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We introduce a data-analysis framework and perfor-
mance metrics for evaluating and optimizing the in-
teraction between activation tasks, experimental de-
signs, and the methodological choices and tools for
data acquisition, preprocessing, data analysis, and ex-
traction of statistical parametric maps (SPMs). Our
NPAIRS (nonparametric prediction, activation, influ-
ence, and reproducibility resampling) framework pro-
vides an alternative to simulations and ROC curves by
using real PET and fMRI data sets to examine the
relationship between prediction accuracy and the sig-
nal-to-noise ratios (SNRs) associated with reproduc-
ible SPMs. Using cross-validation resampling we plot
training–test set predictions of the experimental de-
sign variables (e.g., brain-state labels) versus repro-
ducibility SNR metrics for the associated SPMs. We
demonstrate the utility of this framework across the
wide range of performance metrics obtained from
[15O]water PET studies of 12 age- and sex-matched
data sets performing different motor tasks (8 subjects/
set). For the 12 data sets we apply NPAIRS with both
univariate and multivariate data-analysis approaches
to: (1) demonstrate that this framework may be used to
obtain reproducible SPMs from any data-analysis ap-
proach on a common Z-score scale (rSPM{Z}); (2) dem-
onstrate that the histogram of a rSPM{Z} image may
be modeled as the sum of a data-analysis-dependent
noise distribution and a task-dependent, Gaussian sig-
nal distribution that scales monotonically with our
reproducibility performance metric; (3) explore the
relation between prediction and reproducibility per-
formance metrics with an emphasis on bias-variance
tradeoffs for flexible, multivariate models; and (4)
measure the broad range of reproducibility SNRs
and the significant influence of individual subjects.
A companion paper describes learning curves for
four of these 12 data sets, which describe an alter-
native mutual-information prediction metric and
NPAIRS reproducibility as a function of training-set
sizes from 2 to 18 subjects. We propose the NPAIRS
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INTRODUCTION

A wide range of techniques and software tools has
become available with which to process functional neu-
roimaging data sets. To date this has not been accom-
panied by the development of a similarly wide range of
performance metrics or benchmark data sets with
which to evaluate and compare the tools. Moreover,
activation patterns obtained from functional neuroim-
aging studies reflect interactions among a complicated
“data chain” of experimental decisions involving the
activation task, a wide range of experimental design
parameters, and a series of methodological choices in-
cluding data acquisition, postacquisition processing,
and data-analysis model selection. Many researchers
focus on extracting “neuroscientifically relevant” re-
sults from their data sets, sometimes based on their
ability to test explicit hypotheses. However, this is
typically done without attempting to optimize and/or
understand the relative influence of the experimental
design and methodological choices that were made in
obtaining the data. The generation of a “plausible re-
sult” that can be “linked” to the neuroscientific litera-
ture, perhaps through a hypothesis, is often taken as
justification of the choices made, providing a system-
atic bias in the field toward prevailing neuroscientific
expectations. Strother et al. (1995a) have noted that,
“the fact that a data-analytic model can be used to
produce regions that may be involved in a particular
cognitive process or disease state does not constitute suf-
ficient evidence for preferentially selecting that data-
analytic model,” and recently Skudlarski et al. (1999)
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driven result bias due to the “arbitrariness of the choice of
data-analytic strategies.”

We certainly do not advocate ignoring the existing
neuroscientific knowledge base, but both its implicit
and its explicit use needs to be balanced against a
concerted effort to define and test the basic validity of
the wide range of experimental and methodological
techniques used in functional neuroimaging. Our ap-
proach to this problem is guided by the rapidly devel-
oping field of predictive learning in statistics (e.g.,
Friedman, 1994; Larsen and Hansen, 1997; Ripley,
1998). We propose that the “validity or quality” of
functional neuroimaging results, and the experimental
and methodological choices made in obtaining them,
should be established by quantitatively measuring and
optimizing performance metrics. Our goal is to opti-
mize the ability of the “functional-neuroimaging data
chain” to produce data-analytic model parameters, in-
cluding statistical parametric maps (SPMs) from a
training data set that (1) can accurately predict the
values of experimental design parameters (e.g., brain-
state labels, performance measures) in an independent
test data set and (2) can also reliably reproduce the
SPM image parameters in the same test data set. Such
validity defined as optimal prediction accuracy and
SPM reproducibility in a test data set is not guaran-
teed by inferential statistical procedures even when all
of the underlying model assumptions are true, unless
we have asymptotically large data sets, something that
is far from satisfied in functional neuroimaging exper-
iments.

This problem with inferential statistical procedures
occurs because they typically focus on obtaining max-
imum likelihood (ML) parameter estimates, which only
asymptotically approach normal, unbiased estimates
with minimum variance, and for small to moderate
sample sizes such estimates are not “efficient” (Papou-
lis, 1991; Ripley, 1996). This means that for moderate
sample sizes there are other estimation procedures
that have smaller parameter variance than the ML
estimates although these other procedures’ parameters
converge to biased estimates of the true population
values asymptotically, i.e., for real finite data sets
there is a bias–variance tradeoff to be considered. This
phenomenon is seen in t values which are themselves
model parameter estimates subject to sampling noise
(Holmes et al., 1996; Svarer et al., 1997). As a result
there is evidence that using biased, but more efficient,
pooled-variance estimates of t values (i.e., scaled mean-
difference SPMs) produces more reproducible SPMs
with a better detection signal-to-noise ratio (SNR) than
those obtained with single-voxel variance estimates
(Strother et al., 1998, and Section 4d, Petersson et al.,
1999b). In addition, for prediction metrics Mørch et al.
(1997) have shown that even though a nonlinear model
may have better performance given enough data (i.e.,
asymptotically), for small data sets the nonlinear

model may be outperformed by a more biased linear
model, leading to so-called “crossed learning curves”
(see also Kjems et al., 2002). Parameter estimation,
particularly in finite, high-dimensional (i.e., imaging)
data sets, requires choosing a bias–variance tradeoff,
which may not be optimized using inferential esti-
mates based on maximum likelihood techniques. As a
result resampling procedures, such as nonparametric
prediction, activation, influence, and reproducibility
resampling (NPAIRS), may be essential for optimizing
the functional neuroimaging chain because they pro-
vide insight into the bias–variance tradeoffs being
made in real, finite data sets.

Many studies have been performed on components of
the functional neuroimaging data chain, but it is some-
times difficult to utilize this literature given a new task
and experimental design because it may be unclear
which results are directly applicable from these earlier
studies. In [15O]water PET there has been work on the
experimental design issues of group size and its influ-
ence on statistical power (e.g., Grabowski et al., 1996;
VanHorn et al., 1998; Strother et al., 1998; Petersson et
al., 1999b), with attempts to use meta-analysis to iden-
tify important factors that influence published PET
results (Gold et al., 1997). Unfortunately, such studies
have been somewhat limited by the widespread use of
a small set of methodological and statistical choices
from within the “SPM” software package (http://www.
fil.ion.ucl.ac.uk/spm/). The use of a pluralistic data-
analytic modeling strategy in PET (e.g., Strother et al.,
1995b, 1998; Muley et al., 2001) and in fMRI (e.g.,
Lange et al., 1999; Tegeler et al., 1999), with the ex-
tension to consensus activation patterns from multiple
models proposed by Hansen et al. (2001), represents
one approach to overcoming such model-dependent bi-
ases. When this pluralistic strategy is combined with
“learning curves”—plots of prediction performance as a
function of training-set size—and the activation-pat-
tern reproducibility metrics outlined in this paper, a
powerful framework for tuning and testing the func-
tional neuroimaging chain is obtained. In particular,
this framework, with its emphasis on tuning adaptive,
data-driven models, demonstrates that the method-
ological choices should be optimized for the task, mo-
dality, methodology, and amount of available data
(e.g., Mørch et al., 1997; Somorjai et al., 2001; Kjems et
al., 2002).

Another approach for testing the validity of choices
in the functional neuroimaging chain is the use of
signal-detection tools like receiver operating character-
istic (ROC) techniques (e.g., Skudlarski et al., 1999),
which may be part of a pluralistic framework (Lange et
al., 1999). However, unless we assume we are dealing
with known brain states (e.g., normal and disease,
Liow et al., 2000) ROC curves require simulations of
“true” spatial neuroimage signal and noise patterns,
and thereby introduce their own collection of assump-
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tions and biases that can be difficult to identify and
evaluate.

Within the functional neuroimaging literature it is
striking that there are few comparisons across multi-
ple tasks (e.g., Petersen et al., 1998) that might allow
the general features of real spatial activation patterns
to be characterized to design better simulations for
ROC studies. To our knowledge there are no studies
that systematically compare multiple tasks across ex-
perimental design and methodological choices, includ-
ing multivariate and univariate data-analysis models.
We believe that this is a critical issue, for the most
generally important experimental design and method-
ological choices are likely to be those that retain their
influence across a wide range of tasks. Multitask com-
parisons may also be important to quantify and explore
the observation that activation signals in “higher or-
der” tasks using nonprimary regions are weaker than
those from primary-sensory tasks (e.g., Xiong et al.,
1996), an issue that does not seem to have been sys-
tematically studied.

In this paper and a companion paper (Kjems et al.,
2002), we study data-analysis performance metrics in
real PET data sets, as an alternative to using ROC
curves based on simulated data. In this work we intro-
duce a specific resampling framework we have labeled
NPAIRS that extends the idea of measuring prediction
accuracy using training–test-set resampling to include
activation-pattern reproducibility metrics and subject
influence (see http://neurovia.umn.edu/incweb/npairs_
info.html for NPAIRS software and documentation).
For both univariate and multivariate data analysis
models we (1) demonstrate that our resampling frame-
work may be used to directly measure reproducible
activation signal-to-noise ratios from multiple models
on a common Z-score scale (rSPM{Z}); (2) demonstrate
that the histogram of a rSPM{Z} image volume may be
modeled as the sum of a data-analysis-dependent noise
distribution and a task-dependent, Gaussian signal
distribution that scales monotonically with our repro-
ducibility performance metric; (3) explore the relation
between prediction accuracy and pattern reproducibil-
ity with an emphasis on bias–variance tradeoffs for
flexible, multivariate models; and (4) apply NPAIRS to
12 diverse motor data sets to quantitatively measure
their broad spread of reproducibility signal-to-noise
ratios and the influence of individual subjects on the
results.

THEORY

Testing Models with Cross-validation Resampling

The cross-validation resampling procedure for build-
ing unbiased data-analysis models that are well
adapted to the available data, D, is illustrated in Fig. 1
(e.g., Stone, 1974; Hansen et al., 1990; Efron and Tib-

shirani, 1993, 1997; Ripley, 1998). The basic idea is to
split the data into independent training and test sets
and to use these to test that the model, number of
parameters, and estimation techniques being used are
as consistent as possible with predictions about D
while avoiding excessive model bias or variance as a
result of estimating too few or too many parameters,
respectively, given the available data. Moreover, if the
assumptions associated with the model parameters es-
timated in the training set are badly mismatched to the
data this will be reflected as poor prediction accuracy
in the test set. We examine selecting the combination
of model and methodology with the highest prediction
accuracy (or lowest prediction error) demonstrating
that it is the “best” representation of those choices
tested for the experimental design and finite data set
represented by D (see Mørch et al., 1996, 1997, 1998;
Hansen et al., 1999; Kustra, 2000; Ngan et al., 2000;
McKeown, 2000; Kustra and Strother, 2001). In addi-
tion, as the end goal of our functional neuroimaging
experiments is not primarily to build a predictive
model of the design matrix, we also focus on the extent
to which optimizing prediction accuracy is associated
with optimized reproducibility metrics and the signal
to noise of the reproducible SPMs that we wish to
interpret. Our approach directly addresses the problem
discussed by Petersson et al. (1999a) of choosing be-
tween “. . . including all conceivable explanation vari-
ables (effects), and parsimony, using the smallest num-
ber of effects to form an adequate model.”

