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Abstract

This thesis deals with the practical and theoretical issues regarding minimax optimization.
Methods for large and sparse problems are investigated and analyzed. The algorithms are
tested extensively and comparisons are made to Matlab’s optimization toolbox. The theory
of minimax optimization is thoroughly introduced, through examples and illustrations. Al-
gorithms for minimax are trust region based, and different strategies regarding updates are
given.

Exact penalty function are given an intense analysis, and theory for estimating the penalty
factor is deduced.

Keywords: Unconstrained and constrained minimax optimization, exact penalty functions,
trust region methods, large scale optimization.
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Resumé

Denne afhandling omhander de praktiske og teoretiske emner vedrørende minimax optimer-
ing. Metoder for store og sparse problemer undersøges og analyseres. Algoritmerne gen-
nemgår en grundig testning og sammenlignes med matlabs optimerings pakke. Teorien for
minimax optimering introduceres igennem illustrationer og eksempler. Minimax optimer-
ingsalgoritmer er ofte baseret på trust regioner og deres forskellige strategier for opdatering
undersøges.

En grundig analyse af eksakte penalty funktioner gives og teorien for estimering af penalty
faktoren σ udledes.

Nøgleord: Minimax optimering med og uden bibetingelser, eksakt penalty funktion, trust
region metoder, optimering af store problemer.
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Chapter 1

Introduction

The work presented in this thesis, has its main focus on the theory behind minimax opti-
mization. Further, outlines for algorithms to solve unconstrained and constrained minimax
problems are given, that also are well suited for problems that are large and sparse.

Before we begin the theoretical introduction to minimax, let us look at the linear problem of
finding the Fourier series expansion to fit some design specification. This is a problem that
occur frequently in the realm of applied electrical engineering, and in this short introductory
example we look at the different solutions that arise when using the � 1, � 2 and � ∞ norm, i.e.

F � x ���	� f � x �
� 1 ��� f1 � x �������������� fm � x �� ��� 1 �
F � x ���	� f � x �
� 22 � f1 � x � 2 ��������� fm � x � 2 ��� 2 �
F � x ���	� f � x �
� ∞ � max ��� f1 � x �������������� fm � x ������ ��� ∞ �

where f : IRn � IRm is a vector function. For a description of the problem and its three
different solutions the reader is referred to Appendix A. The solution to the Fourier problem,
subject to the above three norms are shown in figure 1.1.

As shown in [MN02, Example 1.4], the three norms responds differently to “outliers”
(points that has large errors), and without going into details, the � 1 norm is said to be a
robust norm, because the solution based on the � 1 estimation is not affected by outliers.
This behavior is also seen in figure 1.1, where the � 1 solution fits the horizontal parts of the
design specification (fat black line) quite well. The corresponding residual function shows
that most residuals are near zero, except for some large residuals.

The � 2 norm (least-squares) is a widely used and popular norm. It give rise to smooth opti-
mization problems, and things tend to be simpler when using this norm. Unfortunately the
solution based on the � 2 estimation is not robust towards outliers. This is seen in figure 1.1
where the � 2 solution shows ripples near the discontinuous parts of the design specification.
The highest residuals are smaller than that of the � 1 solution. This is because � 2 also try to
minimize the largest residuals, and hence the � 2 norm is sensitive to outliers.

A development has been made, to create a norm that combines the smoothness of � 2 with
the robustness of � 1. This norm is called the Huber norm and is described in [MN02, p. 41]
and [Hub81].
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The � ∞ norm is called the Chebyshev norm, and minimizes the maximum distance between
the data (design specification) and the approximating function, hence the name minimax
approximation. The norm is not robust, and the lack of robustness is worse than that of � 2.
This is clearly shown in figure 1.1 were the � ∞ solution shows large oscillations, however,
the maximum residual is minimized and the residual functions shows no spikes as in the
case of the � 1 and � 2 solutions.� 1 Residuals
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Figure 1.1: Left: Shows the different solution obtained by using an ! 1, ! 2 and ! ∞ estimator. Right:
The corresponding residual functions. Only the ! ∞ case does not have any spikes in the residual
function.
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1.1 Outline

We start by providing the theoretical foundation for minimax optimiazation, by presenting
generalized gradients, directional derivatives and fundamental propositions.

In chapter 3, the theoretical framework is applied to construct two algorithms that can solve
unconstrained non-linear minimax problems. Further test results are discussed.

We present the theoretical basis for constrained minimax in chapter 4, which is somewhat
similar to unconstrained minimax theory, but has a more complicated notation. In this
chapter we also take a closer look at the exact penalty function, which is used to solve
constrained problems.

Trust region strategies are discussed in chapter 5, where we also look at scaling issues.

Matlab’s solver linprog is described in chapter 6, and various problems regarding linprog,
encountered in the process of this work, is examined. Further large scale optimization, is
also a topic for this chapter.
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Chapter 2

The Minimax Problem

Several problems arise, where the solution is found by minimizing the maximum error. Such
problems are generally referred to as minimax problems, and occur frequently in real life
problems, spanning from circuit design to satellite antenna design. The minimax method
finds its application on problems where estimates of model parameters, are determined with
regard to minimizing the maximum difference between model output and design specifica-
tion.

We start by introducing the minimax problem

min
x

F � x ��� F � x �#" max
i

fi � x ��� i $%� 1 ��������� m �&� (2.1)

where F : IRm � IR is piecewise smooth, and fi � x � : IRn � IR is assumed to be smooth and
differentiable. A simple example of a minimax problem is shown in figure 2.1, where the
solid line indicates F � x � .

PSfrag replacements
F � x �

f1 � x � f2 � x �
F

x

Figure 2.1: F ' x ( (the solid line) is
defined as maxi ) fi ' x (�* . The dashed
lines denote fi ' x ( , for i + 1 , 2. The so-
lution to the problem illustrated, lies
at the kink between f1 ' x ( and f2 ' x ( .

By using the Chebyshev norm �-�.� ∞ a class of problems called Chebyshev approximation
problems occur

min
x

F∞ � x ��� F∞ � x �#"	� f � x �
� ∞ � (2.2)

where x $ IRm and f � x � : IRn � IRm. We can easily rewrite (2.2) to a minimax problem

min
x

F∞ � x �#" max / max
i
� fi � x ���&� max

i
�&0 fi � x ���213� (2.3)

It is simple to see that (2.2) can be formulated as a minimax problem, but not vice versa.
Therefore the following discussion will be based on the more general minimax formulation
in (2.1). We will refer to the Chebyshev approximation problem as Chebyshev.
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2.1 Introduction to Minimax

In the following we give a brief theoretical introduction to the minimax problem in the
unconstrained case. To provide some “tools” to navigate with, in a minimax problem, we
introduce terms like the generalized gradient and the directional gradient. At the end we
formulate conditions for stationary points etc.

According to the definition (2.1) of minimax, F is not in general a differentiable function.
Rather F will consist of piecewise differentiable sections, as seen in figure 2.1. Unfortu-
nately the presence of kinks in F makes it impossible for us to define an optimum by using
F 45� x 67�-� 0 as we do in the 2-norm case, where the objective function is smooth.

In order to describe the generalized gradient, we need to look at all the functions that are
active at x. We say that those functions belongs to the active set

A �8� j : f j � x �#� F � x ��� (2.4)

e.g. there are two active functions at the kink in figure 2.1, and everywhere else only one
active function.

Because F is not always differentiable we use a different measure called the generalized
gradient first introduced by [Cla75].

∂F � x �9� conv � f 4j � x �:� j : f j � F � x ��� (2.5)� � ∑
j ; A

λ j f 4j � x �:� ∑
j ; A

λ j � 1 � λ j < 0 �&� (2.6)

so ∂F � x � defined by conv is the convex hull spanned by the gradients of the active inner
functions. We see that (2.6) also has a simple geometric interpretation, as seen in figure 2.2
for the case x $ IR2.

PSfrag replacements

f 41 � x � f 42 � x �

f 43 � x �
Figure 2.2: The contours indicate the
minimax landscape of F ' x ( whith the
inner functions f1, f2 and f3. The gra-
dients of the functions are shown as
arrows. The dashed lines show the
border of the convex hull as defined
in (2.6). This convex hull is also the
generelized gradient ∂F ' x ( .

The formulation in (2.5) has no multipliers, but is still equivalent with (2.6) i.e. if 0 is not in
the convex hull defined by (2.6) then 0 is also not in the convex hull of (2.5) and vice versa.

We get (2.6) by using the first order Kuhn-Tucker conditions for optimality. To show this,
we first have to set up the minimax problem as a nonlinear programming problem.

minx = τ g � x � τ �9� τ
s.t. c j � x � τ �>" 0 f j � x �?� τ < 0

(2.7)
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where j � 1 �������@� m. One could imagine τ as being indicated by the thick line in figure 2.1.
The constrains f j � x �3A τ says that τ should be equal the largest function f j � x � , which is in
fact the minimax formulation F � x ��� g � x � τ �B� τ.

Then we formulate the Lagrangian function

L � x � τ � λ �B� g � x � τ �C0 m

∑
j D 1

λ jc j � x � τ � (2.8)

By using the first order Kuhn-Tucker condition, we get

L 4 � x � τ � λ ��� 0 E g 4 � x � τ ��� m

∑
j D 1

λ jc 4 j � x � τ ��� (2.9)

For the active constraints we have that f j � τ, and we say that those functions belong to the
active set A .

The inactive constraints are those for which f j F τ. From the theory of Lagrangian multi-
pliers it is known that λ j � 0 for j G$ A . We can then rewrite (2.9) to the following systemH

0
1 I � ∑

j ; A J λ j

H 0 f 4 j � x �
1 ILK (2.10)

which yield the following result

∑
j ; A

λ j f 4j � x �#� 0 � ∑
j ; A

λ j � 1 � (2.11)

Further the Kuhn-Tucker conditions says that λ j < 0. We have now explained the shift in
formulation in (2.5) to (2.6).

Another kind of gradient that also comes in handy, is the directional gradient. In general it
is defined as

g 4d � x �#� lim
t M 0

� g � x � td �C0 g � x �
t

� (2.12)

which for a minimax problem leads to

F 4d � x �#� max � f 4 j � x � T d � j $ A �N� (2.13)

This is a correct way to define the directional gradient, when we remember that F � x � is a
piecewise smooth function. Further, the directional gradient is a scalar. To illustrate this
further, we need to introduce the theorem of strict separation which have a connection to
convex hulls.

Theorem 2.1 Let Γ and Λ be two nonempty convex sets in IRn, with Γ compact and Λ
closed. If Γ and Λ are disjoint, then there exists a plane� x � x $ IRn � dT x � α �N� d O� 0 �
which strictly separates them, and conversely. In other words

Γ P Λ � /0 Q RSUTWV d and α
x $ Γ E dT x F α
x $ Λ E dT x X α
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Proof: [Man65, p. 50]

It follows from the proof to proposition 2.24 in [Mad86, p. 52], where the above theorem
is used, that if M � x �Y$ IRn is a set that is convex, compact and closed, and there exists a
d $ IRn and v $ M � x � . Then d is separated from v if

dT v F 0 �>Z v $ M � x �[�
Without loss of generality M � x � can be replaced with ∂F � x � . Remember that as a conse-
quence of (2.6) f 4 j � x �B$ ∂F � x � , therefore v and f 4 j � x � are interchangeable, so now an illustra-
tion of both the theorem and the generalized gradient is possible and can be seen in figure
2.3. The figure shows four situations where d can be interpreted as a decend direction if it
fulfils the above theorem, that is vT d F 0. The last plot on the figure shows a case where
d can not be separated from M or ∂F � x � for that matter, and we have a stationary point
because F 4d � x � < 0 as a consequence of dT v < 0, so there is no downhill direction.

PSfrag replacements

M

d PSfrag replacements

M

d

d G$ M, F 4d � x � F 0 d G$ M, F 4d � x � F 0

PSfrag replacements

M

d
PSfrag replacements

M

d
d G$ M, F 4d � x � F 0 d $ M, F 4d � x � < 0

Figure 2.3: On the first three plots d is not in M. Further d can be interpreted as a descend direction,
which leads to F \d ' x (^] 0. On the last plot, however, 0 is in M and dT v _ 0.

Figure 2.3 can be explained further. The vector d shown on the figure corresponds to a
downhill direction. As described in detail in chapter 3, d is found by solving an LP problem,
where the solver tries to find a downhill direction in order to reduce the cost function. In
the following we describe when such a downhill direction does not exist.

The dashed lines in the figure corresponds to the extreme extent of the convex hull M � x � .
That is, when M grows so it touches the dashed lines on the coordinate axes. We will now
describe what happens when M has an extreme extent.
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In the first plot (top left) there must be an active inner function where f 4 j � x �B� 0 if M � x � is
to have an extreme extend. This means that one of the active inner functions must have a
local minimum (or maximum) at x. By using the strict separation theorem 2.1 we see that
vT d � 0 in this case. Still however it must hold that F 4d � x � < 0 because F � x �#� max � f j � x ���
is a convex function. This is illustrated in figure 2.4, where the gray box indicate an area
where F � x � is constant.

PSfrag replacements x

Figure 2.4: The case where one of the active
functions has a zero gradient. Thus F \d ' x (�_ 0.
The dashed line indicate ∂F ' x ( . The gray box
indicate an area where F ' x ( is constant.

In the next two plots (top right) (bottom left), we see by using theorem 2.1 and the definition
of the directional gradient, that vT d � 0, and hence F 4d � x � < 0, since F � x � is a convex
function. As shown in the following, we have a stationary point if 0 $ M � x � .
In the last case in figure 2.3 (bottom right) we have that vT d < 0 which leads to F 4d � x � < 0.
In this case 0 is in the interior of M � x � . As described later, this situations corresponds to
x being a strongly unique minimum. Unique in the sense that the minimum can only be a
point, and not a line as illustrated in figure 2.6, or a plane as seen in figure 2.4.
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PSfrag replacements

F 4d � x �
f1 � x � f2 � x �

Figure 2.5: Left: Visualization of the gradients in three points. The gradient is ambiguous at the
kink, but the generalized gradient is well defined. Right: The directional derivative for d +a` 1
(dashed lines) and d + 1 (solid lines).

We illustrate the directional gradient further with the example shown in figure 2.5, where
the directional gradient is illustrated in the right plot for d ��0 1 (dashed lines) and d � 1
(solid lines).

Because the problem is one dimensonal, and � d �3� 1, it is simple to illustrate the relation-
ship between ∂F � x � and F 4d � x � . We see that there are two stationary points at x b 0 � 2 and at
x b 3. At x b 0 � 2 the the convex hull generalized gradient must be a point, because there is
only one active function, but it still holds that 0 $ ∂F � x � , so the point is stationary. In fact it



10 CHAPTER 2. THE MINIMAX PROBLEM

is a local maximum as seen on the left plot. Also there exists a d for which F 4d � x � F 0 and
therefore there is a downhill direction.

At x b 3 the generalized gradient is an interval. The interval is illustrated by the black circles
for d � 1 (∂F � x � ) and by the white circles for d �c0 1 ( 0 ∂F � x � ). It is seen that both the
intervals have the property that 0 $ ∂F � x � , so this is also a stationary point. Further it is also
a local minimum as seen on the left plot, because it holds for all directions that F 4d � x � < 0
illustrated by the top white and black circle. In fact, it is also a strongly unique local
minimum because 0 is in the interior of the interval. All this is described and formalized in
the following.

2.1.1 Stationary Points

Now we have the necessary tools to define a stationary point in a minimax context. An
obvious definition of a stationary point in 2-norm problems would be that F 4d� x �e� 0. This
however, is not correct for minimax problems, because we can have “kinks” in F like the
one shown in figure 2.1. In other words F is only a piecewise differentiable function, so we
need another criterion to define a stationary point.

Definition 2.1 x is a stationary point if

0 $ ∂F � x �
This means that if the null vector is inside or at the border of the convex hull of the gener-
alized gradient ∂F � x � , then we have a stationary point. We see from figure 2.2 that the null
vector is inside the convex hull. If we removed, say f3 � x � from the problem shown on the
figure, then the convex hull ∂F � x � would be the line segment between f 41 � x � and f 42 � x � . If
we removed a function more from the problem, then ∂F � x � would collapse to a point.

Proposition 2.1 Let x $ IRn. If 0 $ ∂F � x � Then it follows that F 4d � x � < 0

Proof: See [Mad86, p. 29]

In other words the proposition says that there is no downhill directions from a stationary
point. The definition give rise to an interesting example where the stationary point is in fact
a line, as shown in Figure 2.6. We can say that at a stationary point it will always hold that

PSfrag replacements

∂F � x �
x

Figure 2.6: The contours show a minimax land-
scape, where the dashed lines show a kink be-
tween two functions, and the solid line indicate
a line of stationary points. The arrows show the
convex hull at a point on the line.

the directional derivative is zero or positive. A proper description has now been given about
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stationary points. Still, however, there remains the issue about the connection between a
local minimum of F and stationary points.

Proposition 2.2 Every local minimum of F is a stationary point.

Proof: See [Mad86] p.28.

This is a strong proposition and the proof uses the fact that F is a convex function.

As we have seen above and from figure 2.6, a minimum of F � x � can be a line. Another
class of stationary points have the property that they are unique, when only using first order
derivatives. They can not be lines. These points are called Strongly unique local minima.

2.1.2 Strongly Unique Local Minima.

As described in the previous, a stationary point is not necessarily unique, when described
only by first order derivatives. For algorithms that do not use second derivatives, this will
lead to slow final convergence. If the algorithm uses second order information, we can
expect fast (quadratic) convergence in the final stages of the iterations, even though this
also to some extent depends on the problem.

But when is a stationary point unique in a first order sense? A strongly unique local minima
can be characterized by only using first order derivatives. which gives rise to the following
proposition.

Proposition 2.3 For x $ IRn we have a strongly unique local minimum if

0 $ int � ∂F � x ���
Proof: [Mad86, p. 31]

The mathematical meaning of int �&�f� in the above definition, is that the null vector should
be interior to the convex hull ∂F � x � . A situation where this criterion is fulfilled is shown in
figure 2.2, while figure 2.6 shows a situation where the null vector is situated at the border
of the convex hull. So this is not a strongly unique local minimum, because it is not interior
to the convex hull.

Another thing that characterizes a point that is a strongly unique local minima is that the
directional gradient is strictly uphill F 4d � x �3X 0 for all directions d.

If C $ IRn is a convex set, and we have a vector z $ IRn then

z $ int � C �gQ zT d F sup � gT d � g $ C �h� d O� 0 � (2.14)

where, d $ IRn. The equation must be true, because there exists a g where � g �iX�� z � . This
is illustrated in figure 2.7.
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If we now say that z � 0, and C � ∂F � x � then (2.14) implies that

0 $ int � ∂F � x ���gQ 0 F max � gT d � g $ ∂F � x ���N� d O� 0 � (2.15)

We see that the definition of the directional derivative corresponds to

F 4d � x ��� max � gT d � g $ ∂F � x ���jE F 4d � x �eX 0 � (2.16)

If we look at the strongly unique local minimum illustrated in figure 2.2 and calculate F 4d � x �
where � d �3� 1 for all directions, then we will see that F 4d � x � is strictly positive as shown in
figure 2.8.

PSfrag replacements

π G 2 π 2π G 3 2π

F 4d � x �
angle

Figure 2.8: F \d ' x ( corresponding to the land-
scape in figure 2.2 for all directions d from 0
to 2π, where k d k#+ 1.

From figure 2.8 we see that F 4d � x � is a continuous function of d and that

F 4d � x �eX K � d �i� where K � inf � F 4d � x �l�L� d �e� 1 �mX 0 (2.17)

An interesting consequence of proposition 2.3 is that if ∂F � x � is more than a point and
0 $ ∂F � x � then first order information will suffice from some directions to give final con-
vergence. From other direction we will need second order information to obtain fast final
convergence. This can be illustrated by figure 2.9. If the decent direction (d1) towards the
stationary line is perpendicular to the convex hull (indicated on the figure as the dashed line)
then we need second order information. Otherwise we will have a kink in F which will give
us a distinct indication of the minimum only by using first order information.

We illustrate this by using the parabola test function, where x 6n�po 0 � 0 q T is a minimizer,
see figure 2.9. When using an SLP like algorithm1 and a starting point x r 0 s �co 0 � t q where
t $ IR, then the minimum can be identified by a kink in F . Hence first order information will
suffice to give us fast convergence for direction d2. For direction d1 there is no kink in F . If
x r 0 s �to t � 0 q , hence a slow final convergence is obtained. If we do not start from x r 0 s �to 0 � t q

1Introduced in Chapter 3
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Figure 2.9: Left: A stationary point x u , where the convex hull ∂F ' x u�( is indicated by the dashed line.
Right: A neighbourhood of x u viewed from direction d1 and d2. For direction d1 there is no kink in
F , while all other direction will have a kink in F.

then we will eventually get a decent direction that is parallel with the direction d1 and get
slow final convergence.

This property that the direction can have a influence on the convergence rate is stated in
the following proposition. In order to understand the proposition we need to define what is
meant by relative interior.

A vector x $ IRn is said to be relative interior to the convex set ∂F � x � , if x is interior to the
affine hull of ∂F � x � .
The Affine hull of ∂F is described by the following. If ∂F is a point, then aff � ∂F � is also
that point. If ∂F consists of two points then aff � ∂F � is the line trough the two points.
Finally if ∂F consists of three points, then aff � ∂F � is the plane spanned by the three points.
This can be formulated more formally by

aff � ∂F � x ���n�W� m

∑
j D 1

λ j f 4j � x �^� m

∑
j D 1

λ j � 1 �&� (2.18)

Note that the only difference between (2.6) and (2.18) is that the constraint λ j < 0 has been
omitted in (2.18)

Definition 2.2 z $ IRn is relatively interior to the convex set S $ IRn z $ ri � S � if z $
int � aff � S �v� .
[Mad86, p. 33]

If e.g. S $ IRn is a convex hull consisting of two points, then aff � S � is a line. In this case
z $ IRn is said to be relatively interior to S if z is a point on that line.

Proposition 2.4 For x $ IRn we have

0 $ ri � ∂F � x ���lQw/ F 4d � x �#� 0 if d x ∂F � x �
F 4d � x �eX 0 otherwise

� (2.19)
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Proof: [Mad86] p. 33.

The proposition says that every direction that is not perpendicular to ∂F will have a kink in
F . A strongly unique local minimum can also be expressed in another way by looking at
the Haar condition.

Definition 2.3 Let F be a piecewise smooth function. Then it is said that the Haar condi-
tion is satisfied at x $ IRn if any subset of� f 4j � x �^� j $ A �
has maximal rank.

By looking at figure 2.2 we see that for x $ IR2 it holds that we can only have a strongly
unique local minimum 0 $ int � ∂F � x ��� if at least three functions are active at x. If this was
not the case then the null vector could not be an interior point of the convex hull. This is
stated in the following proposition.

Proposition 2.5 Suppose that F � x � is piecewise smooth near x $ IRn, and that the Haar
condition holds at x. Then if x is a stationary point, it follows that at least n � 1 surfaces
meet at x. This means that x is a strongly unique local minimum.

Proof: [Mad86] p. 35.

2.1.3 Strongly Active Functions.

To define what is meant by a degenerate stationary point, we first need to introduce the
definition of a strongly active function. At a stationary point x, the function f j � x � is said to
be strongly active if

j $ A � 0 G$ conv � f 4k � x �^� k $ A � k O� j �?� (2.20)

If fk � x � is a strongly active function at a stationary point and if we remove it, then 0 G$ ∂F � x � .
So by removing fk � x � the point x would no longer be a stationary point. This is illustrated
in figure 2.10 for x $ IR2.

Figure 2.10: Left: The convex hull spanned by the gradients of four active functions. Middle: We
have removed a strongly active function, so that 0 yz ∂F ' x ( . Right: An active function has been
removed, still 0 y ∂F ' x ( .
If we remove a function f j � x � that is not strongly active, then it holds that 0 $ ∂F � x � . In this
case x is still a stationary point and therefore still a minimizer. If not every active function
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at a stationary point is strongly active, then that stationary point is called degenerate. Figure
2.10 (left) is a degenerate stationary point.

The last topic we will cover here, is if the local minimizer x 6 is located on a smooth function.
In other words if F � x � is differentiable at the local minimum, then 0 $ ∂F � x � is reduced to
0 � F 4 � x � . In this case the convex hull collapses to a point, so there would be no way for
0 $ int � ∂F � x ��� . This means that such a stationary point can not be a strongly unique local
minimizer, and hence we can not get fast final convergence towards such a point without
using second order derivatives.

At this point we can say that the kinks in F � x � help us. In the sense, that it is because of
those kinks, that we can find a minimizer by only using first order information and still get
quadratic final convergence.
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Chapter 3

Methods for Unconstrained Minimax

In this chapter we will look at two methods that only use first order information to find a
minimizer of an unconstrained minimax problem. The first method (SLP) is a simple trust
region based method that uses sequential linear programming to find the steps toward a
minimizer.

The second method (CSLP) is based upon SLP but further uses a corrective step based on
first order information. This corrective step is expected to give a faster convergence towards
the minimizer.

At the end of this chapter the two methods are compared on a set of test problems.

3.1 Sequential Linear Programming (SLP)

In its basic version, SLP solves the nonlinear programming problem (NP) in (2.7) by solving
a sequence of linear programming problems (LP). That is, we find the minimax solution
by only using first order information. The nonlinear constraints of the NP problem are
approximated by a first order Taylor expansion

f � x � h �-{j�|� h ��" f � x �?� J � x � h � (3.1)

where f � x �}$ IRm and J � x �}$ IRm ~ n. By combining the framework of the NP problem with
the linearization in (3.1) and a trust region, we define the following LP subproblem

minh = α g � h � α ��" α
s.t. f � Jh A α� h � ∞ A η

� (3.2)

where f � x � and J � x � is substituted by f and J. The last constraint in (3.2) might at first glance
seem puzzling, because it has no direct connection to the NP problem. This is, however,
easily explained. Because the LP problem only uses first order information, it is likely
that the LP landscape will have no unique solution, like the situation shown in Figure 3.3
(middle). That is α  0 ∞ for � h �  ∞. The introduction of a trust region eliminates this
problem.
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By having � h � ∞ A η we define a trust region that our solution h should be within. That is,
we only trust the linarization up to a length η from x. This is reasonable when remembering
that the Taylor approximation is only good in some small neighbourhood of x.

We use the Chebyshev norm � ∞ to define the trust region, instead of the more intuitive
Euclidean distance norm � 2. That is because the Chebyshev norm is an easy norm to use in
connection with LP problems, because we can implement it as simple bounds on h. Figure
3.1 shows the trust region in IR2 for the � 1, � 2 and the � ∞ norm.

� 1 � 2 � ∞
Figure 3.1: Three different trust re-
gions, based on three different norms;! 1, ! 2 and ! ∞. Only the latter norm can
be implemented as bounds on the free
variables in an LP problem.

Another thing that might seem puzzling in (3.2) is α. We can say that α is just the linearized
equivalent to τ in the nonlinear programming problem (2.7). Equivalent to τ, the LP problem
says that α should be equal to the largest of the linearized constraints α � max ��v� h ��� .
An illustration of α � h � is given in figure 3.2, where α � h � is the thick line. If the trust region
is large enough, the solution to α � h � will lie at the kink of the thick line. But it is also
seen that the kink is not the same as the real solution (the kink of the dashed lines, for the
non-linear functions). This explains why we need to solve a sequence of LP subproblems
in order to find the real solution.

PSfrag replacements
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Figure 3.2: The objective is to mini-
mize α ' h ( (the thick line). If k h k ∞ �
η, then the solution to α ' h ( is at the
kink in the thick line. ! 1 ' h ( and ! 2 ' h (
are the thin lines.

