
Probabilistic Hierarchical Clustering with Labeled and Unlabeled Data

J. Larsen, A. Szymkowiak, L.K. Hansen

Informatics and Mathematical Modeling, Technical University of Denmark
Richard Petersens Plads, Build. 321, DK-2800 Kongens Lyngby, Denmark

Web: http://eivind.imm.dtu.dk, Emails: jl,asz,lkh@imm.dtu.dk

Abstract. This paper presents hierarchical proba-
bilistic clustering methods for unsupervised and su-
pervised learning in datamining applications, where
supervised learning is performed using both labeled
and unlabeled examples. The probabilistic cluster-
ing is based on the previously suggested General-
izable Gaussian Mixture model and is extended us-
ing a modified Expectation Maximization procedure
for learning with both unlabeled and labeled exam-
ples. The proposed hierarchical scheme is agglomer-
ative and based on probabilistic similarity measures.
Here, we compare a L2 dissimilarity measure, er-
ror confusion similarity, and accumulated posterior
cluster probability measure. The unsupervised and
supervised schemes are successfully tested on artifi-
cially data and for e-mails segmentation.

1 Introduction
Hierarchical methods for unsupervised and supervis-
ed datamining provide multilevel description of data,
which is relevant for many applications related to in-
formation extraction, retrieval navigation and organi-
zation of information, see e.g., [4, 7]. Many differ-
ent approaches to hierarchical analysis from divisive
to agglomerative clustering schemes have been sug-
gested, and recent developments include [3, 6, 16,
20, 24]. In this paper we focus on agglomerative
probabilistic clustering from Gaussian density mix-
tures based on earlier work [14, 15, 19] but extended
by suggesting and comparing various similarity mea-
sures in connection with cluster merging. An advan-
tage of using the probabilistic clustering scheme is
automatic detection of the final hierarchy level for
new data not used for training. In order to provide
a meaningful description of the clusters we suggest
two interpretation techniques: listing of prototypical
data examples from the cluster, and listing of typical
features associated with the cluster.

The generalizable Gaussian mixture model (GGM)
[8] and the soft generalizable Gaussian mixture model
(SGGM) [19] are basic model for supervised and un-
supervised learning. We extend this framework to
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supervised learning from combined sets of labeled
and unlabeled data [9, 17, 18] and present a modi-
fied version of the approach in [17] called the unsu-
pervised/supervised generalizable Gaussian mixture
model (USGGM). Supervised learning from combin-
ed sets is relevant in many practical applications due
to the fact that labeled examples are hard and/or ex-
pensive to obtain, for instance in document catego-
rization or medical applications. The models esti-
mate parameters of the Gaussian clusters with a mod-
ified EM procedure from two disjoint data sets to pre-
vent notorious infinite overfit problems and ensuring
good generalization ability. The optimum number of
clusters in the mixture is determined automatically
by minimizing an estimate of the generalization er-
ror [8].

This paper focuses on applications to textmin-
ing [8, 11, 12, 13, 18, 22, 21, 23] with the objec-
tive of categorizing text according to topic, spotting
new topics or providing short, easy and understand-
able interpretation of larger text blocks – in a broader
sense to create intelligent search engines and to pro-
vide understanding of documents or content of web-
pages like Yahoo’s ontologies.

In Section 2, various GGM models for supervised
and unsupervised learning are discussed, in particu-
lar we introduce the USGGM algorithm. The hier-
archical clustering scheme is discussed in section 3
and introduces three similarity measures for cluster
merging. Finally, Section 4 provide numerical expe-
riments for segmentation of e-mails.

2 The Generalizable Gaussian
Mixture Model

The first step in our approach for probabilistic clus-
tering is a flexible and universal extension of Gaus-
sian mixture density model, the generalizable Gaus-
sian mixture model [8, 14, 15, 19] with the aim of
supervised learning from unlabeled and labeled data.
Define x as the d-dimensional input feature vector
and the associated output, y 2 f1; 2; � � � ; Cg, of class
labels, assuming C mutually exclusive classes. The
joint input/output density is modeled as the Gaussian



mixture in [17]1
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y=1 P (yjk) = 1. The k’th Gaus-
sian component is described by the mean vector �k

and the covariance matrix �k. � is the vector of all
model parameters, i.e., � � fP (yjk);�k;�k; P (k) :
8k; yg. Since the Gaussian mixture is an universal
approximator, the model Eq. (1) is rather flexible.
One restriction, however, is that the joint input/output
for each components is assumed to factorize, i.e.,
p(y;xjk) = P (yjk)p(xjk).

