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Abstract

A supervised classification scheme to segment optical multi-spectral images has been developed. In this classifier,

an automated region-growth algorithm delineates the training sets. This algorithm handles three parameters: an initial

pixel seed, a window size and a threshold for each class. A suitable pixel seed is manually implanted through

visual inspection of the image classes. The best value for the window and the threshold are obtained from a spectral

distance and heuristic criteria. This distance is calculated from a mathematical model of spectral separability. A pixel

is incorporated into a region if a spectral homogeneity criterion is satisfied in the pixel-centered window for a given

threshold. The homogeneity criterion is obtained from the model of spectral distance. The set of pixels forming a region

represents a statistically valid sample of a defined class signaled by the initial pixel seed. The grown regions therefore

constitute suitable training sets for each class. Comparing the statistical behavior of the pixel population of a sliding

window with that of each class performs the classification. For region-growth, a window size is employed for each class.

For classification, the centered pixel of the sliding window is labeled as belonging to a class if its spectral distance is a

minimum to the class. The window size used for classification is a function of the best separability between the classes.

A series of examples, employing synthetic and satellite images are presented to show the value of this classifier. The

goodness of the segmentation is evaluated by means of the k coefficient and a visual inspection of the results.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Segmentation is a partition of the image into a number

of regions (Cohen and Fam, 1992), each region related to

class objects of the scene. The regions may be labeled as

pertaining to a certain class of objects, hence generating a

classification. The final product is therefore a thematic

map useful for scene understanding. The first classifiers

labeled the pixels of the image into classes using only

their spectral properties and ignoring their context. This

approach, named per-pixel classification, proved to be

limited in nature and applicable only to spectrally well-

differentiated cases. In the last years, efforts have been

devoted to develop contextual classifiers (Arai, 1993;

Khazenie and Crawford, 1990; Gong and Howarth,

1992; Kontoes and Rokos, 1996). Classifiers that

incorporate contextual information into the classification

have been reported in the literature as well (Chica-Olmo

and Abarca-Hern!andez, 2000; Atkinson and Lewis,

2000). A contextual classifier consistently produces

higher classification accuracies than the per-pixel classi-

fier (Gonz!alez Alonso et al., 1991; Kontoes and Rokos,

1996; Stuckens et al., 2000). In the approach of this

paper, a pixel is labeled to a class by taking into account

its spectral properties and the context of its location.

A supervised classifier employs a priori information of

each determined class; this is usually done by means of
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training sets. These training sets are defined through

closed polygons outlined on the image by some

interactive procedure. In this definition, there is not a

clear criterion to assume that the training sets are valid

statistical samples of the classes (Cetin and Levandows-

ky, 1991). However, some work on the purification of

training samples has been reported that improves the

quality of classification (Buchheim and Lillesand, 1989;

Bolstad and Lillesand, 1991; Arai, 1992). Region-

growth-based algorithms for image segmentation and

region classification have been reported in literature

Raafat and Wong (1988) and Gahegan and Flack

(1999). However, further work is required to use an

optimized region-growth algorithm as a preliminary step

in a contextual classification scheme.

As a basic premise to a classifier, a procedure should

be established to assure that the training sets are

representative samples of the classes. A second premise

is that the classification of a pixel should be performed

by direct comparison between the statistical behavior of

the classes and that of the pixel-centered window. A

third premise is to make no assumption on the particular

statistical behavior of the density function of the classes.

This model-based approach yields the automated

determination of the set of parameters handled by the

classifier; the only exception is the locations of the initial

seeds.

In this work, a new contextual classifier is proposed

that determines statistical samples of defined classes

as a result of an automated region-growth algorithm.

A pixel is then classified by comparing the density

function of the pixel-centered window population to

those of the classes. The comparison is done by means of

a measure of similarity between such density functions.