For Chebyshev minimax problems F∞ � max � f ��0 f � , a similar strategy of sequentially solv-
ing LP subproblems can be used, just as in the minimax case. We can then write the Cheby-
shev LP subproblem as the following

minh = α g � h � α �>" α
s.t. f � J f h A α0 f 0 J f h A α� h � ∞ A η

� (3.3)

In section 2 we introduced two different minimax formulations (2.1) and (2.3). Here we
will investigate the difference between them, seen from an LP perspective.
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The Chebyshev formulation in (2.3) gives rise to a mirroring of the LP constraints as seen in
(3.3) while minimax (2.1) does not, as seen in (3.2). This means that the two formulations
have different LP landscapes as seen in figure 3.3. The LP landscapes are from the linearized
parabola1 test function evaluated in x ��o�0 1 � 5 � 9 G 8 q T . For the parabola test function it holds
that both the solution and the nonlinear landscape is the same, if we view it as a minimax
or a Chebyshev problem. The LP landscape corresponding to the minimax problem have
no unique minimizer, whereas the Chebyshev LP landscape does in fact have a unique
minimizer.
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Figure 3.3: The two LP landscapes from the linarized parabola test function evaluated at x +� ` 1 � 5 , 9 z 8 � T . Left: The nonlinear landscape. Middle: The LP landscape of the minimax prob-
lem. We see that there is no solution. Right: For the Chebyshev problem we have a unique solution.

In this theoretical presentation of SLP we have not looked at the constrained case of mini-
max, where F � x � is minimized subject to some nonlinear constraints. It is possible to give
a formulation like (3.2) for the constrained case, where first order Taylor expansions of the
constraints are taken into account. This is described in more detail in chapter 4.

3.1.1 Implementation of the SLP Algorithm

We will in the following present an SLP algorithm that solves the minimax problem, by
approximating the nonlinear problem in (2.7) by sequential LP subproblems (3.2). As stated
above, a key part of this algorithm, is an LP solver. We will in this text use Matlab’s LP
solver linprog ver.1.22, but still keep the description as general as possible.

In order to use linprog, the LP subproblem (3.2) has to be reformulated to the form

min
x̂

g 4 � h � α � T x̂ s.t. Ax̂ A b � (3.4)

This is a standard format used by most LP solvers. A further description of linprog and its
various settings are given in Chapter 6. By comparing (3.2) and (3.4) we get

g 4 � H
0
1 I � A ��o J � x ��0 e q�� x̂ � H

h
α I � b �W0 f � x ��� (3.5)

where x̂ $ IRn � 1 and e $ IRm is a column vector of all ones and the trust region in (3.2) is
implemented as simple bounds on x̂.

1A description of the test functions are given in Appendix C.



20 CHAPTER 3. METHODS FOR UNCONSTRAINED MINIMAX

We solve (3.4) with linprog by using the following setup.

LB := [ 0 ηe; 0 ∞]; UB := 0 LB;
Calculate: g 4 and A, b by (3.5).
[ x̂, ����� ] := linprog(g 4 , A, b, LB, UB, ����� ); ,

(3.6)

where e $ IRn is a vector of ones.

If we were to solve the Chebyshev problem (2.2) we should change A and b in (3.5) to

A � H
J f 0 e0 J f 0 e I � b � H 0 f

f I � (3.7)

The implementation of a minimax solver can be simplified somewhat, by only looking at
minimax problems. One should realize that the Chebyshev problems can be solved in such
a solver, by substituting f and J by o f 0 f q and o J 0 J q .
An Acceptable step has the property that it is downhill and that the linarization is a good
approximation to the non-linear functions. We can formulate this by by looking at the
linearized minimax function

L � x;h �#" max
i
�� i �&� i $�� 1 ��������� m �&� (3.8)

By looking at figure 3.2 and the LP-problem in (3.2) it should easily be recognized that

min
h

L � x � h � s.t. � h � ∞ A η (3.9)

is equivalent with the LP problem in (3.2).

From figure 3.2 we see that it must be the case that L � x;h �:� α. The gain predicted by linear
model can then be written as

∆L � x;h �>" L � x;0 �C0 L � x;h �� F � x �L0 α � (3.10)

The gain in the nonlinear objective function can be written in a similar way as

∆F � x;h �>" F � x �L0 F � x � h ��� (3.11)

where F is defined either by (2.1) or (2.3). This leads to the formulation of the gain factor
ρ

ρ � ∆F � x;h �
∆L � x;h � � (3.12)

The SLP algorithm uses ρ to determine if a step should be accepted or rejected. If ρ X ε
then the step is accepted. In [JM94] it is proposed that ε is chosen so that 0 A ε A 0 � 25.
In practice we could use ε � 0, and many do that, but for convergence proofs, however, we
need ε X 0.

If the gain factor ρ b 1 or higher, then it indicates that linear subproblem is a good approx-
imation to the nonlinear problem, and if ρ F ε, then the opposite argument can be made.
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The gain factor is used in the update strategy for the trust region radius η because it, as
stated above, gives an indication of the quality of linear approximation to the nonlinear
problem. We now present an update strategy proposed in [JM94], where the expansion of
the trust region is regulated by the term ρold X ε, i.e.,

if(ρ X 0 � 75) and (ρold X ε)
η � 2 � 5 � η;

elseif ρ F 0 � 25
η � η G 2;

(3.13)

The update strategy says that the trust region should be increased only when ρ indicates a
good correspondence between the linear subproblem and the nonlinear problem. Further the
criterion ρold X ε prevents the trust region from oscillating, which could have a damaging
effect on convergence. A poor correspondence is indicated by ρ F 0 � 25 and in that case the
trust region is reduced.

The SLP algorithm does not use linesearch, but we may have to reduce the trust region
several times to find an acceptable point. So this sequence of reductions replace the line-
search. We have tried other update strategies than the above. The description of those, and
the results are given in chapter 5.

As a stopping criterion we would could use a criterion that stops when a certain precision is
reached

F � x �L0 F � x 6��
max � 1 � F � x 6 ��� F δ (3.14)

where δ is a specified accuracy and x 6 is the solution. This can however not be used in
practice where we do not know the solution.

A stopping criterion that is activated when the algorithm stops to make progress e.g. � xk 0
xk � 1 � F ε1, can not be used in the SLP algorithm, because x does not have to change in
every iteration, e.g. the step xk � xk � 1 � h is discarded if ρ F ε.

Instead we could exploit that the LP solver in every iteration calculates a basic step h so that� h � F δ � (3.15)

This implies that the algorithm should stop when the basic step is small, which happens
either when the trust region η F δ or when a strongly unique local minimizer has been
found. In the latter case the LP landscape has a unique solution as shown on figure 3.3
(right).

Another important stopping criteria that should be implemented is

∆L A 0 � (3.16)

When the LP landscape has gradients close to zero, it can some times happen, due to round-
ing errors in the solver, that ∆L drops below zero. This is clearly an indication that a station-
ary point has been reached, and the algorithm should therefore stop. If this stopping criteria
were absent, the algorithm would continue until the trust region radius was so small that the



22 CHAPTER 3. METHODS FOR UNCONSTRAINED MINIMAX

Algorithm 3.1.1 SLP

begin
k := 0; x := x0; f ound := false; ρold := 2ε; � 1 ���
f := f � x � ; J := J f � x � ;
while (not found)

calculate x̂ by solving (3.2) by using the setup in (3.6).
α := x̂ � n � 1 � ; h := x̂ � 1 : n � ;
xt := x � h; ft := f � xt � ;
ρ � ∆F � x;h ��G ∆L � x;h �
if ρ X ε � 2 ���

x := xt ; f := ft ; J := J � xt � ;
Use the trust region update in (3.13)
ρold � ρ;
k � k � 1;
if stop or k X kmax � 3 ���

f ound := true;
end� 1 �� The user supplies the algorithm with an initial trust region radius η and ε which should

be between 0 A ε A 0 � 25. The stopping criteria takes kmax that sets the maximum
number of iterations, and δ that sets the minimum step size.� 2 � � If the gain factor ρ is small or even negative, then we should discard the step and
reduce the trust region. On the other hand, if ρ is large then it indicate that L � x;h �
is a good approximation to F � xt � . The step should be accepted and the trustregion
should be increased. When the step size � h �  0 then its possible that ∆L F 0 due to
rounding errors.� 3 � � The algorithm should stop, when a stopping criterion indicates that a solution has
been reached. We recommend to use the stopping criteria in (3.15) and (3.16).

stopping criterion in (3.15) was activated. This would give more unnecessary iterations. If
∆L � 0 then we must be at a local minimum.

The above leads to the basic SLP algorithm that will be presented in the following with
comments to the pseudo code presented in algorithm 3.1.1.

One of the more crucial parameters in the SLP algorithm is ε. Lets take a closer look at the
effect of changing this variable.

The condition ∆F X ε∆L should be satisfied in order to accept the new step. So when ε is
large, then ∆F has to be somewhat large too. In the opposite case ε being small, ∆F can
be small and still SLP will take a new step. In other words, a small value of ε will render
the algorithm more biased to accepting new steps and increase the trust region - it becomes
more optimistic, see (3.13).

In the opposite case when ε is large the algorithm will be more conservative and be more
likely to reject steps and reduce the trust region. The effect of ε is investicated further in
section 3.1.3.
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Situations occur where the gain factor ρ F 0, which happens in three cases: When ∆F F 0,
which indicate that h is an uphill step, and when ∆L F 0, which only happens when � h � is
approaching the machine accuracy and is due to rounding errors. Finally both ∆L F 0 and
∆F F 0, which is caused by both an uphill step and rounding errors. Due to the stopping
criteria in (3.16) the two last scenarios would stop the algorithm.

3.1.2 Convergence Rates for SLP

An algorithm like SLP will converge towards stationary points, and as shown in chapter 2
such points are also local minimizers of F � x � . The SLP method is similar to the method
of Madsen (method 1) [Mad86, pp. 76–78], because they both are trust region based and
use an LP-solver to find a basic step. The only difference is that the trust region update in
method 1 does not have the regularizing term ρold X ε, as in (3.13).

When only using first order derivatives it is only possible to obtain fast (quadratic) final
convergence if x 6 is a strongly unique local minimum. In that case the solution is said to be
regular. This is stated more formal in the following theorem.

Theorem 3.1 Let � xk � be generated by method 1 (SLP) where hk is a solution to (3.2).
Assume that we use (3.1). If � xk � converges to a strongly unique local minimum of (2.7),
then the rate of convergence is quadratic.

Proof: [Mad86, p. 99]

We can also get quadratic convergence for some directions towards a stationary point. This
happens when there is a kink in F from that direction. In this case first order derivatives
will suffice to give fast final convergence. See proposition 2.4.

If d x ∂F � x � or x 6 is not a strongly unique local minimum, then we will get slow (linear)
convergence. Hence in that case we need second order information to get the faster quadratic
final convergence.

3.1.3 Numerical Experiments

In this section we have tested the SLP algorithm with the Rosenbrock function with w � 10
and the Parabola test function, for two extreme values of ε. The SLP algorithm has also
been tested with other test problems, and section 3.3.3, is dedicated to present those results.

SLP Tested on Rosenbrock’s Function

Rosenbrock is a Chebyshev approximation problem and we tested the problem with two
values of ε to investigate the effect of this parameter. The values chosen was ε � 0 � 01 and
ε � 0 � 25. The results are presented in figure 3.4 (left) and (right). The Rosenbrock problem
has a regular solution at x 6B�Wo 1 1 q T , and we can expect quadratic final convergence in both
cases. In both cases the starting point is x0 ��o�0 1 � 2 1 q T .

We start by looking at the case ε � 0 � 01, where the following options are used

opts �to η � ε � kmax � δ q���o 1 � 0 � 01 � 100 � 10 � 5 q�� (3.17)
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The SLP algorithm converged to the solution x 6 in 20 iterations and stopped on � d �nA δ.
There where four active functions in the solution.

For F � x � we see that the first 10 iterations show a stair step like decrease, after which F � x �
decreases more smoothly. At the last four iterations we have quadratic convergence as seen
on figure 3.4 (left). This shows that SLP is able to get into the vicinity of the stationary point
in the global part of the iterations. When close enough to the minimizer, we get quadratic
convergence because Rosenbrock has a regular solution.
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Figure 3.4: Performance of the SLP algorithm when using the Rosenbrock function. The acceptance
area of a new step, lies above the dashed line denoting the value of ε.

The gain factor ρ oscillates in the first 11 iterations. This affects the trust region η as seen
on the top plot of figure 3.4 (left). The trust region is also oscillating, but in a somewhat
more dampened way, because of ρold X ε.

At the last iterations, when near the minimizer, the linear subproblem is in good corre-
spondence with the nonlinear problem. This is indicated by the increase in ρ at the last 9
iterations. We end with ρ � 0 due to ∆F � 0.

The trust region increases in the last 3 iterations, because ρ indicate that the linear subprob-
lem is a good approximation to the nonlinear problem.

From the plots one can clearly see, that whenever a step is rejected F � x � remains constant
and the trust region is decreased, due to the updating in (3.13).

The SLP algorithm was also tested with ε � 0 � 25, with the same starting point x �ao�0 1 � 2 1 q T .
The following options were used

opts �to η � ε � kmax � δ q���o 1 � 0 � 25 � 100 � 10 � 5 q�� (3.18)

SLP found the minimizer x 6 in 18 iterations and stopped on � d �nA δ and there were four
active functions in the solution.
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For F � x � we again see a stair step like decrease in F � x � in the first 6 iterations, because of
the oscillations in ρ. The global part of the iterations gets us close to the minimizer, after
which we start the local part of the iterations. This is indicated by ρ that increases steadily
during the last 12 iterations. Again we get quadratic convergence because the solution is
regular.

We see that by using ε � 0 � 25, the oscillations of the gain factor ρ is somewhat dampened in
comparison with the case ε � 0 � 01. This affects the trust region, so it too does not oscillate.
Again we see an increase of the trust region at the end of the iterations because of the good
gain factor.

The numerical experiment shows that a small value of ε makes the algorithm more opti-
mistic. It more easily increases the trust region, as we see on figure 3.4, so this makes the
algorithm more biased towards increasing it’s trust region, when ε is small.

The gain factor ρ for ε � 0 � 01 shows that four steps were rejected, so optimistic behaviour
has its price in an increased amount of iterations, when compared to ε � 0 � 25.

For ε � 0 � 25 we see that only two steps were rejected, and that the trust region η decreases
to a steady level sooner than the case ε � 0 � 01. This shows that large ε really makes SLP
more conservative e.g. it does not increase its trust region so often and is more reluctant
to accept new steps. But it is important to note, that this conservative strategy reduces the
amount of iterations needed for this particular experiment.

SLP Tested With the Parabola Test Function

We have tested the SLP algorithm on the Parabola test function and used the same scheme
as in section 3.1.3. That is testing for ε � 0 � 01 and ε � 0 � 25. The problem has a minimizer
in x 6 ��o 0 0 q T , and the solution is not regular due to only two inner functions being active
at the solution.

The first test is done with the following options

opts �to η � ε � kmax � δ q2�to 1 � 0 � 01 � 100 � 10 � 10 q^� (3.19)

Notice the lower δ value. This is because we do not have a strongly unique local minimum
in the solution. Therefore the trust region will dictate the precision of which we can find the
solution. The results of the test are shown on figure 3.5 (left).

The algorithm used 65 iterations and converged to the solution x 6 with a precision of � x r k s 0
x 6 �}� 8.8692e-09. The algorithm stopped on � d �YA δ, and 2 functions were active in the
solution.

We notice that the trust region η is decreasing in a step wise manner, until the last 10
iterations, where there is a strict decrease of the trust region in every iteration. The reason
is that after F � x � has hit the machine accuracy the gain factor ρ settles at a constant level
below 0 due to ∆F being negative, so every step proposed by SLP is an uphill step.

The rugged decrease of η is due to the rather large oscillations in the gain factor, as seen
on the bottom plot of figure 3.5. Many steps are rejected because ρ F ε. This affects the
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Figure 3.5: Performance of the SLP algorithm when using the Parabola test function. for both
ε + 0 � 01 and ε + 0 � 25 we see linear convergence.

decrease of F � x � , that show no signs of fast convergence. In fact the convergence is linear
as according to the theory of stationary points that are not strongly unique local minimizers.

A supplementary test has been made with the following options

opts �to η � ε � kmax � δ qL�to 1 � 0 � 25 � 100 � 10 � 10 ��q�� (3.20)

The algorithm used 65 iterations and converged to the solution x 6 with a precision of � x r k s 0
x 6&�3� 8.8692e-09. The algorithm stopped on � d ��A δ. Again two functions where active
in the solution. The result is shown on figure 3.5 (right).

This test shows almost the same results as that of ε � 0 � 01, even though more steps are
rejected because of the high ε. Apparently this has no influence on the convergence rate.
From the top plot of figure 3.5 (right) we see that F � x � shows a linear convergence towards
the minimizer, due to the solution being not regular.

We have seen that the choice of ε � 0 � 25 has a slightly positive effect on the Rosenbrock
problem, and almost no effect on the Parabola problem. Later we will use an addition to the
SLP algorithm that uses a corrective step on steps that would otherwise have failed. With
such an addition, we are interested in exploiting the flexibility that a low ε gives on the trust
region update.

The rate of convergence is for some problems determined by the direction to the minimizer.
This is shown in the following.

If we use SLP with x0 ��o 3 0 q T and ε � 0 � 01 then the problem is solved in 64 iterations,
and we have slow linear convergence. Hence we need second order information to induce
faster (quadratic) convergence.
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According to Madsen [Mad86, p. 32] for some problems, another direction towards the
minimizer will render first order derivatives sufficient to get fast convergence. We tried this
on Parabola with x0 ��o 0 30 q T and ε � 0 � 01 and found the minimizer in only 6 iterations.

3.2 The First Order Corrective Step

From the numerical experiments presented in section 3.1, we saw that steps were wasted
when ρ A ε. In this section we introduce the idea of a corrective step, that tries to modify
a step, that otherwise would have failed. The expectation is, that the corrective step can
reduce the number of iterations in SLP like algorithms.

We will present a first order corrective step (CS) that first appeared in connection with SLP
in [JM92] and [JM94]. The idea is, that if the basic step h is rejected, then we calculate
a corrective step v. A sketch of the idea is shown in figure 3.6. For the sake of the later
discussion we use the shorter notation xt � x � h and x̃t � x � h � v.
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In the SLP algorithm the basic step hk was found by solving the linear subproblem (LP)
in (3.2).If ρ F ε for xk , the basic step would be discarded, the trust region reduced and a
new basic step hk � 1 would be tried. Now a corrective step is used to try to save the step
hk by finding a new point x̃t that hopefully is better than xk. The important point is that
the corrective step cost the same, measured in function evaluations, as the traditional SLP
strategy. It could be even cheaper if no new evaluation of the Jacobian was made at x̃t .

The corrective step uses the inner functions that are active in the LP problem, where active
set in the LP problem is defined as

ALP � � j �� j � h �-� α �� � j � λ j X 0 �N� (3.21)

where j � 1 �������@� m and � j � h � is defined in (3.1). We could also use the following multiplier
free formulation

ALP �8� j �?� � j � h �L0 α ��A γ ��� (3.22)

where γ is a small value. The difference in definition is due to numerical errors. Here it
is important to emphasize that we should use the multipliers whenever possible, because
(3.22) would introduce another preset parameter or heuristic to the algorithm.

There is, but one objection, to the strategy of using the multipliers to define the active set.
By using the theoretical insight from (2.20), an inner function that is not strongly active is
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not guaranteed to have a positive multiplier, in fact it could be zero. In other words, if we
want to be sure to get all the active inner functions we must use (3.22).

The strategy, of using Lagrangian multipliers to define the active set, can sometimes fail
when using linprog ver. 1.23. This happens when the active functions have contours
parallel to the coordinate system. A simple case is described in Section 6.3.

When we have found the active set, the corrective step can be calculated. The reasoning
behind the corrective step is illustrated in figure 3.7 (left) where the basic step h is found at
the kink of the linearized inner functions. This kink is, however, situated further away than
the kink in the nonlinear problem. At xt we use the same gradient information as in x and
we use those functions that were active at the kink (the active functions in the LP problem)
to calculate the corrective step. At figure 3.7 (right) the corrective step v is found at the kink
of the linearizations, and hopefully x̃t will be an acceptable point.
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Figure 3.7: Side view of a 2d minimax problem. Left: The gradients at x indicates a solution at
x � h. Right: The gradients at x is used to calculate the corrective step, and a solution is indicated at
x � h � v.

Furthermore the active set ALP must only consist of functions whose gradients are linearly
independent. If this is not the case, then we just delete some equations to make the rest
linearly independent.

3.2.1 Finding Linearly Independent Gradients

We have a some vectors that are stored as columns in the matrix A $ IRn ~ m. We now want
to determine whether these vectors i.e. columns of A are mutually linearly independent.

The most intuitive ways to do this, is to project the columns of A onto an orthogonal basis
spanned by the columns of Q $ IRn ~ n. There exists different methods to find Q like Gram-
Schmidt orthogonalization, Givens transformations and the Housholder transformation, just
to mention some. Because Q is orthogonal QT Q � I. The vectors i.e. columns of A are then
projected onto the basis Q, and the projections are then stored in a matrix called R $ IRn ~ m.

The method roughly sketched above is called QR factorization, where A � QR. For more
insight and details, the reader is referred to [GvL96, Chapter 5.2] and [Nie96, Chapter 4].
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If some columns of A are linearly dependent, then one of these columns will be given a
weight larger than zero on the main diagonal of R, while the rest ideally will appear as
zeros. For numerical reasons, however, we should look after small values on the main
diagonal as an indication of linear dependence.

We want to find linearly independent gradients in the Jacobian by doing a QR factorization
of A, so that A � J � x � T , which means that the gradients are stored as columns in A.

To illustrate what we want from the QR factorization, we give an example. We have the
following system

A � H
1 � 2 1 1
0 0 1 I � b �to 1 2 3 q T � (3.23)

where A is the transposed Jacobian, so that the following first order Taylor expansion can
be formulated as �&� h �-� AT h � b � (3.24)

where h $ IRn. A QR factorization would then yield the following result

Q � H
1 0
0 1 I � R � H

1 � 2 1 1
0 0 1 I (3.25)

As proposed in the previous we look at the main diagonal for elements not equal to zero. In
this case it would seem like the system only had rank � A �B� 1, because the last element on
the diagonal is zero. This is, however, wrong when obviously rank � A �-� 2.

The problem is that the QR factorization is not rank revealing, and the solution is to pivot
the system. The permutation is done so that the squared elements in the diagional of R is
decreasing. Matlab has this feature build in its QR factorization, and it delivers a permuta-
tion matrix E $ IRm ~ m. We now repeat the above example, and do a QR factorization with
permutation.

Q ��� 2
2

H 0 1 0 10 1 1 I � R ��� 2
2

H 0 2 0 1 � 2 0 1
0 0 1 � 2 0 1 I (3.26)

where the permutation matrix is

E ���� 0 1 0
0 0 1
1 0 0

� 
(3.27)

We see that there are two non-zeros along the diagonal of R and that this corresponds to the
rank of A.

In the examples we used A and b, these can without loss of generality be replaced by JT

and f. For a QR factorization of JT , let i denote the row numbers, where diag � R �iO� 0, then
i is a set containing the indexes that denote the active functions at x. We then find

b � fi � x ��� AT � Ji = : � x ��� i $ ALP �
We then QR factorize A and get the basis Q, the projections R and finally the permutation
matrix E. We then apply the permutation so that

b̃ � ET b and Ã � AE �
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Next, we search for non-zero values along the diagonal of R. For numerical reasons we
should search for values higher than a certain threshold. The index to the elements of
mathrmdiag � R � that is non-zero is then stored in j. Then

J
T � Ã: = j and f � b̃i � (3.28)

and we see that J and f correspond to reduced versions of J and f, in that sense that all linear
dependent columns of J and all linear dependent rows of f have been removed. It is those
reduced versions we will use in the following calculation of the corrective step.

3.2.2 Calculation of the Corrective Step

We can now calculate the corrective step based on the reduced system J and f. We now
formulate a problem, whose solution is the corrective step v.

min
v = β 1

2
vT v s.t. f � x � h �?� J � x � h � v � βe (3.29)

where f $ IRt are those components of f that are active according to definition in (3.21)
or (3.22) and linearly independent. β is a scalar, e $ IRt is a vector of ones and v $ IRn.
The equation says that the corrective step v should be as short as possible and the active
linearized functions should be equal at the new iterate. This last demand is natural because
such a condition is expected to hold at the solution x 6 . The corrective step v is minimized
by using the � 2 norm, to keep it as close to the basic step h as possible. By using the � 2

norm, the solution to (3.29), can be found by solving a simple system of linear equations.

First we reformulate (3.29)

min
v̂

1
2
� Îv̂ � T � Îv̂ � s.t. f �	¡ J 0 e ¢ v̂ � 0 � (3.30)

where f and J are short for f � x � h � and J � x � h � . Furthermore we have

v̂ � H
v
β I � Î � H

I 0
0 0 I � I $ IRn ~ n � (3.31)

By using the theory of Lagrangian multipliers

L � v̂ � λ �-� 1
2
� Îv̂ � T � Îv̂ ����£ f � ¡ J 0 e ¢ v̂ ¤ T

λ (3.32)

and by using the first order Kuhn-Tucker conditions for optimality we have that the gradient
of the Lagrangian should be zero

L 4 � v̂ � λ �#� Îν̂ �	¡ J 0 e ¢ T λ � 0 � (3.33)

Further, because of the equality constraint: � f � ¡ J 0 e ¢ v̂ � T λ � 0, is seen to be satisfied
when ¡ J 0 e ¢ v̂ ��0 f � (3.34)
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To find a solution that satisfy both Kuhn-Tucker conditions, we use the following system of
equations H

Î Â
ÂT 0 I H v̂

λ I � H
00 f I � Â �¦¥ J

T0 eT § (3.35)

where Â $ IR r n � 1 s�~ t . By solving (3.35) we get the corrective step v. For a good introduction
and description of the Kuhn-Tucker conditions, the reader is referred to [MNT01, Chapter
2].

In (3.29) we used the Jacobian J evaluated at xt , however it was suggested in [JM94], that
we instead could use J evaluated at x. As Figure 3.8 clearly indicate, this will give a more
crude corrective step.
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Figure 3.8: Various steps h of different
length. The squares denote the corrective
step v based on J ' x � h ( . The circles denote
v based on J ' x ( .

The figure shows that v based on J � x � is not as good as v based on J � xt � . The latter gives
a result much closer to the intersection between the two inner functions of the parabola test
function. This goes in line with [JM94] stating that it would be advantageous to use (3.29)
when the problem is highly non-linear and otherwise calculate v based on J � x � and save the
gradient evaluation at xt .

It is interesting to notice that Figure 3.8 shows that the the step v based on J � x � is perpendic-
ular to h. We will investigate that in more detail in the following. The explanation assumes
that the corrective step is based on J � x � .
The length of the basic step h affects the corrective step v as seen in figure 3.8. This is
because the length of v is proportional to the difference in the active inner functions f of F .
This is illustrated in figure 3.7. If the distance between the active inner functions are large,
then the length of the corrective step will also be large and vice versa.

From the figure it is clear, that the difference in the function values of the active inner
functions is proportional to the distance between xt and x̃t . So the further apart the values
of the active inner functions is, the further the corrective step becomes, and vice versa.

It turns out that the corrective step is only perpendicular to the basic step in certain cases. So
the situation shown in figure 3.8 is a special case. The special case arises when the active
set in the nonlinear problem is the same as in the linear problem. That is A � ALP. We
could also say that the basic step h has to be a tangent to the nonlinear kink where the active
functions meet. An illustration of this is given in figure 3.9.
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Figure 3.9: The dashed lines illustrates the kink in: A, the LP landscape at x and B, the linearized
landscape at xt . Left: Only when the basic step is a tangent to the nonlinear kink, we have that h is
perpendicular to v. Middle: Shows that h is not always perpendicular to v. Right: If J ' xt ( is used to
calculate v then the two kinks are not always parallel.

The figure shows two dashed lines, where A illustrates the kink in the LP landscape at x
and B illustrates the kink in the linearized landscape at xt . It is seen that the dashed line
B moves because of the change in the active inner functions at xt . This affects v, because
it will always go to that place in the linearized landscape where the active functions at xt

becomes equal. Therefore the corrective step always goes from A to B.

When using J � x � to calculate v, the dashed lines will be parallel, and hence v will be or-
thogonal to A and B because it is the shortest distance between them. In general, however,
it is always the case that v will be orthogonal to the dashed line B as illustrated in figure 3.9
right.

Figure 3.9 left, illustrates the case where x is situated at A, and where J � x � is used to
calculate v. In this case h will be perpendicular to v.

The same figure middle, shows a situation where x is not situated at A, hence h and v are
not orthogonal to each other.

Figure 3.9 right, illustrates a situation where the Jacobian evaluated at xt is used. In this
case, the dashed lines are not parallel to each other. Still, however, v is perpendicular to B,
because that is the shortest distance from xt to B.

