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ABSTRACT

In this paper we derive an independent-component
analysis (ICA) method for analyzing two or more data
sets simultaneously.  Our model permits there to be
components individual to the various data sets, and
others that are common to all the sets.  We explore the
assumed time autocorrelation of independent signal
components and base our algorithm on prediction
analysis. We illustrate the algorithm using a simple image
separation example.   Our aim is to apply this method to
functional brain mapping using functional magnetic
resonance imaging (fMRI).

1. INTRODUCTION

There are several approaches to the problem of blind
separation of linear signal mixtures. Some of them are
based on non-Gaussianity [1, 3]  while others exploit
temporal correlations [2, 5]. The technique of Molgedey
and Schuster [5] is especially attractive since it offers a
non-iterative solution. The limitations of the original
algorithm, such as restriction to square non-singular
mixing matrices and inherent erroneous complex-valued
results, were eliminated in [4].

In this paper, we extend the Molgedey-Schuster ICA
method to analyze more than one data set simultaneously.
There are many potential applications for simultaneous
independent-component analysis (ICA) of multiple data
sets.  For example, one might simultaneously analyze the
audio and video portions of a video sequence.

Our interest is in developing methods to analyze
functional magnetic resonance images (fMRI) of the
brain, to map spatial and temporal patterns of brain
activation.  In this application, the data can be divided
into multiple data sets by considering different subjects
separately, or by considering image data separately from
other measurements made during the fMRI study (e.g.,
reaction time of the subject).

2. EXTENDED BLIND SIGNAL SEPARATION
PROBLEM

In the classical blind signal separation problem it is
assumed that there are N independent source signals in
matrix S observed through a mixing matrix A, i.e.,

X AS= , (1)

to obtain a matrix of observations X. The goal in this
classical ICA problem is to recover the sources in S and
the mixing matrix A without any prior knowledge except
the assumption of independence of the sources in S.

To analyze two data sets X and Y simultaneously, we
could lump them together into one matrix, and use the
model in (1); however, this would force the description of
the two matrix to be based on the same set of sources.  To
allow the two data sets to have some common
components, and other distinct components, we propose
the following model:
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where X and Y are two sets of observations; Sx
 and Sy

are independent sources specific to X and Y, respectively;
T is a matrix of K independent sources common to both X
and Y; xA , yA , xB , and yB  are mixing matrices.  The

numbers of observations in X and Y are L and P,
respectively; the numbers of sources in Sx

 and Sy
 are M

and N, respectively.   In this paper, we discuss the
algorithm in terms of only two data sets, but it is easily
extended to more than two.

3. MIXING MATRICES AS EIGENVECTOR
MATRICES

In this section we show that the mixing matrices in this
ICA problem can be obtained as eigenvectors of linear
minimum mean-square error (LMMSE) prediction
matrices.

Assuming the independent signals have non-
vanishing time autocorrelation functions we suppose
there is a LMMSE prediction matrix W such that:
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where τX and τY  are delayed versions of X and Y
respectively. By combining (2) and (3) we can write:
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where we have divided the matrix W into four blocks
Wxx

, Wxy
, Wyx

 and Wyy
; Sxτ

, Syτ
 and Tτ  are delayed

versions of Sx
, Sy

 and T , respectively.

Right multiplying (4) by Sx
T yields:
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Because the sources in Sx
, Sy

 and T  are independent,

S Sy xτ
T = 0, S Sy x

T = 0 , T Sτ x
T = 0 and TSx

T = 0. Thus,  (5)

becomes:
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where C S Sx x xτ τ0 5 = T  and C S Sx x x00 5 = T . The first row of

(6) yields

W A A C Cxx x x x x= −τ0 5 0 50 1 (7)

which is an eigenvector equation for Wxx
 since

C Cx xτ0 5 0 50 1−  is diagonal.  The second row of (6) yields

0 = W Ayx x
(8)

since Cx 00 5  is a full rank positive diagonal matrix.

Similarly, by right-multiplying (4) by Sy
T we obtain:

0 0= W A Cxy y y0 5 (9)

W A A C Cyy y y y y= −τ0 5 0 50 1 (10)

Finally, after right multiplying (4) by TT  we obtain:
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or, rearranging,
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Equations (7), (10), and (12) are eigenvector
equations that provide a recipe for identifying the various
mixing matrices as eigenvectors of prediction matrices.

4. THE ALGORITHM

We divide the algorithm in two parts. First, we estimate
the prediction matrix W and then we use it to estimate
mixing matrices and independent sources. It is well
known [6] that the LMMSE prediction matrix is:

$ $ $W R RXY XYτ τ0 5 0 5 0 5= −0 1, (13)

where $RXY 00 5  is an estimate of the autocorrelation
function at lag 0,
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and $RXY τ0 5  is an estimate of the autocorrelation function
at lag τ ,

$R
X

Y
X Y

X

Y
X YXY τ τ

τ
τ τ0 5 = �

! 
"
$# + �

! 
"
$#

�
��

�
��

1

2
T T T T (15)

where Xτ and Yτ  are cyclic permutations by τ steps, i.e.