The growth of each region is performed by employing a

window size and a threshold value suitable for each

class. The measure of similarity is utilized to calculate

best values for such parameters. The window used for

classification is a function of the best separability

between the classes. As explained in the next sections,

this scheme of classification is valid for a spectral

contextual classifier, even though extension to a textural

classifier is easy. In brief the goals of this research are the

following: (a) develop a new supervised contextual

classifier to segment an image into a number of classes,

(b) derive the statistics of the classes from a region-

growth algorithm, (c) determine the goodness of such

classifier.

2. Contextual classifier

2.1. Region-growth scheme

The contextual classifier uses the training sets

determined by an automated region-growth algorithm

(Lira and Frulla, 1998). This algorithm begins by

seeding pixels in suitable places of the image where the

existence of a class is known. This task is done manually

by visual inspection of the image with the support of

ancillary data. Once the seeds are determined, one per

class, the growth of the class regions starts. The growth

is performed by pixel aggregation satisfying a homo-

geneity criterion. The criterion is evaluated in a window

with the best size for each class. A pixel is aggregated

into the region provided the difference between the

homogeneity value of the seed- and the pixel-centered

window does not exceed a certain threshold. The growth

of a region is terminated when this homogeneity

criterion is no longer satisfied. The homogeneity

criterion and the threshold are both derived from a

measure of separability and heuristic criteria; details of

this are given in the next paragraphs.

Let gðrÞ be a multi-spectral image and p0ijAg; and let

fR0 ¼ p0ijg be the initial sub-region signaling a given

class. The pixel p0ij is known as the seed related to R0:
The vector r defines the coordinates of the pixel p0ij in

the image, i.e. r ¼ ði; jÞ: In general, the pixel p0ij is formed

by the tuple fp1; p2;y; pggij ; where g is the number of

bands of the multi-spectral image. Let R0
0 be the set of

pixels that do not belong to R0 but having at least a

neighbor with R0 under certain connectivity. Let EðR0Þv
be the value of the homogeneity criterion applied to the

window v of R0: The set R1 is the region jointly formed

by R0 and the pixels p1klAR0
0 for which Eðp1klÞv differs

from Eðp0ijÞv in less than a threshold e: In other words, R1

is the following set:

R1 � fp1kl : jEðp1klÞv 	 Eðp0ijÞvjpeg: ð1Þ

The real number e is known as the parameter of

uniformity, directly related to the homogeneity criterion.

Once R1 has been determined the previous step is

repeated; so, in general the region Rm is given by

Rm � fpm
kl : jEðpm

klÞv 	 Eðp0ijÞvjpeg: ð2Þ

The homogeneity criterion E is always tested facing the

original sub-region window of R0: The growth of a

region continues until no change occurs from one step to

the next: Rkþ1 ¼ Rk: The above is easily generalized for

a number of initial regions, i.e. for a set of classes. Thus,

aggregation of a tested pixel pkl is carried out as

pkl-region t : jEðpklÞ
t
v 	 Eðp0ijÞ

t
vjpe; ð3Þ

where EðpklÞ
t
v is the homogeneity criterion applied to the

tested pixel, and the region t is identified as the training

set of class t:

2.2. Estimation of region-growth parameters

The best values for the window v and the threshold e
are obtained as follows. An odd-sized window is

assumed for each seeded pixel. Beginning from v ¼ 3
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pixels, the windows are systematically incremented in

size. Only squared odd windows are considered. The

density function is estimated. Let Sa
vðiÞ be the density

function of the pixel population in a window v for

spectral class a: Such a function is normalized to unity

according toX
i

Sa
v ðiÞ ¼ 1: ð4Þ

The above is assuming 256 quantization levels in the

image, and i is a vector with dimension equal to

the number of bands of the multi-spectral image. Let a

be any spectral class in the image, then

da
Dv ¼

X
i

jSa
v ðiÞ 	Sa

vþ2ðiÞj: ð5Þ

On the grounds of extensive tests with several images,

the best window for class a is set whenever da
Dvp0:3: A

similar condition is established for the set of classes. The

size of the window must satisfy a two-fold condition:

