is the Hessian (i.e. the matrix of second order derivatives.) of Φ. A

common way of computing the second order partial derivatives is using the following

discrete operator

∂2Φ

∂x2
≈ Φ(x + 1, y, z) + Φ(x− 1, y, z)− 2Φ(x, y, z)

However, we store gradients in the volume and it is simple to compute the second

order derivatives by applying central differences to the gradients. This method is a

bit unusual, but it is fast and very stable.

3.3. Rebuilding the Transition Region

The Level–Set Method is a technique for computing the evolution of surfaces that

may expand and contract. If we assume that the speed function is always positive,

the so–called Fast Marching Method [33] may be used instead. Applied to a voxel

grid, the FMM computes the arrival time of an evolving front. If the front evolves

at unit speed, the result is a distance field. The FMM requires that a set of vox-

els, whose distance values are known, are frozen initially. By solving a quadratic

polynomial, the distances are then computed at the neighbors of the frozen voxels.

After that, a loop ensues. For each iteration of the loop, the non–frozen voxel

having the smallest distance value is frozen, and distances are computed at its

neighbors. The distance value of a frozen voxel is never recomputed. Thus, we can
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see the FMM as an expanding front. A band of voxels along the front are being

recomputed, and voxels behind the front are known and their values frozen.

Because, the FMM can be used to compute distance fields, it can be used to

build or rebuild the transition region of a DFV – provided that we know the distance

values of a thin band of voxels. A second order version of the algorithm is possible.

This version is called the High Accuracy Fast Marching Method (FMMHA), and

this method has been used in the work presented here. For more details about how

the Fast Marching Methods are implemented, the reader is referred to [34, 33, 10].

3.4. Implementation

The volume is stored in a two level hierarchical grid. More precisely, an N ×N ×N

grid is represented by an N ′ × N ′ × N ′ super–grid where each cell contains an

M ×M ×M sub–grid so that N = MN ′. Because the V–model is clamped to

the [−r, r] range only transition voxels need to have an explicit voxel value stored.

Interior and exterior voxels all have values of −r and r, respectively. Consequently,

a sub–grid is stored only if it contains at least one transition voxels. Otherwise, all

its voxels must be either interior or exterior, and only this information is stored for

the entire sub-grid.

In its simplest form, the Level–Set Method consists of visiting all transition

voxels and replacing each voxel with the result of (10):

Φ[p]← Φ[p]− F(pfoot) (17)

where F is the speed function evaluated at the foot point pfoot = p−Φ∇Φ. Note

that (17) is really the same as (10) with a slight change of notation. The updating

procedure can quite easily be changed to update the voxels using the CIR approach

suggested by Strain [36]

Φ[p]← Φ(p− gF(pfoot)) (18)

where Φ(·) denotes the value of the volume interpolated at a given location. Exactly

the same fundamental loop is used in conjunction with both (17) and (18). The

only difference lies in how the voxels are updated.

The basic approach is to update all voxels in the transition region using either

(17) or (18). However, it is not enough to simply update the voxels. As the surface

deforms, some voxels should be added to the transition region, and other voxels

should be removed. Recall that voxels are in the transition region if their distance

values fall in the range ]− r, r[ where r is the width of the transition region. If the

distance value after updating falls outside this range, it becomes an interior/exterior

voxel as appropriate. This does not pose a problem, but it also happens that

voxels outside the transition region come closer to the surface than r. In this case

the distance needs to be recomputed. This problem could be solved by freezing

all transition voxels and then running the fast marching method. However, our

experience is that even when evaluating the speed function only at foot points, the

voxels in the outer layers of the transition region have a tendency to become less
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precise. Consequently, a better idea seems to be to retain only the voxels in the

immediate neighborhood of the surface and rebuild the rest using the Fast Marching

Method. To concretize “immediate neighborhood” only voxels at 1/2vu distance

or less from the surface are retained and the rest are rebuilt. This is illustrated in

Figure 2.

Exterior/interior voxel
Transition region voxel
Voxel exiting transition region
Voxel entering transition region
Voxels at 1/2 vu distance

Fig. 2. Level–Set Method

The complete procedure is as follows:

1. Compute new distance value for all transition voxels using (17) or (18).

2. Freeze all voxels at 1/2 vu distance from the surface.

3. Rebuild transition region using the high accuracy Fast Marching Method.

4. An Interactive Volume Sculpting System

We have implemented LSM based tools in our volume sculpting system which will

be described in the following.