The definition of the corrective step in (3.29) says that the corrective step should go to
a place in the linearized landscape at xt based on either J � x � or J � xt � , where the active
functions are equal. Also it says that we should keep the corrective step as short as possible.

We notice that if the active set ALP is of size t � 1, then the corrective step v will be equal
to the null vector.

length � t �#� 1 � then v � 0 � (3.36)

This is because the calculation of the corrective step has an equality constraint that says that
all active functions should be equal. In the case where there is only one active function,
every v $ IRn would satisfy the equality constraint. The cost function, however, demands
that the length of v should be as short as possible, and when v $ IRn then the null vector
would be the corrective step with the shortest length. Hence v � 0.

As stated in (3.29) we should only use the functions that are active in F � x � to calculate the
corrective step. The pseudo code for the corrective step is presented in the following.
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Function 3.2.1 Corrective Step

v : � corr step(f � J � i) � 1 � �
begin

Reduce i by e.g. QR factorization � 2 � �
if length(i) A 1,

v := 0;
else

find o v̂ λ q T by solving (3.35)
return v;

end

� 1 �
� J is either evaluated at x or xt . i is the index to the active functions of the LP problem
in (3.2)� 2 �
� The active set is reduced so that the gradients of the active inner functions evaluated
at x or xt are linearly independent.

3.3 SLP With a Corrective Step

In section 3.1 we saw that minimax problems could be solved by using SLP, that only uses
first order derivatives, which gives slow convergence for problems that are not regular in
the solution. To induce higher convergence rates, the classic remedy is to use second order
derivatives. Such methods use Sequential Quadratic Programming (SQP).

For some problems second order derivatives are not always accessible. The naive solution
is to approximate the Hessian by finite difference (which is very expensive) or to do an
approximation that for each iteration gets closer to the true Hessian. One of the preferred
methods that does this, is the BFGS update. Unfortunately for problems that are large and
sparse, this will lead to a dense Hessian (quasi-Newton SQP). For large and sparse problems
we want to avoid a dense Hessian because it will have n ¨ n elements and hence for big
problems use a lot of memory and the iterations would become more expensive. Methods
have also been developed that preserve the sparsity pattern of the original problem in the
Hessian [GT82].

In the following we discuss the CSLP algorithm that uses a corrective step in conjuncture
with the SLP method. CSLP is Hessian free and the theory gives us reason to believe that
a good performance could be obtained. The CSLP algorithm was first proposed in 1992
in a technical note [JM92] and finally published by Jonasson and Madsen in BIT in 1994
[JM94].

3.3.1 Implementation of the CSLP Algorithm

The CSLP algorithm is built upon the framework of SLP presented in algorithm 3.1.1, with
an addition that tries a corrective step each time a step otherwise would have failed.
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This scheme is expected to reduce the number of iterations in comparison with SLP for cer-
tain types of problems. Especially for highly non-linear problems like, e.g, the Rosenbrock
function.

The CSLP algorithm uses (like SLP) the gain factor ρ from (3.12) to determine whether or
not a the iterate xt � x � d is accepted or discarded. If the latter is the case, we want to try
to correct the step by using function 3.2.1. So if ρ F ε a corrective step is tried.

When the corrective step v have been found a check is performed to see if � v �nA 0 � 9 � h � .
This check is needed to ensure that the algorithm does not return to where it came from, i.e.,
the basic step added with the corrective step gives h � v � 0, which would lead to x � xt.
The algorithm could then oscillate between those two points until the maximum number of
iterations is reached. If the check was not performed a situation like the one shown in figure
3.10 could happen.
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If the check succeeds, then d � h � v. To confine the step d to the trust region we check
that � d �YA η. If not, we reduce the step so that d � η©

d
© d. The reduction of d is necessary

in order to prove convergence.

If the corrective step was taken, we have to recalculate ∆F � x;d � to get a new measure of the
actual reduction in the nonlinear function F � x � . This gives rise to a new gain factor ρ that
we treat in the same way as in the SLP algorithm.

The CSLP algorithm is described in pseudo code in algorithm 3.3.1, with comments.

3.3.2 Numerical Results

In this section we test the CSLP algorithms performence on the two test cases from section
3.1.3. This is followed by a test of SLP and CSLP on a selected set of test functions. Those
results are shown in table 3.3. Finally, matlab’s own minimax solver fminimax is tested on
the same set of test functions. fminimax is a quasi-Newton SQP algorithm that uses soft
line search, instead of a trust region.
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Algorithm 3.3.1 CSLP

begin
k := 0; x := x0; f ound := false; ρold := 2ε; � 1 ���
f := f � x � ; J := J � x � ;
repeat

calculate x̂ by solving (3.2) or (3.3) by using the setup in (3.6).
α := x̂ � n � 1 � ; h := x̂ � n � ;
xt := x � h; ft := f � xt � ;
ρ � ∆F � x;h ��G ∆L � x;h �
if ρ A ε � 2 ���

ν := corr step(ft , J, h); � 3 � �
if � ν ��A 0 � 9 � h �

d := h � ν;
if � d � ∞ X η

d := � η G�� d � ∞ � d;
xt := x � d; ft := f � xt � ;
ρ : � ∆F � x;d ��G ∆L � x;h � ;

if ρ X ε
x := xt ; f := ft ; J := J � xt � ;

Use the trust region update in (3.13)
ρold � ρ; k � k � 1;
if stop or k X kmax � 4 ���

f ound := true;
until found� 1 �
� The variables ε, η are supplied by the user. We recommend to use ε � 10 � 2 or smaller.

The trust region η � 1 is suggested in [JM94], but in reality the ideal η depends on
the problem being solved.� 2 �
� The step x � h is rejected, and a corrective step should be taken.� 3 � � The corrective step is calculated by using function 3.2.1. We can use either J based
on J � x � or J � x � h � , where the latter is suggested in [JM94] if the problem is highly
non-linear. This can also be seen from figure 3.8.� 4 �
� The algorithm should stop, when a certain stopping criterion indicates that a solution
has been reached. We recommend to use (3.15) and (3.16).

CSLP Tested on Rosenbrock’s Function

Again we test for two extreme cases of ε, as we did in section 3.1.3 for the SLP algorithm,
to see what effect ε has on the convergence rate. We used the following options in the test.� η � ε � kmax � δ �#�t� 1 � 0 � 01 � 100 � 10 � 10 ��� (3.37)

and the Jacobian for the corrective step was based upon x � h. The result is shown on figure
3.11 in the left column of plots. The solution was found in 8 iterations with x ��o 1 � 1 q T . The
algorithm stopped on � d �iA δ with a precision of � x 0 x 6|� ∞ � 0. We see that F � x � shows
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quadratic convergence at the end of the iterations when we are close to x 6 . This is because
the problem is regular e.g. at least n � 1 functions are active in the solution and the gradients
satisfies the Harr condition. Its interesting to notice that the level of the trust region radius
η is higher than that of SLP in section 3.1.3. This is a good sign, because this gives us a
quick convergence towards a stationary point in the global part of the iterations.

The gain factor ρ is never below ε which indicates that the corrective step manages to save
all the steps that would otherwise have failed.
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Figure 3.11: Performance of the CSLP algorithm when using the Rosenbrock function with w + 10.
(Bottom row) The acceptance area of a new step, lies above the dotted line denoting the value of ε.

The same problem was tested with ε � 0 � 25 and the result is somewhat similar to that of ε �
0 � 01. The result is shown in figure 3.11 right column of plots. The solution x ��o 1 � 1 q T was
found in 17 iterations and the algorithm stopped on a small step � d �iA δ, with a precision
of � x 0 x 6&� ∞ � 0.

Compared with the SLP test, the corrective step has not managed to reduce the number
of iterations when the very conservative ε � 0 � 25 is used. Anyway there is no need to be
conservative, when the step is saved by the corrective step.

We see that the corrective step has reduced the number of iterations significantly (see table
3.3) for Rosenbrock like problems, so we can say that the CSLP is a real enhancement of
the SLP algorithm.

CSLP Tested on the Parabola Test Function

The same test that was done with SLP in section 3.1.3, is done here with CSLP. The Parabola
test function is of special interest because it’s not regular at the solution e.g. only two
function are active at x 6 $ IR2. Most commonly second order information are needed to get
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faster than linear convergence in such a case, and it is therefore interesting to see what effect
the corrective step has on such a problem. The test was done with the following options� η � ε � kmax � δ �#�t� 1 � 0 � 01 � 100 � 10 � 10 ��� (3.38)

The solution was found in 60 iterations with a precision of � x 0 x 6&� = 5.68e-09, and
stopped on a small step. The result is shown in figure 3.12 left column of plots.

We see a very interesting and fast decrease in F � x � in the first 10-15 iterations. This is
because the corrective step very quickly gets x into the neighbourhood of the stationary
point.

When x is close to the stationary point, the corrective step no longer helps, and thats why
we get the linear convergence in the remaining iterations.

Compared to the SLP test, we see that the gain factor is more stable in the start of the
iterations (0-15) and at the end, when the trust region is reduced and no new steps are taken.
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Figure 3.12: Performance of the CSLP algorithm when using the Parabola test function. (Bottom
row) The acceptance area of a new step, lies above the stippled line denoting the value of ε.

The same problem was tested with ε � 0 � 25 and the solution was found in 64 iterations
with a precision of � x 0 x 6ª� = 8.87e-09. The algorithm terminated on a small step. The
behavior of the variables in CSLP is shown in figure 3.12 right column.

The course of iterations is almost similar to that of ε � 0 � 01. The initial reduction of F � x � is
somewhat slower, even though the same behavior is present. We see a fast initial reduction
of F � x � coursed by the corrective step that brings x close to the stationary point. When in
the vicinity of the stationary point, the corrective step no longer helps, and we get linear
convergence. In order to improve the convergence rate, we need second order information.

For this problem CSLP differs from SLP in an important way. From figure 3.13 we see
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that the corrective step gets us close to the vicinity of a stationary point, in fewer iterations
than SLP for the Parabola test function. This yield that CSLP is a very promising method in
the global part of the iterations before we reach the vicinity of a stationary point. Another
important fact is that CSLP does not perform worse than SLP, as seen in section 3.3.3.
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Figure 3.13: Results from SLP and
CSLP tested on the Parabola prob-
lem. The plot shows the Euclidean
distance from x « k ¬ to the minimizer x u
as a function of iterations. We see that
CSLP reach the vicinity of the mini-
mizer faster than SLP.

3.3.3 Comparative Tests Between SLP and CSLP

In this section we presents numerical results for the SLP and CSLP algorithms presented in
the previous. We have used an initial trust region radius η � 1 and unless otherwise noted
ε � 0 � 01. Table 3.1 shows the test functions that have been used.

Test functions
Name param m n t 6
Parabola 2 2 2
Rosenbrock1 w � 10 2 2 4
Rosenbrock2 w � 100 2 2 4
BrownDen 20 4 3
Bard1 yA 15 3 4
Bard2 yB 15 3 4
Ztran2f 11 2 2
Enzyme 11 4 22
El Attar 51 6 7
Hettich 5 4 4

Table 3.1: Test functions used in the analysis. See Appendix C for definitions.

The test results for the SLP and CSLP with a corrective step based on J � x � and J � x � h � are
presented in Table 3.3.

When comparing the number of iterations, we see that CSLP performs just as well as SLP
or better, which also is observed in [JM94].

For functions like Parabola, BrownDen, Ztran2f and Hettich, the number of iterations are
either equal or less for CSLP than that of SLP, but when using CSLP, the number of function
evaluations grows when compared to SLP. This is because several corrective steps were at-
tempted. For the Hettich function this has lead to a reduction in iterations, but unfortunately
also in an increase of function evaluations.
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Algorithm fminimax
minimax SQP, Quasi-Newton, line search
Name 10  2 10  5 10  8

Parabola 7(15) 9(19) 8(17)
Rosenbrock1 8(18) 8(18) 8(18)
Rosenbrock2 19(44) 19(44) 19(44)
BrownDen 7(15) 9(19) 9(19)
Bard1 5(11) 6(13) 6(13)
Bard2 7(15) 8(17) 8(17)
Ztran2f 10(21) 14(30) 14(30)
Enzyme 8(17) - -
El Attar 16(33) 18(37) 18(37)
Hettich 4(9) 3(7) 3(7)

Table 3.2: Matlab’s minimax solver fminimax tested upon the test functions. The numbers in the
parentheses is the number of function evaluations.

The test functions Bard1, Bard2 and El Attar all share the commen property that CSLP
does not use corrective steps, hence for theese functions SLP and CSLP show the same
performance. El Attar uses only one corrective step wich only alter the results for CSLP
with one iteration.

CSLP has shown itself quite successful on test problems like Rosenbrock1, Rosenbrock2
and Enzyme. Especially the Enzyme problem reveals the strength of CSLP. When the cor-
rective step is based on J � x � h � the number of iterations are reduced by almost 75% com-
pared to SLP. The same goes for the number of function evaluations that are reduced by
almost 45%.

For Rosenbrock’s function we see a huge difference in performance between SLP and CSLP,
especially for Rosenbrock2. This get even better when the corrective step is based upon
J � x � h � , which is in accordance with expectations and illustrated in figure 3.8.

The effect of using second order derivatives is seen in table 3.2. Matlabs minimax solver
fminimax is an SQP algorithm, that uses an approximated Hessian (quasi-Newton) with
soft line search. The results are generally very acceptable, and fminimax shows good per-
formance for test problems like Parabola, BrownDen, Ztran2f, Enzyme and Hettich, when
compared to SLP and CSLP.

For a function like Rosenbrock, fminimax uses almost as few iterations as CSLP, but due
to its line search it uses a lot more function evaluations.

For the Enzyme problem the number of iterations and function evaluations is very low, but
the precision of the solution is not that good. The poor result motivated a further investiga-
tion, and by using optimset, further information was extracted.

For the Enzyme problem, fminimax terminates because the directional derivative is smaller
than 2*TolFun, where TolFun=1e-6. The remedy is obviously to lower the value of
TolFun, in order to get more iterations and a better solution. Rather surprisingly, lower-
ing TolFun to 1e-7, triggers a loop that continues until the maximum number of function
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Test of SLP
Name 10  2 10  5 10  8 corrective steps
Parabola 11(12) 21(22) 31(32) - - -
Rosenbrock1 16(17) 16(17) 16(17) - - -
Rosenbrock2 40(41) 41(42) 41(42) - - -
BrownDen 19(20) 32(33) 42(43) - - -
Bard1 3(4) 4(5) 5(6) - - -
Bard2 3(4) 4(5) 5(6) - - -
Ztran2f 6(7) 21(22) 30(31) - - -
Enzyme 164(165) 168(169) 169(170) - - -
El Attar 7(8) 9(10) 10(11) - - -
Hettich 8(9) 19(20) 30(31) - - -

Test of CSLP - J � x �
Name 10  2 10  5 10  8 corrective steps
Parabola 8(13) 15(27) 21(39) 4[0] 11[0] 17[0]
Rosenbrock1 10(17) 11(18) 11(18) 7[1] 7[1] 7[1]
Rosenbrock2 17(29) 18(30) 18(30) 11[0] 11[0] 11[0]
BrownDen 15(20) 29(41) 42(57) 4[0] 11[0] 14[0]
Bard1 3(4) 4(5) 5(6) 0[0] 0[0] 0[0]
Bard2 3(4) 4(5) 5(6) 0[0] 0[0] 0[0]
Ztran2f 6(7) 21(30) 30(43) 0[0] 8[0] 12[0]
Enzyme 58(85) 64(94) 65(95) 32[6] 35[6] 35[6]
El Attar 7(8) 9(10) 10(11) 1[1] 1[1] 1[1]
Hettich 7(11) 18(33) 28(53) 5[2] 13[2] 26[2]

Test of CSLP - J � x � h �
Name 10  2 10  5 10  8 corrective steps
Parabola 8(15) 12(23) 21(41) 6[0] 10[0] 19[0]
Rosenbrock1 7(13) 8(14) 8(14) 5[0] 5[0] 5[0]
Rosenbrock2 9(14) 11(16) 11(16) 4[0] 4[0] 4[0]
BrownDen 15(20) 29(41) 36(52) 4[0] 11[0] 15[0]
Bard1 3(4) 4(5) 5(6) 0[0] 0[0] 0[0]
Bard2 3(4) 4(5) 5(6) 0[0] 0[0] 0[0]
Ztran2f 6(7) 21(30) 30(43) 0[0] 8[0] 12[0]
Enzyme 26(48) 42(75) 43(76) 22[1] 33[1] 33[1]
El Attar 6(8) 8(10) 9(11) 1[0] 1[0] 1[0]
Hettich 5(7) 12(21) 21(39) 3[2] 10[2] 19[2]

Table 3.3: Unless otherwise noted, η0 + 1 and ε + 0 � 01. Column 2–4 number of iterations, ( ) the
number of function evaluations. Column 5–7 attempted corrective steps. [ ] failed corrective steps.

evaluations has been reached. Raising the maximum number of function evaluation from
500 to e.g. 1000 , do not help, the precision of the solution stay the same.

In general, however, the table shows, that if we have the possiblity of using second order
information, it generally pays to use it. Especially when the problem is not regular at the
solution.
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3.3.4 Finishing Remarks

For regular solutions where second order information is not necessary to ensure quadratic
convergence, the performance of CSLP is very promising. For problems that do not have
regular solutions, like the parabola test function, we see a performance of CSLP that is as
good as SLP.

The important difference between CSLP and SLP in the non regular case, is that CSLP
seems to be able to reach the vicinity of the stationary point faster than SLP. This make
CSLP a good algorithm in the global part of the iterations.

The work of Madsen [Mad86], proposes a minimax algorithm that is a two stage method
called the combined method. For the global part of the iterations a method like SLP (method
1) is used to get into the vicinity of the minimizer. When in the vicinity, a switch is made to
a method that uses second order information (method 2), to ensure fast final convergence.
It could be interesting to try the combined method of Madsen, with method 1 replaced by
CSLP.

As stated in the start of this section its not trivial to use second order information for prob-
lems where its not available. In such cases the approximated Hessian (quasi-Newton) tend
to be dense. This can pose a problem for large and sparse systems.
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Chapter 4

Constrained Minimax

We now turn our attention to the solution of minimax problems with constraints. First we
introduce the theory of constrained minimax with examples, followed by a presentation of
how to solve constrained minimax problems by using a penalty function.

We start by describing the constrained optimization problem

minx F � x �>� max � f j � x ���
s.t. C � x �®� max � ci � x ����A 0 � (4.1)

where j � 1 ��������� m and i � 1 ��������� p, and the function of constraints C � x � is a convex function,
that is piecewise differentiable. The constraint C � x � F 0 defines a feasible domain D that is
a subset of IRn. Further we assume that inner functions ci � x � are differentiable in the domain
D .

4.1 Stationary Points

We could define a stationary point by using the first order Kuhn-Tucker condition for opti-
mality. That is

0 � F 4 � x �?� q

∑
i D 1

λici � x � � λi < 0 � (4.2)

If C � x � F 0, this generalization is the same as the unconstrained case as shown in (2.9). This
is natural when realizing that for C � x � F 0 the constraints have no effect. The interesting
case is when C � x ��� 0, i.e., we are at the border of the feasible region D .

When noting that C � x � is a minimax function, then we can define the generalized gradient
of the constraints ∂C � x � in a similar way as we did with ∂F � x � in (2.6), by using the first
order Kuhn-Tucker conditions which yields

∂C � x �#�8� ∑
i ; Ac

λic 4i � x �Y� ∑
i ; Ac

λi � 1 � λi < 0 �N� (4.3)

where
Ac �8� i � ci � x �#� C � x �[�h� (4.4)
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The stationary point could, however, be defined slightly differently by using the Fritz-John
stationary point condition [Man65, p. 94]. This condition holds when F � x � in the nonlinear
programming problem (4.1) is a smooth function. Then it holds for a stationary point that
0 $ F 4d� x � .

0 � λ0F 4 � x ��� λc 4i � x ��� λ � q

∑
i D 1

λi � λ0 � λ � 1 � (4.5)

where the multipliers λi < 0 for i � 0 �������@� q. If constraint i is not violated, then ci � x � F 0
which leads to λi � 0. For λ0 X 0 and λ X 0, the stationary point condition for the Fritz-John
point is

0 $ conv � F 4 � x ��� ∂C � x ����� (4.6)

So, we say that the null vector should belong to the convex hull spanned by F 4d� x � and ∂C � x � .
But this only hold when F � x � is smooth, and C � x �B� 0. There are, however, other cases to
consider, and for that Merrild [Mer72] defined the map

M � x �#� RS T ∂F � x � if C � x � F 0
conv � ∂F � x ��� ∂C � x ��� if C � x �#� 0
∂C � x � if C � x �eX 0

(4.7)

As proposed in [Mad86] we will use the Fritz-John stationary point condition in the follow-
ing, because for some cases the stationary point condition based on Kuhn-Tucker in (4.2)
will not suffice. This is illustrated through an example, but first we shall see that there is in
fact no huge difference between the two stationary point conditions.

First, the Fritz-John stationary point condition says that

0 $¯� λf 4 �°� 1 0 λ � c 4 � f 4 $ ∂F � x ��� c 4 $ ∂C � x ��� 0 A λ A 1 �h� (4.8)

Second, the stationary point condition derived from Kuhn-Tucker in (4.2) says that

0 $%� f 4 � µc 4 � f 4 $ ∂F � x ��� c 4 $ ∂C � x ��� µ < 0 �N� (4.9)

where µ ��� 1 0 λ ��G λ. We see that the two conditions are equivalent if 0 F λ F 1. That is, if
0 belongs to the convex hull in (4.8), then 0 will also belong to the convex hull in (4.9) as
seen on figure 4.1.

Figure 4.1: The convex hull for
three different values of λ. Sta-
tionary point condition due to (left)
Kuhn-Tucker, (right) Fritz-John.
λ + 0 (dotted line) , λ + 0 � 5
(dashed line) and λ + 1 (solid line).

Before we give the example, we must define what is meant by a stationary point in a con-
strained minimax framework.

Definition 4.1 x $ D is a stationary point of the constrained minimax problem in (4.1) if

0 $ M � x �
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We now illustrate why the Fritz-John condition is preferred over Kuhn-Tucker in the fol-
lowing example. We have the following problem

minx F � x � � x1

subject to
c1 � x �#"�0 x2 � x2

1 A 0
c2 � x �#" x2 � x2

1 A 0

(4.10)

An illustration of the problem is given in figure 4.2 (left). From the constraints it is seen that
the feasible domain D is the point x �to 0 � 0 q , so the solution must be that point regardless
of F . If wee used the Kuhn-Tucker stationary point condition, then the convex hull (dashed
line) would not have 0 as part of its set, and hence the point would not be stationary due to
the definition, which is obviously incorrect.

When the Fritz-John stationary point condition is used, the convex hull can be drawn as
indicated on the figure by the solid lines, for multiple values of λ. Here we see that 0 can
be a part of the convex hull if λ � 0. So the Fritz John condition can be used to define the
stationary point successfully.
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Figure 4.2: The dashed line shows the convex hull due to the Kuhn-Tucker stationary point condition,
for λ + 1. The solid line indicate Fritz-John, for λ + 0 , 0 � 25 ,±�±����, 1.

The Fritz-John conditions is, however, not without its drawbacks. If we linearize the con-
straints in (4.10), then we have the situation shown in figure 4.2 (right). Here we see that
the line between c1 � x � and c2 � x � can be a stationary point regardless of F , even when F is
increasing along the line.

The last example shows that it is not possible to generalize proposition 2.1 to the constrained
case, because if λ � 0 then it is not certain that F 4d � x � < 0 for every direction at x.

As defined in [Mad86] we introduce the feasible direction.

Definition 4.2 For d $ IRn and d O� 0, a feasible direction from x $ D exits if V ε X 0 so
that x � td $ D for 0 A t A ε.



46 CHAPTER 4. CONSTRAINED MINIMAX

Proposition 4.1 If C � x �#� 0 and d is a feasible direction, then C 4d � x �eA 0.

Proof: [Mad86] pp. 53.

This means that the directional derivative for the constraints C 4d � x � must be negative or zero
when whe are at the border of D and go in a feasible direction. This must hold since C � x �
is a convex function.

One way we can avoid the situation described in the last example is to assume that C � x � is
negative for some x. In that case the feasible domain D would not be a point, and F would
have an influence on the stationary point condition in such a case because λ X 0. This leads
to the following proposition that holds for stationary points.

Proposition 4.2 Let x $ D . If F 4d � x � < 0 for all feasible directions d from x then 0 $ M � x � .
On the other hand, the following holds:

0 $ M � x � and V y $ IRn : C � y � F 0

then F 4d � x � < 0 for all feasible directions d.

Proof: [Mad86] pp. 54

We see that the first part of the proposition is very similar to the unconstrained case. The
second part of the proposition deals with the case where the unconstrained problem at x
would have a negative directional derivative, so in the constrained case where C � x �B� 0 we
are stopped by constraints at x. An illustration of a simple case is given in figure 4.3.
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d Figure 4.3: The point x u indicates

a solution to the constrained prob-
lem, and the feasible direction is
indicated by d.

We see that when C � x �B� 0 and λ X 0 because V y $ IRn : C � y � F 0 then the convex hull of
the Fritz-John stationary point condition can be written as

0 � λf �°� 1 0 λ � c Q 0 � f � µc � µ ��� 1 0 λ ��G λ � (4.11)

where µ X 0, f $ ∂F � x � and c $ ∂C � x � . We see that in this case the Fritz-John and Kuhn-
Tucker stationary conditions are equivalent. Next we use the feasible direction d.

0 � fT d � µcT d � (4.12)

And from proposition 4.1 we see that if d is a feasible direction, then it must hold that
C 4d � x �nA 0 and therefore due to the definition of the directional derivative in (2.13) and
µ X 0, we have that

C 4d � x �eA 0 E µcT d A 0 � (4.13)

which is obvious as illustrated in figure 4.3. This leads to

fT d < 0 E F 4d � x � < 0 � (4.14)
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4.2 Strongly Unique Local Minima

A strongly unique local minimum in the constrained case, is a minimum, that is not a plane
or a line etc. but is a point and can be defined uniquely by using first order information.

As in the unconstrained case, algorithms will have quadratic final convergence, when going
to a strongly unique local minimum. The following proposition defines the condition that
has to be satisfied in order to have a strongly unique local minimum.

Proposition 4.3 For x $ D we have a strongly unique local minimum if

0 $ int � M � x ���N�
Proof: [Mad86, p. 57].

When x is interior to the map M � x � we know from the strict separation theorem 2.1 that for
all directions d

vT d < 0 � v $ M � x � (4.15)

If C � x � F 0 we just have the unconstrained problem and then we know that F 4d � x ��X 0 for
all directions d.

We can, however, not generalize this to the directional gradients for C � x �Y� 0, as in the
unconstrained case, because C � x � does not influence the landscape of F � x � in any way – we
shall later see that such an influence is possible through the use of a penalty function.

For the constrained case we can not directly make a statement that says that F 4d � x �[X 0 for
all directions d, when x is a strongly unique local minimum. It is, however, possible to
say something about F 4d � x � if d is a feasible direction. We will briefly give an explanation
inspired by a proof in [Mad86, p. 56].

We assume that 0 $ M � x � , and that there exists a vector z $ IRn. Then we introduce a kind
of radius measure ε X 0 so that �L� z � F ε �m² M � x � . This is illustrated in figure 4.4 with the� 2 norm.
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Let d $ IRn be a feasible direction, i.e., C 4d � x �eA 0. Then we introduce a vector that lives on
the edge of the circle (in the � 2 norm case) so that v � εd G�� d � and � v �}� ε. Then by using
the stationary point condition (Fritz-John) we can write the vector v as

v �W� λf �°� 1 0 λ � c � f $ ∂F � x ��� c $ ∂C � x ���N� (4.16)
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We can do this since the Fritz-John condition can create any vector in M � x � and v belongs
to a subset of M � x � . By taking the inner product of v and the feasible direction d we see
that vT d � ε � d � , which leads to

vT d � λfT d �j� 1 0 λ � cT d � ε � d � (4.17)

Because we go in a feasible direction C 4d � x �BA 0 due to proposition 4.1 we get the following
inequality

F 4d � x � < λfT d < ε � d �l� (4.18)

So even in the constrained case a strongly unique local minimum F 4d � x � is strictly positive
for all feasible directions.