Resampling Choices

A variety of cross-validation resampling schemes are
possible based on K-fold resampling: (1) for N indepen-
dent observations, split the data into K roughly equal-
sized data sets; (2) at the kth resampling step fit the
model to a training set composed of (K � 1) data sets
without the kth set, which is used as a test set to
calculate prediction errors for the fitted model; (3) re-
peat steps 1 and 2 for k � 1, . . . , K (Efron and Tib-
shirani, 1993). There are no general rules for optimally
choosing the K-fold resampling scheme for any partic-
ular data-analysis problem (Larsen and Goutte, 1999).
At one extreme is twofold cross-validation resampling
through to the other extreme of N-fold resampling,
which are related to delete-d (d � N/2) and leave-one-
out jackknife (d � 1) resampling techniques, respec-
tively. N-fold cross-validation and leave-one-out jack-
knife each generate N resampling estimates, but
twofold cross-validation provides only two estimates
while delete-N/2 jackknife generates NCN/2. We shall
refer to the process of repeatedly applying twofold
cross-validation with different data splits for up to
NCN/2 training and test sets as “split-half resampling.”
Although theoretically related to jackknife estimates
cross-validation prediction estimates are obtained as
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averages of parameters from the “left-out” test-set
data, while jackknife estimates are based on averages
of model parameter estimates from the training-set
data (Efron, 1982). We may directly obtain jackknifed
estimates of prediction errors, but this requires two
levels of resampling with cross-validation resampling
of each of the N jackknifed data sets of (N � 1) obser-
vations. As the jackknife may be thought of as a linear
approximation to the bootstrap it is probably prefera-
ble to consider the more efficient bootstrap estimates of
prediction errors (Efron and Tibshirani, 1993). In this
regard a technique that is related to two- and threefold
cross-validation resampling is “leave-one-out boot-
strap,” in which bootstrap resampling with replace-
ment is used to choose training and test sets that on
average contain about 0.63N and 0.37N independent

observations, respectively (Efron and Tibshirani,
1997); this has been explored recently in a functional
neuroimaging context by Kustra and Strother (2001).
All of the preceding techniques focus on the goal of
obtaining efficient unbiased prediction error estimates
for N observations.

In contrast, for NPAIRS we have chosen split-half
resampling because we wish to optimize our reproduc-
ibility measurements by comparing SPMs from the
largest independent groups possible. This split-half re-
sampling choice maximizes the power of each of the
independent-group data analyses (i.e., equal-sized
training and test sets) while ensuring that their inde-
pendent error estimates may be directly compared
without dealing with bias due to different group sizes.
We have adopted this unconventional resampling pro-

FIG. 1. Measuring the performance of data-analysis models with prediction metrics requires repeatedly splitting the data set (purple)
into training (green) and test sets (blue) using cross-validation resampling. Model parameters are then estimated in the training set and used
to predict the experimental “design matrix” values (e.g., scan state labels, covariates, etc.) in the independent test set (red). The predictions
are then compared to the known design matrix values in the test set using one or more prediction error (accuracy) cost functions.
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cedure because we believe that metrics for both predic-
tion accuracy and activation pattern reproducibility
are critical in functional neuroimaging. While predic-
tion measurements are unbiased against the assumed
truth of the experimental design, they do not directly
address the quality of the SPM on which the experi-
mental interpretation is often based. On the other
hand, reproducibility measurements directly reflect
the reliability and SNR of the SPM measurements, but
may contain a significant undetectable bias (i.e., they
reflect only SPM variance) because we do not know the
true activation pattern.

Prediction Accuracy with Split-Half Resampling

We chose subjects as our basic resampling unit to
ensure that the resampled observations were indepen-
dent. Using this resampling scheme prediction accu-
racy was obtained between training and test sets for a
given split; set designations were swapped and a sec-
ond prediction accuracy measure was obtained and this
was repeated for NCN/2/2 data splits, where N is the
number of subjects per data set. The 35 splits available
from each of our eight-subject data sets provided 70
split-half resampling measurements of the prediction
accuracy, p, which were summarized by their median
( p̃) to avoid sensitivity to outlying p values from influ-
ential subjects in individual splits.

Because we are using only half of our data for our
training set the resulting prediction error estimates
will be larger than estimates for training sets of size
(N � 1) in N-fold cross-validation. Prediction errors are
larger for split-half resampling because they decrease
monotonically as a function of training-set size, form-
ing a learning curve (e.g., Mørch et al., 1997, 1998). In
addition, if we use our estimates of test-set prediction
accuracy to optimize model output (e.g., by adjusting
hyperparameters) they will be biased upward—predic-
tion errors are underestimated—compared to the pre-
diction estimates that would be obtained from a third
independent validation data set. When unbiased pre-
diction estimates are required a double-resampling
procedure should be used in which the training set is
split into learning and validation sets and cross-vali-
dation is used within each training set for model opti-
mization (Friedman, 1994; Cherkassky and Mulier,
1998). We have chosen not to use such a double re-
sampling technique because we are primarily inter-
ested in the relative, not the absolute values of our
prediction estimates. Moreover, the two sources of bias
in our prediction accuracy estimates counteract each
other and resampling within our small split-half four-
subject groups would be computationally very expen-
sive and would generate very noisy estimates—we
chose a small amount of bias over very noisy estimates.
However, if necessary we could adjust for the bias in

our prediction estimates using an approach based on
the 0.632� adjustment proposed by Efron and Tib-
shirani et al. (1997) and used in Kustra and Strother
(2001) for leave-one-out bootstrap resampling.

A Reproducibility Metric with Split-Half Resampling

Figure 2 illustrates the use of split-half resampling
with eight-subject data sets to generate reproducibility
histograms. These are based on the Pearson product
correlation coefficient (r) of the scatter plots of the
resulting pairs of independent statistical parametric
maps. The NCN/2/2 r values from the data splits are
then displayed as a histogram, which may be further
summarized by its median (r̃) to avoid sensitivity to
outlying r values from influential subjects in individual
splits. It is equally feasible to randomly choose split-
half group sizes from 1, . . . , N/2 and examine repro-
ducibility as a function of the number of subjects, a
reproducibility learning curve (Strother et al., 1998,
2000; Kjems et al., 2002). When resampling SPMs in
multivariate models (e.g., eigenimages from canonical
variables analysis (CVA) and principal component
analysis (PCA)) we must allow for the fact that these
SPMs are defined only up to an arbitrary sign, which
will result in both positive and negative r values when
the SPMs are compared for independent groups of N/2
subjects. To avoid this in the PCA/CVA used in this
study we perform a single analysis of all N subjects and
use the resulting canonical coordinates (cc; Eq. (12),
Appendix) as a reference set to determine if individual
canonical dimensions from a single N/2-subject train-
ing set should be (1) reordered—the ith dimension of
the training set may be most highly correlated with the
jth ( j � i) dimension of the reference set—and/or (2)
reflected—the signs of the training-set cc’s (and the
associated canonical eigenimages) may be switched to
ensure positive correlations with all reference set di-
mensions. This procedure represents a modified ver-
sion of the reference set “filtering” for singular value
decomposition (or PCA) with a parametric bootstrap,
outlined by Milan and Whittaker (1995).

A Model-Independent, Reproducibility Signal-to-Noise
Ratio for Activation Patterns

For each of the split-half scatter plots illustrated in
Fig. 3 the result of a PCA of the associated two-dimen-
sional correlation matrix is given by
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where the two independent SPMs being compared
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have been normalized by their whole-brain standard
deviations (SD). Each point in the scatter plot corre-
sponds to a brain location in Talairach space and is
defined by the two independent SPM values obtained
from a pair of split-half data sets. Equation (1) demon-
strates that a PCA of this scatter plot will produce a
principal axis along the line of identity (i.e., direction
cosine � 1/�2) with variance of (1 � r) and an uncor-
related minor axis with variance (1 � r) for r � [0, 1].
If the two normalized SPMs are very similar with low
noise the principal-axis variance is �2 with minor axis
variance �0, and the scatter plot will be a long thin
ellipse along the line of identity. Alternatively, if the
two SPMs contain only symmetric noise and no repro-
ducing signal structure (i.e., r � 0) the variances along
the principal and minor axes are equal, and the scatter
plot will be a circular disk centered on the origin (Fig.
3A). Thus the PCA eigenvalue ratio (1 � r)/(1 � r)
provides a global summary of the reproducibility SNR
with a range of [1, �), and r represents a monotonic
mapping of this range onto [0, 1].

Let the two vectors of statistic values for the inde-
pendent, normalized SPMs from a given split be z1 and
z2, then projection onto the major and minor axes is
equivalent to forming (z1 � z2)/�2 and (z1 � z2)/�2,
respectively (personal communication, anonymous re-
viewer). This viewpoint makes it clear that signal and
noise estimates may be readily obtained from individ-
ual voxels and regions of interest. The use of projec-
tions within the PCA framework emphasizes (1) the
scatter plot as a visualization tool closely related to the
reproducibility SNR provided by the PCA eigenvalue
ratio, (2) that the SPMs being compared may be nor-

malized differently or perhaps not at all, (3) the intui-
tive geometric extension to PCA of three or more inde-
pendent samples outlined in Tegeler et al. (1999), and
(4) that the underlying general problem is one of sum-
marizing the structure of the joint density represented
by an n-dimensional scatter plot, so that we may re-
place correlations with, for example, mutual informa-
tion (Papoulis, 1991) and PCA with any other tech-
nique for modeling the joint density distribution. The
large literature on outliers in multivariate data is ap-
plicable here, with alternate techniques being robust
PCA and robust estimation of the correlation coeffi-
cient for bivariate data with outlier identification (e.g.
see Chapter 7 of Barnett and Lewis, 1994).

The following theory allows us to explore the quan-
titative relationship between the shape of our rescaled
signal histograms and our reproducibility performance
metric, r. Our intuition is that r will be quite sensitive
to the small number of potentially activated voxels
with the largest signal values that determine the struc-
ture of the histogram’s tails because the correlation
coefficient is based on squared signal (and noise) val-
ues. We will refer to the reproducible activation image,
s, obtained by projecting scatter-plot points onto the
principal axis as a reproducibility SPM (rSPM). Let the
activation-signal density function of rSPM across the
whole brain be a(s). After rescaling the signal axis by
the minor-axis SD, �1 � r, we may derive an analytic
relationship between our reproducibility metric, r, and
the spread of the tails of the rescaled rSPM histogram
as measured by its confidence intervals (CI1��), given
by

FIG. 2. Measuring the performance of data-analysis models with reproducibility metrics using repeated applications of twofold cross-
validation with different splits, i.e., split-half resampling. We illustrate the technique for a group of eight subjects (S1, . . . , S8) that may be
split into two independent groups of four subjects in 35 ways. For each of the 35 pairs of independent groups any data-analysis model can
be applied to produce two independent statistical parametric maps (SPMs). A pattern similarity measure (SM) is used to summarize the
reproducibility of the two SPMs using, for example, the correlation coefficient (r) of SPMs’ voxel values. The 35 r values are then plotted as
a “reproducibility histogram.”
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CI1�� � 	s1��/2 � s�/2
/�1 � r. (2)

We shall refer to the rescaled rSPM values of Eq. (2) as
rSPM{Z} as we find that the whole-brain noise distri-
bution obtained by projecting scatter-plot values onto
the minor PCA axis is often approximated by a Gauss-
ian, N(0, 1 � r) (see Fig. 3).