large enough for statistical validity, and small enough

for maximum spatial resolution. In this sense, the

window size is adjusted according to class heterogeneity

(Hodgson, 1998). A homogeneous class requires a small

window size; a heterogeneous class requires a larger

window size. Therefore, a window size is determined for

each class. As v increments, the density function of a

class experiments a great variation, until the number of

pixels is enough to represent a valid statistical sample of

the class. While the window size is further incremented,

the density function is approximately constant as long as

the window is entirely included in the class. If the

window population is a mixture of two or more classes,

the density function changes again. The condition

da
Dvp0:3 is a heuristic rule to measure such change.

The second parameter handled in the region-growth

algorithm is a threshold e; named the uniformity

parameter. This parameter is set in the following way.

Let dab
v be the distance between any two classes a and b

for a given window size v:

dab
v ¼

X
i

Sa
v ðiÞ 	Sb

vðiÞ
�� ��; 8 aab: ð6Þ

The distance dab
v is of spectral separability. Let a be a

spectral class in the image; thus, given the set

{va; vb;y; vu} of windows of the classes, the following

minimum is determined:

da ¼ min dab ¼
X
i

Sa
va
ðiÞ 	Sb

vb
ðiÞ

��� ���
" #

; 8aab: ð7Þ

On the grounds of extensive tests with several images,

the threshold corresponding to the class j is given by the

following criterion:

ej ¼ 0:75dj ð8Þ

and so on for the set of window classes: {va; vb;y; vu}.

The region-growth is performed on the grounds of a

homogeneity criterion defined in terms of the distance

determined by Eq. (6). Thus, given the best window for

class j:

pkl-class j :
X
i

Sj
pkl
ðiÞ 	Sj

p0
ðiÞ

��� ���pe; ð9Þ

where p0 is the pixel seed for class j: In brief, Eqs. (5), (8)

and (9) determine the best window, the threshold and

the homogeneity criterion, respectively. This means that,

once the seed pixels are determined, the classification

process is fully automated.

2.3. Rationale of spectral classifier

The contextual classifier uses a pixel-centered window

to estimate the density function associated to a pixel.

This function is compared to the density function of the

classes determined by the training classes in the region-

growth process. A pixel is classified to that class where

the comparison is the best. However, a tested pixel

window may share pixels from two or more classes. In

this situation the density function is a composite of

various classes. The pixels having windows located in

more than one class are named border pixels. To avoid

misclassification, the border pixels must be treated

separately, labeled as such, and classified to the nearest

class in a separate process. Once classified, the border

pixels are encoded with the rest of the pixels to form the

final classification of the image. Border pixels are

identified as follows: The pixel-centered window is

displaced on every pixel of the image. In each position

of the window, the density function is obtained. This

function is compared with the density function of the

classes and to the density function of pair of classes. The

result of this comparison leads to the labeling of a

border pixel; details of this are in the classifier algorithm

steps (v) and (viii).

The rationale of the spectral classifier consists of three

stages: (1) construct a model of spectral separability to

calculate the best window to perform the classification,

(2) design an overall block diagram of the classifier, and

(3) list the details of the algorithm for classification. The

construction of such a model now follows.

A set of 36 images with 6 classes is generated. The

density function of the classes is Rayleigh-like (Dough-

erty, 1999). The size of the images is 256� 192 pixels.

The difference of the mean among these classes ranges in

the interval: [1,2,...,32]. The difference of the standard

deviation ranges in the same interval. This produces a

set of 216 classes with varying spectral separability

among them. The normalized density function of each

class is obtained according to Eq. (4). In each class, a

pixel-centered window is considered. This window is

systematically incremented from 1� 1 to 23� 23 pixels.

