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Abstract

This note introduces the concept of image warping and treats the special case of
Euclidean warping along with a discussion of a Matlab implementation. Secondly an
application of image warping is given; namely image mosaicing where images are stitched
together – e.g. to form a panoramic view.

Effort has been put into making the text as self-containing as possible. However, basic
knowledge of linear algebra is a requirement. The note is intended for an introductory
image analysis course.
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1 Introduction

Image warping is in essence a transformation that changes the spatial configuration of
an image. Using this definition a simple displacement of an image by – say – five pixels
in the x-direction would be considered a warp. Formalized, this can be written as the
vector function:

I′ = f(I) , f : IR2 7→ IR2 (1)

2 Euclidean Warping

In the following, we will study one particular type of warp namely; the Euclidean warp
also called the Euclidean similarity transform. This type of warp involves four parameters:
p = [ s α tx ty ]T, which denotes scale, rotation and translation respectively.

Let x = [ x y 1 ]T denote a position in the original 2D image, I, and let x′ = [ x′ y′ 1 ]T

denote the corresponding position in the warped image, I′, (both in homogeneous coor-
dinates). Looking at one pixel, equation (1) can now be written as a simple linear
transformation, where T denotes the transformation matrix:

x′ = Tx ⇒ (2)

∗Contact: mbs@imm.dtu.dk, http://www.imm.dtu.dk/˜mbs/.
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Observe that instead of warping a single point we could warp a whole image of n
points by replacing x with:
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


x1 . . . xn

y1 . . . yn

1 . . . 1


 (4)

then equation (2) becomes:

X′ = TX (5)

The above transformation is implemented in the Matlab script euclideanwarp where
the transformation matrix, T, that rotates an image five degrees is written as:

s = 1;
a = 5*pi/180;
tx = 0;
ty = 0;
T = [ s*cos(a) s*sin(a) tx ; -s*sin(a) s*cos(a) ty ; 0 0 1 ];

Due the discrete nature of raster images, one is in no way ensured that each input
pixel exactly maps to an out pixel. Consequently warping is mostly performed backwards
– i.e. from the output image to the input image. Since T is square and has full rank we
can easily compute the inverse transformation as:

X = T−1X′ (6)

In Matlab this is accomplished by:

X = T \ [ Xp(:) Yp(:) ones(n,1) ]’;

where ’ is the transpose operator, Xp(:) and Yp(:) are column vectors containing
the x′ and y′ coordinates and ones(n,1) is a column vector of ones.

What’s left now is to lookup (or interpolate) the intensity values in the incoming
image, I, at the positions in the X matrix. As seen below this is done for each color
channel.

xI = reshape( X(1,:),wp,hp)’;
yI = reshape( X(2,:),wp,hp)’;
Ip(:,:,1) = interp2(I(:,:,1), xI, yI, ’*bilinear’); % red
Ip(:,:,2) = interp2(I(:,:,2), xI, yI, ’*bilinear’); % green
Ip(:,:,3) = interp2(I(:,:,3), xI, yI, ’*bilinear’); % blue

Refer to to appendix A for a full listing of the script euclideanwarp.m.
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3 Image Mosaicing

One application for image warping is merging of several images into a complete mosaic –
e.g. to form a panoramic view. Here this is carried out by a Euclidean warp1.

In mosaicing, the transformation between images is often not known beforehand. In
this example, two images are merged and we will estimate the transformation by letting
the user give points of correspondence (also called landmarks or fiducial markers etc.)
in each of the images. In order to recover the transformation we rearrange the warping
equation (2) so that the warping parameters is the vector t in:

x′ = Zt ⇒ (7)




x′

y′

1


 =




x y 1 0 0
y −x 0 1 0
0 0 0 0 1


 ·




s cos α
s sin α

tx
ty
1




(8)

The warping parameters is now obtained by solving the linear system (7) in Matlab:

t = Z \ xp;