In addition to the simultaneous estimation of predic-
tion and reproducibility metrics, it is our rescaling
steps for each resampled, split-half pair of SPMs that
we believe make our approach unique compared to
other resampling estimates of the SPM voxel’s stan-
dard errors; first we rescale the SPMs themselves and
then we rescale the resulting reproducible SPM by the
uncorrelated noise SD. The same split-half groups
could also be used for standard error estimates with a

delete-N/2 jackknife technique. Such subsampling
techniques can help to make jackknife estimates for
nonsmooth statistics more efficient (Efron and Tib-
shirani, 1993; Politis, 1998). As a result of rescaling
rSPM by the uncorrelated noise estimate between in-
dependent sets of N/2 observations our approach may
have several advantages over delete-N/2 jackknife es-
timates because: (1) the final rSPM{Z} statistical im-
ages based on averaging the rSPM{Z}’s from each of the
resampled splits are weighted averages that will be
robust to outlying SPM voxel differences between par-
ticular split-half groups, (2) if the resampled observa-
tions (e.g., subjects) introduce significant random ef-
fects these will be explicitly included in the weighted
averaging, and (3) the final Gaussianized rSPM{Z}
may be tested using the large body of random field
theory techniques for both homogeneous and heteroge-
neous random fields that have been developed during
the past decade (Worsley et al., 1996, 1999).

Assume a(s) from the principal axis is also a Gauss-
ian distribution but with variance (1 � r) as in Eq. (1),
then from Eq. (2) we have

CI	Z
1�� � 	Z1��/2 � Z�/2
�1 � r

1 � r�
1/2

, (3)

where Z � N(0, 1). Using the series expansion ln{(1 �
r)/(1 � r)} � 2r � 2r3/3 � 2r5/5 for r2 � 1, we obtain

log	CI	Z
1��
 � log	2Z1��/2
 � 	log e
�r �
r3

3
�

r 5

5 � .

(4)

Equation (4) demonstrates that the shape of the repro-
ducible SPM histogram obtained by projecting scatter-
plot values onto the major PCA axis is composed of the
sum of a fixed noise distribution (intercept for r is 0)
and a Gaussian signal that scales approximately lin-
early with r. We are exploring generalizations of Eqs.
(3) and (4) to non-Gaussian distributions.

A Probabilistic Framework for Discriminant CVA

For a fuller description of the general framework for
probabilistic modeling in functional neuroimaging see
the companion paper by Kjems et al. (2002) and the
work of Mørch et al. (1997, 1998) and Hansen et al.
(1999). For a detailed description of the CVA data-
analysis framework and its close relation to MANOVA,
penalized discriminant analysis, canonical correlation
analysis, and partial least squares see, for example,
Nielsen et al. (1998), Kustra (2000), and Kustra and
Strother (2001). Examples of the use of this general
multivariate modeling framework in functional neuro-
imaging are found in Moeller and Strother (1991),

FIG. 3. The scatter plots used to compare independent SPMs and
generate reproducibility correlation coefficients (r; left) may also be
used to obtain reproducible signal and noise histograms (right). For
a single split-half resampling we illustrate comparison of eigenimage
SPMs from two-class canonical variate analysis of independent four-
subject groups for (A, B) a target interception task (TG-SP) with no
reproducibility (r � 0) and (C, D) a speech task (SP-PA) with rela-
tively high reproducibility (r � 0.5). (Left) Reproducible-signal (solid
line) and uncorrelated-noise (dotted line) axes from the principal
component analysis (PCA) of the scatter plot after normalizing each
SPM by its standard deviation (SD) and (right) reproducible-signal
(rSPM{Z}, thick solid line) and noise (dotted line) histograms from
projections of the scatter-plot voxel values onto the major and minor
PCA axes, respectively, with rescaling of both axes by the SD of the
noise-axis histogram to obtain Z scores. The rescaled noise histo-
gram is overplotted with a Gaussian �N(0, 1) (thin solid line).
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Clark et al. (1991), Azari et al. (1993), Friston et al.
(1995a, 1996), Fletcher et al. (1996), Bullmore et al.
(1996), Rottenberg et al. (1996), Strother et al.
(1995a,b, 1996), McIntosh et al. (1996, 1999), Worsley
et al. (1997), Tegeler et al. (1999), Moeller et al. (1999),
Frutiger et al. (2000), Muley et al. (2001).

Let x( j) represent a vector of stochastic variables
containing all voxel values from a single scan, j, and g( j)

be a stochastic vector of experimental design and other
(e.g., performance) variables associated with scan j �
1, . . . , J. We adopt this somewhat uncommon view of g
because we believe it represents the general functional
neuroimaging problem we are dealing with; namely
the relation between a rich and largely unknown mul-
tivariate set of stochastic variables describing the total
experimental environment and the neuroimages mea-
sured within that environment. This is the natural
viewpoint for flexible associative multivariate tech-
niques such as CCA, CVA, and PLS (e.g., McIntosh et
al., 1996; Frutiger et al., 2000; Kustra and Strother,
2001). For example, a stochastic g is appropriate when
(1) using behavioral performance measures, which are
inherently stochastic, or (2) when we view the data
analysis problem as one of estimating marginal distri-
butions within the joint density function of p(x, g), as
outlined below. Note that this view of g can incorporate
fixed effects as the special case of point density esti-
mates.

Using the nomenclature of the general linear model
(GLM; Friston et al., 1995b) we have a data matrix,

X � [x(1), . . . , x(J)], and a design matrix, G � [g(1), . . . ,
g(J)]. For a functional activation data set D � {(x( j), g( j))}
we would like to estimate the joint density function,
p�(x, g), using model parameters �, to completely char-
acterize D. We work with p(x�g;�), in the context of the
GLM, or p(g�x;�) in the context of CVA. It is not obvious
that either of these two marginal forms is to be pre-
ferred on mathematical grounds as they are both
closely related to the joint density as described by the
Bayes Theorem,

p	x, g
 � p	x�g
p	g
 � p	g�x
p	x
. (5)

For CVA we are interested in estimating p(g�x;�),
where g represents a scalar indicator or class variable
of the experimentally defined brain state for each scan,
x. From Eq. (5) we have

p	g�x
 �
p	x, g


p	x

�

p	n
p	c, g


p	n
p	c

, (6)

where c spans a signal subspace within x defined by
model parameters, �, such that p(x) � p(x��) �
p(n)p(c��) with p(n, g) � p(n); n is an independent
noise subspace that is factored out to obtain

p	g�x; �
 �
p	c, g��


�
g


p	c, g
��

�

1

C
p	c�g;�
p	g
, (7)

FIG. 4. From 35 split-half scatter plots we illustrate (A) the average reproducible-signal (solid colored lines) and average noise
histograms (dotted black lines) for two-class canonical variate analysis of 8-subject groups performing target interception (TG-SP; red), static
force (SF3; green), finger opposition (FO; orange), and speech (SP-PA; blue)—the signal and noise histograms were averaged following a
principal component analysis (PCA) of each scatter plot and projection of the normalized voxel values onto the PCA axes with rescaling of
both axes by the standard deviation of the noise-axis histogram. (B) A zoomed view of the positive tails of the signal and noise distributions
in A, showing the similar noise distributions and range of reproducible activation signals from the four tasks. The noise histograms in both
A and B are overplotted with a Gaussian �N(0, 1) (black solid line). The thick black horizontal bar marks the 99% confidence interval (C.I.)
of the average reproducible-signal histogram for the SF3 task.
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with C a constant computed to ensure that the poste-
rior probabilities add up to 1 (i.e., each scan must be
allocated to some class so that ¥g
 p(g
�x;�) � 1), and g

is a summation index across all classes, which includes
the true experimentally defined class, g, of scan, x.

Using Eq. (7) the CVA model parameters are esti-
mated from a “training” set of data (�tr) to define a
signal subspace spanned by ctr. Then �tr is used to
estimate the probability of the true class of “test” scans
(xte

( j)) that were not used to train the model, by project-
ing them onto ctr with CVA defining a probability den-
sity function. See the Appendix for the multivariate
Gaussian distribution obtained from training and test
sets for CVA in the form of Eq. 7. A simple prediction
accuracy estimate is obtained by rescaling and offset-
ting the posterior probability estimates of Eq. (7) to a
[0, 1] scale with

pn	g�x; �
 �
p	g�x; �
 � p	g


1 � p	g

(8)

and then averaging these normalized estimates of
group membership for all classes across all test scans
in each class, which we will write as (�pn(g�x;�)�te).
Without this rescaling, in the case of no true class
structure in x despite a distinct set of g
 in the exper-
imental design we have �p(g�x;�)�te � �p(g
)�g
, which is
equal to the “no information” situation that is obtained
by randomly guessing class membership independent
of x. It is more popular to work with the log-scale
prediction error metric ��log[p(g�x;�)]�te, known as the
deviance or log-loss generalization error (e.g., Heskes,
1998; Ripley, 1998). Kjems et al. (2002) use a rescaled
and offset version of generalization error, which is
equivalent to the mutual information between x and g
and directly interpretable as an information theory bit
rate. Such log-scale prediction metrics place a heavy
penalty on small posterior probability values for the
correct class. In order to retain an intuitive link with
the posterior probabilities of class membership, mea-
sure prediction accuracy on a bounded [0, 1] scale,
illustrate a different metric, and avoid problems with
outliers associated with log metrics we have chosen to
work with Eq. (8) in this study.

METHODS

Subjects

Fifty-seven normal right-handed volunteer subjects
(27 males, 37 � 8 years; 30 females, 37 � 9 years)
participated in 88 PET scanning sessions after written
informed consent was obtained in accordance with a
protocol approved by the Minneapolis VA Medical Cen-
ter’s Institutional Review Board. Subjects with a his-
tory of substance abuse or of a neurologic, medical, or

psychiatric disorder were eliminated from the subject
pool. Prior to PET scanning subjects underwent a com-
plete neurologic examination and were administered
the Edinburgh Handedness Inventory to verify right-
hand dominance (Oldfield, 1971). All female subjects of
child-bearing age had a prescan serum pregnancy test.

Data Acquisition, Preprocessing, and Quality Control

All PET scans were acquired with a Siemens ECAT
953B-31 scanner operating in its 3D mode (10.8-cm
axial field of view, with reconstructed in-plane and
axial resolution of 8.5 and 6 mm, respectively, on a
128 � 128 � 31-voxel grid with 3.125 � 3.125 � 3.375-
mm3 voxels). Infusion of a 13-mCi [15O]water bolus
initiated task or control trials, which were separated
by 7 to 10 min, and a 90-s scan was triggered when
radioactivity reached the brain. PET counts were cor-
rected for dead time, randoms, and attenuation and
were reconstructed using 3D filtered back-projection
(Strother et al., 1995b). After reconstruction scans from
each scanning session were visually examined and ex-
cluded for image artifacts or poor positioning within
the axial field of view with inadequate coverage of
sensorimotor cortex for the hands, the anterior parietal
area and superior cerebellum. These coverage criteria
were relaxed for the two static-force data sets (SF2 and
SF3) for which the superior cortex was completely cov-
ered leading to generally poor cerebellar coverage.

Within each of the remaining scanning sessions all
possible 6-parameter rigid-body transformations be-
tween pairs of scans were computed using AIR 3.08;
this represents an empirical implementation of the
analytic consensus approach proposed by Woods et al.
(1998). The 6-parameter rigid-body transformation
matrices between any two scans (Tij) were used to
obtain a consensus transformation by averaging the
4 � 4 homogeneous coordinate products, Tij

k � TikTkj,
over all values of k to form �Tij

k�k. The average trans-
formation matrix was then converted to a 6-parameter
rigid body transformation by using �Tij

k�k to transform
an evenly spaced 20 � 20 � 20-point grid covering the
average brain mask and then calculating the 6-param-
eter Procrustes transformation of the original to the
transformed grid. Within each session this consensus
transformation matrix was used to calculate the cen-
troid and maximum movement per voxel over all brain
voxels for each scan (Strother et al., 1994), and any
subject with one or more scans exhibiting maximum
movement/voxel of �4.0 mm was excluded. Scans
within each session were aligned to obtain the average
scan/session, which was then used to calculate the
12-parameter affine transformation to our simulated
PET template volume in Talairach space. In order to
ensure that alignment parameters were independent
of postreconstruction smoothing choices and to mini-
mize end-slice artifacts, the original reconstructed
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scans were further smoothed with a 3D 3 � 3 � 3-voxel
boxcar filter (a 2D 3 � 3 filter was used for the end
slices) and transformed to Talairach space using the
6-parameter rigid-body and 12-parameter affine trans-
formations combined into a single registration opera-
tion (Strother et al., 1995b). Finally, an intracerebral-
voxel mask volume was created by thresholding each
slice at 45% of its maximum value and filling any holes
within the boundary.