The distance between the density function of this
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window and the one from each other class is derived

(Eq. (6)). A pixel-centered window is classified into a

class where this distance is the least. The precision of

classification is calculated for each window size. The best

window is the one yielding the highest precision. Table 1

condenses this model of spectral separability. In this

model, the following is observed:

(i) Whenever the separability is complete, the max-

imum precision is obtained using a per-pixel

classification, i.e. a 1� 1 pixel window.

(ii) Classes with similar separability have a similar

window size for classification.

(iii) An inverse relationship exists between the separ-

ability of the classes and the best window size.

The overall block diagram of the classifier is given in

Fig. 1. According to this, the details of the classifier

algorithm are the following:

(i) Let gðrÞ be the image to be classified. The bands

selected for classification are loaded into RAM

memory. Decorrelated bands resulting from prin-

cipal component analysis are usually employed in

this step.

(ii) Pixels are seeded in selected places of each spectral

class defined for segmentation. Let x � fa; b; :::; ug
be the set of spectral classes.

(iii) The best window is derived for each class

according to Eq. (5). Let Z � fva; vb; ::; vug be the

set of windows.

(iv) On the grounds of the region-growth algorithm,

the normalized density function Sj
vj
ðiÞ for each

training set is obtained 8jAx:
(v) A matrix of the average of density functions for a

pair of classes is constructed. Let StsðiÞ be the

elements of such a matrix for any two spectral

classes t and s; 8tas: The function StsðiÞ is named

as the density function of a border formed by a

pair of distinct classes.

(vi) The distance dab ¼
P

i S
a
va
ðiÞ 	Sb

vb
ðiÞ

��� ���; 8aabAx
is obtained as a function of class window vi;
8viAZ: For classification, the best window v is

obtained from Table 1 using d ¼ min½dab�;
8aabAx:

(vii) For every pixel pkl to be classified, the normalized

density function Skl
v ðiÞ is generated, where (k; l)

are the coordinates of the pixel in the image: r ¼
ðk; lÞ; and v is the best window obtained in step

(vi).

(viii) A pixel pkl of the multi-spectral image is classified

according to the following procedure:

(a) The distance between the density function Skl
v ðiÞ of

the pixel-centered window and the density function

of the classes Sj
vj
ðiÞ is calculated

d
j
kl ¼

X
i

Skl
v ðiÞ 	Sj

vj
ðiÞ

��� ���; 8k; lAg; l ¼ 8jAx:

ð10Þ

(b) The distance between the density function Skl
v ðiÞ of

the pixel-centered window and the density function

of the pair of classes StsðiÞ is calculated

dts
kl ¼

X
i

Skl
v ðiÞ 	StsðiÞ

�� ��; 8k; lAg; 8ðt; sÞAx:

ð11Þ

(c) The distances d
j
kl and dts

kl are sorted out by value.

Let d ¼ fd
j
kl ; dts

klgv be the ordered set of such

distances.

Table 1

Separability as a function of window size

Window Separability Window Separability Window Separability

1 1.9997–2.0000 7 1.1606–1.6299 17 0.3406–0.3746

3 1.9187–1.9997 11 0.6772–1.1606 21 0.2293–0.3405

5 1.6299–1.9186 15 0.3746–0.6771 23 0.2193–0.2293

Determine the 
number of classes 

⇒ Seed a pixel signaling 
each class 

⇒ Perform the region-growth 
algorithm from seeded pixels 

⇒

From the grown regions, 
determine  for each 
class and for each pair of 
classes