On start-up, the user is presented with a graphics window and a control panel.

All sculpting operations take place in the graphics window, and the control panel is

used to select various visualization parameters, the tool, and tool parameters. For

instance, the user can select the smoothing tool, the amount of smoothing and the

size of the smoothed region in the control panel and then apply the smoothing tool

in the graphics window.

In the graphics window, the user simply places the mouse cursor above the

place where a change is desired and clicks to invoke the tool. Apart from sculpting

operations, the graphics window also allows the user to zoom in on the model, pan

or rotate the view using a virtual trackball.

The system does not only support Level–Set based tools but also tools based on

volumetric CSG (Constructive Solid Geometry) [8]. These tools allow the user to
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add or subtract shape primitives such as spheres and polyhedra. In addition CSG

has been used to implement a simple cut and paste facility.

Like the LSM based tools, the CSG tools are invoked by pointing and clicking.

However, in the case of CSG, the orientation of the tool is important since the

effect of adding or subtracting a shape depends on its orientation. The user can

switch between three modes, one where the orientation is locked to the normal of

the shape being sculpted and another mode where the orientation is locked to the

view direction. Finally, a second virtual trackball can be used to orient the CSG

tool.

The system has been written in C++ using FLTK as the GUI toolkit, and it runs

on Linux and Windows. For the timings below, an 800 MHz Athlon based system

(running Linux) equipped with 256 MB RAM and a GeForce2 GTS graphics card

was employed.

4.1. Level–Set Sculpting Tools

LSM based sculpting tools differ only by their associated speed functions. The

simplest possible speed function is a constant speed function. A constant speed

function

Fconst(p) = k (19)

pushes the boundary uniformly outwards and thus results in a dilation. A speed

function which may be used to add a small protrusion (or dent) to the surface is

the 3D Gaußian

Fbump(p) = exp−||p−p0||/2σ2

(20)

The already mentioned mean curvature speed function is used to smoothen the

surface.

Fcurv(p) = −κm

An important piece is missing. We want the user to be able to make local

changes. Locality means that the entire Level–Set Method is used only in a ROI

around the center of the tool, and the value of the speed function should be 0 on

the boundary of the ROI. To achieve this, a radially symmetric windowing function

is used. This function can be seen as a speed function that is controlled by four

parameters: A scaling factor α, a window radius r, a window transition region

thickness k, a center point p0, and another speed function F . The definition is

Fαrkp0F(p) = αF(p)wrk(||p− p0||) (21)

where

wrk(t) =







1 0 ≤ t < r
1− 3( t−r

k )2 − 2( t−r
k )3 r ≤ t ≤ r + k

0 t > r + k
(22)

Notice that wrk is a C1 function. This ensures that the speed function decreases

smoothly to 0. The scaling factor α is used to scale the effect of the tool.
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The following concrete sculpting tools have been implemented:

1. Add blob: Fbump used in conjunction with the scaling–windowing speed function.

This tool is local only. 2. Remove blob: Same as above, but with negative scaling.

3. Smooth: Fcurv used either in conjunction with the scaling–windowing speed

function or without, depending on whether a global or a local smoothing is desired.

Scaling is used to determine the degree of smoothing.

4. Un–smooth: Same as above but with a negative scaling.

5. Dilate: Fconst used with scaling but usually not windowing since a dilation of a

part of an object is rarely desirable.

6. Erode: Same as above but with negative scaling.

4.2. CSG Tools

While Level–Set based tools suffice for many purposes, they are not ideal if the user

wishes to include, say, a torus, sphere, cube or some other specific shape in the

design. Therefore, the system also provides tools based on volumetric CSG [23].

Volumetric CSG is very simple in the case of binary volumes where we simply

perform a boolean operation between the volume containing our sculpture and a

tool volume. For grey–level volumes Perlin’s operators [28] are sometimes used [39].

In the case of distance fields, most authors use min or max to produce union and

intersection, respectively [19, 5]. In other words, for each voxel, we simply compute

the new voxel value as the minimum of the old distance value and the value of a

tool volume. It is well known that this operation does not produce correct distances

for all voxels. Fortunately, it is possible to find and correct these voxels quite easily

[11].

a b c

Figure 3: Illustration of a CSG operation with a rolling ball blend between the old
and the added shape.

