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Learning curves are presented as an unbiased
means for evaluating the performance of models for
neuroimaging data analysis. The learning curve mea-
sures the predictive performance in terms of the gen-
eralization or prediction error as a function of the
number of independent examples (e.g., subjects) used
to determine the parameters in the model. Cross-vali-
dation resampling is used to obtain unbiased esti-
mates of a generic multivariate Gaussian classifier, for
training set sizes from 2 to 16 subjects. We apply the
framework to four different activation experiments, in
this case [15O]water data sets, although the framework
is equally valid for multisubject fMRI studies. We
demonstrate how the prediction error can be ex-
pressed as the mutual information between the scan
and the scan label, measured in units of bits. The mu-
tual information learning curve can be used to evalu-
ate the impact of different methodological choices,
e.g., classification label schemes, preprocessing
choices. Another application for the learning curve is
to examine the model performance using bias/vari-
ance considerations enabling the researcher to deter-
mine if the model performance is limited by statistical
bias or variance. We furthermore present the sensitiv-
ity map as a general method for extracting activation
maps from statistical models within the probabilistic
framework and illustrate relationships between mu-
tual information and pattern reproducibility as de-
rived in the NPAIRS framework described in a com-
panion paper. © 2002 Elsevier Science (USA)
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INTRODUCTION

In this paper we describe a prediction-based scheme
for statistical modeling of functional neuroimaging
data. In predictive modeling the objective is a general-
izable model, i.e., a model whose parameters are esti-
mated on a set of training samples but nevertheless
can predict properties of an independently drawn set of
test samples. The performance is quantified through
an error function. The test performance measured as
the average error on the set of test samples is an
unbiased estimate of the mean test error. The mean
test error is denoted the generalization error in the
machine learning literature, while it is known as the
prediction error in applied statistics. The prediction
error typically depends on the flexibility of the invoked
model and the sample size. The key element of the
proposed evaluation scheme is the learning curve,
which is the test error plotted as a function of size of
the training set. In the neuroimaging context the num-
ber of data samples will typically be the number of
subjects whose data participate in estimating model
parameters.

Model performance is determined by the sample size
and model flexibility in a manner which can be under-
stood in a bias/variance context. A model that is too
simple can fail to implement the “true” mechanisms
generating the data. This gives rise to a bias contribu-
tion to the prediction error. On the other hand, a more
flexible and complex model will tend to overfit the data
points, giving rise to a variance contribution to the
error. Using the bias/variance tradeoff we can interpret
the learning curves obtained, identifying models dom-
inated by either bias or variance. The reader is referred
to Bishop (1995) or Geman et al. (1992) for an intro-
duction to bias/variance decompositions and Heskes
(1998) for a more general derivation. Evaluation of
model generalizability has previously been studied in a
functional neuroimaging context by Mørch et al. (1996,
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1997), Mørch (1998), Hansen et al. (1999), and Kustra
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and Strother (2001). The approach described here dif-
fers from earlier work, most importantly by being
aimed at intersubject generalization.

We give examples of crossing learning curves for
models of variable flexibility. The generic generaliza-
tion crossover occurs when a flexible model has worse
performance than a biased model for small sample
sizes, implying that the flexible model is the better
choice only for large sample sizes. This leads to the
conclusion that model “optimality” can critically de-
pend on the amount of data available.

Similarly, we compare learning curves obtained us-
ing the same model and experiment but with different
model control parameters or preprocessing procedures.
Hence, the prediction framework as used here and in
our companion paper is proposed as a tool for resolving
model tuning and data preprocessing issues. Such is-
sues are otherwise hard to approach in real data sets in
which the activation image “ground truth” is unknown
and thus ROC techniques are not available (Skudlar-
ski et al., 1999). This includes issues such as how much
smoothing to apply to the image sets prior to analysis,
which intra- and intersubject spatial normalization
procedure to use, which model to use, and so on.

The learning curves in this paper are obtained by
means of the cross-validation technique, in which the
available data set is repeatedly divided into disjunct
training and test subject sets. The test error is aver-
aged over all cross-validation splits with fixed training
set size, to yield an unbiased estimate of the prediction
error; see Bishop (1995) for more information on the
cross-validation technique. The cross-validated aver-
age of the performance is more accurate than the indi-
vidual estimates because it is independent of any par-
ticular split into training/test set. With approximately
150 cross-validations for each training set size, as used
in the present work, the method adds significantly to
the computational demands of the analysis.

By insisting on unbiased performance estimates we
avoid many of the technical difficulties and approxima-
tions related to alternative approaches based on hy-
pothesis testing. In the classical approach a hypothesis
of no activation is formed for each voxel and a resulting
p map is computed, representing the level at which the
local null hypothesis is rejected. In contrast, the pre-
diction performance measures express to what degree
the data are in accordance with the model: we express
what the data are rather than what they are not. The
prediction error framework tests the validity of model
assumptions, which are assumed in the hypothesis
framework. Using learning curve plots we may also
evaluate the relative merits of competing hypotheses.

In the following section we present an introduction
to the concepts needed to understand the principles of
the prediction approach, i.e., the notion of generaliza-
tion error applied to statistical models. We will empha-
size that prediction error is closely related to the mu-

tual information (Cover and Thomas, 1991) between
brain images and brain information processing states
(represented as task labels). In the second part of the
paper, we will demonstrate learning curves applied to
four different [15O]water PET activation experiments
and show how model performance is sensitive to vari-
ous modeling parameters. We have included two tech-
nical appendices useful for any multivariate modeling
approach, namely on effective use of principal compo-
nent representations in a cross-validation context and
on a general vizualization scheme for multivariate
models called the sensitivity map.

THEORY

We will use p� to denote a probability distribution
or density function for discrete or continuous stochastic
variables, respectively. For simplicity we will use the
term “distribution” for both. All voxels in a neuroimage
can be arranged in the variable vector x by lexico-
graphical ordering; p(x) is the distribution of x.

While the neuroimage or “scan” x is sometimes re-
ferred to as a microscopic variable, the external mac-
roscopic control variable g, the task label, quantifies
the experimental conditions of the scan. The control
variable may be a simple binary indicator baseline/
activation or vectors (where we use boldface notation)
with a more detailed description of the scan (time la-
bel), activation task (e.g., a graduated paradigm), per-
formance data (i.e., behavioral measures of subject
task performance), and subject (gender, mood, disease
state, etc.). Under the General Linear Model (GLM;
Friston et al., 1995b), g( j) could correspond to the jth
row of the design matrix.