Tasks and Data Sets

The 88 scanning sessions were obtained from 11 task
sets of four male and four age-matched female subjects
who each participated in one session while performing
a particular motor task. Additionally, the eight-subject
set for the target interception task provided 2 data-
analysis sets leading to the final 12 unique data-anal-
ysis sets reported in this study. While all tasks and
scanning sessions involved 8 to 12 scans per session, in
order to maximize the number of subjects that passed
our strict quality control screen, particularly for move-
ment, we included only 4 scans per session in this
study. Therefore, each of the 12 data-analysis sets con-
tained eight sessions (one/subject) with each session
contributing 4 scans—2 brain states per subject and 2
scans per state.

Speech

Three speech-task sets were obtained from nine sub-
jects (six subjects performed all three tasks, and three
subjects performed only two speech tasks). None of
these subjects participated in any of the other tasks.
The tasks were SP-PA, eight volunteers (four males
37–52 years; four females 23–54 years; 41 � 12 years)
were scanned while they repeated the syllables pa, ta,
and ka as quickly as possible; SP-LC, eight volunteers
(four males 37–54 years; four females 24–54 years;
42 � 12 years) were scanned while they performed
repetitive lip closure (as in producing the syllable pa
silently) as quickly as possible; SP-PH, eight volun-
teers (four males 42–52 years; four females 23–54
years; 42 � 12 years) were scanned with sustained
phonation while producing the vowel ah. All scanning
sessions contained four alternating baseline (resting
with eyes covered and ears plugged) and activation
scans for eight scans/session. The first four scans from
each session were selected for this study. See Sidtis et
al. (1999) for an analysis of the larger data set from
which these scanning sessions were drawn.

Tracing (TR)

Eight volunteers (four males 25–42 years; four fe-
males 25–45 years; 34 � 9 years) were scanned while
using a joystick with their left hand to trace a path
along the perimeter of a six-pointed star displayed on a

rear-projection screen at the foot of the PET scanner
couch. Scanning sessions contained 1 baseline scan (no
tracing, eyes open viewing the screen, ears plugged,
resting quietly), followed by 8 tracing scans and a final
baseline scan for 10 scans/session. The first 3 scans per
session and the last baseline scan were selected for this
study. See Frutiger et al. (2000) for an analysis of the
larger data set from which these scanning sessions
were drawn.

Finger Opposition (FO)

Eight volunteers (four males 25–44 years; four fe-
males 27–47 years; 36 � 8 years) were scanned while
performing sequential opposition of the left thumb and
successive digits (2, 3, 4, 5, 4, 3, 2, 3, . . .), paced with a
1-Hz auditory signal. Scanning sessions contained 4 or
5 alternating baseline (resting quietly with eyes cov-
ered and ears plugged) and activation scans for 8 or 10
scans per session. The first 4 scans per session were
selected for this study. See Strother et al. (1995b, 1997,
1998), Ardekani et al. (1998), and Kustra and Strother
(2001) for analyses of related data sets from which
these sessions were drawn.

Finger Tapping

Eight volunteers (four males 34–48 years; four fe-
males 27–43 years; 38 � 6 years) were each scanned
during two different sessions while performing high
(FT-HI) or low (FT-LO) amplitude tapping with the left
index finger, respectively. Each session comprised two
blocks of five tapping rates in randomized order. Rates
were externally paced with an auditory signal of 0, 2/3,
1, 2, and 3 Hz for 10 scans per session. For this study
the 0-, 1-, and 3-Hz scans were selected from the first
block and combined with the 0-Hz scan from the second
block.

Static Force

Activation consisted of static force, exerted on a load
cell using the thumb and index finger of the right hand,
which controlled the cursor displayed on a rear-projec-
tion screen at the foot of the PET scanner couch. Before
scanning subjects were practiced to criterion, keeping
the cursor (force) within preset limits (lines on the
screen) about a target-force level (central line). SF2:
Eight volunteers (four males 25–44 years; four females
27–48 years; 36 � 9 years) were scanned during five
alternating baseline (no force exerted, eyes open view-
ing the screen, ears plugged, resting quietly) and static-
force activation scans for 10 scans/session. Target force
levels of 100, 200, 400, 800, and 1000 g were used in
randomized order across subjects. The first 4 scans (2
control and 2 randomized force levels) per session were
chosen for this study. SF3: Eight different volunteers
(four males 25–35 years; four females 26–44 years; 33 �
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6 years) were scanned with 1 baseline (as for SF2) fol-
lowed by two blocks of 5 static-force activation scans/
block and a final baseline scan for 12 scans/session. Tar-
get force levels of 200, 400, 600, 800, and 1000 g were
each used once in randomized order within each block.
The first 3 scans (1 control and 2 randomized force levels)
and the last baseline scan per session were chosen for
this study. See Muley et al. (2001) for an analysis of the
larger data set from which these scanning sessions were
drawn.

Mirror Tracing

Eight volunteers (four males 25–42 years; four fe-
males 25–45 years; 34 � 9 years) were scanned while
performing a modification of the tracing task described
above. Scanning sessions contained 2 standard left-
handed tracing scans—after the subject had performed
the tracing task six times in the scanner—followed by
8 mirror tracing scans with the vertical cursor–hand
movement feedback reversed, for a total of 10 scans/
session; subjects performed an additional mirror-trac-
ing trial in each 8-min interval between scans. The first
4 scans (2 tracing and 2 mirror tracing) were chosen for
this study. The larger data set from which these ses-
sions were drawn is reported in Frutiger et al. (1998)
and Balslev et al. (2001).

Target Interception

Eight volunteers (four males 31–45 years; four fe-
males 26–49 years; 37 � 8 years) were scanned while
alternately using a cursor or a button with their left
hand to intercept a circular moving target within 6 and
12 o’clock zones of an annular path displayed on a
rear-projection screen at the foot of the PET scanner
couch. Subjects performed two blocks of scans with
each block containing the four conditions of a 2 � 2
factorial design for two levels of interception speed
(fast/slow) and response type (linear joystick move/
button press) presented in randomized order. The first
four scans comprising block 1 with all four conditions
were selected for this study. TG-SP: The target-inter-
ception-speed data-analysis set was defined by choos-
ing the two brain states for data analysis based on fast
and slow interception speeds, irrespective of response
type. TG-RE: The target-interception-response data-
analysis set was defined by choosing the two brain
states for data analysis based on joystick-move and
button-press responses, irrespective of interception fre-
quency.

Image Data-Analysis Models

For each of the 12 data-analysis sets a raw data
matrix, consisting of rows (32 rows � 8 subjects � 4
scans) and columns (number of voxels within the inter-
section volume of all subject brain masks) was created.

Two preprocessing and data-analysis modeling ap-
proaches were used: one multivariate based on a PCA/
CVA analysis (Appendix) and the other univariate with
a standard GLM regression applied to each voxel (Fris-
ton et al., 1995b).

Multivariate: VMN-MSR/CVA

Cell (subject � scan � voxel) residual scores were
calculated by: (1) dividing each voxel value by the
average value across all voxels/row (i.e., volume mean
normalization, VMN) and then (2) for each subject,
subtracting the average value across scans from each
voxel (mean subject removal, MSR). This VMN-MSR
preprocessing strategy was designed to maximize sen-
sitivity to within-subject effects while removing indi-
vidual subject effects. Principal component analysis
was then used to decompose the data matrix into or-
thogonal eigenvectors and associated eigenimages fol-
lowed by entry of the first P principal components into
a CVA. A single canonical eigenvector and eigenimage
(SPMCVA) was calculated, which maximized the vari-
ance of the two-class mean difference relative to the
within-class noise variance (i.e., between-subject and
within-state scan variation). This two-state or two-
class CVA is equivalent to a Fisher linear discrimi-
nant, which generates a single canonical discriminant
function (i.e., linear combination of weighted principal
components and associated eigenimages, see Appen-
dix).

Univariate: ANCOVA/GLM

A standard GLM t value for the mean difference
between the two brain states was calculated for each
voxel—producing an SPM{t} image—together with re-
moval of subject block and ANCOVA global scan effects
(Friston et al., 1995b). The design matrix comprised a
single brain-state column with (0, 1) class-indicator
labels, seven subject-block columns, and a column of
scan means.

NPAIRS Analysis

Label-Permutation Noise Distributions for Split-Half
Metrics

For each eight-subject data-analysis set 10 “permu-
tation-noise” data sets were generated using label per-
mutations under the null hypothesis that brain-state
labels were exchangeable. For each subject the labels
for one randomly chosen scan from each of the two
brain states were exchanged and this was repeated for
all eight subjects, 10 times (Holmes et al., 1996). For
both models and each of the 12 task-related data-anal-
ysis sets these 10 new permuted data sets were each
analyzed using NPAIRS to obtain 10 “permutation-
noise” values of the median prediction accuracy ( p̃n),
median reproducibility histogram (r̃), and median con-
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fidence interval 	CĨ	Z
1��
 metrics from their distri-
butions of 70, 35, and 35 split-half resampling val-
ues, respectively. These 120 permutation-noise
values (10/data set � 12 data sets) were combined to
specify error bounds for the split-half resampling
metrics.

Scatter Plots and rSPM{Z} Activation Distributions

For each eight-subject data-analysis set 35 rSPM{Z}
signal and whole-brain noise distributions were gener-
ated using ANCOVA/GLM and VMN-MSR/CVA with
six principal components (CVAP�6). The 35 rSPM{Z}
signal and the 35 noise histograms were each averaged
and compared across tasks to examine the stability and
shape of the whole-brain signal and noise distributions
generated by the split-half scatter-plot technique.

In order to test for changes in activation patterns as
a result of using the split-half technique the 35
rSPM{Z} images from each data-analysis set were av-
eraged to form an rSPM{Z} image and compared with
the SPM obtained from eight subjects for each data-
analysis model. For the GLM the SPM{t} from all eight
subjects was plotted versus rSPM{Z} forming a scatter
plot of all brain-voxel values. A PCA of this scatter plot
was performed and the slope of the principal axis (i.e.,
rSPM{Z}/SPM{t}) and the scatter-plot correlation coef-
ficient were recorded. Similarly, eigenimages (SPMCVA)
as a function of number of principal components (P �
6, . . . , 14) were obtained from a CVA of all eight sub-
jects and plotted versus rSPM{Z} for CVAP�6. The high-
est correlation coefficient and the number of principal
components at which this occurred were recorded for
each data-analysis set.

Reproducibility Histograms

To test the task dependence of correlation coeffi-
cients from split-half scatter plots as a pattern repro-
ducibility metric we plotted reproducibility histograms
for all 12 data-analysis sets. We also tested the depen-
dence of these r̃ values on our choice of resampling
technique by comparing the split-half results with
those from three to five splits where each split involved
randomly choosing independent three- and five-subject
groups.

Reproducibility Histograms vs rSPM{Z} Distributions’
Tails

To test the quantitative inferences that can be made
about rSPM{Z} distributions from measurements of r̃,
we plotted r̃ vs CĨ	Z
1�� with � � {0.1, 0.05, 0.01} for
both data-analysis models and each data-analysis
set. These results were then compared with the
theoretical predictions of CI(Z)1�� as a function of r from
Eq. (4). Permutation-noise distributions for r̃ and CĨ-

	Z
1�� were also plotted based on the results from
label-permutation data sets.