)(ij
v ⇒

Determine class 
pixels and border 
pixels 

⇒
Encode class pixels and border 
pixels to produce a final 
classification 

Fig. 1. Block diagram of contextual classifier.
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(d) If min fd
j
kl ; dts

klgv; is a distance to a border, a new

window v0 for pkl is considered. The size of this

window is the one providing the best separability

(Table 1) between the density function of such

border and the density function corresponding to

the second smallest distance of d:
(e) A new set of distances d0 ¼ fd

j
kl ; dts

klgv0 is calculated

for v0: If minfd
j
kl ; dts

klgv0 is a distance to the border

found in step (d), then pkl-border:
(f) If minfd

j
kl ; d

ts
klgv is the distance to a class t; then

pkl-class t:
(g) If pkl-border, its average density function is

considered. Let this border be the one formed by

classes q and r. The following distances are

calculated:

dl
kl ¼

X
i

Skl
v ðiÞ 	Sl

vðiÞ
�� ��; 8k; lAg; l ¼ ðq; rÞAx: ð12Þ

Then pkl is labeled as border-class q if d
q
kl ¼ minfdl

klg;
l ¼ ðq; rÞAx:
This algorithm generates a segmentation of the image

in classes and borders. The encoding of class pixels and

border pixels produces a final classification of the image

as shown in Section 4. This algorithm is not computa-

tionally demanding: the density functions and the

images are loaded into the RAM memory, the whole

procedure for the multi-spectral classification presented

in this research takes approximately 2min on a Pentium

IV @ 700MHz. The following section describes the test

images used in the classifier.

3. Test images

Two types of examples are presented in this paper.

These examples are worked out on the grounds of:

(a) A set of two synthetic images (Figs. 2a and 3a) with

well-known statistical parameters for each class.

These synthetic images are single band and contain

five (Fig. 2a) and three (Fig. 3a) barely discernible

classes. The class separation, in both images, is five

gray levels between means. In Fig. 2a, each class

has a variance of 11.26. In Fig. 3a, each class has a

variance of 24.92. The dimension of these images is

128� 128 and 96� 96 pixels, respectively. The

density function of the classes in both the images

is Gaussian-like. Fig. 2a shows an image with low

content of noise: snr=7.9586 dB. Fig. 3a depicts a

relatively high level of noise: snr=0.3719 dB. The

formula to calculate the noise is

snr ¼
1

NC 	 1

XNC

i¼1

20log
miþ1 	 mi

s

h i
; ð13Þ

where NC is the number of classes, mi and s are the

mean and the standard deviation of the classes,

Fig. 2. (a) Synthetic image with five classes and signal-to-noise ratio of 7.9586 dB, (b) border pixels of synthetic image depicted in

Fig. 2a, (c) encoding of border pixel and class pixels of the synthetic image depicted in Fig. 2a.

Fig. 3. (a) Synthetic image with three classes and signal-to-noise ratio of 0.3719 dB, (b) border pixels of the synthetic image depicted in

Fig. 3a, (3) encoding of border pixel and class pixels of synthetic image depicted in Fig. 3a.
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respectively. The means are sorted by the value:

miþ1Xmi:
(b) A satellite SPOT multi-spectral (Fig. 4a) image.

The dimension of this image is 512� 512 pixels,

covering a region of Central M!exico. This image is

not geocoded.

4. Results and discussion

Results are organized in two categories: for the

synthetic images final results are provided. For the

SPOT image full details are given.

The synthetic images are considered an extreme case

to test the validity of the classification scheme. Fig. 2b

shows the border pixels of Fig. 2a, while Fig. 2c shows

the encoding of class and border pixels with the final

segmentation achieved. The finite size of the window

employed in this process reduces the size of the images

by ðvF1Þ=2 pixels per side. The border pixels and the

segmentation achieved for Fig. 3a are presented in

Fig. 3b and 3c, respectively. The high content of noise

in Fig. 3a produces a less precise segmentation than in

Fig. 2a. The synthetic nature of the images used in this

work allows a quick quantification of the classification

accuracy. The region of the image occupied by each class

is well known. The confusion matrices related to the

segmentation of Figs. 2a and 3a are given in Tables 2

and 3. From these matrices, the k coefficient is easily

calculated (Landis and Koch, 1977; Smits et al., 1999).

For Fig. 2a, k is 0.8586, and for Fig. 3a, it is 0.7937.