The micro- and macroscopic variables are, in gen-
eral, multivariate stochastic variables. Consider a
functional activation data set � � {(x( j), g( j))}, consist-
ing of j � 1, . . . , N observations. A complete analysis of
� requires the investigation of the joint distribution
p(x, g) from which the data are drawn. This analysis is
performed by means of a model parameterized by �,
denoted by p��. We may of course choose to disregard
certain variables so that only (potentially) relevant
information is represented in x and g. For example, the
scan should be masked for nonbrain voxels and prepro-
cessed by stereotactic alignment and other normaliza-
tion procedures. In particular we compute and subtract
the mean scan of each subject as part of the prepro-
cessing procedure (this corresponds to including sub-
ject block effects in the design matrix in the General
Linear Model).

One may argue that treating the control variable g
as a stochastic variable is an unnecessary complica-
tion. Typically, the values are decided by the experi-
mental design; for example, the first scan is baseline
and the second activation and so forth, {g( j)� j � 1, . . . ,
N} � {A, B, A, B, . . . }; this is clearly not a random
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sequence. However, from a modeling perspective it
may be useful to treat these parameters as stochastic
variables, so that we can contemplate predictive distri-
butions like p(g�x). Such a distribution tells us, for a
given scan, which task label is most likely associated
with a given brain scan in view of the complete set of
data and model assumptions and importantly this may
be different from the “true” known label, say, in the
transition between two different activation subtasks.

Rather than modeling the joint distribution, p(x, g),
typical functional data analysis schemes model either
the predictive distribution p�(x�g) or alternatively
p�(g�x), which we will refer to as micro- and macro-
scopic models, respectively. The two model types are
related through Bayes’ formula,

p�x, g� � p�x�g�p�g� � p�g�x�p�x�. (1)

The distributions p(x) and p(g) specify the marginal
distributions of scans and labels, respectively. We can
assume p(g) to be known when g describes data which
are “certain,” for example what the subject was in-
structed to do. What and how the subject actually
performed while being scanned are not always avail-
able to us as measurement data. If we decide to include
measured performance data and other random factors
in the g vector, we cannot claim to know the exact
shape of p(g). This is of relevance when we design
performance measures for our probabilistic models
later on. The general distribution of scans p(x) is on the
other hand extremely complex and can be only crudely
approximated, for example by the parameterization
p�(x) � ¥g�p�(x�g�)p(g�).

We use Bayes’ formula, Eq. (1), to convert models
formulated in the microscopic domain p�(x�g) into a
macroscopic formulation. This can be done when the
control variable g is categorical, so that

p��g�x� �
p��x, g�

p��x�
�

p��x, g�

¥g�p��x, g��
�

p��x�g�p�g�

¥g�p��x�g��p�g��
. (2)

The parameterized model can of course be imple-
mented in many ways; we will not even try to give an
overview here. The reader is referred to the literature
on pattern recognition, e.g., Duda et al. (2001),
Cherkassky and Mulier (1998), Burges (1998), or
Bishop (1999).

Micro- and Macroscopic Models

The vast majority of functional data analysis is
based on microscopic type models. The General Linear
Model, as invoked in SPM (Friston et al., 1995a), has
gained widespread use and is one example of a micro-
scopic model. In its most basic form, the GLM is ap-
plied as parallel univariate models, estimating the

model parameters independently for each voxel. One of
the reasons for the popularity of the microscopic for-
mulation is the close relation to regional hypothesis
testing of the activation.

The GLM model encompasses both multiple linear
regression and ANOVA/ANCOVA type models. It has a
number of features which makes it easy to use for a
variety of experimental setups. For example, the model
can be configured directly for the known experimental
setup through the design matrix, and the parameters
estimated by the model can be analyzed to produce
statistical maps of activations in relation to each con-
trast (linear combination of effects) in the design ma-
trix. We will briefly describe the GLM and show that it
can be put into a probabilistic framework.

If we form the data matrix X � [x(1), . . . , x(N)] and the
design matrix G � [g(1), . . . , g(N)]T we can write the
GLM as the matrix equation

X T � GB � �T,

where each scan is described as a linear function pro-
jection of a row in the design matrix G. The maximum
likelihood solution is given explicitly by B̂ �
(GTG)�1GTXT, assuming that � is a white noise matrix
with independent Gaussian elements and a separate
variance estimate per voxel, �ij � N(0, �i

2). The GLM
assumes the noise is additive, i.e., x � s(g) � �, with x
being the observed scan, s(g) is the underlying or “true”
signal written as a function of the control variable g,
and � is a stochastic white noise process. For each noise
element �ij at voxel i and scan number j we have

p���ij� �
1

�2�� i
2

e �� ij
2 /2� i

2
. (3)

The parameterized vector � contains �̂i
2 and the ele-

ments of B̂, so that the probabilistic formulation of the
General Linear Model reads

p��x�g� � �
i�1

I

�2�� i
2� �1/2exp���

i

�x � B̂g
T	 i

2

2� i
2 � . (4)

A direct numerical evaluation of the above expression
may not be possible since the normalization factor can
be a very small or large number. In the context of the
GLM the above product is appropriate for independent
voxels, which is equivalent to applying a Bonferroni
correction for multivoxel random field thresholding
(e.g., Genovese et al., 2001).

Parameter Estimation and Prediction Error

Maximum likelihood estimation of the model param-
eters is equivalent to maximizing the conditioned prob-
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ability. In the macroscopic case this probability can be
expressed as 
�log p�(g�x)�p(x,g), where the angle brack-
ets denote average2 with respect to the distribution
p(x, g). Since we do not know p(x, g), we will invoke the
sample distribution provided by the training set �tr

consisting of Ntr examples. The sample distribution is
the sum of Dirac delta functions centered at each train-
ing example:

p*tr�x, g� �
1

Ntr
�
�tr

��x � x � j�, g � g � j��. (5)

This leads to


�log p��g�x��p�x,g� � 
�log p��g�x��p*tr�x,g�

� �� �log p��g�x�p*tr�x, g�dxdg

�
1

Ntr
�
�tr

�log p��g � j��x � j��

� �log L��; ��,

(6)

so that the model parameter vector estimate �̂ maxi-
mizes the likelihood function L(�; �), i.e., we estimate
the model parameters by maximizing the conditional
distribution sampled at the data locations. It is a well-
known fact that this maximization is at the risk of
overfitting the data points and the model can end up
learning the noise and not the underlying rule in the
data (Bishop, 1995).