4.3 The Exact Penalty Function

In constrained minimax optimization, as in other types of optimization, the constraints c i � x �
does not have an influence on the minimax landscape F � x � . Because of this, the theory of
constrained minimax is somewhat different from the unconstrained theory. We can, how-
ever, use the unconstrained theory in constrained minimax if we use an exact penalty func-
tion.

An exact penalty function, is a function that has the same minimizer x 6 as the constrained
problem. Therefore by using an exact penalty function we can use all the tools and theory
from unconstrained minimax on a minimax problem with constraints. We now introduce an
exact penalty function for minimax that has the following form for σ X 0

min
x

P � x � σ �#" max � f j � x �}� f j � x �?� σci � x �3�N� (4.19)

where i � 1 �������@� m, j � 1 �������@� q. We see that if σ X 0, and x G$ D then � V i � ci � x ��X 0 � . This
means that

f j � σci � x �eX f j � x �¯E P � x � σ ��� f j � x ��� σci � x � (4.20)

Of course the situation is the same vice versa, when x is feasible. Then c i � x �3A 0 for all i,
and in this situation we have

f j � x � < f j � x ��� σc j � x ��E P � x � σ �#� f j � x �[� (4.21)

Notice that in this case σ is irrelevant. In order to simplify the following notation we intro-
duce the inner functions of P � x � α �

pt � x � σ �>� f j � x � � t � 1 ������� m
pt � x � σ �>� f j � x ��� σci � x �´� t � m � 1 ��������� z (4.22)

where z is defined in the following discussion in (4.34). The general setup of pt � x � σ � that
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will be used here is
p1 � x � σ � � f1 � x �
...

...
...

pm � x � σ � � fm � x �
...

...
...

pm � 1 � x � σ � � f1 � x ��� σc1 � x �
...

...
...

pm � m � x � σ �>� fm � x ��� σc1 � x �
...

...
...

pz � m � x � σ � � f1 � x ��� σcp � x �
...

...
...

pz � x � � fm � x ��� σcp � x �
(4.23)

Further we have that P � x � σ �B" max � pt � x � σ ��� and the gradients are denoted with p 4t � x � σ � ,
finally the generalized gradient is denoted ∂P � x � σ � .
To resume the discussion from previous, a σ X 0 is not enough to ensure that P � x � σ � solves
the constrained problem in (4.1), in fact σ has to be large enough. We illustrate this by an
example

We have the following equations

f1 � x �9� 1
2 x2

f2 � x �9� 1
2 � x 0 1 � 2

c1 � x �®� 1
3 x 0 1

10 � (4.24)

And we solve the problem
minx F � x �
s.t.
C � x �#� c1 � x �eA 0 � (4.25)

by using the penalty function P � x � σ � in (4.19). So the feasible area D is defined by
C � x �BA 0, and the optimal feasible solution to the constrained minimax problem is x 6 � 0 � 3.
However, we see that the unconstrained minimax function F � x �-� max � f1 � x ��� f2 � x ��� has an
unconstrained minimum at x 6u � 0 � 5. The problem is shown in figure 4.5

PSfrag replacements
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The figure clearly illustrate that σ � 1 is not large enough, because the unconstrained min-
imizer of P � x � σ � is at x � 0 � 5. Indeed if we let σ grow, we will eventually get an uncon-
strained minimizer of P � x � σ � at x � 0 � 3 which is the solution to (4.25).

The example raise a basic question. How can we detect if σ is large enough? When the
constrained solution is known, the size of σ can be calculated. We give an example based
on the previous example.

At x 6 � 0 � 3 we see that there must be two active functions

p2 � x �®� 1
2 � x 0 1 � 2

p4 � x �®� 1
2 � x 0 1 � 2 � σ � 13x 0 1

10 �}� (4.26)

We see that only p4 � x � is influenced by σ, and by using that F 4d � x � < 0 at a stationary point
we have that

p 44 � x � < 0 E σ < 3 � 1 0 x �}� (4.27)

This yield σ < 2 � 1 for x � x 6 . As a theoretical insight, we should choose σ X 2 � 1, be-
cause then a posible strongly unique local minimum at x 6 , would give the desired quadratic
convergence. If σ � 2 � 1 then F 4d � x � < 0 and this will then not be a strongly unique local
minimum.

With the aim of making an algorithm for constrained minimax, we can not evaluate the size
of σ as sketched above, for that simple reason that we do not know the solution x 6 . The
simplest way to check if σ should be increased is to check if any of the constraints have
been violated, that is

if C � x �3X 0
increase σ

end
(4.28)

If the constraints are violated then we just increase σ X 0 by following some specific
scheme, e.g. multiply σ with 10 when C � x �YX 0. Such a scheme is also implemented in
the fortran program MINCIN for linearly constrained minimax optimization, that is part of
the package for Robust Subroutines for Non-linear Optimization [MNS02].

4.4 Setting up the Linear Subproblem

As described in details in chapter 3, we need to sequentially solve a linear subproblem in
order to solve the non-linear minimax problem in (2.7) and (4.1). When using an exact
penalty function (4.19) we have to set up the linear subproblem in a special way, that is
descriped in the following.

The exact penalty function can be written as

min
x

P � x � σ �#" max � f j � x �[� f j � x ��� σci � x ���µ� max � pt � x � σ ����� (4.29)

where pt � x � σ � is defined in (4.22). We see that in order to write the exact penalty function
into a linear program, we first need the m functions f j � x � and then all the combinations of i
and j in f j � x ��� σci � x � . When i � 1 ��������� m and j � 1 ��������� q then the exact penalty function
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gives rise to at least mq extra inner function not counting the first m inner functions f j � x � .
We give an example of this from the problem in (4.25) shown in figure 4.5.

We have that the number of inner functions is m � 2, and the number of constraints is q � 1.
This gives the following linear system

minh = α G � h � α � " α
s.t. pt � x � σ ��� p 4t � x � σ � T h A α � (4.30)

where t � 1 ��������� 4.

The situation covered in the above example is for inequality constraints of the form A . We
can however also handle equality constraints quite easily by just adding additional con-
straints to the LP problem. We can write an equality constraint ci � x �#� α as

α A ci � x �eA α Ew¶ ci � x �}A α0 ci � x �}A α (4.31)

So each equality constraint gives rise to two inequality constraints in the LP problem. We
order the constraints so that the first r constraints corresponds to equality constraints and
the rest q 0 r corresponds to inequlity constraints. Then

ci � x �#� 0 for i � 1 ��������� r
ci � x �eA 0 for i � r � 1 ��������� q � (4.32)

and

pt � x � α ���·RSUT f j � x � for t � 1 �������@� m
ci � x �#� 0 for t � m � 1 ��������� m � 1 � 2r �
ci � x �eA 0 for t � m � 1 � 2r ��� 1 ��������� m � 1 � r � q �}� (4.33)

The total amount of constraints in the LP problem for m inner functions, p constraints where
the r of them is equality constraints is

z � m � 2mr � m � q 0 r �3� (4.34)

4.5 An Algorithm for Constrained Minimax

We can now outline an algorithm that solves a constrained minimax problem by using an
exact penalty function.

First we decide an initial penalty factor. This could e.g. be σ � 1. Then we form the linear
programming problem as described above. The easiest way to do this is inside the test
function itself.

Due to the nature of the exact penalty function P � x � σ � , we can solve it as an unconstrained
minimax problem. Hence we can use the tools discussed in chapter 3 to solve P � x � σ � .
Of course we kan not guarantee that σ � 1 is big enough so that the solution of P � x � σ �
corresponds to the constrained minimizer of F � x � . Hence wee need an update scheme like
the one proposed in (4.28) to update σ. A stopping criterion for the algorithm will be
discussed later. First we give a more formal outline of the algorithm.
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Algorithm 4.4.1 CMINMAX

begin
k := 0; σ X 0; x := x0; f ound := false; � 1 ���
repeat

x = slp(fun, fpar, x, opts); � 2 ���
if C � x �3X 0

Increase σ;
else

f ound : � true; � 3 � �
k � k � 1;

until f ound or k X kmax

end� 1 �� The user selects the initial value of σ. If σ is large enough and x0 is feasible then
the algorithm will behave as an interior point method. Otherwise it will behave as an
exterior point method.� 2 �� Here we use an unconstrained minimax solver. We can use the SLP or the CSLP
algorithms from chapter 3, or Matlab’s own minimax solver fminimax The function
fun should be an exact penalty function, where σ is passed to fun by using fpar.� 3 � � If C � x � F 0 then we have found an unconstrained minimizer inside the feasible region
D and we should stop. Else if C � x �-� 0 then a constrained minimizer has been found,
and again we should stop.

We now give two examples that uses CMINMAX to find the constrained minimax solution.
Both examples uses the Rosenbrock function subject to inequality and equality constraints
and with the classic starting point at x �¸o�0 1 � 2 � 1 q T . We have m � 4 inner functions and
q � 1 constraints.

First we look at the system where x $ IR2

minx F � x � " Rosenbrock
s � t �

c1 � x �>� xT x 0 0 � 2 A 0
(4.35)

We find the minimizer of this problem by using the CMINMAX algorithm, with σ0 �
0 � 05. The constrained minimizer is found at x 63�co 0 � 4289 � 0 � 1268 q T , for σ � 1. Figure 4.6
illustrate the behavior of the algorithm for each σ.

At σ � 0 � 05 the algorithm finds a solution outside the feasible area indicated by the dashed
circle on the figure. The algoritm then increase σ to 0.5, and we get closer to the feasible
area but still we are infeasible. Finaly σ � 5 is large enough, and we find the constrained
minimizer.

The following table is a printout of the values of the inner functions of P � x 6 � σ � for each
value of σ.
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σ � 0 � 05 σ � 0 � 5 σ � 5

Figure 4.6: Iterations of the CMINMAX algorithm, with an infeasible starting point. The dashed
circle contains the feasible area.

σ � 0 � 05 σ � 0 � 5 σ � 5
f1 p1 0.0000 -0.4048 -0.5711
f2 p2 0.0000 0.4048 0.5711
f3 p3 0.0000 0.4048 0.5711
f4 p4 -0.0000 -0.4048 -0.5711

p5 0.0900 -0.2785 -0.5711
p6 0.0900 0.5312 0.5711
p7 0.0900 0.5312 0.5711
p8 0.0900 -0.2785 -0.5711

From the above function evaluations we notice that max � f i �Y� max � pt � for σ � 5, this will
become important in the later discussion regarding stopping criterions for CMINMAX.

Next we present another example of constrained minimax optimization, where we also use
the Rosenbrock function, but with slightly different constraints. We have the following
problem

minx F � x � " Rosenbrock
s � t �

c1 � x �>� xT x 0 0 � 2 � 0
(4.36)

For this problem with equality constraints the constrained solution is found at x 6^�ao 0 � 4289 � 0 � 1268 q T
for σ � 5, this is the same minimizer as in the previous example. The behavior for CMIN-
MAX with σ0 � 0 � 05 can be seen in figure 4.7.

σ � 0 � 05 σ � 0 � 5 σ � 5

Figure 4.7: Iterations of the CMINMAX algorithm, with an infeasible starting point. The dashed
circle indicate the feasible area.

As shown on the figure for σ � 5 we have two minima. If we had chosen the initial penalty
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factor σ0 � 5 then we would have found the other minimum at x 62 �to�0 0 � 3599 � 0 � 2655 q T .

Again we bring a table of the inner function values of P � x 6� σ � , for each value of σ. Again
for σ � 5 we have that max � f j �l� max � pt � .

σ � 0 � 05 σ � 0 � 5 σ � 5
f1 p1 0.0000 -0.4048 -0.5711
f2 p2 0.0000 0.4048 0.5711
f3 p3 0.0000 0.4048 0.5711
f4 p4 0.0000 -0.4048 -0.5711

p5 0.0900 -0.2785 -0.5711
p6 0.0900 0.5312 0.5711
p7 0.0900 0.5312 0.5711
p8 0.0900 -0.2785 -0.5711
p9 -0.0900 -0.5312 -0.5711

p10 -0.0900 0.2785 0.5711
p11 -0.0900 0.2785 0.5711
p12 -0.0900 -0.5312 -0.5711

From the tables of the inner functions in the two examples we saw that max � f j ��� max � pt �
was always satisfied when the constrained minimizer was found, i.e. when σ was large
enough.

When the feasible domain D ² IRn is more than a point, i.e. V y $ IRn for which C � y � F 0,
then we can use the Fritz-John stationary point condition that says

0 $%� λf �j� 1 0 λ � c � f $ ∂F � c $ ∂C �
where λ X 0. This indicate that at least one of the inner functions of the unconstrained
minimax problem F � x � has to be active at the constrained solution corresponding to the
stationary point for P � x � σ � when σ is large enough. This is also indicated by proposition
4.2.

This knowledge can be used as a stopping criterion for CMINMAX. We check to see
whether one of the inner function of F � x � is active.

The inner functions of F � x � correspond to the first m � 4 rows in the tables of the two
previous examples. We see that� f j � x �l� j � 1 �������@� m �l�W� pt � x � σ �l� t � 1 ��������� m �h� (4.37)

The solution to the exact penalty function in the k’th iteration of CMINMAX is denoted by
x 6k . We can then define a stopping criterion� P � x 6k � σ �C0 F � x 6k ���L�YA ε Q� P � x 6k � σ �C0 max � f j � x 6k ���L�YA ε Q� P � x 6k � σ �C0 max � pt � x 6k � σ ���L��A ε � t � 1 ��������� m � (4.38)

where term 0 F ε ¹ 1 handles the numerical issues regarding the stopping criterion. If the
above criterion is not satisfied then it indicates that

max � f j � x 6k ��� F max � pt � x 6k � σ ���h� (4.39)
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The only way this can happen is if x 6k G$ D . The stoping criterion (4.38) will also work if
there is an unconstrained minimum inside the feasible domain x 6k $ D , because the convex-
ity of P � x � σ � ensures that

max � f j � x ��� < max � pt � x � σ ���N�
The major advantage with this stopping criterion is that we do not have to supply CMIN-
MAX with the value of C � x � .
The disadvantage by using the above stopping criterion (4.38) is that it introduces a new
preset parameter ε to the CMINMAX algorithm. However, we can avoid this preset param-
eter by seeing that (4.38) should interpreted as a check for whether some inner functions of
P � x � σ � is active. From the theory in chapter 2 we know that if pt � x � σ � is active then the
corresponding multiplier will be positive. This gives rise to the following preset parameter
free, but equivalent stopping criterion� max � λt �µX 0 � t � 1 �������@� m �gE stop (4.40)

The demand that C � x 6k �[A 0 is not needed when we use (4.38) or (4.40) because if x G$ D
then max � f j � x ��� F max � pt � x � σ ��� for σ X 0 as shown in (4.20) and (4.21). Hence pt � x � σ �
for t � 1 ��������� m can not be active, and there will be no corresponding positive multiplier.

As an addition to this presentation, we give a short argumentation for why the following
stopping criterion does not work � x 6k � 1 0 x 6k �YA ε E stop (4.41)

As we saw in the start of this section on figure 4.5, the solution x 6k is not guaranteed to move
when σ is increased. Therefore � x 6k � 1 0 x 6k �Y� 0 could happen even if we have not found
the constrained minimizer.

4.6 Estimating the Penalty Factor

In the previous description of the CMINMAX algorithm, an increase of the penalty factor
σ was proposed if the current iterate x 6k was not feasible. It was also suggested that in this
case σ should be increased by a factor of ten. One could argue that the multiplication factor
also could have been choosen as two, three or maybe even twelve. In other words, we have
no idea of what the right size of the multiplication factor should be.

In this section we will take a closer look at the multiplication factor, and use the theory of
constrained minimax to give us a value of σ 6k that guarantees a shift of stationary point for
x 6k G$ D . In this way an increase of σ can be found that is connected to the problem being
solved.

The motivation behind the choise of multiplication factor is that we want to find a σ that is
large enough, so that the unconstrained minimizer x 6 of

P � x 6 � σ �-� max � f j � x 6 ��� σci � x 6 ���h�
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corresponds to the minimizer x of a minimax problem with constraints i.e.

min
x

F � x � s.t. C � x �3A 0 �
However one could also look at this from a different perspective, as a question of finding the
value of σ � σ 6k that will force a shift from a stationary point x 6k G$ D to a new stationary point
x 6k � 1. By iteratively increasing σ 6 , shift of stationary points will be obtained, that eventually
leads to an unconstrained minimizer of P � x 6�� that solves the corresponding constrained
problem.

We denote a shift of stationary point by º , and now a more precise formulation of the
problem can be given. Find the smallest penalty factor σk that triggers a shift of stationary
points x 6k º x 6k � 1, where x 6k G$ D .

First we look at the condition for a stationary point when a penalty function is being used.
If we have a stationary point x so that 0 $ ∂P � x � σ � and the constraints are violated C � x �#X 0
then

0 � ∑
t ; A

λtp 4t � x � σ �[� p 4t � x � σ �e$ ∂P � x � σ �[�
In (4.22) we saw that t corresponded to some combinations of f j � x � and ci � x � . By using
this correspondence we get

0 � ∑
t ; A

λt � f 4 j � x ��� σc 4i � x ����� f 4 j � x �}$ ∂F � x ��� c 4i � x �3$ ∂C � x ���
That t $ A means that pt � x � α �e� f j � x �2� σci � x � is active. It is seen that f j � x � and ci � x � is
part of this expression, and hence we call them pseudo active, i.e., j $ P f and i $ Pc. Then
we can write 0 ∑

j ; P f

λ jf 4 j � x �#� σ ∑
i ; Pc

λic 4i � x ��� (4.42)

which leads to

σ � 0�� ∑
j ; P f

λ jf 4 j � x �
� 2»
∑

j ; P f

λ jf 4 j � x ��� ∑
i ; Pc

λic 4i � x ��¼ � (4.43)

We now have an expression that calculates σ when we know the multipliers and the gradients
of the inner functions and constraints at x.

We give a brief example based on the two examples in the previous section for σ � 0 � 5
where we find σ by using the above formula. In the two examples the solution was the same
in the second iteration of CMINMAX where x 62 ��o 0 � 5952 0 � 3137 q T .

The active inner functions at x 62 was pt � x 62 � 0 � 5 � with t � 6 � 7 for the example with inequality
constraints.

p6 � x 62 � 0 � 5 �®� f2 � x 62 �?� 0 � 5c1 � x 62 �
p7 � x 62 � 0 � 5 �®� f3 � x 62 �?� 0 � 5c1 � x 62 �

Here are the numerical results

λ6:7 � H
0 � 9686
0 � 0314 I � f 42:3 � x 62 ��� H 0 1 � 0000 0 � 0000

11 � 9034 0 10 � 0000 I
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and c 41 � x 62 �#��o 1 � 1903 0 � 6275 q . Note that due to the structure of pt � x � α � we use

c 41 � x 62 ��� H
1 � 1903 0 � 6275
1 � 1903 0 � 6275 I �

in the following calculations. Next we calculate σ

v � ∑
j ; P f

λ jf 4 j � x ��� f 42:3 � x 62 � T λ6:7 �to�0 0 � 5952 0 0 � 3137 q T
and

w � ∑
i ; Pc

λic 4i � x ��� c 41 � x 62 � T λ6:7 �to 1 � 1903 0 � 6275 q T �
which yield

σ �W0 � v � 2»
v � w ¼ � 0 � 5000 �

We have now shown that we can calculate σ at x, if we know the multipliers λ. We can
also calculate the multipliers for a given value of σ but not by using (4.43). The value of σ
changes the “landscape” of P � x � σ � which again also changes the multipliers λ.

The relation between λ and σ should become apparent, when looking upon λ as gradients
[Fle00, 14.1.16]. For a problem with linear constraints, we can write

minx = α G � x � α �>� α
s.t. g � x � α � " c � x ��� ε A α (4.44)

Notice the perturbation ε of the constraint, which is visualized in figure 4.8 for ε1 � 0 and
ε2 X 0.
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Figure 4.8: Constraint c2 has been
perturbed by ε.

The above system can be solved by the Lagrange function

L � x � α � λ �B� α � ∑
i

λi � ci � x �?� εi 0 α �[� (4.45)

and if we differentiate this with respect to εi we get

dL
dεi

� λi � (4.46)
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The above is only valid if the active set in the perturbed and unperturbed system is the same.
This shows that the multipliers in fact can be looked upon as gradients. From [HL95, section
4.7] we see that the multipliers are the same as shadow prices in operations research. The
above figure also illustrate why λi can not be negative for a stationary point. If e.g. c1 � x �
had a negative gradient, then λ2 F 0.

The above shows that an increase of σ will lead to a change of λi and (4.43) indicated that
a change of λi indicate a change of σ. This means that λ and σ is related to each other.

As we have seen in the previous, if the penalty factor is not high enough, then the CMIN-
MAX algorithm will find an infeasible solution x 6k , and hence increase σk. It would be
interesting to find that value σk � σ 6k where the penalty factor will be high enough to trigger
a shift of stationary point, so that x 6k º x 6k � 1.

To simplify this problem somewhat, it would be beneficial to ignore the multipliers all
together, because of their relation to σ. To do this we use that

0 $ ∂P � x � σ �#�8� ∑
t ; A

λtp 4t � x � σ �:� ∑
t ; A

λt � 1 � λt < 0 �N� (4.47)

is equivalent with

0 $ ∂P � x � σ �#� conv � p 4t � x � σ �^� t : pt � x � σ ��� P � x � σ ��� (4.48)

A shift of stationary point will then occur for some σ 6k , when 0 G$ ∂P � x 6k � σ 6k � , because then
x 6k will no longer be a stationary point, and then the CMINMAX algorithm will find a new
stationary point at x 6k � 1.

The sollution to the problem of finding σ 6k is described in the following. However, we have
two assumptions.½ At x 6k only one constraint is pseudo active.½ x 6k G$ D which indicate P � x 6k � σ �#� pt � x 6k � α ��� f j � x 6k ��� σci � x 6k � .

If we are at an infeasible stationary point and increment the penalty factor ∆σ, then

P � x 6k � σ � ∆σ �¾� f j � x 6k ���°� σ � ∆σ � ci � x 6k �� f j � x 6k ��� σci � x 6k �?� ∆σci � x 6k �� pt � x 6k � σ ��� ∆σci � x 6k �[� (4.49)

which give rise to the stationary point condition

0 $ ∂P � x 6k � σ � ∆σ �¿� conv � p 4t � x 6k � α �?� ∆σc 4i � x 6k ���h� (4.50)

where � t � pt � x 6k � σ �B� P � x 6k � σ ��� In this case we can illustrate the convex hull like the one
shown in figure 4.9 left.

We are interested in finding that ∆σ that translates the convex hull ∂P � x 6k � σ � so that 0 is at
the edge of the hull, i.e. it holds that 0 $ ∂P � x 6k � σ � ∆σ � .
Figure 4.9 right, shows γ defined as the length from 0 to the intersection between the convex
hull ∂P � x 6k � σ � and c 4i � x 6k � . This is a somewhat ambiguous definition because we always get
two points ai of intersection with the hull. We chose that point ai is the vector v � ai that
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Figure 4.9: p \t ' x , α ( and ci ' x ( has been substituted by p \t and c \i on the figure. left: The convex hull of
∂P ' x , 0 ( is indicated by the dashed triangle. The solid triangle indicates the convex hull of ∂P ' x , σ ( .
right: The length from 0 to the border of the hull in the opposite direction of c \1 is indicated by γ the
length of the solid line.

has 0 X vT c 4i � x 6k � . We can now find the translation of the convex hull so that 0 is at the edge
of the hull.

∆σc 4i � x 6k �-� γ
c 4i � x 6k �� c 4i � x 6k �
� E ∆σ � γ� c 4i � x 6k �
� �80 � v � 2

vT c 4i � x 6k � � (4.51)

We now have that
0 $ edge / ∂P � x 6k � σk � ∆σ � 1 � (4.52)

where σk indicate the value of σ at the k’th iteration of e.g. CMINMAX. The value σk � ∆σ
does not, however, trigger a shift to a new stationary point x 6k º x 6k � 1, because x 6k is still
stationary.

In order to find the trigger value σ 6k , we add a small value 0 F ε ¹ 1 so that

σ 6k � σk � ∆σ � ε � (4.53)

Then it will hold that
0 G$ ∂P � x 6k � σ 6k �}� (4.54)

hence x 6k is no longer stationary and e.g. CMINMAX will find a new stationary point at
x 6k � 1.

We illustrate the theory by a simple constrained minimax example with linear inner func-
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tions and linear constraints. Consider the following problem

minx F � x � � max � f j � x ����� j � 1 ��������� 4
f1 � x �>� 0 x1 0 x2

f2 � x �>� 0 x1 � x2

f3 � x �>� x1 0 4
f4 � x �>� 0 3x1

s.t.
C � x � � max � ci � x ���ÀA 0 � i � 1 ��������� p
c1 � x �®� x1 � 1

2 x2 0 1
c2 � x �®� x1 0 1

2 x2 � 4
10

c3 � x �®� 0 x1 0 1

(4.55)

See figure 4.10 for an illustration of the problem in the area x1 $Áo�0 1 � 5 � 3 q and x2 $Âo�0 2 � 2 q .
The figure indicates the feasible area D as the region inside the dashed lines. The general-
ized gradient ∂P � x � is indicated by the solid lines.

Figure 4.10: Illustration of the prob-
lem in (4.55). Constraints indicated
by dashed lines. Generalized gradient
indicated by solid line. σ + 0.

For certain values of σ, the problem contains an infinite number of stationary points. For all
other values of σ it is only possible to get three different strongly unique local minima, as
indicated by the dots on the figure.

The problem has two critical values of σ that will trigger a change of stationary point.

σ 61 � 1 � ε � σ 62 � 1 � 5 � ε � (4.56)

At σ � 1 and σ � 1 � 5 the problem has an infinity of stationary points as illustrated in figure
4.11.

When σ � 1 Ã ε where ε � 0 � 0001 there is a shift of stationary point as shown on figure
4.12.

In the interval σ $Äo 1 1 � 5 q the generalized gradient ∂P � x 62 � σ � based on the multipliers per-
forms a rotation like movement as shown in figure 4.13. Note that ∆σ is calculated on the
generalized gradient defined only by the gradients pt � x 62 � σ � , and thus the multipliers are not
taken into account.

When σ � 1 � 5 Ã ε where ε � 0 � 0001, then there is a new shift of stationary point from x 62
to x 63 as shown on figure 4.14. When x 63 is reached the algorithm should stop, because some
λt X 0 for t � 1 �������@� m indicate that x 63 $ D i.e. pt � x 63 � 1 � 5001 �3� f j � x 63 � .
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σ � 1 σ � 1 � 5

Figure 4.11: For σ + 1 and σ + 1 � 5 there is an infinity of solutions as illustrated by the solid lines.
The line perpendicular to the solid line indicate the generalized gradient.

σ � 0 � 9999 σ � 1 � 0001

Figure 4.12: For σ + 1 Å 0 � 0001 there is a shift of stationary point x u1 Æ x u2.

σ � 1 � 1 σ � 1 � 4

Figure 4.13: For σ y � 1 1 � 5 � , ∂P ' x u2 , σ ( based on the multipliers performs a rotation like movement.

The intermediate and the final solution found for this example was

x 61 �to 2 0 q T � x 62 �to 0 0 q T � x 63 ��o�0 0 � 2 0 � 4 q T �
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σ � 1 � 4999 σ � 1 � 5001

Figure 4.14: For σ + 1 � 5 Å 0 � 0001 a shift occur from the stationary point x u2 to x u3.

For e.g. σ � 0 � 1234 and x � x 61 the convex hull is defined by the vectors

p 49 � H 0 0 � 87660 1 � 0617 I � p 410 � H 0 0 � 8766
0 � 9383 I � p 411 � H

1 � 12340 0 � 0617 I �
The pseudo active constraint gradient is c 42 �Ço 1 � 0 0 0 � 5 q T . The intersection with the convex
hull is found at v �to�0 0 � 8766 0 � 4383 q T .

∆σ �W0 ��o�0 0 � 8766 0 � 4383 q�� 2» o�0 0 � 8766 0 � 4383 q���o 1 � 0 0 0 � 5 qd¼ � 0 � 8766 �
which yield σ � ∆σ � 1 � 0000 . Then for σ 61 � 1 � 0000 � ε, we get a shift of stationary point
x 61 º x 62.