Prediction Accuracy vs Reproducibility Histograms

To obtain data on the relation between prediction
accuracy and reproducibility metrics as a function of
task and multivariate-model complexity, each of the 12
data-analysis sets was analyzed with CVAP�2, CVAP�6,
and CVAP�10. For each of the three CVA models we
measured p̃n and r̃ and compared plots of the 12 (r̃, p̃n)
pairs for each value of P. Permutation-noise distribu-
tions of (r̃, p̃n) pairs were also plotted based on the
results from label-permutation data sets.

We also compared Bartlett’s asymptotic �2 values
[Appendix, Eq. (14)] as a more traditional multivariate
metric to see if it provided performance rankings sim-
ilar to p̃n as a function of task and model complexity.
For each of the three CVA models applied to each
data-analysis set �2 values were measured for each of
the 70 split-half four-subject groups and the median
(�̃2) value was recorded. The �̃2 values from the 12
data-analysis sets were correlated with the 12 p̃n val-
ues for each of the three levels of CVA model complex-
ity tested.

Subject Influence

We tested the influence of individual subjects on r̃ to
see if subjects were contributing equally to the
rSPM{Z} results as a function of the data-analysis
model used and the task being performed. For each
data-analysis set we identified the pair of independent
four-subject groups with the highest split-half correla-
tion coefficient and stored the rSPM{Z} from their scat-
ter plot as a reference image. For each of the other 34
pairs of split-half groups the two independent SPMs
produced were correlated with this reference image.
For each split-half pair, the four-subject group produc-
ing the SPM most highly correlated with the reference
image was identified and an integer counter for each
subject in that group was incremented by 1. If subjects’
scanning sessions are truly interchangeable we expect
any particular subject to occur randomly in the identi-
fied group, i.e., half the time in 34 splits or about 17
times. Large deviations from this average may indicate
that the subject’s session is either less or more influ-
ential than expected under the null hypothesis that
subjects are exchangeable across split-half groups.
Therefore, we treated the subject counts as relative
influence rankings only. For both models we measured
r̃ for the six-subject data-analysis sets obtained by
removing (1) the two most influential subjects with the
highest counts and (2) the two least influential subjects
with the lowest counts. For each of the 12 data-analysis
sets we then compared the r̃ values across models for
the original eight-subject and the two derived six-sub-
ject data-analysis sets.
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RESULTS

Scatter Plots and rSPM{Z} Activation Distributions

The scatter plots shown in Fig. 3 illustrate the ex-
traction of rSPM{Z} activation images using CVAP�6.
Each plot depicts a single data split for the data set
with the lowest (TG-SP) and highest (SP-PA) r̃ values.
In Fig. 3A the scatter plot for TG-SP has the circular
shape expected for random noise, with r � 0.0 indicat-
ing that there is nothing similar about the activation
eigenimages from the independent split-half groups.
This absence of a reproducing activation signal is also
reflected in the identical signal and noise histograms in
Fig. 3B. These signal (thick solid line) and noise (thick
dotted line) histograms were obtained by projecting the
scatter-plot voxel values in Fig. 3A onto the major and
minor PCA axes, respectively. Moreover, after rescal-
ing of the projected values by the standard deviation of
the noise axis both histograms are similar to the al-
most obscured Gaussian distribution (thin solid line).
In contrast, the scatter plot for SP-PA in Fig. 3C has an
elongated elliptical shape, with r � 0.5, indicating that
eigenimages from the independent split-half groups
are similar. In Fig. 3D the signal histogram has ex-
tended tails (thick solid line), reflecting the elliptical
elongation of the scatter plot. The noise histogram
(thick dotted line) is again similar to a Gaussian dis-
tribution (thin solid line) and to the histograms in Fig.
3B, supporting our assumptions in the derivation of
Eq. (4) and the Z-score labels on the horizontal axes.

In Fig. 4 the average of the signal histograms and
the average of the noise histograms from 35 split-half
scatter plots are overplotted for 4 of the 12 data-anal-
ysis sets. Figure 4A illustrates the consistent, approx-
imately Gaussian noise distributions (dotted lines) ob-

tained together with the widely varying reproducible
signal distributions. These average signal histograms
(colored lines) reflect the varying rSPM{Z} distribu-
tions of the underlying split-half scatter plots. In the
magnified view of the histograms’ right-hand tails in
Fig. 4B the noise distributions from the four data sets
(dotted black lines) are seen to be very similar and
approximately Gaussian (solid black line) with slightly
heavy tails. Confidence intervals, such as the 99% CI
(i.e., CI(Z)0.99) shown for task SF3, are used to summa-
rize the spread of the rSPM{Z} distributions in the
following figures.

Table 1 indicates that, using either CVAP�6 or GLM,
the average reproducible Z-score image, rSPM{Z}, is
very similar to the SPMCVA or SPM{t} images produced
with a single analysis of all eight subjects, respectively.
For SPMCVA the number of principal components that
had the maximum correlation with rSPM{Z} for
CVAP�6 ranged from a minimum of 6 to a maximum of
10 for FT-LO and TG-SP, respectively; the mode for all
tasks was 9. For both models all but three of the scat-
ter-plot correlations are greater than or equal to 0.96
(median � 0.99), demonstrating that voxels retain sim-
ilar relative ordering for the two SPMs being com-
pared. For GLM, rSPM{Z} compared to SPM{t} is pro-
portionately reduced by a factor of 0.93 to 0.80
(median � 0.88), which may be caused by multiple
effects such as random subject effects and spatially
varying noise.

Given the lack of a reproducible SPM across split-
half pairs for TG-SP (Fig. 3A) it may at first appear
surprising that the resulting rSPM{Z}’s are highly cor-
related with eight-subject SPMs, SPMCVA, and SPM{t}.
This may be explained by noting that the normalized
SPMs from a given split, z1 and z2, will both be some-

TABLE 1

Scatter Plot Comparisons of Split-Half Reproducible SPMs, i.e., rSPM{Z},a from NPAIRS versus Standard Eight-Subject
Multivariate and Univariate SPMs, SPMCVA,b and SPM{t},b Respectively

Data analysis Data-analysis setsc

Method Scatter-plot metrics TG-SP TG-RE MT SF2 SF3 FT-HI FT-LO SP-PH FO TR SP-LC SP-PA

CVA rSPM{Z}a vs
SPMCVA

b
Correlation coefficient 0.94 0.96 0.98 0.98 0.97 0.94 0.96 0.98 0.99 0.98 0.96 0.98

GLM rSPM{Z}a vs
SPM{t}b

Correlation coefficient 0.99 0.92 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00
PCA sloped 0.91 0.93 0.88 0.89 0.88 0.87 0.88 0.92 0.88 0.84 0.80 0.90

a Split-half resampling with CVA and GLM was used to produce 35 scatter-plot rSPM{Z}’s, which were averaged for a single rSPM{Z} from
each eight-subject data set.

b Canonical variates analysis (CVA) and the general linear model (GLM) were used to produce a single SPMCVA and SPM{t}, respectively,
from each eight-subject data set.

c Each of the 12 eight-subject data-analysis sets (TG-SP, target interception, speed; TG-RE, target interception, reaction type; MT, mirror
tracing; SF2 and SF3, static force, Exp. 2 and Exp. 3; FT-HI, finger tapping, high amplitude; FT-LO, finger tapping, low amplitude; SP-PH,
speech, phonation; FO, finger opposition; TR, tracing; SP-LC, speech, lip closure; SP-PA, speech, syllable repetition) was analyzed.

d The PCA slope from the principal axis of each scatter plot measures the proportional change of the SPM values across the whole brain
as rSPM{Z}/SPM{t}—for GLM the mean PCA slope value of 0.88 indicates that the average reproducible Z values produced within NPAIRS
are typically about 12% less than the standard SPM{t} values—see Discussion.
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what correlated with the fixed SPM from analyzing all
eight subjects, zN. This will be true even if the input
scans contain only random noise. Therefore, z1 and z2

may be written as s1(zN) � �1 and s2(zN) � �2, respec-
tively, where s1 and s2 are scaling factors and �1 and �2

are independent samples drawn from a zero-mean ran-
dom process. The rescaled signal axis from each split
can be written as (z1 � z2)/(SD�2) � [(s1 � s2)zN �
(�1 � �2)]/(SD�2), which for random noise processes
may be dominated by the zero-mean random noise
term (�1 � �2). However, with averaging over multiple
splits the random noise term becomes small, leaving a
slightly noisy, scaled version of zN, resulting in a high
correlation between rSPM{Z} and the eight-subject
SPMs.

Reproducibility Histograms

Figure 5A illustrates reproducibility histograms for
the 35 correlation coefficients from the four data-anal-
ysis sets shown in Fig. 4. The r̃ values of the four data
sets in Fig. 5A rank themselves in the same order as
the reproducible signal tails in Fig. 4, reflecting the
monotonic relation between r̃ and the width of the
rSPM{Z} distributions, which is analyzed below. Fig-
ure 5B illustrates the reproducibility histograms for all
12 data sets depicted as box–whisker plots. The r̃ val-
ues range from 0.0 to 0.5 with only one task, FT-HI,
with a nonzero median generating outliers (open cir-
cles). All of the data sets with values to the right of the
vertical dotted line represent contrasts between a pri-
mary sensory–motor task and a resting control state,
while those to the left of the line represent contrasts
between two active task states.

Across the 12 data sets the r̃ values generated by
resampling with 3/5 splits are slightly, but signifi-
cantly, lower than those from the 4/4 splits of split-half
resampling (Wilcoxon signed-ranks test for matched
pairs (WSRT), P � 0.01; paired t test, �0.005 (mean) �
0.006 (SD), P � 0.01, n � 12).

Reproducibility Histograms vs rSPM{Z}
Distributions’ Tails

Figure 6 illustrates that the predicted relation for
CI(Z)1�� as a function of r in Eq. (4) is quite well
matched by the data for both multivariate CVA and
univariate GLM model results—note that the plotted
curves are theoretical predictions without any free pa-
rameters fitted to the experimental data. The error
bars (�2 SD) for the CĨ	Z
1�� and r̃ permutation-noise
distributions are plotted in Figs. 6A and 6B based on
110 and 120 median values (10/data set), respec-
tively; the 10 r̃ values for the FT-HI task were ex-
cluded as outliers from the SD calculations for the
CVA model results. The grand means �2 SD for the
permutation-noise r̃ values are �0.00 � 0.05 and
�0.00 � 0.06 for the CVA and GLM results, respec-
tively. For the CVA results the grand mean �2 SD
for the permutation-noise values of CĨ	Z
1�� with
� � {0.1, 0.05, 0.01} are 3.21 � 0.20, 3.93 � 0.24, and
5.66 � 0.34, respectively, and for the GLM results
they are 3.26 � 0.20, 3.94 � 0.23, and 5.39 � 0.32,
respectively. The theoretical Gaussian values of
CI(Z)1�� for � � {0.1, 0.05, 0.01} are 3.29, 3.92, and
5.16, respectively. Comparing the theoretical Gauss-
ian values with the permutation-noise values we see

FIG. 5. For 35 split-half scatter plots we illustrate the reproducibility histograms of the 35 correlation coefficients for canonical
eigenimages from a two-class canonical variate analysis (see Fig. 2) (A) for the four data sets, TG-SP, SF3, FO, and TR (see Fig. 4), and (B)
box–whisker plots for all 12 data sets analyzed (see Methods)—the gray rectangular box represents the lower quartile (lq) to upper quartile
(uq) range, which is transected by a black bar at the median. The whiskers reflect the minimum and maximum values within the range [lq �
1.5(uq-lq), uq � 1.5(uq-lq)]. Values outside the whisker range are considered potential outliers and are plotted as individual circles. Note that
the horizontal axis in A becomes the vertical axis in B. In B data sets to the left and right of the vertical dotted line used contrasts of
active-task scans to active and passive control scans, respectively.
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that the noise distributions at r̃ � 0 are approxi-
mately normal with slightly heavy tails, with CVA
having a heavier tail than GLM.

