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Abstract

Based on ideas from statistical physics, we present an approxima-
tion technique for probabilistic data models with a large number of
hidden variables. We give examples for two non—trivial applications.
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1 Introduction

Probabilistic data models explain the complexity of observed data by a set
of hidden, unobserved causes which are modeled as random variables. Ex-
amples are: Bayes belief networks [23] (used as trainable expert systems),
independent component analysis [11, 1] (abbreviated ICA, which detects in-
dependent sources in nonlinear signal processing), Gaussian process models
[17] (modeling hidden spatial structures by random fields) and Boltzmann
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machines [7] (the Ising version of the random fields). Based on the joint
distribution of all variables one can assign plausible numerical values to the
hidden causes from suitable conditional averages over the hidden variables.
Unfortunately, except for a few simple cases (when the graph of dependen-
cies between random variables has the structure of a tree, or, when the joint
distribution is Gaussian) inference with probabilistic models usually requires
approximations, when variables are non-Gaussian and/or when the number
of variables is large.

In recent years, a variety of approximation techniques have been im-
ported from the field of statistical physics. One of the simplest methods
is the well known mean field (MF) approximation which approximates the
joint distribution of variables by a factorizing one. To take the neglected
correlations at least partly into account, a correction to the MF method
such as the Bethe/Kikuchi approximation [29] and the TAP approach, see
e.g.[12, 28, 16, 10, 25, 17, 9] and references in [15] have become popular.

The TAP method introduced by Thouless, Anderson & Palmer [4] for
disordered materials has the appealing feature to become exact for certain
statistical physics models with infinite ranged random interactions. We can
view data models as disordered systems because the observed random data
are parameters in the conditional distributions for the hidden variables. This
should make the TAP approximation a good candidate for inference in proba-
bilistic data modelling. Unfortunately, the method requires the exact knowl-
edge of the distribution of the disorder, which for statistical physics models
is usually assumed to be known, but for real data typically not. In order to
make the method a general tool for practical applications, we have recently
developed a version of the TAP approach [19, 18] which no longer requires the
knowledge of the underlying distribution but adapts to the concrete obser-
vations. In this paper we present a simple simple derivation of our adaptive
TAP (ADATAP) method and demonstrate its applications to a model for
classification and an ICA model.

The paper is organized as follows. Section 2 gives two examples for rather
different probabilistic models which both can be described by a class of prob-
ability distribution introduced in section 3. Our approximation method using
the Gibbs free energy is explained in section 4 and applications are demon-
strated in section 5. The paper concludes with a brief outlook.



2 Probabilistic Models: Two Examples

2.1 Gaussian Process Models for Classification

Gaussian process (GP) models have become popular in recent years as a
nonparametric approaches for supervised learning [27, 6, 17]. Take e.g., a
binary classification problem, where we would like to classify input features
x € RP (which might be the D = 16 x 16 dimensional vectors of pixel values
for digitized handwritten characters) into two classes y = 41 (which could
be the handwritten digit “3” against all other digits). A probabilistic model
could assume that the observed class labels are generated as y = sign[f(z)+¢]
with an unknown function f, and where £ is a zero mean noise process. The
equation f(x) = 0 would give us the ideal decision surface for the separation
of inputs with labels y = 1 and y = —1. Assuming Gaussian noise for &, the
likelihood of observing a label y, based on knowing the function value f(z) is

given by ) ) ) p
W) = = [ arew| -] )

where u = yf(x)/0o and oy measures the noise level. In a Bayesian proba-
bilistic model also the unknown function f becomes a random variable. We
will encode a vague prior knowledge about the variability of functions f with
their arguments x by modelling them as a realizations of a Gaussian random
field. For such Gaussian processes (with zero mean) the entire distribution
Py[f] over function space is determined by its correlation function (or kernel)
K (z,z") which has to be supplied by the user of the algorithm. A popular
choice of a general purpose kernel is the so-called radial basis function (RBF)
kernel

K(g; — 3;") = e—||x—z’||2/l2 , (2)
where [ is a lengthscale. When a dataset of IV correctly classified input/label
pairs D = (x1,41),-- ., (zn,yn) is available for training, one can use Bayes’

theorem of probability to convert the prior distribution P, together with the
likelihood into a posterior, conditional distribution over functions

PIfID) = ZPf)- TT Pl Q

where f; = f(z;) and Z acts a a normalizer. With an increasing number of
training data one expects that the posterior distribution (3) becomes more
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and more concentrated around the function f which optimally classifies the
data. Good predictions on novel test inputs x could then be based naturally
on the the average (f(x)) over the distribution (3) which could be used to
classify the new inputs z as y = sign[(f(z))]. Although it seems that we
have to perform an explicit functional integration in order to obtain (f(z))
one can show [17] that it is possible to write the result as a weighted sum of
correlation kernels centered at the training inputs

Zaz (x,z;) , (4)

3lnP(yj\fj)>
af; )

the marginal distribution of f;. Hence, we can restrict ourselves to the joint
distribution of function values at the training inputs z;, which is

with o = ( Hence, the computation of each «; requires only

p(f1,---, fn|D) oc exp [ Zfz 'fj] -ﬁP(yﬂfi) (5)

and the matrix K is defined through the kernel via K;; = K(z;, z;).

