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Abstract— We proposea multistage multi-user detector for Code Division
Multiple Accessthat implements Mean-Field Annealing. Annealing is a well
known technique to avoid local minima in detection and optimisation prob-
lems. Local minima certainly occursin CDMA multi-user detection leading
to anomalousBit Err or Rate curves. Annealing is implemented as a standard
multi-user detectorimplementing interfer encecancellation, but with a control
parameter determining the slope of the squashing/mappingfunction. We de-
rive a bound on the control parameter for the first stageof the detector We
alsoproposean annealingscheme We show empirically the performanceof the
proposeddetector, which follows closelythe optimum detectorimplementedby
exhaustive search, i.e. has gains of several dB’s compared to standard multi-
user detectorslik e linear-MMSE, linear-MMSE first stagefollowed by inter-
ferencecancellation,and multi-stage interfer encecancellationwith clipped soft
decision,the lastbeingthe closesto our proposeddetector The proposeddetec-
tor gainsup to 2 dB comparedto the Clipped Soft DecisionMultistage detector
at no addedcomplexity.

Keywords— CDMA, Multistage Multi-User Detection, Interfer enceCancel-
lation, AnomalousBER-curves.

|. INTRODUCTION

Direct-Sequenc&pread-Spectrurnode division multiple ac-
cess(DS-CDMA) systemshave desirablepropertieso achieve a
high spectrakfficient system.Thesearerobustnessgainsichan-
nel impairments suchasdispersionandfading, having graceful
degradation,and easeof cellular planningby dynamicchannel
sharingat variousdatarates[1]; all resultingin smoothhandling
of differentQuality of ServicegQoS)anda high overall network
capacity In orderto achieve this high capacitythe detectorhas
to implementMaximumLikelihood(ML) detectionvhichis well
known to have exponentialcompleity in thenumberof usersand
the coherencdime of the channel. Basedon this fact much at-
tention hasbeenusedin derving nearoptimal low complexity
recevers[2]. One of the most promisingsuggestiongor such
a detectoris multistagelnterferenceCancellation eitherimple-
mentedby successie or parallelstructureresultingin the (SIC)
or (PIC)[3], [4]. In thesedetectorsa hon-linearityis usedto sep-
arateout the transmittedsymbolsfrom varioususers.In caseof
binary signallingthe mostusednon-linearitiesare sign, tangent
hyperbolicor clippedsoft decision. In the first stagesf the de-
tectorlinearfunctionsare often usedinsteadof the non-linearity
[2] i.e. implementingteratively a decorrelatingr Linear MMSE
detectorin thefirst stageqd5]. The multistagedetectorwith sign
squashindunctioncanbe seenasalocal searctbasedoptimiser
for theML solution,whichhascorvergenceto a (local) minimum
of the negative log-likelihood. Corvergenceto a local minimum
is alsoobsered for the softernon-linearitieshyperbolictangent
andclippedsoftdecision.In this contritutionwill we empirically
shaw thattheselocal minimaof the negative log-likelihoodlead
to aBit Error Rate(BER) cune thatis in excessof theinherent
BER behaiour of the optimal detector This excessBER . be-
haviour shouldbe contrastedo the inherentBER-floor reported
in [6] thoughrelated. We will explain this relation. The local

minimaleadto an excessBER for the local searchbasedmulti-
stagerecevercomparedo thatusingexactenumerationThisfact
leadsus to the main contribution, namelya multistagedetector
structurethatimplementsAnnealing. Annealingis a well knovn
[7] generalapplicableheuristicto avoid local minimain search
based\P-hardoptimisationlik e thetravelling salesmamroblem,
graphpartitioningetc. Annealingoriginate§rom condensedat-
terphysicg8]. Hereannealings theprocessn whichasolidin a
heatbathis heatedup to alevel whereall the particleshasa total
randomordering,thenthe heatbathis cooleddown slowly sothe
particlescanarrangethemself in a highly orderedlattice struc-
ture, the temperatureat which the solid goesfrom dominating
randomorderto dominatinglattice orderis the critical tempera-
ture. Thekind of annealingve will useis Mean-FieldAnnealing.
We will suggestinannealingschemehatavoids mostof the lo-
cal minima, maintainingthe polynomial law compleity of the
corventionalmultistagerecevers. We shav empirically thatthis
schemeobtainsa similar performanceo exactenumerationThe
paperis organisedasfollows: In sectionll we describethe mod-
ulationandchanneimodel,in 1l we review optimal detectorsin
sectionlV we explain the concepbf equilibriumdistributions,in
sectionV we derive themean-fielddetectorin VI we describehe
annealingheuristicandderive a conserative estimateof the (in-
verse)startingtemperaturethenthis is followed by Monte Carlo
simulationsin sectionVIl, andfinally we concludeVIll.