The input density associated with Eq. (1) is given
by

p(xj�u) =
CX
y=1

p(y;x) =

KX
k=1

p(xjk)P (k); (3)

where �u � f�k;�k; P (k) : 8k; yg. Assuming a 0/
1 loss function the optimal Bayes classification rule
is by = maxy P (yjx) where2

P (yjx) =
p(y;x)

p(x)
=

KX
k=1

P (yjk)P (kjx) (4)

with P (kjx) = p(xjk)P (k)=p(x).
Define the data set of unlabeled examples Du =

fxn;n = 1; 2; � � � ; Nug and a set of labeled exam-
plesDl = fxn; yn;n = 1; 2; � � � ; Nlg. The objective
is to estimate � from the combined set D = Dl [Du
with N = Nl + Nu examples ensuring high gener-
alizability. If no labeled data are available we can
merely perform unsupervised learning of � u, how-
ever, if a number of labeled data are available, esti-
mation from both data sets is possible as p(yjx) and
p(x) share the model parameters �u [9]. The neg-
ative log-likelihood for the data sets, which are as-
sumed to consist of independent examples, is given
by

L = � log p(Dj�) (5)
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where 0 � � � 1 is a discount factor. If the model
is unbiased (realizable), the estimation �u from ei-
ther labeled or unlabeled data will result in identical

1In [17] referred to as the generalized mixture model.
2The dependence on � is omitted.

optimal setting and thus � = 1 is optimal. On the
other hand, in the typical case of a biased mode, it is
advantageous to discount the influence of unlabeled
data [9, 18].

Initialization
1. Choose values for K and 0 � � � 1.
2. Let i be K different randomly selected indices

from f1; 2; � � � ; Ng, and set �k = xik
.

3. Let�0 = N�1
P

n2D(xn��0)(xn��0)
>,

where �0 = N�1
P

n2D xn, and set 8k :
�k = �0.

4. Set 8k : P (k) = 1=K.
5. Compute class prior probabilities: P (y) =
N�1

l

P
n2Dl

�(yn � y), where �(z) = 1 if
z = 0, and zero otherwise. Set 8k : P (yjk) =
P (y).

6. Select a split ratio 0 < 
 < 1. Split the unla-
beled data set into disjoint sets asDu = Du;1[
Du;2, with jDu;1j = [
Nu] and jDu;2j =
Nu � jDu;1j. Do similar splitting for the la-
beled data set Dl = Dl;1 [ Dl;2.

Repeat until convergence
1. Compute posterior component probabilities:
p(kjxn) = p(xnjk)P (k)=

P
k p(xnjk)P (k),

for all n 2 Du, and for all n 2 Dl,

p(kjyn;xn) =
P (ynjk)p(xnjk)P (k)P
k P (ynjk)p(xnjk)P (k)

:

2. For all k update means
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3. For all k update covariance matrices
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X
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X
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whereSkn = (xn��k)(xn��k)
>. Perform

a regularization of�k (see text).
4. For all k update cluster priors

P (k) =

X
n2Dl

P (kjyn;xn) + �
X
n2Du

P (kjxn)

Nl + �Nu

5. For all k update class cluster posteriors

P (yjk) =

X
n2Dl

�(y � yn)P (kjyn;xn)

X
n2Dl

P (kjyn;xn)

Figure 1: The USGGM algorithm.



2.1 The USGGM Algorithm
The model parameters are estimated with an itera-
tive modified EM algorithm [8], where means and
covariance matrices are estimated from independent
data sets, and P (yjk), P (k) from the combined set.
This approach prevents overfitting problems with the
standard approach [2]. It is designated the generaliz-
able Gaussian mixture model with labeled and unla-
beled data (USGGM) and may be viewed as an ex-
tension of the EM-I algorithm suggested in [17]. The
GGM can be implemented using either hard or soft
assignments of data to components in each EM it-
eration step. In the hard GGM approach each data
example is assigned to a cluster by selecting high-
est P (kjx). Means and covariances are estimated
by classical empirical estimates from data assigned
to each component. In the soft version (SGGM) [19]
means and covariances are estimated as weighted
quantities, e.g.,�k =

P
n p(kjxn)xn=

P
n p(kjxn).