The second example deals with a multi-spectral SPOT

image covering a region of Central M!exico. A principal

component analysis was applied to this image, only the

first two components were retained for the classification

process.

By visual inspection on this image, and with the help

of ancillary data, six pixels were seeded signaling six

spectral classes. Fig. 4a shows the region growth for the

six classes overlain with an RGB color composite of the

image. The color composite is, [RGB]=[Principal

component 1, Principal component 2, Band 3]. These

regions define the training fields for the spectral classes.

From upper left in Fig. 4a, and going in clockwise

direction, the classes defined in the classification process

are: shadows, soil/herbage, microphylum thicket, oak/

pine woods, river bed/herbage, and submontane thicket/

oak. The distance (Eq. (6)) among the density functions

of the regions measures the separability matrix of such

classes. This separability matrix is shown in Table 4. The

least separability in Table 4 is 1.8028; therefore, based

on the values of Table 1, this classification was

performed using a window of 5� 5 pixels. To classify

the border pixels, the distance among the pair of classes

is calculated. The least separability in Table 5 is 0.9014;

therefore, based on the values of Table 1, this classifica-

tion is performed using a window of 11� 11 pixels.

Fig. 4. (a) RGB composite of SPOT image overlain with training fields defined by region-growth, (b) RGB composite of the SPOT

image overlain with borders of spectral classes defined in classification process.
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The classification procedure generates a segmentation of

the multi-spectral image. Fig. 4b shows the result of the

segmentation once the class and border pixels are encoded.

The overlay of the RGB composite plus the border of the

regions (Fig. 4b) shows a precise segmentation of the

spectral classes defined in this process. The evaluation of

the goodness of this segmentation is as follows:

(i) A visual inspection of the overlay of the class

borders to the RGB composite. This inspection

shows a precise segmentation of the image accord-

ing to the classes defined.

(ii) A verification of each region growth with ancillary

data. The ancillary data was used to corroborate

that each region contains the class signaled by the

seed pixels. The resulting classification map was

also corroborated with ancillary data.

(iii) A comparison of the k coefficient for the contextual

vs. a per-pixel classification (Richards and Jia,

1999). The k coefficient is calculated from the

confusion matrix resulting from the contextual

classification process (Table 6). The value of the k
coefficient is 0.98823. On the other hand, using the

grown regions as training sets as input to a per-

pixel classifier, the first two principal components

of the SPOT image were classified into six classes.

A mode filter employing windows of 5� 5 and

7� 7 pixels was applied to this classification. The

resulting k coefficient for this set of images is:

0.81198 for no filter, 0.91169 for the 5� 5 filter, and

0.93382 for the 7� 7 filter. Increasing the size of the

window in the mode filter did not bring a significant

improvement to the k coefficient. The contextual

classification was performed with a window of 5� 5

pixels. The spatial detail achieved in this classifica-

tion is comparable with that obtained from the per-

pixel classifier employing a mode filter of 5� 5

pixels.

Table 2

Confusion matrix of classification for synthetic image 1

Class 1 2 3 4 5 Region size (pixels)

1 1862 175 73 43 49 2202

2 76 3410 133 104 41 3764

3 62 178 2710 86 20 3056

4 33 48 85 2556 58 2780

5 13 41 80 94 1426 1654

Total 2046 3852 3081 2883 1594 13456

k Coefficient: 0.8586.

Table 3

Confusion matrix of classification for synthetic image 2

Class 1 2 3 4 5 6 Region size (pixels)

1 6436 158 189 0 0 0 6783

2 253 6367 47 42 0 0 6709

3 100 57 7189 222 81 0 7649

4 0 227 127 7045 161 75 7635

5 0 0 94 23 6543 167 6827

6 0 0 0 43 239 6461 6743

k Coefficient: 0.7973.