Il. K USERS CHIP SYNCHRONOUS CDMA MODEL

Assuminga stationaryAWGN channelandBPSK modulation
therecevedbasebandCDMA signalcanbe modelledas
y=Sb+e (1)
after chip waveform matchedfiltering, assuminghe chip wave-
form to fulfil the Nyquist criterion. Wherey € RV is there-
ceived signal,b € [—1,1]¥ arethe transmittecbits for the K
users,S € [, o= ]V* arethe spreadingcodesfor the K
userswith N chipsandunit enegy, ande € RV is zeromean
white Gaussiamoisewith variances” = £2.
We procesgherecevedsignaly by a bankof filters matched
to the spreadingcodesobtaining
z=8"Sb+STe=Rb+n 2
wherewe have definedthe correlationmatrix of the spreading
codesR = STS ¢ R¥*K andthetransformechoisen = STe
whichnow hascovariances>R.. All togethetthisdefineshelike-
lihood of thetransmittedbits assumingeverythingelsefor knowvn

_1 TRr-1
p(z|b) = |27r02R| 3 6—#(2—1"{1)) R~1(z—Rb)
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I11. ML AND MEAN POSTERIOR DETECTOR

This sectionjust senes asa review of optimal detectorg2].
Thedetectorthatminimisesthe Bit Error Rate(BER) is thesign
meanposteriorestimator

Ebe[—l,l]K bp (z|b)
sgn
Ebe[_1,1]K p (Zl b)

= sgn 2bel-1,1% be =7 (®)
Pbep1,1x e7oF®)
, oL

E:

(4)

o

underequalapriori probability of the transmittedbits, andwhere
we have defined
E(b) = % (bT (R—1I)b— 2sz) : )

I beingtheidentity matrix. The detectothatminimisesthe prob-
ability of erroris themaximumlik elihoodrecever

b= argmax p (z| b) = arg min F(b)

be[-1,1]1K be[-1,1]1K
Ebe[—l 11K be 2E(®) ©)
= lim . .
a— oo be[—l,l]K e‘aE(b)

As seenboth detectorcanbeimplementedyy the samesumma-
tion structure but with differenta, o actsasa control parameter
which in physicswould correspondo the inversetemperature.
We alsodefinedE(b) which canbe viewed asthe costfunction
of the problemor the enegy. It shouldbe noticedthat both of
thesedetectorhasexponentialcompleity.

IV. EQUILIBRIUM DISTRIBUTION

Before we start with the derivation of the detectorwe first
look into the conceptof equilibrium distributions via the un-
normalisedKL-divergence,in physicsdenotedthe free energy.
We formulatethis for generakx. The ergodic equilibrium distri-
bution g« (b) ataspecifiedr is thedistributionthatminimisesthe
freeenegy definedas

Fa = a(E(b))a + (l0g qa(b))a U]
wherewe define(-),, astheaveragewith respecto g, (b). Wesee
thatthe minimum s obtainedfor the g, (b) thatalsominimizes
theKL-divergence

e—aE‘(b

KL [qa(b), ‘e

(e}

| = atB @), + G040 (b)) + 108 2,
8)

since Za = Y ,¢(_q.qx e *7") the normalisingconstantis

independentf ¢, (b). We seefrom this thatwhenwe canchoose

g« (b) freely to globally minimisethe KL-divergencewe getthe

ermgodicequilibriumdistribution

—aE(b)

Zg,

e

qa(b) = 9)
i.e. theposterioratthefixeda, with zeroKL-divergence.

The two optimal detectorsconsideredn the last sectionwere
found by knowing the posteriormean (b), ata = 0—12 and
a — oo respectiely wheng, (b) is the emgodic equilibriumdis-
tribution. Until now we have rewritten the posteriordistribution

asthe ergodic equilibriumdistribution, althoughnice we haven't
gainedarything in termsof compleity. For thatreasonwe con-
strain the family of g (b) so that averageslike (E (b)), and
(log go (b)) becometractable. Sucha constraintimplies that
we cannot minimize the KL-divergenceto zero,insteadwe de-
fine a constrained equilibriumdistribution g, (b) asadistribution
thatwithin the constrainedamily is a (local) minimumof thefree
enegy, which approximateshe ergodicequilibriumdistribution.