The prediction error G� measures the performance
on new data and can be understood as the mean con-
ditional probability of observing new data. Put in the
above terms, we form another sample distribution
p*te(x, g), only this time based on the examples in the
test set. This produces the prediction error estimate

G� � 
�log p��g�x��p�x,g� � 
�log p��g�x��p*te�x,g�

(7)
�

1

Nte
�
�te

� log p��g � j��x � j��,

where x( j) and g( j) refer to the jth scan and label of the
test set. We note that the prediction error is computed
by feeding the examples of the test set through the
same cost function expression that was used when
optimizing for the model parameters. Likewise, the
definition of G� for microscopic models uses the average

�log p�(x�g)�p(x,g).

Other test-error measures could be created to com-
pute alternative prediction errors. Consider a classifier

(which is a macroscopic type model, p(g�x), where g is
discrete and one dimensional): If we use the output
class probabilities to classify (i.e., choosing the label
with highest probability), we can count the number of
false model class decisions. The error rate is then the
fraction of incorrectly classified test examples.

While the log-probability measure is consistent with
likelihood-based estimation, it can cause problems
when the model generates output probabilities of zero
or very close to zero. We will regard this as a problem
of the model and/or test set sample size rather than the
error measure itself; a predicted probability of zero is
indeed a very strong statement. The most common
problem arises in connection with outlier samples,
which for some reason (e.g., incorrect measurements)
behave completely different from the rest of the sam-
ples. Models which use Gaussian assumptions for the
noise can be heavily affected by such outliers. We shall
not delve deeper into this subject here, but refer to
Hintz-Madsen et al. (1995) for a treatment of outliers
in a neural network classifier context.

The Prediction Error as Mutual Information

We will now address the problem of interpretability
of the prediction error measure G� of Eq. (7), by dem-
onstrating how it can be interpreted as the mutual
information between scans and scan labels. The mu-
tual information in the context of classifiers have been
pursued by Hertz et al. (1995) for analysis of the trans-
mitted information in neuronal single-cell recordings.
We will measure performance in units of bits, which
corresponds to the information contained in a single,
balanced probability, binary decision.

The mutual information (MI) between scans and la-
bels is defined as the Kullback–Leibler divergence be-
tween the joint distribution and the product of the
marginals:

MI � 	log2

p�x, g�

p�x�p�g�



p�x,g�

. (8)

We can use either the macro- or the microscopic for-
mulations:

MI� � 	log2

p��x, g�

p��x�p�g�



p�x,g�

� 	 log2

p��x�g�

p��x�



p�x,g�

� 	 log2

p��g�x�

p�g�



p�x,g�

.

(9)

In practice we approximate the above expressions by
averaging over the test examples. For the macroscopic
model we have

2 This is to understand that (x, g) are drawn infinitely many times
from p(x, g) and the expression inside the angle brackets is averaged.
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MI� �
1

Nte
�
�te

log2 p��g � j��x � j�� ��
g

p�g�log2 p�g�

(10)
� �G� / log 2 � �

g
p�g�log2 p�g�.

Thus, the MI� is directly related to the prediction error
G� of Eq. (7) through a simple linear scaling and offset.
With p�(x) � ¥g� p�(x�g�)p(g�) we have for microscopic
models

MI� �
1

Nte
�
�te

log2

p��x � j�� g � j��

¥g� p��x � j�� g��p� g��
(11)

�
1

Nte
�
�te

log2

p��g � j��x �j��

p� g � j��
,

where the last equality shows that the microscopic
model actually should be converted into a macroscopic
model, recall Bayes’ relation in Eq. (1), before the MI is
computed.

As discussed earlier we may in fact know p(g), for
example, when g describes a univariate activation la-
bel determined by the experimental design.3 The above
expressions measure the amount of information about
g that the model can extract from a single scan in
excess of what we already know. Consider a model
which can give us no further information. This model
will have p�(g�x) � p(g) and we will in a sense have
learned zero bits from the scans. Note that it is possible
for the mutual information to be negative,4 for example
a model which assigns too small probabilities to test
examples, something that easily occurs in connection
with models that overfit the data. A macroscopic model
with negative MI can always be regularized so that the
performance is at least zero bits of MI by simply reg-
ularizing the predictions toward the prior p(g).

On the other hand, a model which is as close to the
truth as possible, p�(g�x) � p(g�x), will achieve the
upper bound on MI � 
log2 p(g�x)/p(g)�p(x, g), which is the
true mutual information between scans and labels. We
cannot in practice compute this upper bound since we
don’t know the true distribution. However, by inserting
p�(g�x) 	 1 into Eq. (9) we see that there is another
upper limit,

MI� 	 	log2

1

p�g�



p�x,g�

� ��
g

p�g�log2 p�g�, (12)

i.e., the label entropy. These bounds are useful for
interpretation of measured mutual information along
with the result explained below for comparison of mu-
tual information from different label schemes.

Mutual Information for Hierarchical Label Sets

We will now illustrate that the MI measure is di-
rectly comparable across different label schemes. For
example, consider an activation/baseline type experi-
ment with eight scans per subject. We may choose to
label each scan according to baseline/activation state
g � {A, B}, i.e., ABABABAB, or we may choose agnostic
labeling, i.e., label each scan separately, so that the
eight scans are labeled A�, . . . , H� (see, e.g., Strother et
al., 1996; Kjems et al., 1999; Frutiger et al., 2000).
These two labeling schemes are hierarchically related
with the mapping A� 3 A, B� 3 B, C� 3 A, . . . , H� 3
B. Yet the mutual information obtained from the two-
label modeling experiment can be directly compared to
the mutual information obtained from an eight-label
experiment.

To see this, consider two different label sets {g} and
{g�} with a mapping g� 3 g represented in the table
g(g�), with n(g) different g� labels mapping onto the
specific label g (in above example, n(A) � n(B) � 4). We
can now translate a model of g labels into a model of g�
labels by stating that with g � g(g�), p(g�) � p(g)/n(g)
and likewise for our model predictions p�(g��x) �
p�(g�x)/n(g). Inserting this into Eq. (9) we see that MI
for the translated model p�(g��x) is

MIp��g��x� � 	 log2

p��g��x�

p�g��



p�x, g��

� 	 log2

p��g�x�/n�g�

p�g�/n�g�



p�x, g��

� 	 log2

p��g�x�

p�g�



p�x, g�

� MIp� � g�x�.