For both CVA and GLM, the experimental
	CĨ	Z
0.99,r̃
 pairs follow empirically shifted versions
of the theoretical Gaussian curves as illustrated by
the dotted lines. These results demonstrate that for
each data analysis model and all tasks the spread of
the tails of the rSPM{Z} distributions may be mod-
eled as the sum of (1) an approximately Gaussian
noise distribution with a slightly heavy tail and (2) a
Gaussian signal distribution with a scaling factor
determined by r̃. Experimentally we see that (1) the
overall deviations from the Gaussian noise model are
approximately independent of r̃ across tasks and (2)
GLM’s local-voxel noise estimates produce a more
Gaussian-like noise tail. These observations suggest
an underlying mechanism that is spatially depen-
dent and methodological in origin because of its
model dependence and task independence, respec-
tively. The most likely methodological candidate is
the axial dependence of the spatially varying noise
distribution for 3D PET images (e.g., Pajevic et al.,
1998).

For CVA in Fig. 6A the 	CĨ	Z
0.99, r̃
 pairs from the
static force (SF2 and SF3) and speech (SP-PH, SP-

LC, SP-PA) tasks fall approximately on the theoret-
ical Gaussian curve (solid line). The 	CĨ	Z
0.99, r̃

pairs for all the other tasks lie almost exactly on the
empirically shifted curve for a heavy-tailed noise
distribution. These task subgroups in the CVA re-
sults may be explained by the presence or absence of
sensorimotor and cerebellar activations for the hand
appearing in the much noisier 3D image slices near
the edge of the axial field of view (FOV). In order to
cover both the sensorimotor cortex for the hand and
the superior cerebellum with our PET scanner it was
necessary to allow these two regions to lie near the
edges of our limited 10.8-cm axial FOV. The reposi-
tioning of the FOV for the static force data sets (see
Methods) moved the primary sensorimotor activa-
tions away from the edge of the FOV and the en-
hanced image noise in those slices. While the FOV
for the speech data sets was positioned in the same
way as for the majority of the other motor tasks, the
primary speech activations do not lie near the edge of
the FOV. Therefore, unlike the other tasks the static
force and speech tasks do not have primary activa-
tions that are impacted by the enhanced image noise
near the edge of the FOV. These results indicate that
the extraction of a noise distribution within the
NPAIRS environment may be sensitive to the local,

FIG. 6. For split-half resampling of all 12 data sets (see key) we illustrate that the spread of reproducible-signal histograms (from
rSPM{Z} in Fig. 3) can be modeled as the sum of a fixed model-dependent noise distribution (at r̃ � 0) and a Gaussian signal distribution that
scales monotonically with the median reproducibility correlation coefficients (r̃; Figs. 2 and 5). The spread of the tails of the rSPM{Z}
histograms are plotted on a log scale as the medians of the distributions of their 90, 95, and 99% confidence intervals, i.e., CĨ	Z
1�� for � �
0.1, 0.05, and 0.01. (A) Multivariate discriminant eigenimages from a two-class canonical variate analysis and (B) univariate SPM{t}’s
from a general linear model with one design-matrix column for control-activation effects and removal of subject block and ANCOVA
global effects. Mean � 2 SD error bounds for the noise distribution at r̃ � 0 were obtained from all 12 data sets with a second-level
resampling using label permutations (see Methods). The solid lines are plots of the theoretical relation between r̃ and log	CĨ	Z
1��
 in
Eq. (4), and the dotted lines are the theoretical pairs 	CĨ	Z
0.99, r̃
, shifted to the right to intersect the mean value of the permuted noise
distributions.
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model-dependent noise properties of the primary
task activations. Such static force and speech sub-
groups are not seen in the GLM noise tails, providing
further support for our interpretation.

Prediction Accuracy vs Reproducibility Histograms

In Figs. 7A, 7B, and 7C we have plotted p̃n vs r̃ for all
12 data-analysis sets as a function of CVAP�2, CVAP�6,
and CVAP�10, respectively. In general p̃n and r̃ increase
together across the data sets but the relative difference
between any two data sets is strongly dependent on
model complexity, which affects p̃n and r̃ quite differ-
ently. Increasing the number of principal components,
P (Figs. 7A–7C) significantly increases p̃n for all data sets
but TG-SP, which is never distinguishable from noise—
the diagonal black line provides a stable reference from
graph to graph against which to compare individual data
set changes as a function of P. As p̃n increases with
increasing P, r̃ both increases and decreases depending
on the data set. The dotted lines in Fig. 7C indicate
relative changes from P � 2 (Fig. 7A) to P � 10 (Fig. 7C)
for (1) two data sets with decreasing r̃ as a function of P
(FT-HI, X, and SP-LC, horizontal rectangle) and (2) two
data sets with increasing r̃ as a function of P (SF3, star,
and TR, vertical rectangle). Changes in rSPM{Z} voxel
values for these four data sets as a function of model
complexity are examined in Fig. 8.

Figure 7 displays classic bias–variance tradeoffs for
p̃n and for the interaction of p̃n and r̃ as a function of
model complexity. The following interpretation as-
sumes that the permutation error bars displayed at (0,

0) in each graph are approximately valid for all (r̃, p̃n)
data points in that graph. In Fig. 7A, for P � 2 there
are many biased (low) p̃n values measured with high
precision (i.e., a small permutation error bar). With
increasing P the p̃n values increase, becoming less bi-
ased, but their precision becomes increasingly worse so
that the bias–variance tradeoff for prediction values
appears optimal between 6 and 10 PCs (Figs. 7B and
7C). The size and precision of the r̃ values display the
opposite behavior as a function of model complexity.
However, we must not equate size and bias for the r̃
values because their true values are unknown. In Fig.
7A, for P � 2 there are many relatively large r̃ values
(i.e., with high rSPM{Z} voxel values) measured with
low precision (i.e., a large permutation error bar). With
increasing P the r̃ values both increase and decrease,
but their precision improves considerably for P � 6
with little change for P � 10. Therefore, if we focus only
on maximizing r̃ as a performance metric the resulting
rSPM{Z} values are likely to be unreliable (i.e., low
precision) and associated with models that poorly pre-
dict the experimental design matrix. If instead we
choose models that predict the design matrix well they
are likely to have more reliable rSPM{Z} values, which
are not necessarily the largest possible, with the caveat
that we will be less certain of the reliability of our
prediction measurements.

Insets in each graph of Fig. 7 illustrate the 10 me-
dian results for the permutation-noise data from each
of the 12 data-analysis sets. The results used to calcu-
late the rectangular box representing �2 SD error bars

FIG. 7. For split-half resampling of all 12 data sets (see key, Fig. 6) we illustrate the relationship between prediction and reproducibility
performance metrics as a function of model complexity. We plot the median prediction accuracy [ p̃n; Eq. (8)] versus the median reproducibility
correlation coefficients (r̃; Fig. 2) for discriminant eigenimages from a two-class canonical variate analysis built on a principal components
analysis using (A) 2 principal components (least complex), (B) 6 principal components, and (C) 10 principal components (most complex).
Mean � 2 SD error bounds for the noise distribution at r̃ � 0 were obtained from all 12 data sets with a second-level resampling using label
permutations (see Methods). The solid line provides a reference and joins the stable points defined by the SP-PA speech task and the mean
of the permutation noise distributions. The four dotted lines in C illustrate the change in performance metrics from the least to the most
complex CVA for tasks: SF3, FT-HI, TR, and SP-LC. The inset permutation distribution plot in each graph shows the 120 permutation values
(10 sets of label permutations/data set) with dots representing the values used to generate the error bounds (�2 SD shown as box) and larger
task symbols representing outliers that were not included in the permutation error bounds.
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are displayed as small dots, and those from data-anal-
ysis sets excluded from the calculation as outliers are
displayed as medium-size task symbols. Four tasks
were excluded as outliers in calculating the error
bounds for Fig. 7A (FT-HI, X; FT-LO, cross; SP-LC,
horizontal rectangle; and SP-PA, hexagon), one task
was excluded for Fig. 7B (FT-HI), and there were no
tasks excluded as outliers for Fig. 7C.

Barlett’s �̃2 metric is significantly correlated with p̃n

across the 12 data sets with correlation coefficients of
0.98, 0.91, and 0.80 for P � 2, P � 6, and P � 10,
respectively. The decreasing correlation with increas-
ing model complexity may be partly driven by the fact
that while p̃n is bounded ( p̃n � [0, 1]) �̃2 is unbounded
(�̃2 � [0, �)). With increasing P, as p̃n 3 1.0 for some
data-analysis sets, the corresponding �̃2 values also
increase but disperse, perhaps reflecting data-set-de-

pendent increases in degrees of freedom ( f � P) with
increasing model complexity since the �2 mean and
variance are f and 2f, respectively.

In Fig. 8 the scatter plots illustrate changes in
rSPM{Z} for the least complex (CVAP�2) compared to
the most complex (CVAP�10) PCA/CVA models for each
of the four data sets with dotted lines displayed in Fig.
7C. Each scatter plot is overlaid with the line of iden-
tity (solid line) and the principal axis from a PCA
regression (dashed line). Figures 8A and 8C have prin-
cipal-axis slopes of less than 1.0 and are associated
with increases in r̃ in Fig. 7C, while Figs. 8B and 8D
have principal axis slopes of greater than 1.0 and are
associated with decreases in r̃ in Fig. 7C. Thus an
increase or decrease in r̃ is associated with a propor-
tional increase or decrease in whole-brain rSPM{Z}
values as a function of increasing P, respectively. For

FIG. 8. Scatter plots illustrating both increasing and decreasing voxel Z scores with increased model complexity. For split-half
resampling of the four data sets identified in Fig. 7C (dotted lines) the average reproducible eigenimage (rSPM{Z}) from a two-class CVA built
on a 2-component PCA subspace (least complex) is plotted against rSPM{Z} from a CVA with a 10-component PCA subspace (most complex):
(A) static force 3, (B) finger-tapping with high amplitude, (C) figure tracing, and (D) a lip-closure speech task. For each scatter plot the line
of identity (solid line) and principal axis from a PCA regression (dashed line) are overlaid together with a box bounding Z � �3. Voxels with
proportionately increasing or decreasing Z scores relative to the line of identity are marked by � and �, respectively.
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the 11 data-analysis sets with r̃ � 0, changes in r̃ for
P � 10 compared to P � 2 are highly correlated with
such proportional changes in whole-brain rSPM{Z} val-
ues (� � 0.97). From this PCA regression a change in r̃
of �0.01 units is associated with a proportional change
in rSPM{Z} scores of �1.75%.

In each graph of Fig. 8 all voxels with absolute
rSPM{Z} values greater than 3.0 lie outside the square
and have either increased (�) or decreased (�) values as
a result of increasing model complexity. These results
demonstrate that neither the number of voxels with large
absolute rSPM{Z} values nor the largest such values
should be used to optimize methodological choices. In Fig.
8A the largest rSPM{Z} values occur for P � 2, but the
principal-axis slope of 0.835 indicates a proportional in-
crease in absolute rSPM{Z} values of 20% for P � 10,
which is coupled with a large increase in prediction ac-
curacy (see Fig. 7C). The large Z scores for P � 2 in Fig.
8A are a result of noisy Z-score estimates, not a better
model, and reflect the bias–variance tradeoffs seen in
Fig. 7.

Figures 8A and 8C illustrate that the PCA basis may
be quite efficient for some tasks. The large increases in
prediction accuracy seen in Fig. 7C (dotted lines) for
SF3 and TR are obtained by improving overall
rSPM{Z} values while even further enhancing a subset
of voxels in Figs. 8A and 8C, respectively. In contrast,
Figs. 8B and 8D illustrate that the large increases in
prediction accuracy seen in Fig. 7C (dotted lines) for
FT-HI and SP-LC are obtained by enhancing the
rSPM{Z} values of a small subset of voxels while simul-
taneously decreasing the majority of rSPM{Z} values
by 18 and 14%, respectively. As a result the PCA basis
may be suboptimal for the FT-HI and SP-LC tasks as it
requires a decrease in most rSPM{Z} voxel values in
order to enhance a subset of voxels that result in im-
proved prediction accuracy.