V. CONSTRAINING THE EQUILIBRIUM DISTRIBUTION,
MEAN-FIELD DETECTOR

In this sectionwill we constrainthe distribution ¢ (b) to the
factorisedfamily of distributionsover b € [—1,1]¥ with by €
[~1,1], k € [1, K] beingthe k*"-elementn thevectorb

K
ga(b) = [T ai (8)
k=1
14b, 1-b; (10)
_ﬁ 1+m&’”] : [1—m&’“)] g
N 2 2 ’
k=1

wherem,, (k) for k € [1, K| parameterisethedistribution atthe
specifieda. We have (bx)a = ma(k) andhence(b), = m,
wherem,, is the vectorof them{’s. We now calculatethe free
enegy (7), with respecto this distribution

1
Fo ==

3 (m:f(R —I)m, — 2m:£z)

K
14+ mq (k) 14 mq(k)
+ ; 5 log 5

1 —mq(k) 1 —mq(k)
5 log 3

(11)

+

wherewe usedthat the distribution factorises. The constrained
equilibrium distribution is the distribution thatis a minimum of
theconstrainedreeenenpy i.e.

OFa
o =0 keJl,K] (12)
We have
dF. 1, 14+md)
6m§°) =a[(R—-Dmy)r — (2)k] + ) log 1—7mzk) =
(13)
isolatingm&k) we getthe mean-fieldequations
m{ =tanh[a(z— (R —D)m,),] ke[l,K]. (14)

Iteratingthemean-fieldequationsataspecifiedx for thedifferent
k € [1, K] is our multistagemean-fielddetector eachiteration
correspondingo one stage. When cornverged we have obtained
the constrainecdequilibrium distribution. We seethatin the limit
a — oo we have

m¥ =sgn[(z— (R-Dms),] ke[l K]. (15
correspondingdo local ML optimisation,alsoknown ashardin-
terferencecancellation!f weseta = 0% we havethedistribution
in the family thatapproximateshe meanposteriordetectoy also
known as soft interferencecancellation. If we updateonem&k)
at a time, we have Successie InterferenceCancellation(SIC),



tanh(-)

Fig. 1. Mean-FieldSuccessie InterferenceCancellatiornit.

if we updateall we have parallel (PIC). In this contrikution will
we restrictour selesto successie updatessincethis guaranties
thatwe dont increasethe free enegy (7) in ary iteration/stage.
On figure (1) we have drawn a Mean-FieldSuccessie Interfer
enceCancellationUnit (MF-SICU), correspondingo the update
of equation(14) for onek, bold lines meansvector signalsand
thin lines are scalarsignals,k indicatesthe userandi indicates
the stage/iteration.If we wire togetherK MF-SICU’s we have
onestage,on figure (2) a typical D-stagemean-fielddetectoris
shawn.
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L o
K
MF-SICU —MF-SICU -+ ~MF-SICU —
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Fig. 2. D-stageMean-FieldSuccessie InterferenceCancellatiordetector

V1. MEAN-FIELD ANNEALING

Thereasorfor introducingannealings dueto the non-cowex
structureof the enegy (5). The existenceof local minimais due
to the correlationmatrix of the spreadingcodesR. beingcloseto
singularor singular This is alsodescribedn [6], in the extreme
casewhere—R is exactsingular Thisimpliesequalenegy of a
localminimumandthetrueminimumimplying thateventhe ML-
detectolimplementedy exhaustve searchwill for somefraction
of the possiblebit vectorsb reportan erroneousminimum, this
leadsto the inherentBER-floor of the exhaustve searchML de-
tector Whatwe areconsideringhereis similar, namelycloseto
singularbehaiour which leadsto local minima, the closerto sin-
gularthe closerthe correspondingenenpy is to the global enegy
minimum. In this caseJocal searchor the global minimum will
have difficultiesin avoidingthelocalminimaandhencewill expe-
riencea BER-curwe in excessof the exhaustve ML BER-cune.