Until now, we have not taken the multipliers into account, because they influence the penalty
factor, and vice versa. It turns out, however, that if the edge of the convex hull is known,
where there is a point of intersection v with c, so that vT c F 0, then we can solve the
problems by using the multipliers quite easily.

According to [HL95, Chapter 6] every linear programming problem is associated with an-
other programming problem, called the dual problem. Let us say that the LP problem in
(3.4) is the primal problem.� P � min

x̂
g 4 � x � α � T x̂ s.t. Ax̂ A b �

then, by using [HL95, Table 6.14], we can find the corresponding dual problem� D � max
y

bT y s.t. AT y � g 4 � x � α �Y�
Surprisingly it turns out, that there is a connection between the distance γ to the edge of the
generalized gradient ∂P � x � σ � and the dual problem. Both can be used to find the penalty
factor. In other words, the dual solution to the primal problem, can be visualized as a
distance from origo to the edge of a convex hull.
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We give an example of this, that is based on the previous examples. At x �to 2 � 0 q T , we had
three active functions f j � x � , j � 1 ��������� 3.H

f 41 � x � f 42 � x � f 43 � x �
1 1 1 I �� λ1

λ2

λ3

�  � H
0
1 I �

And the solution is λ1 � 0 � 25, λ2 � 0 � 25 and λ3 � 0 � 5. From the previous we know that the
intersection point on the convex hull with c 42 � x � is at the line segment� u � u � λ1f 41 � x ��� λ2f 42 � x ��� ∑λi � 1 � λi < 0 � i � 1 � 2 �
So we can write the following system of equationsH

f 41 � x � f 42 � x � c 42 � x �
1 1 0 I �� λ1

λ2

σ

�  � H
0
1 I �

where we, compared with the previous system, have replaced a column in AT and a row
in y. We get the following result λ1 � 0 � 25, λ2 � 0 � 75 and σ � 1. We see that σ 6}� σ � ε
would trigger a shift of stationary point in the primal problem.

At x ��o 0 � 0 q T the penalty factor can be found by solving this systemH
f 42 � x � f 44 � x � c 42 � x �

1 1 0 I �� λ1

λ2

σ

�  � H
0
1 I �

where the solution is λ2 � 0 � 75, λ4 � 0 � 25 and σ � 1 � 5. Again σ 6�� σ � ε will trigger a
shift of stationary point in the primal problem.

The above shows, that the estimation of the penalty factor σ can be obtained by solving
a dual problem. We now have a theory for finding the exact value of σ that triggers a
shift of stationary point, which is interesting in itself. In practice, this can be exploited by
CMINMAX, in the part of the algorithm where we update σ.

A new update heuristic can now be made, where we use, e.g.,

σk � ξσ 6k � (4.57)

where ξ X 1 is a multiplication factor. The above heuristic guarantees to trigger a shift of
stationary point.

For non-linear problems, it is expected that using σ 6k as the penalty factor, will trigger a
shift of stationary point, but the iterate xk found, could be close to xk � 1 and hence the
CMINMAX algorithm will use many iterations to converge to the solution. This is why we
in (4.57) propose to use a σ where σ 6k is multiplied with ξ. The above heuristic is, however,
still connected to the problem being solved through σ 6k .
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Chapter 5

Trust Region Strategies

In this section we will take a closer look at the various update strategies for trust regions.
Further we will also discuss the very important choice of parameters for some of the trust
region strategies.

Practical tests performed on the SLP and CSLP algorithms suggest that that the choice
of both the initial trust region radius and its update, have a significant influence on the
performence. In fact this holds not only for SLP and CSLP, but is a common trademark for
all trust-region methods [CGT00, p. 781].

In the following we will look closer at three update strategies, and finally we look at good
initial values for the trust region radius. The discussion will have its main focus of the � ∞
norm.

All basic trust region update strategies implement a scheme that on the basis of some mea-
sure of performance, decides whether to increase, decrease or keep the trust region radius.
The measure of performance is usually the gain factor that was defined in (3.12). The gain
factor is a measure of how well our model of the problem corresponds to the real problem,
and on basis of this we can write a general update scheme for trust regions.

ηnew $ÈRS T o η � ∞ � if ρ < ξ2

[γ2η � η q if ρ $Éo ξ1 � ξ2 �
[γ1η � γ2η q if ρ F ξ1

(5.1)

where 0 F γ1 F γ2 A 1. In the above framework, we have that ρ < ξ1 indicate a successful
iteration

S �8� ρ < ξ1 �N� (5.2)

and ρ < ξ2 indicate a very successful iteration

V �8� ρ < ξ2 ��� (5.3)

We see that it always hold that V ² S . An iteration that is neither in V or S is said to be
unsuccessful, and will trigger a reduction of the trust region radius. If the iteration is in
S we have a successful iteration and the trust region radius is left unchanged if γ2 � 1 or
reduced. Finally if the iteration is very successful the trust region radius is increased.



66 CHAPTER 5. TRUST REGION STRATEGIES

The above description gives rise to the following classical update strategy, with γ1 � γ2 �
0 � 5, ξ1 � 0 � 25 and ξ2 � 0 � 75. If the iteration is very successful the trust region radius is
increase by 2 � 5.

if(ρ X 0 � 75)
η � 2 � 5 � η;

elseif ρ F 0 � 25
η � 0 � 5η;

(5.4)

The above factors were used in the SLP and CSLP algorithms and were proposed in [JM94]
on the basis of practical experience. An illustration of the update strategy is shown in figure
5.1. The figure clearly shows jumps in ηnew G η when it passes over 0.25 and 0.75, hence the
expression discontinuous trust region update.

PSfrag replacements

0 0 � 25 0 � 75 1 ρ
0 � 51

2 � 5 ηnew G η
Figure 5.1: The classical trust region
update in (5.4) gives rise to jumps in
ηnew

z
η across 0.25 and 0.75.

The factors are most commonly determined from practical experience, because the deter-
mination of these values have no obvious theoretical answer. In [CGT00, chapter 17] they
give this comment on the determination of factor values: “As far as we are aware, the only
approach to this question is experimental”.
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Figure 5.2: The number of iterations as function of ξ1 and ξ2, low values are indicated by the darker
areas. (left) Rosenbrock, (right) ztran2f.

To clarify that the optimal choice of ξ1 and ξ2 is very problem dependent, we give an ex-
ample for the Rosenbrock and ztran2f test functions. The number of iterations is calculated
as a function of ξ1 and ξ2 and x0 �Wo�0 1 � 2 � 1 q T was used for Rosenbrock and x0 ��o 120 � 80 q T
was used for ztran2f. The result is shown in figure 5.2.

It is seen from the figure that the optimal choice is ξ1 $jo 0 � 0 � 1 q and ξ2 $jo 0 � 8 � 1 q for the
Rosenbrock function. For the ztran2f problem we get the different result, that ξ1 $%o 0 � 3 � 0 � 5 q
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and ξ2 $Êo 0 � 85 � 1 q . Further, the above result is also dependent on the starting point and choice
of γ1 and γ2. This illustrate how problem dependent the optimal choice of parameters is, and
hence we resort to experience.

An experiment has been done where γ1 � γ2 � 0 � 5 and the multiplication factor for a very
successful step was 2.5. The aim with the experiment was to see whether or not ξ1 � 0 � 25
and ξ2 � 0 � 75 was optimal when looking at the whole test set. The result is shown in figure
5.3.
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Figure 5.3: The optimal choice of ξ1

and ξ2 with γ1 + γ2 + 0 � 5 and the mul-
tiplication factor 2.5 for a very suc-
cessful step fixed. Calculated on basis
of a set consisting of twelve test prob-
lems.

The figure shows that ξ1 � 0 � 25 and ξ2 � 0 � 75 is not a bad choice. However, the figure
seems to indicate that the choice is not the most optimal either. It is important to realize
that the plot was produced only from twelve test problems, and that [JM94] claimed that the
above parameters was optimal based on the cumulated experience of the writers. Therefore
we can not conclude, that the above choice of parameters is bad. The figure was made by
taking the mean value of the normalized iterations. Further the figure shows a somewhat
flat landscape, which can be interpreted as the test problems having different optimal values
of ξ1 and ξ2.

5.1 The Continuous Update Strategy

We now move on to looking at different update strategies for the trust region radius. We
have already in the previous seen an example of a discontinuous update strategy. We will
now look at an continuous update strategy, that was proposed for � 2 norm problems in
connection with the famous Marquardt algorithm.

An update strategy that gives a continuous update of the damping parameter µ in Mar-
quardt’s algorithm has been proposed in [Nie99a]. The conclusion is that the continuous
update has a positive influence on the convergence rate. The positive result is the motiva-
tion for also trying this update strategy in a minimax framework.

Without going in to details, a Marquardt step can be defined as� f 4 4 � x ��� µI � hm �W0 f 4 � x � (5.5)

We see that µ is both a damping parameter and trust region parameter. If the Marquardt step
fails µ is increased with the effect that f 4 4 � x �?� µI becomes increasingly diagonal dominant.
This has the effect that the steps are turned towards the steepest descent direction.
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When µ is increased by the Marquardt update, the length of hm is reduced as shown in
[MNT99, 3.20] that

hM � min©
h
©�Ë¿©

hM
© � L � h ���N�

where L � h � is a linear model. Further [FJNT99, p. 57] shows that for large µ we have
hm { � 1

µ f 45� x � . Therefore µ is also a trust region parameter.

Lets look at the update formulation for Marquardts method as suggested in [Nie99a] and
described in [FJNT99].

if ρ X 0 then
x : � x � h
µ : � µ � max � 1 G γ � 1 0g� β 0 1 �7� 2ρ 0 1 � p � ; ν : � β

else µ : � µ � ν : ν : � 2 � ν

(5.6)

where p has to be an odd integer, and β and γ is positive constants.

The Marquardt update, however, has to be changed so that it resembles the discontinuous
update strategy that we use in the SLP and CSLP algorithms.

ifρ X 0 then

η � η � min / max � 1
γ � 1 �°� β 0 1 �7� 2ρ 0 1 � p �ª� β 1 ; ν � 2;

else η � η G ν; ν � 2 � ν;

(5.7)

We see that this change, does not affect the essence in the continuous update. That is, we
still use a p degree polynomial to fit the three levels of ηnew G η shown in figure 5.1. An
illustration of the continuous update strategy is shown in figure 5.4.
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Figure 5.4: The continuous trust re-
gion update (solid line) eliminates the
jumps in ηnew

z
η across 0.25 and 0.75.

Values used, γ + 2, β + 2 � 5 and p + 5.
The thin line shows p + 3, and the
dashed line shows p7.

The interpretation of the variables in (5.7) is straight forward. 1 G γ controls the value of the
lowest level value of ηnew G η, and β controls the highest value. The intermediate values are
defined by a p degree polynomial , where p has to be an odd number. The parameter p con-
trols how well the polynomial fits the discontinuous interval o 0 � 25 � 0 � 75 q , where ηnew G η � 1
in the discontinuous update strategy.

A visual comparison between the discontinuous and the continuous update strategy is seen
in figure 5.5. The left and right plots show the results for the Enzyme and Rosenbrock
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test functions. The continuous update strategy show superior results iteration wise, on the
Enzyme problem, but shows a somewhat poor result when compared to the discontinuous
update for the Rosenbrock problem. The results are given in table 5.1.
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Figure 5.5: The continuous vs. the discontinuous update, tested on two problems. Left: The Enzyme
problem. Right: The Rosenbrock problem.

From the figure we see that the continuous update give a much smoother update of the trust
region radius η for both problems. The jumps that is characteristic for the discontinuous
update is almost eliminated by the continuous strategy. However, the performance of the
continuous update does not always lead to fewer iterations.

Iterations (5.4) (5.7) (3.13) (5.10)
Parabola 31 33 31 23
Rosenbrock1 16 20 16 24
Rosenbrock2 41 51 41 186
BrownDen 42 47 42 38
Ztran2f 30 30 30 20
Enzyme 169 141 169 242
El Attar 10 8 10 10
Hettich 30 28 30 19

Table 5.1: Number of iterations, when using different trust region update strategies, indicated by
there. The update strategies are indicated by there equation number.

The continuous vs. the discontinuous update have been tried on the whole test set, and
there was found no significant difference in iterations when using either. This seems to
suggest that they are equally good, still, however, one could make the argument that the
discontinuous update gives a more intuitively interpretable update.

5.2 The Influence of the Steplength

In the latter general formulation (5.1) of the trust region we saw that the step length sk had
no influence on the radius of the trust region. This is not reasonable, when realizing that
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the gain factor ρk is calculated upon a sample xk � 1 � xk � sk and is the only parameter that
determines an increase or decrease of the radius.

One could make the argument that an update strategy that includes sk will be more correct
on a theoretical level. If the step does not go to the edge of the trust region then ρk is not a
measure of trust for the whole region, but just for a subregion that is defined by ηsub �t� sk � .
Figure 5.6 tries to illustrate why it is reasonable to include sk in an update strategy. The
subregion is illustrated by the dashed border.

Figure 5.6: When the step sk does not
go to the border of the trust region,
then ρk is only a measure of trust for
a subregion, illustrated by the dashed
lines.

All manipulation of the trust region should then be performed by using the subregion. Here
is a more formal definition [CGT00, p. 782]

ηnew $ RS T max � α1 � sk � ∞ � η � if ρ < ξ2

η if ρ $Âo ξ1 � ξ2 �
α2 � sk � ∞ if ρ F ξ1

� (5.8)

where 0 F α2 F 1 F α1. We saw in the previous numerical experiment regarding SLP and
CSLP, that when the algorithms approached a strongly unique local minimum, then the trust
region radius grew. An illustration of this effect is shown in figure 3.4. It is exactly effects of
this kind that (5.8) aims to eliminate, because there is no theoretical motivation to increase
the trust region when � sk �  0.

The factors α1 and α2 should as above, be determined from practical experience. In [CGT00,
(17.1.2)] they propose to use the values

α1 � 2 � 5 and α2 � 0 � 25 (5.9)

They do not say on which type of functions this experience was gained, so it could be any
kind of problems. A test was done to see if the above factors is suitable for our minimax
test problems. We have examined the average amount of normalized iterations as a function
of α1 and α2 in an area of Ã 0 � 2 around the point suggested in (5.9). The result is shown in
figure 5.7.

The result show that the values of α1 � 2 � 5 and α2 � 0 � 25 is not a bad choice, however, the
figure seems to suggest that a small decrease in iterations could be made by choosing other
values. However, this reduction does not seem to be significant.
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malized iterations as a function of α1

and α2. Twelve test problems was
used in the evaluation.

Using the above factors yields the following update strategy

ηnew $ RS T max � 2 � 5 � sk � ∞ � η � if ρ < 0 � 75
η if ρ $Áo 0 � 25 � 0 � 75 �
0 � 25 � sk � ∞ if ρ F 0 � 25

� (5.10)

The strategy has also been used on the test problems and the results are given in table 5.1.
We see that the performance is better when looking at the number of iterations compared
against the other update strategies. The only exceptions are the Rosenbrock and the Enzyme
test problems, where the performance is significantly more poor than for the other update
strategies.

Finally we give an example of the step update strategy in (5.8). We can expect that such a
strategy will be more dynamic and therefore be able to reduce its trust region more quickly
than the discontinuous update, because every update involves the step length � sk � . Figure
5.8 shows the step update strategy vs. the discontinuous strategy on the ztran2f problem.
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Figure 5.8: The discontinuous update
strategy vs. the step update strategy in
(5.8) tested on the ztran2f problem.

The figure shows that the step update is able to reduce the trust region radius faster than the
discontinuous update. This gives nice results for the ztran2f problem, but for a problem like
Rosenbrock this property of the step update gives rise to a lot more iterations. See table 5.1.

5.3 The Scaling Problem

The scaling problem arise when the variables of a problem is not of the same order of
magnitude, e.g. a problem of designing an electrical circuit, where one variable is measured
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in Farad and the other in Ohm. The value in Farad would be of magnitude 10 � 12 and Ohm
would be of magnitude 106. This is a huge difference, that not alone is an indication of bad
scaling, but would also introduce severe numerical problems.

One such problem is loss of information [CGT00, p. 162]. We have that ck is measured in
Farad and rk is measured in Ohm. Now we wish to calculate the norm of a step hk � rk � ck� hk � 2 �	� rk � ck � 2 �	� rk � 2 �a� ck � 2
We see that � rk �}b 1012 and � ck �3b 10 � 24, and if the computer is limited to 15 digit preci-
sion then � hk � 2 ��� rk � 2. In this way the information from ck is lost!

In the implementation of the SLP and CSLP algorithms there is an underlying assumption
that the problems are well scaled. This is not an unreasonable assumption, because it is
expected that qualified personal is able to do such rescaling of their problems fairly easy.
However we will in the following give a short outline on how such a rescaling could be
made internally in an algorithm.

All numerical calculations inside an algorithm should be done in a scaled space, so a scaled
variable w is needed

Skw � h � (5.11)

The scaling matrix Sk $ IRn ~ n is a diagonal matrix when only a scaling parallel to the axis
are needed, however it could also be something different from than a diagonal matrix. In
this case the scaling would also be a rotation of the scale space. In the non diagonal case,
Sk could be determined from a eigenvalue decomposition of the Hessian H.

From the previous example, a user could supply the algorithm with the scaling matrix S, as
a pre process step.

S � H
106 0
0 10 � 12 I (5.12)

Here the subscript k has been omitted, because the scaling matrix is only given in the pre
process stage and never changed again. A scaling matrix could, however, depend on the
current iterate if the problem is non linear and have local bad scaling.

We have a model Mk � xk � h � of the problem we want to solve. Because of bad scaling we
re-scale the problem by transforming the problem into a scaled space denoted by superscript
s

Ms
k � xk � w �¿b f � xk � Skw �-" f s � w �[� (5.13)

We can then write a linear model of the problem

Ms
k � xk �-� f � xk ��� gs

k � ∇wMs
k � xk �-� ∇w f s � 0 ��� ∇x f � xk � Sk � (5.14)

where

Ms
k � xk � w �w� Ms

k � gs
kw� f � xk ��� ∇x f � xk � Skw� f � xk ��� ∇x f � xk � h� Mk � xk � h � (5.15)
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Figure 5.9: Left: The unscaled space and the unscaled trust region. Middle: The unscaled space and
the scaled trust region. Right: The scaled space and the scaled trust region.

The trust region is affected by the transformation to the scaled space and back to the original
space. In the scaled space the trust region subproblem is defined as

min©
w
©

∞
Ë

η
Ms

k � xk � w �3� (5.16)

and in the original space defined as

min©
S Ì 1h

©
∞
Ë

η
Mk � xk � h �3� (5.17)

We see that the trust region in original space is no longer a square but a rectangle, however,
it is still a square in the scaled space. This is shown in figure 5.9. If Sk is a symmetric
positive definite matrix with values off the diagonal, then we will get a scaling and rotation
of the scaled space.
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Chapter 6

Linprog

Matlabs optimization toolbox offers a wide range of tools to solve a variety of problems.
The tools span form general to large scale optimization of nonlinear functions, and further
it also contains tools for quadratic and linear programming.

At first, the source code in the toolbox can seem overwhelming, but is in fact both well
structured and well commented. Still, however, the algorithms may at first sight seem more
logical complex, than they ought to be. For instance, many algorithms have branching (if,
switch etc.) that depends on the calling algorithm. A straight forward explanation is, that
in this way code redundancy i.e. the amount of repeated code, is reduced to a minimum.
This is good seen from a maintenance perspective.

The toolbox offers many exciting possibilities and have many basic parts that one can use
to build new algorithms. Just to list a few of the possibilities this toolbox offers.½ Linear and quadratic programming.½ Nonlinear optimization e.g. 2-norm and minimax, with constraints½ A flexible API that ensures that all kinds of parameters can be passed directly to the

test problems.

A good overview and documentation of the toolbox is given in [Mat00] that covers the basic
theory, supplemented with small tutorials. This chapter will focus on the program linprog
ver.1.22 that is the linear solver in Matlab’s optimization toolbox. The version of the
optimization toolbox investigated here is
Version 2.1.1 (R12.1) 18-May-2001

Currently a newer version 2.2 of the toolbox is available at MathWorks homepage1 .

This chapter is build like this: bla bla.

6.1 How to use linprog

Linprog is a program that solves a linear programming problem. A linear programming
problem seeks to minimize or maximize a linear cost function, that is bounded by linear

1http://www.mathworks.com/products/optimization/
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constraints. This means that the feasible region of an LP problem is convex, and since the
cost function is linear, the solution of the LP problem must exist at a extreme point or a
vertex of the feasible region.

The constraints in linear programming can be either equality or inequality constraints, and
hence linprog can solve the following type of problem.

min
x

F � x �[� x $ IRn

subject to
ci � x ��� 0 � i � 1 ��������� me

ci � x �3A 0 � i � me �������@� m
a A x A b �

where a and b are lower and upper bounds. The above problem is non-linear so in order to
get a linear programming problem, all the constraints should be linearized by a first order
Taylor approximation, so that we can formulate the above problem as

minx fT x subject to Ax A b
Aeqx � beq

lb A x A ub

where f � ∇F � x � is a vector, and the gradients of the constraints Aeq and A are matrices.
The above problem can be solved by linprog, by using the following syntax

x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)
[x,fval,exitflag,output,lambda] = linprog(...)

6.2 Why Hot Start Takes at Least n Iterations

Simplex algorithms have a feature that the Interior Point method does not have. It can take
a starting point supplied by the user, i.e. a so-called warm start. The use of warm start,
has the great advantage that if the starting point is close to the solution then the Simplex
algorithm will not have to traverse so many vertices in order to find the solution, and hence
terminate quickly.

A warm start is also a good idea for nonlinear problems, where a linear subproblem is solved
in each iteration. When we are near the solution to the nonlinear problem, we can expect
that the active set remains the same, and hence there is a good change, that the solution to
the LP problem in the previous iteration could provide the Simplex algorithm with a good
warm start for the next iteration.

Tests of linprog for medium scaled problems, has shown that even if we supply it with a
very good starting point, it will use at least n iterations. In this section we investigate why
this is so. In the latter we assume that the problems are not degenerate.

For problems that are medium scale, linprog uses an active set method, implemented as
qpsub in the optimization toolbox, to solve an optimization problem on the form

min
x

fT x � x $ IRn
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subject to
Ax A b
Aeqx � beq

lb A x A ub

When solving medium scaled problems, linprog offers the possibility of using a supplied
x as a way to warm start the algorithm, i.e. giving it a good start point that may be close to
the solution x 6 . In this way, one can reduce the number of iterations that linprog uses to
find the solution.

The title of this section includes the words hot start, and by this we mean, that not only is
the supplied x close to the solution, it is in fact the solution. One could then expect linprog
to terminate after only one iteration, however this is not what happens.

The Fourier series problem, illustrated in the introduction of this report, revealed an inter-
esting aspect of the hot start problem. Even if linprog was used with hot start, it would
still use n iterations to solve the problem, this is illustrated in Figure 6.1.
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Figure 6.1: The Fourier series prob-
lem solved with linprog using a guess
as cold start, and the solution as warm
start. The abscissae show the dimen-
sion of the problem, and the ordinate
show the number of iterations. It is
seen that linprog uses at least n itera-
tions when supplied with a hot start.

As mentioned, linprog uses an active set method for medium scale problems, but it is not
linprog that solves the problem. Instead linprog calls qpsub to do the actual calculations,
hence the rest of this investigation will have its main focus on qpsub.

In the following we investigate what happens in qpsub when we supply linprog with a hot
start.

In linprog at line 171 the call to qpsub is made. As part of the initialization of qbsub
the variable simplex_iter is set to zero. This will become important later on, because
simplex_iter equal to one is the only way to get out of the main while loop by using the
return call at line 627.

318 while iterations < maxiter
...
592 if ACTCNT == numberOfVariables - 1, simplex_iter = 1; end
...
744 end
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We can not use maxiter to break the while loop, because it is set to inf. If the caller of
qpsub had been different, e.g. a large scale algorithm, then maxiter would have been set
to a finite value.

In the initilization phase, the system Ax A b is scaled and the active set ACTCNT is initialized
to the empty set.

The constraint violations cstr � Ax 0 b is found as part of finding an initial feasible solution
at line 232–266. If we assume that a feasible solution do exist, then cstr must contain
elements that are less or equal to zero, due to the definition of the constraints. Further, it
must be the case, that when qpsub is supplied with a hot start, then at least n elements in
cstr is zero.

The cstr vector is recalculated at line 549 in the main loop each time a new X is found. As
we shall see later, a hot start has the affect that X does not move, which is natural because X
is the solution. The vector cstr is used for calculating the distance dist, that is calculated
at each iteration in the main loop at line 341

dist = abs(cstr(indf)./GSD(indf));

where GSD is the gradient with respect to the search direction. The vector indf contains all
the indexes in GSD that are larger than some small value. In this way, a singular working
set is avoided. If this was not done, it would be possible to have constraints parallel to the
search direction. See the comments in the code at line 330–334.

The dist vector is then used to find the minimum step STEPMIN, and because of the hot
start, this distance is zero. The algorithm now select the nearest constraint

[STEPMIN,ind2] = min(dist);
ind2 = find(dist == STEPMIN);

So ind2 holds the indexes to the nearest constraints. One may notice that the way ind2 is
found is not ideal when thinking of numerical errors. It is, however, not crucial to find all
distances to the constraints that are equal to STEPMIN. This is seen at line 346 where the
constraint with the smallest index is selected, and the rest is discarded.

ind=indf(min(ind2));

This is a normal procedure also known as Bland’s rule for anti-cycling. This ensures that
we leave a degenerate vertex after a finite number of iterations. In this way the Simplex
algorithm avoids being stuck in an infinite loop, see [Nie99b, Example 4.4].

A step in the steepest decent direction is made at line 365, X = X+STEPMIN*SD;. Because
of the hot start STEPMIM is zero, which have the result that the new X is equal to old X.

In each iteration, at line 587–595, the variable ACTCNT that hold the number of active con-
straints is increased with one. Because of Bland’s rule, only one constraint becomes active
in each iterations. So at the n 0 1 iteration, ACTCNT == n-1, where n in qpsub is stored in
numberOfVariables.

If the following condition11 is satisfied, then the simplex_iter flag is set to one.

if ACTCNT == numberOfVariables - 1, simplex_iter = 1; end
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then the simplex_iter flag is set to one. When using hot start this will happen at the n 0 1
iteration.

When simplex_iter == 1, the algorithm enters the simplex iterations at line 595–629,
where the solution is found by traversing the edges of the problem. Because of the hot
start, there is no edges to traverse, that reduces the cost function and hence all the all the
Lagrangian multipliers are non negative, which indicate that the solution has been found,
see line 640–641. The algorithm will then terminate after doing n 0 1 active set iterations
and at least 1 simplex iteration.

The execution then return to linprog where the output information from qpsub is given
the right format.

Figure 6.2 shows the results from a runtime experiment done on linprog, by using the linear
Fourier problem described in appendix A.

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03
Cold Start
Warm Start

Figure 6.2: Timing results from lin-
prog when solving the linear Fourier
problem. The abscissae shows the
number of variables in the problem,
and the ordinate shows the average
time per iteration.

The results clearly show, that when using hot start, the average time per iteration is lower
than that for cold start. When using a hot start, qpsub does n 0 1 active set iterations and
at least one simplex iteration. Hence the results indicate that the active set iterations are
cheaper than the simplex iterations.

6.3 Issues regarding linprog.

The strategy, of using Lagranian multipliers to define the active set needed for the corrective
step, can fail when using linprog ver. 1.23. This happens when the active functions
have contours parallel to the coordinate system. This can give rise to an infinite number of
solutions, which is illustrated in the following.

We show three examples from linprog, where the trust region radius is varied with η �� 0 � 2 � 0 � 3 � 0 � 5 � , and in each case the solution is analysed. Figure 6.3 shows the three situa-
tions.

The figure shows the LP minimax landscape for Rosenbrock’s function evaluated in x �o�0 1 � 2 � 1 q T , where f 41 � x ���to�0 20x1 10 q T and f 42 � x �#�to�0 1 � 0 q T .
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Figure 6.3: Plot of the minimax LP landscape of the Rosenbrock function in x + � ` 1 � 2 , 1 � T . Left:
η + 0 � 2. Middle: η + 0 � 3. Right: η + 0 � 5. The dashed lines indicate an infinity of solutions.