Subject Influence

In Fig. 9 we compare the reproducibility of the stan-
dard eight-subject data-analysis sets (thick solid lines)

FIG. 9. For split-half resampling of 12 data sets the effects of subject influence are illustrated with plots of the median reproducibility
correlation coefficients for eight-subject groups (solid black line), six-subject groups after removal of the two least influential subjects (thin
dotted and dashed lines), and six-subject groups after removal of the two most influential subjects (thick dotted and dashed lines). (A)
Multivariate discriminant eigenimages from a two-class canonical variate analysis and (B) univariate SPM{t}’s from a general linear model
with one design-matrix column for control-activation effects and removal of block-subject and ANCOVA global effects. (C) The change in
median values (�r̃) for the two six-subject groups compared to the eight-subject group. Note the differences across models and tasks for FO,
TR, SP-LC, and SP-PA compared with the other eight tasks.
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with the two six-subject sets created by removing the
two most influential or the two least influential sub-
jects. In Figs. 9A and 9B, for CVAP�6 and GLM results,
respectively, the r̃ values of the data sets without the
two most influential subjects (thick dashed and thick
dotted lines) lie significantly below those from the
eight-subject data sets or the data sets without the two
least influential subjects (thin dashed and thin dotted
lines).

The GLM and CVA results for the eight-subject data
sets are not significantly different, supporting their use
as reference levels in Fig. 9C (WSRT, P � 0.1; paired t
test, 0.011 � 0.036, P � 0.3, n � 12). For the six-subject
results the GLM r̃ values are significantly lower than
the CVA values for both removal of the two least influ-
ential subjects (WSRT single sided, P � 0.01; 0.028 �
0.034, P � 0.015, n � 12) and removal of the two most
influential subjects (WSRT single-sided, P � 0.005;
0.038 � 0.036, P � 0.004, n � 12). These results indi-
cate that subject influence is somewhat stronger for
GLM than for CVA.

Figure 9C indicates that subject influence is differ-
ent in the first eight data sets with smaller r̃ values
compared to the last four data sets with the largest r̃
values. For the first eight data sets, the combined CVA
and GLM results after removal of the two least influ-
ential subjects are not significantly different from the
standard eight-subject results (WSRT, P � 0.1; 0.003 �
0.025, P � 0.7, n � 16). For the last four data sets, the
combined CVA and GLM results after removal of the
two most influential subjects are significantly lower
than the standard eight-subject results (WSRT one
sided, P � 0.004; 0.040 � 0.024, P � 0.002, n � 8). In
addition, for the last four data sets, the combined CVA
and GLM results after removal of the two most influ-
ential subjects are significantly lower than those after
removal of the two least influential subjects (WSRT one
sided, P � 0.008; 0.042 � 0.034, P � 0.010, n � 8).
Figure 9C also indicates that for the last four tasks the
effects of subject influence are greater in the GLM
compared to the CVA results. Overall, these results
demonstrate that subject influence is a significant fac-
tor in all tasks with r̃ � 0, but the relative impact of the
least and most influential subjects is a function of the
data-analysis model, reproducibility SNR, and task.

DISCUSSION

For functional neuroimaging studies from multiple
tasks we have demonstrated how to explore and char-
acterize reproducible activation signal structure and
the associated noise distributions. We do this without
using spatially localized measurements and the model-
specific thresholding schemes or neuroscientific hy-
potheses that often accompany them. We have intro-
duced the NPAIRS testing framework that (1) is
dependent only on choices within the functional neu-

roimaging data chain and (2) initially uncouples the
testing of the “quality” of functional neuroimaging re-
sults from interpretations based on the neuroscientific
knowledge base and associated spatial hypotheses.
When optimizing the functional neuroimaging chain
our goal is to avoid any systematic bias due to hypoth-
eses based on prevailing neuroscientific expectations.
The NPAIRS framework achieves this by defining
global metrics that measure the ability of the neuro-
imaging chain to produce model parameters from a
training data set that can accurately predict experi-
mental-design parameters and reproduce the associ-
ated activation patterns in an independent test data
set. While we have emphasized the application of
NPAIRS metrics from whole-brain SPMs the frame-
work can also be applied to obtain spatially localized
measurements.

The sums and differences formulation for extracting
reproducible signal and noise estimates, respectively,
from scatter plots may be applied to two independent
SPM measurements of a single voxel (see Theory).
However, useful variance estimates of the noise will
require at least four or five independent voxel locations
and it may be necessary to include a number of “noise-
only” spatial locations in order to obtain reproducibility
metrics with a useful dynamic range as a function of
methodological choices. Such localized estimates may
then be compared as a function of data-analysis mod-
els, tasks, etc., although they are likely to be much
noisier than the whole-brain values studied here. Use
of the NPAIRS framework with spatially localized re-
gions is a topic for future research.

We chose split-half resampling for NPAIRS because
it incorporates cross-validation resampling of equal-
sized training and test sets from groups of even num-
bers of subjects. Our results indicate that it may be
possible to use asymmetric data splits with only a very
small loss in power, allowing odd numbers of subjects
to be tested within the same framework. NPAIRS al-
lows the entire imaging chain including data-analysis
models to be tested and optimized using both predic-
tion and reproducibility metrics within a single re-
sampling framework. For the subproblem of optimizing
and selecting among data-analysis models there are
analytic alternatives such as the Akaike information
criterion (AIC). However, Hansen et al. (1999) have
shown that AIC estimates of the number of significant
components to retain after a PCA are over optimistic
compared to resampled cross-validation estimates—
see Ripley (1998) for a discussion of the assumptions
underlying AIC and related model-selection metrics.
Alternative resampling approaches to the problem of
statistically characterizing SPMs have used label per-
mutation (Arndt et al., 1996; Holmes et al., 1996; McIn-
tosh et al., 1996; Ardekani et al., 1998) and bootstrap
(McIntosh et al., 1999) techniques in order to perform
spatial signal detection based on inferential tests of
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nonparametric distributions (see the review by Peters-
son et al., 1999a). Within the NPAIRS framework these
techniques may be viewed as a second level of resam-
pling that is part of the data-analysis model specifica-
tion to be applied to the independent split-half groups.
In this way pattern reproducibility may be tested for
model specifications that include resampling proce-
dures. While computationally expensive, our results
demonstrate that it is quite feasible to perform a sec-
ond, nested level of resampling based on label permu-
tations. Advantages of such second-level resampling
within NPAIRS are the ability to test (1) the accuracy
of spatial inferences made with rSPM{Z} values based
on their resampled null distributions if it is computa-
tionally feasible to generate at least several 100 sec-
ond-level permutation samples and (2) the exchange-
ability requirement for exact, unbiased permutation
test results (Good, 1994). The second point is illus-
trated by the median values for the FT-HI data set in
the permutation distribution inset in Fig. 7B (crosses);
unlike the other data sets, particular permutations of
the FT-HI labels result in unusually large prediction
and/or reproducibility median values, indicating that
the labels may not be treated as exchangeable.

A key feature of the NPAIRS framework is the re-
producibility metric based on correlation coefficients of
split-half scatter plots. We have shown that these r̃
values summarize a reproducibility SNR based on the
PCA of the split-half scatter plots. This allows repro-
ducible activation-signal and uncorrelated noise distri-
butions to be obtained from any model’s SPM output
and converted to a common statistical scale. This
model-independent mechanism for generating signal
and noise distributions is particularly useful for the
adaptive multivariate models we are most interested
in (e.g., CVA eigenimages) and for generic techniques
for extracting SPMs from broad classes of models (e.g.,
the sensitivity map in Kjems et al., 2002), which do not
have parametrically defined noise distributions. In ad-
dition, the rSPM{Z} and rSPM{Z} images produced by
NPAIRS may be analyzed using standard random field
theory techniques (Worsley et al., 1996, 1999). This
allows us to directly compare spatial inferences from t
maps with those from eigenimages (e.g., Shaw et al.,
2002). The conversion to a common Z-score scale ap-
pears to work quite well with some evidence for spa-
tially heterogeneous noise distributions in compari-
sons of GLM and CVA model results. The shape of the
CVA noise distributions from the minor PCA axis seen
in Figs. 3, 4, and 6 may be explained by assuming that
a small number of voxels have higher than average
variance. The pooled variance estimate will then be too
large for most voxels, overcorrecting them toward zero
to create a higher than Gaussian central peak, and too
small for the minority of voxels with high variance,
undercorrecting them to leave an extended non-
Gaussian tail. The results in Fig. 6 indicate that these

high variance voxels probably arise from strong acti-
vations that occur in image slices near the edge of the
axial FOV.

For each task the average of the rSPM{Z}’s from
multiple split-half pairs (i.e., rSPM{Z}) is very similar
to the SPM obtained from a single application of each
data-analysis model to each eight-subject data set (Ta-
ble 1). For the GLM results the rSPM{Z} values are
10–20% lower than the t values from the eight-subject
SPM{t} image. If the GLM t-test model is valid, the
variance of the voxel t values in the split-half SPM{t}
images should be stable with a value of f/( f � 2), where
f represents the degrees of freedom for each four-sub-
ject group. This spatially homogeneous variance makes
a global variance estimate from the PCA noise axis a
good choice for rescaling the scatter-plot comparison of
GLM results. We expect additional noise from random
subject effects between the independent split-half
groups. This will increase the variance of the PCA
noise axis and may be the cause of the observed de-
crease in the rSPM{Z} values relative to the eight-
subject SPM{t} values. Figure 6 clearly shows that the
variance stabilizing effect of the GLM has been effec-
tive, creating almost Gaussian noise distributions com-
pared to the longer noise tails from the majority of the
CVA results.

The experimental results in Fig. 6 compared with the
theoretical predictions of Eq. (4) demonstrate the pos-
sibility of developing analytic models of the whole-
brain signal and noise structure. We have shown that
NPAIRS measures model-dependent noise distribu-
tions that are sensitive to the local spatial noise levels
of the major activation foci. In addition, values of the
reproducibility metric quite accurately summarize the
shape of the rSPM{Z} histograms. These results, to-
gether with those in Fig. 5 defining separate ranges of
reproducibility SNRs for resting and active control
state studies, indicate a potentially fruitful research
area based on quantitatively summarizing whole-brain
activation signal and noise distributions across multi-
ple tasks. These results may be used (1) to guide the
selection of optimal combinations of task, experimental
design, and data-analysis model; (2) as constraints for
developing more realistic simulation studies; and (3) as
possible priors for Bayesian analysis techniques. More-
over, because the NPAIRS framework involves com-
parisons of independent groups of subjects it provides
an empirical means of adjusting any model for random
subject effects and for testing the utility of particular
fixed- versus random-effects model assumptions (e.g.,
Petersson et al., 1999b). The extracted rSPM{Z} image
from any split-half pair of groups has been implicitly
adjusted for subject-dependent differences between the
groups, which are incorporated into the noise distribu-
tion of the PCA noise axis. We have recently shown
how to use this feature of split-half resampling to as-
sess significant reproducibility for group comparisons
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in which random subject effects are most problematic
(Strother et al., 1999; Shaw et al., 2002).