All theseeffects of coursehave to be comparedwith the noise
level 02 = %Q If the effects are small comparedo the noise
level, i.e. have low probability of leadingto a erroneousietec-
tion comparedo theprobabilityof thenoisemakinganerroneous
detectionthe BER-curve will follow the normal’'waterfall’ be-

haviour. At someSNR  theeffectof thelocal minimacanbeseen
asa bifurcationaway from the exhaustve ML BER-cune. At an

even higherSNR, wherethe singulareffect becomesiominating
the ML BER-cune will diverge from the 'waterfall’ behaiour,

becauseof the erroneougninima with the sameenegy. These
threedomainsarein full accordancevith large systemlimit re-

sults[9], [10].

To avoid local minimawe useannealing. The problemto be
solvedis thatof finding theglobalminimumamongstmary local
minimain the objective function. The ideais to weight a non-
corvex partsof the objective function relative to a corvex part
of the objective function. Herethe free enegy of the previous
chaptercanbe viewed asthe objective functionanda astherel-
ative weight. Whena = 0 we only have a convex partin the
objectie function, i.e. oneminimumin the correspondindree
enegy Fo. The convex partis believed to be dominatingfor «
up to somecritical ., so belov a. the objective function still
only poseoneminimum. Justabove a. morethanoneminimum
exists,amongswhich the globalone,if unique,hasto befound.
The closera comesto a. the closerthe locationof the solution
comesto theglobalminimumatthedesiredap . If theminimum
from justbelow a. is usedasaninitial guesgo the solutionjust
abore a. the obtainedminimum amongstall the local minima
will betheonethatlies closestWhichwe hopeis theglobalone.
Sincethe global minimum hasthe lowest enegy it also domi-
natesthe most,sothe hopecanbe fulfilled with high probability
Theincreasan « from below to above a. hasto be carriedout
slowly in orderto getascloseto the global minimum as possi-
ble beforecrossinga.. The reasonis the way we solve for the
minimum at the specifieda, becausef we take a too large step
in onedirection,thenthis influencesthe otherdirections. Large
stepsobviously occurif we changex in largestepsover a..

Mean-Fieldannealingcannow beimplementeddy choosinga
serieof accentinga’s: a1 < az < ... < ap, andsolving the
equationg14)for eachof thea’s, usingthe solutionm?;* found
atthe previous ;1 asinitial gueSSmfl ontheactuala;. At a1
somearbitraryinitial gueson m}, canbeused sinceif a1 < a.
only onesolutionexists. A multistageSICthatimplementdviean-
Field Annealingcan be constructecbe reusingthe Mean-Field
multistagedetectoron figure (2) by increasinga in someof the
stages.

Fromtheabore discussiortwo considerationtasto be made:

« Thechoiceof thevalueof a; thatis below ac.
« How fasta shouldbeincreasedowardsthedesiredap.

The choicemadeon the two above considerationsletermines
the Annealing Scheme.

The critical o, can,in the CDMA setting,be lower bounded
by consideringhefix-point equationg14). We seethe agument
of tanh(-) in equation(14) is linearin m, the maximal slope
in ary directionof m, is determinecby the maximaleigemwalue
of —a(R —1I). If the slopeis lessthanone, independentlyof
z, the equations(14) only posesone solution, since tanh(-) is
antisymmetricsigmoid with slopel in zero. We now let Apir
denotethe minimum eigervalueof R, thenthe maximalslopeis

a(l—MAnin), thisslopeis equalto onefor a = 17; — < acl.e.




lower boundsthecritical .. SinceR is the correlationmatrix of
theunit enegy spreading-odesR is positive semi-definite This
impliesthatthe worstcaseA,;», over all setsof spreadingcodes
equalszerohencea, > 1—/\1m1-n > 1. Usinga: = 1 ensures
that only one uniquesolutionexiststo the equationg14) for all
spreadingcodes.

Theboundon a, canalsoexplain why the multistagedetector
usedin [6] with clippedsoft decision(CSD) squashing/mapping
function works sowell. It simply operatesn the region where
only one solution exists, sinceif an a wasintroducedit equals
one,andfor the CSDthis is enough for the samereasonsasfor
tanh(-), to ensurethe existenceof oneuniquesolution. In mod-
erateloadedsystems% = B < 1 theenepy differencesf the
local minimato the global onearefor typical R large, hencein
atypical transmissiorthe solutionis notinfluencedthatmuchby
thelocal minima.

