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Abstract

The adaptive TAP Gibbs free energy for a general densely connected
probabilistic model with qaudratic interactions and arbritary single site
constraints is derived. We show how a specific sequential minimization
of the free energy leads to a generalization of Minka’s expectation propa-
gation. Lastly, we derive a sparse representation version of the sequential
algorithm. The usefulness of the approach is demonstrated on classifica-
tion and density estimation with Gaussian processes and on an indepen-
dent component analysis problem.

1 Introduction

There is an increasing interest in methods for approximate inference in probabilistic (graph-
ical) models. Such approximations may usually be grouped in three classes. In the first case
we approximateself-consistency relationsfor marginal probabilities by a set of nonlinear
equations. Mean field (MF) approximations and their advanced extensions belong to this
group. However, it is not clear, how to solve these equations efficiently. This latter prob-
lem is of central concern to the second class, theMessage passing algorithms, like Bayesian
online approaches (for references, see e.g. [1]) and belief propagation (BP) which dynami-
cally update approximations to conditional probabilities. Finally, approximations based on
Free Energiesallow us to derive marginal moments by a minimising entropic loss measures.
This method introduces new possibilities for algorithms and also gives approximations for
the log-likelihood of observed data. Thevariational methodis the most prominent member
of this group.

One can gain important insight into an approximation, when it can be derived by different
approaches. Recently, the fixed points of the BP algorithm were identified as the stable min-
ima of theBetheFree Energy, an insight which led to improved approximation schemes [2].
While BP is good and efficient on sparse tree-like structures, one may look for an approxi-



mation that works well in the opposite limit of densely connected graphs where individual
dependencies are weak but their overall effect cannot be neglected. A interesting candi-
date is the adaptive TAP (ADATAP) approach introduced in [3] as a set of self-consistency
relations. Recently, a message passing algorithm of Minka (termedexpectation propaga-
tion) [1] was found to solve the ADATAP equations efficiently for models with Gaussian
Process (GP) priors.

The goal of this paper is three-fold. We will add a further derivation of ADATAP using
an approximate free energy. A sequential algorithm for minimising the free energy gener-
alises Minka’s result. Finally, we discuss how a sparse representation of ADATAP can be
achieved for GP models, thereby extending previous sparse on-line approximations to the
batch case [4].

We will specialize to probabilistic models on undirected graphs with nodesi that are of the
type

Pρ(S) =
ρ(S)
Z

exp

∑
i<j

SiJijSj

 (1)

The set of Jij ’s encodes the dependencies between the random variablesS =
(S1, . . . , SN ), whereas the factorising termρ(S) =

∏
j ρj(Sj) (called likelihood in the

following) usually encodes observed data at sitesi and also incorporates all local con-
straints of theSi (the range, discreteness, etc). Eq. (1) is a sufficiently rich and interesting
class of models containing Boltzmann machines, models with Gaussian process priors [3],
probabilistic independent component analysis [5] as well as Bayes belief networks and
probabilistic neural networks (when the space of variables is augmented by auxiliary inte-
gration variables).

2 ADATAP approach from Gibbs Free Energy

We use the minimization of an approximation to aGibbs Free EnergyG in order to re-
derive the ADATAP approximation.

The Gibbs Free Energy provides a method for computing marginal moments ofP as well
as of− lnZ within the same approach. It is defined by a constrained relative entropy
minimization which is, for the present problem defined as

Gρ(m,M) = min
Q

{
KL(Q,Pρ) | 〈S〉Q = m, 〈S2〉Q = M

}
− lnZ , (2)

where the brackets denote expectations with respect to the distributionQ and 〈S2〉Q
is shorthand for a vector with elements〈S2

i 〉Q. Since at the total minimum ofG
(with respect to its arguments) the minimizer in (2) is justQ = Pρ, we conclude that
minm,MG(m,M) = − lnZ and the desired marginal moments ofP are(〈S〉, 〈S2〉) =
argminm,MG(m).