From (8) we see that (at least) two points are required to determine the four warping
parameters. In the Matlab script mosaic we prompt the user to deliver two such points
on each image using the function ginput2(). The full code for recovering the parameters
is then:

figure; image(I1);
[X1 Y1] = ginput2(2);
figure; image(I2);
[X2 Y2] = ginput2(2);
Z = [ X2’ Y2’ ; Y2’ -X2’ ; 1 1 0 0 ; 0 0 1 1 ]’;
xp = [ X1’ Y1’ ]’;
t = Z \ xp;
a = t(1); % = s cos(alpha)
b = t(2); % = s sin(alpha)
tx = t(3);
ty = t(4);

A demonstration of mosaicing using two input images is given in figure 1 and 2.

1Actually, a Euclidean warp is rather limited w.r.t. the types of camera transformations it can handle. In
a real image mosaicing application a projective transformation (a homography) should be applied.
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Figure 1: Left: First input image for mosaic. Right: Second input image for mosaic.
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Figure 2: Image mosaic produced by mosaic.
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4 Other Warping Functions

Below is listed some of the more commonly used warping functions ordered ascending by
their degrees of freedom – i.e. the number of warping parameters. For simplicity, these
are not written on matrix form. Refer to [1] for a review of additional warping functions.

Euclidean / Procrustes x′ = ax + by + tx , a = s cosα
y′ = −bx + ay + ty , b = s sin α

Affine / 1st order polynomial
x′ = a0 + a1x + a2y
y′ = b0 + b1y + b2y

Bilinear
x′ = a0 + a1xy + a2x + a3y
y′ = b0 + b1xy + b2x + b3y

Perspective
x′ = (a0 + a1x + a2y)/(c0x + c1y + 1)
y′ = (b0 + b1x + b2y)/(c0x + c1y + 1)

2nd order polynomial / Biquadratic
x′ = a0 + a1x + a2y + a3x

2 + a4y
2 + a5xy

y′ = b0 + b1x + b2y + b3x
2 + b4y

2 + b5xy

General polynomial
x′ =

∑
i

∑
j aijx

iyj

y′ =
∑

i

∑
j bijx

iyj

Problems

This section presents a set of practical and theoretical problems. The former requires that
you have a Matlab installation2 and the files: euclideanwarp.m, mosaic.m, ginput2.m,
left.jpg, right.jpg, checkers.jpg3. Further the current Matlab dir should be where
the above files reside (use Matlab commands pwd and cd).

P0: Run the script euclideanwarp. Try changing the values for s, a, tx, ty. In
which order are the three Euclidean operations applied?

P1: Run the script mosaic. Try doing a mosaic with two nearby points and two points
far apart. Which one do you prefer? Why?

P2: Show that Tx = Zt (you must not use the equality x′ = x′).

P3: Modify euclideanwarp to load the image checkers.jpg and experiment with the
interpolation schemes supported by the Matlab function interp2(), which are
’*nearest’, ’*bilinear’, ’*cubic’, ’*spline’. What is the observed differ-
ence?

P4: Why is homogeneous points used in section 2 as opposed to normal two dimensional
points?

P5: Construct expressions on the form x′ = Tx and x′ = Zt for the bilinear warp.

P6: What is the minimum number of points you would need to determine the parameters
for a bilinear warp – e.g. for an image mosaicing application? How many would
you prefer? Why?

2Version 5.3 or greater.
3Placed at http://www.imm.dtu.dk/~mbs/downloads/warping.zip (use unzip to unpack).
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P7: Copy the file mosiac.m to mosiac2.m and modify it to perform bilinear mosaicing.
Remember that the parameters for backwards transformation can be calculated by
interchanging (x, y) and (x′, y′) in equation (8).