Thesecondssueis morecomple, andwe haven't yetfoundan
answer Accordingto the optimal detectortheory the desiredap
thaton averageminimisesthe BER is ap = ‘%z In caseof no
localminimaatap for ary setof spreadingsequencewe would
just solve the equationq14) atthe desiredap. Sowe know the
startinga;; andtheterminatingap, butthegraduatiorin between
yet still hasto be determined.One notion is the distribution of
theminimumeigemvalue,,;, of R whichis distributedbetween
zero and one skewed to one side dependingon the load of the
numberof usersK to the numberof chips N denoteds = %
In an actualsystemthis distribution cansene asa guideto de-
terminingthe gradingof the a’s. Herewe assumehe minimum
eigevalueof (R) to be distributed uniformly betweenzeroand
one,thatmeansl — A, alsois distributeduniformly between
zeroandone. Sotheinversea shouldbe spacedequallyfrom 1
dowvntoap' = o thisgives

1
ai=—— 16
1+ (i—1)=2 o

1-D

whereD is the numberof differenta’s.

VIlI. MONTE CARLO SIMULATIONS

To have a referencefor the performanceve choosethe same
parametesettingsasin [6]' s secondsimulation. The numberof
usersis K = 8 andthespreadingactoris N = 16 i.e. amoder
ateloadof 8 = % Beforewe goto theactualBER-simulations,
we shav an examplewherelocal minima exists in conjunction
with the global minimum. We generatea setof spreadingcodes
S soR hasonesingularvalue. We transmitavectorb thathasan
uniguemaximumof theenegy (5). Soexhaustve maximumlike-
lihood searcHindstheright solutionwith no errorsin the K = 8
bits. If we usethe detectorusedin [6] i.e. a multistagedetector
with clippedsoftdecisionrmapping/squashinfginctionanda = 1
initialisedin zero,we getoneerrorout of eightin this particular
case,i.e. the uniquesolution, seethe previous section,is dom-
inatedby at leastone more minimum thanthe global minimum
of theenepgy. Usinga multistagedetectorsimilar to the previous
but with tanh(-) assquashindunction,i.e. solvingtheequations
(14) with o = 1 initialisedin zero,alsointroducedoneerror, by
the samereasons.For this particulartransmissiorwe now want
to find all the solutionsm,, of the equationg14) asa function
of . We randomlyinitialised the startingm,, from the uniform
distribution on the values{z| — 1 < = < 1}* in orderto get
differentsolutions.We iteratedthe equationsatfixeda until con-
vergence. The solutionsoverlap-distanceo the transmittedbits

Fig. 3. Differentsolutionsto the Mean-Fieldequationg14) at variousa’s for one
particulartransmission.

b, definedhereasO(a) = £=BIma s piotted on figure (3).
This definition of the overlap-distancéells how farin numberof
soft bits thefound solutionm,, is to thetransmittedbits b. If we
startatlow a we seethatonly onesolutionexistsin accordance
with the theory of annealing,whenwe increasex the overlap-
distancebecomesmallerandcloserto one. At a = 1 still only
onesolutionexists in accordancavith our conserative estimate
of a.. Betweenl and2 anew solutionstartsto coexists,wehavea
bifurcation,whichmeanghatthe’most’ critical c. for thistrans-
missionlies betweernl and2. Thisindicateshatthe boundon a,
is tight. The bestof the two solutionscontinuoustowardszero,
whereaghe badonelies furtherandfurtheraway. At « = 3 the
badsolutionbifurcatesagain. Around o = 8 it againbifurcates.
Ata = ‘}Q we have drawn a vertical line indicatingthe desired
ap. We solved at the desiredap the equationg14) startingin
zero. Thesolutionis markedwith a cross,which certainlymarks
awrong solution. At the desiredap only 8 out of the 256 ran-
dominitialisationsconverged to the good solution. We now did
256 randominitialisationsata; = 1 i.e. belowv a. andchose
ap = oo = a% and usedthe annealingschemedescribedn
equation(16), ateacha we only usedtwo iterations,soatotal of
20 iterations/stageper randomstart. All the 256 initialisations
corvergedto the true solutionwith no errors!, the samedid the
oneinitialisedin zero.

We alsodid a BER-simulationof the systemwith K = 8 and
N = 16 asin [6]. Herewe usedthreedifferentdetectors.The
first beingtheexhaustve searchML detectorthesecondhemul-
tistagedetectosedn [6] with clippedsoftdecisioninitialisedin
zeroandaa = 1 for 20 stagesthethird aMean-FieldAnnealing
multistagedetectowith 10 a’s,a1 = 1 andap = a19 = U% at
eacha we usedtwo iterationsi.e. also20 stagesTheresultscan
beseeronfigure (4).