We will search for an approximation toGρ which is based on splittingGρ = G0
ρ + ∆Gρ,

whereG0 is the Gibbs free energy for a factorising model that is obtained from (1) by
setting allJij = 0. Previous attempts [6, 7] were based on a truncation of the power series
expansion of∆Gρ with respect to theJij at second order. While this truncation leads to the
correct TAP equations for the largeN limit of so-called SK-model in statistical physics, its
general significance is unclear. In fact, it willnot be exactfor asimplemodel withGaussian
likelihood. To make our approximation exact for such a case, we define (generalizing
an idea of [8]) for anarbitrary Gaussianlikelihood ρgi ∆Gg(m,M) .= Gρg (m,M) −
G0
ρg (m). The main reason for this definition is the fact that∆Gg(m,M) is independent of

the actual Gaussian likelihoodρgi chosen to computeGρ! This result depends crucially on



the moment constraints in (2). Changes in a Gaussian likelihood can always be absorbed
within the Lagrange-multipliers for the constraints. We use thisuniversalform ∆Gg to
define The ADATAP approximation asGTAPρ = G0

ρ + ∆Gg, which by construction is
exact for any Gaussian likelihoodρ. Introducing appropriate Lagrange multipliersγ and
λ, we get

∆Gg(m,M) = max
λ,γ

{
− lnZg(γ,λ) + mTγ − 1

2
MTλ

}
− 1

2

∑
i

ln
(
Mi −m2

i

)
(3)

with Zg(γ,λ) =
∫
dS exp

[∑
i(γiSi −

1
2λiS

2
i ) +

∑
i<j SiJijSj

]
. Finally, setting

Z0
i (γ0

i , λ
0
i ) =

∫
dSρi(S) exp[γ0

i S − 1
2λ

0
iS

2], we have

G0 = max
λ0

,γ0

{
−
∑
i

lnZ0
i (γ0

i , λ
0
i ) + mTγ0 − 1

2
MTλ0

}
. (4)

3 Sequential Algorithm

The expression ofGTAPρ in terms of moments(m,M) and Lagrange parametersγ,λ
andγ0,λ0 suggests that we may find local minima ofGTAPρ by iteratively alternating
between updates of moments and Lagrange multipliers. Of special interest is the following
sequential algorithm, which is a generalization of Minka’s EP [1] for Gaussian process
classification to an arbritary model of the type eq. (1).

We choose a sitei and define the updates by using the saddle points ofGρ with respect
to the moments and Lagrange multipliers in the following sequential order (whereΛ is a
diagonal matrix with elementsλi):

∂γi,λiGρ = 0 ⇒ mi :=
∑
j

[
(Λ− J)−1

]
ij
γj & Mi −m2

i :=
[
(Λ− J)−1

]
ii

∂mi,MiGρ = 0 ⇒ γ0
i := −γi + mi

Mi−m2
i

& λ0
i := −λi − 1

Mi−m2
i

∂γ0
i ,λ

0
i
Gρ = 0 ⇒ mi := ∂γ0

i
lnZ0

i & Mi := −2∂λ0
i

lnZ0
i

∂mi,MiGρ = 0 ⇒ γi := −γ0
i + mi

Mi−m2
i

& λi := −λ0
i − 1

Mi−m2
i

.

The algorithm proceeds then by choosing a new site. The computation of(Λ − J)−1 can
be performed efficiently using the Sherman-Woodbury formula becauseonly one element
λi is changed in each update.

3.1 Cavity interpretation

At the fixed point, we may takePi(S) ≡ ρi(S)
Zi

exp[γ0
i S− 1

2λ
0
iS

2] as the ADATAP approx-
imation to the true marginal distribution ofSi [3]. The sequential approach may thus be
considered as a belief propagation algorithm for ADATAP.

AlthoughPi is usually not Gaussian, we can also derive the momentsm andM from the
Gaussian distribution corresponding toZg. This auxiliary Gaussian modelP g(S) has a
likelihood ρgi (S) ∝ exp[− 1

2λiS
2 + γiS] and provides us also with an additional approxi-

mation to the matrix of covariances viaχ = (Λ− J)−1. This is useful when the coupling
matrix J must be adapted to a set of observations by maximum likelihood II. We will give
an example of this for independent component analysis below.

It is important to understand the role ofγ0 andλ0 within the ‘cavity’ approach to the
TAP equations. Defininghi =

∑
j JijSj , it is easy to show thatγ0

i = 〈hi〉\i andλ0
i =

〈h2
i 〉\i−〈hi〉2\i where the brackets denote an expectation with respect to the distribution of



all remaining variablesP g(S\Si) ∝
∏
j,j 6=i ρ

g
j (Sj) exp[

∑
k<l 6=i JklSkSl] when nodei is

deleted from the graph. This statistics ofhi corresponds to the empty ”cavity” at sitei. The
marginal distributionPi(S) as computed by ADATAP is equivalent to the approximation
that the cavity distribution is Gaussian.

4 Examples

4.1 Models with Gaussian Process Priors

For this class of models, we assume that the graph is embedded inRD, where the vector
S is the restriction of a Gaussian process (random field)φ(x) with x ∈ RD, to a set of
training inputs viaSi = φ(xi). P (S) is the posterior distribution corresponding to a local
likelihood model, when we setJ = −K−1 and the matrixK is obtained from a positive
definite covariance kernel asKij = K0(xi,xj).