(13)

In other words, the predictions of the two-label
model from the above example can be translated into
agnostic labels by spreading the predictions of labels A
and B evenly on labels A�, C�, E�, G� and B�, D�, F�, H�,
respectively, and this translated model will have the
exact same MI.

We can therefore view the two-label model as a less
flexible (more biased) instance of the eight-label model.
In addition, as a result of the bias/variance tradeoff the
biased two-label model is expected to perform better
than the flexible eight-label model for small training
set sizes, while the flexible model should be expected to
match the performance or better for large training set
sizes.

3 If p(g) cannot be assumed known one would have to estimate the
distribution using some model and plug the result into Eq. (10).

4 Actually there is no lower bound on MI�: if x and � � 0 exist so
that p�(g�x) 3 0 and p(g�x) � �, we will have MI� 3 �.
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Model Visualization

Once the validity of the model has been established
by the learning curve, we address the problem of visu-
alizing the relationship between scan x and label g as
identified by the mathematical model p�(g�x) (or
p�(x�g)). We propose a general procedure for extracting
activity maps, namely the sensitivity map, which we
will define as

si � 	�
p��g�x�


xi
� 2


p�x, g�

. (14)

The sensitivity map measures how much the class pre-
dictions change when the ith voxel is modified. As
before, the angle brackets denote averaging with re-
spect to the (unknown) true distribution. In practice
the sensitivity map is computed using a finite sum over
examples (please refer to Appendix B for a derivation
for the CVA classifier model),

si �
1

N �
j

�
p�� g � j��x � j��	 2


xi
. (15)

Because of its quadratic form the map will be positive,
i.e., si � 0 for all voxels. The objective of this map is to
identify the brain regions that are most relevant to the
model’s predictions. There is no sign information
present in the map; therefore it is not possible to dis-
tinguish regions with relatively increased or decreased
flow, as is possible with the statistical parametric maps
in connection with GLM or with the canonical eigen-
maps obtained from canonical variate analysis of Eq.
(19) (CVA; see Mardia and Kent, 1979; Kjems et al.,
1999). Such information can potentially be gathered
post hoc, for example, by investigating the particular
structure of the signal inside those regions identified
by the sensitivity map.

When visualizing using CVA eigenmaps, we obtain
k � 1 maps when there are k different values of g. The
researcher is thus left with the problem of combining
(and comprehending) multiple activation maps. The
sensitivity map is a principled way to achieve a single
map for visualization. In general, the interpretation of
the sensitivity map is the following areas of the brain
are found relevant by the model p�(g�x) for discriminat-
ing between brain states g. The sensitivity map further
has the advantage that it is defined for all models in
the macroscopic formulation, and the sensitivity maps
associated with different models can be readily com-
pared. Using the NPAIRS framework in the companion
paper (Strother et al., 2002), the sensitivity map also
can be transformed into a Z map, i.e., a map with which
we can form regional hypotheses about activation.

METHODS

Subjects

Seventy-four normal right-handed volunteer sub-
jects were each scanned performing one of four left-
handed motor tasks after written informed consent
was obtained in accordance with a protocol approved
by the Minneapolis VA Medical Center’s Institutional
Review Board. Subjects with a history of substance
abuse or of a neurologic, medical, or psychiatric disor-
der were eliminated from the subject pool. Prior to PET
scanning subjects underwent a complete neurologic ex-
amination and were administered the Edinburgh
Handedness Inventory to verify right-hand dominance.
All female subjects of child-bearing age had a prescan
serum pregnancy test.

Data Acquisition and Quality Control

All [15O]water PET scans were acquired with a Sie-
mens ECAT 953B-31 scanner operating in its 3D mode
(10.8-cm axial field of view, with reconstructed in-
plane and axial resolution of 8.5 and 6 mm, respec-
tively, on a 128 � 128 � 31-voxel grid with 3.125 �
3.125 � 3.375-mm3 voxels). Infusion of a 13-mCi
[15O]water bolus initiated task or control trials, which
were separated by 7 to 10 min, and a 90-s scan was
triggered when radioactivity reached the brain. PET
counts were corrected for dead time, randoms, and
attenuation and were reconstructed using 3D-filtered
back-projection (Liow et al., 1997). After reconstruction
scans from each scanning session were visually exam-
ined and excluded for image artifacts or poor position-
ing within the axial field-of-view with inadequate cov-
erage of sensorimotor cortex, anterior parietal area,
and superior cerebellum. Compared to the relatively
strict empirical criteria used for the allowable brain
coverage of the data sets in Strother et al. (2002) the
criteria were relaxed somewhat to allow larger data
sets to pass the quality control screen. Following this
initial quality control screen the alignment, threshold-
ing, and smoothing steps were identical to those de-
tailed in Strother et al. (2002).

Tasks

Tracing (TR)

Eighteen volunteers were scanned while using a joy-
stick with their left hand to trace a path along the
perimeter of a six-pointed star displayed on a rear-
projection screen at the foot of the PET scanner couch.
Scanning sessions contained 1 baseline scan (no trac-
ing, eyes open viewing the screen, ears plugged, resting
quietly), followed by 8 tracing scans and a final base-
line scan for 10 scans/session. See Frutiger et al. (2000)
for further details of this data set.
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Finger Opposition (FO)

Twenty volunteers were scanned while performing
left-handed sequential opposition of the thumb and
successive digits (2, 3, 4, 5, 4, 3, 2, 3, . . . ), externally
paced with a 1-Hz auditory signal. Scanning sessions
contained 4 to 5 alternating baseline (resting quietly
with eyes covered and ears plugged) and activation
scans for 8 to 10 scans per session. See Kustra (2000)
and Kustra and Strother (2001) for related analysis of
finger-opposition data sets.

Static Force (SF3)

Eighteen volunteers were scanned with 1 baseline
followed by two blocks of 5 static-force activation scans/
block and a final baseline scan for 12 scans/session.
Activation consisted of static force, exerted on a load
cell using the thumb and index finger of the right hand,
which controlled the cursor displayed on a rear-projec-
tion screen at the foot of the PET scanner couch. Before
scanning subjects were practiced to criterion, keeping
the cursor (force) within preset limits (lines on the
screen) about a target-force level (central line). Target
force levels of 200, 400, 600, 800, and 1000 g were each
used once in randomized order within each block. See
Muley et al. (2001) for further details of this data set.