For η � 0 � 2 the solution h �po 0 � 2 � 0 � 0 q T is not unique. Both � 1 � x � and the upper bound
on x1 is active according to the λ multipliers from linprog. The dashed line in Figure 6.3
indicates an infinity of solutions.

For η � 0 � 3 the sollution h �Wo 0 � 30 �?0 0 � 09 q T is not unique either. Both � 1 � x � and the upper
bound of x1 are active. The dashed line in Figure 6.3 middle, says that there is an infinity of
solutions.

For η � 0 � 5 the sollution h ��o 0 � 464 �?0 0 � 500 q T is unique and both functions � 1 � x � , � 2 � x �
and the lower bound of x2 are active, according to the linprog multipliers.

The example shows that linprog ver. 1.23 not always deliver the multipliers one would
expect. For instance, it could be expected for a situation as the one illustrated in Figure
6.3 middle, that both the multipliers for � 1 � x � and � 2 � x � are larger than zero. In this way
the multipliers will indicate that both functions are active at x. The reason for this prior
expectation is found in the definition of an active function

A �8� j �7� j � x ��� α �h�
where both � 1 � x � and � 2 � x � would be active. It is then strange that the multipliers do not
indicate the same – or is it?

Turning to the theory of generalized gradients, we see that this is not so strange at all, in fact
the above behavior is in good alignment with the theory. But first we look at how qpsub
deals with bounds on the variables.

From line 74–82 in qpsub we see that the bounds are added to the problem as linear con-
straints. This means that we extend the problem we want to solve, and in turn our solution
will be confined to the bounded area.

The added linear constraints from the bounds, have to be taken into consideration, when
evaluating a stationary point. It is then seen that in all three cases the stationary point
condition is fulfilled, because the null vector is interior to the convex hull of the generalized
gradient, as illustrated in Figure 6.4.

The figure shows that for the first case η � 0 � 2 we have that the null vector is part of the
convex hull. So the solution found is of course a stationary point, but not a strongly unique
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Figure 6.4: Left: η + 0 � 2, the null vector is part of the convex hull. Middle: η + 0 � 3, The gradient
from ! 2 ' x ( shown as the arrow that is not horizontal, is only weakly active i.e. its multiplier is zero.
Right: η + 0 � 5. This is a strongly unique local minimum, and all multipliers are greater than zero.

local minimum, because the null vector is not interior to the hull. This also explains why
we have an infinity of solutions along the dashed line in Figure 6.3 left.

The point found in the second case η � 0 � 3 is also a stationary point. As seen in Figure
6.4 middle, the gradient corresponding to � 2 � x � , shown as the arrow that is not horizontal,
is only weakly active. This means that if we removed it, the point found would still be
stationary. This is why the multiplier for � 2 � x � is zero in this case. Basically the situation
is then the same as for the previous case, and we again have an infinity of stationary points
along the dashed line shown in Figure 6.3 middle.

In the last case η � 0 � 5 the solution found is not just a stationary point but a strongly unique
local minimum. As seen in Figure 6.4 right, the null vector is interior to the convex hull of
the generalized gradient, and hence the multipliers for � 1 � x � , � 2 � x � and the lower bound on
x2 are positive.

This behavior described above, was first noticed during the work with the corrective step.
For a problem like Rosenbrock, the case corresponding to the one shown in Figure 6.3
middle, has a damaging affect if the multipliers are used to indicate the active functions.
In this case it would seem like � 2 � x � was not active, and the corrective step would not be
calculated correctly. Even worse, in this case there would only be one active function, and
hence the corrective step would be the null vector. This seriously hamper the performance
of the CSLP algorithm. It was on this basis that it was decided to use

A �8� j �?� � i � x �C0 α �.A ε �h�
to indicate whether or not, a function is active.

6.4 Large scale version of linprog

For medium scale problems linprog uses an active set method to find n 0 1 active con-
straints at the edge of the feasible area, and then use Simplex iterations to find the solution.
It is, however, not feasible to use such a method for large problems. Hence, the optimization
toolbox offers the possibility of using an interior point method. By using

opts = optimset(’LargeScale’,’on’) ,
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and passing opts to an optimization algorithm, that algorithm will be set to use an interior
point method. The interior point method is implemented in lipsol (large scale interior
point solver) in the optimization toolbox.

The active set method (AS) as implemented in the optimization tool box by qpsub, is ba-
sically a Simplex algorithm, and hence we will in the following regard it as a Simplex-like
algorithm.

The Simplex method is in the worst case an exponential time algorithm, whereas the Interior
Point (IP) method is a polynomial time algorithm [HL95, chapter 4]. We are, however, often
interested in the average case performance. Here both the Simplex, and the (IP) method has
a polynomial runtime.

The Simplex method finds a solution that lies on a vertex of a convex set that defines the
feasible area. It decreases the cost function by traversing the edges of the hull going from
one vertex to the next. For a thorough introduction see [Nie99b, chapter 4], and [HL95,
chapter 4,5,6].

The IP method follows a central path trough the feasible domain, and can therefore in some
cases outperform the Simplex method that is confined to the edge of the feasible area. The
IP method uses a logarithmic barrier function, to confine the iterations to the interior of
the feasible domain, and use a Newton step to find the next iterate. The IP method is also
described in [Nie99b, chapter 3] and somewhat sketchy in [HL95, chapter 7].

When comparing the Simplex and the IP method, one must look at the amount of work per
iteration, and the number of iterations. The IP method is more complex than the Simplex
method, and it requires more computer time per iteration. In turn, it does not take as many
iterations as the Simplex method. In fact, large problems does not require many more
iterations than small problems, as shown in Table 6.1.

m n Iter. (AS) Iter. (IP) sec. (AS) sec. (IP)
130 34 67 15 0.6372 1.2350

...
...

370 94 271 13 7.1073 18.2001
410 104 359 11 9.2024 20.6553
450 114 465 16 14.3509 38.4359
490 124 515 16 17.1492 49.6527

Table 6.1: The Fourier problem solved as ! ∞, where m is the number of constraints and n is the
number of variables.

The table clearly shows that the number of iterations for the IP method is almost constant,
regardless of the size of the problem. However, we also see that the runtime results indi-
cate that the IP iterations is more computational costly than the AS iterations. This is not
surprising, when looking at the theory behind these two methods.

Without going into any details, the main work of a simplex iteration involves solving two
systems

BT g � cB and Bh � C: = s
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where B $ IRm ~ m. For the purpose of our discussion it is not important to know the exact
details, instead we refer to [Nie99b, Chapter 4]. The inner workings of the Simplex method
requires, that we move from one vertex to another until the solution is found. This is done
by moving one column in each iteration in and out of the basis B. In this way the basis Bk � 1

differs from Bk by only one column. This can be exploited quite efficiently by updating the
factorization of Bk � 1, and in qpsub this is done by the two Matlab functions qrinsert and
qrdelete.

The Interior Point method has more work to do in each iteration. Again, it is not important
for the discussion to go into any specific details, instead we refer to [Nie99b, Chapter 3].
The IP method uses a logarithmic barrier function to create a landscape of the feasible
region. The minimizer of this landscape is a non linear KKT system, that is approximated
by a linearization. The minimizer of the linearized KKT system is found by using a Newton
step. The Newton step can be reduced to the following expression [Nie99b, (3.22)]� AD2AT � hy � fy � AD2fx

where � AD2AT �[$ IRm ~ m, and we solve for hy. The above system can be solved by, e.g.,
using a factorization, but unlike the Simplex method, we can not update the factorization.
Hence the computational work in each iteration is greater than that of the Simplex method,
which is confirmed by the results in Table 6.1.

We have to note, that the timing results in the table should be looked upon, just as an
indication of the amount of work the methods do, in order to solve the problem. Since the
tests were made on a non dedicated system, the timings are not precise. Still, however, they
provide a rough indication of the amount of work done.

In the following, we present some results of test performed on linprog using medium and
large scale settings. All problems were solved as Chebyshev � ∞ problems

min
x̂

cT x̂ subject to Ax̂ A b �
where A $ IR2m ~ n � 1, b $ IR2m and x̂ $ IRn � 1.

We have performed the tests by using two very different test problems. The first problem
is the Fourier problem described in Appendix A, and is very dense, due to the nature of the
problem.

The second test problem, is the problem of finding the solution to the Laplace equations
numerically, by using a rectangular grid. The problem is described in detail in Appendix B,
and is sparse.

We have set up six test cases, described in Table 6.2.

When linprog is set to large scale mode, it uses an algorithm called lipsol that is stored
in Matlab’s private directory. Similarly, when we use medium scale mode, linprog will
use qpsub, an algorithm that is also stored in Matlab’s private directory. Therefore the
following tests of the AS and IP methods are in reality tests of lipsol and qpsub.

First we investigate how well the AS and IP methods handles sparse vs. dense problems.
The results are shown in Figure 6.5 and 6.6.
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Setting Problem n m
1: Medium scale Fourier n � 3 � 5 ��������� 301 m � n � 4
2: Large scale Fourier n � 3 � 5 ��������� 301 m � n � 4
3: Medium scale Fourier n � 3 � 5 ��������� 151 m � 2n 0 1
4: Medium scale Laplace n � 3 � 5 ��������� 301 m � n
5: Large scale Laplace n � 3 � 5 ��������� 301 m � n
6: Large Scale Fourier n � 3 � 5 ��������� 151 m � 2n 0 1

Table 6.2: The test cases. Because we are solving the above as an ! ∞ problem, we have that A y
IR2m Í n Î 1.
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Figure 6.5: Test cases 1 and 4. Runtime results for the Active Set method when solving a dense ’ Ï ’
and a sparse ’ Ð ’ problem. All timings are an average of three observations.

Figure 6.5 shows runtime results for test case 1 and 4, i.e., using the AS method to solve the
dense Fourier, and sparse Laplace problem. The results clearly show, that qpsub can take
advantage of the sparsity in the Laplace problem. For problem sizes where 0 F m F 100, we
see that the AS method uses an equal amount of time to solve the dense and sparse problem.
For m X 100 the sparse Laplace is solved much faster than the dense Fourier, which indicate
that the sparsity is exploited by qpsub.

Figure 6.6 shows the result for test cases 2 and 5, i.e., using Matlabs implementation of
the IP method lipsol, on the dense Fourier, and the sparse Laplace problem. We see that
lipsol exploits the sparsity of the Laplace problem quite well. For all m, we have that
lipsol uses more time to solve the dense than the sparse case.

For m � 500 something interesting happens. The decrease in time to solve both the dense
and sparse problem drops. Especially is the reduction for the sparse problem rather dra-
matic. The only way to investigate this is to look inside the code for lipsol.

At line 643 a check is performed and if m X 500, a parameter nzratio is set to 0.2, other-
wise it is set to 1. If nzratio < 1 at line 647, then lipsol checks to see if A contains any
dense columns. If it does, then the flag Dense_cols_exist = 1. For � ∞ problems, the last
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Figure 6.6: Test cases 2 and 5. The Interior Point method tested on a dense ’ Ñ ’ and a sparse ’+’
problem. All timings are an average of three observations.

column of A will always be dense, see (3.5).

If Dense_cols_exist = 1 then conjugated gradient iterations is performed at line 887
and 911. Because of those conjugated gradient iterations, lipsol is able to reduce the
computation time, which for the sparse Laplace problem is quite dramatic.

It is also interesting to note, that the reduction in computation time is not that big for the
dense Fourier problem when compared to the sparse problem. In the following we compare
the dense and the sparse problems. Figure 6.7 shows the timing results for the Fourier
problem solved by the AS and IP methods.
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Figure 6.7: Test cases 1 and 2. The dense Fourier problem, solved by the AS method ’ Ï ’ and by the
IP method ’ Ñ ’. All timings are an average of three observations
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From the figure we see that the AS and IP methods uses nearly the same time to solve
the problem. For m F 300 IP is slightly faster than AS, but in turn AS is faster when
300 F m F 500. For m X 500 the IP method uses conjugated gradient iterations, and this
gives a slight decrease in computation time. In fact, just enough to make it up to speed with
the AS method.

Figure 6.8 shows the timing results for the sparse problem, solved by the AS and IP methods.
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Figure 6.8: Test cases 4 and 5. The sparse Laplace problem, solved by the AS method ’ Ð ’ and the IP
method ’+’. All timings are an average of three observations.

The figure clearly shows that the IP method is the fastest method for the sparse problem,
however, when 400 F m F 500 then the AS method seems to catch up with the IP method.
When m X 500 the IP method begins to use conjugated gradient iterations, and this gives a
dramatic decrease in computation time for this kind of sparse problem.

We have also tested the AS and IP methods with the Fourier problem, but with even more
constraints than before. This test corresponds to test case 3 and 6 in Table 6.2. The many
constraints (large m compared to n) and the dense problem, will have the effect that the
IP iterations will take even longer than the AS iterations. As mentioned in the previous
discussion, the workload for both methods grows with the number of constraints. Further,
the Simplex method can use a smart factorization update, while this can not be exploited in
the IP method. Therefore it is interesting to see if the IP method (test case 6) will do as well
as the AS method (test case 3). Figure 6.9 shows the results from test case 3 and 6.

The figure shows that AS method is slightly faster than the IP method, but still their com-
putational time results are comparable. This seems to suggest that even though the IP itera-
tions becomes more and more expensive as m grows, it is able to compete with the Simplex
method for large sized problems.

In [HL95, Chapter 4] there is a discussion about the pro and cons when comparing the inte-
rior point method and the Simplex method. They say that for large problems with thousands
of functional constraints the IP method are likely to be faster than the simplex method.
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Figure 6.9: Test cases 3 and 6. The sparse Fourier problem, solved by the AS method ’ Ð ’ and the IP
method ’+’. All timings are an average of three observations.

We have seen how the conjugated gradient (CG) iterations could speed up the IP method
for the sparse Laplace system. From the comments in lipsol it is seen that preconditioned
conjugated gradients is used during the CG iterations. When looking on the structure of A
for the Laplace problem we notice that A has a block Toeplitz structure and perhaps this kind
of structure is well suited for precondition. This could maybe explain the dramatic reduction
in computational time we get when solving the Laplace problem. However, a thorough
investigation of this, falls outside the scope of this thesis. Instead the reader is referred
to [GvL96, Section 4.7 and 10.3] for more information about Toeplitz and preconditioned
conjugated gradients.

6.4.1 Test of SLP and CSLP

In this section the SLP and CSLP algorithms are tested on a set of test functions that are
given in Table 3.1 on page 38. The tests are performed with linprog set to large scale
mode, and the results are presented in Table 6.3 on page 88.

The table shows results, that are comparable with the result given in Table 3.3, where
linprog is used with medium scale setting. In other words, the performance of SLP and
CSLP are not changed significantly when using either medium scale or large scale mode.
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Test of SLP
Name 10  2 10  5 10  8 corrective steps
Parabola 11(12) 21(22) 31(32) - - -
Rosenbrock1 18(19) 18(19) 18(19) - - -
Rosenbrock2 19(20) 19(20) 19(20) - - -
BrownDen 19(20) 32(33) 42(43) - - -
Bard1 3(4) 4(5) 5(6) - - -
Bard2 3(4) 4(5) 5(6) - - -
Ztran2f 6(7) 21(22) 30(31) - - -
Enzyme 179(180) 184(185) 185(186) - - -
El Attar 7(8) 9(10) 10(11) - - -
Hettich 8(9) 19(20) 26(27) - - -

Test of CSLP - J � x �
Name 10  2 10  5 10  8 corrective steps
Parabola 9(13) 15(25) 24(43) 4[1] 10[1] 19[1]
Rosenbrock1 12(14) 12(14) 12(14) 5[4] 5[4] 5[4]
Rosenbrock2 17(28) 18(29) 18(29) 11[1] 11[1] 11[1]
BrownDen 15(20) 29(41) 42(57) 4[0] 11[0] 14[0]
Bard1 3(4) 4(5) 5(6) 0[0] 0[0] 0[0]
Bard2 3(4) 4(5) 5(6) 0[0] 0[0] 0[0]
Ztran2f 6(7) 21(30) 30(43) 0[0] 8[0] 12[0]
Enzyme 58(85) 61(89) 61(89) 32[6] 33[6] 33[6]
El Attar 7(8) 9(10) 10(11) 1[1] 1[1] 1[1]
Hettich 7(11) 18(33) 29(55) 5[2] 16[2] 27[2]

Test of CSLP - J � x � h �
Name 10  2 10  5 10  8 corrective steps
Parabola 7(13) 13(25) 20(39) 5[0] 11[0] 18[0]
Rosenbrock1 11(14) 13(16) 13(16) 6[4] 6[4] 6[4]
Rosenbrock2 9(13) 11(15) 11(15) 4[1] 4[1] 4[1]
BrownDen 15(20) 29(41) 36(52) 4[0] 11[0] 15[0]
Bard1 3(4) 4(5) 5(6) 0[0] 0[0] 0[0]
Bard2 3(4) 4(5) 5(6) 0[0] 0[0] 0[0]
Ztran2f 6(7) 21(30) 30(43) 0[0] 8[0] 12[0]
Enzyme 26(48) 34(62) 35(63) 22[1] 28[1] 28[1]
El Attar 6(8) 8(10) 9(11) 1[0] 1[0] 1[0]
Hettich 5(7) 13(23) 21(39) 3[2] 11[2] 19[2]

Table 6.3: Results for SLP and CSLP with linprog set to large scale mode. Unless otherwise noted,
η0 + 1 and ε + 0 � 01. Column 2–4: number of iterations. ( ): The number of function evaluations.
Column 5–7: Attempted corrective steps. [ ]: Failed corrective steps.
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Chapter 7

Conclusion

In this chapter we give a summary of the performed work, and comments on the insight
gained through this project.

The project started out with an implementation of the CSLP algorithm, described in Chapter
3.3 and originally presented in [JM94]. The work of analyzing the CSLP algorithm was a
motivation for learning more about the theory behind minimax optimization.

In the process of implementing CSLP, a more basic algorithm SLP was created. This is
described in Chapter 3 and corresponds to method 1 in [Mad86]. SLP does not use a cor-
rective step like CSLP, and is therefore more easy to analyze. The insights gained from this
analysis were used in the process of implementing CSLP.

The corrective step was described and analyzed in detail in Chapter 3.2. In order to find the
linearly independent gradients needed for the corrective step, we used a QR factorization.
The work showed that we do not need Q which is good, especially when the problem is
large and sparse, Q will be huge and dense. Further the QR factorization should be rank
revealing, and in Matlab, the sparse version of qr does not do column permutations, which
is needed for our purpose. Hence we use the economy version of qr for full matrices.

Both, SLP and CSLP uses only first order information, and studies of the performance
in Chapter 3.3 showed that if a given problem was not regular in the solution, then only
linear convergence could be obtained in the final stages of convergence. From a theoretical
standpoint, this comes as no surprise.

Studies of the CSLP algorithm showed, however, that it uses fewer iterations to get into the
vicinity of a local minimum. Further it was shown that CSLP was cheap, in the sense that it
uses almost the same number of function evaluations as SLP.

CSLP showed in particular a good performance on problems that were highly non-linear.
Both SLP and CSLP are well suited for large scale optimization, as tests have shown.

Large parts of the work presented in thesis is of theoretical character. The theory of uncon-
strained and constrained minimax was presented in Chapter 2 and 4. The study of the theory
was in itself very interesting, and new insights and contributions were given, especially in
the area regarding the penalty factor σ for exact penalty functions. It was revealed, that the
estimation of σ was a problem of finding the distance to the edge of a convex hull, also
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known as the generalized gradient. Further it was shown, that this in fact corresponds to
solving a dual linear problem.

The work with trust regions, showed that the continuous trust region update presented in
[Nie99a], tweaked in the right way, has just as good a performance as the discontinuous
update strategy, used in most trust region algorithms.

The algorithms presented in this thesis are implemented in a small toolbox, and the source
code can be found in Appendix D.

Finally, tests presented in Chapter 6 showed that linprog is well suited for large and sparse
problems.

7.1 Future Work

In this work We have covered many areas of minimax optimization, but there is still room
for further studies. In the following we give some suggestions for future investigations.

In the process of describing and implementing the SLP and CSLP algorithms, we did not
use the multipliers to find the active set. Instead we used

ALP �8� j ��� � j � h �L0 α ��A γ �h�
where all the inner functions � j close to α are regarded as active. The drawback of this
approach is that it requires the preset parameter γ. An area of future research would be to
find a good heuristic to determine γ on the basis of the problem being solved.

The work with trust regions showed, that there are many ways to update the trust region
radius. All of them, are heuristics that have proven their worth in practice. However, none
of these depend on the problem being solved. It would be useful to find an update heuristic
that was somehow connected to the underlying problem, e.g., by using neural networks.

Last but not least, the theoretical work done with the penalty factor, would be well suited
for further research. One such research area, could be to find extensions that could be used
to identify an initial basic feasible solution in the Simplex algorithm.
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Appendix A

The Fourier Series Expansion
Example

A periodic function f � t � with a period of T � 2π G ω can be expanded by the Fourier series,
which is given by

f � t �#� 1
2

a0 � ∞

∑
p D 1

ap cos pωt � ∞

∑
p D 1

bp sin pωt (A.1)

where the coefficients can be found by

ap � 1
T Ò d � T

d
f � t � cos pωt dt

bp � 1
T Ò d � T

d
f � t � sin pωt dt (A.2)

In e.g. electrical engineering the periodic function f � t � can also be looked upon as a design
criterion i.e. we have a specification of design, and we want to fit it with a Fourier expansion.

Finding the Fourier coefficients by using (A.2) corresponds to the � 2 norm solution i.e. the
least squares solution. We can, however, also find these coefficients by using the normal
equations, and solve it by simple linear algebra.

If we arrange the coefficients in a vector x $ IRn and set up a matrix A $ IRm ~ n, where m is
the number of samples, and setup a vector b $ IRm that consists of function evaluations of
f � t � at the sample points. Then we can find the solution to the system

Ax � b �
by using the normal equations

x �t� AT A � � 1AT b �
which find the � 2 norm solution. A more numerical stable way to solve the normal equations
is to use QR factorization.

x � R � 1
1:n = :QT

: = 1:nb �
In Matlab this can be done efficiently for over determined systems, by using x = A\b;.

We can also find the � 1 and � ∞ solutions if we solve a linear programming problem with an
LP solver e.g. Matlab’s linprog. In the following we define a residual r � x ��� y 0 Fx.
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A.1 The Ó 1 norm fit

To find the � 1 solution we set up the following primal system� P � min
x̂

cT x̂ subject to Ax̂ A b

where

x̂ � H
x
z I � c � H

0
e I � A � H

F 0 I0 F 0 I I � b � H
y0 y I

where x $ IRn, z � e � y $ IRm and e is a column vector of ones and y is a vector with m samples
of f � t � . Further, F $ IRn ~ m and the unit matrix I $ IRm ~ m.

We see that a residual can be expressed by the above equations so that

Fx 0 y A Iz
Fx 0 y < 0 Iz

Q ri � x � < 0 zi

ri � x �´A zi

where i � 1 ��������� m. By using the above, we see that minimizing the cost function

min
x̂

cT x̂ Q min
x̂
o 0 e q H x

z I E min
z

m

∑
i D 1

zi E min
x

m

∑
i D 1

ri � x �[�
is exactly the same as minimizing the sum of the residuals. This is also the definition of the� 1 norm.

The primal system is large, and we can get the exact same solution by solving a smaller
dual problem, as shown in [MNP94]. The dual problem can be expressed as� D � max

u
yT u subject to FT u � 0 and 0 e A u A e �

Because of the symmetry between the primal and dual problem, we have that the Lagrangian
multipliers of the dual problem correspond to x.

A.2 The Ó ∞ norm fit

The solution to the problem of minimizing the largest absolute residual, can also be found
by solving a linear problem. We solve the following system� P � min

x̂
cT x̂ subject to Ax̂ A b

where

x̂ � H
x
α I � c � H

0
1 I � A � H

F 0 e0 F 0 e I � b � H
y0 y I �

with the same dimensions as described in the former section. By using the above we see
that

Fx 0 y A αe0 Fx � y A αe
Q 0 ri � x �´A α

ri � x �´A α �
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So when minimizing the cost function, we are in fact minimizing the maximum absolute
residual

min
x = α α α � max

x
� r � x ����0 r � x ���h�

The above system for � ∞ is identical with (3.7), it is just two different ways to get to the
same result. If we define a residual function f � x ��� y 0 Fx and minimize it with respect to
the � ∞ norm, then

f � x �?� J � x � ∆x A α0 f � x �L0 J � x � ∆x A α Q H
J � x �´0 e0 J � x �´0 e I H ∆x

α I A H 0 f � x �
f � x � I
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Appendix B

The Sparse Laplace Problem

The Laplace equation can be used to solve steady heat conduction, aerodynamics and elec-
trostatic problems, just to mention a few. Formally we seek a solution to the Laplace equa-
tion

∂2u
∂x2 � ∂2u

∂y2 � 0 (B.1)

which turns out to be somewhat difficult to solve analytically. However, there is an easy
numerical solution by using a mesh. Information about the boundary condition of the solu-
tion region is given, so all the mesh points has to be solved simultaneously. This is done by
solving a linear system equations, by using a finite difference approximation to (B.1).

u � i � 1 � j �L0 2u � i � j �?� u � i 0 1 � j �
∆x2 � u � i � j � 1 �C0 2u � i � j �?� u � i � j 0 1 �

∆y2 � 0 � (B.2)

If the grid is equidistant in the x and y direction, then we can reformulate the above to this,
somewhat simpler expression

4u � i � j �B� u � i 0 1 � j ��� u � i � 1 � j ��� u � i � j 0 1 ��� u � i � j � 1 �[� (B.3)

We see that the above gives rise to the famous five point computational molecule. The idea
is now to use a grid of the solution area that contains m ¨ n points and to solve Au � b.

A simple grid of size m � 2 (columns) and n � 2 (rows) is illustrated on figure B.1 and by
using (B.3) we get the following equations on matrix form�ÔÔ� 4 0 1 0 1 00 1 4 0 0 10 1 0 4 0 1

0 0 1 0 1 4

��ÕÕ  �ÔÔ� u1

u2

u3

u4

��ÕÕ  � �ÔÔ� 0
0
1
1

��ÕÕ 
(B.4)

When implementing this problem in Matlab, one must remember to use sparse matrices,
because the sparsity can be exploited to conserve memory, and to solve the Laplace system
much faster than by using dense matrices. One can test this, by using u = A\b for both
dense and sparse matrices.
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Figure B.1: The grid used for solving
the Laplace problem. The grid dimen-
sion is m + 2, n + 2.

For large grids we use the Kronecker product × to generate A, so that

A � I × B � L × C �
and

B � �ÔÔÔÔ�
4 0 1 ����� 00 1 4

. . .
...

...
. . . . . . 0 1

0 �����Ø0 1 4

��ÕÕÕÕ  � C � �ÔÔÔÔ�
0 1 0 ����� 0

0 0 1
. . .

...
...

. . . . . . 0
0 ����� 0 0 1

��ÕÕÕÕ  �
where B � C $ IRm ~ m. Further, we have that I $ IRn ~ n is the unit matrix and

L � �ÔÔÔÔ�
0 1 ����� 0

1 0
. . .

...
...

. . . . . . 1
0 ����� 1 0

��ÕÕÕÕ  � L $ IRn ~ n �
The resulting system will have A $ IRmn ~ mn and u � b $ IRmn. In Matlab, we write A = kron(I,B) + kron(L,C);.

For the purpose of making a sparse test problem for linprog, we change the least squares
problem Au � b into a Chebyshev problem � ∞, by giving linprog the following problem

F � H
A 0 e0 A 0 e I � y � H

b0 b I �
where e $ IRmn is a vector of ones, and solving minû cT û subject to Fû A y.

A visualization of the solution for a grid of size m � 20 and n � 20 with the same boundary
conditions as in figure B.1 is shown in figure B.2.
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Appendix C

Test functions

The test functions used in this repport, is defined in the following. For convenience we
repeat the definition of the different types of problems here.

Minimax problems is defined as

min
x

F � x � � F � x �B" max � f j � x ���N� (C.1)

where j � 1 ��������� m. The Chebyshev norm �¿�
� ∞ can be formulated as a minimax problem

min
x

F � x � F � x �#" max � max
j
� f j � x ����� max

j
��0 f j � x �����?� (C.2)

The test functions are presented in the list below. We use the following format.

a) Type of problem and dimension.
b) Function definition.
c) Start point.
d) Solution and auxiliary data.