Our ADATAP approximation can be extended from the finite set of inputs to the entire
spaceRD by extending the auxiliary Gaussian distributionP g with its likelihoodsρgi (S) to
a Gaussian process with mean〈φ(x)〉 and covariance kernelKt(x,x′) which approximates
the posterior process. A calculation similar to [4] leads to the representation

〈φ(x)〉 =
∑
j

K0(x,xj)γj (5)

Kt(x,x′) = K0(x,x′) +
∑
j,k

K0(x,xj)χjkK0(xk,x′) (6)

Algorithms for the update ofγ’s andχ’s will usually suffer from time consuming matrix
multiplications whenN is large. This common problem for GP models can be overcome
by a sparsityapproximation which extends previous on-line approaches [4] to the batch
ADATAP approach. The idea is to replace the current versionP g of the approximate Gaus-
sian with a further approximation̂P g for which both the the correspondinĝγj as well as
χ̂jk are nonzero only, when the nodesj andk belong to a smaller subset of nodes called
”basis vectors” (BV) of sizen [4]. For fixed BV set, the parameters ofP̂ g are determined
by minimizing the relative entropyKL(P̂ g, P g). This yieldsγ̂ = πγ andΛ̂ = πΛπT

with then × N projection matrixπ = K−1
BV K+. HereK is the kernel matrix between

BVs and andK+ the kernel matrix between BVs and all nodes. The new distributionP̂ g

can be written in the form (1) with a likelihood that contains only BVs

ρ̂g(SBV ) = exp[
∑
i

γi(πTSBV )i −
1
2

∑
i

λi{(πTSBV )i}2] . (7)

Eq. (7) can be used to compute the sparse approximation within the sequential algorithm.
We will only give a brief discussion here. In order to recompute the appropriate ”cavity”
parametersγ0

i andλ0
i when a new node is chosen by the algorithm, one removes a ”pseudo-

variable” (πTSBV )i from the likelihood and recomputes the statistics of the remaining
ones. Wheni is in the BV set, then simply(πTSBV )i = SbBVi and the computation
reduces to the previous one. We will demonstrate the significance of this approach for two
examples.

4.2 Independent Component Analysis

We consider a measured signalXt which is assumed to be an instantaneous linear mixing
of the sources corrupted with additive white Gaussian noiseΓ that is,

Xt = ASt + Γt , (8)



whereA is a (time independent) mixing matrix and the noise is assumed to be without
temporal correlations nd with time independent covariance matrixΣ. We thus have the
following likelihood for parameters and sources at timet

P (Xt|A,Σ,St) = (det 2πΣ)−
1
2 e−

1
2 (Xt−ASt)

TΣ−1(Xt−ASt) . (9)

and for all timesP (X|A,Σ,S) =
∏
t P (Xt|A,Σ,St). The aim of independent com-

ponent analysis is to recover the unknown quantities: the sourcesS, the mixing ma-
trix A and the noise covarianceΣ from the observed data using the further assump-
tion of statistical independence of the sourcesP (St) =

∏
i P (Sit). We are thus

back to the model eq. (1) with a we have to solve a set of mean field equations for
each time step. Maximum Likelihood II (MLII) estimation ofA and Σ, i.e. maxi-
mizing the LikelihoodP (X|A,Σ) =

∫
dSP (X|A,Σ,S)P (S) leads to [5]AMLII =∑

t Xt〈St〉T
(∑

t′〈St′STt′〉
)−1

andΣMLII = 1
N 〈(X − AS)(X − AS)T 〉. The sufficient

statistics of the model is the first and second moments of the sources. As we shall see in
the next section these can be effectively estimated using the sequential approach.

5 Simulations

5.1 Classification with GPs

This problem has been studied before [9, 4] using a sequential, sparse algorithm, based on
a single sweep through the data only. Within the ADATAP approach we are able to perform
multiple sweeps in order to achieve a self-consistent solution. For the likelihood we choose
the probit model. The outputs are binaryy ∈ {−1, 1} and the probability is given by the

error function (whereu = yφ(x)/σ0): P (y|φ(x)) = Erf (u) = 1√
2π

∫ u
−∞ dt exp

[
− t

2

2

]
.