Table 4

Distance among the class density functions in SPOT image

Class 1 2 3 4 5 6

1 0.0000 2.0000 2.0000 2.0000 1.9895 1.8028

2 2.0000 0.0000 1.8359 1.9873 2.0000 2.0000

3 2.0000 1.8359 0.0000 1.8931 1.9499 1.9919

4 2.0000 1.9873 1.8931 0.0000 2.0000 2.0000

5 1.9895 2.0000 1.9499 2.0000 0.0000 1.9925

6 1.8028 2.0000 1.9919 2.0000 1.9925 0.0000
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5. Conclusions

A new contextual classifier based upon an automated

region-growth algorithm has been developed and tested.

This algorithm provides valid statistical samples of

defined classes as input into a contextual spectral

classifier. Even though the grown regions do not encircle

pure spectral objects, the resulting classification is better

compared to the one from a per-pixel classifier. The

contextual classifier is semi-automatic, embracing only

two parameters derived from heuristic criteria. More

work is needed regarding the estimation of these

parameters though. In order to avoid the heuristic

determination of their value, a model-based approach

may be adequate. The best location to seed the initial

pixels for region growth requires some attention too.

The classification and growth of the regions are

performed employing best windows for each class. No a

priori assumptions are made concerning the density

functions of the classes. This is a basic premise since,

based on experimentation, in a multi-spectral image

some classes show a Gaussian behavior and some a

Rayleigh behavior. A classifier is prone to produce

wrong classification results whenever a particular

density function is assumed and the image classes

show a different statistical behavior. The synthetic

images have a set of classes barely discernible due

to the noise content. However, the contextual classifier

produces good results, generating segmentation

where the classes are clearly differentiated. The classi-

fication results concerning the SPOT image are good as

well. The k coefficient shows a greater spectral separ-

ability of the contextual classifier compared to a per-

pixel classifier. Our contextual classifier performs well

for multi-spectral images; a direct application might be

in the classification of satellite images for remote sensing

of the environment. The classification results in our

classifier show a k coefficient competitive with any other

contextual classifier. Finally, the rationale of classifica-

tion presented in this work is of general nature and

might be adapted to new models of texture and spectral

separability.

Table 5

Distance among pair of classes and class density functions in SPOT image

Class, Class pair 1 2 3 4 5 6

1,2 1.0000 1.0000 1.8887 1.9875 1.9948 1.8773

1,3 1.0000 1.8913 1.0000 1.9204 1.9697 1.8701

1,4 1.0000 1.9936 1.9262 1.0000 1.9948 1.8773

1,5 0.9948 2.0000 1.9504 2.0000 0.9948 1.8710

1,6 0.9014 2.0000 1.9960 1.9078 1.9910 0.9014

2,3 2.0000 0.9180 0.9180 0.9936 1.9749 1.9928

2,4 2.0000 0.9936 1.8148 1.9875 2.0000 2.0000

2,5 1.9895 1.0000 1.8391 1.9875 1.0000 1.9925

2,6 1.8507 1.0000 1.8846 1.9875 1.9963 1.0000

3,4 2.0000 1.8849 0.9466 0.9466 1.9749 1.9928

3,5 1.9895 1.8913 0.9749 1.9204 0.9749 1.9882

3,6 1.8507 1.8913 0.9960 1.9204 1.9712 0.9960

4,5 1.9895 1.9936 1.8766 1.0000 1.0000 1.9925

4,6 1.8507 1.9936 1.9222 1.0000 1.9963 1.0000

5,6 1.8407 2.0000 1.9478 2.0000 0.9963 0.9963

Table 6

Confusion matrix for classification of SPOT image

Class 1 2 3 4 5 6 Region size (pixels)

1 730 0 0 0 18 15 763

2 0 199 6 0 0 0 205

3 0 0 918 0 0 0 918

4 0 0 13 772 0 0 785

5 0 0 0 0 122 0 122

6 0 0 0 0 1 3475 3476

Total 730 199 937 772 141 3490 6269

k Coefficient: 0.98823

k Coefficient: 0.98823.
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