At first glance this probabilistic, nonparametric approach seems like a
fairly complicated technique to perform classifications. However, the advan-
tage, compared to parametric techniques such as neural networks, lies in the
fact that the effective complexity of the model is not fixed beforehand but
will effectively adapt to the dataset. In practice, kernel methods are found
to overfit only weakly and their performance can be optimized by adapting
kernel hyperparameters (e.g. the lengthscale [ in (2)). Furthermore, the appli-
cability of kernel machines to various non-trivial problems has been increased
by the development of new types of kernels which are especially designed for
classifying complex types of objects such as texts or protein strings [8].

The disadvantage of the GP models comes from the fact that the neces-
sary mathematical operations can not be performed exactly in an efficient
way. Besides the problem of analytically intractable distributions (5), the
high dimensionality of correlation matrices K;; make computations ineffi-
cient, when the size N of the training data sets becomes large. The latter
is also a problem for nonprobabilistic kernel methods such as support vector
machines (SVMs) [2, 26]. Before discussing our solution to this problem, we
will briefly introduce a second, quite different probabilistic model.
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2.2 Probabilistic Independent Component Analysis (ICA)

ICA is a widely applicable approach [11, 1, 21] in nonlinear signal processing,
which aims at decomposing signals obtained from different sensors into a set
of statistically independent sources. This finds a variety of applications e.g.
in the analysis of biomedical data, wheres on tries to separate an “interesting”
part of the signal from other statistically independent, contributions. In the
simplest probabilistic formulation of ICA (for other approaches, which do not
assume the full statistics of the sources, see [11, 1]), one assumes that the
vector X, of signals at time ¢ is an instantaneous linear mixing of sources S;
corrupted by additive Gaussian noise I';;. We can write

Xy =AS, +T, (6)

where A is an unknown (but time independent) mixing matrix and the noise
vector is assumed to be without temporal correlations having a time indepen-
dent covariance matrix 3. The distribution (likelihood) of the signal vector
for given parameters A, 3 and the unknown sources S; at time ¢ therefore
has form

P(X A, S, S,) = (det 27E) "7 ¢ 2 (Xe—AS)TETI(X,-AS)) (7)

The total probability of the temporal signal is assumed to be factorizing in
time, ie. P(X|A,X,S) =TI, P(X:|A,X,S;). The aim of independent com-
ponent analysis is to recover the unknown quantities which are the mixing
matrix A, the noise covariance X and the unknown sources S from the ob-
served data. The crucial assumption is that of statistical independence of the
sources (the hidden variables) at each time ¢, i.e.

P(S;) = 1‘[ P(Sy) - (8)

A suitable functional form (which has to be non-Gaussian) for the source
distribution P(S) which incorporates e.g. known constraints (such as posi-
tivity or sub-Gaussian tails) must be chosen for each individual application.
Alternatively, the source distribution can also be specified such that it can
adapt to the data, see e.g. Ref. [20].

Again, we can get plausible values for the unobserved sources by averaging
the random values S;; over the posterior distribution computed from the prior



(8) and the likelihood of the observations (7). However, we must also learn
the the mixing matrix A and the noise covariance X in parallel. These can
be estimated from the training data by the method of mazimum likelihood
(ML) [21], i.e. by maximizing the total probability of the observations

P(X|A, =) = /dSP(X|A, 3, 8) P(S) 9)

under the statistical assumptions. For the estimator of the mixing matrix,
the resulting set of nonlinear equations reads

Avi = Xt:XKSt)T (Z(Sﬂsff))_l (10)

tl

S = %z«xt _AS,) (X, — AS)T) . (1)

The brackets again denote an average over the posterior distribution of the
sources given the observations. Note, that also the right hand side depends
on A, via the posterior. This apparent complication can be solved using
the EM-algorithm [5] where the moments and the parameters are updated
alternately. It can be proved that the likelihood P(X|A,X) increases (or
stays constant) in each step of the EM—algorithm. Although the prior dis-
tribution (8) assumed independent sources, the posterior will obviously have
correlations between different sources (but still independence for different
times t), which again makes computations of averages non-trivial.