However, CSG based on the min operator does introduce sharp edges which are

not well represented in volumes due to the high frequency content of such features.

To ameliorate this problem, we have previously proposed a method for volumetric

CSG which performs a fixed radius rolling ball blend between the tool and the model

[8] (see Figure 3). In some cases, the rolling ball blend itself introduces small, ill–

represented features. However, in most cases it produces a much improved result.
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4.3. Visualization

A fast method for visualizing volume data is very important in volume sculpting.

The methods typically employed are either ray casting [39, 3, 7] or a variation of

the well–known Marching Cubes algorithm [16, 15, 30] by Lorensen et al. [25].

Two methods have been implemented: Marching Cubes and a point rendering

method inspired by [35]. Figure 5 (right) illustrates both methods. Both methods

were implemented using OpenGL, and in the following, we briefly discuss the point

rendering method. For each transition voxel within a given distance of the boundary,

the boundary mapping (11) is used to produce a foot point. Together with the

normal, this point can be rendered using the OpenGL point primitive. To facilitate

perspective projection, points are scaled according to the distance to the surface.

Not all surface points are recomputed each time the volume is changed. A point–

bin is associated with each sub–grid of the hierarchical grid. When the volume is

changed, the points of a sub–grid are recomputed only if at least one voxel has been

changed.

One strength of the point rendering method lies in its simplicity, and our tests

indicate that point rendering is almost always faster than triangle rendering. How-

ever, the biggest advantage of point rendering lies in the fact that it is much faster to

generate the primitives (i.e. points). Also, efficient triangle rendering requires that

the triangles are stored in triangle strips, but stripping adds additional overhead.

To isolate the effect of primitive generation, we performed a test where primitives

were regenerated for a number of random cells each frame, but no actual sculpting

was performed. This resulted in 50 % slower rendering when marching cubes was

used instead of point rendering.

The weakness of point rendering is that at low resolutions or when zooming in

close, points become visible and the quality of MC visualization is better in these

cases. When zooming in on a small model, point rendering might also be slower

than triangle rendering, since the points overlap and triangles do not. This means

that if the program is fill–limited, triangle rendering becomes faster. In practice,

though, this is rarely the case.

5. Results

The interactive system has been used to create a number of sculptures. The effects

of some of the sculpting tools are shown isolated in the top row of Figure 4. The

add and remove blob tools were used to bore a hole through and create a handle

on the cube, respectively. The smoothing tool was used to smoothen one corner of

the cube. More elaborate sculptures are shown in Figure 5. The bear model is a

256× 256× 256 volume whereas the head is stored in 1024× 1024× 1024 volume

(which would take up far too much storage except for the hierarchical grid). The

LSM based tools discussed in this paper are the primary tools that have been used

to create the models. However, two other techniques have also been used: For the

eyes of the head (Figure 5 left), volumetric CSG was used to create the eyeballs.
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Fig. 4. Top: Effect of add/remove blob and smoothing (left), a “marzipan pig” (center), and
marzipan pig after open with a sphere or radius 3 (right). Bottom: Volume Sculpture of a
“marzipan pig” under mean curvature flow.

Fig. 5. Left: Head model visualized using ray casting. Right: Bear model rendered using Marching
Cubes (top) and point rendered (bottom).
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Secondly, the resolution was changed during sculpting. In the case of both models,

very crude resolutions (e.g. 32 × 32 × 32) were used during the initial work. The

resolution was then increased by a factor of two while finer details were added.

Doubling the resolution entails an interpolation of the values of new voxels which

turned out to introduce slight artifacts. These were easily removed using global

smoothing. Figure 6 illustrates the multiresolution sculpting process.

Fig. 6. These four images show the bear model at different levels of resolution (32× 32× 32 up to
256 × 256 × 256) and corresponding stages of the sculpting process.

As an alternative to iteratively increasing the resolution, we can use volumetric

CSG to create the initial workpiece. In Figure 7 the process is illustrated: The

image on the left was created by adding several spheres and a tetrahedron and

removing a cube. Note that the rolling–ball blend CSG method (see Section 4.2)

was used to prevent sharp edges. On the right smoothing and add blob have been

used to add details to the model.

The add blob and smoothing tools have been seen in previous sculpting systems.