Mirror Tracing (MT)

Eighteen volunteers were scanned while performing
a modification of the tracing task described above.
Scanning sessions contained 2 standard left-handed
tracing scans—after the subject had performed the
tracing task six times in the scanner—followed by 8
mirror tracing scans with the vertical cursor–hand
movement feedback reversed, for a total of 10 scans/
session; subjects performed an additional mirror trac-
ing trial in each 8-min interval between scans. The first
4 scans (2 tracing and 2 mirror tracing) were chosen for
this study. Preliminary results from this data set have
been reported by Frutiger et al. (1998).

Modeling Extremely Ill-Posed Data Sets

Imaging data sets usually have more voxels, I, than
there are scans, N. The space of all possible observa-
tions � is of dimension I, while the actual observations
in the data set span the signal space � which at most
can be of dimension N. Typically dim(�) � dim(�),
making � a small subspace of �. This is exactly what
characterizes extremely ill-posed data sets. Because
the dimension of � is low we have a correspondingly
low number of degrees of freedom available in any
subsequent modeling.

It is possible, however to reduce the dimensionality
of the observation space using Singular Value Decom-
position (SVD), see e.g. Press et al. (1986), Strother et
al. (1995), Golub and Loan (1989), and Lautrup et al.

(1995). In brief SVD is the matrix decomposition of the
I � N matrix of voxels-by-scans X, N � I,

X � U�VT, (16)

where U contains N orthogonal vectors UTU � IN, � is
a diagonal with the singular values � � diag(1, . . . ,
N), and V is an orthogonal N � N matrix VTV � I.
Since the vectors of U span the same space as the
vectors of X, we can choose to work in the basis repre-
sented by U, with no loss of information:

Q � UTX. (17)

Each column of Q contains the coordinates of the cor-
responding column (scan) in X, but does this with only
N numbers which represents a significant saving in
memory. The large matrix multiplication in Eq. (17)
can also be avoided since Q � �VT is obtained directly
from the SVD operation on X.

The cross-validation technique used in this paper
requires the division of the data set into independent
training and test parts. The procedure outlined above
is valid for generating training sets only, since the
computation of the basis set U can be considered part
of the training procedure also. This means we cannot
simply distribute the columns of the matrix Q in Eq.
(17) in training and test sets—this would violate the
independence of the test set. Instead, we should com-
pute the basis on the training set only, with Xtr �
Utr�trVtr

T and the training set projection becomes Qtr �
�trVtr

T while the test set projection onto the basis de-
fined by the training set is Qte � Utr

TXte. In Appendix A
we explain how to construct such basis projections for
the cross-validations in a manner which is both numer-
ically and computationally efficient using a two-step
SVD procedure.

CVA Model with Sensitivity Map

For the experiments in this paper we adopt a multi-
variate Gaussian model, with a Gaussian covariance
structure within each group, pooled across groups. This
model “lives” in a reduced dimensionality space defined
by a CVA. This analysis is again built on top of the P
first singular directions (P 	 N, we chose P � 4–12
depending on experiment). With the terminology intro-
duced in Appendix A, we use the top P rows of the
matrix Qtr forming a new matrix Q*tr (likewise for the
B0,tr matrix we use the first P columns forming B*0,tr).
The number of dimensions to keep, P, has been chosen
identical to the number of scans per subject which is
between 4 and 12 in the data sets used here. The
reason for making this choice is that we expect the
“interesting” structures in signal space to be of lower or
the same dimension as the number of scans per sub-
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ject. Please note that we expect interesting activation-
related effects to appear in the very first singular di-
rections, which is different from most of this earlier
work (Strother et al., 1995; Mørch, 1998) in which an N
subject study had the first N � 1 components domi-
nated by intersubject effects. This is not the case here
because each subject’s mean scan is subtracted from
each scan before the SVD processing.

There is, of course, no guarantee that the signal we
are looking for actually appears in the top 4–12 singu-
lar directions although our experimental results seem
to justify this. Friston et al. (1996) have argued for the
use of all components whose variances are larger than
the average variance. We found that this procedure
includes too many components, with decreased model
performance as a result. Furthermore, our aim is that
the learning curves are created with as few parameters
changed as possible as the training set size varies.

The reduced data matrix Q*tr contains one scan per
column. Counting scans with the same label, qj,g is the
jth column of Q*tr (each column represents a scan)
which has label g, and let there be Ng scans in total
with label g. We next perform a CVA to obtain a linear
subspace that separates the qj,g the most (across
groups) while removing within-group covariance: In
short (please refer to Mardia and Kent, 1979, Ch. 12, or
Kjems et al., 1999, or Worsley et al., 1997, for further
details) this proceeds by forming within- and between-
group SSP matrices, all of size P � P:

W � �
j,g

�qj,g � q� g��qj,g � q� g�
T,

T � �
j,g

�qj,g � q� ��qj,g � q� �T � W � B, and (18)

B � �
g

Ng�q� g � q� ��q� g � q� �T.

The CVA eigendirections are computed as the K � 1
eigenvectors L � [l1, . . . , lK�1] with nonzero eigenvalue
of the matrix W�1B. Since CVA considers the distribu-
tion of group means, the K group means will maximally
span a K � 1 dimensional subspace spanned by the
canonical eigenvectors.

Now, through the initial SVD the CVA eigenvectors
lk each have an associated map in voxel space (see
Appendix A),

mk � UB*0,trlk. (19)

As discussed earlier this map can be visualized and
given interpretation if held together with the scan’s
projections onto the canonical directions, the so-called
canonical coordinates:

cj, g � L Tqj, g � L TB*0,trU Txj, g. (20)

Returning to our probabilistic model, which we set out
to formulate, we now construct a classical Gaussian
classifier on top of the CVA. The model is a Gaussian
per group, with common covariance, namely the with-
in-group structure W as identified in the CVA,

p��c�g� �
1

�2�
exp � 1

2
�c � c� g� 2 , (21)

with c given by Eq. (20). At this point it would most
likely be advantageous to reduce the dimensionality of
c by retaining only a subset of the canonical directions,
namely those that test significant (cf. Mardia and
Kent, 1979, p. 341). Meanwhile, for the sake of simplic-
ity we shall not consider such an approach here.

The model parameter vector � contains the canonical
vectors L, the basis vectors B*0,tr, and the group means
q� g. The covariance matrix in Eq. (21) is a diagonal unit
matrix because the canonical coordinates of c are un-
correlated and have unit variances.