P8: Modify mosiac2.m to take twice as many points as you answered in problem 6. How
does this affect the warp?
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A euclideanwarp.m

% load input image

I = double(imread(’right.jpg’));

[h w d] = size(I);

% show input image

figure; image(I/255); axis image;

title(’input image’);

% make transformation matrix (T)

s = 1;

a = 5*pi/180;

tx = 0;

ty = 0;

T = [ s*cos(a) s*sin(a) tx ; -s*sin(a) s*cos(a) ty ; 0 0 1 ];

% warp incoming corners to determine the size of the output image

cp = T*[ 1 1 w w ; 1 h 1 h ; 1 1 1 1 ];

Xpr = min( cp(1,:) ) : max( cp(1,:) ); % min x : max x

Ypr = min( cp(2,:) ) : max( cp(2,:) ); % min y : max y

[Xp,Yp] = ndgrid(Xpr,Ypr);

[wp hp] = size(Xp); % = size(Yp)

% do backwards transform (from out to in)

n = wp*hp;

X = T \ [ Xp(:) Yp(:) ones(n,1) ]’; % warp

% re-sample pixel values with bilinear interpolation

clear Ip;

xI = reshape( X(1,:),wp,hp)’;

yI = reshape( X(2,:),wp,hp)’;

Ip(:,:,1) = interp2(I(:,:,1), xI, yI, ’*bilinear’); % red

Ip(:,:,2) = interp2(I(:,:,2), xI, yI, ’*bilinear’); % green

Ip(:,:,3) = interp2(I(:,:,3), xI, yI, ’*bilinear’); % blue

% show the warping result

figure; image(Ip/255); axis image;

title(’warped image’);
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B mosaic.m

% load input images

I1 = double(imread(’left.jpg’));

[h1 w1 d1] = size(I1);

I2 = double(imread(’right.jpg’));

[h2 w2 d2] = size(I2);

% show input images and prompt for correspondences

figure; subplot(1,2,1); image(I1/255); axis image; hold on;

title(’first input image’);

[X1 Y1] = ginput2(2); % get two points from the user

subplot(1,2,2); image(I2/255); axis image; hold on;

title(’second input image’);

[X2 Y2] = ginput2(2); % get two points from the user

% estimate parameter vector (t)

Z = [ X2’ Y2’ ; Y2’ -X2’ ; 1 1 0 0 ; 0 0 1 1 ]’;

xp = [ X1 ; Y1 ];

t = Z \ xp; % solve the linear system

a = t(1); % = s cos(alpha)

b = t(2); % = s sin(alpha)

tx = t(3);

ty = t(4);

% construct transformation matrix (T)

T = [a b tx ; -b a ty ; 0 0 1];

% warp incoming corners to determine the size of the output image (in to out)

cp = T*[ 1 1 w2 w2 ; 1 h2 1 h2 ; 1 1 1 1 ];

Xpr = min( [ cp(1,:) 0 ] ) : max( [cp(1,:) w1] ); % min x : max x

Ypr = min( [ cp(2,:) 0 ] ) : max( [cp(2,:) h1] ); % min y : max y

[Xp,Yp] = ndgrid(Xpr,Ypr);

[wp hp] = size(Xp); % = size(Yp)

% do backwards transform (from out to in)

X = T \ [ Xp(:) Yp(:) ones(wp*hp,1) ]’; % warp

% re-sample pixel values with bilinear interpolation

clear Ip;

xI = reshape( X(1,:),wp,hp)’;

yI = reshape( X(2,:),wp,hp)’;

Ip(:,:,1) = interp2(I2(:,:,1), xI, yI, ’*bilinear’); % red

Ip(:,:,2) = interp2(I2(:,:,2), xI, yI, ’*bilinear’); % green

Ip(:,:,3) = interp2(I2(:,:,3), xI, yI, ’*bilinear’); % blue

% offset and copy original image into the warped image

offset = -round( [ min( [ cp(1,:) 0 ] ) min( [ cp(2,:) 0 ] ) ] );

Ip(1+offset(2):h1+offset(2),1+offset(1):w1+offset(1),:) = double(I1(1:h1,1:w1,:));

% show the result

figure; image(Ip/255); axis image;

title(’mosaic image’);
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