Another key feature of the NPAIRS framework is the
ability to define a ROC-like plot for studying optimiza-
tion of the functional neuroimaging data chain. By
plotting prediction accuracy vs pattern reproducibility
on [0, 1] scales we obtain a 2D space in which optimi-
zation implies moving toward the upper right-hand
corner for perfect prediction with an infinite SNR, i.e.,
toward (r̃, p̃n) � (1, 1). We have demonstrated that it is
worthwhile to optimize prediction accuracy (i.e., p̃n 3
1.0) because, in addition to providing a better match to
the experimental design conditions, the bias–variance
trade-offs between p̃n and r̃ result in more precise
rSPM{Z} values (Fig. 7). However, we have shown that
when tuning a PCA basis optimizing p̃n may be asso-
ciated with both decreases and increases in r̃ and the
associated rSPM{Z} values (Fig. 7C, dotted lines).
Based on Figs. 8B and 8D, r̃ decreases when p̃n in-
creases because only a subset of voxels’ rSPM{Z} values
increase while the SNR of most voxels decreases. In an
extreme case a multivariate model need reflect only the
single location with the best p̃n while becoming insen-
sitive to (e.g., downweighting) values at all other loca-
tions. This is the reason that prediction accuracy alone
is not a sufficient optimization metric for multivariate
techniques. It is an open research issue whether p̃n

alone becomes a sufficient optimization metric when
fitted on a voxel-by-voxel basis (e.g., see Kjems et al.,
2002; Goutte et al., 2001) or for individual basis com-
ponents (McKeown, 2000). Figures 8A and 8C illus-
trate that for some tasks it is possible to simulta-
neously increase r̃ and p̃n by tuning a PCA basis. For
these tasks PCA/CVA can be tuned to provide general
noise filtering while simultaneously providing an even
larger SNR boost for task-dependent regions. This ex-
ample demonstrates that by making methodological
choices that simultaneously increase p̃n and r̃ we may
enhance our ability to find subtle activation effects
near the detection threshold. These examples demon-
strate the potential advantages of using movement
toward (1, 1) on a (r̃, p̃n) plot as a metric for selecting
optimal methodological choices.

Nevertheless, plots of (r̃, p̃n) pairs do not provide
absolute optimization criteria as there are a number of
open research issues. Assume we identify two new sets
of methodological choices that both simultaneously in-
crease r̃ and p̃n relative to the choices in our standard
processing chain. Relative to each other, one of the new
sets has larger r̃ values and the other set larger p̃n

values. Which of these should we choose as the optimal
set of methodological choices, or equivalently, how
should we measure distance from (1, 1) in the (r̃, p̃n)
space? We know that the prediction measurements are
unbiased against the assumed truth of the experimen-
tal design but the larger p̃n values are less precise than
smaller values. In contrast the reproducibility mea-

surements directly reflect the SNR of the pattern we
wish to interpret but they may contain a significant
undetectable bias. We do not know what the true acti-
vation pattern should look like, and the SNR and re-
sulting reproducibility measures can often be in-
creased by introducing some bias, e.g., with spatial
smoothing. One possible approach is to develop the
consensus SPM techniques outlined by Hansen et al.
(2001), in which consensus is taken across subsets of
methodological choices identified within the NPAIRS
framework using (r̃, p̃n) plots.

Our preliminary results indicate that, in addition to
being unbounded, standard multivariate distribution
measures such as Bartlett’s �2 (and by implication
Wilke’s lambda, e.g., Mardia et al., 1979) may be too
variable to be used as quality metrics as proposed by
Friston et al. (1996) and discussed in Petersson et al.
(1999b). Bullmore et al. (2000) have recently addressed
the similar case of using �2 as a metric for fitting path
analysis models, and because of potential problems
with such asymptotic inferential statistics in small
data sets have advocated an alternative using resam-
pling techniques in the spirit of the NPAIRS frame-
work. While a number of parametric and nonparamet-
ric performance metrics that relate to prediction of the
design matrix have been proposed (Ripley, 1998; Kjems
et al., 2002), the reproducibility metric outlined in the
study appears to be unique and provides important
performance information that complements that avail-
able from prediction metrics. NPAIRS reproducibility
measurements have been used to evaluate changes in
experimental design (Muley et al., 2001), detect signif-
icant multidimensional results (Strother et al., 1999;
Frutiger et al., 2000), evaluate within-subject repro-
ducibility for BOLD fMRI (LaConte et al., 2001), and
compare univariate versus multivariate analysis tech-
niques for the analysis of abnormal and normal groups
(Shaw et al., 2002).

We have used the NPAIRS framework to measure
relative subject influence in terms of changes in r̃, and
hence rSPM{Z}, per subject. The motivating question
in terms of a “reproducibility learning curve” plotting r̃
as a function of the number of subjects in a data set is,
does the order in which subjects are added to the data
set (e.g., experimentally collected) matter? The answer
for both GLM and CVA in Fig. 9 is an unqualified yes,
with removal of the two most influential subjects in
each group being responsible for reductions in r̃ of
�0.05 to �0.15 with proportional decreases in rSPM{Z}
of 9 to 27%. In contrast, for the eight-subject data sets
with the lowest r̃ values and smallest rSPM{Z}’s, re-
moving the two least influential subjects does not sig-
nificantly change r̃ for each data set. The four data sets
with the highest r̃ values and largest rSPM{Z}’s (FO,
TR, SP-LC, SP-PA) behave differently from the other
eight data sets (Fig. 9C). For these four data sets the r̃
values after removal of the two least or two most in-

767NPAIRS DATA ANALYSIS



fluential subjects are more similar than those of the
other eight data sets. This indicates that these four
groups are more homogeneous across subjects than
the other eight groups, and, in addition, their results
are more strongly influenced by the data-analysis
model, i.e., GLM is more susceptible to subject influ-
ence than CVA. We speculate that these differences
across data sets and models represent interactions
between basic activation signal structure, signal-to-
noise levels, subject-dependent signal variation, and
the way each model responds to random subject ef-
fects. For example, CVA has an ability to fit subject-
dependent signal variation and provides an approx-
imation to a subject random-effects model, which
depends on the class structure (Kustra, 2000). The
standard GLM has neither of these features, which
may explain its susceptibility to subject influence
given a large-enough reproducibility SNR. Impor-
tant issues for future research are (1) the relation
between the NPAIRS influence measures and more
traditional random-effects models and measures of
sample heterogeneity (e.g., Biggerstaff and Tweedie,
1997), (2) how these issues relate to the conjunction
analysis proposed by Friston et al. (1999), and (3) can
the NPAIRS influence measure be used to distin-
guish subgroups that are relatively homogeneous
from subjects that are unique in some way or from
subgroups that are heterogeneous.

An important issue that we have not addressed in
this paper is the variation of NPAIRS results as a
function of the number of subjects. For N subjects
NPAIRS is easily applied to split-half group sizes
from 1 to N/ 2 subjects (Strother et al., 1997, 1998,
2000). In general we believe that for groups larger
than eight subjects we would increase prediction
and/or reproducibility metric values, reduce our er-
ror bars, and potentially reorder tasks as a function
of r̃ in Fig. 5. Moreover, while quantitative details
are likely to be a strong function of N (i.e., the
number of PCs required to produce a particular in-
crease in p̃ n) our demonstration of model-dependent
and task-independent noise structure in Fig. 6 and
task-dependent bias–variance tradeoffs in Figs. 7
and 8 are unlikely to depend on group size. However,
individual subject influence and loss in power due to
asymmetric data splits are likely to decrease with
increasing group size. “Learning curves” that plot
prediction, reproducibility, and potentially other
metrics as a function of the number of subjects in the
training set may be used as empirical estimates of
these effects. For most models applied to finite data
sets analytic power estimates are not available (e.g.,
Megalooikonomou et al., 2000) and learning curves
provide a means of estimating the signal-to-noise
impact of collecting additional subjects. For four of
the tasks in this paper the variation of reproducibil-
ity and prediction metrics across tasks as a function

of N and CVA model complexity is addressed in the
companion paper by Kjems et al. (2002).

CONCLUSIONS

We have introduced NPAIRS, a nonparametric re-
sampling framework that extends the idea of measur-
ing prediction accuracy using cross-validation resam-
pling for independent training and test sets. Our
extensions include ensembles of split-half cross-valida-
tion estimates to measure reproducibility metrics, ac-
tivation patterns on a common statistical scale, and
subject influence. For both univariate and multivariate
data-analysis models applied to 12 [15O]water PET
data sets from diverse motor tasks we have used
NPAIRS to (1) directly measure reproducible activa-
tion signal-to-noise ratios on a common Z-score scale
while incorporating spatially varying noise and ran-
dom subject effects, (2) demonstrate that the histogram
of an rSPM{Z} image volume may be modeled as the
sum of a data-analysis-dependent noise distribution
and a task-dependent Gaussian signal distribution, (3)
explore the relation between prediction accuracy and
activation pattern reproducibility in real data sets as
an alternative to ROC curves based on simulations,
and (4) quantitatively measure the broad spread of
reproducible activation SNRs and the strong influence
of individual subjects on the reproducible activation
patterns from the 12 data sets. We propose the
NPAIRS framework as a validation tool for testing and
optimizing methodological choices and tools for data
acquisition, preprocessing, data analysis, and extrac-
tion of statistical parametric maps in functional neu-
roimaging.

APPENDIX: CVA ON A PCA BASIS

Let Xtr be the set of M training scans (M � S), where
S is the total number of scans available, and test and
training sets are chosen by splitting the available num-
ber of subjects (N) to ensure that the two groups of
scans are truly independent. Using a PCA or equiva-
lently a singular value decomposition, we obtain

Xtr � Utr�trV tr
T (9)

and penalize the subsequent CVA (i.e., control com-
plexity and avoid singular matrices) by using a reduced
number of components P � M to obtain the P � M
matrix Q*tr � [q1, . . . , qM], defined by

Q*tr � 	U*tr
TXtr � �*tr	V*tr
T. (10)

Form the P � P within- and between-class covariance
matrices
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W � �
j,k

	qjk � q� .k
	qjk � q� .k
 T,

B � �
k

Nk	q� .k � q� ..
	q� .k � q� ..
T,

(11)

where qjk is the vector of P component values of scan j
in class k with Nk scans/group, where k � (1, . . . , K)
and K � P. The CVA solution for the data matrix Q*tr
and the class structure indexed by k is defined by the
eigenvectors of W�1B, providing the K � 1, P-dimen-
sional canonical eigenvectors L � [l1, l2, . . . , lK�1], nor-
malized such that LT(W/(M � K))L � I (e.g., Mardia et
al., 1979). This provides PCA-like orthogonal canonical
coordinates (c), which successively maximize the SNR
defined by the between-class mean variance divided by
the pooled within-class variance. The training-set
scans’ canonical coordinates are given by

cr � 	Q*tr
Tlr, (12)

where r � (1, . . . , K � 1), with ci
Tcj � 0 (i � j), and

ci
Tci � (1 � �i), where �i is the eigenvalue of W�1B

associated with eigenvector li. The associated canoni-
cal eigenimages are given by

er � U*trlr. (13)

To sequentially test for significant dimensions, r �
0, . . . , K � 1, we may use Bartlett’s asymptotic �2

approximation with the degrees of freedom given by f �
(P � r)(K � r � 1).

	M � 1 � 1
2 	P � K

 �

i�r�1

K�1

log	1 � �i
O¡

lim N3 �

� f
2. (14)

If we assume that the combination of subspace selec-
tion with P principal components together with the
training-set parameter estimates for the CVA model
define a canonical coordinate signal subspace and an
independent noise subspace, from Eq. (7) we may write

p	g 	j
�x te
	j
; �tr


�
1

C
exp	�

1

2

L tr

T	U*tr
T	x te
	 j
 � x� tr

	g 	•



 2�p	g 	j

.
(15)

The posterior probability of a test-set scan, xte
( j), being

assigned to the class representing its true brain state, g( j),
is governed by the Euclidean distance between the mean
training-set scan for that class and the test-set scan after
projection through the reduced PCA basis, U*tr, onto the
canonical coordinate subspace, L. This is a very versatile
expression for we may choose any one of a wide range of
possible basis sets in place of U*tr, e.g., the tensor-product
splines in Kustra and Strother (2001) or independent
components in Lange et al. (1999).
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