Bard [Bar70].

a) Type (C.2). Dimension: y Ù : n Ú 3, m Ú 5, t Û�Ú 3. y ÙÜÙ : n Ú 3, m Ú 4 Ý t Û�Ú 4.

b)

f j Þ x ß}Ú y j à x1 á u j

v jx2 á w jx3
Ý j Ú 1 Ý7â7â�â�Ý 15

where u j Ú j, v j Ú 16 à i and w j Ú min ã u j Ý v j ä , y j Ú y Ù j or y j Ú y Ù�Ùj .
c) x0 Úæå 1 1 1 ç T .

d) For y j Ú y Ù j: F Þ x Û ß#è 0 â 050816326531. For y j Ú y ÙÜÙj : F Þ x Û ß#è 0 â 0040700234725.
Data:
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i y Ù j y ÙÜÙj i y Ù j y ÙÜÙj i y Ù j y Ù�Ùj
1 0.14 0.16 6 0.32 0.37 11 0.73 0.83
2 0.18 0.21 7 0.35 0.40 12 0.96 1.10
3 0.22 0.26 8 0.39 0.43 13 1.34 1.54
4 0.25 0.30 9 0.37 0.53 14 2.10 2.43
5 0.29 0.34 10 0.58 0.66 15 4.39 5.10

Brown-Den Brown and Dennis [BD71].

a) Type: (C.2). Dimension: n Ú 4, m Ú 20, t ÛYÚ 3.

b)
f j Þ x ß}Ú Þ x1 á t jx2 à et j ß 2 á�Þ x3 á x4 sint j à cos t j ß 2

where ti Ú i é 5, i Ú 1 Ý7â7â7â�Ý 20.

c) x0 Úêå 25 5 à 5 à 1 ç T .

d) F Þ x Û ß[Ú 115 â 70643952.

Rosenbrock [Ros60].

a) Type (C.2). Dimension: n Ú 2, m Ú 2, t ÛiÚ 3.

b)
f1 Þ x ß}Ú w Þ x2 à x2

1 ßÀÝ f2 Þ x ß}Ú 1 à x1

where w Ú 10 or w Ú 100.

c) x0 Úêå à 1 â 2 1 ç T .

d) F Þ x Û ß[Ú 0.

Parabola

a) Type: (C.1). Dimension: n Ú 2, m Ú 2, t ÛYÚ 2.

b)
f1 Þ x ß}Ú x2

1 à x2 Ý f2 Þ x ß}Ú x2

c) x0 Úêå à 3 3 ç T .

d) F Þ x ß}Ú 0.

Enzyme [KO68]

a) Type: (C.2). Dimension: n Ú 4, m Ú 11.



APPENDIX C. TEST FUNCTIONS 101

b)

f j Þ x ß}Ú v j à x1 Þ y2
j á x2y j ß

y2
j á x3y j á x4

Ý j Ú 1 Ý7â�â7â�Ý 11 â
c) x0 Úæå 0 â 5 0 â 5 0 â 5 0 â 5 ç T .

d) Data:

j v j y j j v j y j

1 0.1957 4.0000 7 0.0456 0.1250
2 0.1947 2.0000 8 0.0342 0.1000
3 0.1735 1.0000 9 0.0323 0.0833
4 0.1600 0.5000 10 0.0235 0.0714
5 0.0844 0.2500 11 0.0246 0.0625
6 0.0627 0.1670 - - -

El-Attar [EAVD79]

a) Type: (C.2). Dimension: n Ú 6, m Ú 51.

b)
f j Þ x ß}Ú x1e ë x2t j cos Þ x3t j á x4 ß á x5e ë x6t j à y j

y j Þ x ß}Ú e ë t j

2 à e ë 2t j á e ë 3t j

2 á 3e ë 3t j ì 2 sin Þ 7t j ß
2 á e ë 5t j ì 2 sin Þ 5t j ßÀÝ

where j Ú 1 Ý7â7â7â�Ý 51 and t j Ú Þ j à 1 ß�é 10.

c) x0 Úæå 2 2 7 0 à 2 1 ç T .

d) F Þ x ß}Ú 0 â 034904.

Hettich [Wat79]

a) Type: (C.2). Dimension: n Ú 4, m Ú 5.

b)
f j Þ x ß}Úîí t j ácÞ�Þ x1t j á x2 ß t j á x3 ß 2 à x4

where j Ú 1 Ý7â7â7â�Ý 5 and t j Ú 0 â 25 á�Þ j à 1 ß 0 â 75 é 4.

c) x0 Úæå 0 à 0 â 5 1 1 â 5 ç T .

d) F Þ x Û
ß[Ú 0 â 002459.
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Appendix D

Source code

D.1 Source code for SLP in Matlab
f u n c t i o n [ x , i n f o , p e r f ] = s l p 4 ( fun , f p a r , x0 , o p t s )

%
% Usage : [ x , i n f o , p e r f ] = s l p 2 ( fun , f p a r , x0 , o p t s )
%
% S e q u e n t i a l L i n e a r Programing s o l v e r wi th c o n t i n o u s
% t r u s t r e g i o n u p d a t e [ 2 ] . To use d e f a u l t s e t t i n g ,
% omi t o p t s from t h e a rgumen t l i s t .
%
% INPUT :
% fun : a s t r i n g wi th a f u n c t i o n name .
% A l l f u n c t i o n s h o u l d f o l l o w t h i s API
% [ f , J ] = fun ( x , f p a r ) ;
% f p a r : p a r a m e t e r s t o t h e f u n c t i o n , ( may be empty ) .
% x0 : s t a r t p o i n t .
% o p t s : o p t i o n s .
%
% The o p t i o n s a r e s e t by u s i n g SETPARAMETERS .
% c a l l SLP wi th no argumen t s t o s e e d e f a u l t v a l u e s .
% rho : S e t t r u s t r e g i o n r a d i u s rho .
% e p s i l o n : T h r e s h o l d f o r a c c e p t i n g new s t e p .
% m a x I t e r : Maximum number of i t e r a t i o n s .
% minStep : I f ïðï s t e p ïñï 2 ò minStep t h e n s t o p .
% t r u s t R e g i o n : choose t r u s t Ì r e g i o n u p d a t e .
% 1 : C l a s s i c a l u p d a t e wi th damping [ 1 ]
% 2 : Con t inous u p d a t e o f t r u s t r e g i o n . See [ 2 ] .
% 3 : T r u s t r e g i o n u p d a t e . See [ 3 ] .
% 4 : Enhanced c l a s s i c a l u p d a t e wi th damping .
% 5 : C l a s s i c a l u p d a t e s t r a t e g y .
% 6 : Udate s t r a t e g y t h a t u s e s t h e s t e p l e n g t h .
% p r e c i s i o n D e l t a : S top when a p r e c i s i o n d e l t a i s r e a c h e d .
% p r e c i s i o n F u n : The f u n c t i o n v a l u e a t t h e s o l u t i o n .
%
% o u t p u t :
% X : a v e c t o r c o n t a i n i n g a l l p o i n t s v i s i t e d .
% i n f o ( 1 ) : Number of i t e r a t i o n s .
% i n f o ( 2 ) : A c t i v e s t o p p i n g c r i t e r i o n .
% 1 : Maximum number of i t e r a t i o n s r e a c h e d . .
% 2 : Smal l s t e p
% 3 : dL ò = 0 .
% 4 : D e s i r e d p r e c i s i o n r e a c h e d .
% i n f o ( 3 ) : F u n c t i o n v a l u e F ( x ) .
% i n f o ( 4 ) : Number of f u n c t i o n e v a l u a t i o n s .
% p e r f : C o n t a i n s t h e f o l l o w i n g f i e l d s :
% F : F u n c t i o n e v a l u a t i o n .
% R : T r u s t r e g i o n r a d i u s .
% X : S t e p s .
% f v a l : F u n c t i o n e v a l u a t i o n a t t h e s o l u t i o n .
% m u l t i p l i e r s : M u l t i p l i e r s a t t h e s o l u t i o n .
%
% In p a r t based upon :
% [ 1 ] : K . J o n a s s o n and K. Madsen , C o r r e c t e d S e q u e n t i a l L i n e a r Programming
% f o r S p a r s e Minimax O p t i m i z a t i o n . BIT 3 4 ( 1 9 9 4 ) , 3 7 2 Ì 3 8 7 .
% [ 2 ] : H . B . N i e l s e n . Damping p a r a m e t e r i n Marquard t ’ s method .
% T e c h n i c a l Reppor t IMMÌ REP Ì 1999 Ì 05. DTU , Kgs . Lyngby .
% [ 3 ] : K . Madsen . Minimax S o l u t i o n of NonÌ l i n e a r E q u a t i o n s w i t h o u t
% c a l c u l a t i n g d e r i v a t i v e s .
%
% R e l e a s e v e r s i o n 1 . 0 28 Ì 10 Ì 02.
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% Mark Wrobel . proj76@imm . d t u . dk

i f n a r g i n ò 1 ,
f p r i n t f ( ’ rho : [ D e f a u l t = 0 . 1 ó max ( x0 ) ] ô n ’ ) ;
f p r i n t f ( ’ e p s i l o n : [ D e f a u l t = 0 . 0 1 ] ô n ’ ) ;
f p r i n t f ( ’ m a x I t e r : [ D e f a u l t = 1 0 0 ] ô n ’ ) ;
f p r i n t f ( ’ minStep : [ D e f a u l t = 1 e Ì 10 ] ô n ’ ) ;
f p r i n t f ( ’ t r u s t R e g i o n : [ D e f a u l t = 1 ] ô n ’ ) ;
f p r i n t f ( ’ p r e c i s i o n D e l t a : [ D e f a u l t = 0 ] ô n ’ ) ;
f p r i n t f ( ’ p r e c i s i o n F u n : [ D e f a u l t = 0 ] ô n ’ ) ;
f p r i n t f ( ’ d e r i v a t i v e C h e c k : [ D e f a u l t = ” o f f ” ] ô n ’ ) ;
f p r i n t f ( ’ l a r g e s c a l e : [ D e f a u l t = ” o f f ” ] ô n ’ ) ;
r e t u r n

end

i f ˜ e x i s t ( ’ o p t s ’ )
o p t s = s e t p a r a m e t e r s ( ’ empty ’ ) ;

end
i f i s empty ( o p t s )

o p t s = s e t p a r a m e t e r s ( ’ empty ’ ) ;
end

rho = s e t C h o i s e ( o p t s . rho , 0 . 1 ó max ( x0 ) ) ;
e p s i l o n = s e t C h o i s e ( o p t s . e p s i l o n , 0 . 0 1 ) ;
m a x i t e r = s e t C h o i s e ( o p t s . m a x I t e r , 1 0 0 ) ;
m i n s t e p = s e t C h o i s e ( o p t s . minStep , 1 e Ì 10);
t r u s t r e g i o n = s e t C h o i s e ( o p t s . t r u s t R e g i o n , 1 ) ;
d e r i v a t i v e C h e c k = s e t C h o i s e ( o p t s . d e r i v a t i v e C h e c k , [ ] , 1 ) ;
p r e c i s i o n d e l t a = s e t C h o i s e ( o p t s . p r e c i s i o n D e l t a , 0 ) ;
p r e c i s i o n f = s e t C h o i s e ( o p t s . p r e c i s i o n F u n , 0 ) ;
l a r g e s c a l e = s e t C h o i s e ( o p t s . l a r g e s c a l e , [ ] , 1 , 1 ) ;

i f d e r i v a t i v e C h e c k ,
% See p . 3 i n ” Checking G r a d i e n t s ” H. B . N i e l s e n IMM 2 1 . 9 . 2 0 0
% Download a t www. imm . d t u . dk / ˜ hbn
[ maxJ , e r r , i ndex ] = c h e c k j a c o b i ( fun , f p a r , x0 , eps ˆ ( 1 / 3 ) ó norm ( x0 ) ) ;
i f abs ( e r r ( 3 ) ) õ 0 . 9 ó abs ( e r r ( 1 ) ) ,

e r r o r ( ’ D e r i v a t i v e check f a i l e d ’ ) ;
end

end

% I n i t i a l i z a t i o n .
F = [ ] ; R = [ ] ;
s t o p = 0 ; i t e r a t i o n s = 0 ; f c o u n t = 0 ; nu = 2 ;
f l a g = 1 ; % ò Ì Take t h e r o l e a s g a i n o l d . ( g a i n o l d = 2 ó e p s i l o n , s e e [ 1 ] )
x = x0 ( : ) ; % ò Ì e n s u r e s a column v e c t o r
X = x ; % ò Ì X i s a m a t r i x o f x ’ s

f c o u n t = f c o u n t + 1 ;
[ f , J ] = f e v a l ( fun , x , f p a r ) ;
[m , n ] = s i z e ( J ) ;
a c t i v e s e t = z e r o s (2 ó m, 1 ) ;

%Ì�Ì±Ì�Ì±Ì±Ì�Ì±Ì�Ì±Ì±Ì�Ì±Ì�Ì±Ì MAIN LOOP Ì�Ì�Ì�Ì�Ì�Ì�Ì�Ì�Ì�Ì�Ì�Ì
whi le ˜ s t o p

LB = [ repmat ( Ì rho , n , 1 ) ; Ì i n f ] ; UB = Ì LB ;
% d e f i n i n g c o n s t r a i n t s f o r l i n p r o g ( 2 . 4 )
A = [ J Ì ones (m, 1 ) ] ;
b = Ì f ;

o p t i o n s = o p t i m s e t ( ’ D i s p l a y ’ , ’ o f f ’ , ’ L a r g e S c a l e ’ , l a r g e s c a l e ) ;
[ s , f e v l , e x i t f l , o u t p t , lambda ] = . . .

l i n p r o g ( [ r epmat ( 0 , 1 , n ) 1 ] , A , b , [ ] , [ ] , LB , UB , [ ] , o p t i o n s ) ;
i f e x i t f l ò 0 ,

e r r o r ( s p r i n t f (’% s : l i n p r o g f a i l e d ’ , a l g o r i t h m ) ) ;
end

a l p h a = s ( end ) ; d = s ( 1 : n ) ;
x t = x + d ;
[ f t , J t ] = f e v a l ( fun , x t , f p a r ) ; f c o u n t = f c o u n t + 1 ;

FX = max ( f ) ;
dF = FX Ì max ( f t ) ;
dL = FX Ì a l p h a ;

% s t o r i n g i n f o r m a t i o n .
F = [ F FX ] ; R = [ R rho ] ; X = [X x ] ;

% do n o t c a l c u l a t e g a i n = dF / dL due t o numer i c u n s t a b i l i t y .
i f dF õ e p s i l o n ó dL & ( dL õ 0 ) ,

x = x t ; f = f t ; J = J t ; f l a g = 1 ;
e l s e , f l a g = 0 ; end

s w i t c h t r u s t r e g i o n
c a s e 1 % ò Ì C l a s s i c a l u p d a t e wi th damping [ 1 ]

i f ( dF õ 0 .75 ó dL ) & f l a g ,
rho = 2 . 5 ó rho ;
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e l s e i f dF ò 0 .25 ó dL
rho = rho / 2 ;

end
c a s e 2 % ò Ì Cont inous u p d a t e o f t r u s t r e g i o n . See [ 2 ] .
gamma = 2 ; b e t a = 2 . 5 ;
i f ( dF õ 0 ) & ( dL õ 0)

i f norm ( d , i n f ) õ 0 . 9 ó rho ,
rho = rho ó min ( max ( 1 / gamma , 1 + ( b e t a Ì 1 ) ó ( 2 ó dF / dL Ì 1 ) ˆ 5 ) , b e t a ) ;
nu = 2 ;

end
e l s e

rho = rho / nu ; nu = nu ó 2 ;
end

c a s e 3 % ò Ì T r u s t r e g i o n u p d a t e . See [ 3 ] .
rho1 = 0 . 0 1 ; rho2 = 0 . 1 ; s igma1 = 0 . 5 ; s igma2 = 2 ;
i f dF ò = rho2 ó dL ,

rho = sigma1 ó max ( norm ( d , i n f ) , 1 / s igma2 ó rho ) ;
e l s e

rho = min ( sigma2 ó max ( norm ( d , i n f ) , 1 / s igma2 ó rho ) , 2 ) ;
end

c a s e 4 % ò Ì Enhanced c l a s s i c a l u p d a t e wi th damping .
i f ( dF õ 0 .75 ó dL ) & f l a g ,

rho = 2 . 5 ó min ( rho , norm ( d , i n f ) ) ;
e l s e i f dF ò 0 .25 ó dL

rho = 0 . 5 ó min ( rho , norm ( d , i n f ) ) ;
end

c a s e 5 % ò Ì C l a s s i c a l u p d a t e s t r a t e g y .
i f ( dF õ 0 .75 ó dL ) ,

rho = 2 . 5 ó rho ;
e l s e i f dF ò 0 .25 ó dL

rho = rho / 2 ;
end

c a s e 6 % ò Ì Udate t h a t use s t e p l e n g t h .
i f ( dF õ 0 .75 ó dL ) ,

rho = max ( 2 . 5 ó norm ( d , i n f ) , rho ) ;
e l s e i f dF ò 0 .25 ó dL

rho = 0 . 2 5 ó norm ( d , i n f ) ;
end

o t h e r w i s e
e r r o r ( s p r i n t f ( ’ No t r u s t r e g i o n method %d ’ , t r u s t r e g i o n ) ) ;

end % ò Ì end s w i t c h

i t e r a t i o n s = i t e r a t i o n s + 1 ;

i f i t e r a t i o n s õ = m a x i t e r , s t o p = 1 ;
e l s e i f norm ( d ) ò m i n s t e p , s t o p = 2 ;
e l s e i f dL ò 0 , s t o p = 3 ;
end

i f p r e c i s i o n d e l t a ,
% use t h e p r e c i s i o n s t o p c r i t e r i a .
F x = max ( f e v a l ( fun , x , f p a r ) ) ;
i f ( ( F x Ì p r e c i s i o n f ) / max ( 1 , p r e c i s i o n f ) ò = p r e c i s i o n d e l t a ) ,

s t o p = 4 ;
end

end
end % ò Ì end whi l e .

% s t o r i n g pe r fo rmence p a r a m e t e r s
p e r f . F = F ; p e r f . R = R ; p e r f .X = X ; p e r f . f v a l = f ;
p e r f . m u l t i p l i e r s = lambda . i n e q l i n ;
i n f o ( 1 ) = i t e r a t i o n s ; i n f o ( 2 ) = s t o p ; i n f o ( 3 ) = max ( f ) ;
i n f o ( 4 ) = f c o u n t ;

%Ì�Ì±Ì�Ì�Ì�Ì�Ì±Ì�Ì�Ì�Ì INNER FUNCTIONSÌ�Ì�Ì�Ì�Ì±Ì�Ì�Ì�Ì�Ì±Ì
f u n c t i o n [ v a l u e ] = s e t C h o i s e ( p a r a m e t e r , d e f a u l t , b o o l e a n c h e c k , b o o l s t r i n g )

i f n a r g i n õ 2 & ˜ i sempty ( d e f a u l t ) ,
e r r o r ( ’ Can n o t s e t a d e f a u l t v a l u e f o r a boo lean e x p r e s s i o n ’ ) ;

end

i f n a r g i n ò 3
i f i s empty ( p a r a m e t e r ) ,

v a l u e = d e f a u l t ;
e l s e

v a l u e = p a r a m e t e r ;
end

e l s e
i f i s empty ( p a r a m e t e r ) ,

v a l u e = 0 ;
e l s e

i f s t r cmp ( p a r a m e t e r , ’ on ’ ) ,
v a l u e = 1 ;

e l s e
v a l u e = 0 ;
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end
end

end

i f n a r g i n = = 4 ,
i f v a l u e ,

v a l u e = ’ on ’ ;
e l s e

v a l u e = ’ o f f ’ ;
end

end
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D.2 Source code for CSLP in Matlab
f u n c t i o n [ x , i n f o , p e r f ] = c s l p 4 ( fun , f p a r , x0 , o p t s )
% Usage : [ x , i n f o , p e r f ] = c s l p 4 ( fun , f p a r , x0 , o p t s )
% Minimax s o l v e r t h a t u s e s a c o r r e c t i v e s t e p . To use
% d e f a u l t s e t t i n g s , omi t o p t s from t h e a rgumen t l i s t .
% Thi s a l g o r i t h m i s based on [ 1 ] .
%
% INPUT :
% fun : a s t r i n g wi th a f u n c t i o n name .
% A l l f u n c t i o n s s h o u l d f o l l o w t h i s API
% [ f , J ] = fun ( x , f p a r ) ;
% f p a r : p a r a m e t e r s t o t h e f u n c t i o n , i f any .
% x0 : s t a r t p o i n t .
% o p t s : o p t i o n s .
%
% The o p t i o n s a r e s e t by u s i n g SETPARAMETERS .
% c a l l CSLP wi th no argumen t s t o s e e d e f a u l t v a l u e s .
% rho : S e t t r u s t r e g i o n r a d i u s rho .
% e p s i l o n : T h r e s h o l d f o r a c c e p t i n g new s t e p .
% m a x I t e r : Maximum number of i t e r a t i o n s .
% minStep : I f ïðï s t e p ïñï 2 ò minStep t h e n s t o p .
% t r u s t R e g i o n : choose t r u s t Ì r e g i o n u p d a t e .
% 1 : C l a s s i c a l u p d a t e wi th damping [ 1 ]
% 2 : Con t inous u p d a t e o f t r u s t r e g i o n . See [ 2 ] .
% 3 : T r u s t r e g i o n u p d a t e . See [ 3 ] .
% 4 : Enhanced c l a s s i c a l u p d a t e wi th damping .
% 5 : C l a s s i c a l u p d a t e s t r a t e g y .
% 6 : Udate s t r a t e g y t h a t u s e s t h e s t e p l e n g t h .
% u s e T e n t a t i v e J a c o b i a n : I f ” yes ” use t h e J a c o b i a n a t x+h
% f o r t h e c o r r e c t i v e s t e p .
% p r e c i s i o n D e l t a : S top when a p r e c i s i o n d e l t a i s r e a c h e d .
% p r e c i s i o n F u n : The f u n c t i o n v a l u e a t t h e s o l u t i o n .
%
% o u t p u t :
% x : R e s u l t i n g x .
% i n f o ( 1 ) : number o f i t e r a t i o n s .
% i n f o ( 2 ) : a c t i v e s t o p i n g c r i t e r i o n .
% 1 : Maximum number of i t e r a t i o n s r e a c h e d .
% 2 : Smal l s t e p .
% 3 : dL ò = 0
% : 4 : D e s i r e d p r e c i s i o n r e a c h e d .
% i n f o ( 3 ) : F u n c t i o n v a l u e F ( x ) .
% i n f o ( 4 ) : Number of f u n c t i o n e v a l u a t i o n s .
% i n f o ( 5 ) : Number of a c t i v e s t e p s .
% i n f o ( 6 ) : Number of f a i l e d a c t i v e s t e p s .
% p e r f : C o n t a i n s t h e f o l l o w i n g f i e l d s :
% F : F u n c t i o n e v a l u a t i o n .
% R : T r u s t r e g i o n r a d i u s .
% X : S t e p s .
% f v a l : F u n c t i o n e v a l u a t i o n a t t h e s o l u t i o n .
% m u l t i p l i e r s : M u l t i p l i e r s a t t h e s o l u t i o n .
%
% R e f e r e n c e s
% [ 1 ] : K . J o n a s s o n and K. Madsen , C o r r e c t e d S e q u e n t i a l L i n e a r Programming
% f o r S p a r s e Minimax O p t i m i z a t i o n . BIT 3 4 ( 1 9 9 4 ) , 3 7 2 Ì 3 8 7 .
% [ 2 ] : H . B . N i e l s e n . Damping p a r a m e t e r i n Marquard t ’ s method .
% T e c h n i c a l Reppor t IMMÌ REP Ì 1999 Ì 05. DTU , Kgs . Lyngby .
% [ 3 ] : K . Madsen . Minimax S o l u t i o n of NonÌ l i n e a r E q u a t i o n s w i t h o u t
% c a l c u l a t i n g d e r i v a t i v e s .
%
% Mark Wrobel . proj76@imm . d t u . dk

i f n a r g i n ò 1 ,
f p r i n t f ( ’ rho : [ D e f a u l t = 0 . 1 ó max ( x0 ) ] ô n ’ ) ;
f p r i n t f ( ’ e p s i l o n : [ D e f a u l t = 0 . 0 1 ] ô n ’ ) ;
f p r i n t f ( ’ m a x I t e r : [ D e f a u l t = 1 0 0 ] ô n ’ ) ;
f p r i n t f ( ’ minStep : [ D e f a u l t = 1 e Ì 10 ] ô n ’ ) ;
f p r i n t f ( ’ t r u s t R e g i o n : [ D e f a u l t = 1 ] ô n ’ ) ;
f p r i n t f ( ’ p r e c i s i o n D e l t a : [ D e f a u l t = 0 ] ô n ’ ) ;
f p r i n t f ( ’ p r e c i s i o n F u n : [ D e f a u l t = 0 ] ô n ’ ) ;
f p r i n t f ( ’ d e r i v a t i v e C h e c k : [ D e f a u l t = ” o f f ” ] ô n ’ ) ;
f p r i n t f ( ’ u s e T e n t a t i v e J a c o b i a n : [ D e f a u l t = ” o f f ” ] ô n ’ ) ;
f p r i n t f ( ’ l a r g e s c a l e : [ D e f a u l t = ” o f f ” ] ô n ’ ) ;
r e t u r n

end

i f ˜ e x i s t ( ’ o p t s ’ )
o p t s = s e t p a r a m e t e r s ( ’ empty ’ ) ;

end
i f i s empty ( o p t s )

o p t s = s e t p a r a m e t e r s ( ’ empty ’ ) ;
end

rho = s e t C h o i s e ( o p t s . rho , 0 . 1 ó max ( x0 ) ) ;
e p s i l o n = s e t C h o i s e ( o p t s . e p s i l o n , 0 . 0 1 ) ;
m a x i t e r = s e t C h o i s e ( o p t s . m a x I t e r , 1 0 0 ) ;
m i n s t e p = s e t C h o i s e ( o p t s . minStep , 1 e Ì 10);



108 APPENDIX D. SOURCE CODE

t r u s t r e g i o n = s e t C h o i s e ( o p t s . t r u s t R e g i o n , 1 ) ;
d e r i v a t i v e C h e c k = s e t C h o i s e ( o p t s . d e r i v a t i v e C h e c k , [ ] , 1 ) ;
p r e c i s i o n d e l t a = s e t C h o i s e ( o p t s . p r e c i s i o n D e l t a , 0 ) ;
p r e c i s i o n f = s e t C h o i s e ( o p t s . p r e c i s i o n F u n , 0 ) ;
c o r r s t e p J X = s e t C h o i s e ( o p t s . u s e T e n t a t i v e J a c o b i a n , [ ] , 1 ) ;
l a r g e s c a l e = s e t C h o i s e ( o p t s . l a r g e s c a l e , [ ] , 1 , 1 ) ;

i f d e r i v a t i v e C h e c k ,
% See p . 3 i n ” Checking G r a d i e n t s ” H. B . N i e l s e n IMM 2 1 . 9 . 2 0 0
% Download a t www. imm . d t u . dk / ˜ hbn
[ maxJ , e r r , i ndex ] = c h e c k j a c o b i ( fun , f p a r , x0 , eps ˆ ( 1 / 3 ) ó norm ( x0 ) ) ;
i f abs ( e r r ( 3 ) ) õ 0 . 9 ó abs ( e r r ( 1 ) ) ,

e r r o r ( ’ D e r i v a t i v e check f a i l e d ’ ) ;
end

end

F = [ ] ; R = [ ] ;
f c o u n t = 0 ; s t o p = 0 ; i t e r a t i o n s = 0 ;
a c t i v e s t e p s = 0 ; w a s t e d a c t i v e = 0 ;
f l a g = 1 ; % use f l a g i n s t e a d of g a i n o l d = 2 ó e p s i l o n ;
x = x0 ( : ) ; % e n s u r e s a column v e c t o r
X = x ; % X i s a m a t r i x o f x ’ s

f c o u n t = f c o u n t + 1 ;
[ f , J ] = f e v a l ( fun , x , f p a r ) ;
[m , n ] = s i z e ( J ) ;

wh i l e ˜ s t o p
LB = [ repmat ( Ì rho , n , 1 ) ; Ì i n f ] ; UB = Ì LB ;
% d e f i n i n g c o n s t r a i n t s f o r l i n p r o g ( 2 . 4 )
A = [ J Ì ones (m, 1 ) ] ;
b = Ì f ;