Xτ τ= +x n T0 51 6= B, x k0 5  denotes the kth column of X and

⋅0 5T  denotes the argument modulo T. Equation (15)

guarantees that $RXY τ0 5  is symmetric.  Consider the
singular value decompositions (SVDs):
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where eigenvector matrices contain only components
whose corresponding eigenvectors are nonzero. Since
XX X XT T= τ τ  it follows that U Uτ =  and D Dτ = . Then:

(18)

We will estimate $Was the average of $W τ0 5 over a set of

values for τ:
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where t is the number of different values of τ  we want to
average over and τ j j t, = 1K  are those values. We are

now ready to outline the algorithm:
PART I: Calculating prediction matrix $W
Step 1: Perform the SVD in (16), keep only the
components whose eigenvalues are nonzero.
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∑ τ τj j

j
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Step 3: Calculate $W UDKD U= −1

2
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PART II: Estimating mixing matrices
Step 1: Estimate $A x

 by selecting only the eigenvectors of

Wxx
 satisfying (8) and having corresponding nonzero

eigenvalues. Denote the number of such eigenvectors
(columns of $A x

) by N.

Step 2: Estimate $A y
 by selecting only the eigenvectors of

Wyy
 satisfying (9) and having corresponding nonzero

eigenvalues. Denote the number of such eigenvectors
(columns of $A y

) by M.

Step 3: Estimate $ $ $B B B= x
T

y
T

T
 as the matrix of K

eigenvectors of W corresponding to the K largest



eigenvalues of W where:

K rank N MT T= − −X Y3 8 (20)

PART III: Estimating independent sources
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Step 2: Calculate:

$
$

$
$

$ $
$
$

S

T

A

B
A B

A

B
Yy

y

y

y
y y

y

y

�
!
  

"
$
## =

�
!
  

"
$
##

�
��

�
��

�
!
  

"
$
##

−
T

T

T

T

1

 (22)

Step 3: Calculate $
$ $
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+x y

2
, since $Tx

 and $Ty
 should be

the same.

5. RESULTS

At this writing, we have nearly completed a
demonstration of the method using fMRI data; however,
the results are too preliminary to report and the
submission deadline is upon us.  We plan to have the
analysis complete by the time of the conference.

In the meantime, to illustrate the algorithm simply we
extend the toy example given in [4]. The top row of Fig. 1
shows the four image components used to produce the
data set in the bottom row:
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Figure 1. Top row shows four independent  image components used to produce the images in the bottom row. Bottom
row shows two sets of mixtures X and Y of the four components with white Gaussian noise added. The first two components appear
only in the mixture X, the third one is common to both while the last one is specific to Y only
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Figure 2. Results of the proposed algorithm applied to the X and Y mixtures shown in the bottom row of Fig.
1. In this reconstructed set of independent components the first two changed places. Also, the first, second and forth
components are inverted compared to the original set.



where x i i, = 1 3K  and yi i, = 1 2K  are two observed sets,

s s t sx x y11 2 1, , ,  are four independent image components and

N is the matrix of zero-mean Gaussian white noise with

variance σ n
2 0 3= .  The results of our algorithm are

shown in Fig. 2. The estimated mixing matrices are:
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Comparing the original independent sources from
Fig. 2 and those produced by the algorithm it can be seen
that $sx1

 is the inverted and scaled version of sx2
,  $sx2

 is the
inverted and scaled version of sx1

, and that $sy1
 is the

inverted version of sy1
. We can write:
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where the estimated mixing matrices are closer to the
originals. This illustrates that the algorithm recovers the
independent sources up to a scale and permutation, as
expected.

6. DISCUSSION

The algorithm presented while simple in theory might be
difficult to implement especially in the presence of noise.
The condition crucial to determining the number of
independent components in Sx is (8). Due to the presence
of noise and an error made by the prediction none of the
columns in the product will be exactly zero. To overcome
the problem we set the following threshold and took only
the columns that satisfy:
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where Ex
 is the eigen vector matrix of Wxx

. This means
that we took the absolute value of W Eyx x

, calculated the

sum of elements in each column, normalized by dividing
by the overall sum of elements, and thresholded the
resulting score. We repeated the same procedure to
estimate Ay

.

Another important fact is that (20) does not hold in
the presence of white noise so principal component
analysis (PCA) is required as a preprocessing step, a
method proven successful in [1]. In this example we first
smoothed the data by performing the PCA on pooled data
set X YT T  and eliminating the principal components

whose eigenvectors do not satisfy:
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where hi  is the ith eigen value and n2  is number  of pixels

in each image.  To demonstrate the robustness of the
algorithm to the noise we repeated the experiment with
higher noise level, σ n

2 1= , and obtained the estimates of

mixing matrices similar to those in (25).

7. CONCLUSIONS

In this paper we extended the blind source separation
problem and presented an ICA algorithm based on non-
vanishing source autocorrelation functions for solving it.
We assumed that there are more than one set of
observations and that independent sources can be
common to all observations or specific to some
observations only. The algorithm developed is an
extension of the original Molgedey-Schuster algorithm
and is capable of distinguishing between the independent
components  specific to particular observations and those
common to all of them. It is very robust to the amount of
white noise added although PCA is required as a
preprocessing step. It can easily be extended to the case
when there are more than two sets of observations, each
containing a mixture of components common to all
observations and components specific to the particular
sets only.
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