As it stands, Eq. (21) is neither a microscopic nor a
macroscopic model because it considers only a small
subspace of the input space. We need an additional
noise model to model the remaining part of signal
space. Assume that there is a mapping x 7 (n, c) and
that the activation signal is independent of the noise,

p��x�g� � p��n�p��c�g�. (22)

This expression can be turned into a classifier using
Bayes’ relation (1),

p��g�x� �
p��n�p��c�g�p�g�

¥g� p��n�p��c�g��p�g��
�

p��c�g�p�g�

¥g� p��c�g��p�g��
, (23)

which does not depend on the choice of noise model
p�(n). This defines the multivariate CVA as it is used
as a classifier in the experiments in this paper.

Pattern Reproducibility

While the generalizability as measured by the mu-
tual information can be used to evaluate model perfor-
mance and to compare different models’ performance
from the mutual information, we cannot infer the qual-
ity of the associated model visualization, say, the qual-
ity of the sensitivity map.

Evaluating the generalizability of the visualization
requires a ground truth image, hence, is available only
for simulated data (see, e.g., Skudlarski et al., 1999).
For real data we can evaluate the variance part of the
generalizability, by computing the reproducibility of
the produced visualization. But there is no direct way
of estimating the bias part. The visualization reproduc-
ibility can be obtained within the NPAIRS framework
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described in the companion paper (Strother et al.,
2002) by measuring the correlation coefficient (over
voxels) of two maps derived from independent data sets
of the same size. The subjects are then permuted many
times (we used 150 pairs) to get an improved estimate
of the reproducibility rate. Because the patterns need
to be computed from disjoint examples, the reproduc-
ibility learning curves can be computed with at most
N/2 subjects in the training set, whereas the test error
measures were computed with up to N � 1 subjects.

Data Sets and CVA Labeling Schemes

The data matrix for each data set was processed by:
(1) dividing each voxel value by the average value
across all voxels inside the brain mask and then (2) for
each voxel in each subject, subtracting the average
value across the subject’s scans. This preprocessing
strategy creates the I � N matrix of voxel by scans X (N
� I) and was designed to maximize sensitivity to with-
in-subject effects while removing individual subject ef-
fects.

Each of the four data sets was analyzed with the
CVA model described under CVA Model with Sensitiv-
ity Map and the misclassification error rates and MI
were assessed by means of the cross-validation scheme
under Modeling Extremely Ill-Posed Data Sets. For
each size of the training set we computed 150 (190 for
the FO data set) cross-validations by permutation of
the selection of subjects for the training and test sets.
Learning curves were computed using four different
setups on the four data sets; see Table 1.

We created a smaller data set by selecting only four
scans per subject with a balanced number of baseline
and active scans: In MT we used the first two tracing
scans and the first two mirror tracing scans. In SF we
used the first baseline, the first two force scans, and the
last scan, which was a baseline. For the FO data set we
selected the first four alternating scans, and for TR we
used the first baseline, the first two tracing scans, and
the last baseline scan. These are the same data sets
analyzed in Strother et al. (2002). The balancing was
done because the CVA model uses a common covari-
ance matrix which for some label setups may not
match the data well in the presence of strong temporal
trends. Such strong trends may inflate the within-

group covariance when single-label classes cover mul-
tiple scans, causing poorer model performance.

The first two of the four modeling setups used the
smaller balanced data set with either baseline/activa-
tion labels or agnostic labels, i.e., separate labels for
the four scans. The last two setups were done with all
scans and agnostic labeling, this time varying the num-
ber of principal components (PC’s) P retained in the
basis projection. We used the first four PC’s in the third
setup and the same number of components as the num-
ber of scans per subject in the fourth component.

RESULTS AND DISCUSSION

To illustrate the function of CVA, Fig. 1 presents a
scatter plot of the canonical coordinates for the MT
experiment. Each scan is represented by a letter or

TABLE 1

Labeling Schemes for the Four Modeling Setups

Setup 1 Setup 2 Setup 3 Setup 4

Mirror tracing 1122 4 PC’s 1234 4 PC’s 1 . . . 10 4 PC’s 1 . . . 10 10 PC’s
Static force 1221 4 PC’s 1234 4 PC’s 1 . . . 12 4 PC’s 1 . . . 12 12 PC’s
Finger opposition 1212 4 PC’s 1234 4 PC’s 1 . . . 8 4 PC’s 1 . . . 8 8 PC’s
Tracing 1221 4 PC’s 1234 4 PC’s 1 . . . 10 4 PC’s 1 . . . 10 10 PC’s

FIG. 1. Scatter-plot visualization of canonical coordinates for the
mirror tracing experiment (see Methods), in which the subject traces
a star-shaped maze with visual feedback. Each scan is represented in
the scatter plot with a letter or digit located at the projection of the
scan on to canonical directions, i.e., directions that maximize the
separation with respect to the scan labels. Each subject’s 10 consec-
utive scans are labeled in four groups as TT12223333; T denotes a
tracing scan and digits represent the scans after mirroring of the
control signal. Circles illustrate the shape of the model densities of
each of the four classes p�(c�g), i.e., in this case a Gaussian centered
at the class mean with variance pooled across groups (the canonical
directions remove within-group correlations, so that the within-
group variance has circular shape).
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digit located at the canonical coordinate in Eq. (20) of
the scan. The sensitivity map for the same model is
shown in Fig. 2, overlaid with an anatomical reference.
The colored regions are found important for the model
in order to perform the discrimination in Fig. 1.

The relation between generalizability and visualiza-
tion reproducibility is illustrated in Fig. 3, in which the
four data sets are plotted with average MI versus av-
erage pattern reproducibility for different numbers of
subjects in the training set. We see that across the four
data sets there is a tendency for the MI measure to
correlate with the reproducibility, i.e., both tend to

increase with the number of subjects in the training set
and additionally with the relative difficulty of the mod-
eling task.

Some care should be exercised when comparing re-
producibility between different models because it is
insensitive to the model bias. However, within a given
model and for the same visualization scheme reproduc-
ibility does directly address the key issue of the statis-
tical validity of the derived neuroimage.

Figure 4 plots learning curves of MI, misclassifica-
tion error rates, and pattern reproducibility for each of
the four data sets and the four setups described in
Table 1. We further analyze the type of error made by
the classifiers in Fig. 5 in the so-called confusion ma-
trices, which show predicted label probabilities versus
the true label, averaged over all cross-validations. The
confusion matrices shown correspond to the agnostic
(N-label) N-PC models.

The MI learning curves demonstrate that none of the
models are able to discriminate between much more
than two brain states, corresponding to 1 bit of label
information. Even models which were given the poten-
tial to extract far more information (for example in SF
the 12 states have a limit of 3.6 bits) fail to do so. This
is interesting considering that the experimental de-
signs are made to reduce irrelevant activations and to
maximize/isolate the neural activation in question.
However, note that this observation does not imply
that the more complex models using agnostic labeling
schemes equal to the number of scans per subject can-
not be used to evaluate temporal trends, as demon-
strated in Frutiger et al. (2000).