GGM provides a biased estimate, which gives bet-
ter results for small data sets [19], however, in gen-
eral the soft version is preferred. The USGGM al-
gorithm is summarized in Fig. 1 and is based on the
soft approach. The main iteration loop is aborted 3

when no change in example cluster assignment is
noticed. Labeled examples are assigned to clusters
kn = argmaxk P (kjyn;xn), n 2 Dl, and unlabeled
to kn = argmaxk P (kjxn), n 2 Du. In contrast to
EM algorithms there is no guarantee that each itera-
tion leads to improved likelihood, however, practical
experience indicates that the updating scheme is suf-
ficiently robust. Potential poor conditioned covari-
ance matrices for clusters where few examples are
assigned is avoided by regularizing towards the over-
all input covariance matrix �0 (defined in Fig. 1) as
�k  �k + ��0. � is selected as the smallest pos-
itive number, which ensures that the resulting condi-
tion number is smaller than 1=(d � �), where � is the
floating point machine precision.

Essential algorithm parameters are the number
of components K and the weighting factor �. In
principle, these parameters should be chosen as to
maximize generalization performance. One method
is to pick K and � so that the cross-validation es-
timate of the classification error is minimized. A
less computational cumbersome method is to select
K based on the AIC estimate of the generalization
error [1, 8, 19], which is the negative log-likelihood
plus the number of parameters in the model,K(d(d+
1)=2+C)�1. The only remaining algorithm param-
eter to determine is the split ratio 
, which in princi-
ple also should be selected to achieve high general-
ization performance. Practical simulations show that

 = 0:5 is a proper choice in most cases.

3Convergence criteria based on changes in the negative log-
likelihood can also be formulated.

2.2 Unsupervised GGM Model
If only input data are available one has to perform un-
supervised learning. In this case the object of mod-
eling is the input density Eq. 3, which can be trained
using the SGGM algorithm4 [19].

2.3 Supervised GGM Model
Clearly USGGM can be used in the case of no un-
labeled examples. Another choice is to use sepa-
rate GGM models for the class conditional input den-
sities, i.e., p(xjy) =

PKy

k=1 p(xjy; k)P (kjy) with
p(xjy; k) defined by Eq. (2) and where Ky is the
number of components. Using Bayes optimal rule
and assuming a 1/0 loss function, classification is
done by maximizing p(yjx) = p(xjy)P (y)=PC

y=1 p(xjy)P (y). The approach is also referred
to as mixture discriminant analysis [10] and seems
more flexible than the model in Eq. (1). However,
it does not use discriminative training, i.e., minimiz-
ing the classification error or negative log-likelihood
L = �

P
n log p(ynjxn;�), where � are model pa-

rameters. Modeling instead p(xjy) will provide rea-
sonable estimates of p(yjx) in the entire input space,
whereas discriminative learning will use the data to
obtain relatively better estimates of p(yjx) close to
the decision boundaries. The model in Eq. (1) de-
scribes the joint input-class probability p(y;x) =
p(yjx)p(x) and may be interpreted as a partial dis-
criminative estimation procedure.

3 Hierarchical Clustering
In the case of unsupervised learning, i.e., learning
p(x), hierarchical clustering concerns identifying a
hierarchical structure of clusters in the feature space
x. In the suggested agglomerative clustering scheme
we start by K clusters at level j = 1 as given by the
optimized GGM model of p(x). At each higher level
in the hierarchy two clusters are merged based on
a similarity measure between pairs of clusters. The
procedure is repeated until we reach one cluster at the
top level. That is, at level j = 1 there are K clusters,
and one cluster at the final level, j = K.

For supervised learning one can either identify
a hierarchical structure common for all classes, i.e.,
working from the associated input density p(x), or
identifying individual hierarchies for each class by
working from the class conditional input densities
p(xjy). For the model in Eq. (1) p(x) is given by
Eq. (3) and

p(xjy) =
p(y;x)

P (y)
=

KX
k=1

p(xjk)P (kjy) (6)

4The SGGM is similar to USGGM in Fig. 1 and is essentially
obtained by setting � = 1, neglecting steps 5 of the initialization
and main iteration loop, and further neglecting sums over labeled
data.



whereP (kjy) = P (yjk)P (k)=
P

k P (yjk)P (k). Let
pj(xjy; k) be the density for the k’th cluster at level
j, and Pj(kjy) the mixing proportion, which in the
general case both may depend on y. Further, the
(class conditional) density model at level j is
p(xjy) =