The predictive distribution for an unseenx is Erf(y〈φ(x)〉t/σx) with σ2
x = σ2

0 +Kt(x, x)
and these are easily rewritten in terms of the parametersγ’s andχ’s according to eqs. (5).
We used the USPS dataset1 of gray-scale handwritten digit images of size16 × 16 with
7291 training patterns and2007 test patterns. For the kernel we choose the RBF kernel
K0(x, x′) = aK exp(‖x − x′‖2/(mσ2

K)) wherem is the dimension of the inputs –256
in this case, andaK andσK are the free parameters of the model. In the simulations we
used7000 random training examples. We performed simulations for different sizes of the
BV set and also allowed multiple iterations throught the dataset, results displayed in Fig. 1.
The lines show the average results of5 runs where the task was to classify the images in
fours/non-fours. The results show that, in contrast to the online learning, the fluscuations
caused by the order of presentation are diminished (marked with bars on the figure).

5.2 Density estimation with GPs

Bayesian non-parametric models for density estimation can be defined [10] by parametris-

ing densitiesp asp(x|φ) = φ2(x)∫
φ2(x) dx

and putting a Gaussian process prior over the space
of functionsφ. ObservingN data pointsD = x1, . . . , xN , we can express the predictive
distribution (again,E denotes the expectation over the GP prior) as

p(x|D) =
1

Z
E

[
φ2(x)

N∏
i=1

p(xi|φ)

]
=

1

ZN !

∫ ∞
0

dl lN E

[
φ2(x)

N∏
i=1

φ2(xi) e
−l
∫
φ2(x)dx

]

∝
∫ ∞

0

dl Zl l
N El

[
φ2(x)

N∏
i=1

φ2(xi)

]
.

1Available fromhttp://www.kernel-machines.org/data/
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Figure 1: Results for classification for different BV sizes (x-axis) and multiple sweeps
through the data.

In the last expression, we have introduced an expectation over a new, effective Gaussian
obtained by multiplying the old prior and the terme−l

∫
φ2(x)dx and normalizing byZl.

We assume that for sufficiently largeN the integral overl can be performed by Laplace’s
method, leaving us with an approximate predictor of the formp(x|D) ∝ 〈φ2(x)〉l, where
the brackets denote posterior expectation for a GP model with a kernel that is a solution
to K(l)(x, y) = K0(x, y) − l

∫
dz K0(x, z)K(l)(z, y). The likelihood of the fieldsSi

.=
φ(xi) at the observation points isρi(S) = S2. For any fixedl, we can apply the sparse
ADATAP algorithm to this problem. After convergence of this inner loop, a new value
of l must be determined from (following a Laplace argument)N

λ = 〈φ2(x)〉l until global
convergence is achieved. To give a simplified toy example, we choose the kernelK0(x, y)
which reproduces itself after convolution. Hence, thel dependence is scaled out and we
work with l = 1 and normalise at the end. We used a periodic kernel and assumed that the
input is from[0, 1]. For this case the kernel is

K0(x, y) = − cos(2πk0(x− y)) + sin(2πk0(x− y)) cot(π(x− y))

corresponding to a Fourier coefficients up to the cutoff frequencyk0 given a-priori (6 in
simulations).

For the experiment we are using artificial data from a mixture of two Gaussians (dotted
line in Fig. 2). We apply the sparse algorithm with multiple sweeps through the data. The
sparse algorithm, an extension of the online GP learning [4], also considers the geometry
“induced” by the kernel, limiting the number of basis vectors, avoiding numerical problems
caused by a possible singular Gram matrix. For the experiments we did not have any upper
limit for the size of the BV set, we used the geometry [4] when deciding about the inclusion.

Using 500 training data, only10 are retained for prediction (continuous line in Fig. 2),
nevertheless giving an accurate estimation of the pdf. This application shows clearly the
benefit of using the sparse algorithm: with only a fraction of the data retained, we can
recover the density underlying the data.

5.3 Independent Component Analysis

We consider the problem of local feature extraction with positive encoding which is also
considered in [5] and compare the parallel and sequential algorithm. As a simplification,
we take the naive mean field approximation that is settingλ0 = 0. This gives the parallel
algorithm an advantage since this eliminates the need for inverting the matrix of covariances
in the inner loop of the algorithm. However, we find the sequential algorithm needs only on
average 7 sweeps through the sites to reach the desired accuracy whereas the parallel fails
to reach the desired accuracy in 100 sweeps. The algorithms have almost the same time
complexity in this case and the reach almost the solution despite the difference in accuracy.
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Figure 2: The GP estimation (continuous line) of a mixture of Gaussians (dotted line) using
10 BVs. The limitation is due to the geometry of the kernel.

6 Conclusion and Outlook

An obvious future direction for the ADATAP approach is the investigation of minimization
algorithms as an alternative to the EP approach outlined before. Also an extension of the
sparse approximation to other non-GP models will be interesting. A highly important but
hard problem is the assessment of the accuracy of the approximation.
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