However, using the LSM, new possibilities emerge. The un–smooth tool which was

used to create the hair imitation on the bear is one example. A more practically

useful example is shown in the top row of Figure 4: The marzipan pig model on

the left has been eroded and then dilated with a ball of radius three vu producing

a morphological opening.

Fig. 7. The image on the left shows a crude model created using only CSG operations. The image
on the right shows the same model after LSM based sculpting operations.
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Table 1. Timings for the add blob and smoothing tools.

Add blob Smoothing

ROI applications avg. time/sec applications avg. time/sec

10x10x10 612 0.044 1674 0.047

20x20x20 654 0.134 738 0.153

30x30x30 192 0.307 250 0.352

40x40x40 128 0.703 132 0.878

50x50x50 110 0.973 138 1.109

60x60x60 65 1.246 140 1.293

70x70x70 43 1.744 64 1.453

The figures discussed above give an idea of the scope and effectiveness of the

sculpting tools. Another important concern is speed. The speed has been tested

by a user experiment. The add blob and local smoothing tools were applied by a

sculptor using ROIs ranging from 10 × 10× 10 voxels to 70 × 70× 70 voxels. For

each tool and each size of ROI the tool was applied a number of times in a random

fashion. The results are shown in Table 1. As the table indicates, the method

is easily interactive for small tools. Large tools are clearly much slower, but the

default tool size is 20× 20× 20 which is reasonably fast at about 0.15 seconds per

application.

It has been mentioned several times that our method preserves the distance field

representation. This is ensured by the way the speed function is extended and by

the fact that distances are recomputed for all voxels at more than 0.5vu distance

from the boundary. However, it is hard to prove that the volume remains a distance

field. Also, some numerical error must be allowed for. The best test seems to be to

verify that the length of the gradient is unit, since the gradient of a distance field

must be unit–length except at critical points of the distance field [19].

An experiment was carried out. The experiment consisted of 400 applications

of the add blob tool interspersed with 400 applications of the smoothing tool. The

tools were applied to random points on the side of the cube. Afterwards, gradients

were computed for voxels incident on cells intersected by the boundary. As one

would expect the error is quite low – nowhere higher than 0.07vu. Moreover, the

greatest error is near the edges where curvature is an important source of error.

Note also that the point rendering relies on the boundary mapping which works

only for distance fields. Inaccuracies would translate into errors in the visualization.

6. Conclusions and Future Work

We have shown that it is feasible to use the Level–Set Method as the underlying

technology of a volume sculpting system.

The method is generic. Any deformation which can be expressed through a

speed function can be implemented using the Level–Set Method. By introducing

the scaling–window in the context of the LSM, we have provided a way of using
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the Level–Set Method also for local manipulations. This has led to very effective

tools for smoothing and for adding or subtracting blobs of material from the model.

Moreover, tools that were not previously possible have been implemented. For

instance, the un–smooth tool used in the bear volume. Morphological operations

have also been shown.

Another advantage of our method lies in the fact that the LSM maintains a

cleaner volume representation than previous methods. The fact that a signed dis-

tance volume is maintained has been exploited to simplify the computation of cur-

vature and the visualization.

For some sculptures, the LSM based tools suffice. However, in general, CSG

tools [8] are also important. Thus, the LSM based tools should be seen as just one

component of a complete sculpting system, but an important component. Moreover,

the tools we have implemented are probably only the beginning, and others are

envisioned. For instance, it would be possible to create shearing or warping speed

functions.

It turned out to be very valuable to be able to begin sculpting at low resolutions

and then gradually increase the resolution. This multiresolution approach could

potentially be made more powerful by allowing the user to change resolution locally,

during interactive sculpting. We believe this is an important goal, albeit difficult.
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38. Miloš Šrámek and Arie Kaufman. Alias–free voxelization of geometric objects. IEEE
Transactions on Visualization and Computer Graphics, 5(3), July/September 1999.

39. Sidney Wang and Arie E. Kaufman. Volume sculpting. In 1995 Symposium on
Interactive Graphics. ACM SIGGRAPH, 1995.

40. R. Whitaker, D. Breen, K. Museth, and N. Soni. A framework for level set segmentation
of volume datasets. In International Workshop on Volume Graphics 2001, pages
159–168, 2001.

41. A.P. Witkin and P.S. Heckbert. Using particles to sample and control implicit surfaces.
Computer Graphics Proceedings. Annual Conference Series 1994. SIGGRAPH
94 Conference Proceedings, pages 269–77, 1994.