PK�j+1
k=1 Pj(kjy)pj(xjy; k). If clusters

` and m at level j are merged into i at level j + 1
then

pj+1(xjy; i) = (7)

pj(xjy; `)Pj(`jy) + pj(xjy;m)Pj(mjy)

Pj(`jy) + Pj(mjy)
;

Pj+1(ijy) = Pj(`jy) + Pj(mjy): (8)

3.1 Level Assignment

A unique feature of probabilistic clustering is the abil-
ity to provide optimal cluster and level assignment
for new data examples, which have not been used for
training. x is assigned to cluster k at level j if

Pj(kjy;x) =
pj(xjy; k)P (kjy)

p(xjy)
> � (9)

where the threshold � typically is set to 0:9. The
procedure ensures that the example is assigned to a
wrong cluster with probability 0.1.

3.2 Cluster Interpretation

Interpretation of clusters is done by generating likely
examples from the cluster [14, 19] and displaying
prototype examples and/or typical features. For the
first level in the hierarchy in which distributions are
Gaussian, prototype examples are identified as those
who has highest density values. For clusters at higher
levels in the hierarchy, prototype samples are drawn
from each Gaussian cluster with proportions speci-
fied by P (k) or P (kjy). Typical features are in the
first level found by drawing ancillary examples from
a super-eliptical region around the mean value, i.e.,
(x � �k)

>
�
�1

k (x � �k) < const., and then listing
associated typical features, e.g., keywords as demon-
strated in Sec. 4. At higher levels we proceed as de-
scribed above.

3.3 Similarity measures

Many different similarity measures may be applied
in the framework of hierarchical clustering. The nat-
ural distance measure between the cluster densities is
the Kullback-Leibler (KL) divergence [2], since it re-
flects dissimilarity between the densities in the prob-
abilistic space. The drawback is that KL only obtains
an analytic expression for the first level in the hierar-
chy, while distances for the subsequent levels have
to be approximated [14, 15]. Consequently, we con-
sider three different measures, which express similar-
ity in probability space for models of p(x) or p(xjy)
(cf. Sec. 3) and can be computed exactly at all levels

in the hierarchy5. Fig. 2 illustrates the hierarchical
clustering for Gaussian distributed toy data.

3.3.1 L2 Dissimilarity Measure
The L2 distance for the densities [25] is defined

D(`;m) =

Z
(pj(xj`)� pj(xjm))

2
dx (10)

where ` and m index two different clusters. Due to
Minkowksi’s inequality, D(`;m) is a distance mea-
sure, which also will be referred to as dissimilar-
ity. Let I = f1; 2; � � � ;Kg be the set of cluster
indices and define disjoint subsets I� \ I� = ;,
I� � I and I� � I, where I�, I� contain the
indices of clusters, which constitute clusters ` and
m at level j, respectively. The density of cluster
` is given by: pj(xj`) =

P
i2I�

�ip(xji), �i =
P (i)=

P
i2I�

P (i) if i 2 I�, and zero otherwise.
pj(xjm) =

P
i2I�

�ip(xji), where �i obtains a sim-
ilar definition. According to [25], the Gaussian inte-
gral is given byR
p(xja)p(xjb) dx = N (�a��b;�a+�b), where
N (�;�) = (2�)�d=2 � j�j1=2 � exp(��>��1�=2).
Define the vectors � = f�ig, � = f�ig of dimen-
sionK and theK�K symmetric matrixG = fGabg
with Gab = N (�a��b;�a+�b), then the distance
can be then written as D(`;m) = (� � �)>G(� �
�). It turns out (see Fig. 2) that it is important to
include the prior of the component in the dissimi-
larity measure. The modified L2 is then given byeD(`;m) =

R
(pj(xj`)Pj(`)� pj(xjm)Pj(m))

2
dx,

which easily can be computed using a modified ma-
trix eGab = P (a)P (b)Gab.