TheinherentBER-floor is seencloseto the prediction5.33 -
107° foundin [6]. The threedomainsdescribedn section(VI)
caneasilybe seen. Above bit errorratesof 4 - 10~2 all the de-
tectorsfollows closelythe exhaustve searchML detectorwith a
typical waterall behaiour. Fromherethe ClippedSoft Decision
(CSD)detectomifurcatesaway from the exhaustve ML-detector
indicatingtheinfluenceof localminimain theenegy. TheMean-
Field Annealingdetectoravoidsthis influencefrom local minima
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Fig. 4. BER performancef exhaustie searchML (solid line), ClippedSoft Deci-
sion multistagedetector(dashed)andthe proposedViean-FieldAnnealingde-
tector(solid with stars)all lower boundedby the singleuserperformancegalso
solid). Theparametersre K = 8 and N = 16.

downto BER = 6-10~2 at6 dB, thisBER isreachedytheCSD
at7 dB. Thelocalminimainfluenceonthe Mean-FieldAnnealing
detectoiis fairly small,andthe detectoris closeto the exhaustve

ML detectorBut still thereexistssomeexcessrrorscomparedo

exhaustve ML searchmethod,indicatingthata betterannealing
schemecouldbeinvented.

We also did simulationsfor a larger system K 20 and
N = 24, i.e. afairly loadedsystem3 = £ = - but because
of thelongerspreadingequencethe probability of asingularR
is lowerthanin theabove exampleeventhoughtheloadis higher
The resultscanbe seenon figure (5). Thetwo of the detectors

Averaged BER

107 I I I I I I I I I

5
E,/N, (dB)

Fig. 5. BER performancef Clipped Soft Decisionmultistagedetector(dashed),
the proposedVean-FieldAnnealingdetector(solid with stars),Linear MMSE
(solid with smalldots),Multistagedetectomwith first stageLinear MMSE (solid
with diamonds)all lower boundedby the single userperformancealsosolid).
Theparameterare K = 20 andN = 24.

areidenticalto thosein the previous simulation. The two oth-

ersarelinear MMSE, and a multistagedetectorwith first stage

linear MMSE followed by 20 stagesof Mean-Fielddetectionat
| ; i i i

a = =. Thefirst thing that shouldbe notedis the complexity

of thetwo lastdetectorsvhich arehigherthanthetwo first dueto
thematrixinversion.Oneinterpretatiorof themultistagedetector
with first stagdinearMMSE, is asannealingvith two o’ sthefirst
beingvery closeto zerothe secondwith az = ap = ULQ The
reasorfor thisis thatthelinearMMSE detectorcanbederived by
expandingthe equationg14) to secondbrderin a arounda: = 0,
i.e. is valid for very smalla’s, but in the domainwhereonly one
solutionexists. Thenwe decreaser to the desiredap ;15 in
onelarge step,which we know from thetheoryof annealingcan
goarbitrarywrong. Theresultsonfigure(5) follow thosefrom the
firstexample.Againthe Mean-FieldAnnealingdetectomperforms
betterthanthe CSD detectorby aroundl dB. Thetwo detectors
basedon the linear MMSE detectorhave anincreasinglyperfor
mancegapto the Mean-FieldAnnealingdetectorof morethan5
dB ataBER = 10~%. Againthe CSD bifurcatesaway from the
Mean-FieldAnnealingdetectorat 3 dB. Whereast seemdike a
bifurcationof theMean-FieldAnnealingdetectorat 7 dB but with
avery smallexcesserrorlevel.

VIll. CONCLUSION

In this contritution we proposeda multistagemulti-userdetec-
tor implementingMean-FieldAnnealing. It hasno addedcom-
plexity comparedo existing multistagedetectors.Performance
gains of several dB’s are obtainedin simulations, closely ap-
proachingthe exhaustve searchML detector We alsoderived a
conserative estimateon thefirst stages controlparametemwhich
however seemgo befairly tight. The proposedannealingscheme
is generabpplicable andcanbeusedfor arny choiceof spreading
codessinceit is notoptimisedfor ary particulareigevaluespec-
trum of the codecorrelationmatrix. Thoughsimulationsshav
that furtherimprovementscanbe achieved in orderto reachthe
performancef theexhaustve searchML detectorWealso,in the
light of Mean-FieldAnnealing,gave someexplanationsto why
the Clipped Soft Decisionmultistagedetectorperformsso well,
andwhy a multistagedetectomwith aninitial linear MMSE stage
performslesswell.
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