% s o l v e t h e LPÌ problem .
o p t i o n s = o p t i m s e t ( ’ D i s p l a y ’ , ’ o f f ’ , ’ L a r g e S c a l e ’ , l a r g e s c a l e ) ;
[ s , f e v l , e x i t f l , o u t p t , lambda ] = . . .

l i n p r o g ( [ r epmat ( 0 , 1 , n ) 1 ] , A , b , [ ] , [ ] , LB , UB , [ ] , o p t i o n s ) ;
i f e x i t f l ò 0 ,

e r r o r ( ’ l i n p r o g f a i l e d ’ ) ;
end

a l p h a = s ( end ) ; h = s ( 1 : n ) ; d = h ;

x t = x + d ;
f c o u n t = f c o u n t + 1 ;
[ f t J t ] = f e v a l ( fun , x t , f p a r ) ;

FX = max ( f ) ;
dF = FX Ì max ( f t ) ;
dL = FX Ì a l p h a ;

i f ( dL õ = eps ) & ( dF ò = e p s i l o n ó dL ) % ò Ì Take a c o r r e c t i v e s t e p
a c t i v e s t e p s = a c t i v e s t e p s + 1 ;
i f c o r r s t e p J X ,

v = c o r r s t e p ( f t , J t , h , f , J ) ; % ò Ì Use J ( x+h ) ;
e l s e

v = c o r r s t e p ( f t , J , h , f , J ) ; % ò Ì Use J ( x ) ;
end

% a n g l e = acos ( ( h ’ ó v ) / ( norm ( h ) ó norm ( v ) ) ) ;
% i f p i /32 ò abs ( a n g l e Ì p i ) ,

i f ( norm ( v ) ò = 0 .9 ó norm ( h ) ) & ( norm ( v ) õ 0 ) ,
d = h + v ;
d l e n g t h = norm ( d , i n f ) ;
% t r u n c a t i n g t o f i t t r u s t r e g i o n
i f d l e n g t h õ rho ,

d = rho ó d / d l e n g t h ;
end
x t = x + d ;
[ f t J t ] = f e v a l ( fun , x t , f p a r ) ; f c o u n t = f c o u n t + 1 ;
dF = FX Ì max ( f t ) ;

e l s e
w a s t e d a c t i v e = w a s t e d a c t i v e + 1 ;

end
end

% S t o r i n g i n f o r m a t i o n .
F = [ F FX ] ; R = [ R rho ] ; X = [X x ] ;

i f dF õ e p s i l o n ó dL
x = x t ; f = f t ; J = J t ; f l a g = 1 ;

e l s e
f l a g = 0 ;

end
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s w i t c h t r u s t r e g i o n
c a s e 1 % ò Ì C l a s s i c a l u p d a t e wi th damping [ 1 ]

i f ( dF õ 0 .75 ó dL ) & f l a g ,
rho = 2 . 5 ó rho ;

e l s e i f dF ò 0 .25 ó dL
rho = rho / 2 ;

end
c a s e 2 % ò Ì Cont inous u p d a t e o f t r u s t r e g i o n . See [ 2 ] .
gamma = 2 ; b e t a = 2 . 5 ;
i f ( dF õ 0 ) & ( dL õ 0)

i f norm ( d , i n f ) õ 0 . 9 ó rho ,
rho = rho ó min ( max ( 1 / gamma , 1 + ( b e t a Ì 1 ) ó ( 2 ó dF / dL Ì 1 ) ˆ 5 ) , b e t a ) ;
nu = 2 ;

end
e l s e

rho = rho / nu ; nu = nu ó 2 ;
end

c a s e 3 % ò Ì T r u s t r e g i o n u p d a t e . See [ 3 ] .
rho1 = 0 . 0 1 ; rho2 = 0 . 1 ; s igma1 = 0 . 5 ; s igma2 = 2 ;
i f dF ò = rho2 ó dL ,

rho = sigma1 ó max ( norm ( d , i n f ) , 1 / s igma2 ó rho ) ;
e l s e

rho = min ( sigma2 ó max ( norm ( d , i n f ) , 1 / s igma2 ó rho ) , 2 ) ;
end

c a s e 4 % ò Ì Enhanced c l a s s i c a l u p d a t e wi th damping .
i f ( dF õ 0 .75 ó dL ) & f l a g ,

rho = 2 . 5 ó min ( rho , norm ( d , i n f ) ) ;
e l s e i f dF ò 0 .25 ó dL

rho = 0 . 5 ó min ( rho , norm ( d , i n f ) ) ;
end

c a s e 5 % ò Ì C l a s s i c a l u p d a t e s t r a t e g y .
i f ( dF õ 0 .75 ó dL ) ,

rho = 2 . 5 ó rho ;
e l s e i f dF ò 0 .25 ó dL

rho = rho / 2 ;
end

c a s e 6 % ò Ì Udate t h a t use s t e p l e n g t h .
i f ( dF õ 0 .75 ó dL ) ,

rho = max ( 2 . 5 ó norm ( d , i n f ) , rho ) ;
e l s e i f dF ò 0 .25 ó dL

rho = 0 . 2 5 ó norm ( d , i n f ) ;
end

o t h e r w i s e
d i s p ( s p r i n t f ( ’ No t r u s t r e g i o n method %d ’ , t r u s t r e g i o n ) ) ;
b reak ;

end

i t e r a t i o n s = i t e r a t i o n s + 1 ;

i f i t e r a t i o n s õ = m a x i t e r ,
s t o p = 1 ;

e l s e i f norm ( d ) ò m i n s t e p ,
s t o p = 2 ;

e l s e i f dL ò 0 ,
s t o p = 3 ;

end

i f p r e c i s i o n d e l t a , % ò Ì use t h e p r e c i s i o n s t o p c r i t e r i a .
F x = max ( f e v a l ( fun , x , f p a r ) ) ;
i f ( ( F x Ì p r e c i s i o n f ) / max ( 1 , p r e c i s i o n f ) ò = p r e c i s i o n d e l t a ) ,

s t o p = 4 ;
end

end
end % ò Ì end whi l e

% Format ing o u t p u t .
p e r f . F = F ; p e r f . R = R ; p e r f .X = X ; p e r f . f v a l = f ;
p e r f . m u l t i p l i e r s = lambda . i n e q l i n ;
i n f o ( 1 ) = i t e r a t i o n s ; i n f o ( 2 ) = s t o p ; i n f o ( 3 ) = max ( f ) ;
i n f o ( 4 ) = f c o u n t ; i n f o ( 5 ) = a c t i v e s t e p s ;
i n f o ( 6 ) = w a s t e d a c t i v e ;

% ========== a u x i l i a r y f u n c t i o n =================================

f u n c t i o n i = a c t i v e s e t ( f )
%
% Usage : i = a c t i v e s e t ( f )
% Finds t h e a c t i v e s e t .
% I n p u t :
% f : f u n c t i o n e v a l u a t i o n s ( f o r c s l p based on l i n a r i z a t i o n s o f f ) .
% Outpu t :
% i : The a c t i v e s e t .

i = f i n d ( abs ( f Ì max ( f ) ) ò = 1 e Ì 3);

%ÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌ
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f u n c t i o n v = c o r r s t e p ( f , J , h , f l i n , J l i n )
%
% Usage : v = c o r r s t e p ( f , J , h , mode )
% C a l c u l a t e s t h e c o r r e c t i v e s t e p . Now wi th
% p i v o t i n g of t h e J a c o b i a n .
% I n p u t :
% f : F u n c t i o n e v a l u a t i o n s o f a c t i v e f u n c t i o n s .
% J : J a c o b i a n of a c t i v e f u n c t i o n s .
% h : A s t e p h , p roposed by a LPÌ s o l v e r .
% f l i n : Used t o d e t e r m i n a c t i v e f u n c t i o n s i n l i n p r o g .
% J l i n : Used t o d e t e r m i n a c t i v e f u n c t i o n s i n l i n p r o g .
%
% Outpu t :
% v : The c o r r e c t i v e s t e p .

%[m, n ] = s i z e ( J ) ;
i = a c t i v e s e t ( f l i n + J l i n ó h ) ;

A = J ( i , : ) ’ ; b = f ( i ) ;
[ n , m] = s i z e (A ) ;
% need some rank Ì r e v e a l i n g QR (RRQR ) of A t o avo id l i n e a r
% dependen t g r a d i e n t s .
[Q, R , ee ] = qr (A , 0 ) ; E = s p a r s e (m,m ) ; E( ee + ( 0 :m Ì 1) . ó m) = 1 ;
%[Q, R , E ] = qr (A ) ;
b = E ’ ó b ; % ò Ì p i v o t i n g b
A = A ó E ; % ò Ì p i v o t e d v e r s i o n of A.
j = f i n d ( abs ( d i a g (R) ) õ 1 . 0 1 ó n ó eps ); % ò Ì f i n d s m a l l v a l u e s on d i a g o n a l (R ) .
A = A ( : , j ) ;
b = b ( j ) ;

t = l e n g t h ( j ) ; % ò Ì number of l i n e a r i n d e p e n d e n t g r a d i e n t s .

i f ( t ò = 1 ) % ò Ì Nul l s o l u t i o n
v = z e r o s ( s i z e ( h ) ) ;

e l s e
I h = z e r o s ( n + 1 ) ; I h ( 1 : n , 1 : n )= eye ( n ) ;
A h = [ A; Ì ones ( 1 , t ) ] ;
v h = [ I h A h ; A h ’ z e r o s ( t ) ] ô [ z e r o s ( n + 1 , 1 ) ; Ì b ] ;
v = v h ( 1 : n ) ;

end

%ÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌ
f u n c t i o n [ v a l u e ] = s e t C h o i s e ( p a r a m e t e r , d e f a u l t , b o o l e a n c h e c k , b o o l s t r i n g )

i f n a r g i n õ 2 & ˜ i sempty ( d e f a u l t ) ,
e r r o r ( ’ Can n o t s e t a d e f a u l t v a l u e f o r a boo lean e x p r e s s i o n ’ ) ;

end

i f n a r g i n ò 3
i f i s empty ( p a r a m e t e r ) ,

v a l u e = d e f a u l t ;
e l s e

v a l u e = p a r a m e t e r ;
end

e l s e
i f i s empty ( p a r a m e t e r ) ,

v a l u e = 0 ;
e l s e

i f s t r cmp ( p a r a m e t e r , ’ on ’ ) ,
v a l u e = 1 ;

e l s e
v a l u e = 0 ;

end
end

end

i f n a r g i n = = 4 ,
i f v a l u e ,

v a l u e = ’ on ’ ;
e l s e

v a l u e = ’ o f f ’ ;
end

end
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D.3 Source code for SETPARAMETERS in Matlab
f u n c t i o n [ o p t s ] = s e t p a r a m e t e r s ( v a r a r g i n )

%
% Usage : [ o p t s ] = s e t p a r a m e t e r s ( v a r a r g i n )
%
% Takes v a r i a b l e i n p u t on t h e form
% o p t i o n s = s e t p a r a m e t e r s ( ’ param1 ’ , v a l u e 1 , ’ param2 ’ , v a l u e 2 , . . . )
%
% P a r a m e t e r s
%Ì�Ì�Ì±Ì�Ì�Ì�Ì�Ì±Ì�Ì�ÌöÌ�ÌöÌöÌ�ÌöÌöÌ±ÌöÌ�ÌöÌöÌ�ÌöÌöÌ�ÌöÌ�ÌöÌöÌ±ÌöÌöÌ�ÌöÌöÌ�ÌöÌ�ÌöÌöÌ�ÌöÌöÌ±ÌöÌ�ÌöÌöÌ�ÌöÌöÌ�ÌöÌ�ÌöÌöÌ±ÌöÌöÌ�ÌöÌöÌ
% rho Ì T r u s t r e g i o n r a d i u s .
% e p s i l o n Ì i f g a i n f a c t o r õ rho t h e n a s t e p i s a c c e p t e d .
% m a x I t e r Ì Maximum number of i t e r a t i o n s .
% minStep Ì I f a s t e p becomes lower t h a n m i n s t e p , t h e n t h e
% a l g o r i t h m s t o p s .
% u s e S o l v e r Ì
% t r u s t R e g i o n Ì S e t t h e t y p e of t r u s t r e g i o n u p d a t e .
% 1 : Johnasson .
% 2 : H. B . N i e l s e n .
% 3 : K . Madsen .
% 4 : Modi f i ed Johnasson .
% 5 : C l a s s i c a l u p d a t e .
% 6 : Update t h a t i n c o r p o r a t e s t h e s t e p l e n g t h .
% p r e c i s i o n D e l t a Ì The p r e c i s i o n of t h e s o l u t i o n . R e q u i r e s t h a t
% a l s o p r e c i s i o n f u n i s s e t .
% p r e c i s i o n F u n Ì The v a l u e of f u n c t i o n i n t h e s o l u t i o n .
% d e r i v a t i v e C h e c k Ì Check t h e g r a d i e n t s .
% u s e T e n t a t i v e J a c o b i a n Ì Use t h e J a c o b i a n e v a l u a t e d a t X t e n t a t i v e .
% empty Ì r e t u r n s t h e empty s t r u c t .

i f n a r g i n = = 0 ,
f p r i n t f ( ’ rho : [ p o s i t i v e s c a l a r ] ô n ’ ) ;
f p r i n t f ( ’ e p s i l o n : [ p o s i t i v e s c a l a r ] ô n ’ ) ;
f p r i n t f ( ’ m a x I t e r : [ p o s i t i v e i n t e g e r ] ô n ’ ) ;
f p r i n t f ( ’ minStep : [ p o s i t i v e s c a l a r ] ô n ’ ) ;
f p r i n t f ( ’ t r u s t R e g i o n : [ p o s i t i v e i n t e g e r ] ô n ’ ) ;
f p r i n t f ( ’ p r e c i s i o n D e l t a : [ p o s i t i v e s c a l a r ] ô n ’ ) ;
f p r i n t f ( ’ p r e c i s i o n F u n : [ p o s i t i v e s c a l a r ] ô n ’ ) ;
f p r i n t f ( ’ d e r i v a t i v e C h e c k : [ on ï o f f ] ô n ’ ) ;
f p r i n t f ( ’ u s e T e n t a t i v e J a c o b i a n : [ on ï o f f ] ô n ’ ) ;
f p r i n t f ( ’ l a r g e s c a l e : [ on ï o f f ] ô n ’ ) ;
r e t u r n

end

% C r e a t e s t r u c t .
o p t s = s t r u c t ( ’ rho ’ , [ ] , . . .

’ e p s i l o n ’ , [ ] , . . .
’ m a x I t e r ’ , [ ] , . . .
’ minStep ’ , [ ] , . . .
’ t r u s t R e g i o n ’ , [ ] , . . .
’ p r e c i s i o n D e l t a ’ , [ ] , . . .
’ p r e c i s i o n F u n ’ , [ ] , . . .
’ d e r i v a t i v e C h e c k ’ , [ ] , . . .
’ u s e T e n t a t i v e J a c o b i a n ’ , [ ] , . . .
’ l a r g e s c a l e ’ , [ ] ) ;

i f ˜ s t r cmp ( lower ( c h a r ( v a r a r g i n ( 1 ) ) ) , ’ empty ’ ) ,
% Check i n p u t , a s s i n g v a l u e s .
numargs = n a r g i n ;
i f mod ( numargs , 2 ) ,

e r r o r ( ’ Arguments must come i n p a i r s ’ ) ;
end

f o r i = 1 : 2 : numargs ,
p a r a m e t e r = lower ( c h a r ( v a r a r g i n ( i ) ) ) ;
v a l u e = c e l l 2 m a t ( v a r a r g i n ( i + 1 ) ) ;
i f ˜ i s c h a r ( p a r a m e t e r ) , e r r o r ( ’ P a r a m e t e r i s n o t a s t r i n g ’ ) ; end
t r y

s w i t c h p a r a m e t e r ,
c a s e ’ rho ’

v a l u e = c h e c k S c a l a r ( p a r a m e t e r , v a l u e ) ;
o p t s . rho = v a l u e ;

c a s e ’ e p s i l o n ’
v a l u e = c h e c k S c a l a r ( p a r a m e t e r , v a l u e ) ;
o p t s . e p s i l o n = v a l u e ;

c a s e ’ m a x i t e r ’
v a l u e = c h e c k I n t e g e r ( p a r a m e t e r , v a l u e ) ;
o p t s . m a x I t e r = v a l u e ;

c a s e ’ mins t ep ’
v a l u e = c h e c k S c a l a r ( p a r a m e t e r , v a l u e ) ;
o p t s . minStep = v a l u e ;
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c a s e ’ t r u s t r e g i o n ’
v a l u e = c h e c k S c a l a r ( p a r a m e t e r , v a l u e ) ;
o p t s . t r u s t R e g i o n = v a l u e ;

c a s e ’ p r e c i s i o n d e l t a ’
v a l u e = c h e c k S c a l a r ( p a r a m e t e r , v a l u e ) ;
o p t s . p r e c i s i o n D e l t a = v a l u e ;

c a s e ’ p r e c i s i o n f u n ’
v a l u e = c h e c k S c a l a r ( p a r a m e t e r , v a l u e ) ;
o p t s . p r e c i s i o n F u n = v a l u e ;

c a s e ’ d e r i v a t i v e c h e c k ’
v a l u e = checkYesNo ( p a r a m e t e r , v a l u e ) ;
o p t s . d e r i v a t i v e C h e c k = lower ( v a l u e ) ;

c a s e ’ u s e t e n t a t i v e j a c o b i a n ’
v a l u e = checkYesNo ( p a r a m e t e r , v a l u e ) ;
o p t s . u s e T e n t a t i v e J a c o b i a n = lower ( v a l u e ) ;

c a s e ’ l a r g e s c a l e ’
v a l u e = checkYesNo ( p a r a m e t e r , v a l u e ) ;
o p t s . l a r g e s c a l e = lower ( v a l u e ) ;

c a s e ’ empty ’
% r e t u r n t h e empty s t r u c t .

o t h e r w i s e
e r r o r ( s p r i n t f ( ’ Unrecogn ized p a r a m e t e r : % s ’ , p a r a m e t e r ) ) ;

end % ò Ì end s w i t c h
c a t c h

e r r o r ( s p r i n t f ( ’ An e r r o r a c c u r e d : % s ’ , l a s t e r r ) ) ;
end

end
end

i f ˜ i s empty ( o p t s . p r e c i s i o n D e l t a ) ï ˜ i s empty ( o p t s . p r e c i s i o n F u n ) ,
f l a g = 0 ;
i f i s empty ( o p t s . p r e c i s i o n D e l t a ) ,

f l a g = 1 ;
e l s e i f i s empty ( o p t s . p r e c i s i o n F u n ) ,

f l a g = 1 ;
end
i f f l a g ,

e r r o r ( ’ p r e c i s i o n F u n and p r e c i s i o n D e l t a must bo th be s e t ’ ) ;
end

end

%Ì�Ì�Ì±Ì�Ì�Ì�Ì�Ì INNER FUNCTIONSÌ±Ì�Ì�Ì�Ì�Ì±Ì�Ì�Ì�Ì�Ì±Ì�ÌöÌ
f u n c t i o n [ v a l u e ] = c h e c k S c a l a r ( p a r a m e t e r , v a l u e )
i f ˜ i s r e a l ( v a l u e ) ï i s c h a r ( v a l u e ) ,

e r r o r ( s p r i n t f (’% s Ì i s n o t a s c a l a r ’ , p a r a m e t e r ) ) ;
end

f u n c t i o n [ v a l u e ] = c h e c k I n t e g e r ( p a r a m e t e r , v a l u e )
i f ˜ i s r e a l ( v a l u e ) ï i s c h a r ( v a l u e ) ,

e r r o r ( s p r i n t f (’% s Ì i s n o t a s c a l a r ’ , p a r a m e t e r ) ) ;
e l s e i f ( v a l u e Ì f l o o r ( v a l u e ) ) õ 0 ,

e r r o r ( s p r i n t f (’% s Ì i s n o t an i n t e g e r ’ , p a r a m e t e r ) ) ;
end

f u n c t i o n [ v a l u e ] = checkYesNo ( p a r a m e t e r , v a l u e )
i f ˜ i s c h a r ( v a l u e ) ,

e r r o r ( s p r i n t f (’% s Ì i s n o t a s t r i n g ’ , p a r a m e t e r ) ) ;
e l s e i f ˜ s t r cmp ( ’ o f f ’ , l ower ( v a l u e ) ) & ˜ s t r cmp ( ’ on ’ , lower ( v a l u e ) ) ,

e r r o r ( s p r i n t f (’% s Ì ”% s ” i s n o t a v a l i d o p t i o n ’ , p a r a m e t e r , v a l u e ) ) ;
end
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D.4 Source code for CMINIMAX in Matlab
f u n c t i o n [ x , e x i t f l a g , i n f o ] = cminimax ( fun , x ,A , b , Aeq , beq , . . .

non lcon , o p t s , f p a r )
% C o n s t r a i n e d minimax s o l v e r . Uses an e x a c t p e n a l t y f u n c t i o n .
% x = cminimax ( fun , x0 ,A, b )
% INPUT :
% non lcon : F u n c t i o n t h a t r e t u r n s t h e n o n l i n e a r c o n s t r a i n t s .
%

i f n a r g i n ò 1 ,
% d i s p l a y d e f a u l t v a l u e s .
c s l p 4 ;
r e t u r n

end

i f ˜ e x i s t ( ’ f p a r ’ ) , f p a r = [ ] ; end
i f ˜ e x i s t ( ’A ’ ) , A= [ ] ; end
i f ˜ e x i s t ( ’ b ’ ) , b = [ ] ; end
i f ˜ e x i s t ( ’ Aeq ’ ) , Aeq = [ ] ; end
i f ˜ e x i s t ( ’ beq ’ ) , beq = [ ] ; end
i f ˜ e x i s t ( ’ non lcon ’ ) , non lcon = [ ] ; end

x = x ( : ) ;
s igma = 0 . 1 ;

% g e t u n c o n s t r a i n e d s i z e o f problem .
f = f e v a l ( fun , x , f p a r ) ; n = l e n g t h ( f ) ;
u n c o n s t r m u l t i p l i e r s = z e r o s ( 1 , n ) ;

wh i l e max ( u n c o n s t r m u l t i p l i e r s ) ò eps ,
i n t e r n = i n t e r n O p t s ( fun , f p a r , s igma ,A, b , Aeq , beq , non lcon ) ;
[ x , i n f o , p e r f ] = c s l p 4 ( @pena l tyFunc t ion , i n t e r n , x ) ;
u n c o n s t r m u l t i p l i e r s = p e r f . m u l t i p l i e r s ( 1 : n ) ;
s igma = sigma + 0 . 1 ;

end

%Ì±Ì±Ì�Ì±Ì�Ì±Ì±Ì�Ì±Ì�Ì±Ì±Ì�Ì±Ì�Ì INNER FUNCTIONS Ì�Ì�Ì�Ì�Ì�Ì�Ì�Ì�Ì±Ì�Ì�Ì�Ì
f u n c t i o n [ f , J ] = p e n a l t y F u n c t i o n ( x , i n t e r n )

fun = i n t e r n . fun ;
f p a r = i n t e r n . f p a r ;
A = i n t e r n .A;
b = i n t e r n . b ;
Aeq = i n t e r n . Aeq ;
beq = i n t e r n . beq ;
s igma = i n t e r n . s igma ;
non lcon = i n t e r n . non lcon ;

[ f u n f , f u n J ] = f e v a l ( fun , x , f p a r ) ;
[m, n ] = s i z e ( f u n J ) ;

f c o n t a i n e r = [ ] ;
J c o n t a i n e r = [ ] ;

% E q u a l i t y c o n s t r a i n t s
i f ˜ i s empty (A) & ˜ i sempty ( b )

b = A ó x Ì b ;
p = l e n g t h ( b ) ;
c = repmat ( b , 1 , m ) ; c = c ’ ;
f c o n t a i n e r = [ f c o n t a i n e r ; r epmat ( f u n f , p , 1 ) + sigma ó c ( : ) ] ;
A = repmat (A , 1 , m) ’ ;
A = r e s h a p e (A , n , mó p ) ’ ;
J c o n t a i n e r = [ J c o n t a i n e r ; r epmat ( f u n J , p , 1 ) + sigma ó A ] ;

e l s e
i f ˜ i s empty (A ) ï ˜ i s empty ( b )

e r r o r ( ’ Both A and b has t o be g iven ’ ) ;
end

end

% E q u a l i t y c o n s t r a i n t s .
i f ˜ i s empty ( Aeq ) & ˜ i sempty ( beq )

Aeq = [ Aeq ; Ì Aeq ] ; beq = [ beq ; Ì beq ]; % ò Ì Double t h e c o n s t r a i n t s .
beq = Aeq ó x Ì beq ;
p = l e n g t h ( beq ) ;
c = repmat ( beq , 1 , m ) ; c = c ’ ;
f c o n t a i n e r = [ f c o n t a i n e r ; r epmat ( f u n f , p , 1 ) + sigma ó c ( : ) ] ;
Aeq = repmat ( Aeq , 1 , m) ’ ;
Aeq = r e s h a p e ( Aeq , n , m ó p ) ’ ;
J c o n t a i n e r = [ J c o n t a i n e r ; r epmat ( f u n J , p , 1 ) + sigma ó Aeq ] ;

e l s e
i f ˜ i s empty ( Aeq ) ï ˜ i s empty ( beq )

e r r o r ( ’ Both Aeq and beq has t o be g iven ’ ) ;
end

end

% N o n l i n e a r c o n s t r a i n t s .
i f i s a ( non lcon , ’ f u n c t i o n h a n d l e ’ ) ï i s a ( non lcon , ’ c h a r ’ ) ,
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[ f u n c , fun A ] = f e v a l ( non lcon , x ) ;
c = repmat ( f u n c , 1 , m ) ; c = c ’ ;
f c o n t a i n e r = [ f c o n t a i n e r ; r epmat ( f u n f , p , 1 ) + sigma ó c ( : ) ] ;
A = repmat ( fun A , 1 , m) ’ ;
A = r e s h a p e (A , n , m ó p ) ’ ;
J c o n t a i n e r = [ J c o n t a i n e r ; r epmat ( f u n J , p , 1 ) + K ó A ] ;

e l s e
i f ˜ i s empty ( non lcon ) ,

e r r o r ( ’ non lcon i s n o t a f u n c t i o n h a n d l e nor a s t r i n g ’ ) ;
end

end

% Upper and lower bound .
% Not implemen ted y e t .

% Add t h e c o n t a i n e r s wi th t h e f u n c t i o n .
f = [ f u n f ; f c o n t a i n e r ] ;
J = [ f u n J ; J c o n t a i n e r ] ;

%ÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌ
f u n c t i o n [ sigma ] = ge tS igma ( PF , c )
% [ sigma ] = ge tS igma ( PF , c )
% C a l c u l a t e t h e sigma t h a t t r i g g e r s a s h i f t t o a
% new s t a t i o n a r y p o i n t .
%
% INPUT :
% PF : The g e n e r a l i z e d g r a d i e n t o f F .
% C : The g r a d i e n t o f C . I f more t h a n one
% c o n s t r a i n t i s a c t i v e t h e n j u s t chose
% one .
% OUTPUT:
% sigma : The p e n a l t y f a c t o r .

% Not implemen ted y e t .

%ÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌöÌ
f u n c t i o n [ i n t e r n ] = i n t e r n O p t s ( fun , f p a r , s igma ,A, b , Aeq , beq , non lcon )

% C r e a t e s t r u c t .
i n t e r n = s t r u c t ( ’ fun ’ , [ ] , ’ f p a r ’ , [ ] , ’ s igma ’ , [ ] , ’ A ’ , [ ] , ’ b ’ , [ ] , . . .

’ Aeq ’ , [ ] , ’ beq ’ , [ ] , ’ non lcon ’ , [ ] ) ;

i n t e r n . fun = fun ;
i n t e r n . f p a r = f p a r ;
i n t e r n . s igma = sigma ;
i n t e r n .A = A;
i n t e r n . b = b ;
i n t e r n . Aeq = Aeq ;
i n t e r n . beq = beq ;
i n t e r n . non lcon = non lcon ;
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