3.4 Cluster Confusion Similarity
Measure

Another natural principle is based on merging clus-
ters, which have the highest confusion. Thus, when
merging two clusters, the similarity is the probabil-
ity of misassignment (PMA) when drawing exam-
ples from the two clusters seperately. Let x be an
example from cluster Ck denoted by x 2 Ck and let
m = argmaxj P (jjx) be the model estimate of the
cluster, then the PMA for all ` 6= m is given by:

E(`;m) = P (` 6= m) = (11)Z
Rm

p(xj`)P (`)dx+

Z
R`

p(xjm)P (m)dx

whereRm = fx : m = argmaxj P (jjx)g and like-
wise for R`. In general, E(`;m) can not be com-
puted analytically, but can be approximated arbitrar-
ily accurately by using an ancillary set of data sam-
ples drawn from the estimated model. That is, ran-
domly select a cluster i with probability P (i), draw a
sample from p(xji) and compute the estimated clus-
ter j = argmaxk P (kjx). Then estimate P (` 6= m)

5In the following sections we omit the possible dependence on
y for notational convenience.



as the fraction of samples where (i = ` ^ j = m) or
(j = ` ^ i = m).

3.5 Sample Dependent Similarity Mea-
sure

Instead of constructing a fixed hierarchy for visual-
ization and interpretation of new data a sample de-
pendent hierarchy can be obtained by merging a num-
ber of clusters relevant for a new data sample x. The
idea is based on level assignment described in
Sec. 3.1. Let P (kjx), k = 1; 2; � � � ;K, be the com-
puted posteriors ranked in descending order and com-
pute the accumulated posteriorA(`) =

P`
k=1 P (kjx).

The sample dependent cluster is then formed by merg-
ing the fundamental components k = 1; 2; � � � ;m
where m = min`A(`) > �, with e.g., � = 0:9.

1

2

3

4

Level L2 modified L2 Error confus.
2 5=f1,4g 2 3 5=f1,4g 2 3 5=f1,4g 2 3
3 6=f1,2,4g 3 6=f1,3,4g 2 6=f1,3,4g 2

Figure 2: Hierarchical 2D clustering example with 4 Gaus-
sian clusters. 1 and 4 have wide distributions, 2 more nar-
row, and 3 extremely peaked. The priors are P (k) = 0:3
for k = 1; 2; 3 and P (3) = 0:1. The table shows the
construction of higher-level clusters, e.g., the L2 distance
measure groups clusters 1 and 4 at level 2, which is due to
the fact that distance is based on the shape of the distribu-
tion and not only its mean. This also applies to the other
dissimilarity measures. At level 3, however, the L2 method
absorbs cluster 4 into 5 to form cluster 6. The other meth-
ods absorbs cluster 3 at this stage. The reason is that the
prior of cluster 3 is rather low, which is neglected in the L2

method.

4 Experiments
The hierarchical clustering is illustrated for segmen-
tation of e-mails. Define the term-vector as a com-
plete set of the unique words occurring in all the
emails. An email histogram is the vector containing
frequency of occurrence of each word from the term-
vector and defines the content of the email. The term-
document matrix is then the collection of histograms

for all emails in the database. Suitable preprocessing
of the data is required for good performance. This
concerns: 1) removing words, which are too likely
(stop words) or too unlikely6; 2) keeping only word
stems; and 3) normalizing all histogram vectors to
unit length7. After preprocessing the term-document
matrix contains 1280 (640 for training and 640 for
testing) e-mail documents, and the term-vector con-
sists of 1652 words. The emails where annotated into
the categories: conference, job and spam. It is possi-
ble to model directly from the term-document matrix,
see e.g., [18, 22], however, we deploy the commonly
used framework Latent Semantic Indexing (LSI) [5],
which operates using a latent space of feature vec-
tors. These are found by projecting term-vectors into
a subspace spanned by the left eigenvectors associ-
ated with largest singular values of a singular value
decomposition of the term-document matrix. We are
currently investigating methods for automatic deter-
mination of the subspace dimension based on gener-
alization concepts, however, in this work, the num-
ber of subspace components is obtained from an ini-
tial study of classification error on a cross-validation
set. We found that a 5 dimensional subspace pro-
vides good performance. Fig. 3 presents a 3D scatter
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Figure 3: 3D scatter plot of the data. Three largest out of
five principal components are displayed. Light grey color
- conference, black - job, dark grey - spam. Data is well
separated, however, there exists small confusion between
job and conference e-mails.

plot of the first 3 feature dimensions, viz. the largest
principal components. Data seem to be well sepa-
rated, however, parts of job and conference e-mails
are mixed. Fig. 4 shows the performance of the
USGGM algorithm, and in Fig. 5 the hierarchical
representations are illustrated.

6A threshold value for unlikely word up to approx. 100 occur-
rences has little influence on classification error. In the simulation
the threshold was set to 40 occurrences.