3 A canonical Model

It is not hard to show that the two previous examples of probabilistic models
(and, in fact, many others) require the computation of averages over posterior
distributions of hidden variables which are of the type

A

The set of couplings J;;’s encodes pairwise dependencies between the random
variables S = (Si,...,Sn). The factorizing term p(S) = II; p;(S;) (called



likelihood in the following) usually contains local observations at a site ¢, but
can also incorporate additional local prior information about the variables .S;.
E.g., by proper choices of the p;’s we can include both discrete and continuous
random variables in the same model (12). The normalizing partition function
Z is often (within a constant) equal to the probability that the model gives
to the observed variables, which can be used as a yardstick for comparing
different models or optimizing their hyperparameters. (12) includes the GP
classifier model, if we define S to be the restriction of the random field to the
training inputs ie, S; = f(x;). The prior correlations between the variables
leads to the interactions J = —K~! where K;; = K(z;, ;). The ICA modelis
recovered by identifying S with the vector of sources and setting the coupling
matrix to J = ATZ 1A and p(S;) = P(S;) exp XTX 1AS;.

In the rest of the paper we will develop a simple and computationally
efficient method for approximating marginal moments and correlation func-
tions for the distribution (12) which enables us to deal with a variety of
probabilistic models on real data.

4 The Gibbs Free Energy

We will derive our approximation scheme based on a Gibbs Free Energy G.
It is an entropic quantity which allows us to compute moments of the dis-
tribution P, eq. (12) as well as the log of the normalization, —In Z within
the same approach. G is defined by a constrained minimization of a relative
entropy measure

Q(S)

D(@QIIP) = [ dS Q(S)In &) (13)

between a distribution () and the posterior distribution P, where a set of
relevant marginal moments are fixed. To be precise, we define

G(m, M) =min {D(Q||P) | (S)g =m, (S)q =M} ~InZ,  (14)

where the brackets denote expectations with respect to the variational distri-
bution Q. (S?)q is shorthand for a vector with elements (S?)o. Minimizing G
with respect to all arguments obviously leads to ming, m G(m,M) = —In Z,
where total the minimizer is just () = P. Hence, the moments of the distri-



bution P are obtained as

(S), (S?) = argmin G(m) . (15)

m,M
Also correlation functions can be obtained from G as derivatives

0*G

_ = -1 ..

where x;; = (5;5;) —(5:)(S;) and the derivatives are taken at the minimum of
GG. An explicit expression for G is obtained by solving the constrained mini-
mization problem (14) with the help of Lagrange multipliers. The minimizng
distribution is found to be of the form

Q@ (8) =2 (7. NolS) explX %S — 5 Y Silduhi — Jp)S) (1)

where the )\;’s and ;’s are Lagrange parameters which must be chosen to
fulfill the constraints, and Z(, A) is a normalizing partition function. Using
(17) one can show that

1
G(m,M) = ?ax {— InZ(y,A) + m”y — iMTA} . (18)
Y

Unfortunately, (17) is as complicated as the original distribution (12). To
approximate the Gibbs free energy, we split G into two terms

G =G+ AG, (19)

where G is the Gibbs free energy for the distribution (12), but where all
couplings between the random variables are set to zero, ie. where J;; =
0. The computation of the corresponding partition function is easy and
the Gibbs free emergy G° for such a “free” model is obtained from (18)
by solving a convex optimization problem. Previous versions of the TAP
approximation have been obtained by truncating a power series expansion of
AG with respect to the interactions J;; at second order [24, 25].

In contrast, our ADATAP approximation (which was motivated by the
treatment of Parisi and Potters [22] of an Ising model with random orthogonal
coupling matrix) will include terms of arbitrary order in the interactions. It
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will be defined in such a way that it becomes exact when (12) is a Gaussian
distribution, ie. when the likelihoods are of the form

bi
pi(S) = expla;§ — 2.5 (20)
fori =1,..., N. The interaction part for likelihoods (20) is AGY = Gpg—Ggg,

where the subscripts on the right hand side denote the explicit dependence
on the likelihood p9. However, using (17) and (18) it can be shown, that
the resulting AGY (and the optimizing Gaussian distributions (17)) come
out independent of the actual Gaussian likelihood pf (20) chosen to compute
Gps. It is only a function of the moments m and M and equals

1 1 1 1 N
AG'(m,M) = max {5 Indet(A —J) — §mTJm ~ 5 ZAixii}+§ Zln Xz-ﬁ—; ,
(21)
where A is a diagonal matrix with entries A; and x; = M;—m?. The universal
form (21) will serve as an approximation to AG for arbitrary likelihoods.

Hence, our ADATAP approximation for the Gibbs free energy is simply
G~ G+ AGY . (22)

Hence, in our approximation, the problem of computing certain averages with
the distribution (12) has been reduced to an optimization problem. Further-
more, the method also computes implicitly a (Gaussian) approximation (via
(17) and AGY) to the full joint distribution (12) which can be useful in a
variety of applications.