As expected, all learning curves show improved per-
formance as the number of subjects increases. The fact
that the curves do show minor nonmonotonicities is
attributed to test sample fluctuations, as we have
rather limited test set sizes.

FIG. 2. Orthogonal slices of the sensitivity map for the mirror tracing experiment corresponding to Fig. 1 layered in color on top of an
anatomical MR reference. The sensitivity map highlights areas that are important to the model for solving the classification task. Darkened
areas were not part of the analysis. Note that the color map in this display is chosen arbitrarily.

FIG. 3. Plot of scan/label mutual information versus reproduc-
ibility signal/noise for the four data sets, for varying numbers of
subjects in the training set. There were 2 labels/4 scans per subject
(balanced data set; Setup 1, Table 1) corresponding to the dashed
solid line in Fig. 4. We see that both measures indicate improved
performance of the model as the number of subjects increases.
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Two-label TR and the FO MI curves saturate; i.e.,
the model predictions do not seem to improve by add-
ing further subjects to the study. It is still possible that
another less biased model could improve from a larger
training set; see for example the two- versus four-label
TR curves. The flattened prediction curves mean that
performance is now limited by bias. This argues for
selection of statistical models which have the “right”
amount of bias for the learning curve to flatten out at a
training set size close to the total number of subjects

available. Thus, the simple model has better perfor-
mance for small training set sizes, whereas the flexible
model seems to be restrained by variance.

On the other hand, we see that the stability of the
extracted activation patterns (as measured by the pat-
tern reproducibility coefficient) improves with addi-
tional subjects in most cases. This happens because
reproducibility is computed as a spatial average. The
major regions relevant for label prediction are identi-
fied already with small training set sizes. Increasing

FIG. 4. Learning curves (model performance as function of number of subjects in the training set) for the four activation experiments
(MT, mirror tracing; SF, static force; FO, finger opposition; TR, figure tracing). The four curves on each graph represent the different
modeling setups of Table 1: Dashed thick line, 4 scans per subject, 4 PC’s, 2 labels (activation/baseline AABB or ABAB). Solid thick line, 4
scans per subject, 4 PC’s, agnostic labels (ABCD). Thin solid line, all scans per subject used (10, 12, 8, 10, respectively), number of PC’s
corresponding to number of scans, agnostic labels (ABCDE . . . ). Thin dash-dot line, all scans per subject used (10, 12, 8, 10, respectively, only
4 PC’s), agnostic labels (ABCDE . . . ). The gray levels in the error rate graphs indicate the rates obtained if the model kept guessing the most
common label.
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the training set size seems to stabilize the activation
map across the entire volume, causing reproducibility
and the underlying activation pattern signal-to-noise
to keep improving, while label prediction performance
does not improve much.

The mutual information learning curves show a ten-
dency to drop very fast when the number of subjects is
small. There is a significant penalty in MI if the model

for some reason assigns a very small probability to a
test example because the MI is derived from the aver-
age log of the predicted probability of the true label.
The predictive performance is further decreased be-
cause the basis vectors B*0,tr become more “noisy” for
small training set sizes. Error rates do not drop as fast
as MI for smaller number of subjects. The misclassifi-
cation measure is not penalized heavily by low-proba-

FIG. 5. Probability confusion matrices for the four data sets at different training set sizes. The confusion matrix measures how agnostic
labels (Setup 4, Table 1) are confused by the model averaged over 150 subject permutations, averaging predicted class probabilities (rows)
versus targets (columns). The averaged probabilities are indicated by the areas of the disks and all columns sum to the same area. These
confusion matrices correspond to the N-PC curves (thin solid lines) in Fig. 4.

783MUTUAL INFORMATION LEARNING CURVES



bility test examples; correctly and incorrectly classified
test examples contribute with equal weight to the error
rate. Thus, the misclassification error measure is less
sensitive to model overfitting than the MI measure.

We also notice that the models with negative MI still
perform as discrete classifiers and the activation pat-
terns are reproducing. In all cases of negative MI, we
see misclassification rates below the baseline error rate
(error rate obtained by a constant guess at the largest
label class). One should interpret a negative MI as an
indication that the model is overfitting, i.e., dominated
by variance in the bias/variance tradeoff.

There are several examples of crossing MI learning
curves indicating the bias/variance tradeoff, for in-
stance the two- and four-label curves in the MT, SF,
and TR data sets. The more biased model (the two-label
model, dashed thick) performs better on smaller data
sets because the bias helps to prevent overfitting. Once
enough subjects are available to obtain stable param-
eter estimates the complex model (four-label, solid
thick) eventually outperforms (MT, SF, TR) or matches
(FO) the performance of the simple model.

The effect of P, the number of singular directions
retained (aka principal components, PCs) can also be
understood in the bias/variance context. For all tasks,
4-PC and the less biased N-PC curves seem to meet
(perhaps cross). There seems to be no real advantage,
in terms of MI, of including more than four principal
components (thin dash-dot versus thin solid lines). In
all four experiments, the performance of the models
with many PC’s only just reaches the level of the 4-PC
models.

We note that reproducibility values in the sensitivity
map are approximately 1

2 of those in the CVA map
(compare with companion paper Strother et al. (2002)).
The reason for this is that the sensitivity map does not
have a sign, i.e., both negatively and positively acti-
vated regions map onto a positive sensitivity which
reduces the reproducibility correlation coefficient.

The confusion matrix is useful for diagnosing prob-
lems faced by the model. In the MT data, the model
confuses the 2 initial tracing scans, the first mirror
tracing scan is fairly unique, and the last scans have a
slight temporal trend that results in a weak diagonal
structure in the upper right-hand corner of the matri-
ces. It is also of interest to note that as the subject
accommodates to the mirrored control (scans 8–10) the
model tends to confuse these scans with the initial 2
tracing scans.

In FO, TR, and SF, we see as expected that the
confusion occurs mostly within baseline scans and
within active scans. Two of the N-label models (FO,
TR) found no temporal effects within the active scans.
This corresponds well to the fact that, in these three
data sets, none of the N-label models (thin solid lines in
Fig. 4) extracted more label information than the two-
label models (thick dashed lines). Meanwhile, the four-

label models (thick solid lines) do seem to find more
than two states in the TR data (and to some extent SF),
indicating that the most complex models did not have
enough training examples to discover these effects.