7Another approach is to normalize the vectors to represent esti-
mated probabilities, i.e., let vector sum to one. However, extensive
experiments indicate that this approach give a feature space, which
is not very appropriate for Gaussian mixture models.
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Figure 4: Average performance of the USGGM algorithm
over 1000 repeated runs using Nu = 200 unlabeled ex-
amples and a variable number of labeled examples Nl.
The algorithm parameter is set to 
 = 0:5. Upper panel
shows the performance as a function of the discount fac-
tor � for unlabeled examples (� = 0 corresponds to no
unlabeled data). As expected, if few unlabeled examples
are available, Nl = 10; 20, the optimal � is close to one,
and all available unlabeled data are fully used. As Nl in-
creases � decreases towards 0:3 for Nl = 200, indicating
the reduced utility of unlabeled examples. The classifica-
tion error is reduced approx. 26% using unlabeled data
for Nl = 10, gradually decreasing to 1% for Nl = 200.
The classification error for optimal � as a function of Nl is
shown in the middle panel. The lower panel shows number
of components selected by the AIC criterion for optimal �
as described in Sec. 2.1. As Nl increase, also it is advanta-
geous to increase the number of components.

y k P (kjy) Keywords

1 .7354
information, conference, call,
workshop, university

3 .0167
remove, address, call, free, busi-
ness

1
4 .2297

call, conference, workshop, in-
formation, submission, paper,
web

6 .0181
research, position, university, in-
terest, computation, science

2 .6078
research, university, position, in-
terest, science, computation, ap-
plication, information2

6 .3922
research, position, university, in-
terest

3 .6301
remove, call, address, free, day,
business3

5 .3698 free, remove, call

Table 1: Keywords for the USGGM model. y = 1 is con-
ference, y = 2 is jobs and y = 3 is spam.

Typical features as described in Sec. 3.2 and back-
projecting into original term-space provides keywords
for each cluster as given in Tab. 1. In Fig. 5 we
choose to illustrate the hierarchies of individual class
dependent densities p(xjy) using the modified L2
dissimilarity only. The cluster confusion measure
is computational expensive if little overlap exist as
many ancillary data are required. The modified L2
is computational inexpensive and basically treat dis-
similarity as the cluster confusion, while the standard
L2 do not incorporate priors. The conference class
is dominated by cluster 1. This has keywords listed
in Tab. 1, which are in accordance with the meaning
of conference. The lower left panel shows the cluster
level assignment distribution of test set emails, which
are classified as conference emails cf. Sec. 3.1. Some
obtain significant interpretation at level 1 (clusters 1-
6), while others at a high level (cluster 9). Similar
comments can be made for the jobs and spam classes.

For comparison, we further trained an unsuper-
vised SGGM model and the results for a typical run
are presented in Fig. 6. The top row illustrate the hi-
erarchy formed by using the sample dependent, the
modified L2 dissimilarity, and the cluster confusion
similarity measures. For the sample dependent mea-
sure the numbers on top of the bars indicate the most
frequent combinations of first level clusters. Clearly
there is a significant resemblance among the sample
dependent and the cluster confusion similarity hierar-
chies, e.g., higher level clusters formed by f1; 3g and
f2; 10g. However, inspection of the bottom row pan-
els, which show the cluster confusion with the class
labels, indicate that the cluster combinations of the
sample dependent method is better aligned with the
class labels. The modifiedL2 provides the best align-
ment of clusters with class labels at level 8 and is in
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class, and the lower row the histogram of cluster level assignments for test data, cf. Sec 4.
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that respect superior to the other methods for the cur-
rent data set. The keywords for clusters 2,10 and 9
provide perfect description of the jobs and confer-
ence emails, respectively. Keywords for the other
clusters indicate that these mainly belong to the broad
spam category.

5 Conclusions
This paper presented probabilistic agglomerative hi-
erarchical clustering schemes based on the introduced
unsupervised/supervised generalizable Gaussian mix-
ture model (USGGM), which is an extension of [17].
The ability to learn from both labeled and unlabeled
examples is important for many real world applica-
tions, e.g., text/webmining and medical decision sup-
port. The USGGM was successfully tested on a text-
mining example concerning segmentation of emails.

Using a probabilistic scheme allows for automatic
cluster and hierarchy level assignment for unseen
data, and provides further a natural technique for an
interpretation of the clusters via prototype examples
and features. In addition, three different similari-
ties measures for cluster merging were presented and
compared.
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