There are various ways of finding (at least local) minima of G. We have
developed a message passing algorithm (based on an earlier idea of T. Minka
[14]) that has quadratic convergence close to a minima and is found to per-
form efficiently in practice.

5 Applications

5.1 Sparse approximation for Gaussian process classi-
fiers

A straightforward application of the ADATAP approximation for comput-
ing predictions with the GP classifier model (5) is possible (for details [17]),
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but the operations involving large matrices makes the method in its stan-
dard version impractical for datasets of several thousand training examples.
Hence, a further approximation introducing sparsity is necessary. The idea is
to replace the distribution P (more precisely, its tractable Gaussian approxi-
mation @* which is implicitly computed with AGY) by another one having a
likelihood which depends only on a smaller subset of variables called ”basis
vectors” (BV) of size n << N [3]. In order to minimize the loss of infor-
mation caused by sparsity, the new distribution Q with a sparse likelihood
is optmized by minimizing the relative entropy D(QHQ*) For Q and Q*
Gaussian, this can be done in closed form. The sparse approximation is im-
plemented in the sequential message passing algorithm and it is decided at
each step, whether the new variable is included in the BV set or not. Since
the algorithm sweeps several times through the set of variables, one can not
discard the non-BVs completely. Some non-BVs variables may become BVs
in a later sweep. Hence, the maximal size of the matrices involved in the
algorithm is n x N (rather than n x n), which is still better than the original
size N x N.

We have run the sparse ADATAP algorithm on the USPS dataset! of gray-
scale handwritten digit images of size 16 x 16. For the kernel we choose an
RBF kernel K (z,z') = ax exp(—||z — 2'||*/(mo%)) where m is the dimension
of the inputs (256 in this case), and ax and ok are parameters. In the
simulations we used N = 7000 random training examples. The task was to
classify the digits into fours and non-fours. Figure 1 shows the percentage
of errors of the classifier on 2007 test patterns for different sizes n of the BV
set. The result shows a saturation of errors with increasing BV set suggesting
that the sparse approximation extracts sufficient information from the data.
We have also compared multiple sweeps of the algorithm with the result of a
single sweep (averaged over different permutations examples in the sequence)
which show that fluctuations caused by different orders of presentations are
diminished for multiple sweeps.

5.2 Independent Component Analysis

Independent component analysis is applied in a wide variety of data analysis
and blind separation tasks e.g. for images, sound, text and telecommuni-

! Available from http://www.kernel-machines.org/data/
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Figure 1: Test errors for classification with different BV sizes (x-axis) and

multiple sweeps through the data.

cation problems [11, 1]. Here we will shortly present an application of the
message passing implementation of ADATAP algorithm to feature extraction
in hand-written digits. For more detail about this problem and other exam-
ples that illustrate the flexibility and range of applications of ICA, see [21].
We compare the ICA result to a standard feature extraction/visualization
technique namely principal component analysis (PCA).

We assume positive components of A (enforced by Lagrange multipliers)
and a positive exponential prior on the sources

P(S;;) = O(S;t) exp(—5Sit) (23)

As in [21] we used 500 handwritten ’3’s which are assumed to be generated
by 25 hidden images. The motivation for enforcing positivity is that such
strong constraints (i.e. the images are generated by positive additions) will
force the solution to become sparse, i.e. with many zeros in A and (S). This
will give us the statistically independent different stroke styles as seen in
figure 2. This can be compared to 25 principal components with largest
eigenvalues that exhibit the typical “shadow effects” that occur when both
negative and positive values are possible. The sparse basis set found by the
ICA algorithm can be seen as a statistically more reasonable representation
of the components of images than the one found by PCA since it models
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more closely the true generative process of handwriting. Projection on this
basis can be a powerful preprocessing step for hand-written digit classifiers.

6 Conclusion and Outlook

We have demonstrated how approximation techniques from statistical physics
can help to solve problems in data modelling. We expect that our ADATAP
approximation will become a practical tool for inference with a variety of
probabilistic data models. In fact, we are presently developing program
packages both for ICA, Gaussian processes and general model of the type
(12) that are made available online?.

An important future direction of research will be the development of sys-
tematic improvements of the approximation. The computation of corrections
will not only be of interest from a theoretical point of view but could also
provide a user of the method with a measure of how well the final result can
be trusted. It will also be of special importance to understand the practical
relevance of possible multiple minima of the approximate Gibbs free energy,
cooresponding to multiple solutions to TAP equations, which in statistical
physics are well known for models of spinglass type [13]. In such a case, one
might expect that more complex types of approximations become necessary.
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Figure 2: Feature extraction for hand-written digits: The top plot show the
first 25 principal components ordered according to eigen values. The buttom
plot shows the 25 mean images (sources) for ICA with positive mixing matrix
A and exponential (positive) source prior.
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