CONCLUSION

We have introduced a prediction error-based frame-
work for evaluation of models of functional neuroimage
sets. Models were demonstrated that were able to pre-
dict the labels of scans in subjects the models had
never “seen” before, verifying the validity of the model
and model assumptions, something that is just as-
sumed in conventional hypothesis-based analysis
framework.

The prediction error was given an interpretation as
the mutual information between scans and scan labels,
measured in bits. The information rate can be inter-
preted as the amount of information predicted about
the scan label given the scan. It was shown how this
performance measure is computed, consistent with mi-
cro- and macroscopic type models. Furthermore, we
demonstrated that the extracted mutual information is
directly comparable across different labeling schemes.
Being a linear transformation of the prediction error,
the mutual information can be used to expose the bias/
variance tradeoff, and it was shown how this can be
used to identify models that are either over- or under-
fitting the data.

The effect of training set size was investigated by
computing learning curves, i.e., plots of predictive per-
formance as a function of the number of subjects used
to train the model. The learning curves were generated
using a cross-validation scheme. The new framework
was applied to four [15O]water PET functional activa-
tion studies and learning curves from different model-
ing setups were analyzed using bias/variance consider-
ations.

We introduced the sensitivity map as a new scheme
for model visualization used for identification of the
parts of the input space important to the model perfor-
mance. The sensitivity map can be derived for any
probabilistic model with a macroscopic formulation.

Having measured the performance of the scan/label
predictions, we considered the “quality” of the derived
activation map using the pattern reproducibility, as
defined in the NPAIRS framework in the companion
paper (Strother et al., 2002). We found that pattern
reproducibility addresses the variance part of the pat-
tern generalizability and thus is not an unbiased mea-
sure of performance. The unbiased generalizability of
the visualization requires a ground truth image and is
therefore available only for simulated data. For the
four real data sets we evaluated the variance part of
the generalizability, by computing the reproducibility
of the produced visualization. We observed that the
visual quality of the extracted activation pattern can-
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not always be inferred from the quality of the label
predictions. For example, we showed examples in
which adding subjects increased the extracted pattern
reproducibility without markedly improving the per-
formance in terms of label predictions. For this reason,
both label prediction and pattern reproducibility re-
main key tools for resolving preprocessing issues and
verification of the validity of modeling assumptions in
real data sets.

APPENDIX A: BASIS PROJECTIONS
FOR CROSS-VALIDATION

Consider the problem of obtaining projections of a
test set onto an SVD basis computed on an indepen-
dent training set. We start out with a division of the
data matrix in two parts; assume that we can split the
columns of the I voxels by N scans data matrix like
this: X � [XtrXte]. We then compute the SVD on the
training data matrix, Xtr � Utr�trVtr

T (size I � Ntr), and
the training set projection becomes Qtr � �trVtr

T (size
Ntr � Ntr) while the test set projection onto the basis
defined by the training set is Qte � Utr

TXte (size Ntr �
Nte). With such an approach we would require one SVD
of a matrix with I � 10,000 rows for every cross-vali-
dation iteration, a procedure which is computationally
quite demanding. To improve this we perform a two-
step SVD which is mathematically equivalent. We com-
pute a single SVD of the entire data matrix once and
perform smaller train/test second-level SVD operations
for the cross-validations:

1. Compute full SVD: X � U�VT and Q � �VT (size
N � N).

2. Partition the columns of Q into train and test set
(per-subject-wise in PET) Q � [Q0,trQ0,te].

3. Compute small size SVD, Q0,tr � B0,tr�0,trV0,tr
T , and

obtain the training set projections Qtr � B0,tr
T Q0,tr �

�0,trV0,tr
T (size Ntr � Ntr).

4. Obtain test set projections Qte � B0,tr
T Q0,te (size

Ntr � Nte).
5. Compute model performance on Qtr and Qte.
6. Repeat steps 2–5 for each cross-validation.

It should be noted that the procedure outlined here
leads to projections that do not have exactly the same
variance in the training and test sets. An alternative
algorithm which remedies this problem, called the
Generalizable Singular Value Decomposition, has been
developed (Kjems et al., 2001) and will not be described
here since space does not allow for an elaborate discus-
sion. The results shown in this paper are all based on
the conventional SVD as described above.

APPENDIX B: DERIVATION OF SENSITIVITY MAP

Returning to our probabilistic CVA model in Eq. (21)
we will derive its sensitivity map. First note the fol-

lowing derivatives for the canonical coordinates: � log
p�(c�g)/
c � �(c � c� g) and 
p�(c�g)/
c � �p�(c�g) (c �
c� g). It follows by direct calculation that


 log p��g�c�


c
�


 log
p��c�g�p�g�

¥g� p��c�g��p�g��


c

�

 log p��c�g�


c
�


 ¥g� log p��c�g��p�g��


c

� ��c � c� g� � �
g�

p��g��c��c � c� g�.

(24)

We collect the above derivatives in canonical space of
each example ((c( j), g( j))) into a matrix D � [d(1), . . . ,
d(N)] with d( j) � 
 log p�(g�c)/
c�(c( j) ,g( j) ). The derivatives
with respect to the ith voxel can be found using c �
LTB*0,trUTx, i.e., �cT/
x � U B*0,trL � M, so that

si �
1

N �
j

 
p��g � j��x � j�� 2


xi
�

1

N
diag�MDDTM T�, (25)

which is most efficiently computed as the sum of each
row of the matrix 1/N (M(DDT)) J M (J denotes ele-
ments-wise multiplication).

Notice that the above sensitivity map takes a partic-
ularly simple form for two-state models. In such mod-
els the dimensionality of the canonical coordinates is 1
(recall that c has dimension k � 1, with k being the
number of classes), so D is scalar, which again means
the sensitivity map equals the squared elements of the
canonical eigenvector. This eigenvector is identical to
the Fisher linear discriminant when k � 2.

In some cases we may not be interested in a global
summary map, but rather a map which expresses the
uniqueness of one or more of the states g. For example,
what characterizes the brain state g � A from g � A
with no information about the discrimination of states
g � A? Such a map can be obtained by a slight alter-
ation of the definition in Eq. (15) by averaging over
only the examples of the state we wish to map, i.e.,

s�g�i �
1

N �
j�g � j��g

 
p��g � j��x � j�� 2


xi
. (26)

Equation (25) is modified similarly by summing over
examples of the investigated state rather than over all
states.
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